SCPL: Indoor Device-Free Multi-Subject Counting and Localization Using Radio Signal Strength

Rutgers University

WINLAB

Chenren Xu

Joint work with Bernhard Firner, Robert S. Moore, Yanyong Zhang Wade Trappe, Richard Howard, Feixiong Zhang, Ning An

Elder/health care

- Monitor indoor human mobility
 - □ Health/elder care, safety
 - □ Detect traffic flow
- □ Provides privacy protection
 - □ No identification

- Monitor indoor human mobility
 - □ Health/elder care, safety
 - □ Detect traffic flow
- □ Provides privacy protection
 - □ No identification
- □ Use existing wireless infrastructure

Previous Work

- □ Single subject localization
 - □ Fingerprinting-based approach

- Multiple subjects localization
 - □ Needs to take calibration data from N people for localizing N people

9 trials in total for 1 person

...

36 trials in total for 2 people!

15

	1 person
9 cells	9

 $9 \times 1 \min = 9 \min$

	1 person	2 people
9 cells	9	36
36 cells	36	630

 $630 \times 1 \text{ min} = 10.5 \text{ hr}$

	1 person	2 people	3 people
9 cells	9	36	84
36 cells	36	630	7140
100 cells	100	4950	161700

161700 × 1 min = 112 days
The calibration effort is prohibitive!

SCPL

- □ Input
 - Collecting calibration data only from 1 subject (D1)
 - Observed RSSI change caused by n subjects

- Output
 - count and localize N subjects.
- Main Insight:
 - □ If the number n is known, localizing n subjects

No Subjects

Link 1 change ~~~ 0 dB

Link 2 change ~~~ 0 dB

Link 3 change ~~~ 0 dB

One Subject

Link 1 change WM 4 dB

Link 2 change \WM 5 dB

Link 3 change ~~~ 0 dB

Two Subjects

	N = 0	N = 1	N = 2
Link 1	0	4	4
Link 2	0	5	7
Link 3	0	0	5
Total (∆n)	0	9	16

 $\Delta N \propto N$?

 $\Delta N / \Delta 1 = N$?

25

 $5 dB + 6 dB \neq 7 dB X$

Shared links observe nonlinear fading effect from multiple people

JTGERS WINLAB

SCPL Part I Sequential Counting (SC)

Counting algorithm

Sequential Counting Algorithm

Phase 1: Detection

$$\Delta N = 4 + 7 + 5 = 16 \text{ dB}$$

$$\Delta N > \Delta 1$$

Subject Count ++

Phase 2: Localization

in 1st round

PC-DfP:

$$q = \operatorname*{argmax}_{i \in \mathcal{S}} P(O|S_i)$$

← Find this guy

C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin. Improving rf-based device-free passive localization in cluttered indoor environments through probabilistic classification methods. In *Proceedings of the 11th international conference on Information Processing in Sensor Networks*, IPSN '12

Phase 3: Subtraction

Phase 3: Subtraction

Subject count ++
Go to the next iteration...

Phase 3: Subtraction

Subject count ++
Go to the next iteration...

Hold on ...

Measurement In 2nd round

Calibration data

We over-subtracted its impact on shared link!

We need to multiply a coefficient $\beta \in [0, 1]$ when subtracting each link

Location-Link Correlation

□ To mitigate the error caused by this oversubtraction problem, we propose to multiply a location-link correlation coefficient before successive subtracting:

$$\beta_{il} = \frac{h_{ii}^l}{\sqrt{\sum_{j=1}^K h_{ij}^l}} \qquad h_{ij} \leftarrow E\left[\mathcal{D}_{Il}\mathcal{D}_{Jl}\right]$$

Subject count ++
Go to the next iteration...

We are done!

SCPL Part II Parallel Localization (PL)

Localization

- □ Cell-based localization
 - □ Allows use of context information
 - □ Reduce calibration overhead
 - □ Classification problem formulation

C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin. Improving rf-based device-free passive localization in cluttered indoor environments through probabilistic classification methods. In *Proceedings of the 11th international conference on Information Processing in Sensor Networks*, IPSN '12

Linear Discriminant Analysis

- RSS measurements with person's presence in each
 cell is treated as a class/state k
- □ Each class k is Multivariate Gaussian with common covariance

$$f_k(x) = \frac{1}{(2\pi)^{\frac{L}{2}} |\Sigma|^{\frac{1}{2}}} exp\left[-\frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) \right]$$

□ Linear discriminant function:

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$
$$\hat{y} = argmax_k \delta_k(x)$$

Localization

- □ Cell-based localization
- □ Trajectory-assisted localization
 - Improve accuracy by using human mobility constraints

Human Mobility Constraints

You are free to go anywhere with limited step size inside a ring in free space

Human Mobility Constraints

In a building, your next step is constrained by cubicles, walls, etc. **RUTGERS**

Phase 1: Data Likelihood Map

Impossible movements

Impossible movements

Phase 2: Trajectory Ring Filter

Phase 3: Refinement

Here you are!

Viterbi optimal trajectory

□ Single subject localization

$$V_j(t) = \underset{q_1, q_2, \dots, q_{t-1}}{\operatorname{argmax}} P(q_1 q_2 \dots q_t = j, O_1 O_2 \dots O_t | T, \delta)$$

Multiple subjects localization

ViterbiScore =
$$F_j = \sum_{i=1}^C \delta_{q_t^i}(O_t) T_{q_{t-1}^i q_t^i}$$

 $\Pi \leftarrow$ is the set of all the possible permutations of $\binom{K}{C}$ $Q_i \leftarrow \operatorname{argmax}_{j \in \Pi} \text{ ViterbiScore}(Q_{i-1}, Q_j, \delta_{1:K}(O_i), T)$

System Description

- □ Hardware: PIP tag
 - □ Microprocessor: C8051F321
 - □ Radio chip: CC1100
 - □ Power: Lithium coin cell battery

- □ Packet size: 10 bytes
- □ Beacon interval: 100 msec

Total Size: 10 × 15 m

37 cells of cubicles, aisle segments

13 transmitters and 9 receivers

Four subjects' testing paths

Counting results

Counting results

67

Localization results

Open floor deployment

Total Size: 20 × 20 m

Open floor deployment

56 cells, 12 transmitters and 8 receivers

Open floor deployment

Four subjects' testing paths

Counting results

72

Localization results

Conclusion and Future Work

Conclusion

- Calibration data collected from one subject can be used to count and localize multiple subjects.
- Though indoor spaces have complex radio propagation characteristics, the increased mobility constraints can be leveraged to improve accuracy.

□ Future work

□ Count and localize more than 4 subjects

Q & A

Thank you

