Digital Comparators

- **Comparator**: A circuit that compares two binary words and indicates whether they are equal
- **Magnitude comparator**: Interprets its inputs as signed or unsigned numbers and indicates their arithmetic relationship (greater or less than)
Example Comparator Use

- Devices are enabled by comparing a “device select” word with a predetermined “device ID”

```
Control Unit
  ▶ binary-coded device select
  ▶ compare device ID
  ▶ device enable
  ▶ ▶ ▶ ▶ ▶
     Device
```

Equality Comparators

- 1-bit comparator
 - Active-high output (DIFF) asserted if the inputs are different

```
A0 1 B0 2
  ▶ ▶
    U1
    DIFF
```

- 4-bit comparator
 - The DIFF output is asserted if any of the input pairs are different

```
A0 1 B0 2
  ▶ ▶
    U1
    DIFF0

A1 4 B1 5
  ▶ ▶
    U1
    DIFF1

A2 9 B2 10
  ▶ ▶
    U1
    DIFF2

A3 12 B3 13
  ▶ ▶
    U1
    DIFF3
```

EQ_L
DIFF
4-Bit Magnitude Comparator

- Two input numbers to compare, 4 bits each: \(A = A_3A_2A_1A_0 \); \(B = B_3B_2B_1B_0 \)
- Three outputs, reporting “greater than”, “less than”, and “equal”, respectively

<table>
<thead>
<tr>
<th>Compared Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_3, B_3)</td>
<td>(A_2, B_2)</td>
</tr>
<tr>
<td>(A > B)</td>
<td>(A < B)</td>
</tr>
<tr>
<td>(A < B)</td>
<td>(A < B)</td>
</tr>
<tr>
<td>(A_3 = B_3)</td>
<td>(A_2 = B_2)</td>
</tr>
<tr>
<td>(A_3 = B_3)</td>
<td>(A_2 = B_2)</td>
</tr>
<tr>
<td>(A < B)</td>
<td>(A < B)</td>
</tr>
<tr>
<td>(A_3 = B_3)</td>
<td>(A_2 = B_2)</td>
</tr>
<tr>
<td>(A < B)</td>
<td>(A < B)</td>
</tr>
<tr>
<td>(A_3 = B_3)</td>
<td>(A_2 = B_2)</td>
</tr>
</tbody>
</table>

Note “x” (don’t care) notation.

4-Bit Magnitude Comparator

- Input \(A=A_3A_2A_1A_0 \); \(B=B_3B_2B_1B_0 \)
- **Case \(A = B \) :** \(A_3=B_3, A_2=B_2, A_1=B_1, A_0=B_0 \)
 \[x_i = (A_i \bar{B}_i) \oplus \bar{A}_iB_i \]
 \[\text{XNOR} = (A_i \bar{B}_i) + (A_i \bar{B}_i) + (A_i \bar{B}_i) \]
 \[= A_i \bar{B}_i + \bar{A}_iB_i \]
 - Output: \(x_3x_2x_1x_0 \)
- **Case \(A > B \) :**
 - Output: \(A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0' \)
- **Case \(A < B \) :**
 - Output: \(A_3' B_3 + x_3 A_2' B_2 + x_3 x_2 A_1' B_1' + x_3 x_2 x_1 A_0' B_0' \)
Iterative Combinational Circuits

- General structure: \(n \) identical modules
 - For problems that can be solved by an iterative algorithm:
 1. Set \(C_0 \) to its initial value and set \(i \) to 0
 2. While \(i < n \) repeat:
 a) Use \(C_i \) and \(P_i \) to determine the values of \(P_{O_i} \) and \(C_{i+1} \)
 b) Increment \(i \)

An Iterative Comparator Circuit

- (a) module for one bit
- (b) complete circuit
 - Comparing two \(n \)-bit values \(X \) and \(Y \):
 1. Set \(EQ_0 \) to 1 and set \(i \) to 0
 2. While \(i < n \) repeat:
 a) If \(EQ_i \) is 1 and \(X_i \) equals \(Y_i \), set \(EQ_{i+1} \) to 1
 Else set \(EQ_{i+1} \) to 0
 b) Increment \(i \)
 - Slow because the cascading signals need time to "ripple" from left to right

\[
EQO = (A \oplus B)' \cdot EQI
\]
4-bit Comparator 74x85

- Outputs:
 - Greater-than output (AGTBOUT)
 - Less-than output (ALTBOUT)
 - Equal output (AEQBOUT)

- Cascading inputs:
 - AGTBIN, ALTBIN, AEQBIN

- Cascading inputs and the outputs are arranged in a 1-out-of-3 code, since normally exactly one input and output should be asserted.

10-bit Comparator using 74x85s

AGTBOUT = (A>B) + (A=B) · AGTBIN
AGTBOUT = (A=B) · AEQBIN
AGTBOUT = (A<B) + (A=B) · ALTBIN

XNOR

(A>B) = A3·B3' + (A3·B3)' · A2·B2' + (A3·B3)' · (A2·B2)' · A1·B1' + (A3·B3)' · (A2·B2)' · (A1·B1)' · A0·B0'

![Diagram of 12-bit Comparator using 74x85s](image_url)
8-bit Magnitude Comparator

- **74x682**
 - Does not have cascading inputs (unlike 74x85)
 - Does not provide a “less than” output

Diagram

- Compares equality using 4 XNOR gates
- Compares if \(P[7–0] > Q[7–0] \)

Arithmetic Conditions from 74x682

- Not-provided conditions can be implemented as a function of outputs PEQQ_L and PGTQ_L

Diagram

- Compares inequality (\(\neq \))
- Compares greater than or equal to (\(\geq \))
- Compares less than or equal to (\(\leq \))

11 of 12

12 of 12