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We care about our contexts

Meeting Vigo: your first

energy meter
Glasses

Necklace

™ Fitbit: Get Fit, Sleep
| Better, All in the one

Fall detection for the elderly
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But,

Can we learn contexts In an unobtrusive manner?

2 No need to wear a device

0 No need to report status

0 No extensive calibration

Q It naturally takes place as we live our life
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SCPL

Radio-frequency (RF) based
device-free localization:
location, trajectory, speed

[1] C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin. Improving rf-based device-free passive localization in cluttered indoor environments
through probabilistic classification methods, In ACM/IEEE IPSN, 2012.

[2] C. Xu, B. Firner, R.S. Moore, Y. Zhang, W. Trappe, R. Howard, F. Zhang, and N. An. Scpl: indoor device-free multi-subject counting and
localization using radio signal strength. In ACM/IEEE IPSN, 2013.
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Device Free Passive Localization
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DfP Localization

Yanyong Zhang yyzhang@winlab.rutgers.edu



No! Because of Multi-path effect
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Cell-based Fingerprinting
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Linear Discriminant Analysis

0 RSS measurements with person’s presence in each cell

IS treated as a class/state k

a Each class k is Multivariate Gaussian with common

covariance A
E e®® K=1
Q Linear discriminant function: S ',‘g s
N ee o p
0p)] [
Txv—1 I e cﬂ\:. . k=3

op(z) = 21Y i = G ha X7 o+ log T x TR

= B

U = argmaxko (ﬂf) Link 1 RSS (dBm) ]
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Evaluation Platform

a Hardware: PIP tag

Q Microprocessor: C8051F321
a Radio chip: CC1100

a Power: Lithium coin cell battery

0 Protocol: Unidirectional heartbeat (Uni-HB)

0 Packet size: 10 bytes

a Beacon interval: 100 msec
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| ocalization In a cluttered room
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97% cell estimation
accuracy (16
devices)
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Less training Is OK
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Having fewer devices Is OK
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Can we use the same training after

3 months?
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Next, let us localize multiple people

a Challenge: we do NOT want to train all N people

with all the combinations at different cells
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Fingerprinting 1 person

d b 4

9 trials in total for 1 person
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Fingerprinting 2 people
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Fingerprinting N people

O cells
36 cells 36 630 7140
100 cells 100 4950 161700

161700 x 1 min = 112 days
The calibration effort is prohibitive!
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a Can we use 1 person’s training data to localize N
people?

Q Yes. SCPL has two phases: (i) counting and (2)
tracking
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RSS change with people
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So,

a Can we directly infer n from the observed total
RSSI change?

a Is it linear?
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Nonlinear fading effect!
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Shared links observe nonlinear fading effect
from multiple people.

4dB+0dB =4dB v
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Location-Link Correlation

Q To mitigate the error caused by this over-
subtraction problem, we propose to multiply a
location-link correlation coefficient before

successive subtracting:

h‘i‘.i
I,ﬁ_‘ig__g — hf--'ij — F [/D jg_/D__H]
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Counting Algorithm
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There are two people in this room.
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Sequential Counting (SC) Algorithm

Count=0

Compute AN A = Sum of RSS change of links

Sequential
Counting
Algorithm AN> Ao?
No
g Yes
Yes
Localization
Y
Impact
Subtraction
v A 4
Count ++ Count ++
J r
End of
Counting
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Parallel Localization (PL)

a Cell-based localization

2 Trajectory-assisted localization

a Improve accuracy by using human mobility constraints
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Mobility makes localization easier
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Trajectory-based Localization

Data likelihood map Trajectory ring filter Refined likelihood map

Indoor mobility constraints can help
Improve localization accuracy.
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Parallel Localization (SL) Algorithm

Qa Single subject localization

Vi(t) = argmax P(qiq2...qc = 7,0102...0.|T,9)

d1.92,-.-.9+—_1

a Multiple subjects localization

C
ViterbiScore = F; = Z‘Sgi(ot)zlﬁ_lqi
i=1

II < 1s the set of all the possible permutations of (‘?)
Qi < argmax;yy ViterbiScore(Qi—1,Q;,01.x(0;),T)
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Testing Environment
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Test paths with partial overlap
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Counting Results

Counting Percentage (%)
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We achieve above 85% counting accuracy

when no trajectories are overlapped.
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L ocalization Results

" Not Using Trajectory Ring Filter oo
Using Trajectory Ring Filter
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Trajectory ring filter achieve 1-meter localization
accuracy and improve 30% from the baseline.
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| essons learned

2 Calibration data collected from one subject can

be used to count and localize multiple subjects.

Q Though indoor spaces have complex radio
propagation characteristics, the increased
mobility constraints can be leveraged to improve

tracking accuracy.
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Unsupervised Speaker
Counting on Smartphones:
speaker count

C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y. Chen, J. Li, B. Firner. Crowd++: Unsupervised Speaker Count with Smartphones. In ACM
UbiComp, 2013
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Dinner time, where to go?
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Scene 2: Is your kid social?
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Scene 3: Which class Is engaging?
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Speaker count

a Dinner time, where to go?

a Find the place where has most people talking!
Q Is your kid social?

a Find how many (different) people they talked with!
a Which class is more attractive?

0 Check how many students ask you questions!

Microphone + microcomputer
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Conversation contexts

Speech Speaker
recognition / identification
~ Family life Bob Alice

M

Stressful

Emotion
detection
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Overview

Digitized
Audio Signal
Framing
v
Hamming
Windows
Y
Speech Speech Pitch
SEQI’T‘IEI‘IIS Detection Estimation
Y 1
Speech MFCC Gender
Features vectors Identification
Y
Speaker .
Unsupervised
count . counting algorithm ¢
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Speech detection

Q Pitch-based filter

a Determined by the vibratory frequency of the vocal folds

0 Human voice statistics: spans from 50 Hz to 450 Hz

Human
voice

450
>0 f (Hz)
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Speaker features

a MFCC

Q Speaker identification/verification

a Alice or Bob, or else?

a Emotion/stress sensing

o Happy, or sad, stressful, or fear, or anger?

O Speaker counting

Unsupervised
o No prior information needed
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Speaker features

a2 MFCC + cosine similarity distance metric

MFCC 2

MFCC 1

We use the angle 0 to capture the
distance between speech segments.
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Speaker features

a2 MFCC + cosine similarity distance metric

Alice’s MFCC in
speech segment 3

Bob’s MFCC in
speech segment 2

Bob’s MFCC in
speech segment 1

0d > 0s
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Speaker features

a2 MFCC + cosine similarity distance metric

/\ histogram of 0/ \_ histogram of
1 second
speech segment
2-second
speech segment
speech segment

10-second utterance Is not common In conversation!
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Speaker features

a2 MFCC + cosine similarity distance metric

3-second speech segment

Thresholds trade-off the sensitivity to admitting new
speaker, as well as filtering overlap/silence.
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Speaker features

2 Pitch + gender statistics
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Same speaker or not?

IF MFCC cosine similarity score < 15

AND Same

speaker

Pitch indicates they are same gender

ELSEIF MFCC cosine similarity score > 30

OR Different

speakers

Pitch indicates they are different genders

ELSE Not sure

Yanyong Zhang yyzhang@winlab.rutgers.edu



Evaluation through crowdsourcing

a 120 users from university and industry contribute

109 audio clips of 1034 minutes in total.

Private indoor  Public indoor Outdoor
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Crowdsourcing results

Sample | Error count
number distance

Private indoor 40 1.07
Public indoor 44 1.35
Outdoor 25 1.83
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| essons learned

Q Accuracies: private indoor > public indoor >

outdoor

0 We need low-cost noise cancellation technique to

Improve the accuracy
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Ongoing work — Elder care with

SCPL + Crowd++ + many more

Sensing Layer Inference Layer Wellbeing Management
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Questions & Answers
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