
An Integrated Approach to Parallel
Scheduling Using Gang-Scheduling,

Backfilling, and Migration
Yanyong Zhang, Member, IEEE, Hubertus Franke, Member, IEEE,

Jose Moreira, Member, IEEE, and Anand Sivasubramaniam, Member, IEEE

Abstract—Effective scheduling strategies to improve response times, throughput, and utilization are an important consideration in

large supercomputing environments. Parallel machines in these environments have traditionally used space-sharing strategies to

accommodate multiple jobs at the same time by dedicating the nodes to a single job until it completes. This approach, however, can

result in low system utilization and large job wait times. This paper discusses three techniques that can be used beyond simple space-

sharing to improve the performance of large parallel systems. The first technique we analyze is backfilling, the second is gang-

scheduling, and the third is migration. The main contribution of this paper is an analysis of the effects of combining the above

techniques. Using extensive simulations based on detailed models of realistic workloads, the benefits of combining the various

techniques are shown over a spectrum of performance criteria.

Index Terms—Parallel scheduling, gang scheduling, backfilling, migration, simulation.
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1 INTRODUCTION

LARGE scale parallel machines are essential to meet the
needs of demanding applications at supercomputing

environments such as Lawrence Livermore (LLNL), Los
Alamos (LANL), and Sandia National Laboratories (SNL).
With the increasing emphasis on computer simulation as an
engineering and scientific tool, the load on such systems is
expected to become quite high in the near future. As a
result, it is imperative to provide effective scheduling
strategies to meet the desired quality of service parameters
from both user and system perspectives. Specifically, we
would like to reduce response and wait times for a job,
minimize the slowdown that a job experiences in a
multiprogrammed setting compared to when it is run in
isolation, maximize the throughput and utilization of the
system, and be fair to all jobs regardless of their size or
execution times.

Scheduling strategies can have a significant impact on

the performance characteristics of a large parallel system

[3], [4], [7], [10], [13], [14], [20], [21], [24]. Early strategies

used a space-sharing approach, wherein jobs can run side

by side on different nodes of the machine at the same time,

but each node is exclusively assigned to a job. Submitted

jobs are kept in a priority queue which is always traversed
according to a priority policy in search of the next job to
execute. Space sharing in isolation can result in poor
utilization since there could be nodes that are unutilized
despite a waiting queue of jobs. Furthermore, the wait and
response times for jobs with an exclusively space-sharing
strategy can be relatively high.

Among the several approaches used to alleviate these
problems with space sharing, three have been recently
studied. The first is a technique called backfilling [14], which
attempts to assign unutilized nodes to jobs that are behind in
the priority queue (of waiting jobs), rather than keep them
idle. To prevent starvation for larger jobs, (conservative)
backfilling requires that a job selected out of order completes
before the jobs that are ahead of it in the priority queue are
scheduled to start. This approach requires the users to
provide an estimate of job execution times, in addition to
the number of nodes required by each job. Jobs that exceed
their execution time are killed. This encourages users to
overestimate the execution time of their jobs.

The second approach is to add a time-sharing dimension
to space sharing using a technique called gang-scheduling
or coscheduling [17]. This technique virtualizes the physical
machine by slicing the time axis into multiple virtual
machines. Tasks of a parallel job are coscheduled to run in
the same time-slices (same virtual machines). In some cases,
it may be advantageous to schedule the same job to run on
multiple virtual machines (multiple time-slices). The num-
ber of virtual machines created (equal to the number of time
slices) is called the multiprogramming level (MPL) of the
system. This multiprogramming level in general depends
on how many jobs can be executed concurrently, but is
typically limited by system resources. This approach opens
more opportunities for the execution of parallel jobs, and is
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thus quite effective in reducing the wait time, at the expense
of increasing the apparent job execution time. Gang-
scheduling does not depend on estimates for job execution
time. Gang-scheduling has been used in the prototype
GangLL job scheduling system developed by IBM Research
for the ASCI Blue-Pacific machine at LLNL (a large scale
parallel system spanning thousands of nodes [16]).

The third approach is to dynamically migrate tasks of a
parallel job. Migration delivers flexibility of adjusting the
schedule to avoid fragmentation. Migration is particularly
important when collocation in space and/or time of tasks is
necessary. Collocation in space is important in some
architectures to guarantee proper communication among
tasks (eg., Cray T3D, CM-5, and Blue Gene). Collocation in
time is important when tasks have to be running concurrently
to make progress in communication (eg., gang-scheduling).

It is a logical next step to attempt to combine these
approaches—gang-scheduling, backfilling, and migra-
tion—to deliver even better performance for large parallel
systems. However, effectively implementing these combi-
nations raises some challenges. For instance, a combination
of backfilling and gang-scheduling requires obtaining
precise estimates for job execution time under gang
scheduling. This can be very difficult or perhaps even
impossible. Similarly, migration incurs a cost and requires
additional infrastructure. Migration costs make it more
difficult to estimate execution times and decide if migration
should be applied. In analyzing these combinations, we
only consider systems like the IBM RS/6000 SP, that do not
require spatial collocation. Therefore, we only address
migration in the presence of gang-scheduling.

Progressing to combined approaches requires a careful
examination of several issues related to backfilling, gang-
scheduling, and migration. Using detailed simulations
based on stochastic models derived from real workloads
at LLNL, this paper analyzes

1. the impact of overestimating job execution times on
the effectiveness of backfilling,

2. a strategy for combining gang-scheduling and back-
filling,

3. the impact of migration in a gang-scheduled system,
and

4. the impact of combining gang-scheduling, migration,
and backfilling in one scheduling system.

We also find that overestimating job execution times
does not really impact the quality of service parameters,
regardless of the degree of overestimation. As a result, we
can conservatively estimate the execution time of a job in a
coscheduled system to be the product of multiprogram-
ming level (MPL) and the estimated job execution time in a
dedicated setting. These results help us construct a back-
filling gang-scheduling system, called BGS, which fills in
holes in the Ousterhout scheduling matrix [17] with jobs
that are not necessarily in FCFS order. It is clearly
demonstrated that, under certain conditions, this combined
strategy is always better than the individual gang-schedul-
ing or backfilling strategies for all the quality of service
parameters that we consider. By combining gang-schedul-
ing and migration, we can further improve the system
performance parameters. The improvement is larger when

applied to plain gang-scheduling (without backfilling),
although the absolute best performance was achieved by
combining all three techniques: gang-scheduling, back-
filling, and migration.

The rest of this paper is organized as follows: Section 2
describes our approach to modeling parallel job workloads
and obtaining performance characteristics of scheduling
systems. It also characterizes our base workload quantita-
tively. Section 3 analyzes the impact of job execution time
estimation on the overall performance from system and
user perspectives. We show that relevant performance
parameters are almost invariant to the accuracy of average
job execution time estimation. Section 4 describes gang-
scheduling, and the various phases involved in computing
a time-sharing schedule. Section 5 demonstrates the sig-
nificant improvements in performance that can be achieved
by time-sharing techniques, when enhanced with back-
filling and migration. Finally, Section 6 presents our
conclusions and possible directions for future work.

2 EVALUATION METHODOLOGY

Before we present our results, we first need to describe our
methodology. In this section, we begin by describing how
we generate synthetic workloads (drawn from realistic
environments) that drive our simulator. We then present
the particular characteristics of the workloads we use.
Finally, we discuss the performance metrics we adopt to
measure the quality of service in a parallel system.

2.1 Workload Modeling

Our modeling procedure involves the following steps:

1. First, we group the jobs into classes based on the
number of processors they require to execute on.
Each class is a bin in which the upper boundary is a
power of 2.

2. Then, we model the interarrival time distribution for
each class, and the service time distribution for each
class as follows:

a. From the job traces, we compute the first three
moments of the observed interarrival time and
the first three moments of the observed service
time.

b. Then, we select the Hyper Erlang Distribution of
Common Order that fits these three observed
moments.

Next, we generate various synthetic workloads from the
observed workload by varying the interarrival rate and
service time used. The Hyper Erlang parameters for these
synthetic workloads are obtained by multiplying the
interarrival rate and the service time each by a separate
multiplicative factor, and by specifying the number of jobs
to generate. From these model parameters, synthetic job
traces are obtained using the procedure described in [12].
Finally, we simulate the effects of these synthetic workloads
and observe the results.

Within a workload trace, each job is described by its
arrival time, the number of nodes it uses, its execution time
on a dedicated system, and an overestimation factor.
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Backfilling strategies require an estimate of the job execu-

tion time. In a typical system, it is up to each user to provide

these estimates. This estimated execution time is always

greater than or equal to the actual execution time since jobs

are terminated after reaching this limit. We capture this

discrepancy between estimated and actual execution times

for parallel jobs through an overestimation factor. The

overestimation factor for each job is the ratio between its

estimated and actual execution times. During simulation,

the estimated execution time is used exclusively for

performing job scheduling, while the actual execution time

is only used to define the job finish event. In this paper, we

consider the model for describing the distribution of

estimated execution times as provided by the user.
We call the model � model [6], wherein � is the fraction

of jobs that terminate at exactly the estimated time. This

typically corresponds to jobs that are killed by the system

because they reach the limit of their allocated time. The rest

of the jobs (1ÿ �) finish before the estimated (allocated)

time. The model assumes that its actual execution can vary

anywhere between zero and the estimated time (following a

uniform distribution). This is shown in Fig. 1. To obtain the

desired distribution for execution times in the � model, in

our simulations we compute the overestimation factor as

follows: Let y be a uniformly distributed random number in

the range 0 � y < 1. If y < �, then the overestimation factor

is 1 (i.e., estimated time = execution time). If y � �, then the

overestimation factor is ð1ÿ �Þ=ð1ÿ yÞ.

2.2 Workload Characteristics

The baseline workload is the synthetic workload generated
from the parameters directly extracted from the actual ASCI
Blue-Pacific workload. It consists of 10,000 jobs, varying in
size from 1 to 256 nodes, in a system with a total of 320
nodes. Some characteristics of this workload are shown in
Figs. 2 and 3. Fig. 2 reports the distribution of job sizes
(number of nodes). Fig. 3 reports the distribution of total
CPU time, defined as the product of job execution time in a
dedicated setting (when there are no other jobs) and the
number of nodes it requires.

In addition to the baseline workload of Figs. 2 and 3, we
generate eight additional workloads, of 10,000 jobs each, by
varying the model parameters so as to increase average job
execution time. More specifically, we generate the nine
different workloads by multiplying the average job execu-
tion time by a factor from 1:0 to 1:8 in steps of 0:1. For a
fixed interarrival time, increasing job execution time
typically increases utilization, until the system saturates.

2.3 Performance Metrics

The synthetic workloads generated as described in

Section 2.1 are used as input to our event-driven simulator

of various scheduling strategies. We simulate a system with

320 nodes, and we monitor the following parameters:

. tai : arrival time for job i.

. tsi : start time for job i.

. tei : execution time for job i (in a dedicated setting).

. tfi : finish time for job i.

. ni: number of nodes used by job i.

From these we compute:

. tri ¼ t
f
i ÿ tai : response time for job i.

. twi ¼ tsi ÿ tai : wait time for job i.

. si ¼ maxðtri ;ÿÞ
maxðtei ;ÿÞ

: the slowdown for job i. To reduce the

statistical impact of very short jobs, it is common

practice [5], [6] to adopt a minimum execution time of

ÿ seconds. This is the reason for the maxð�;ÿÞ terms in

the definition of slowdown. According to the litera-

ture [6], we use ÿ ¼ 10 seconds.

To report quality of service figures from a user’s

perspective, we use the average job slowdown and average

job wait time. Job slowdown measures how much slower

than a dedicated machine the system appears to the users,

which is relevant to both interactive and batch jobs. Job wait

time measures how long a job takes to start execution and,

therefore. it is an important measure for interactive jobs. In

addition to objective measures of quality of service, we also

use these averages to characterize the fairness of a

scheduling strategy. We evaluate fairness by comparing

average and standard deviation of slowdown and wait time
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for small jobs, large jobs, and all jobs combined. As
discussed in Section 2.2, large jobs are those that use more
than 32 nodes, while small jobs use 32 or fewer nodes.

We measure quality of service from the system’s
perspective with two parameters: utilization and capacity
loss. Utilization is the fraction of total system resources that
are actually used during the execution of a workload. Let
the system have N nodes and execute m jobs, where job m is
the last job to finish execution. Also, let the first job arrive at
time t ¼ 0. Utilization is then defined as

� ¼
Pm

i¼1 nit
e
i

N � tfm
ð1Þ

A system incurs loss of capacity when 1) it has jobs
waiting in the queue to execute and 2) it has empty nodes
(either physical or virtual) but, because of fragmentation, it
still cannot execute those waiting jobs. Before we can define
loss of capacity, we need to introduce some more concepts.
A scheduling event takes place whenever a new job arrives or
an executing job terminates. By definition, there are 2m
scheduling events, occurring at times  i, for i ¼ 1; . . . ; 2m.
Let ei be the number of nodes left empty between
scheduling events i and iþ 1. Finally, let �i be 1 if there
are any jobs waiting in the queue after scheduling event i,
and 0 otherwise. Loss of capacity in a purely space-shared
system is then defined as

� ¼
P2mÿ1

i¼1 eið iþ1 ÿ  iÞ�i
tfm �N

ð2Þ

To compute the loss of capacity in a gang-scheduling
system, we have to keep track of what happens in each
time-slice. Let si be the number of time slices between
scheduling event i and scheduling event iþ 1. We can then
define

� ¼
P2mÿ1

i¼1 eið iþ1 ÿ  iÞ þ T � CS � si � ni½ ��i
tfm �N

; ð3Þ

where

. T is the duration of one row in the matrix,

. CS is the context-switch overhead (as a fraction of T ),

. ni is the number of occupied nodes between schedul-
ing events i and iþ 1, more specifically, ni þ ei ¼ N .

A system is in a saturated state when increasing the load
does not result in an increase in utilization. At this point, the
loss of capacity is equal to one minus the maximum
achievable utilization. More specifically, � ¼ 1ÿ �.

3 THE IMPACT OF OVERESTIMATION ON

BACKFILLING

A common perception with backfilling is that one needs a
fairly accurate estimation of job execution time to perform
good backfilling scheduling. Users typically provide an
estimate of job execution time when jobs are submitted.
However, it has been shown in the literature [6] that there is
little correlation between estimated and actual execution
times. Since jobs are killed when the estimated time is
reached, users have an incentive to overestimate the
execution time.

We conducted a study of the effect of overestimation on
the performance of backfilling schedulers using an FCFS
prioritization policy. The results are summarized in Fig. 4.
Figs. 4a and 4b plot average job slow down and average job
wait time, respectively, as a function of system utilization
for different values of �. We observe very little impact of
overestimation.

We can explain why backfilling is not that sensitive to
the estimated execution time by the following reasoning:

1. When the load is low, the estimation does not really
matter, since backfilling is not really performed that
often. There are not that many jobs waiting, as
indicated by the low waiting time.

2. Backfilling has more effect when the load is higher.
On average, overestimation impacts both the jobs
that are running and the jobs that are waiting. The
scheduler computes a later finish time for the
running jobs, creating larger holes in the schedule.
The larger holes can then be used to accommodate
waiting jobs that have overestimated execution
times. The probability of finding a backfilling
candidate effectively does not change significantly
with the overestimation as a result.

Even though the average job behavior is insensitive to the
average degree of overestimation, individual jobs can be
affected. To verify that, we group the jobs into 10 classes based
on how close is their estimated time to their actual execution
time. More specifically, class i, i ¼ 0; . . . ; 9 includes all those
jobs for which their ratio of execution time to estimated time
falls in the range ði� 10%,ðiþ 1Þ � 10%�. Fig. 5 shows the
average job wait time for 1) all jobs, 2) jobs in class 0 (worst
estimators) and 3) jobs in class 9 (best estimators), when
� ¼ 0:2. We observe that those users that provide good
estimates are rewarded with a lower average wait time. The
conclusion is that the “quality” of an estimation is not really
defined by how close it is to the actual execution time, but by
how much better it is compared to the average estimation.
Users do get a benefit, and therefore an encouragement, from
providing good estimates.

Our findings are in agreement with the work described
in [22]. In that paper, the authors describe mechanisms to
more accurately predict job execution times, based on
historical data. They find that more accurate estimates of
job execution time leads to more accurate estimates of
wait time. However, the accuracy of execution time
prediction has minimal effect on system parameters, such
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as utilization. The authors do observe an improvement in
average job wait time, for a particular Argonne National
Laboratory workload, when using their predictors instead
of previously published work [2], [9].

4 GANG-SCHEDULING

In the previous sections, we only considered space-sharing
scheduling strategies. An extra degree of flexibility in
scheduling parallel jobs is to share the machine resources
not only spatially but also temporally by partitioning the
time axis into multiple time slices [3], [4], [8], [11], [23]. As
an example, time-sharing an 8-processor system with a
multiprogramming level of four is shown in Fig. 6. The
figure shows the scheduling matrix (also called the
Ousterhout matrix) that defines the tasks executing on each
processor and each time-slice. Jji represents the jth task of
job Ji. The matrix is cyclic in that time-slice 3 is followed by
time-slice 0. One cycle through all the rows of the matrix
defines a scheduling cycle. Each row of the matrix defines an
8-processor virtual machine, which runs at 1=4th of the
speed of the physical machine. We use these four virtual
machines to run two 8-way parallel jobs (J1 and J2) and
several smaller jobs (J3, J4, J5, J6). All tasks of a parallel job
are always coscheduled to run concurrently. This approach
gives each job the impression that it is still running on a
dedicated, albeit slower, machine. This type of scheduling is
commonly called gang-scheduling [3]. Note that some jobs
can appear in multiple rows (such as jobs J4 and J5).

4.1 Considerations in Building a Scheduling Matrix

Creating one more virtual machine for the execution of a
new 8-way job in the case of Fig. 6 requires, in principle,
only adding one more row to the Ousterhout matrix.
Obviously, things are not so simple. There is a cost
associated with time-sharing, due mostly to: 1) the cost of
the context-switches themselves, 2) additional memory
pressure created by multiple jobs sharing nodes, and 3)
additional swap space pressure caused by more jobs
executing concurrently. For that reason, the degree of
time-sharing is usually limited by a parameter that we call,
in analogy to uniprocessor systems, the multiprogramming
level (MPL). A gang-scheduling system with multipro-
gramming level of 1 reverts back to a space-sharing system.

In our particular implementation of gang-scheduling, we
operate under the following conditions:

1. Multiprogramming levels are kept at modest levels,
in order to guarantee that the images of all tasks in a

node remain in core. This eliminates paging and
significantly reduces the cost of context switching.
Furthermore, the time slices are sized so that the cost
of the resulting context switches are relatively small.

2. Assignments of tasks to processors are static. That is,
once spatial scheduling is performed for the tasks of
a parallel job, they cannot migrate to other nodes.
(migration is considered later in Section 5.4.)

3. When building the scheduling matrix, we first
attempt to schedule as many jobs for execution as
possible, constrained by the physical number of
processors and the multiprogramming level. Only
after that we attempt to expand a job, by making it
occupy multiple rows of the matrix. (See jobs J4 and
J5 in Fig. 6.) Our results demonstrate that this
approach yields better performance than trying to
fill the matrix with already running jobs.

4. For a particular instance of the Ousterhout matrix,
each job has an assigned home row. Even if a job
appears in multiple rows, one and only one of
them is the home row. The home row of a job can
change during its life time, when the matrix is
recomputed. The purpose of the home row is
described in Section 4.2.

4.2 The Phases of Scheduling

Every job arrival or departure constitutes a scheduling event
in the system. For each scheduling event, a new scheduling
matrix is computed for the system. Even though we analyze
various scheduling strategies in this paper, they all follow
an overall organization for computing that matrix, which
can be divided into the following steps:

1. CleanMatrix: The first phase of a scheduler removes
every instance of a job in the Ousterhout matrix that
is not at its assigned home row. Removing dupli-
cates across rows effectively opens the opportunity
of selecting other waiting jobs for execution.

2. CompactMatrix: This phase moves jobs from less
populated rows to more populated rows. It further
increases the availability of free slots within a single
row to maximize the chances of scheduling a large job.

3. Schedule: This phase attempts to schedule new jobs.
We traverse the queue of waiting jobs as dictated by
the given priority policy until no further jobs can be
fitted into the scheduling matrix.

4. FillMatrix: This phase tries to fill existing holes in
the matrix by replicating jobs from their home rows
into a set of replicated rows. This operation is
essentially the opposite of CleanMatrix.
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The exact procedure for each step is dependent on the
exact scheduling strategy and the details will be presented
as we discuss each strategy.

Orthogonal to the strategy, there is also the issue of the
latency of the scheduler. One option is to always invoke the
scheduler exactly at the time of a job arrival or departure. In
that case, a new schedule is computed and takes effect
immediately. In other words, the current time slice is cut
short. Alternatively, the schedule is only invoked at discrete
times. That is, at the predetermined context switch time at
the end of every time slice. In this case, every time slice runs
to completion. The advantage of the first approach is that
empty slots can be immediately utilized by an arriving job,
or when a job departs, the remaining jobs can use the new
free slots. These factors can reduce capacity loss. The
disadvantage of this approach is that when the job arrival
and departure is too high the system can go into a thrashing
mode because context switches are more frequent. We
conducted an experiment to compare the continuous and
discrete approaches and found the former to perform better
(see Section 5.3). Consequently, we use, continuous model
for most of the experiments.

5 SCHEDULING STRATEGIES

We now describe and analyze in detail the various time-
shared scheduling strategies in our work. We start with
plain gang-scheduling (GS), as described in Section 4. We
augment it with backfilling capabilities to produce our
backfilling gang-scheduling (BGS) strategy. We also ana-
lyze what happens when migration is added to gang-
scheduling, thus creating the migration gang-scheduling
(MGS) strategy. Finally, we combine both enhancing
techniques (backfilling and migration) into the migration
backfilling gang-scheduling (MBGS) strategy.

When analyzing the performance of the time-shared
strategies, we have to take into account the context-switch
overhead. In the RS/6000 SP, context switch overhead
includes the protocol for detaching and attaching to the
communication device. It also includes the operations to
stop and continue user processes. When the working set of
time-sharing jobs is larger than the physical memory of the
machine, context switch should also include the time to
page in the working set of the resuming job. For our
analysis, we characterize context switch overhead as a
percentage of time slice. Typical context switch overhead
values are from 0 to 5 percent of time slice.

5.1 Gang-Scheduling (GS)

The first scheduling strategy we analyze is plain gang-
scheduling (GS). This strategy is described in Section 4. For
gang-scheduling, we implement the four scheduling steps
of Section 4.2 as follows:

A.0.a Clean Matrix: The implementation of CleanMatrix
is best illustrated with the following algorithm:

for i = first row to last row

for all jobs in row i

if row i is not home of job, remove it

It eliminates all occurrences of a job in the scheduling
matrix other than the one in its home row.

A.0.b CompactMatrix: We implement the CompactMa-

trix step in gang-scheduling according to the following

algorithm:

do{

for i = least populated row to most populated row

for j = most populated row to least populated row

for all jobs in row i

if they can be moved to row j,

then move and break

}while matrix changes

We traverse the scheduling matrix from the least populated

row to the most populated row. We attempt to find new

homes for the jobs in each row. The goal is to pack as many

jobs in as few rows as possible.
To move a job to a different row under gang-scheduling,

the following conditions must be satisfied:

1. The destination columns, which are the same as the
source columns for the job, must be empty. (In plain
gang-scheduling, migration is not considered.)

2. The job must make progress. That is, we must ensure
that moving the job will not prevent it from
executing for at least one time-slice in one schedul-
ing cycle. This must be enforced to prevent starva-
tion of jobs.

To guarantee progress of jobs, we adopt the following

straightforward algorithm for deciding where it is legal to

move jobs. We call it the clock algorithm, which is illustrated

in Fig. 7. The algorithm works as follows: Each scheduling

cycle corresponds to one turn of the clock. Each scheduling

event corresponds to one particular time in the clock. The

last time a job was run also corresponds to a particular time.

A job can only be moved ahead, i.e., to any time between

now and the time corresponding to its last run. Once a job is

moved to a different row, that becomes its new home row.

(A job can appear in multiple rows of the matrix. Therefore,

the time of last run could be later than the old home row,

providing more scope for moving jobs.)
A.0.c Schedule: The Schedule phase for gang-scheduling

traverses the waiting queue in FCFS order. For each job, it

looks for the row with the least number of free slots in the

scheduling matrix that has enough free columns to hold the

job. This corresponds to a best fit algorithm. The row to

which the job is assigned becomes its home row. We stop
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when the next job in the queue cannot be scheduled right
away.

A.0.d FillMatrix: After the schedule phase completes, we
proceed to fill the holes in the matrix with the existing jobs.
We use the following algorithm in executing the FillMatrix
phase.

do {

for each job in starting time order

for all rows in matrix,

if job can be replicated in same columns

do it and break
} while matrix changes

The algorithm attempts to replicate each job at least once,
although some jobs can be replicated multiple times. We go
through the job in starting time order, but other ordering
policies can be applied.

5.2 Backfilling Gang-Scheduling (BGS)

Gang-scheduling and backfilling are two optimization
techniques that operate on orthogonal axes, space for
backfilling and time for gang scheduling. It is tempting to
combine both techniques in one scheduling system that we
call backfilling gang-scheduling (BGS). In principle, this can
be done by treating each of the virtual machines created by
gang-scheduling as a target for backfilling. The difficulty
arises in estimating the execution time for parallel jobs. In
the example of Fig. 6, jobs J4 and J5 execute at a rate twice
as fast as the other jobs since they appear in two rows of the
matrix. This, however, can change during the execution of
the jobs, as new jobs arrive, and executing jobs terminate.

Fortunately, as we have shown in Section 3, even
significant average overestimation of job execution time
has little impact on average performance. Therefore, it is
reasonable to attempt to use a worst case scenario when
estimating the execution time of parallel jobs under gang-
scheduling. We take the simple approach of computing the
estimated time under gang-scheduling as the product of the
estimated time on a dedicated machine and the multi-
programming level (since each job is guaranteed to get at
least 1 time slice in each cycle).

In backfilling gang-scheduling, each job is assigned a
guaranteed starting time based on the predicted execution
times of the current jobs. Each job is guaranteed to be
scheduled by this time. Also, each waiting job has a
reservation of resources. The reservation corresponds to a
particular time in a particular row of the matrix.

The issue of reservations impact both the CompactMatrix
and Schedule phases. When moving jobs in CompactMa-
trix, we must make sure that the moved job does not conflict
with any reservations in the destination row. In the
Schedule phase, we first attempt to schedule each job in
the waiting queue, making sure that its execution does not
violate any reservations. If we cannot start a job, we
compute the future start time for that job in each row of the
matrix. We select the row with the lowest starting time, and
make a reservation for that job in that row. This new
reservation could be different from the previous reservation
of the job, but it has to be lower than the guaranteed starting
time of that job. The reservations do not impact the
FillMatrix phase since the assignments in this phase are

temporary and the matrix gets cleaned in the next
scheduling event.

5.3 Comparing GS, BGS, and BF

We compare three different scheduling strategies, with a
total of seven configurations. They all use FCFS as the
prioritization policy. The first strategy is a space-sharing
policy that uses backfilling to enhance the performance
parameters. We identify this strategy as BF. We also use
three variations of the gang-scheduling strategy, with
multiprogramming levels 2, 3, and 5. These configurations
are identified by GS-2, GS-3, and GS-5, respectively.
Finally, we consider three configurations of the backfilling
gang-scheduling strategy. That is, backfilling is applied to
each virtual machine created by gang-scheduling. These are
referred to as BGS-2, BGS-3, and BGS-5, for MPL 2, 3, and
5. The results presented here are based on the �-model,
with � ¼ 0:2.

We use the performance parameters described in
Section 2.3, namely, 1) average slow down, 2) average wait
time, and 3) average loss of capacity, to compare the
strategies.

Fig. 8 shows the average job slow down for all seven
configurations. Each plot (Figs. 8a, 8b, 8c, and 8d) is for a
different value of context switch overhead. We observe that
regular gang scheduling (GS strategies) results in very high
slow downs, even at low or moderate (less than � ¼ 0:75)
utilizations. BF always performs better than GS-2 and GS-3.
It also performs better than GS-5 when utilization is greater
than 0.65. The combined approach (BGS) is always better
than its individual components (BF and GS with correspond-
ing multiprogramming level). The improvement in average
slow down is monotonic with the multiprogramming level.
For instance, if we choose a maximum acceptable slow down
of 20, the resulting maximum utilization is � ¼ 0:67 for GS-5,
� ¼ 0:76 for BF, and � ¼ 0:82 for BGS-2. That last result
represents an improvement of 20 percent over GS-5 with a
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Fig. 8. Average job slowdown for four different values of context switch

overhead: (a) 0 percent, (b) 1 percent, (c) 2 percent, and (d) 5 percent of

the time slice.



much smaller multiprogramming level. With BGS-5, we can
drive utilization as high as � ¼ 0:87.

Fig. 9 shows the average job wait time for all our seven
configurations. We observe that regular gang-scheduling
(GS strategies) results in very high wait times, even at low or
moderate (less than� ¼ 0:75) utilizations. Even with 0 percent
context switching overhead, saturation takes place at � ¼ 0:84
for GS-5 and at � ¼ 0:79 for GS-3. At 5 percent overhead, the
saturations occur at � ¼ 0:73 and � ¼ 0:75 for GS-3 and GS-5,
respectively. Backfilling performs better than gang-schedul-
ing with respect to wait time for utilizations above � ¼ 0:72. It
saturates at � ¼ 0:95. Again, the combined approach (BGS) is
always better than its individual components (BF and GS
with corresponding multiprogramming level) for a zero
context switch overhead. The improvement in average job
wait time is monotonic with the multiprogramming level.

At all combinations of context switch overhead and
utilization, BGS outperforms GS with the same MPL. BGS
also outperforms BF at low context switch overheads (0 or
1 percent). Even at context switch overhead of 2 or 5 percent,
BGS has significantly better slowdown than BF in an
important operating range. For context switch overhead of
5 percent, BGS-5 is superior to BF only up to � ¼ 0:83.
Therefore, we have two options in designing the scheduler
system: we either keep the context switch overhead low
enough (as a percentage of time quantum) that BGS is always
better than BF, or we use an adaptive scheduler that switches
between BF and BGS depending on the utilization of the
system.

Whereas, Figs. 8 and 9 illustrate performance from a user’s
perspective, we now turn our attention to the system’s
perspective. Fig. 10 is a plot of the average capacity loss as a
function of utilization for all our seven strategies. By
definition, all strategies saturate at the line � ¼ 1ÿ �, which
is indicated by the dashed line in Fig. 10. Again, the combined
policy consistently delivers better results than the pure
backfilling and gang scheduling (of equal MPL) policies.

The improvement is also monotonic with the multiprogram-
ming level. However, all backfilling based policies (pure or
combined) saturate at essentially the same point. Loss of
capacity comes from holes in the scheduling matrix. The
ability to fill those holes actually improves when the load is
very high. We observe that the capacity loss for BF actually
starts to decrease once utilization goes beyond � ¼ 0:83. At
very high loads (� > 0:95) there are almost always small jobs
to backfill arising holes in the schedule. Looking purely from
a system’s perspective, we note that pure gang-scheduling
can only be driven to utilization between � ¼ 0:82 and
� ¼ 0:87, for multiprogramming levels 2 through 5. On the
other hand, the backfilling strategies can be driven to up to
� ¼ 0:95 utilization.

To summarize our observations, we have shown that the
combined strategy of backfilling with gang-scheduling
(BGS) consistently outperforms the other strategies (back-
filling and gang-scheduling separately) from the perspec-
tives of responsiveness, slow down, and utilization.

5.4 Migration Gang-Scheduling (MGS)

We now analyze how gang-scheduling can be improved
through the addition of migration capabilities. The process of
migration embodies moving a job to any row in which there
are enough free processors to execute that job (not just on the
same columns). There are basically two options each time we
attempt to migrate a jobA from a source row r to a target row p

(in either case, row p must have enough nodes free):

. Option 1: We migrate the jobs in row p that execute on
the CPUs where the processes of A reside, to make
space for A in rowp. This is shown pictorially in Fig. 11,
where three processes of job J in row 2 occupy the same
columns as job A in row 1. Job J is migrated to four
other processes in the same row and job A is replicated
in this row. Consequently, when we move from row 1
to row 2 in the scheduling cycle, job A does not need to
be migrated (one-time effort).
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Fig. 9. Average job wait times for four different values of context switch

overhead: (a) 0 percent, (b) 1 percent, (c) 2 percent, and (d) 5 percent of

time slice.

Fig. 10. Loss of capacity for four different values of context switch

overhead: (a) 0 percent, (b) 1 percent, (c) 2 percent, and (d) 5 percent of

times lice.



. Option 2: Instead of migrating job J to make space for
A, we can directly migrate job A to those slots in row
p that are free. This approach lets other jobs in row p
proceed without migration, but the down side is
that, each time we come to row p, job A incurs
migration costs (recurring). This is again shown
pictorially in Fig. 11.

We can quantify the cost of each of these two options based

on the following model. For the distributed system we

target, namely the IBM RS/6000 SP, migration can be

accomplished with a checkpoint/restart operation.

(Although it is possible to take a more efficient approach

of directly migrating processes across nodes [1], [18], [19],

we choose not to take this route.) Let SðAÞ be the set of jobs

in target row p that overlap with the nodes of job A in

source row r. Let C be the total cost of migrating one job,

including the checkpoint and restart operations. We

consider the case in which 1) checkpoint and restart have

the same cost C=2, 2) the cost C is independent of the job

size, 3) checkpoint and restart are dependent operations

(i.e., you have to finish checkpoint before you can restart),

and 4) checkpoint/restart operations are performed at the

beginning of the time quantum whenever needed. During

the migration process, nodes participating in the migration

cannot make progress in executing a job. The total amount

of resources (processor � time) wasted during this process

is the overhead for the migration operation.
The overhead for option 1 is

C

2
� jAj þ C �

X
J2SðAÞ

jJ j

0@ 1A; ð4Þ

where jAj and jJj denote the number of tasks in jobs A and

J , respectively.
The overhead for option 2 is estimated by

C � jAj þ C
2
�
X

J2SðAÞ
jJ j

0@ 1A: ð5Þ

The first use of migration is during the compact phase, in

which we consider migrating a job when moving it to a

different row. During the compact phase, both migration

options discussed above are considered, and we choose the
one with smaller cost.

We also apply migration during the expansion phase.
During the expansion phase, only migration option 1 is
considered (since option 2 implies migration during each
scheduling cycle). As a result, a job can appear in multiple
rows of the matrix, but it must occupy the same set of
processors in all the rows.

As discussed, migration in the IBM RS/6000 SP requires
a checkpoint/restart operation. Although all tasks can
perform a checkpoint in parallel, resulting in a C that is
independent of job size, there is a limit to the capacity and
bandwidth that the file system can accept. Therefore, we
introduce a parameter Q that controls the maximum
number of tasks that can be migrated in any time-slice.

When migration is used, the scheduling proceeds along
the following steps:

The ordering results in applying optimizations without
incurring unnecessary costs. We first attempt to optimize
without migration (CompactMatrix-1,Schedule-1). After
Schedule-1, we then attempt to compact with migration
(CompactMatrix-2) and repeat scheduling (Schedule-2) to
accommodate new jobs. After we are done accommodating
new jobs, we do FillMatrix-1 first because it does not incur
migration costs. Then, we try FillMatrix-2 with migration.

5.5 Migration Backfilling Gang-Scheduling (MBGS)

Just as we augmented plain gang-scheduling (GS) with
migration, the same can be done with backfilling gang-
scheduling (BGS). This creates the migration backfilling
gang-scheduling (MBGS). The differences between MGS
and MBGS are in the CompactMatrix and Schedule steps.
MBGS use the same scheduling as BGS, that is, backfilling
is performed in each row of the matrix, and reservations are
created for jobs that cannot be immediately scheduled.
When compacting the matrix, MBGS must make sure that
reservations are not violated.

5.6 Comparing GS, BGS, MGS, and MBGS

Table 1 summarizes some of the results from migration
applied to gang-scheduling and backfilling gang-schedul-
ing. For each of the nine workloads (numbered from 0 to 8),
we present achieved utilization (�) and average job slow-
down (s) for four different scheduling policies:

1. backfilling gang-scheduling without migration
(BGS),

2. backfilling gang-scheduling with migration (MBGS),
3. gang-scheduling without migration (GS), and
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Fig. 11. The two migration options. (a) Migration option 1. (b) Migration

option 2.



4. gang-scheduling with migration (MGS).

We also show the percentage improvement in job slow-
down from applying migration to gang-scheduling and
backfilling gang-scheduling. Those results are from the best
case for each policy: 0 cost and unrestricted number of
migrated tasks with an MPL of 5.

We can see an improvement from the use of migration
throughout the range of workloads, for both gang-schedul-
ing and backfilling gang-scheduling. We also note that the
improvement is larger for mid-to-high utilizations between
70 and 90 percent. Improvements for low utilization are less
because the system is not fully stressed, and the matrix is
relatively empty. At very high loads, the matrix is already
very full and migration accomplishes less than at mid-range
utilizations. Improvements for backfilling gang-scheduling
are not as impressive as for gang-scheduling. Backfilling
gang-scheduling already does a better job of filling holes in
the matrix and, therefore, the potential benefit from
migration is less. With backfilling gang-scheduling the best
improvement is 50 percent at a utilization of � ¼ 0:89,
whereas with gang-scheduling we observe benefits as high
as 92 percent, at utilization of � ¼ 0:88.

We note that the maximum utilization with gang-schedul-
ing increases from 86 percent without migration to 94 percent
with migration. Maximum utilization for backfilling gang-
scheduling increases from 96 to 98 percent with migration.
Migration is a mechanism that significantly improves the
performance of gang-scheduling without the need for job
execution time estimates. However, it is not as effective as
backfilling in improving plain gang-scheduling. The combi-
nation of backfilling and migration results in the best overall
gang-scheduling system.

Fig. 12 shows average job slowdown and average job wait
time as a function of the parameterQ, the maximum number
of tasks that can be migrated in any time slice. We consider
two representative workloads, 2 and 5, since they define the
bounds of the operating range of interest. We note that
migration can significantly improve the performance of gang-

scheduling even with as little as 64 tasks migrated. (Note that
the case without migration is represented by the parameter
Q ¼ 0 for number of migrated tasks.) We also observe a
monotonic improvement in slowdown and wait time with the
number of migrated tasks, for both gang-scheduling and
backfilling gang-scheduling. Even with migration costs as
high as 30 seconds, or 15 percent of the time slice, we still
observe benefit from migration. Most of the benefit of
migration is accomplished at Q ¼ 64 migrated tasks, and
we choose that value for further comparisons. Finally, we
note that the behaviors of wait time and slowdown follow
approximately the same trends. Thus, for the next analysis,
we focus on slowdown.

Fig. 13 compares loss of capacity, slowdown, and wait
time for all four time-sharing strategies: GS, BGS, MGS,

ZHANG ET AL.: AN INTEGRATED APPROACH TO PARALLEL SCHEDULING USING GANG-SCHEDULING, BACKFILLING, AND MIGRATION 245

TABLE 1
Percentage Improvements from Migration

Fig. 12. Slowdown and wait time as a function of number of migrated

tasks. Each line is for different migration cost.



and MBGS. Results shown are for MPL of 5, � ¼ 0:2, and

(for MGS and MBGS) a migration cost of 10 seconds (5

percent of the time-slice). We observe that MBGS is always

better than the other strategies, for all three performance

parameters and across the spectrum of utilization. Corre-

spondingly, GS is always worse than the other strategies.

The relative behavior of BGS and MGS deserves a more

detailed discussion.
With respect to loss of capacity, MGS is consistently better

than BGS. MGS can drive utilization up to 98 percent, while
BGS saturates at 96 percent. With respect to wait time, BGS is
consistently better than MGS. Quantitatively, the wait time
with MGS is 50-100 percent larger than with BGS throughout
the range of utilizations. With respect to slowdown, we
observe that BGS is always better than MGS and that the
difference increases with utilization. For workload 5, the
difference is as high as a factor of 5. At first, it is not intuitive
that BGS can be so much better than MGS in the light of the
loss of capacity and wait time results. The explanation is that
BGS favors short-running jobs when backfilling, thus
reducing the average job slowdown. To verify that, we
further investigated the behavior of MGS and BGS in two
different classes of jobs: one class is comprised of the jobs with
running time shorter than the median (680 seconds) and the
other class of jobs with running time longer than or equal to
the median. For the shorter jobs, slowdown with BGS and
MGS are 18.9 and 104.8, respectively. On the other hand, for
the longer jobs, slowdown with BGS and MGS are 4.8 and 4.1,
respectively. These results confirm that BGS favors short
running jobs. We note that the penalty for longer jobs in BGS
(as compared to MGS) is very small, whereas the benefit for
shorter jobs is quite significant.

We emphasize that the strategy that combines all

techniques (gang-scheduling, backfilling, and migration),

that is, MBGS provides the best results. In particular, it can

drive utilization higher than MGS, and achieves better slow

down and wait times than BGS. Quantitatively, wait times

with MBGS are two to three times shorter than with BGS,

and slowdown is 1.5 to two times smaller.

6 CONCLUSIONS

This paper has reviewed several techniques we developed
to enhance job scheduling for large parallel systems. We

started with an analysis of two commonly used strategies:
backfilling and gang-scheduling. As the first contribution of
this paper, we showed how the two could be combined into

a backfilling gang-scheduling (BGS) strategy that is always
superior to its two components when the context switch

overhead (as a percentage of time quantum) is kept low.
With BGS, we observe a monotonic improvement in job
slowdown, job wait time, and maximum system utilization

with the multiprogramming level. We have also demon-
strated the importance of continuous scheduling when
time-sharing techniques are used.

Further improvement in scheduling efficacy can be
accomplished with the introduction of migration. We have
demonstrated that both plain gang-scheduling and back-
filling gang-scheduling benefit from migration. The sche-
duling strategy that incorporates all our techniques: gang-
scheduling, backfilling, and migration consistently outper-
forms the others for average job slow down, job wait time,
and loss of capacity. It also achieves the highest system
utilization, allowing the system to achieve up to 98 percent
utilization. When a maximum acceptable slowdown of 20 is
adopted, the system can achieve 94 percent utilization.

We have shown that combining techniques such as
backfilling and migration with well-established gang-
scheduling strategies can improve system performance
significantly. A backfilling gang-scheduling system has
been successfully deployed in the multi-Teraflop ASCI Blue
and White machines based on the results from this paper.
The new scheduling system in those machines is expected
to improve utlization, reduce job wait times, and overall
enhance the execution of large jobs.
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