4.3 Laplace Transform in Linear System Analysis

The main goalin analysisof any dynamicsystemis to find its responseo a given
input. The systemresponsén generahastwo componentszero-stateesponselue
to externalforcing signalsand zero-inputresponse&lueto systeminitial conditions.
The Laplacetransformwill produceboth the zero-inputand zero-statecomponents
of the systemresponse.We will also presentproceduredor obtainingthe system
Impulse,step,andramp responsesNote that using the Fouriertransform,we have
beenable to find only the zero-statesystemresponse.

It is importantto point out that the Laplace transformis very convenientfor
dealing with the systeminput signals that have jump discontinuities (and delta
impulses). Note that in generalthe linear systemdifferentiatesnput signals. The
deltaimpulseinputs can comefrom the systemdifferentiationof input signalsthat

have jump discontinuities.
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Recallfrom Chapter2 thedefinitionof thegeneralizedierivative , whichindicates
that at the point of a jump discontinuity,the generalizedderivative generateghe
impulsedeltasignal. Furthermorefor the samereasona signalthatis continuous
anddifferentiablefor all £ > 0, but hasa jump discontinuityatt = 0, for example
e~ tu(t), will generateanimpulsedeltasignal(after beingdifferentiatedyt ¢t = 0.
Thesameis truefor thesignalu(t) sin (¢) (afterbeingdifferentiatedwice), which

IS continuousbut not differentiableat ¢ = 0. Note that

D , D? : :
E{u(t) sin (t)} = u(t) cos (t), ﬁ{u(t) sin (¢)} = 6(t) — u(t) sin (¢)

Using the Laplacetransformas a methodfor solving differential equationghat
representdynamicsof lineartime invariantsystemsanbedonein a straightforward
manner despite delta impulses generatedby the systemdifferentiation of input

signals.
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4.3.1 System Transfer Function and I mpulse Response

Let ustakethe Laplacetransformof both sidesof a linear differentialequationthat

describeghe dynamicalbehaviorof an nth orderlinear system

d™y(t d"ly(t
E{ y( ) +an—1—y()+an—2}

dt™ dtn—1

b1~ >+ +

B d™ f(t) d™1f(¢) df (t)
_E{bm am T dim—1 br=0s

+ bof(t)}
Using the time derivative property of the Laplacetransformwe have
(sn +ap_18" '+ 4+ as+ ao)Y(s) — I(s)

= (bmsm + bm_lsm_l + .-+ bis+ bo)F(S)

whereI(s) containstermscoming from the systeminitial conditions
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Recall that

{2

Lt = s¥(e) — (o)

E{d;t(zt)} = sY (s) — sy(07) —y'V(07)

E{d"y(t)

din } — "Y' (s) — s" 1y (07) — s" 2y (07) — ... — y(=V (07

Note thatwe assumehatthe input signal f (¢) represents causalsignalfor which
f(t) = 0, t < 0. Thus,wehavetosetf(!)(0~) = 0, = 0,1, 2, ..., m. Hence,

I(s) is afunction of the coeficients a; only andthe systeminitial conditions.

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic 4—60



It can be easily shownthat in general
I(s) = (a1y(07) + a2y (07) + -+ + @an1y ™2 (07) + y "~ (07))
+8(azy(0_) +asy™M(07) + -+ + an_1y" ¥ (07) + y* 7Y (0_)>

+32(a3y(0_) +ayM(07) + -+ an_1y" " (07) 4y (0_)>

+5""2(@n-19(07) + 3y (07)) + s"'y(07)

Note that in practicewe do not needto usethis formula.

System Response

The input signal is applied to the systemat ¢ = 0, and we are interested
in finding the completesystemresponse—theesponsalue to both systeminitial
conditionsand input signals. From the original derivationswe have
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b s™ + by —18™ 1 + -+ 4+ bys + by
s+ ap_18" 1+ -+ ais + ap
I(s)

s+ ap_18"" 4o+ aris + ag

Y(s) = F(s)

which producesthe solution Y (s) in the frequencydomainof the original differ-
ential equation.To get the time domainsolution,we mustusethe inverseLaplace
transform,thatis y(t) = £~ 1{Y (s)}.

If the initial conditionsare setto zero,thenI(s) = 0. The quantity

Y(s)| . bS™ + byy_18™ L+ -+ bys + by
F(s) 18)=0= "gn + ap—1s"" 1+ --- 4+ ais + ag

definesthe system transfer function. The transferfunction canalsobe written as

H(s) =

(s —z1)(s—22) -+ (s — zm)

(S_Pl)(S—pz)...(S_pn)’ K = bn

H(s) =K
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wherez;,: = 1, 2, ..., m, arethe transferfunction zeios (notethat H(z;) = 0)
andpj,j = 1,2,...,n, arethe transfer function polesat which H(p;) = oc.
Very often, we call themthe systemzerosand poles. K is called the static gain.
We have assumedthat z; # p; for all 2,7 so that we have n poles and m
zeros.However,in the casewhentherearecommonfactorsin the transferfunction
numeratorand denominatorthey haveto be cancelledout beforethe systempoles

and zeros are identified.

Example 4.17: Let the systemtransferfunction be given by

_ (4 1)(s+3) _ s+1
) = G DG +96 40 G264

After the cancellationof commonfactors,the systemzerosandpolesareidentified
asz; = —1 andpy 23 = {0,—2, —4}. Hence,—3 is neitherthe systemzero

nor the systempole.
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Example 4.18: Considerthe electrical circuit from Figure 1.10. Denotethe
input voltage by f(t), thatis f(t) = e;(t), and denotethe output voltage by
y(t), thatis y(t) = eo(t). The correspondinglifferential equationis given by

d?y(t) (L + Rlec) dy(t) (Rl + Ry

) (t) =~ 7(2)
dt? R,LC dt r.LCc )2\ T Lc

To simplify notation, we introduce

_L—|—R1ch _R1—|-R2 1

a1 = ap —m ————— = —
! R,LC T "R,Lc’ T LC

Assumingthatthe systeminitial conditionsarezero,the Laplacetransformproduces
s’Y (s) + a18Y (s) + apY (s) = boF(s)

so that the systemtransferfunction is given by

Y (s) . bo
F(s) l1.c.=0 =

H(s) =
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The quantity

(=21)(=22) -+ (=2m) _ bo

B0 = K Cpa) - (=pm) — a0

is calledthe systenDC gain (systemgain at zero frequency).lt is also called the
systensteadystategain sinceit showshow muchthe systemmultiplies a constant
input signal at steadystate. It follows from the final value theoremof the Laplace

transformthat for f(t) = au(t) « F(s) = a/s, we have
Yss = tlim y(t) = lin% sY(s) = lin% {SH(S)E} = H(0)a
— 00 s— s— S

Notethatthefinal valuetheoremis applicableundertheassumptiorthatthefunction
sY (s) = aH(s) hasno poleson the imaginaryaxis andin the right-handhalf
of the complexplane,thatis, whenall polesof H(s) arestrictly in the left-hand
half of the complexplane. In sucha case,the systemoutput canreachits steady

statevalue that can be found by using this simple formula.
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Example 4.19: The steadystateresponseo a constantinput f(¢t) = 5u(t) of

a systemwhosetransferfunction is given by
253 4352 4+ 5+ 2
st 4+ 3883 +5s24+s5+1

existssinceall polesof H(s) arein the left-handhalf of the complexplane (the

H(s) =

H(0) =2

polelocationcanbecheckedoy MATLAB). Thesteadystatesystemoutputvalueis
yss(t) = 5H(0) = 10
Sincefor the impulsedeltasignalthe Laplacetransformis givenby F(s) = 1,
we concludefrom Y (s) = H(s)F(s) that under zero initial conditions, the
systemresponseo the impulsedeltasignalis equalto £~1{H(s)}. In thetime
domain, the system impulse response is definedby
h(t) = £~ {H(s)}
For the systemmpulseresponsethe systemnitial conditionsmustbe setto zeo.
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Example 4.20: The systemimpulseresponsegor
y D (8) + 3y () + 29(t) = FV(@) + 37 (¢)

is obtainedas follows

h(t) = LT{H(s)} = ﬁ_l{sz j;?:r 2} - ‘:_1{(3 +81;r(33+ 2)}

2 1
— — 2—t_ —2t ¢
s+1 s+ 2 (e © )u()

Thesystemimpulseresponses plottedusingMATLAB andpresentedn Figure4.2.
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Figure 4.2: The system impulse response

Figure4.2 represents typical impulseresponsef areal physicallinear system.
The impulse delta signal at t = 0 brings the enegy into the system(system
excitation), which basically setsup systeminitial conditionsto nonzerovaluesat
t = 0T. As time passesthe systemenegy dissipatesand the systemresponse

tendsto zero. Note thatin this examplewe haveh(0~) = 0, () (07) = 0.
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It is easyto concludefrom the expressiorobtainedfor h(t) thatatt = 0 we
haveh(0%) = 1, A(1)(0F) = 0. In Chapter7, wherewe will presenthe method
for finding the systemimpulsein thetime domain,we will addresghis phenomenon

of instantaneousystemsignal changesat the initial time in more detail.

4.3.2 System Zero-State Response

The systemresponsésystemoutput) dueto the giveninput f(¢) andzerosystem

initial conditionsis obtainedin the frequencydomainusing the formula
Y.s(s) = H(s)F(s)
Applying the convolutionpropertyof the Laplacetransform,we obtain
y=a(t) = h(t) * f(t) = L7{H(s)F(s)}

This formula statesthat the systemoutput under systemzeio initial conditionsis

equalto the convolutionof the systemnput and the systemmpulseresponse
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We have establishedhe most fundamentalresultsof linear time invariant dy-
namic systemtheory. From theseresults,we can notice that in orderto find the
systemresponsdo any input signal,one mustfirst find the systemresponse&lueto
the impulsedeltasignal, and then convolvethe obtainedsystemimpulseresponse
with the given systeminput signal. Note that the systemimpulseresponsas ob-
tained(and defined)or the systemat rest(zeroinitial conditions). It shouldbe also
emphasizedhatfor the giventime invariantsystemthe impulseresponsdasto be
found only once. Hence,any linear time invariantsystemis uniquely characterized
by its impulseresponséor by its transferfunctionin thefrequencydomain). In gen-
eral, it is easyto find the systemimpulseresponséyy usingh(t) = L~ {H(s)}.
As a matterof fact, this formula representshe most efficient way for finding the

impulseresponsef continuous-timdinear time invariant systems.
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Example 4.21: The zero-stataesponsef the systemdefinedby
y P (t) + 3y (1) + 20(8) = FV () + 3 (), t>0

dueto theinput signal f(t) = e~>'u(t) canbe obtainedasfollows. We first find

the systemtransferfunction andthe Laplacetransformof the input signals,thatis

s+ 3
H(S)=33—|—382+23, F(S)=S—|-5
Then, we have
T — ot (s +3) _
Y-5(t) = LTH{H(s)F(s)} =L {3(3+1)(3+2)(3+5)} B

3/10 1/2 1/6 1/30
B0y a6 1)
S s+1 s+ 2 s+ 5

3 1 1 1
—t —2t —5
= — — —€ —e —e u(t
(10 2 1% * 30 ) (t)
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This responsecanalso be obtainedby using MATLAB, seeFigure4.3.
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Figure 4.3: The zero-state response for Example 4.21

It should be pointed out that in Example4.21 the initial conditionsoriginally

were given by y.,(07) = yt) (07) = g (0) = 0. However,if we check
the expressiorobtainedfor y.,(t), we will find thaty.,(0%) = yts (0t) =0

and y{¥ (0+) = 1.
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We knowthat only an impulsedelta signal at zeio is able to changethe system
initial conditionsinstantaneously In this example,the impulse delta function is

generatedy the system’sdifferentiationof the input signal. Namely, we have

FO@) +3f(t) = ‘”d—i” +3f(t) = %{e—“u(t)} + 3e™"u(t)

= —5e tu(t) + e 6 (t) + 3 u(t) = —2e > u(t) + 6(t)

Note that when no differentiationof the input signal takesplace(m = 0), the
instantaneoushangeof the initial conditionscould happenonly in the casewhen
the input signalis theimpulsedeltasignal. Hence,we canconcludethat the system
input signal differentiation,in general,can producean instantaneoughangein the

systeminitial conditions
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It is also interestingto observethat

_ —2 —2+s+5 s+3
E{—265tu(t)+5(t)}=3_|_—5+1= sr5 " st

which is identical to

s+ 3
s+ 5

c{f(l)(t) + 3f(t)} = sF(s) — f(07) + 3F(s) = (s + 3)F(s) =

It canbe concludedrom the previousexampleandthe follow up discussiorthat
the Laplace transform has a built-in mechanism that takes into the account
the delta impulses generated by the system differentiation of the input signals.
Note that the delta impulsesare generatedby taking the first and higher order
derivativesof the input signalssatisfying f (0~) # f(0%). Also, in the case
when f(0~) = f(0t), but the input signalis not differentiablein the ordinary

senseatt = 0, for examplesin (t)u(t), the secondand higherordergeneralized

derivativesof this signalwill producethe deltaimpulses,seeProblem4.21.
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Anotherinterestingphenomenomranbe deducedrom Example4.21 by observ-
ing the expressiorobtainedfor the systemzeio-stateresponselt canbe seenthat
the input signal f(t) = e~**u(t) produceson the systemoutput the component
proportionalto e~**u(t) (which is expected)and componentghat correspondo
systemmodes(poles)p; = 0, p» = —1, p» = —2. Hence,despitethe fact that
all initial conditionsare zero, the systeminput excitesall systenmodesso that, in

general,all of themappearon the systemoutput.
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4.3.3 Unit Step and Ramp Responses

Findingthe systemresponselueto a unit stepis acommonproblemin engineering.
The unit stepresponsecan be relatedto the systemimpulse responseby a very
simpleformula, assuminghatin this casethe systemnitial conditionsare also set

to zeo. Namely, for f(t) = u(t), we have
t t

h(t) % u(t) = /u(t _ r)h(r)dr = /h(f)df 2 yoren(t)
0—- 0—
wherey,ep(t) denoteshesystemstepresponseindersysteneeroinitial conditions

(systemat rest). Note that we havetakenthe lower integrationlimit at¢ = 0~
in orderto be ableto completelyincludethe deltaimpulsesignal §() within the
integrationlimits sincein the casewhenn = m the systemimpulse response

containsthe deltaimpulsesignal at the origin. From the aboveformulawe have

dystep(t)

) = "4
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This correspondsn the frequencydomainto
1
Yarep(s) = —H(s)

Note that by the definition of the systemstep responsethe zero systeminitial

conditionsmust be used. Very often this formula representsan easierway to find

the systemstepresponsdhanthe correspondingime-convolutionformula.
Similarly, we can get the systemunit ramp responsesubjectto zero-initial

conditions. In this casef(t) = r(t) so that
t

Yramp(t) = h(t) x r(t) = / (t — )u(t — 7)h(7)dr

— /t(t — 7)h(r)dr
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Integratingby partsand using the resultfor ystep(t), we have
t

/(t — 7)h(7)dT = (¢ — T)ystep("')lqtz(t)— — /’ystep("')(_dT)

o
t
= /ystep(’l')d‘l'
o
that is
t
T S
o
By taking the derivative of y,qmp(t), We obtain
dyramp(t)
ystep(t) = dtp

The relationshipbetweenthe impulseresponseand the ramp responsas

dysiep(t) _ d*Yramp(t)

h(t) =
(t) dt dt?
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It follows also from the abovediscussionthat
t

t 1T
yramp(t) = /ystep('r)d'r = /h(O')dO'dT
00— 0— 0—

Note that in the frequencydomainthis result correspondgo
1
Yramp(s) = —H(s)

Example 4.22: The stepresponseof the systemat restconsideredn Example
4.21 can be obtainedby integrating the correspondingimpulse response. The

impulse responseds obtainedfrom

h(t) = c~'{H(s)} = ‘5_1{33 +83J£23+ 23} - E_l{s(s +81J)r(:: + 2)}

1.5 2 0.5
=, _ = (1.5 — 2t + 0.5e ) u(t
{3 3—|—1+3—|—2} ( e T © )u()
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The step responsés given by
t t
Ystep(t) = /h(T)dT = / (1.5 — 2e™" + 0.5 %7)dr
0 0
= (1.5t + 27" — 2 — 0.25e %" + 0.25)u(t)

= (—1.75 + 1.5t + 2e~" — 0.25e~ *)u(t)

The ramp responsepbtainedfor zeroinitial conditions,is
t t
Yramp(t) = / Ystep(T)dT = / (—1.75 + 1.57 + 2¢™7 — 0.25¢~2")dr
0 0
= 1.75 — 1.75¢t + 0.75t> — 2e" ! + 0.25¢7 %, t>0
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4.3.4 Complete System Response

Let us definethe systenmcharacteristicpolynomial by

A(s) =s" + p_18"" '+ -+ ays + ag

The completesystemresponséan the frequencydomainis given by

I(s) _
A(s)

Hence,the completesystemresponsas obtainedas the sum of the zero-stateand

Y(s) = H(s)F(s) + = = Yzs(s) + Yzi(s)

zero-inputresponsesBY taking the Laplaceinverseof the last equation,we obtain

the completesystemresponsdn the time domain

1)

v(O) = £HHEF@} + £ {55

} - yzs(t) + yzi(t)

In sometextbooks the zero-stataesponsas alsocalledthe forcedsystenresponse

andthe zero-inputresponsas called the natural systenresponse
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Note that thereis no needthat we treatin a separatesectionthe problem of
finding the systemzero-inputresponseoy using the Laplacetransform. It can be

simply found by using the resultspresentedn this sectionas

y:i(t) = L7 (Yzi(s)) = £~ (%)

Example 4.23. The completeresponseof the system

y () + 6y () + 9y(t) = £(t), F(t) = e u(t)

can be obtainedas follows. Applying the Laplacetransform,we have
1
(*¥ (5) = s9(07) =y (07) ) +6(sY () —y(07)) +9Y(s) = -~
which implies
1 1 s+ 4 I(s)
— = H(s)F(s) + ——
(s+3)°(s+2) (s+3)? (8)F'(s)

()= AGs)
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Notethatthe systemtransferfunctionandthe characteristipolynomialaregiven by

H = A = s+ 6 9
(s) s24+6s+9 () = o7+ 6s +
Using the Laplaceinversewe obtainthe zero-stateresponse
1 1 1
2s(t) = E_l Y. (s = E_l — —

= (e7* — e — te™?)u(t)

and the zero-inputresponse

iy pt) L1
Yy=i(t) = L7 {Yzi(s)} = £ { s+ 3 (8_|_3)2}

= (—e™ % — te ) u(t)

The completesystemresponsan now given by
Y(t) = y=s(t) + y2i(t) = (e7% — 27 — 2te ") u(t)
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In the casewhentheinput signalhasa nonstandardanalyticalform, for example

t 0<t<1
t) = { = -
F(t) 0 otherwise

the input signalshouldbe representedh termsof elementarysignalsconsideredn
Chapter2 (in this case,f(t) = r(t) — r(t — 1) — u(t — 1)) andthe linearity
and time invarianceprinciplesshould be used. Note that the linearity principle is
establishedor linear systemsat rest, thatis for zeroinitial conditions.Hence,this
way we obtainy.s(t) componenof the systemresponse The systemresponsalue
to initial conditions,y.;(t), hasto befoundindependentlylLet y,qmp(t) represent
the systemzero-stateesponsadue to r(t), andlet ystep(t) representhe system
zero-stateresponsedue to u(t), thenthe systemzero-stateresponsedueto f(t)

can be obtainedby using linearity and time invarianceas
Yzs(t) = Yramp(t) — Yramp(t — 1) — Ystep(t — 1)
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Example 4.24: Find the completeresponseof the systemdefinedby
y® (1) + 3y (1) + 2u(t) = F(),  y(07) =1, yP(07) =1
dueto the forcing functiongivenby f(t) = r(t) — r(t — 1) — u(t — 1). Since
y(t) = y.i(t) + y.s(t) we canfind independentlyy.;(t) andy.s(t).

The zero-inputresponsesatisfies
vl (6) +3y5 () + 2u-i(H) =0, y.i(07) =1, ) (07) =1

By applying the Laplacetransformwe have
s+4  I(s)
s24+3s4+2 A(s)
The time domainzero-inputresponsas obtainedas follows
yZi(t) - E_I{YZi(S)} - E_l{sz j_?[_s4+ 2} - E_l{s —:I))— 1 B S —|2— 2}
= (3e7t — 2e7*)u(t)

Y.i(s) =
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The impulse responsds

10 =M armers) ¢ )

= (e7t — e *u(t)

The step responsés given by

t t
1 1
ystep(t) = /h(’T)dT — / (e_T _ e_zT)dT — (5 _ et + 5e—zt) u(t)
0 0
The ramp responsds obtainedas follows
t t
1 -7 1 —27
yramp(t) = /ystep(T)dT = / 5 — € + 56 dr
0 0

3 1 1
- (_Z + 5t + et — Ze_Zt) u(t)
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The zero-stateresponsds given by
yzs(t) — yra,mp(t) - ystep(t - 1) - yra,mp(t - 1)

(3 et ey — (L — e 1—2<t—1>) _
_( 4—|—2t—|-e 1€ )u(t) (2 e —|—2e u(t—1)

3 1 1
S R ¢ S —(t-1) _ — —2(t—1) _
( 4—|—2(t 1)+ e 4e )u(t 1)

which simplifies to
3 1 1
yzs(t) = (_Z + Et +et— Ze_zt) u(t)

3 1 1
+(Z —t- Ze—z(t—l))u(t —1)
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The completesystemresponses obtainedas the sum of the zero-inputand

Zzero-stateresponses

Y(t) = y=i(t) + yzs(t) = (—z + %t + 4e7t — Ze—”) u(t)

Notethatin this particularexample the systemresponsés a continuousunction
att = 1 despitethe fact thatthe systeminput signalhasa jump at that point. This
canbe easily checkedby observingthat the coeficient that multipliesu(t — 1) is
equalto zeroatt = 1, thatis3/4 — 1/2 — 1/4 = 0. Also, the first derivative

of y(t) is continuousat ¢t = 1 since
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= 0u(t—1)+08(t—1) =0

The secondderivative of y(t) hasa jump discontinuityat ¢ = 1 equalto —1,
which is identical to a jump in the input signal at the sametime instant. This
observationcan be easily confirmedby finding the secondderivativeof y(t) and

evaluatingit att = 1.
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Sinusoidal Response via the Laplace Transform

Let the systeminput be sinusoidal

As
t) = A t F -
F(8) = Acos (wnt) = F(o) = 57
Then, the systemzero-stateresponsds given by
As  N(s) c c*

Y.s(s) = H(s)F(s) = H(S)32 + w% B A(s) + $ — Jwo + s 4+ Jwo

where

As A
|ls=jwo = EH(J"‘JO)

c — s]_i};%o {(s —gwo)H(s)F(s)} = H(S)(S + jwo)

Using the inverseLaplacetransform,we obtain

N(s)

IND } + A|H (jwo)| cos (wot + £H(jw))

yea(t) = c—l{

The first componentcomesfrom the systemnatural modesexcited by the input

signal A cos (wot).
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