[36]. A. Jesuraj, U. Hassan. Point-of-Care Portable 3D-Printed Multispectral Sensor for Real-Time Enzyme Activity Monitoring in Healthcare Applications,
Biosensors, 3(1), 120, (2023). Link.

[35]. M. Sami, M. Tayyab, U. Hassan. Excitation Modalities for Enhanced Micro and Nanoparticle Imaging in a Smartphone Coupled 3D Printed Fluorescent Microscope,
Lab Chip, 22, 3755 – 3769, (2022). Link.

[34]. B. Ashley, U. Hassan. Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy,
Biomedical Microdevices, 24 (4), 1-12, (2022). Link.

[33]. C. Norton, U. Hassan. Bioelectronic Sensor with Magnetic Modulation to Quantify Phagocytic Activity of Blood Cells Employing Machine Learning,
ACS Sensors, 7, 7, 1936–1945, (2022). Link.

[32]. H. Govindaraju, M. Sami, U. Hassan. Machine Learning Enabled Leukocyte Quantification Using Smartphone Coupled 3D Printed Microfluidic Biosensor,
IEEE Access, vol. 10, pp. 85755-85763, (2022). Link.

[31]. B. Ashley, J. Sui, M. Javanmard, U. Hassan. Antibody-functionalized aluminum oxide coated particles targeting neutrophil receptors using a multifrequency microfluidic impedance cytometer,
Lab Chip, 22, 3055-3066, (2022). Link.

[30]. H. Arshad, S. Sadaf, U. Hassan. De‐novo fabrication of sunlight irradiated silver nanoparticles and their efficacy against E. coli and S. epidermidis,
Scientific Reports, 12, Article number: 676, (2022). Link.

[29]. P. Hooda, M. Sami and U. Hassan. Point-of-Care 3D Printed Spectrophotometer for Therapeutic Drug Monitoring in Tuberculosis Patients,
IEEE Sensors Letters, vol. 5, no. 9, Art no. 4500504, (2021). DOI: 10.1109/LSENS.2021.3106828. Link.

[28]. B. Ashley and U. Hassan. Time‐domain signal averaging to improve microparticles detection and enumeration accuracy in a microfluidic impedance cytometer,
Biotechnology and Bioengineering, 1-13 (2021). Link.

[27]. A. Farooq, N.Z. Butt, and U. Hassan. Circular shaped microelectrodes for single cell electrical measurements for lab‐on‐a‐chip applications,
Biomedical Microdevices, 23, 35 (2021). Link.

[26]. K. Wagner, M.A. Sami, C. Norton, J. McCoy and U. Hassan. Profiling single-cell level phagocytic activity distribution with blood lactate levels,
RSC Advances, 11, 21315-21322 (2021). Link.

[25]. A. Farooq, N.Z. Butt, and U. Hassan. Biochip with multi‐planar electrodes geometry for differentiation of non‐spherical bioparticles in a microchannel,
Scientific Reports, 11, 11880 (2021). Link.

[24]. B. Ashley and U. Hassan. Point-of-critical-care diagnostics for sepsis enabled by multiplexed micro and nanosensing technologies,
WIREs Nanomedicine and Nanobiotechnology, e1701 (2021). Link.

[23]. M. Sami, M. Tayyab, P. Parikh, H. Govindaraju and U. Hassan. A modular microscopic smartphone attachment for imaging and quantification of multiple fluorescent probes using machine learning ,
Analyst, 146, 2531-2541 (2021). DOI:10.1039/D0AN02451A. "Analyst HOT article in themed collection". Link.

[22]. H. Arshad, M. Sami, S. Sadaf, U. Hassan. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy,
Scientific Reports, 11, Article number: 5996, (2021). Link.

[21]. B. Ashley, J. Sui, M. Javanmard, U. Hassan. Functionalization of hybrid surface microparticles for in vitro cellular antigen classification,
Analytical and Bioanalytical Chemistry, 1-10, (2020). DOI: 10.1007/s00216-020-03026-4 Link.

[20]. S. Prakash, B. Ashley, P. Doyle, and U. Hassan. Design of a Multiplexed Analyte Biosensor using Digital Barcoded Particles and Impedance Spectroscopy,
Scientific Reports, 10, Article number: 6109 (2020). Link.

[19]. T. Ghonge, H. C. Koydemir, E. Valera, J. Berger, C. Garcia, N. Nawar, J. Tiao, G. L. Damhorst, A. Ganguli, U.Hassan, A. Ozcan, and R. Bashir. Smartphone-imaged microfluidic biochip for measuring CD64 expression from whole blood,
Analyst, 144, 3925, (2019). Link.

[18]. B. Reddy, U. Hassan, C. Seymour Point-of-care sensors for the management of sepsis,
Nature Biomedical Engineering, 2, 640-648, (2018). Link.

[17]. U. Hassan, E. Valera, and R. Bashir. Detecting sepsis by observing neutrophil motility,
Nature Biomedical Engineering, 2, 197-198, (2018). DOI: 10.1038/s41551-018-0223-0 Link.

[16]. U. Hassan, R. Zhu, and R. Bashir. Multivariate Computational Analysis of Biosensor's Data for Improved CD64 Quantification for Sepsis Diagnosis,
Lab Chip, 18, 1231-1240, (2018). DOI: 10.1039/C8LC00108A. Link.

[15]. E. Valera, J. Berger, U. Hassan, T. Ghonge, J. Liu, M. Rappleye, J. Winter, D.Abboud, Z. Haidry, R. Healey, N.-T. Hung, N. Leung, N. Mansury, A. Hasnain, C. Lannon, Z. Price, K. White, and R. Bashir. A Microfluidic Biochip Platform for Electrical Quantification of Proteins,
Lab. Chip, 18, 1461-1470, (2018). DOI: 10.1039/C8LC00033F Link.

[14]. U. Hassan, T. Ghonge, B. Reddy Jr., M. Patel, M. Rappleye, I. Taneja, A. Tanna, R. Healey, N. Mansury, Z.Price, T. Jensen, J. Berger, A. Hasnain, E. Flaugher, S. Liu, B. Davis, J. Kumar, K. White and R. Bashir. A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification,
Nature Communications, 8, 15949, (2017). DOI: 10.1038/ncomms15949 Link.

[13]. I. Taneja, B. Reddy, G. Damhorst, D. Zhao, U. Hassan, Combining Biomarkers with EMR Data to Identify Patients in Different Phases of Sepsis,
Scientific Reports, 7, 10800, (2017). Link.

[12]. T. Ghonge, A. Ganguli, E. Valera, M. Saadah, GL. Damhorst, J. Berger, G.P. Diaz, U. Hassan, M. Chheda, Z. Haidry, S. Liu, C. Hwu, and R. Bashir. A microfluidic technique to estimate antigen expression on particles,
APL Bioengineering , 1, 016103, (2017). DOI: 10.1063/1.4989380 Link.

[11]. U. Hassan, N. Watkins, B. Reddy, G. Damhorst, and R. Bashir. Microfluidic Differential Immuno-Capture Biochip for Specific Leukocyte Counting,
Nature Protocols, 11(4), 714-726, (2016). Link.

[10]. U. Hassan, B. Reddy, G. Damhorst, O. Sonoiki, T. Ghonge, C. Yang, and R. Bashir. A Microfluidic Biochip for Complete Blood Cell Counts at the Point-of-Care,
Technology, 3(4), (2015). DOI: 10.1142/S2339547815500090 Link.

[9]. U. Hassan, and R. Bashir. Coincidence Detection of Heterogeneous Cell Populations from Whole Blood with Coplanar Electrodes in a Microfluidic Impedance Cytometery,
Lab. Chip, 14 (22), 4370-4381, (2014). Link.

[8]. U. Hassan, and R. Bashir. Electrical cell counting process characterization in a microfluidic impedance cytometer,,
Biomedical Microdevices, 16 (5), 697–704, (2014). DOI: 10.1007/s10544-014-9874-0 Link.

[7]. U. Hassan, N. Watkins, C. Edwards, and R. Bashir. Flow Metering Characterization within an Electrical Cell Counting Microfluidic Device,
Lab. Chip, 14, 1469, (2014). Link.

[6]. N.N. Watkins*, U. Hassan*, G. Damhorst, H. Ni, W. Rodriguez, and R. Bashir. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood,
Science Translational Medicine, 5, 214ra170, (2013). Cover Article (*Equal Contribution) Link.

[5]. U. Hassan, and R. Bashir. Research Highlights from the last year in Nanomedicine,
Nanomedicine, 8(9), 1369-1371, (2013). Link.

[4]. U. Hassan, Z. Usman, and M.S. Anwar. Video-based spatial portraits of a non-linear vibrating string,
American Journal of Physics, 80, 862-869, (2012). Cover Article Link.

[3]. U. Hassan, S. Pervaiz, and M.S. Anwar. Inexpensive Data Acquisition with a Sound Card,
Physics Teacher, 49, 537, (2011). Link.

[2]. U. Hassan, and M.S. Anwar. Reducing Noise by Repetition: Introduction to Signal Averaging,
European Journal of Physics, 31, 453-465, (2010). Link.

[1]. U. Hassan, S. Shamim, and M.S. Anwar. Investigating Properties of White Noise in the Undergraduate Laboratory,
European Journal of Physics, 30, 1143-51, (2009). Link.