Learning Human Context through Unobtrusive Methods

Yanyong Zhang

WINLAB, Rutgers University

yyzhang@winlab.rutgers.edu

We care about our contexts

Meeting Vigo: your first energy meter

Fitbit: Get Fit, Sleep Better, All in the one

Fall detection for the elderly

But,

Can we learn contexts in an unobtrusive manner?

- No need to wear a device
- No need to report status
- □ No extensive calibration
- □ It naturally takes place as we live our life

SCPL

Radio-frequency (RF) based device-free localization: location, trajectory, speed

[1] C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin. Improving rf-based device-free passive localization in cluttered indoor environments through probabilistic classification methods, In ACM/IEEE IPSN, 2012.

[2] C. Xu, B. Firner, R.S. Moore, Y. Zhang, W. Trappe, R. Howard, F. Zhang, and N. An. Scpl: indoor device-free multi-subject counting and localization using radio signal strength. In ACM/IEEE IPSN, 2013.

Device Free Passive Localization

DfP Localization

No! Because of Multi-path effect

Fingerprinting

Cell-based Fingerprinting

Linear Discriminant Analysis

- □ RSS measurements with person's presence in each cell is treated as a class/state *k*
- □ Each class k is Multivariate Gaussian with common covariance
- Linear discriminant function:

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$
$$\hat{y} = argmax_k \delta_k(x)$$

Evaluation Platform

- □ Hardware: PIP tag
 - □ Microprocessor: C8051F321
 - □ Radio chip: CC1100
 - □ Power: Lithium coin cell battery

- □ Protocol: Unidirectional heartbeat (Uni-HB)
 - □ Packet size: 10 bytes
 - □ Beacon interval: 100 msec

Localization in a cluttered room

Size: 5 × 8 m

Cell Number: 32

97% cell estimation accuracy (16 devices)

90% Cell estimation accuracy (8 devices)

Less training is OK

Having fewer devices is OK

Can we use the same training after 3 months?

Next, let us localize multiple people

□ Challenge: we do NOT want to train all N people with all the combinations at different cells

Fingerprinting 1 person

9 trials in total for 1 person

Fingerprinting 2 people

36 trials in total for 2 people!

Fingerprinting N people

	1 person	2 people	3 people
9 cells	9	36	84
36 cells	36	630	7140
100 cells	100	4950	161700

161700 × 1 min = 112 days
The calibration effort is prohibitive!

Instead,

Can we use 1 person's training data to localize N people?

□ Yes. SCPL has two phases: (i) counting and (2) tracking

RSS change with people

So,

- Can we directly infer n from the observed total RSSI change?
- □ Is it linear?

Nonlinear fading effect!

Shared links observe nonlinear fading effect from multiple people.

$$4 dB + 0 dB = 4 dB$$
 $\sqrt{ }$
 $5 dB + 6 dB = 11 dB \neq 7 dB X$
 $0 dB + 5 dB = 5 dB$ $\sqrt{ }$

Location-Link Correlation

□ To mitigate the error caused by this oversubtraction problem, we propose to multiply a location-link correlation coefficient before successive subtracting:

$$\beta_{il} = \frac{h_{ii}^l}{\sqrt{\sum_{j=1}^K h_{ij}^l}^2} \qquad h_{ij} \leftarrow E\left[\mathcal{D}_{Il}\mathcal{D}_{Jl}\right]$$

Counting Algorithm

There are two people in this room.

Sequential Counting (SC) Algorithm

Parallel Localization (PL)

- Cell-based localization
- □ Trajectory-assisted localization
 - □ Improve accuracy by using human mobility constraints

Mobility makes localization easier

In a building, your next step is constrained by walking speed, cubicles, walls, etc.

Trajectory-based Localization

Indoor mobility constraints can help improve localization accuracy.

Parallel Localization (SL) Algorithm

□ Single subject localization

$$V_j(t) = \underset{q_1, q_2, \dots, q_{t-1}}{\operatorname{argmax}} P(q_1 q_2 \dots q_t = j, O_1 O_2 \dots O_t | T, \delta)$$

□ Multiple subjects localization

$$\text{ViterbiScore} = F_j = \sum_{i=1}^C \delta_{q_t^i}(O_t) T_{q_{t-1}^i q_t^i}$$

 $\Pi \leftarrow \text{ is the set of all the possible permutations of } {K \choose C}$ $Q_i \leftarrow \operatorname{argmax}_{j \in \Pi} \text{ ViterbiScore}(Q_{i-1}, Q_j, \delta_{1:K}(O_i), T)$

Testing Environment

Total size: 10 × 15 m

13 transmitters and 9 receivers

37 cells of cubicles and aisle segments

Test paths with partial overlap

Counting Results

We achieve above 85% counting accuracy when no trajectories are overlapped.

Localization Results

Trajectory ring filter achieve 1-meter localization accuracy and improve 30% from the baseline.

Lessons learned

- □ Calibration data collected from one subject can be used to count and localize multiple subjects.
- Though indoor spaces have complex radio propagation characteristics, the increased mobility constraints can be leveraged to improve tracking accuracy.

Crowd++

Unsupervised Speaker Counting on Smartphones: speaker count

C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y. Chen, J. Li, B. Firner. Crowd++: Unsupervised Speaker Count with Smartphones. In ACM UbiComp, 2013

Scene 1: Dinner time, where to go?

Scene 2: Is your kid social?

Scene 3: Which class is engaging?

Speaker count

- □ Dinner time, where to go?
 - Find the place where has most people talking!
- □ Is your kid social?
 - □ Find how many (different) people they talked with!
- Which class is more attractive?
 - □ Check how many students ask you questions!

Microphone + microcomputer

Conversation contexts

Overview

Speech detection

- □ Pitch-based filter
 - Determined by the vibratory frequency of the vocal folds
 - □ Human voice statistics: spans from 50 Hz to 450 Hz

- □ MFCC
 - Speaker identification/verification
 - □ Alice or Bob, or else?
 - □ Emotion/stress sensing
 - □ Happy, or sad, stressful, or fear, or anger?
 - Speaker counting
 - No prior information needed

Supervised

Unsupervised

□ MFCC + cosine similarity distance metric

We use the angle θ to capture the distance between speech segments.

□ MFCC + cosine similarity distance metric

□ MFCC + cosine similarity distance metric

10-second utterance is not common in conversation!

□ MFCC + cosine similarity distance metric

Thresholds trade-off the sensitivity to admitting new speaker, as well as filtering overlap/silence.

□ Pitch + gender statistics

Same speaker or not?

IF MFCC cosine similarity score < 15

AND

Same speaker

Pitch indicates they are same gender

ELSEIF MFCC cosine similarity score > 30

OR

Different speakers

Pitch indicates they are different genders

ELSE Not sure

Evaluation through crowdsourcing

□ 120 users from university and industry contribute109 audio clips of 1034 minutes in total.

Private indoor

Public indoor

Outdoor

Crowdsourcing results

	Sample number	Error count distance
Private indoor	40	1.07
Public indoor	44	1.35
Outdoor	25	1.83

Lessons learned

- □ Accuracies: private indoor > public indoor > outdoor
- □ We need low-cost noise cancellation technique to improve the accuracy

Ongoing work – Elder care with SCPL + Crowd++ + many more

Wellbeing Management

Degradation alerts:

- Walked slower by 30% yesterday!
- Talked less by 80% last week!
- Forgot to take her pills last 3 days!

Causal alerts:

- Low air pressure + slow paced walk → high fall likelihood
- Alone in Holiday → social withdrawal
- Bad sleep → memory issues

Emergency alerts:

Still in shower after 1 hour!!!

Questions & Answers

