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Abstract

Effective schedulingstrategjiesto improve responsdimes, throughputandutilization areanimpor-
tantconsiderationn large supercomputingrvironments.Suchmachineshave traditionally usedspace-
sharingstratgyiesto accommodatenultiple jobsatthe sametime. This approachhowever, canresultin
low systemutilization andlarge job wait times. This paperdiscusseshreetechniqueshatcanbe used
beyond simplespace-sharintp greatlyimprove the performancdiguresof large parallelsystems.The
first techniquewe analyzeis backfilling, the seconds gang-schedulingandthethird is migration. The
main contribution of this paperis an analysisof the effectsof combiningthe above techniques.Using
extensie simulationsbasedon detailedmodelsof realistic workloads,the benefitsof combiningthe
varioustechniquesreshowvn over a spectrunof performanceriteria.

1 Intr oduction

Large scaleparallelmachinesareessentiato meetthe needsof demandingapplicationsat supercomputing
ernvironmentssuchasLawrencelLivermore(LLNL), Los Alamos(LANL) andSandiaNationalLaboratories
(SNL). With theincreasingemphasi®©n computersimulationasanengineeringandscientifictool, theload
on suchsystemss expectedio becomequite high in the nearfuture. As aresult,it is imperatve to provide
effective schedulingstratgyiesto meetthe desiredquality of serviceparameterérom bothuserandsystem
perspecties. Specifically wewouldlik e to reduceresponsandwait timesfor ajob, minimizetheslondown
thata job experiencesn a multiprogrammedsettingcomparedo whenit is run in isolation,maximizethe
throughputandutilization of the systemandbefair to all jobsregardlessof their sizeor executiontimes.

Schedulingstratg@iescanhave a significantimpacton the performanceharacteristicsf alarge parallel
system3, 4, 7, 10, 13, 14, 20, 21, 24]. Early stratgiesuseda space-sharingpproachwhereinjobscanrun
sideby sideon differentnodesof the machineat the sametime, but eachnodeis exclusiely assignedo a
job. Submittediobsarekeptin a priority queuewhich is alwaystraversedaccordingto a priority policy in
searchof the next job to execute. Spacesharingin isolationcanresultin poor utilization sincetherecould
be nodesthat areunutilized despitea waiting queueof jobs. Furthermorethe wait andresponsdimesfor
jobswith anexclusively space-sharingtratgy canberelatively high.

Amongtheseveralapproachessedo alleviatetheseproblemswith spacesharingschedulingthreehave
beenrecentlystudied. Thefirst is a techniquecalled backfilling [14], which attemptsto assignunutilized
nodesto jobsthatarebehindin the priority queue(of waiting jobs), ratherthankeepthemidle. To prevent
stanationfor largerjobs, (conserative) backfilling requireghatajob selectedutof ordercompletedefore
thejobsthatareaheadof it in the priority queuearescheduledo start. This approachrequiresthe usersto



provide an estimateof job executiontimes,in additionto the numberof nodesrequiredby eachjob. Jobs
thatexceedtheir executiontime arekilled. Thisencourageaserso overestimateheexecutiontime of their
jobs.

Thesecondapproachs to addatime-sharingdimensiorto spacesharingusingatechniquecalledgang-
schedulingor coschedulind17]. This techniquevirtualizesthe physicalmachineby slicing the time axis
into multiple virtual machines.Tasksof a paralleljob arecoscheduledo runin the sametime-slices(same
virtual machines)In somecasest maybeadwantageouso schedulghe sameob to runon multiple virtual
machines(multiple time-slices). The numberof virtual machinescreated(equalto the numberof time
slices),is calledthe multiprogrammindevel (MPL) of the system.This multiprogrammindevel in general
depend®n how mary jobscanbeexecutedconcurrentlybut is typically limited by systenresourcesThis
approactopensmoreopportunitiesor the executionof paralleljobs,andis thusquite effective in reducing
the wait time, at the expenseof increasingthe apparenjob executiontime. Gang-schedulingloesnot
dependon estimatedor job executiontime. Gang-schedulinfpasbeenusedin the prototypeGangLL job
schedulingsystemdevelopedby IBM Researctior the ASCI Blue-RPacific machineat LLNL (alarge scale
parallelsystemspanninghousand®f noded16]).

Thethird approachs to dynamicallymigratetasksof a paralleljob. Migration deliversflexibility of ad-
justingyour scheduldo avoid fragmentationMigrationis particularlyimportantwhencollocationin space
and/ortime of tasksis necessaryCollocationin spacas importantin somearchitecture$o guarante@roper
communicatioramongtasks(e.g., Cray T3D, CM-5, andBlue Gene).Collocationin timeis importantwhen
taskshave to berunningconcurrentlyto make progressn communicatior(e.g., gang-scheduling).

It is alogical next stepto attemptto combinetheseapproaches- gang-schedulingbackfilling, and
migration—to deliver evenbettemperformancdor largeparallelsystemsHowever, effectively implementing
thesecombinationgaisessomechallengesFor instance straightforvard combiningbackfilling andgang-
schedulingrequiresobtainingpreciseestimatedor job executiontime undergangscheduling.This canbe
very difficult or evenimpossible. Similarly, migrationincursa costandrequiresadditionalinfrastructure.
Migration costsmake it moredifficult to estimateaxecutiontimesanddecideif migrationshouldbeapplied.
In analyzingthesecombinationswe only considersystemdike the IBM RS/6000SR thatdo not require
spatialcollocation. Thereforewe only addressnigrationin the presencef gang-scheduling.

Progressingo combinedapproachesequiresa carefulexaminationof seseralissueselatedto backfill-
ing, gang-schedulingand migration. Using detailedsimulationsbasedon stochastianodelsderived from
realworkloadsatLLNL, thispaperanalyzegi) theimpactof the priorty queueingnechanisnin backfilling,
(i) theimpactof overestimatingob executiontimeson the effectivenessof backfilling, (iii) a stratgy for
combininggang-schedulingnd backfilling, (iv) the impactof migrationin a gang-scheduledystem,and
(v) theimpactof combininggang-schedulingnigration,andbackfilling in oneschedulingsystem.

We find that a First ComeFirst Sene (FCFS)queueingpolicy doesaswell asother priority policies
andhasthe adwantageof beingfair to all jobs, regardlesf their sizeor executiontimes. We alsofind that
overestimatingob executiontimesdoesnot really impactthe quality of serviceparametersiegardlesof
the degreeof overestimation.As a result,we canconseratively estimatethe executiontime of ajob in a
coscheduledystemto be the multiprogrammingevel (MPL) timesthe estimatedob executiontime in a
dedicatedsetting. Theseresultshelpusconstrucia backfilling gang-schedulingystemcalledBGS, which
fills in holesin the Ousterhouschedulingmatrix [17] with jobsthatarenot necessarilyin FCFSorder It
is clearly demonstratedhat, undercertainconditions,this combinedstratgy is alwaysbetterthanthein-
dividual gang-schedulingr backfilling stratgiesfor all the quality of serviceparametershatwe consider
By combininggang-schedulingndmigrationwe canfurtherimprove the systemperformancearameters.
Theimprovementis largerwhenappliedto plain gang-schedulingwithout backfilling), althoughthe abso-
lute bestperformancevasachiared by combiningall threetechniques:gang-schedulingpackfilling, and
migration.



Therestof this papers organizedasfollows. Section2 describe®ur approacto modelingparalleljob
workloadsandobtainingperformancecharacteristicef schedulingsystems.lt alsocharacterizesur base
workloadquantitatvely. Section3 is a studyof theimpactof backfilling on differentjob queuingpolicies.
It shaws thata FCFSpriority policy togetherwith backfilling is a sensiblechoice. Section4 analyzeshe
impactof job executiontime estimationon the overall performancdrom systemanduserperspecties. We
shav that relevant performanceparametersre almostinvariantto the accurag of averagejob execution
time estimation.Section5 describegiang-schedulinggndthe variousphasesnvolvedin computingatime-
sharingschedule Section6 demonstratethe significantimprovementsn performanceahatcanbeachiered
with time-sharingechniquesparticularywhenenhancedavith backfilling andmigration. Finally, Section7
presentour conclusionsaandpossibledirectionsfor future work.

2 Evaluation methodology

Beforewe presenthe resultsfrom our studieswe first needto describeour methodology In this section,
we begin by describinghow we generatesyntheticworkloads(dravn from realisticervironmentshatdrive
our simulator We thenpresenthe particularcharacteristicef the workloadswe use. Finally, we discuss
the performancenetricswe adoptto measurdhe quality of servicein a parallelsystem.
Whenselectinganddevelopingjob schedulergor usein large parallelsysteminstallationsit is impor
tantto understandheir expectedperformance Thefirst stageis to have a characterizatiomf the workload
anda procedureo syntheticallygeneratehe expectedworkloads. Our methodologyfor generatinghese
workloads,andfrom thereobtainingperformancgarametersnvolvesthefollowing steps:

1. Fit atypicalworkloadwith mathematicamodels.

2. Generatesyntheticworkloadsbasedn the derved mathematicamodels.

3. Simulatethe behaior of thedifferentschedulingpoliciesfor thoseworkloads.
4. Determinethe parametersf interestfor the differentschedulingpolicies.

We now describehesestepsin moredetail.

2.1 Workload modeling

Whenfitting a parallelload, it is very usefulto beableto find acompacimathematicatepresentatiothatis
expressibleby afew parameterds reasonableasyto usefor the generatiorof syntheticworkloads,andis
alsosuitablefor theoreticalqueuinganalysisof schedulingalgorithms.

Parallel workloadsoften are over-dispersie. Thatis, both job interarrival time distribution and job
servicetime (executiontime onadedicatedystemXistribution have coeficientsof variationthataregreater
thanone. Distributions with coeficient of variation greaterthan one are also referredto aslong-tailed
distributions,andcanbefitted adequatelyvith HyperErlangDistributionsof CommonQOrder In [12] such
amodelwasdeveloped,andits efficacy demonstratetdy usingit to fit a typical workloadfrom the Cornell
University Theory Center Herewe usethis modelto fit a typical workload from the ASCI Blue-PRacific
Systemat LLNL.

Our modelingprocedureanvolvesthefollowing steps:

1. First we groupthe jobsinto classesbasedon the numberof processorshey requireto executeon.
Eachclassis a bin in which theupperboundaryis a power of 2.



2. Thenwe modelthe interarrival time distribution for eachclass,andthe servicetime distribution for
eachclassasfollows:

(a) Fromthe job traceswe computethe first threemomentsof the obsered interarrival time and
thefirst threemomentf the obsened servicetime.

(b) Thenwe selectthe Hyper ErlangDistribution of CommonOrderthatfits these3 obsered mo-
ments.We chooseto fit the momentsof the modelagainstthoseof the actualdatabecausehe
first 3 momentsusually capturethe genericfeaturesof the workload and are more robust to
the effect of outliers. Thesethreemomentscarry the information on the mean,variance,and
skewnessof therandomvariablerespecitiely.

Next we generatevarioussyntheticworkloadsfrom the obsened workloadby varying the interarrival
rateandservicetime used.TheHyperErlangparameterfor thesesynthetiovorkloadsareobtainedoy mul-
tiplying theinterarrival rateandthe servicetime eachby a separatenultiplicative factor andby specifying
the numberof jobs to generate.From thesemodel parametersyntheticjob tracesare obtainedusingthe
proceduredescribedn [12]. Finally, we simulatethe effectsof thesesyntheticworkloadsandobsenre the
results.

Within aworkloadtrace,eachjob is describedy its arrival time, the numberof nodest usesjts execu-
tion time on a dedicatedsystem,andan overestimatiorfactor Backfilling strat@iesrequirean estimateof
thejob executiontime. In atypical systemijt is upto theeachuserto provide theseestimatesThis estimated
executiontime is alwaysgreaterthanor equalto the actualexecutiontime, sincejobs areterminatedafter
reachingthis limit. We capturethis discrepang betweenestimatedandactualexecutiontimesfor parallel
jobsthroughan overestimationfactor. The oversestimatioriactorfor eachjob is theratio betweerits esti-
matedandactualexecutiontimes. During simulation,the estimatedexecutiontime is usedexclusively for
performingjob schedulingwhile theactualexecutiontime is only usedto definethejob finish event. In this
paperwe considertwo modelsfor describingthe distribution of estimatedexecutiontimesasprovided by
theuser

In the first model, which we call the 2 model, we obtain the estimateby multiplying the dedicated
executiontime by the overestimatiorfactor whichis auniformly distributedrandomnumberbetweenl and
anupperlimit 1 + Q. This distribution is shavn in Figure1(a). In particular 2 = 0 indicateswe have
perfectknovledgeof how long jobsaregoingto run.

We alsomake useof the ® model.In the ® model,® is thefractionof jobsthatterminateat exactly the
estimatedime. This typically correspond$o jobsthatarekilled by the systembecauséehey reachthelimit
of theirallocatedtime. Therestof thejobs (1 — ®) aredistributedsuchthatthedistribution of jobsthatend
at a certainfraction of their estimatedime is uniform. This is shavn in Figure 1(b). To obtainthe desired
distribution for executiontimesin the ® model,in our simulationswe computethe overestimatiorfactor
asfollows: Let y be a uniformly distributed randomnumberin therange0 < y < 1. If y < @, thenthe
overestimatiorfactoris 1 (i.e., estimatedime = executiontime). If y > ®, thenthe overestimatiorfactoris

(1-2)/(1—y).

2.2 Workload characteristics

The baselineworkloadis the syntheticworkloadgeneratedrom the parametersglirectly extractedfrom the
actualASCI Blue-PFacific workload. It consistsof 10000jobs, varying in sizefrom 1 to 256 nodes,in a
systemwith a total of 320 nodes. Somecharacteristicof this workload are shovn in Figures2 and 3.
Figure 2 reportsthe distribution of job sizes(numberof nodes). For eachjob size, betweenl and 256,
Figure 2(a) shavs the numberof jobs of thatsize,while Figure 2(b) plots the numberof jobswith at most
thatsize. (In otherwords, Figure 2(b) is the integral of Figure2(a).) Figure 3 reportsthe distribution of
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Figurel: The(a) 2 and(b) ® modelsfor overestimation.

total CPUtime, definedasjob executiontime on a dedicatedsettingtimesits numberof nodes. For each
job size,Figure 3(a) shawvs the sumof the CPU timesfor all jobs of that size,while Figure3(b) is a plot

of the sumof the CPU timesfor all jobs of at mostthat size. (In otherwords, Figure 3(b) is the integral

of Figure 3(a).) From Figures2 and 3 we obsere that, althoughlarge jobs (definedas thosewith more
than32 nodes)represenbnly 30% of the numberof jobs,they constitutemorethan80% of the total work

performedin the system.This baselinevorkloadcorrespondso a systemutilization of p = 0.55. (System
utilizationis definedin Section2.3.)
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Figure2: Workloadcharacteristicsdistribution of job sizes.

In additionto the baselineworkloadof Figures2 and 3 we generate8 additionalworkloads,of 10000
jobseach by varyingthe modelparametersoasto increaseaverageob executiontime. More specifically
we generatehe 9 differentworkloadsby multiplying the averageiob executiontime by afactorfrom 1.0 to
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1.8 in stepsof 0.1. For afixedinterarrival time, increasingob executiontime typically increasesitilization,
until the systemsaturates.
2.3 Performancemetrics

Thesynthetiovorkloadsgeneratedsdescribedn Section?2.1areusedasinputto our event-drivensimulator
of variousschedulingstratgies. We simulatea systemwith 320 nodes,and we monitor the following
parameters:

e t%: arrival timefor job 1.
e t3: starttime for job ;.
e t¢: executiontime for job ¢ (in adedicatedsetting).
o t/: finish timefor jobs.
¢ n;: numberof nodesusedby job i.
Fromthesewe compute:
o {] = t{ — t¢: responséime for job .
o t’ =t —t¢: waittimefor job :.
max(#7,T') .

e 5 = m the slovdown for job i. To reducethe statisticalimpact of very shortjobs, it is

commonpractice[5, 6] to adopta minimum executiontime of I' secondsThis is the reasorfor the
max(-,I") termsin the definition of slovdown. Accordingto the literature[6], we adoptl’ = 10
seconds.



To reportquality of servicefiguresfrom a users perspectie we usethe averagegob slovdowvn andaverage
jobwaittime. Jobslovdowvn measurelion muchslowverthanadedicatednachinghesystemappearso the
userswhichis relevantto bothinteractve andbatchjobs. Jobwait time measuresiow long a job takesto
startexecutionandtherefordt is animportantmeasurdor interactive jobs. In additionto objective measures
of quality of service,we alsousetheseaveragedo characterizéhe fairnessof a schedulingstratgy. We
evaluatefairnessby comparingaverageandstandarddeviation of slovdown andwait time for smalljobs,
large jobs, andall jobs combined.As discussedn Section2.2, large jobs arethosethatusemorethan32
nodeswhile smalljobsuse32 or fewer nodes.

We measureuality of servicefrom the systems perspectie with two parametersutilizationandcapac-
ity loss. Utilization is the fraction of total systemresourceshatareactuallyusedduringthe executionof a
workload.Let the systemhave N nodesandexecutem jobs,wherejob m is thelastjob to finish execution.
Also, let thefirst job arrive attime ¢ = 0. Utilization is thendefinedas

p— Tl @
N X tm

A systemincursloss of capacitywhen (i) it hasjobs waiting in the queueto execute,and (ii) it has
emptynodes(eitherphysicalor virtual) but, becausef fragmentationit still cannotexecutethosewaiting
jobs. Before we candefineloss of capacity we needto introducesomemore concepts. A scheduling
eventtakes placewhene&er a new job arrivesor an executingjob terminates.By definition, thereare 2m
schedulingevents,occurringat times;, for i = 1,...,2m. Let e; bethe numberof nodesleft empty
betweenschedulingavents: andi + 1. Finally, let §; be 1 if thereareary jobswaiting in the queueafter
schedulingavents, and0 otherwise Lossof capacityin a purely space-shareslystemis thendefinedas

S ei(ir1 — i)d;
tfn X N

To computethelossof capacityin a gang-schedulingystemwe have o keeptrack of whathappensn
eachtime-slice.Let s; bethenumberof time slicesbetweerschedulingeventi andschedulingeventi + 1.
Also, let T;; bethelengthof the j-th timesslice betweenschedulingevents: and: + 1. We canthendefine

SIS Tigless + Srem, (ke X wh)) + T x C Sjes, ]
tfn x N

(2)

KR =

@)

kR =
where
e ¢;; isthenumberof emptynodesatthe j-th time-slicebetweerschedulingeventsi ands + 1;
e T isthebasdengthof thetime slice(T;; < T),

C is the contet-switch overheadasa fraction of time-slice);

ny is numberof nodesof job &;

wy, is fractionof time-slicenotusedby job k;

J;; is setof jobsthatwere contet-switchedinto executionat the j-th time-slicebetweernscheduling
events; ands + 1;

H;; is setof jobsthatterminateduringthe j-th time-slicebetweerschedulingevents: and: + 1;

A systemis in a saturatedtatewhenincreasingheloaddoesnotresultin anincreasén utilization. At
this point, thelossof capacityis equalto oneminusthe maximumachiezableutilization. More specifically
k=1-—p.



3 Queuing policieswith backfilling

In this sectiorwe analyzehebehaior of differentwell knowvn schedulingpolicieswhenbackfilling is used.
As previously mentioneda schedulingpolicy is a setof rulesthatprioritizesthe orderwith which jobsare
selectedor execution.We consideffour differentschedulingpolicies:

1. Firstcomefirst sene (FCFS):Jobsareorderedaccordingo their arrival time. Jobsthatarrived earlier
have higherpriority overjobsthatarrivedlater.

2. Shortesjob first (SJF):Jobsareorderedaccordingo their estimatedxecutiontime. Shorterrunning
jobshave higherpriority overlongerrunningjobs. Notethatthis policy canleadto stanationof long
runningjobs.

3. Bestfit (BFit): Jobsareorderedaccordingto their size (numberof nodes). The scheduleltooks for
the job thatbestmatchegshe numberof emptynodes.Thatis, the goalis to minimize the sizeof the
fragmentleft after eachschedulingevent. Note that the queueof jobs typically hasto be reordered
aftereachschedulingevent.

4. Worstfit (WFit): Jobsareorderedaccordingto their size,andschedulingproceedgrom the smallest
to thelargestjob. Thegoalis to fill the fragmentswith smalljobs. Note thatthis policy canleadto
stanationof large jobs.

Backfilling is a space-sharingptimizationtechniquethat canbe usedwith ary of the above policies.
Using oneof the policiesabove, the schedulercanbuild a scheduldor all jobsin the waiting queue.This
schedulewill determinea specificstarttime ¢} for eachjob 7. With backfilling, we canbypassthe priority
orderimposedby the policy. This allows alower priority job j to be scheduledeforea higherpriority job
1 aslong asthisreschedul&loesnotincur adelayon the starttime of job ¢ for thatparticularscheduleThis
requirementof not delayinghigher priority jobs is exactly what imposesthe needfor an estimateof job
executiontimes. The effect of backfilling on a particularschedulecanbe visualizedin Figure4. Suppose
we have to scheduldive jobs,numberedrom 1 to 5 in orderof arrival. Figure4(a) shavs the schedulghat
would be producedoy a FCFSpolicy without backfilling. Note the emptyspacebetweentimesT; andTy,
while job 3 waits for job 2 to finish. Figure 4(b) shavs the scheduleghat would be producedby a FCFS
policy with backfilling. The emptyspacewasfilled with job 5, which canbe executedbeforejob 3 without
delayingit.

space space

T1 T2 time Tl T2 time
(a) (b)

Figure4: FCFSpolicy without (a) andwith (b) backfilling. Jobnumberscorrespondo their positionin the
priority queue.

Figure5 summarizesesultsof averaggob wait time andlossof capacityfor eachof thefour policieswe
discussedbore in thepresencef backfilling. For thesepolicies,wait time is a particularlygoodindication
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Figure5: Averaggob wait time andcapacitylossfor differentqueueingpolicieswith backfilling.

of the quality of servicefrom a users perspectie. Oncea job is donewaiting and startsexecuting,the
executionproceedsasin a dedicatedmachine. Therefore,wait time capturesthe essentialperformance
characteristicskor the purposeof providing a performanceeferenceywe assumeerfectknovledgeof job
executiontimes (2 = 0, or & = 1) whenperformingscheduling. We refer to this as perfectestimation
badfilling. Resultsfor theseparameterareshavn in Figuress(a)and(b). Thedashedine in Figure5(b)is
aplotof Kk = 1 — p and,asdiscussedn Section2.3,representgheloci of maximumutilization (saturation)
points. For completenessye shav in Figuress(c) and(d) resultsfor ® = 0.2.

FromFigure5(a),we obsene thatat lower utilization (up to 75%)all policiesarecomparablewith SJF
displayingslightly betterperformanceHowever, at higherutilizationsFCFSperformsbetterthanthe other
policies.FromFigure5(b), we obsene thatboth SJIFandWFit saturateat an utilization of 85%,while both
BFit andFCFScansustairutilizationsof morethan90%. However, atthis high loads,FCFSexhibits better
averagejob wait time thanBFit. Ontop of that, FCFSis straightforvard to implementandhasno implied
stanation problems.In faceof theseresults,andin orderto limit the length of this paper we restrictour
discussiorto FCFSpoliciesfor theremainingof the paper
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4 The impact of overestimation on backfilling

A commonperceptiorwith backfilling is thatone needsa fairly accuratesstimationof job executiontime
to performgood backfilling scheduling. Userstypically provide an estimateof job executiontime when
jobs aresubmitted.However, it hasbeenshawvn in the literature[6] thatthereis little correlationbetween
estimatedandactualexecutiontimes. Sincejobs arekilled whenthe estimatedime is reachedusershave
anincentie to overestimatehe executiontime. This is indeeda majorimpedimentto applyingbackfilling
to gang-scheduling.The effective rate at which a job executesundergang-schedulinglependson mary
factors,including: (i) whatis the effective multiprogrammingevel of the system (ii) whatotherjobs are
presentand(iii) how mary time slicesareoccupiedby the particularjob. This makesit evenmoredifficult
to estimatethe correctexecutiontime for a job undergang-scheduling.

We conductedh studyof the effect of overestimatioron the performancef backfilling schedulersising
a FCFSprioritizationpolicy. Theresultsaresummarizedn Figure6 for the 2 modelof overestimatiorand
in Figure7 for the ® model. Figures6(a) and6(b) plot averagejob slov down andaveragejob wait time,
respectrely, asa function of systemutilization for differentvaluesof 2. We can seethat the impact of
overestimatioris minimal with respecto theaveragebehaior of userjobs. We obsere thatfor utilizations
of upto p = 0.90 overestimatioractuallyhelpsin reducingaverageslow down in approximately20% with
respecto perfectestimationbackfilling. The variationin averagewait time for utilizationsupto p = 0.85
is negligible. Only atvery high utilizationswe startto seesomeimpactof overestimationFigures7(a)and
7(b) plot averageiob slow dowvn andaveragejob wait time, respectrely, asa functionof systemutilization
for differentvaluesof ®. Again,we obsenre very little impactof overestimationHowever, in contrastwith
the 2 model,we canseealittle benefitin wait time from moreaccuratesstimates.

We canexplain why backfilling is not that sensitve to the estimatedexecutiontime by the following
reasoning:

1. Whentheloadis low, the estimationdoesnot really matter sincebackfilling is not really performed
thatoften. Therearenotthatmary jobswaiting, asindicatedby thelow waiting time.

2. Backfilling hasmore effect whenthe load is higher On average,overestimationmpactsboth the
jobsthatarerunningandthe jobsthatarewaiting. The schedulecomputesa laterfinish time for the

10
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Figure7: Averaggob slovdowvn andwait time for backfillingunder® modelof overestimation.

runningjobs, creatinglarger holesin the schedule.The larger holescanthenbe usedto accommo-
datewaiting jobs that have overestimatedxecutiontimes. The probability of finding a backfilling
candidateeffectively doesnot changewith the overestimation.

Eventhoughthe averagejob behaior is insensitie to the averagedegreeof overestimationjndividual
jobscanbe affected.To verify that,we groupthejobsinto 10 classedasedon how closeis their estimated
time to their actualexecutiontime. More precisely for the 2 model,classi, i = 0,.. ., 9 includesall those
jobsfor which their ratio of estimatedo actualexecutiontime falls in the range[1 + l%z', 1+ %(z‘ +1)).
Figure8(a) shavs theaveragegob wait timefor (i) all jobs,(ii) jobsin classO (bestestimatorsand(iii) jobs
in class9 (worstestimatorswhenthe averageoverestimatiorfactoris 3 (2 = 3). For the ® model,class
1,7 = 0,...,9 includesall thosejobsfor which their ratio of executiontime to estimatedime falls in the
range(i x 10%,(i+ 1) x 10%)]. Figure8(b) shavstheaveraggob waittimefor (i) all jobs, (i) jobsin class0
(worstestimatorspnd(iii) jobsin class9 (bestestimatorsivhen® = 0.2. We obsere thatthoseusersthat
provide goodestimatesrerewardedwith alower averagewait time. The conclusions thatthe“quality” of
anestimations notreally definedoy how closeit is to theactualexecutiontime, but by how muchbetterit is
comparedo theaverageestimation.Usersdo getabenefitandthereforeanencouragement;om providing
goodestimates.

Ourfindingsarein agreementvith thework describedn [22]. In thatpapertheauthorsdescribanecha-
nismsto moreaccuratelypredictjob executiontimes,basedn historicaldata. They find thatmoreaccurate
estimatef job executiontime leadsto more accurateestimatesof wait time. However, the accurag of
executiontime predictionhasminimal effect on systemparameterssuchas utilization. The authorsdo
obsere animprovementin averagejob wait time, for a particularArgonneNational Laboratoryworkload,
whenusingtheir predictoransteadof previously publishedwork [2, 9].

5 Gang-scheduling

In the previous sectionswe only consideredspace-sharingchedulingstratgies. An extra degreeof flex-
ibility in schedulingparalleljobsis to sharethe machineresourcesot only spatially but alsotemporally
by partitioning the time axis into multiple time slices[3, 4, 8, 11, 23]. As an example,time-sharingan
8-processosystemwith a multiprogramminglevel of four is shavn in Figure9. The figure shavs the
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schedulingnatrix (alsocalledthe Ousterhoumatrix) thatdefineshetasksexecutingon eachprocessoand
eachtime-slice. J} representshe j-th taskof job J;. The matrix s cyclic in thattime-slice3 is followed
by time-slice0. Onecycle throughall the rows of the matrix definesa schedulingcycle Eachrow of the
matrix definesan 8-processowirtual machine which runsat 1/4th of the speedof the physicalmachine.
We usethesefour virtual machinedo run two 8-way paralleljobs andseveral smallerjobs. All tasksof a
paralleljob arealwayscoscheduledo run concurrently This approachgiveseachjob the impressiorthat
it is still runningon a dedicatedalbeitslonver, machine.This type of schedulings commonlycalledgang-
scheduling[3]. Notethatsometaskscanutilize multiple processor¢suchasJ{ andJ; ) andthatsomejobs
canappeaitin multiple rows (suchasjobs J, andJs).

rph A P P5 Py P P P
time-slice0 | JY [ JL | J2 | P | JE | JP | JP | JT
time-slicel | JY [ Jo | J3 |5 [ Jy | J5 | J§ | J2
time-slice2 | JY | JY | J3 | J5 | R | Ji | J2 | J3
time-slice3 | JY | J& | JZ | J3 | IO [ JF [ J0 | 2

Figure9: Theschedulingnatrix definesspatialandtime allocation.

5.1 Considerationsin building a schedulingmatrix

Creatingonemorevirtual machinefor the executionof a new 8-way job in the caseof Figure9 requiresjn
principle, only addingonemorerow to the Ousterhoumatrix. Obviously, thingsarenot sosimple. There
is a costassociatedvith time-sharingdue mostlyto: (i) the costof the contet-switchesthemseles, (i)
additionalmemorypressurereatedyy multiple jobssharingnodesand(iii) additionalswapspacepressure
causedby morejobs executingconcurrently For thatreasonthe degreeof time-sharings usuallylimited
by a parametetthat we call, in analogyto uniprocessosystemsthe multiprogramminglevel (MPL). A
gang-schedulingystemwith multiprogrammindevel of 1 revertsbackto a space-sharingystem.
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In our particularimplementatiorof gang-schedulingye operateunderthefollowing conditions:

1. Multiprogramminglevelsarekeptatmodesievels,in orderto guarante¢hattheimagesof all tasksin
anoderemainin core. This eliminatespagingandsignificantlyreduceghe costof context switching.
Furthermorethetime slicesaresizedsothatthe costof theresultingcontext switchesaresmall.

2. Assignmentsf tasksto processorare static. Thatis, oncespatialschedulings performedfor the
tasksof a paralleljob, they cannotmigrateto othernodes.

3. When building the schedulingmatrix, we first attemptto scheduleas mary jobs for executionas
possible,constrainedoy the physicalnumberof processorsandthe multiprogramminglevel. Only
afterthatwe attemptto expanda job, by makingit occugy multiple rows of the matrix. (Seejobs J,
andJs in Figure9.) Our resultsdemonstratéhatthis approacthyields betterperformancehantrying
thefill the matrix with alreadyrunningjobs.

4. For a particularinstanceof the Ousterhoummatrix, eachjob hasanassignechomerow. Evenif ajob
appearsn multiple rows, oneandonly one of themis the homerow. The homerow of a job can
changeduringits life time,whenthematrix is recomputedThepurposeof thehomerow is described
in Section5.2.

Gang-schedulings atime-sharingechniquethatcanbe appliedtogethemwith any prioritization policy.
In particular we have shavn in previouswork [7, 15] thatgang-scheduling very effective in improving the
performancef FCFSpolicies. Thisis in agreementvith theresultsin [20]. We have alsoshavn thatgang-
schedulings particularly effective in impraving systemresponsienessas measuredy averagejob wait
time. However, gangschedulingaloneis not aseffective asbackfilling in improving averagejob response
time, unlessvery high multiprogrammingevels areallowed. Thesemay not be achiezablein practiceby
thereasonsnentionedn theprevious paragraphsGang-schedulinglsodeliversadditionalbenefitdbeyond
the scopeof performance.In particular the gang-schedulingnfrastructurecan be usedto implementthe
importantfeatureof preemption With preemptionthe executionof a lessimportantjob is suspendedo
allow the executionof a moreimportantjob. Preemptionis accomplishedn gang-schedulingpy simply
removing all tasksof a job from the schedulingmatrix.

5.2 The phasesof scheduling

Every job arrival or departureconstitutesa schedulingeventin the system. For eachschedulingevent, a
new schedulingmatrix is computedor the system.Eventhoughwe analyzevariousschedulingstratgies
in this paper they all follow anoverall organizationfor computingthat matrix, which canbe divided into
thefollowing steps:

1. CleanMatrix: Thefirst phaseof ascheduleremoveseveryinstanceof ajob in the Ousterhoumatrix
thatis not atits assignechomerow. Remaing duplicatesacrossows effectively opensthe opportu-
nity of selectingotherwaiting jobsfor execution.

2. CompactMatrix: Thisphasemovesjobsfrom lesspopulatedowsto morepopulatedows. It further
increaseghe availability of free slotswithin a singlerow to maximizethe chancef schedulinga
large job.

3. Schedule:Thisphaseattemptgo schedulaew jobs. We traversethequeueof waitingjobsasdictated
by the given priority policy until no furtherjobscanbefitted into the schedulingmatrix.
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4. FillMatrix: This phasetriesto fill existing holesin the matrix by replicatingjobs from their home
rows into a setof replicatedrows. This operationis essentialljthe oppositeof CleanMatrix .

The exact procedurefor eachstepis dependenbn the exact schedulingstratgyy and the detailswill be
presente@dswe discussachstratgy.

Orthogonalto thestrateyy, thereis alsotheissueof thelateny of theschedulerOneoptionis to always
invoke thescheduleexactly atthetime of ajob arrival or departureln thatcaseanew schedules computed
andtakeseffectimmediately In otherwords,the currenttime sliceis cut short. Alternatively, the schedule
is only invoked atdiscretdimes. Thatis, atthe predeterminedontet switchegime attheendof everytime
slice. In this case,every time slice runsto completion. The adwvantageof the first approachs thatempty
slotscanbe immediatelyutilized by anarriving job, or whenajob departsthe remainingjobs canusethe
new free slots. Thesefactorscontritute to reducecapacityloss. The disadwantageof this approachis that
whenthe job arrival and departurds too high the systemcango into a thrashingmode, becausecontext
switchesaremorefrequent.

6 Schedulingstrategies

We now describeandanalyzein detailthe varioustime-sharedschedulingstratgiesin our work. We start
with plain gang-schedulingGS), asdescribedn Section5. We augmenit with backfilling capabilitiesto
produceour backfilling gang-schedulingBGS) stratgy. We alsoanalyzewhathappensvhenmigrationis
addedto gang-schedulinghuscreatingthe migrationgang-schedulingMGS) stratgy. Finally, we com-
bine both enhancingechniquegbackfilling and migration)into the migration backfiling gang-scheduling
(MBGS) stratayy.

Whenanalyzingthe performancef thetime-sharedtratgieswe have to take into accounthe context-
switchoverhead Context switchoverheads thetime usedby the systemin suspending currentlyrunning
job andresuminghenext job. Duringthistime, thesystemnis notdoingusefulwork from auserperspectie,
andthatis why we characterizat asoverhead.In the RS/6000SR contet switch overheadincludesthe
protocolfor detachingandattachingto the communicatiordevice. It alsoincludesthe operationgo stop
andcontinueuserprocessesWhentheworking setof time-sharingobsis largerthanthe physicalmemory
of themachine context switch shouldalsoincludethe time to pagein the working setof the resumingjob.
For our analysis,we characterize&context switch overheadas a percentagef time slice. Typical context
switchoverheadvaluesarefrom 0 to 5% of time slice.

6.1 Gang-scheduling(GS)

Thefirst schedulingstratgly we analyzeis plain gang-schedulingGS). This stratgy is describedn Sec-
tion 5. For gang-schedulingye implementthe four schedulingstepsof Section5.2 asfollows.

CleanMatrix: Theimplementatiorof CleanMatrixis bestillustratedwith thefollowing algorithm:

for i =first rowto last row
for all jobs in rowi
if rowi is not hone of job, renpve it

It eliminatesall occurrencesf ajob in the schedulingmatrix otherthanthe onein its homerow.
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CompactMatrix:  We implementthe CompactMatrixstepin gang-schedulingccordingto the following
algorithm:

for i = least populated row to nost popul ated row
for j = nbst populated row to | east popul ated row
for all jobs in row i
if they can be noved to row j, then nove

We traversethe schedulingmatrix from the leastpopulatedrow to the mostpopulatedrow. We attemptto
find new homesfor thejobsin eachrow. Thegoalis to pick themostjobsin theleastnumberof rows.
To move ajob to adifferentrow undergang-schedulinghe following conditionsmustbe satisfied:

1. Thedestinatiorcolumnswhich arethe sameasthe sourcecolumnsfor thejob, mustbe empty

2. Thejob mustmale progressThatis, we mustensurehatmoving thejob will notpreventit from exe-
cutingfor atleastonetime-slicein oneschedulingcycle. This mustbe enforcedo preventstanation
of jobs.

To guarante@rogres®f jobs,we adoptthefollowing straightforvard algorithmfor decidingwhereit is
legalto move jobs. We call it theclodk algorithm whichis illustratedin Figure10. Thealgorithmworksas
follows: Eachschedulingcycle corresponds$o oneturn of the clock. Eachschedulingeventcorrespondso
oneparticulartime in theclock. Thelasttime ajob wasrun alsocorrespond$o a particulartime. A job can
only bemovedahead Thatis, to ary time betweemow andthetime correspondingo its lastrun. Oncea
job is movedto a differentrow, thatbecomests new homerow. (A job canappearn multiple rows of the
matrix. Thereforethetime of lastrun couldbelaterthanthe homerow.)

eligible

home row (new;

. last run
scheduling event (no

Figure10: Theclock algorithm.

Schedule: The Schedulgphasgor gang-schedulingraverseshe waiting queuein FCFSorder For each
job, it looks for the row with the leastnumberof free slotsin the schedulingmatrix that hasenoughfree
columnsto hold the job. This correspondgo a bestfit algorithm. The row to which the job is assigned
becomests homerow. We stopwhenthenext job in the queuecannotbe scheduledight avay.

FillMatrix:  After theschedulgphasecompleteswe proceedofill theholesin thematrix with theexisting
jobs. We usethefollowing algorithmin executingthe FillMatrix phase.

do {
for each job in starting tinme order
for all rows in matri X,
if job can be replicated in sanme colums do it and break
} while matri x changes
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The algorithmattemptsot replicateeachjob at leastonce,althoughsomejobs canbe replicatedmultiple
times.We gothroughthejob in startingtime order but otherorderingpoliciescanbe applied.

Figure 11 illustratesthe performancampact of the different stepsin the gang-schedulinglgorithm.
Line (1) in eachof the plots (slow dovn andwait time) is for a configurationin which we only perform
the ScheduleandFillMatrix stepsin eachschedulingevent. With this approachan expandedob doesnot
looserows in the schedulingmatrix. As a neteffect, it is moredifficult to schedulenew jobs. In contrast,
for line (2) we performthe CleanMatrixstepbeforethe Schedulingstep. This opensmore opportunities
for schedulingwvaiting jobs. Only afterthe Schedulingphasewe performFillMatrix. This approacHavors
runningasmary jobsaspossible andwe canseea beneficialimpacton systemperformancevith respect
to slow down, wait time, and maximum achiezable utilization. In line (3), we shawv the resultsfor the
configurationin which we performall four phasesof gang-scheduling.The additional CompactMatrix
phasebeforeSchedulinghasthe effect of openingup morespacefor large jobs. However, we do not seea
significantimpactin performancdrom addingthis phase.
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Figure 11. Averagejob wait time and slov dovn shaving the performanceof gang-schedulingwith
MPL = 5 and time slice = 200 seconds)when we perform (1) Schedule+FillMatrix, (2) CleanMa-
trix+Schedule+FillMatrixand(3) CleanMatrix+CompactMatrix+ScHhde+FillMatrix.

6.2 Backfilling gang-scheduling(BGS)

Gang-schedulingind backfilling are two optimizationtechniqueghat operateon orthogonalaxes, space
for backfilling andtime for gangscheduling.lt is temptingto combineboth techniquesn onescheduling
systenthatwe call badfilling gang-sbeduling(BGS). In principlethis canbedoneby treatingeachof the
virtual machinesxreatedby gang-schedulingsa tamget for backfilling. The difficulty arisesin estimating
the executiontime for paralleljobs. In the exampleof Figure9, jobs J, and J5 executeat a ratetwice as
fastasthe otherjobs, sincethey appeaiin two rows of the matrix. This, however, canchangeduring the
executionof the jobs,asnew jobsarrive andexecutingjobsterminate.

Fortunately aswe have shavn in Section4, even significantaverageoverestimatiorof job execution
time haslittle impacton averageperformance.Therefore,it is reasonabldo attemptto usea worst case
scenariowhen estimatingthe executiontime of paralleljobs undergang-schedulingWe take the simple
approachof computingthe estimatedime undergang-schedulingsthe productof the estimatedime on a
dedicatednachineandthe multiprogrammindevel.
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In backfilling, eachwaiting job is assigneda maximumstartingtime basedon the predictedexecution
timesof the currentjobs. That starttime is a reseration of resourcegor waiting jobs. The resenration
corresponds$o a particulartime in a particularrow of the matrix. It is possiblethata job will berun before
its resenedtime andin arow differentthanresered. However, usingaresenation guaranteethatthestart
time of ajob will notexceeda certainlimit, thuspreventingstanation.

The issueof reserationsimpact both the CompactMatrixand Schedulephases.When moving jobs
in CompactMatrixwe mustmake surethat the moved job doesnot conflict with ary resenationsin the
destinatiorrow. In the Schedulgphasewe first attemptto schedulesachjob in the waiting queue making
surethatits executiondoesnot violate ary reserations. If we cannotstarta job, we computethe future
starttime for thatjob in eachrow of the matrix. We selectthe row with the loweststartingtime, andmalke
aresenationfor thatjob in thatrow. This new reseration could be differentfrom the previousresenration
of the job. The resenationsdo not impactthe FillMatrix phase,sincethe assignmentn this phaseare
temporaryandthe matrix getscleanedn the next schedulingevent.

Figurel12illustratesthe performancempactof thedifferentstepsin the backfill gang-schedulinglgo-
rithm. As before line (1) is for aconfiguratiorin whichwe only performthe ScheduleandFillMatrix steps,
for line (2) we performthe CleanMatrixstepbeforethe Schedulestep,andin line (3) we shav theresultsfor
theconfiguratiorin whichwe performall four phase®f gang-schedulingiVe notethatfor BGS, theimpact
of the CleanMatrixand CompactMatrixphasess minimal. In BGS, backfilling doesthe job of filling the
holesin thematrix andtherefordeavesno opportunityfor the othertwo phase$o make a noticeablémpact.
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Figure12: Averagejob wait time andslov down shaving the performanceof backfilling gang-scheduling
(with MPL = 5 andtime slice = 200 secondsWwhenwe perform (1) Schedule+FillMatrix,(2) CleanMa-
trix+Schedule+FillMatrixand(3) CleanMatrix+CompactMatrix+ScHdae+FillMatrix.

To verify thatindeedthe assumptiorthat overestimationof job executiontimesdo notimpactoverall
systemperformancewe experimentedwith variousvaluesof 2 and ®. Resultsfor the Q and® models
areshawvn in Figure13 andFigure 14, respectiely. For thoseplots,BGS with all four phaseandMPL=5
wasused. We obsenre thatdifferencedn wait time areinsignificantacrossthe entirerangeof utilization.
For moderateutilizationsof up to 75%, job slowdown differencesarealsoinsignificant. For utilizations of
85% andhigher job slowdown exhibits larger variationwith respecto overestimationput the variationis
nonmonotoni@andperfectestimationis not necessarilpetter

Althoughthe 2 modelwaswidely usedin theliterature,it hasbeenshavn to not corresponadvell with
actualuserestimates.Therefore from this point on we adoptthe ® model,with & = 0.2, which matches

17



120

N

G—0 Q=0.0 G—© 0=0.0

w
w

1001
x—x Q=0.5 *x—x Q=0.5

w
T

G—8 Q=10 0—a Q=
801 Q=1.0

N
w

+—+ Q=2.0

60— Q=5.0

[+—+ Q=20

ro— Q=5.0

Average job slowdown
=
w0

401

[
T

Average job wait time (X 10* seconds)
N

o
3]
T

0 & L L L L 1 1 1 1 O L L L 1
055 06 065 07 075 08 08 09 0.9 1 O?S 06 065 07 075 08 08 09 0.95 1
utilization utilization

Figure13: Averagejob wait time andslov down for BGS (best)with 2 modelof overestimation.

120 T T T T T T T T 4

GC—0O =0.2 C—O ®=0.2

w
3]

1001
x—x= ®=0.4 *>—= ®=0.4

w

0—& ©=0.6

N
3]

[+—+ =08

Fo— ®=1.0

Average job slowdown
[
&

[
T

Average job wait time (X 10* seconds)
N

o
3]
T

Oo

055 06 065 07 075 08 08 09 0095 1 075 08 085 09 09 1
utilization utilization

Figure14: Averagejob wait time andslov down for BGS (best)with ® modelof overestimation.

morecloselyexperimentameasurement$].

6.3 Comparing GS, BGS, and BF

We comparethreedifferentschedulingstratejies, with a total of seven configurations.They all useFCFS
asthe prioritization policy. Thefirst stratgy is a space-sharingolicy thatusesbackfilling to enhancehe
performancg@arametersWeidentify thisstratgy asBF. We alsousethreevariationsof thegang-scheduling
strategy, with multiprogrammindevels2, 3, and5. Theseconfigurationsareidentifiedby GS-2, GS-3, GS-
5, respectiely. Finally, we considerthreeconfigurationof the backfilling gang-schedulingtrately. That
is, backfillingis appliedto eachvirtual machinecreatedby gang-schedulingThesearereferredto asBGS-
2, BGS-3. andBGS-5, for MPL 2, 3, and5. Theresultspresentediereare basedon the ®-model,with
d =0.2.

We usetheperformanceparameterglescribedn Section2.3,namely(i) averageslow down, (ii) average
wait time, and (iii) averagelossof capacity to comparethe stratgjies. For slov down andwait time we
additionallycomparahestandardieviationfor thesgparametersThestandardleviation senesasameasure
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of fairness:smallerstandarddeviationsindicatethat morejobs operatecloserto the averageandtherefore
closerto eachother

Figuresl5and16 shav the averageandstandardieviation of job slow down for all our seven configu-
rations.Eachplot ((a), (b), (c), and(d)) is for a differentvalueof context switch overhead We obsenre that
regulargangscheduling GS stratgies)resultsin very high slow downs, evenatlow or moderatglessthan
p = 0.75) utilizations. BF alwaysperformsbetterthanGS-2 andGS-3. It alsoperformsbetterthanGS-5
whenutilization is greaterthan0.65. Equally, the standarddeviation of slow down in Figure16 revealsthat
BF providesbetterfairnesgo the users.The combinedapproachBGS) is alwaysbetterthanits individual
component$BF andGS with correspondingnultiprogrammingdevel). Theimprovementin averageslow
down is monotonicwith the multiprogramminglevel. This obseration also appliesmostof the time for
the standarddeviation. Givena highesttolerableslow dovn, BGS allows the systemto be drivento much
higher utilizations, while preservinggoodfairnesscharacteristics We want to emphasizehat significant
improvementscanbeachiezed evenwith thelow multiprogrammindevel of 2. For instancejf we choosea
maximumacceptablelon down of 20, the resultingmaximumutilizationis p = 0.67 for GS-5, p = 0.76
for BF andp = 0.82 for BGS-2. Thatlastresultrepresentanimprovementof 20%over GS-5 with amuch
smallermultiprogrammindevel. With BGS-5, we candrive utilization ashighasp = 0.87.

Figures17 and 18 shav the averageand standarddeviation of job wait time for all our seven con-
figurations. Again, eachplot is for a differentvalue of contet-switch overhead.We obsenre thatregular
gang-schedulin¢GsS strat@ies)resultsn very highwait times,evenatlow or moderatdlessthanp = 0.75)
utilizations. Evenwith 0% context switchingoverheadsaturatiortakesplaceat p = 0.84 for GS-5 andat
p = 0.79 for GS-3. At 5% overheadthe saturationsoccuratp = 0.73 andp = 0.75 for GS-3 andGS-
5 respectiely. Backfilling performsbetterthangang-schedulingvith respecto wait time for utilizations
abore p = 0.72. It saturatest p = 0.95. The standarddeviation of wait timesin Figure 18 revealsthat
BF providesbetterfairnesgo the usersthanGS for utilizationsabove p = 0.68. The combinedapproach
(BGS) is alwaysbetterthanits individual component¢BF andGS with correspondingnultiprogramming
level) for azerocontet switchoverhead.Theimprovementin averagejob wait time is monotonicwith the
multiprogramminglevel. This obseration alsoappliesmostof the time for the standarddeviation. With
BGS andzerocontet switch overheadthe machineappeargaster moreresponsie andmorefair.

At all combinationsof context switch overheadand utilization, BGS outperformsGS with the same
MPL. BGS alsooutperformsBF atlow contet switch overhead€9% or 1%. Evenat contet switch over
headof 2% or 5%, BGS hassignificantly betterslovdown thanBF in animportantoperatingrange. For
2%, BGS-5 saturatesat p = 0.93 whereasBF saturatesat p = 0.95. Still, BGS-5 is significantly better
thanBF for utilizationup to p = 0.92. For context switch overheadof 5%, BGS-5 is superiorto BF only
upto p = 0.83. Therefore we have two optionsin designingthe schedulesystem:we eitherkeepthe con-
text switch overheadow enoughthat BGS is alwaysbetterthanBF or we usean adaptve scheduletthat
switchesbhetweerBF andBGS dependingn the utilization of thesystem.Let p.,.;+;c; Dethe utilization at
which BF startsperformingbetterthanBGS. For utilization smallerthan p¢,izicqar, We useBGS. Whenuti-
lization goesbeyond p;ticar, We USeBF. Furtherinvestigationof adaptve schedulings beyondthe scope
of this paper

We further analyzethe schedulingstratgies by comparingthe behaior of the systemfor large and
smalljobs. (As definedin Section2.2, smalljob uses32 or fewer nodeswhile alarge job usesmorethan
32 nodes.) The resultsfor slovdowvn andwait timesare shavn in Figure 19, whena 0% context switch
overheads used. With respecto slovdowvn, we obsere that, BGS-5 alwaysperformsbetterthanBF for
eitherlarge or smalljobs. For ary utilization, BGS-5 providesbetterslondown for smalljobs, while BF
providesbetterslowdown for large jobs. This behaior is explainedby the factthatlargerjobsin general
tendto executelongerthan smallerjobs. Although BGS reducesthe averagewait time for all jobs, it
increaseshe executiontime by the effective multiprogrammingevel. Therefore longerrunningjobs will

19



benefitlessfrom gangscheduling.With respecto wait time, we obsere thatthe improvementgenerated
by BGS is actuallylarger for large jobs. In otherwords,for ary given utilization, the differencein wait
time betweerarge andsmalljobsis lessin BGS-5 thanin BF. For agivenutilization,themachineappears
almostequallyasslow for bothlargeandsmalljobs,whenthe BGS stratgy is used.In contrastfor BF the
differenceincreasewsith higherutilizations. At p = 0.90 utilization, the machineappears35% slower to
smalljobsthanto largejobs. The differencesdetweerarge andsmalljobs aremoresignificantfor thewait
time parameterBoth for BF andBGS, the machineappearsessresponasie to large jobsthanto smalljobs
asutilization increasesHowever, the differenceis largerfor BF.

At first, the BF resultsfor slov down andwait time for large andsmall jobs may seemcontradictory:
smalljobs have smallerwait timesbut largerslov down. Slow down is a relatve measureof theresponse
time normalizedby the executiontime. Sincesmallerjobstendto have shorterexecutiontime, therelative
costof waiting in thequeuecanbelarger. We notethatBGS is very effective in affectingthe wait time for
large andsmalljobsin away thatendsup makingthe systemfeel equalto all kinds of jobs.

Whereags-iguresl5throughl9reportperformancdrom a users perspectie, we now turnour attention
to the systems perspectie. Figure20 is a plot of the averagecapacitylossasa function of utilization for
all our seven stratgjies. By definition, all stratgiessaturateattheline k = 1 — p, which is indicatedby
the dashedine in Figure20. Again, the combinedpoliciesdeliver consistentlybetterresultsthanthe pure
backfilling and gangscheduling(of equalMPL) policies. The improvementis also monotonicwith the
multiprogrammingdevel. However, all backfilling basedpolicies(pureor combined)saturateat essentially
the samepoint. Lossof capacitycomesfrom holesin the schedulingmatrix. The ability to fill thoseholes
actuallyimproves whenthe load is very high. We obsenre that the capacitylossfor BF actually startsto
decreasenceutilizationgoesbeyondp = 0.83. At veryhighloads(p > 0.95) therearealmostalwayssmall
jobsto backfill arisingholesin thescheduleLooking purelyfrom a systems perspectie, we notethatpure
gang-schedulinganonly be drivento utilization betweenp = 0.82 andp = 0.87, for multiprogramming
levels2 through5. Onthe otherhand,the backfilling stratgiescanbedrivento upto p = 0.95 utilization.

To demonstratehe importanceof continuousscheduling Figure 21 shawvs slovdown asa function of
utilization for all schedulingstratgieswhere(a) continuousschedulings usedand(b) discretescheduling
is used.We obsenre that, with discretescheduling BF is superiorto all otherstratgiesexceptBGS-5 for
low to mediumutilization (p < 0.83). BF doesnothave aconcepbf time-slice soit alwaysusescontinuous
scheduling.For referencethe curve BGS-1 indicatesthe performancenf BF with discretescheduling.If
we look throughthe operatingrange0.55 < p < 0.80, the slovdown for BGS-1 is roughly doublethat
of BF. Usingthe usualmaximumacceptableslovdown of 20, discreteschedulingcandrive the systemto
upto p = 0.79, whereascontinuousschedulingcango ashigh asp = 0.88. In both casesthe maximum
utilization is reachedvith BGS-5.

To summarizeour obsenations,we have shavn that the combinedstratgy of backfilling with gang-
schedulindBGS) consistenthyoutperformgheotherstratgies(backfillingandgang-schedulingeparately)
from the perspecties of responsieness,slowv down, fairness,and utilization. For BGS to realizethis
advantage context switchcostmustbe keptlow. We have shavn BGS to be superiorto BF over theentire
spectrunof workloadswhenthe contect switch overheads 1% or lessof thetime slice.

6.4 Migration gang-schedulingMGS)

We now analyzehow gang-schedulinganbeimprovedthroughthe additionof migrationcapabilities.The
procesof migrationembodiesnoving ajob to ary row in whichthereareenoughfree processorso execute
thatjob. Therearebasicallytwo optionseachtime we attemptto migratea job A from a sourcerow r to a
talgetrow p (in eithercase yrow p musthave enoughnodedfree):
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Figure15: Averagegjob slowdown for four differentvaluesof contect switch overhead:0% (a), 1% (b), 2%
(c), 5%(d) of time slice.

e Optionl: Wemigratethejobswhichoccupy thenodesof job A atrow p, andthenwe simplyreplicate
job A, in its samesetof nodesjn row p.

e Option2: We migratejob A to the setof nodesin row p thatarefree. Theotherjobsatrow p remain
undisturbed.

We canquantify the costof eachof thesetwo optionsbasedon the following model. For the distributed
systemwe tariget, namelythe IBM RS/6000SRE migrationcanbe accomplishedvith a checkpoint/restart
operation.(Althoughit is possibleto take a moreefficient approactof directly migratingprocesseacross
noded1, 18, 19], we choosenotto take thisroute.)Let S(A) bethesetof jobsin targetrow p thatoverlap
with thenodesof job A in sourcerow r. Let C bethetotal costof migratingonejob, includingthecheckpoint
andrestartoperations.We considerthe casein which (i) checkpointandrestarthave the samecostC/2,
(i) thecostC is independenbf the job size,and(iii) checkpointandrestartaredependenbperationgi.e.,
you have to finish checkpointeforeyou canrestart). During the migrationprocessnodesparticipatingin
the migrationcannotmale progressn executinga job. The total amountof resourcegprocessorx time)
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Figurel6: Standardleviation of job slovdown for four differentvaluesof context switchoverhead:0% (a),
1% (b), 2% (c), 5%(d) of time slice.

wastedduringthis processs the overheador the migrationopreation.

Theoverheador optionlis

G A +Cx Y 1D, @

JES(A)
where|A| and|J| denotethe numberof tasksin jobs A andJ, respectiely. Theoperationdor option1 are
illustratedin Figure22(a),with asinglejob J in setS(A). Thefirst stepis to checkpoinfob J in its current
setof nodes. This checkpointingoperationtakestime C'/2. As soonasthe checkpointings completewe
canresumeexecutionof job A. Thereforejob A incursan overhead% x |A]. Toresumgob J in its new
setof nodesrequiresarestartstepof time % Thereforethetotal overheador job J is C' x |J|.

Theoverheador option2 is estimatedy

C
(C x |A] + 3 X Z | 7). (5)
JeS(A)
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Figurel7: Averagegob wait timesfor four differentvaluesof contet switch overhead:0% (a), 1% (b), 2%
(c), 5%(d) of time slice.

The migrationfor option 2 is illustratedin Figure22(b), with asinglejob J in setS(A). Thefirst stepis
to checkpointob A. This checkpointoperationtakestime % After job A is checkpointedve canresume
executionof job J. Thereforetheoverheador job J is % x |J|. Toresumgob A we needto restartit in
its new setof processorsyhich againtakestime % Theoverheador job A isthenC x |A|.

Thefirst useof migrationis duringthe compacphasejn which we considemigratingajob whenmov-
ing it to adifferentrow. The goalis to maximizethe numberof emptyslotsin somerows, thusfacilitating
theschedulingof largejobs. The orderof traversalof jobsduringthe CollapseMatrixphasds from theleast
populatedrow to the mostpopulatedrow, whereineachrow the traversalcontinuesfrom the smallestjob
(leastnumberof processorsjo thelargestjob. During the compactphasebothmigrationoptionsdiscussed
above areconsideredandwe choosahe onewith smallercost.

We also apply migration during the expansionphase. If we cannotreplicatea job in a differentrow
becauséts setof processorsirebusywith anotherjob, we attemptto move the blockingjob to a different
setof processors.A job canappearin multiple rows of the matrix, but it mustoccupy the sameset of
processorsn all the rows. This rule preventsthe ping-pongof jobs. For the expansionphase jobs are
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traversedin first-comefirst-sene order During expansionphasepnly migrationoption1 is considered.
As discussedmigrationin the IBM RS/6000SP requiresa checkpoint/restamperation. Although all
taskscanperforma checkpointin parallel,resultingin a C thatis independenbf job size,thereis a limit
to the capacityandbandwidththatthe file systemcanaccept. Thereforewe introducea parameter) that
controlsthemaximumnumberof tasksthatcanbe migratedin ary time-slice.
Whenmigrationis used the schedulingproceedslongthefollowing steps:

step reason

ClearMatrix Maximize holes

CollapseMatrix-1| Compactiorwithout migration

Schedule-1 Accomodatenew jobsaftercompaction
CollapseMatrix-2| Compactiorwith migration

Schedule-2 Accomodatenew jobsin holescreatedaftermigration
FillMatrix-1 Replicatgobsin differentholeswithout migration
FillMatrix-2 Replicatgobsafter migratingdestination
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The orderingresultsin applying optimizationswithout incurring unnecessargosts. We first attemptto
optimizewithout migration(CollapseMatrix-1,Schedule). After Schedule-1we thenattemptto collapse
with migration(CollapseMatrix-2)andrepeatscheduling(Schedule-2Jo accomodat@ew jobs. After we
aredoneaccomodatingew jobs,we doFillMatrix-1 first becaus& doesnotincurin amigrationcost. Then
we try FillMatrix-2 with migration.

Thealgorithmfor CollapseMatrix-4s the sameasfor CollapseMatrix-1lin GS.Theonly differenceare
the conditionsfor moving a job. With migration,a job canbe movedto ary row andary setof columns,
providedthat (i) enoughemptycolumnsareavailablein the destinatiorrow, (ii) numberof migratedtasks
doesnot violate the Q parameterand (iii) a job mustmake progressthatis, it mustexecutein at least
onerow for every cycle of scheduling. The last requirements identicalasfor gang-schedulingGsS). If
migrationis requiredto move ajob to anew targetrow, we considetthetwo optionsdescribedbove (option
1 andoption 2) andchoosethe onewith the leastestimateccost. FillMatrix-2 usesthe samealgorithmas
FillMatrix-1, with the following constraintsvhendecidingto replicatea job in a new row. First, the job
mustnot alreadybereplicatedin thatrow. Secondthe row musthave sufficient emptycolumnsto execute
the job andthe total numberof migratedtasksmustnot exceedparameter). Only option1 (move jobsin
talgetrow) is consideredor FillMatrix-2, andthereforethosejobs mustnot be presentin ary otherrow of
the schedule.Given thesealgorithms,we ensurethat migrationnever incursrecurringcost. Thatis, ajob
will notping-pongbetweerdifferentcolumnswithin the sameschedulingnatrix.

Figure 23 shaws the impactof the differentstepsin the the MGS stratgy. Line (1) is the resultfor
GS,andsenesasa reference.Line (2) is the resultfor MGS whenwe addto GSjust the FillMatrix-2
step:After completingGShby replicatingjobs on the samesetof nodeswe furtherattemptto fill the matrix
by replicatingthe job on rows that have enoughnodesfree, emplo/ing migrationto move the jobs that
arepreventingreplication. Line (3) shavs the resultwhenwe further add CollapseMatrix-2and Schedule-
2. CollapseMatrix-2movesjobs from onerow to anotherin orderto createemptierrows in the matrix. It
emplo/s migrationto move eitherthesourcgob (theonethatis changingows) or thejobsin thedestination
row thatoccupy the setof nodesof the sourcejob. After CollapseMatrix-2reesspacen the rows of the
matrix a new roundof scheduling(Schedule-2attemptgo run morejobs. From Figure23 we obsenre that
mostof theimprovementsin MGS arefrom addingthe FillMatrix-2 step. The improvementsfrom more
aggressie migrationin line (3) areoffsetby theadditionalmigrationcost. The neteffectis thatthereis little
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Figure20: Lossof capacityfor BGS, GS,andBF, with differentcontext-switch overheads.

benefitfrom the extra CollapseandSchedulesteps.

6.5 Migration backfilling gang-schedulingMBGS)

Justaswe augmentedglain gang-schedulingGS) with migration,the samecanbe donewith backfilling

gang-schedulingBGS). This createghe migrationbackfilling gang-schedulingMBGS). The differences
betweerMGS andMBGS arein the CollapseMatrixand Schedulesteps.MBGS usethe samescheduling
asBGS, thatis, backfilling is performedn eachrow of the matrix, andreserationsarecreatedor jobsthat

cannotbeimmediatelyscheduled Whencompactinghe matrix, MBGS mustmale surethatreserations
arenotviolated.

6.6 Comparing GS,BGS, MGS, and MBGS

Table 1 summarizesomeof the resultsfrom migrationappliedto gang-schedulingnd backfilling gang-
scheduling. For eachof the nine workloads(numberedfrom 0 to 8) we presentachieved utilization (p)
andaveragegob slowdown (s) for four differentschedulingpolicies: (i) backfilling gang-schedulingiithout
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Figure21: Comparingcontinuousanddiscretescheduling.

migration (BGS), (ii) backfilling gang-schedulingvith migration(MBGS), (iii) gang-schedulingvithout
migration(GS),and(iv) gang-schedulingith migration(MGS). We alsoshav thepercentagenprovement
in job slowdown from applyingmigrationto gang-schedulingndbackfilling gang-schedulingThoseresults
arefrom the bestcasefor eachpolicy: 0 costandunrestrictechumberof migratedtasks with anMPL of 5.

We canseeanimprovementfrom theuseof migrationthroughoutherangeof workloads for bothgang-
schedulingand backfilling gang-schedulingWe also note that the improvementis larger for mid-to-high
utilizationsbetween70 and90%. Improvementsfor low utilization arelessbecauséhe systemis not fully
stressedandthe matrix is relatvely empty Thereforetherearenotenoughjobsto fill all thetime-slices,
andexpandingwithout migrationis easy At very high loads,the matrix is alreadyvery full andmigration
accomplishegessthanat mid-rangeutilizations. Improvementsfor backfilling gang-schedulingrenot as
impressie asfor gang-schedulingBackfilling gang-schedulinglreadydoesa betterjob of filling holesin
the matrix, andthereforethe potentialbenefitfrom migrationis less. With backfilling gang-schedulinghe
bestimprovements 45%at a utilization of 94%,whereasvith gang-schedulingre obsere benefitsashigh
as90%, at utilization of 88%.

We notethatthe maximumutilization with gang-schedulingncrease$rom 85% without migrationto
94%with migration. Maximumutilization for backfilling gang-schedulinghcrease$rom 95%to 97%with
migration. Migration is a mechanisnthatsignificantlyimprovesthe performancef gang-schedulingvith-
outtheneedfor job executiontime estimatesHowever, it is notaseffective asbackfillingin improving plain
gang-schedulingThe combinationof backfilling andmigrationresultsin the bestoverall gang-scheduling
system.

Figure24 shavs averagegob slovdown andaveragejob wait time asa function of the parameter), the
maximumnumberof taskthatcanbe migratedin ary time slice. We considetwo representate workloads,
2 andb, sincethey definethe boundsof the operatingrangeof interest. Beyond workload5, the system
reachesunacceptablslovdowns for gang-schedulingand belov workload 2 thereis little benefitfrom
migration. We notethat migrationcansignificantlyimprove the performancef gang-schedulingvenwith
aslittle as64 tasksmigrated.(Note thatthe casewithout migrationis representetby the parameter) = 0
for numberof migratedtasks.) We also obsere a monotonicimprovementin slovdovn and wait time
with the numberof migratedtasks,for both gang-schedulingnd backfilling gang-schedulingEvenwith
migration costsas high as 30 secondspr 15% of the time slice, we still obsere benefitfrom migration.
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(a) Migration option 1: move blockingjobsin destinatiorrow

-

(b) Migration option2: move job to differentsetof nodesin destinatiorrow

Figure22: Thetwo migrationoptions.

work backfilling gang-scheduling gang-scheduling
load BGS MBGS % s GS MGS % s
p s p s better| p s p s better
0 0.55| 25]055| 2.1]19.2%| 0.55 3.9 055 2.6 | 33.7%
1 0.61| 3.2|061| 25| 23.9%| 0.61 7.0 0.61 4.0 | 42.5%
2 0.66| 3.8 0.66| 2.9| 24.8%| 0.66 18.8| 0.66 6.9 | 63.4%
3 0.72| 6.5]0.72| 3.7|43.1%| 0.72 44.8| 0.72 13.5| 69.9%
4 0.77| 8.0 0.77| 51| 36.6%| 0.78| 125.6| 0.77 29.4 | 76.6%
5 0.83| 11.9| 0.83| 7.6| 36.2% | 0.83| 405.6| 0.83 54.4 | 86.6%
6 0.89| 22.4| 0.88| 11.0| 50.8% | 0.86| 1738.0| 0.88 | 134.2| 92.3%
7 0.94| 349|094 20.9| 40.2% | 0.86 | 4147.7| 0.94| 399.3| 90.4%
8 0.96| 67.9| 0.98| 56.8| 16.4% | 0.86 | 5941.5| 0.97 | 1609.9| 72.9%

Tablel: Percentaganprovemenidrom migration.

Most of the benefitof migrationis accomplishedat Q = 64 migratedtasks,andwe choosethatvaluefor
further comparisonsFinally, we notethat the behaiors of wait time andslovdown follow approximately
the sametrends.Thus,for the next analysiswe focuson slowdown.

Figure 25 comparedossof capacity slovdown, andwait time for all four time-sharingstratgies: GS,
BGS, MGS andMBGS. Resultsshavn arefor MPL of 5, @ = 0.2, and(for MGS andMBGS) amigration
costof 10 second$5% of thetime-slice).We obsere thatMBGS is alwaysbetterthanthe otherstratgies,
for all threeperformancearameteraindacrosshe spectrunof utilization. CorrespondinglyGSis always
worsethantheotherstratgies. Therelatve behaior of BGS andMGS deseresamoredetaileddiscussion.

With respecto lossof capacity MGS is consistentlybetterthanBGS. MGS candrive utilization up to
98% while BGS saturatesit 96%. With respecto wait time, BGS is consistenthbetterthanMGS. Quan-
titatively, the wait time with MGS is 50-100%larger thanwith BGS throughoutthe rangeof utilizations.
With respecto slovdown, we obsere thatBGS is alwaysbetterthanMGS andthatthedifferencencreases
with utilization. For workloadb, thedifferences ashighasafactorof 5. At first, it is notintuitive thatBGS
canbesomuchbetterthanMGS in thelight of thelossof capacityandwait time results. The explanation

28



100

4
90— step 1
35 |G—©Ostep 1
(%]
§ *x— step 2 80— step 2
o 3r
? |p—ostep3 § 70[3—Hstep3
© <]
— 2.5F 2 L
x e
) [%2]
£ 2r 8 501
= [}
[ (=2} L
2 & 40
Tl g
o < 30r
g 1f
g 201
05f 10f
o —=e . . . . 0 R— i f . . . .
055 06 065 07 075 08 085 0.9 0.95 1 0.55 0.6 065 07 075 08 085 09 095 1
utilization utilization

Figure 23: Comparisionof Configurationsfor MGS: GS, GS + FillMatrix-2, GS+CollapseMatrix-
2+Schedule-2+FillMatrix-2

is thatBGS favors short-runningobswhenbackfilling, thusreducingthe averagegob slovdown. To verify
that, we further investigatedhe behaior of MGS andBGS in two differentclasse®f jobs: oneclassis
comprisedof the jobswith runningtime shorterthanthe median(680 secondsandthe otherclassof jobs
with runningtime longerthanor equalto the median.For the shorterjobs, slovdown with BGS andMGS
are18.9and 104.8,respectrely. On the otherhand,for the longerjobs, slovndown with BGS andMGS
are4.8and4.1, respectiely. TheseresultsconfirmthatBGS favors shortrunningjobs. We notethatthe
penaltyfor longerjobsin BGS (ascomparedo MGS) is very small,whereaghe benefitfor shorterjobsis
quite significant.

We emphasizahatthe stratgyy that combinesall techniqueggang-schedulingyackfilling, andmigra-
tion), thatis, MBGS providesthe bestresults.In particular it candrive utilization higherthanMGS, and
achievesbetterslow down andwait timesthanBGS. Quantitatvely, wait timeswith MBGS are2 to 3times
shorterthanwith BGS, andslowdown is 1.5to 2 timessmaller

7 Conclusions

This paperhasreviewed severaltechniquesve developedto enhancgob schedulingor large parallelsys-
tems. We startedwith ananalysisof two commonlyusedstratgjies: backfilling andgang-schedulingWe
shaved how the two could be combinedinto a backfilling gang-schedulingBGS) stratgy thatis always
superiorto its two componentavhenthe context switch overheadis keptlow. With BGS, we obsere a
monotonicimprovementin job slowdown, job wait time, and maximumsystemutilization with the multi-

programmindevel. We have alsodemonstratetheimportanceof continuousschedulingvhentime-sharing
techniquesreused.

Furtherimprovementin schedulingefficacy canbeaccomplishedavith theintroductionof migration.We
have demonstratethatboth plain gang-schedulingndbackfilling gang-schedulingenefitfrom migration.
The schedulingstratgy thatincorporatesall our techniques:gang-schedulingpackfilling, and migration
consistentlyoutperformsthe othersfor averagejob slow down, job wait time, andlossof capacity It also
achieves the highestsystemutilization, allowing the systemto achieve up to 98% utilization. When a
maximumacceptablelovdown of 20 is adoptedthe systemcanachiare 94% utilization.

We have shavn thatcombiningtechniquesuchasbackfillingandmigrationwith well establishedang-
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Figure 24: Slowdown andwait time asa function of numberof migratedtasks. Eachline is for different
migrationcost

schedulingstratgiescanimprove systemperformancesignificantly A backfilling gang-schedulingystem
hasbeensuccessfullydeplg/edin the multi-TeraflopASCI Blue andWhite machines The new scheduling
systemin thosemachiness expectedto improve utlization, reducejob wait times,andoverall enhanceahe
executionof large jobs.
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