Crowd++: Unsupervised Speaker Count with Smartphones

ACM UbiComp'13 September 10th, 2013

<u>Chenren Xu</u>, Sugang Li, Gang Liu, Yanyong Zhang, Emiliano Miluzzo, Yih-Farn Chen, Jun Li, Bernhard Firner

Scenario 1: Dinner time, where to go?

Scenario 2: Is your kid social?

lendlice@winlab.rutgers.edu

Scenario 2: Is your kid social?

Scenario 3: Which class is attractive?

She will be my choice!

Solutions?

□ Speaker count!

Dinner time, where to go?

□ Find the place where has most people talking!

□ Is your kid social?

□ Find how many (different) people they talked with!

□ Which class is more attractive?

□ Check how many students ask you questions!

Microphone + microcomputer

The era of ubiquitous listening

Chenren Xu

lendlice@winlab.rutgers.edu

What we already have

Voice-centric sensing

How to count?

Challenge

No prior knowledge of speakers

Background noise

Speech overlap

Energy efficiency

Privacy concern

How to count?

Challenge	Solution
No prior knowledge of speakers	Unique features extraction
Background noise	Frequency-based filter
Speech overlap	Overlap detection
Energy efficiency	Coarse-grained modeling
Privacy concern	On-device computation

Overview of Crowd++

Speech detection

□ Pitch-based filter

□ Determined by the vibratory frequency of the vocal folds

□ Human voice statistics: spans from 50 Hz to 450 Hz

Chenren Xu

Speaker identification/verification

□ Alice or Bob, or else?

Emotion/stress sensing

□ Happy, or sad, stressful, or fear, or anger?

Speaker counting

No prior information

Supervised

Unsupervised

□ Same speaker or not?

□ MFCC + cosine similarity distance metric

We use the angle θ to capture the distance between speech segments.

□ MFCC + cosine similarity distance metric

Alice's MFCC in speech segment 3 Bob's MFCC in speech segment 2 θ_d Bob's MFCC in speech segment 1

 $\theta_d > \theta_s$

□ MFCC + cosine similarity distance metric

 \bigwedge histogram of θ_{s} \bigwedge histogram of θ_{d}

1 second speech segment

2-second speech segment

3-sed

We use 3-second for basic speech unit.

10 seconds is not natural in conversation!

10-seo speech s

speech s

Chenren Xu

lendlice@winlab.rutgers.edu

□ MFCC + cosine similarity distance metric

3-second speech segment

□ Pitch + gender statistics

Same speaker or not?

IF MFCC cosine similarity score < 15

AND

Pitch indicates they are same gender

ELSEIF MFCC cosine similarity score > 30 OR

Pitch indicates they are different genders

ELSE

Same speaker

Different speakers

Not sure

Conversation example

□ Phase 1: pre-clustering

□ Merge the speech segments from same speakers

- □ Phase 1: pre-clustering
 - □ Merge the speech segments from same speakers
- □ Phase 2: counting
 - Only admit new speaker when its speech segment is different from all the admitted speakers.
 - □ Dropping uncertain speech segments.

Counting: 1

Admit first speaker

Chenren Xu

lendlice@winlab.rutgers.edu

Evaluation metric

Error count distance

The difference between the estimated count and the ground truth.

Number of speakers

Large scale crowdsourcing effort

120 users from university and industry contribute 109 audio clips of 1034 minutes in total.

Private indoor Public indoor

Outdoor

Large scale crowdsourcing results

	Sample number	Error count distance	
Private indoor	40	1.07	
Public indoor	44	1.35	
Outdoor	25	1.83	

The error count results in all environments are reasonable.

Computational latency

Latency (msec)	HTC EVO 4g	Samsung Galaxy S2	Samsung Galaxy S3	Google Nexus 4	Google Nexus 7	
MFCC	42.90	36.71	24.41	22.86	23.14	
Pitch	102.71	80.36	58.11	47.93	58.33	
Count	175.16	150.47	89.01	83.53	70.23	
It takes less than 1 minute to process						

a 5-minute conversation.

Energy efficiency

Use case 1: Crowd estimation

Chenren Xu

lendlice@winlab.rutgers.edu

Use case 2: Social log

Ph.D student life snapshot before UbiComp'13 submission

Use case 3: Speaker count patterns

Conclusion

Smartphones can count the number of speakers with reasonable accuracies in different environments.

Crowd++ can enable different social sensing applications.

Thank you

Chenren Xu WINLAB/ECE Rutgers University

Sugang Li WINLAB/ECE Rutgers University

Gang Liu CRSS UT Dallas

Yanyong Zhang WINLAB/ECE Rutgers University

Research Yih-Farn Chen

Emiliano Miluzzo

AT&T Labs

AT&T Labs Research

Jun Li Interdigital Communication

Bernhard Firner WINLAB/ECE Rutgers University