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ABSTRACT
Two important emerging trends are influencing the design, imple-
mentation and deployment of high performance parallel systems.
The first is on the architectural end, where both economic and tech-
nological factors are compelling the use of off-the-shelf computing
elements (workstations/PCs and networks) to put together high per-
formance systems called clusters. The second is from the user com-
munity that is finding an increasing number of applications to ben-
efit from such high performance systems. Apart from the scientific
applications that have traditionally needed supercomputing power,
a large number of graphics, visualization, database, web service
and e-commerce applications have started using clusters because
of their high processing and storage requirements. These applica-
tions have diverse characteristics and can place different Quality-
of-Service (QoS) requirements on the underlying system (low re-
sponse time, high throughput, high I/O demands, guaranteed re-
sponse/throughput etc.). Further, clusters running such applications
need to cater to potentially a large number of users (or other appli-
cations) in a time-shared manner. The underlying system needs to
accommodate the requirements of each application, while ensuring
that they do not interfere with each other.

This paper focuses on the CPU resources of a cluster and investi-
gates scheduling mechanisms to meet the responsiveness, through-
put and guaranteed service requirements of different applications.
Specifically, we propose and evaluate three different scheduling
mechanisms. These mechanisms have been drawn from traditional
solutions on parallel systems (gang scheduling and dynamic coschedul-
ing), and have been extended to accommodate the new criteria un-
der consideration. These mechanisms have been investigated using
detailed simulation and workload models to show their pros and
cons for different performance metrics.
Keywords: Parallel Scheduling, Coscheduling, Simulation, Clus-
ters.
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1. INTRODUCTION
Two important emerging trends are influencing the design, im-

plementation and deployment of high performance parallel sys-
tems. At the architectural end, both economic and technological
factors are compelling the use of off-the-shelf computing elements
(workstations/PCs and networks) to put together high performance
clusters. With workstation and network prices dropping daily, and
very little infrastructure needed to build clusters, these platforms
are becoming commonplace in numerous computing environments.

On the application end, the widespread deployment and avail-
ability of clusters for high performance computing has encouraged
the user community to try out different demanding problems on
these platforms. It is no longer just the traditional scientific or engi-
neering community (for computational physics, chemistry, computer-
aided design, etc.) that are using such systems. An increasing
number of commercial applications (web servers [16], database en-
gines, e-commerce, image servers, media bases, etc.) are being
hosted on clusters (that are usually back-ends for a web-based in-
terface). For instance, IBM supplies a DB-2 distribution [3] that
can exploit a cluster’s capabilities. The Microsoft Terraserver [12]
hosts the earth’s multi-resolution satellite images on a cluster. Fur-
ther, with computing becoming more visual and perceptual, there
are a large number of graphics, visualization and image/video pro-
cessing applications that can also benefit from the capabilities of
a cluster. Clusters are being deployed in enterprises and academic
departments to cater to the computing needs of numerous users.

These emerging applications often have diverse characteristics in
terms of their computation, communication and I/O requirements
from the underlying system. They also impose diverse Quality-
of-Service (QoS) demands (low response time for transactions and
interactivity, high throughput, and even bounded response times
or guaranteed throughput) that can be significantly different from
those required for traditional scientific applications. In addition,
the clusters are not just running one application at a time. Either
there could be several entirely different applications (with different
demands and QoS parameters) or a single application performs sev-
eral duties for a large number of users/clients (in clusters deployed
as servers for commercial applications, with perhaps different QoS
parameters for each client - depending on how important the client
is). We observe the former situation even in our university (both in
the departmental as well as in the university-level clusters), where
different users want to try out their applications (either in the de-
velopmental stage or actually running them) on the cluster at the
same time. In all these environments it is important for the clus-
ter to cater to the potentially large number of users/applications in
a time-shared manner (batching is not really a good idea for these
environments, though this may have been an acceptable solution in



certain supercomputing centers). The underlying system needs to
accommodate the requirements of each application, while ensuring
that they do not interfere with each other. While cluster deploy-
ment has become easy, its management and insulation of one job
from the execution of another is still a difficult problem [1].

Using simple space sharing (partitioning the cluster nodes and
running only one process on each node) is not a good idea in these
environments because of the possibly poor utilization and response
times that such strategies have shown [8, 28]. Time sharing par-
allel jobs on parallel systems is a well-researched problem [8, 28,
13, 30, 2, 7, 19]. An important issue that they all try to address is
to keep communication between the processes of a job in mind.
Specifically, it is important to ensure that the sender process of
a job is scheduled when the intended receiver of the same job is
scheduled and is waiting for the message. In many parallel sys-
tems [21], including clusters [22, 17], message sends and receives
are implemented entirely at the user-level (without involving the
kernel), with busy-waiting (spinning) used for receives to lower the
communication costs. Consequently, with the operating system un-
aware of user-level messaging actions, situations where the sender
and receiver are not concurrently scheduled could happen unless
there is a coordinated effort across all the nodes (synchronized).
One common technique that is used on several platforms to address
this problem is gang scheduling [9, 15]. Gang scheduling, however,
employs strict synchronization between the schedulers running at
each node of the cluster to decide on the next set of processes
to run at their respective nodes, and when to perform the context
switch. This requires that time quanta be fairly coarse-grain to off-
set the synchronization overheads, making the system possibly less
responsive to some of the applications we are considering. Further,
job allocation requires finding a time slot across the entire cluster
where the required number of CPUs are free, potentially becoming
inefficient. A new class of scheduling strategies, broadly referred
to as dynamic coscheduling, has been proposed [13, 30, 2, 7, 19] to
approximate coscheduled execution without explicitly synchroniz-
ing the nodes. They also offer the potential of better utilizing the
cluster.

While both gang scheduling and dynamic coscheduling strate-
gies can be used for jobs that are only asking for low response times
or high throughput (referred to asBest-Effort (BE)jobs in this pa-
per), they are not tuned to handle applications that require bounded
response times or guaranteed throughput (referred to asReal-Time
(RT) jobs in this paper) since they do not take into consideration
any deadlines/guarantees that jobs may have. These strategies base
their decisions on who to schedule, and when, on either initial static
assignments (as in the case of gang scheduling) or on messaging
actions during execution (as in the case of dynamic coscheduling).
They have not been studied or extended for RT jobs, or a mixed
workload containing both BE and RT jobs which we have argued
above to be important for a cluster. It is important to ensure that the
presence of BE jobs does not affect the guarantees for the RT jobs,
and the presence of RT jobs does not starve out the BE jobs. While
these issues have been studied in the context of CPU scheduling
and resource management on uniprocessor systems, there has been
no prior exploration of these issues for communicating parallel jobs
on clusters.

With this ambitious goal in mind, this paper sets out to extend
parallel scheduling mechanisms for multi-class (BE and RT) work-
loads on clusters. We specifically focus on two job classes in this
study: BE parallel jobs, and RT pipelined (and parallel) jobs. The
BE jobs are well-understood (such as traditional scientific appli-
cations), and have been the target of prior scheduling strategies as
well [28]. The RT jobs have been selected based on our experi-

ences with real-time vision applications on clusters [25]. These
applications are computationally intense, and the processing capa-
bilities of a uniprocessor system are often insufficient to handle the
real-time requirements of such applications. For instance, an obsta-
cle detection algorithm on flying aircrafts (based on a steady input
video stream) can demand computation rates higher than 10G op-
erations per second [25]. These requirements are only likely to get
more stringent as the applications increase in complexity, and the
image resolutions (and data rates) become more demanding. These
applications have a sequence of pipelined tasks that need to be per-
formed in such a way that a frame of processed data can be output
everyd seconds (termed the deadline). We have shown that by par-
titioning the tasks amongst the workstations of a medium size (16-
32 nodes) cluster and streaming the data through these tasks can
meet the real-time requirements of this application [26]. Inciden-
tally, the disturbances due to the multiprogrammed nature (shared
with other projects) of our departmental cluster during this exercise
was in fact the motivation for the work in this paper.

This paper presents three new mechanisms (1GS, 2DCS-TDM,
and 2DCS-PS) for handling a mixed workload containing a steady
incoming stream of BE and RT jobs on a cluster. 1GS is an ex-
tension of traditional gang scheduling, which uses partitioning of
the time quanta between the two workload classes to enforce guar-
antees and prevent starvation. The other two are two-level hier-
archical schedulers that allocate a proportion of the time to each
class, asking the low level scheduler within each class to manage
its processes. The differences between 2DCS-TDM and 2DCS-PS
lie in the granularity at which the time division is managed. 2DCS-
TDM does rigid time-division multiplexing at a larger granularity,
with a global synchronization across the cluster demarcating the
division. 2DCS-PS does proportional share scheduling at a much
finer granularity without any explicit synchronization. In addition
to the mechanisms, admission control strategies for each are also
proposed.

The next section gives a quick overview of previous research.
The workload and system model are presented in Section 3 with
the details of the scheduling strategies in Section 4. Results from
simulation experiments are discussed in Section 5, and a summary
of the contributions in Section 6.

2. PREVIOUS RESEARCH
We summarize the previous research related to this paper into

three categories. The first is on scheduling parallel jobs (BE) on
parallel machines. The second and third categories are on schedul-
ing real-time and multi-class (BE and RT) workloads on single
node systems.

2.1 Parallel Job Scheduling
While there is a considerable amount of previous research on

space-sharing (CPUs are exclusively allocated to a scheduled job)
parallel machines, our focus here is primarily on time-shared (or
a combination of space and time-shared systems). In general, it is
not a good idea to allow the scheduler at each node to independently
manage its processes since there could be situations when a process
waiting for a message is scheduled on one node even though the
sender process has not been scheduled elsewhere. The effect of
this problem is more severe in systems with user-level messaging
where busy-wait for receiving a message is common (and the kernel
is unaware of these receives). Two general mechanisms to address
this problem are gang scheduling (GS) and dynamic coscheduling
(DCS).

GS schedules the processes of a job at their respective nodes at
the same time (for a given time quantum). One way of implement-



ing this is using an Ousterhout matrix [15] where the rows (M )
denote the time quanta (as many as the multiprogramming level)
and the columns (p) denote the CPUs. The matrix defines what is
scheduled at each node during every quantum. At the end of each
time quantum, all the nodes synchronize before scheduling the next
row.

Strict synchronization and less flexibility in filling idle slots have
led to proposals of approximating coscheduled execution without
the associated overheads. These mechanisms are broadly referred
to as dynamic coscheduling (DCS). Two main messaging actions
are used to develop DCS solutions. The first is how to wait for a
message - busy-wait (spinning); blocking after spinning for a while
(Spin-Block (SB)); or yielding the CPU (lowering priority) after
spinning for a while (Spin-Yield (SY)). The other action is on what
happens when a message arrives - performing no action (allow the
waiting process to pick it up whenever it is eventually scheduled);
immediately scheduling the receiver (Demand-based Scheduling);
or periodically checking messages and scheduling process that can
perform useful work (Periodic Boost (PB)). Using extensive imple-
mentations on actual clusters [13], detailed simulations [30] and an-
alytical models [20], we have demonstrated how these mechanisms
can be a better alternative for clusters compared to traditional GS.
Specifically, PB and PB-SB have been shown to be the best alterna-
tives amongst the choices over a wide spectrum of workloads and
cluster environments. Since these schemes are used in this paper,
we briefly describe how they work (further details are in [13, 30]).

In PB, processes wait for messages by spinning (consuming CPU
cycles) in the hope that the message would be coming shortly. There
is a background kernel activity checking message queues in round-
robin order (starting with the current process), and picking one with
useful work to do (either (a) it is performing CPU computation, or
(b) the message that it is waiting for has arrived and the process
can proceed past the receive operation). If there is such a process,
then the current one is pre-empted, to make room for the selected
process. PB tries to reduce the number of system calls, interrupts
and the overheads of blocking/unblocking. In SB, on a receive,
processes spin for a certain amount of time, following which they
make a system call to block themselves. Upon message arrival, the
interrupt service routine unblocks the receiver (if it has blocked)
which is soon scheduled due to a priority boost. PB-SB is essen-
tially a combination of these two, wherein receive is implemented
as SB and there is also a background kernel activity checking mes-
sage queues (PB).

2.2 Real-Time Scheduling
There is a plethora of prior research on scheduling resources

(CPU in particular) for real-time systems. With processes spec-
ifying their deadlines, techniques such as Earliest Deadline First
(EDF), Rate Monotonic (particularly for periodic jobs), Least Lax-
ity First etc., prioritize real-time processes taking this factor and
other issues (when they arrive, how much work they have to do,
etc.) into account for scheduling. Proportional allocation of re-
sources to a mixture of jobs with periodic deadlines has also been
studied [27]. There has also been prior work on scheduling parallel
real-time workloads [4, 11, 18].

2.3 Single Node Multi-class Scheduling
While schemes such as EDF or Rate Monotonic can work for

systems in which there are only real-time jobs, there is a poten-
tial starvation problem that can materialize with mixed workloads
(that contain best-effort applications). Hierarchical schedulers [10]
and proportional share schedulers [14, 24, 23, 6] to accommodate
multi-class workloads have been proposed. Essentially, they try

to perform some kind of time-division multiplexing between the
different classes, with different resolutions and criteria used for de-
ciding the time divisions.

To our knowledge, there has been no prior research examin-
ing scheduling mechanisms for parallel systems running both best-
effort and real-time applications that have processes communicat-
ing with each other.

3. WORKLOAD AND SYSTEM MODEL

3.1 Workload Model
As was mentioned earlier, this study focuses specifically on schedul-

ing two workload classes: (a) Real-Time Pipelined Applications,
denoted as RT, with a requirement of completing a specified amount
of computation within a given period; and (b) Best-Effort Applica-
tions, denoted as BE, whose only requirement is to complete the
execution as early as possible (defined as response time).

The RT applications are modeled based on our experiences with
real-time vision applications on a cluster [25]. An implementa-
tion of such an RT application on a cluster involves taking its task
graph (each video frame flows through the nodes of the task graph
one after another), partitioning it (exploiting both parallelism and
pipelining) and then streaming the input video frames one after an-
other through the graph (potentially crossing machine boundaries).
Our experiences with these applications suggest that the task graphs
(usually acyclic) are reasonably long (though several of the con-
tiguous stages of the pipeline could be mapped on to the same pro-
cess on a workstation), but the fan-out of the graph is often quite
small (between 1 and 2) [25].
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Figure 1: Example task graph of an RT job with 15 tasks (T1-
T15) mapped on to 9 processes (P1-P9). P7 has been enlarged
to illustrate the typical behavior of a process.

An example application task graph (that closely matches the com-
putation and dataflow in a morphological filter application [25]),
and its mapping on to processes is shown in Figure 1.

The processes can in-turn be mapped on to the nodes (worksta-
tions) of the cluster (mapping of tasks to processes, and processes
to workstations has been studied elsewhere [8]). Our RT work-
load generates a sequence of such applications (and the mapping of
the tasks on to processes) with varying number of stages and fan-
outs. The application requirement is to be able to process a video
frame everyd seconds (termed the deadline), i.e. a frame should
be processed/output by the last stage of the task graph everyd sec-
onds (apparently, this is also the requirement for each stage of the
pipelined task graph). If the system is not able to achieve this, then
a deadline is said to have been “missed”. Figure 1 shows an exam-
ple RT application. Each RT process waits for messages from other
processes (in this example, Process 7 waits for messages from Pro-
cesses 4 and 5), performs a specified amount of computation (�)
and sends the output (say a frame) to one or more processes (Pro-
cess 9 in this case). In practice, video streaming/processing appli-



cations operate with a certain number of buffers (b, in terms of the
number of frames), and could tolerate a certain amount of slack-
ness, i.e. it suffices thatb frames are produced in� = b � d sec-
onds (called theperiod). If on the other hand, the system produces
only n (n < b) frames, then we calculate themiss rateas b�n

b
dur-

ing this period. Every incoming RT application has a deterministic
task graph (this is largely true for many vision applications) and the
deadline parameters (b andd).

The applications for the BE workload are generated based on our
prior experiences with the use of such workloads for scheduling
studies [30]. Typically, each of the parallel processes of a BE ap-
plication goes through a sequence of computation, I/O, sending and
receiving a message (to one or more processes of the same appli-
cation running at other nodes) iteratively. Several scientific parallel
applications have been shown to fall into this paradigm [5]. The
relative computation, I/O and communication intensities (and pat-
terns) can be varied to model different application behaviors. Fur-
ther details on the workload characteristics for these applications
are omitted here and the reader is referred to [30]. No information
about the application is made available to the system before-hand,
except for the number of CPUs (s) that it requires.

Our workload composer generates a stream of RT and BE jobs
with arrival rates�RT and�BE respectively. The job parameters
(task graph and deadlines for RT jobs, and job size for BE jobs) are
generated from a specified distribution for each application.

3.2 System Model
Our cluster model assumes a fixed number of workstations (p),

connected by a high speed system area network (with hardware
and software message transfer costs). Each node of the cluster has
a local scheduler which uses a multilevel feedback priority sched-
uler. Whenever Gang Scheduling is needed, all the local schedulers
synchronize (with an associated cost�), exchange any information
that may be needed, recompute who needs to be scheduled for the
next time quantum (Ousterhout matrix [15]), and then switch to that
process. The other scheduling mechanisms can be implemented by
manipulating the priorities of the processes in the feedback queues.
Costs are associated with context switching (!) and priority queue
manipulations.

Each job class has an arrival/waiting queue associated with it.
If an RT job cannot be allocated CPUs (the details of allocation
are scheduling scheme specific, and will be discussed in the next
section), then it is put in the RT-arrival queue to be serviced in
FCFS order. However, we also allow a parameterw for each RT
job, which specifies the maximum time it can wait in the queue
(and if it does not find the CPUs within this time, then it is evicted
from the system). A BE job also waits in its queue (BE-arrival)
if it does not find the CPUs, but it does not have anyw parameter
associated with it.

An important consideration from the system administrator’s per-
spective is the fairness to different jobs, so that jobs in one class do
not interfere with jobs in another. Hence, our model incorporates a
fairness ratio(x : y, which denotes the relative percentage of clus-
ter time to be spent executing RT and BE jobs respectively), that the
system administrator can supply. It should be noted that this ratio
becomes important only when one class starts interfering with the
other, and the actual proportions may be different when the system
is under-utilized in any one of the classes.

4. SCHEDULING MECHANISMS
In the following discussion, we first present three schemes that

can be used to handle the mixed workload. All these schemes are
discussed without any admission control capabilities. In section

4.4, we illustrate the algorithms that can be used to enforce admis-
sion control for each of the three schemes. In essence, we attempt to
partition (in terms oftime) the resources across the cluster between
the RT and BE classes based on the fairness ratio. The schemes dif-
fer in how this is achieved. One way is to perform the partitioning at
a much coarser granularity, and synchronize globally between these
partitions. 1GS and 2DCS-TDM use this approach, with the differ-
ences between them being in the scheduling that is done within the
partitions themselves (the former synchronizes periodically, while
the latter leaves it entirely to local schedulers at each node). The
other way is to perform the partitioning at a much finer granular-
ity which is done in 2DCS-PS, where there is no explicit (global)
synchronization in this scheme.

For each scheme, we explain theinitial allocation (how is a job
allocated thes CPUs when it arrives), theoptimization(after allo-
cation, are there any enhancements to boost the system utilization),
and theexecution(what happens at each node to execute the pro-
cesses at every instant).

4.1 One-level Gang Scheduler (1GS)
Our first scheme extends traditional gang scheduling (GS) for

the two class workload. We use the Ousterhout matrix (M � p,
that is used in normal GS) for process assignment and scheduling
[15]. The rows are split into two sets, corresponding to the two
application classes (RT and BE), with the relative proportion of
rows between the sets conforming to the fairness ratio (x : y).

� Initial Allocation: When an RT or BE job requestingsCPUs
arrives, we look for a row with at leasts empty slots in its
corresponding set. If we are successful, the job is assigned
to those slots. We do not consider allocating an RT job in the
BE set of rows, or vice-versa, for the initial allocation (this
is because we want to try to adhere to the fairness criteria in
the allocation). On the other hand, if we cannot find such
a row, then the job is put into the arrival (waiting) queue of
that class. An RT job will be evicted from the system after
w time specified by the application. When a job departs, we
try to allocate CPUs to the waiting jobs in the corresponding
arrival queue using the same allocation algorithm in FCFS
order.

� Optimization: It may happen during the course of execu-
tion, that one of the sets (of rows) is under/over utilized than
the other. To spread out the load more evenly between the
two sets, and still try to adhere to the fairness proportion, we
perform the following four-step optimization:

1. We start with the RT set, and try to find slots for jobs
that can be replicated within that set of rows itself (to
facilitate gang scheduling, the entire job needs to be
replicated, and these need to be replicated down the
same columns of the matrix since we do not consider
migration). It should be noted that we only consider
jobs that are not yet achieving the desired throughput
(number of produced framesn < b) for replication,
and leave the jobs which are already producing the de-
sired throughput (number of produced framesn � b)
in place.

2. We next perform a similar operation for the jobs in the
BE set: trying to find rows in that set to accommodate
existing BE jobs. Again, migration is not considered.
However, in this step, all BE jobs (since a BE job can
potentially benefit from as much of the CPU that it can
get) are considered as candidates.



3. At the end of these two operations, there could still be
idle slots in the two sets. As a result, we try to find
rows in BE set to accommodate existing RT jobs whose
desired throughput has not yet been achieved.

4. Similarly, BE jobs can potentially be replicated in the
idle slots of the RT set.

The resulting matrix assignments hold only until the next job
arrival or departure event. At this event, we completely re-
move duplicates in our matrix (leaving the existing jobs in
their initial allocation slots), and then perform the allocation
followed by the optimization/replication described above. This
cleansing of the matrix makes it more fair to newer arrivals
or for waiting jobs.

� Execution: Once allocation and optimization are performed,
scheduling at each node is no different from normal gang
scheduling. At every time quantum (durationQ), each node
schedules the corresponding process of a job in its slot, after
which it synchronizes with the other nodes before proceeding
to the next row/quantum. Receives for both BE and RT jobs
are implemented using busy-wait (spinning).

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A
RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

A A A

(a) At time 0, matrix is empty
(b) At time t1 , RT job A (sA =
3) arrives, initial allocation is per-
formed

(c) Optimization step 1 is performed

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

A A A

A A A

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

B

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

A A A

B

(d) Optimization step 3 is performed
(e) At timet2 , BE job B(sB = 1)
arrives, duplicates are removed and
initial allocation is performed

(f) Optimization step 1 is performed

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

A A A

A A A B

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

A A A

A A A B

B

B
RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

B

C C CC

D

E

(g) Optimization step 3 is performed (h) Optimization step 4 is performed
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formed. D and E are put into arrival
queues.

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

B

C C CC

E

A A A

B

D

RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

B

C C CC

E

A A A

B
RT

BE

RT_WAITING_QUEUE

BE_WAITING_QUEUE

A A A

C C CC

E E E E

(i) Optimization steps 1-4 are per-
formed.

(k) At time t4 = t3 + wD , D
is evicted from the system.

(l) At time t5 , B has finished. E is
allocated and optimized.

Figure 2: An example illustrating 1GS with p = 4,M = 3,(x : y)
= 2:1

Figure 2 shows 1GS at work. With this approach, the division of
rows between the two classes and the initial allocation of a job en-
sures that the CPU is allocated between the two classes as specified
by the fairness ratio (x : y). The duplication within and across the
two classes can allow for better CPU utilization and a more even
balance of the load across the classes.

4.2 Two-level Dynamic Coscheduler with Rigid
TDM (2DCS-TDM)

While 1GS is simple to implement, and has some advantages in
terms of being able to provide deterministic admission control (dis-
cussed later), there are a few shortcomings, which are primarily a
consequence of gang scheduling. First, there is the cost of pay-
ing a synchronization overhead (�) at the end of each time quan-
tum (even within a class), which can become quite significant for
loosely coupled systems such as clusters (can run into milliseconds
for medium to large scale clusters). Using larger time quanta to
offset this cost, can make the system less responsive (approaches
batching or space sharing [30]). Second, there is a higher chance
of fragmentation (idle slots), since gang scheduling requires that
processes of a job be allocated across the same row of the matrix.
Finally, gang scheduling can also result in lower system utilization
if processes of a job are more skewed or I/O intensive (leading to
idle times either due to blocking for a message or waiting for I/O
completion within its time quantum). These reasons lead us to the
next mechanism where we use a two-level (hierarchical) scheduler.
The top level global (across the nodes) scheduler simply does a
round-robin time allocation (Time-division Multiplexing (TDM))
of the entire cluster between the RT and BE classes with the pro-
portion of the time corresponding to the fairness ratio (x : y). A
low level local (at each node) scheduler for each class manages the
processes for its time-division.

� Allocation: An incoming RT job (with sizes) is assigned
CPUs as follows. Let us say that�i represents the sum of
the work (�) of all the RT processes already assigned to node
i, and
i represents the minimumb� d of all such RT pro-
cesses at nodei. The CPUs are sorted in descending order
of their laxity (defined as x

x+y
� 
i � �i). Thes processes

of the RT jobs are sorted in descending order of their work
(�). One by one, the sorted list of processes are assigned to
the CPU with the most laxity (and updating the laxity after
each such assignment). Note that more than one process of
a job can be assigned to the same CPU if it is lightly loaded.
When a BE job arrives in the system, it is assigned to those
CPUs that have the least number of BE processes assigned to
them (BE job information, other thans is unavailable to the
system). Without admission control, this scheme allows any
number of RT or BE jobs to be allocated CPUs in the two
time-divisions (and can thus result in better utilization than
1GS).

� Execution: As mentioned earlier, the top level scheduler al-
locates the time (say at a granularity of� units) to the two
classes in thex : y ratio (i.e. the RT and BE classes alterna-
tively get x

x+y
�� and y

x+y
�� units respectively), with a

global synchronization (with cost�) used to denote the time-
division change.

The low level scheduler for each class is as follows.

– For the RT class, the scheduler we employ is Spin-
Block with Earliest Deadline First (EDF), i.e. at every
instant within this time-division, the process with the
earliest deadline is the one that is executing as long as
it has not blocked (waiting for a message or I/O). The
waiting for a message is implemented as Spin-block
(explained in Section 2). Pre-emption of the current RT
process is possible when some other RT process with
an earlier deadline on that node becomes ready (arrives
newly or the event that it is waiting for has unblocked
it), or the time-division for this class expires (in which
case a BE process needs to be scheduled).



– For the BE class, the scheduler we employ uses Peri-
odic Boost with Spin Block (PB-SB) explained in Sec-
tion 2 which has been shown to give good performance
for best-effort applications.

� Optimization: When a node is in the RT division, and there
are no RT processes ready to execute (either blocked or not
present at all) or the RT processes that are ready have al-
ready completed their required computations (i.e. they have
producedn � b frames, and hence it may not help schedul-
ing them any further in its current period), we allow the BE
scheduler on that node to take over at this time to schedule
its class of processes using PB-SB. Similarly, in the BE time
division, if there are no processes ready to proceed (blocked
due to I/O or message wait or there are no BE processes on
that node at all), then the RT scheduler is allowed to schedule
its processes. In these cases, a BE job that is being scheduled
in the RT time division is preempted if an RT job becomes
ready, and vice-versa.
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(a) At timet0 , BE job C is sched-
uled. RT jobs A and B are ready.

(b) At timet1 , C blocks for I/O. A
is scheduled for optimization.

(c) At timet2 , C becomes ready af-
ter I/O. A is pre-empted.
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(d) At time t3 , after global syn-
chronization, RT class time division
starts: A is scheduled.

(e) At time t4 , A finishes bA
frames and preempted by B which
becomes more critical.

(f) At time t5 , B blocks for a mes-
sage. C is scheduled for optimiza-
tion
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(g) At time t6 , after global
synchronization, BE time division
starts: C continues to be scheduled.

(h) At time t7 , B becomes ready.
But it is not yet its time division.

(i) At time t8 , after global synchro-
nization, RT time division starts: B
is scheduled.

Figure 3: An example illustrating 2DCS-TDM with (x : y) =
2:1 on each node. The boxes show the relative proportion of
time allocated to the two classes, and the job inside the box
shows what is currently scheduled. The arrow (now) indicates
which division is currently being serviced. The ready queue
shows what should be scheduled next, and is maintained based
on the criticality of the deadlines for RT and based on the prior-
ity for BE. Blocked queue holds processes waiting for I/O or a
message.Note that except for the global synchronization between
the two time divisions, all other scheduling decisions/actions are
entirely local to a node.

Figure 3 shows how the algorithm works on each node using an
example. Unlike 1GS, this scheme does not incur significant syn-
chronization overheads except when the entire cluster shifts from
one time division to another (and this cost (�) would be insignif-
icant compared to the granularity of TDM�). Further, there is

much less fragmentation since we are not really constrained by row
granularity allocations (in fact, we do not use any matrix at all in
this approach). The proportional time-division multiplexing in this
scheme allows the fairness ratio to be maintained between the two
classes irrespective of the arrival pattern of the two classes of jobs.

4.3 Two-level Dynamic Coscheduler with Pro-
portional Share Scheduling (2DCS-PS)

While a coarse-grain TDM as is done in 2DCS-TDM is one way
of allocating the CPU resources between the two classes, it may
however lead to some inefficiencies within a time division. If there
is an under-utilization of one of the divisions by the jobs of that
class (causing alternates to be scheduled from the other class), the
alternates may not be scheduled exactly as would be desirable. For
instance, let us say that there is an under-utilization of the RT class
by its jobs, and alternates are selected from the BE class within this
division. Such BE processes may not be exactly coscheduled (since
each local scheduler is making an independent decision amongst
the choices it has). In the third scheme, 2DCS-PS, we attempt to
address such situations.

� Allocation: Allocation of CPUs upon job arrival is the same
as in 2DCS-TDM.

� Execution: In this scheme again, we have a 2-level local
scheduler at each node, with the top level deciding whether
to schedule an RT or BE class next (at a scheduling event). A
scheduling event is one of the following: job arrival, job de-
parture, I/O completion, message arrival in spin-block, and
time quantum expiration. Fairness ratio (x : y) is enforced
by using the notion of a virtual time (vt) for each class. Let
us say that a job of classRT is running when a scheduling
event occurs, and has been running for time� since the last
scheduling event. We update the virtual time for this class
vtRT asvtRT = vtRT +

�

x=x+y
. On the other hand, if aBE

class job is running, its corresponding virtual time (vtBE) is
updated similarly. Essentially, the virtual time of the class
with the higher proportion is advanced more slowly. After
these calculations, the top level scheduler asks the second
level scheduler of the class with the lower virtual time to per-
form its duties. If the selected class does not have any pro-
cesses to run, then the scheduler of the other class is asked
to proceed. It is important to adhere to the fairness ratio only
when both classes of jobs coexist (are ready to run) in the
system. Hence this algorithm is used only when there is a
choice of selecting a job from either class to run. Whenever
a job of one class becomes ready (and there was no job in
that class ready to run earlier), the virtual time of this class is
set equal to that of the other class. The second level sched-
ulers for the two classes are identical to those described for
2DCS-TDM (i.e. Spin-block with EDF for RT class, and PB-
SB for BE class). Similar ideas for proportional scheduling
have been used in the context of multiple workload classes on
single node systems previously [14, 24, 23, 6], but this is the
first study to extend these ideas for communicating parallel
processes on multiple CPU systems.

� Optimization: This scheme already performs CPU multi-
plexing between the classes at a much finer granularity. When
there are no processes ready to execute in one class, the CPU
is given to the other class automatically. No further optimiza-
tions are needed.

Figure 4 illustrates this scheme showing scheduling decisions
made at a node with an example. Since this scheme performs
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(a) At time 0,vtRT = vtBE = 0, to break
the tie, class RT is picked, and job A in this class is
scheduled.

(b) At time10, A blocks for message.vtRT =
0 + 10 � (2 + 1)=2 = 15. SincevtBE <
vtRT , class BE is picked.

C

A

B

CPU

RT Virtual Time BE Virtual Time

15 60

RT blocked Q            RT ready Q

BE blocked Q            BE ready Q

A

C B

CPU

RT Virtual Time BE Virtual Time

15 75

RT blocked Q            RT ready Q

BE blocked Q            BE ready Q

(c) At time 30, B’s time quantum expires,
vtBE = 0 + 20 � (2 + 1)=1 = 60.
AlthoughvtRT < vtBE , there is no ready
RT process, so class BE continues to schedule its pro-
cesses (this time it is C).

(d) At time 35, A gets the message it is waiting for,
and becomes ready.vtBE = 60 + 5 � (2 +
1)=1 = 75. SincevtRT < vtBE , RT class
is selected.

Figure 4: An example illustrating 2DCS-PS with(x : y) = 2:1
on each node. The currently scheduled class is shown in the
box. Note that these scheduling decisions/actions are entirely lo-
cal to a node, and there is no global synchronization at any time.

proportional share scheduling at a much finer granularity (schedul-
ing events) than 2DCS-TDM, it can provide more opportunities for
coscheduling. However, the downside is the possibility (overhead)
of switching processes much more often than 2DCS-TDM.

4.4 Incorporating Admission Control
All the above schemes have been described without any admis-

sion control for RT jobs, which would be fine if the system is lightly
loaded. In fact, only in 1GS is there a waiting queue (the other two
admit all arrivals) due to the limitation of number of rows in the
Ousterhout matrix. However, the waiting queue in 1GS is only to
hold jobs that cannot find the required slots in the matrix (finding
the slots does not mean that they or the jobs that are already admit-
ted will meet the deadline since no such check is made). We next
explore schemes for regulating the admission of incoming jobs. We
perform admission control only for RT jobs and allow BE jobs to
come into the system as long as they can find CPUs (they always
will in 2DCS-TDM and 2DCS-PS).

An RT jobA with a task graph (that is already partitioned into
sA processes) and real-time parameters�A = bA � dA, and�Aj
defining the work to be performed by each processj of A. (see
Section 3) may need to be regulated. The maximum work�max
performed by any of its processes (i.e. maximum of all�Aj ) is
used to implement admission control as follows:

� 1GS: In this scheme, we know that an RT job will get at least
one time slice in any time window of size� =M �Q (the
time to cycle through all the rows of the Ousterhout matrix).
The admission control scheme simply checks if one or more
rows of the matrix can be allocated for the incoming job so
that it can produce at least�

dA
frames in� time units. The

number of rowsr that it requires to meet its deadline is given

by r =
�
dA

��max

Q
= M��max

dA
. Note that it needs to find

r rows with sA empty slots down the same columns (since
we do not consider migration) that are in the RT set. If we
can findr such rows, thenA is admitted and the matrix is
updated. Else,A is put in the waiting queue.

� 2DCS-TDM and2DCS-PS: We use the following algorithm
for admission control in both these schemes. The algorithm
tries to see if there is a possible way of accommodating the
RT jobs such that they will meet their deadlines if they were
allocated their proportional share even within the period of
the most stringent RT job (this still does not guarantee that
all admitted jobs will meet their deadlines, since actual job
execution times cannot be predetermined). Remember that
�i represents the sum of the work (�) of all the RT processes
at nodei, and
i represents the minimumb � d of all RT
processes at nodei. Then, processj of the incoming job
A can be assigned to nodei if �i + �Aj � min(
i; bA �
dA)�

x
x+y

. If this inequality does not hold, thenj cannot be
assigned to any other node as well (since we are examining
the node with the most slackness first). Else, the process is
assigned and�i and
i are updated (
i = min(
i; bA �
dA);�i = �i+�Aj ), and we try the next process of this job.
If all processes ofA can be thus assigned, jobA is admitted.

While the above description gives an overall illustration of how
the admission control algorithm works, there are some other sub-
tleties that we have also accounted for. In 1GS,� also includes the
context switch time� (from one row to the next). In 2DCS-TDM,
we also include the cost of switching the time division� (requiring
global synchronization) in the calculations. Finally, in both 2DCS-
TDM and 2DCS-PS, we also include the overhead of unblocking
the process (since an RT activity Spin-blocks to wait for a mes-
sage) conservatively (since it may not always block) to estimate the
job execution time, apart from the context switch times.

Another important observation to make is the difference in the
nature of the admission control algorithms between that for 1GS
and the ones for the other two. The former is a deterministic ad-
mission control scheme where we are guaranteed that no deadlines
will be violated (once admitted, an RT job is guaranteed to get
at leastr time quanta in each� time units). On the other hand,
the algorithms for the latter two schemes are mainly heuristics and
do not enforce any such guarantees. Since there are no synchro-
nized scheduling efforts across the nodes in these schemes, it could
happen that a process could execute longer than that specified by
the static parameter�, making the above calculations inaccurate.
While this may be a drawback, their advantage is that they can
allow more RT jobs into the system than the algorithm for 1GS
which has a much stricter control. The experiments described later
explore these trade-offs.

5. PERFORMANCE RESULTS
We have developed a detailed simulator (extended a previous one

described in [30]) to incorporate the described mechanisms. All
scheduling activities at a node, including the details of a 60-level
feedback queue that is the basis of the local scheduler at each node
(modeled after the Solaris scheduler), have been simulated. The
appendix gives some of the simulation parameters that are used in
the experiments below.

5.1 Comparing the Schemes
An important issue to examine is the effect of the interference

of one workload class on another for the three considered schemes.
Consequently, we have varied the proportion of RT to BE jobs ar-
riving in the system as 2:1 (load conforming to fairness ratio), 9:1
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Figure 5: Comparing the schemes for different workload
mixes. (a) is a workload conforming to the fairness ration, (b)
has a much higher RT load and (c) has a much higher BE load.
For each load, (i) shows the average response time for BE jobs
as a function of the delivered throughput to BE jobs, (ii) shows
the miss rate for the RT jobs as a function of the arrival rate
(�RT + �BE), and (iii) shows the % of RT jobs that were re-
jected because they could not be scheduled withinw.

(higher RT fraction) and 1:9 (higher BE fraction), and Figures 5 (a),
(b) and (c) illustrate the results for these three experiments respec-
tively. For each experiment, the results are provided in 3 graphs:
(i) the average response time for BE jobs, (ii) the average deadline
miss rates for RT jobs, and (iii) the fraction of RT jobs that are re-
jected (not admitted). These experiments do not use any admission
control.

To explain the results, we would like to point out the criteria of
importance to the two workload classes. For the BE jobs, it is im-
portant to reduce the time in the Ready queue, as well as the time
spent in the Blocked queue (when waiting for messages). The first
observation we make is that 1GS is significantly worse than the
other two schemes in terms of the response time for BE jobs (for
all three experiments). While 1GS reduces the waiting time in the
blocked queue for BE jobs (than the other schemes), the time spent
in the Ready queue is higher than the other two schemes. However,
the main factor in its poor performance is the time spent by a job in
the arrival queue before it can be allocated the CPUs (the others do
not incur any waiting time in the arrival queue). This observation
has also been substantiated by earlier exercises showing the benefits
of dynamic coscheduling over Gang Scheduling for BE jobs [30].
Between the other two schemes, 2DCS-PS has a finer granularity
of multiplexing the system between the two classes, thus provid-
ing better scope for co-scheduling than 2DCS-TDM (see Section
4). As a result, jobs in 2DCS-PS spend less time in the Blocked
queue compared to 2DCS-TDM, resulting in a lower response time
for BE jobs. We find that this effect is less important when the
fraction of jobs in one class becomes significantly higher than the

fraction in the other class (see Figure 5 (b)(i) and (c)(i)). 2DCS-
PS will approach the behavior of 2DCS-TDM when the granularity
(frequency) of multiplexing between the two classes becomes very
coarse. This frequency of multiplexing becomes very high when
the arrival rates of the two classes are conforming to the fairness
ratio, and becomes lower when they become less conforming.

Moving on to the RT class, it is more important that jobs in this
class get their required share of the CPU during the course of ex-
ecution . If we look at any given window of time (of at least�)
during the system execution, 2DCS-TDM guarantees (determinis-
tic guarantee) that RT jobs will get a certain fraction of the CPUs
within this window. On the other hand, for the same time win-
dow, 2DCS-PS can only provide a statistical guarantee (over the
long run). Such statistical aberrations can result in deadline misses,
making 2DCS-PS a little less attractive than 2DCS-TDM for RT
class. The aberrations are worse (as a percentage of the number
of deadlines within the window) if the RT fraction is lower, mak-
ing the differences more noticeable in Figures 5 (c)(ii). As with
BE class, 1GS fares worse than the other schemes for RT class as
well for lower arrival rates. Looking at the miss rate graphs, the
behavior of 1GS may appear somewhat counter-intuitive (i.e. at
higher arrival rates, its miss rate becomes lower than that for the
other schemes). This is because the actual load on the system is
much lower since there is a significant rejection ratio (Figure 5(iii)
in the experiments). Without admission control, the two dynamic
coscheduling schemes do not reject any jobs.

5.2 Impact of Admission Control
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Figure 6: Impact of admissin control with �RT : �BE = 9 : 1

The previous experiments have used the strategies without any
admission control mechanisms. We next augment them with the
admission control algorithms described earlier, and the results are
presented in Figure 6 for a workload with a 9:1 proportion of RT to
BE jobs.

With a lower number of RT jobs admitted into the system, BE
jobs have less competition, and have the opportunity of borrowing
more time from RT time divisions. As a result, admission control
tends to improve the response time of BE jobs as well.

We notice that admission control significantly lowers the miss
rate for RT jobs. Specifically, we find that the miss rate drops from
70% to 0.1% for the dynamic coscheduling mechanisms. For the
1GS mechanism, which employs deterministic admission control
(we are guaranteed to not violate any deadline), the miss rate drops
to zero. This is one factor is favor of 1GS, which can turn out to be
a good alternative on systems where strict deadline adherence is a
critical issue.

While the admission control algorithms are very effective at drop-
ping the miss rates, this reduction comes at a heavy cost of rejecting
several RT jobs (in fact, the reject rates are higher than 50% which
can be unacceptable in several situations). However, this suggests
directions for future research where one may be able to tolerate
a slightly higher miss rate (than what we have achieved) to admit
more jobs. This may include relaxing the algorithms, and perhaps
opting for statistical admission control schemes. Still, the rejection



rates for the dynamic coscheduling mechanisms are comparable to
those for 1GS, making them more suitable for this avenue of re-
search.

In addition to these experiments, the reader is referred to [29]
where issues related to stringency of deadlines and span of RT jobs
are examined.

6. CONCLUDING REMARKS
With numerous applications currently running on (and antici-

pated for) clusters, and often operating in a multiprogrammed set-
ting, there is a critical need to meet the diverse demands of the
different applications while ensuring that they do not interfere with
each other. Apart from the low response times and high through-
put required of many applications (such as the scientific codes that
high performance systems have traditionally targeted), bounded re-
sponse times and/or guaranteed throughput are also becoming im-
portant considerations (for emerging applications). Already, paral-
lel job scheduling is a hard problem with a goal of scheduling com-
municating processes at the same time on their respective CPUs
while reducing idle times and scheduling overheads. The new Quality-
of-Service (QoS) requirements add a new dimension to this prob-
lem that has not been considered in depth previously.

Focusing specifically on a two class workload - best-effort (BE)
applications that have traditionally been used on clusters, and real-
time pipelined (and parallel) applications (that are representative of
an important class of vision applications) - we have presented three
new scheduling mechanisms to handle the different desirables of
these classes. These mechanisms have been built upon traditional
parallel job scheduling mechanisms - Gang Scheduling and Dy-
namic Coscheduling.

The primary contributions of this paper are in the three schedul-
ing algorithms (1GS, 2DCS-TDM, 2DCS-PS) for handling the two
class workload on clusters. These algorithms use different levels of
granularity to manage the time divisions between the two classes.
1GS uses gang scheduling, with a certain number of time quanta
(rows of the Ousterhout matrix) reserved for each class. 2DCS-
TDM and 2DCS-PS use hierarchical schedulers, with the top level
scheduler deciding the class to be scheduled, and the low level per-
forming the scheduling within each class. The top-level scheduler
in the former uses coarse-grain time divisions, while the latter uses
fine-grain proportional sharing mechanisms. Spin-block with Ear-
liest Deadline First is used for the RT class, while Periodic Boost
with Spin-block is used for the BE class. Optimizations for these
algorithms have also been proposed to enhance system utilization
during the idle periods of any time division.

This paper has also evaluated these mechanisms in detail with
simulation-based experiments. It has been shown that 1GS is quite
inflexible, in terms of initial job allocation as well as in terms of op-
timization to improve system utilization. As a result, it has a higher
deadline miss rate than the others for RT jobs, and also higher re-
sponse times for BE jobs. The inflexibility is also responsible for
turning away (rejecting) many RT jobs from the system. The main
advantage of 1GS is that it helps us implement a deterministic ad-
mission control algorithm with zero miss rates. The two dynamic
coscheduling algorithms are much better in terms of BE response
times (which has already been observed in several previous studies
[13, 30]) and for low RT miss rates. They are able to effectively uti-
lize idle times in one class with jobs from the other class, without
significant interferences (or degradation of service quality). Fur-
ther, they depend much less on the execution on other nodes (less
global synchronization). In fact, 2DCS-PS has an entirely local
scheduler at each node, and the avoidance of any global synchro-
nization makes it an attractive option from the reliability and fault-

tolerance perspectives as well (which is an important consideration
for large scale clusters).

The other contributions of this paper are in the admission con-
trol schemes for the three scheduling mechanisms. These schemes
can help us bring down the miss rates to very low values. There
is a cost of turning away (rejecting) a large percentage of jobs in
these schemes, and that is an issue of continuing and future work.
In particular, we would like to develop admission control strategies
that can work with specifiable rejection and miss rate parameters
(that can be set by the system administrator). We are also looking
to develop additional scheduling strategies to improve system uti-
lization even further without adding significant overheads. Finally,
we would like to consider scheduling strategies for more classes of
workloads, and more system and workload conditions. We believe
that this paper has opened a new and important topic for future
research in the area of scheduling and resource management for
clusters.
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APPENDIX

A. SIMULATION PARAMETERS
Unless explicitly stated otherwise in the paper, the following simulation

parameters were used. It should be noted that we have not attempted to
perform a comprehensive evaluation of the entire design space extensively
varying all the parameters (this is overly ambitious and well beyond the
scope of this paper). Rather, our point here is to merely compare the ap-
proaches for at least a few reasonable operating values. Many of the values
for the hardware and system parameters have been drawn from our earlier
experimental exercises on actual systems [13, 30].

� p = 16
We have also considered other cluster sizes, and similar trends in the
results were observed.

� x : y (fairness ratio) = 2:1

� M (for 1GS) = 6

� Q (for 1GS) = 500 millisecs. Time Quantum for BE jobs in 2DCS-
TDM and 2DCS-PS varies from 20 ms to 200 ms depending on pri-
ority level (similar to Solaris scheduler) [13]. RT jobs in these two
classes run to completion/block or until pre-empted by other events.

� � (for 2DCS-TDM) = 3 secs

� � (Synchronization cost in 1GS and 2DCS-TDM) = 1 millisecs
This is a overly aggressive value that has been chosen intentionally.
Even with these optimistic view, we are trying to see how well they
compare with 2DCS-PS which does not require any synchronization.

� ! (Context switch overhead) = 200 microsecs

� I (Interrupt cost) = 50 microsecs
Required whenever Spin-block is employed for receives.

� Overhead for moving process from one scheduling queue to another
= 3 microsecs.
Incurred at pre-emption points, and when certain events occur (PB,
message arrival for SB, etc.).

� Checking if a process has a pending message (for PB) = 2 microsecs

� Interval between periodic activity in PB = 1 millisec
Has been argued to give close to the best performance in [30].

� RT job parameters: duration = 3 minutes,d = 1/30 secs,b = 100
frames,s = p,w = 15 secs
Other varying durations have also been experimented with, and we
find there are no significant differences in the trends.d of 1/30 secs
is typical of vision applications requiring 30 frames to be processed
in a second.b is the buffering capability of the underlying system.s
has been chosen to span the entire cluster, since we are dealing with a
small/medium sized system, and our experiences suggest that a vision
application may require all of its capabilities [25].

� BE job duration follows Erlang distribution with mean of 2 minutes.
The size (s) follows a uniform distribution between 2 andp. Compu-
tation, communication (frequency, size and pattern), and I/O within
each process of a BE job have been discussed earlier in [30].


