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Abstract— Frequent failure occurrences are becoming a serious lization. Furthermore, failures can cause applicatiorseting
concern to the community of high-end computing, especially on the nodes (probably having run for a long time) to abort,
when the applications and the underlying systems rapidly grow , s asting the effort already expended. Additionallijufas

in size and complexity. In order to better understand the failure | ty i th ¢ t ts. Th
behavior of such systems and further develop effective fault- can aiso greatly increase the system management COSLS. e

tolerant strategies, we have collected detailed event logs from System administrator may need to detect failures, diagnose
IBM Blue GenelL, which has as many as 128K processors, and isthe problem, and figure out the best remedial actions. On
currently the fastest supercomputer in the world. Due to the scee  the hardware end, this may entail resetting a node, changing
of such machines and the granularity of the logging mechanisms, the motherboard/disk, etc., and on the software end it may

the logs can get voluminous and usually contain records which . iarating th licati tarting th -,
may not all be distinct. Consequently, it is crucial to filter these €dUIré migrating the application, restarting the appleea re-

logs towards isolating the specific failures, which can then be use- initializing/rejuvenating [23] a software module, etcdéed,

ful for subsequent analysis. However, existing filtering methods the resulting personnel involvement will increase the [Tota
either require too much domain expertise, or produce erroneous Cost of Operation (TCO), which is becoming a serious concern
results. This paper thus fills this crucial void by designing and in numerous production environments [8], [1].

developing an Adaptive Semantic Filtering (ASF) method, which Understanding the fail behavior in | | llel
is accurate, light-weight, and more importantly, easy to automate naersianding the failure behavior In large scale paralle

Specifically, ASF exploits the semantic correlation between two Systems is crucial towards alleviating the above problems.
events, and dynamically adapts the correlation threshold based This requires continual online monitoring and analysis of

on the temporal gap between the events. We have validated the events/failures on these systems over long periods of time.
ASF method using the failure logs collected from Blue Gene/L The failure logs obtained from such analysis can be useful in

over a period of 98 days. Our experimental results show that | First. the fail | b d by hard
ASF can effectively remove redundant entries in the logs, and several ways. FIrst, the failure fogs can be used by hardware

the filtering results can serve as a good base for future failure and system software designers during early stages of nechin
analysis studies. deployment in order to get feedback about system failures

and performance. It can also help system administrators for
maintenance, diagnosis, and enhancing the overall hagith (
time). Finally, it can be useful in fine-tuning the runtime
Meta-scale scientific and engineering applications haea besystem for checkpointing (e.g. modulating the frequency of
playing a critical role in many aspects of the society, suatheckpointing based on error rates), job scheduling (e.g.
as economies of countries, health development, and méaiHocating nodes which are less failure prone), networkksta
tary/security. The large processing and storage demandsopfimizations (e.g. employing different protocols and tesu
these applications have led to the development and depliwased on error conditions), etc.
ment of IBM Blue Gene/L, the fastest supercomputer on the While failure logs have the above-mentioned potential uses,
TOP500 supercomputer list [2]. Blue Genel/L is currently dehe raw logs cannot be directly used. Instead, redundariband
ployed at Lawrence Livermore National Laboratory (LLNL)unimportant information must be first removed. There are
hosting applications that span several thousand procgssor several reasons for doing so. First, there are many recorded
the domains such as hydrodynamics, molecular dynamics, amarnings that do not necessarily lead to a failure. Such
climate modeling. warnings need to be removed (note that a sequence of warnings
As applications and the underlying platforms scale to thighich do lead to a failure should remain). Second, the same
level, failure occurrences have become a norm, rather themor could get registered multiple times in the log, or doul
an exception [21], [19], [20], [24], [10], [7], [17], [12],21], get flagged in different ways (e.g. network busy and message
[25], [18]. Failures can be broadly categorized into twessks: delivery error). For instance, we have noticed that a single
software failures and hardware failures. Software faguran EDRAM error on Blue Gene/L is record in 20 successive
be further categorized into application software faillsesh as entries, each with a different fatal error code. Consedyent
bugs in application development, and system softwareréslu it becomes imperative to filter this evolving data and isolat
such as bugs in the kernel domain and system configuratihie specific events that are needed for subsequent analysis.
errors. Hardware failures are often observed in memory; st®ithout such filtering, the analysis can possibly lead to
age and network subsystems, but more recently they are algong conclusions. For instance, the same software error ca
found in combinational units [14], [15]. Both system softera materialize on all nodes that an application is running o, a
failures and hardware failures can have severe impact on ttam unduely reduce the Mean Time Between Failures (MTBF)
system performance and operational costs. For instanite, fthan what is really the case.
ures can make nodes unavailable, thereby lowering system ut We have obtained event logs containing all the RAS (reli-

I. INTRODUCTION



ability, availability, and serviceability) data from O2/05 to Overview: The rest of this paper is organized as follows.
11/18/05 from IBM Blue Gene/L, with a total of 1,318,137 enSection Il summarizes the event data logs we have collected
tries. Filtering raw event logs from large-scale paralledtems from Blue Gene/L. Both the STF and ASF methods are
such as Blue Gene/L is a challenging task, mainly due to tpeesented in Section Ill, and the filtering results are dised
large volume of the data, the complexity of the systems, aimiSection IV. Following these discussion, Section V ingad
the nature of parallel applications. While the spatio-terapo the related work in filtering event logs. Finally, sectionadn-
filtering (STF, in short) method that was proposed in [12] hadudes with a summary of the results and identifies direstion
been shown to have the potential to filter out many redunddot future work.

fatal events, it has the following obvious problems. First,

requires extensive domain knowledge in the organizatidshef || AN OvERVIEW OF IBM BLUE GENE/L RAS EVENT
hardware platform, as well as the logging procedure. Second LOGS

it involves a considerable amount of manual effort from éhes

domain experts. Third, it imposes challenges in the area of BM Blue.Gene/L has.128}'< PowerPC 440 700MHz pro-
software engineering because STF involves several pmS’cessor_s, which are organ_|zed Into 6.4 racks. Each rack cte_n5|s
after each pass, we need to manually manipulate the parﬂ«f:llz m|dplanes_, and a ml_dplane (W'th 1024 proc_essors) is the
results for the next usage. Due to these drawbacks, STF is H@”“'a“t)’ of job allacation. A '.’“'dp'a?”e contains 16 nodg
suitable for online filtering, which is important for manytdwe cards (which house.s the computlng. chips), 4 I/.O cards (which
applications of failure data. Therefore, there is an urgreatd houses the I/O chips), and 24 midplane switches (through

to develop some alternative methods to meet these chaﬁenq@mh different midplangs ‘?0“”9‘3‘)- RAS events are logged
hrough the Central Monitoring and Control System (CMCS),

To this end, we propose afdaptive SemanticFiltering and finally stored in a DB2 database. The logging granularity
(ASF) method. The key idea behind ASF is to use semantiless than 1 millisecond. More detailed descriptions @ th
context of event descriptions to determine whether two &verBlue Gene/L hardware and the logging mechanism can be
are redundant. In light of this, ASF involves three stepfound in our earlier paper [12].

Firstly, it extracts all the keywords from event descripgo  We have been collecting RAS event logs from Blue Gene/L
and builds a keyword dictionary. Secondly, it converts gvesince August 2, 2005. Up to the date of November 18,
event description into a binary vector, with each elemept re2005, we have totally 1,318,137 entries. These entries are
resenting whether the description contains the correspgndrecords of all the RAS related events that occur within wagio
keyword. Using these vectors, we can compute the correlatidtomponents of the machine. Information about scheduled
between any two events. Thirdly, it determines whether tw@aintenances, reboots, and repairs is not included. Eaondre
events are redundant based on their correlation as welleas ¢ the logs has a number of attributes. The relevant ategut
temporal gap between them. Specifically, the choice of thge described as follows.

correlation threshold is not uniform, but varies accordiog |, RecIDis the sequence number of an error entry, which
the time window between two events. For example, two events s incremented upon each new entry being appended to
that are temporally close are considered redundant evén wit o logs.

low correlation, but two far-away events are only considere EVENTTYPEspecifies the mechanism through which the
redundant when their correlation is very high. Compared to  oyent is recorded, with most of them being through RAS
STF and other existing filtering tools, ASF considers both 5],

semantic correlation and temporal information, and teesf | SEVERITYcan be one of the following levels - INFO,
the filtering results more accurately capture the real-aveit- WARNING, SEVERE, ERROR, FATAL, or FAILURE -
uations. More importantly, ASF does not require much human \\hich also denotes the increasing order of severity.
intervention, and can thus be easily automated. Consdguent | EaciLITY denotes the component where the event is
ASF is one big step forward towards self-managing online flagged, which is one of the following: LINKCARD,
monitoring/analysis for large-scale systems. APP, KERNEL, HARDWARE, DISCOVERY, CMCS,

In this study, we have applied ASF on the failure logs BGLMASTER, SERVNET or MONITOR.

from IBM Blue Gene/L. Our experimental results show that « EVENTTIME is the time stamp associated with that
ASF is more accurate than STF in filtering fatal events due event.

to its consideration of semantic correlation between event « JOB.ID denotes the job that detects this event. This field
Also, due to its low overhead, we can use ASF to filter non- is only valid for those events reported by computing/IO
fatal events as well. We find that ASF is quite effective for ~ chips.

all the severity levels, with the resulting compressioriorat * LOCATION of an event (i.e., which chip/service-card/
always below 3%, and often below 1%. After merging filtering ~ node-card/link-card experiences the error), can be spec-
results for all severity levels, we find that events natyrall  ified in two ways. It can either be specified as (i) a
form “clusters”, with each clustering having non-fatal et combination of job ID, processor, node, and block, or
first, and then one or more fatal events. These clusters can (ii) through a separate location field. We mainly use the
help visualize how events evolve with increasing severity. latter approach (location attribute) to determine where an

Indeed, this can serve as a good basis for further analysis error takes place.
and investigations. « ENTRYDATA gives a description of the event.



I1l. FILTERING METHODS addition of a new event entry, a human operator is needed to
In this section, we present two event filtering method§ategorize it into different types. As another examplegraft

First, we briefly introduce th8patioTemporalFiltering (STF) ©ach step, manual operations are needed to process tfa parti
method that was proposed in [12]. Then, we propose %sults to _enable operauolns in the_next step_. Third, ST onl
AdaptiveSemanticFiltering (ASF) method, which exploits the employ§ S|mple thresholdmg-technlques,_ which cannodliean
semantic correlations between events, and can help awtontdg8"Y tricky situations, and may lead to incorrect results.

the filtering process for large systems such as IBM Blue 10 address these challenges, in this paper, we propose an
Genell. Adaptive SemanticFiltering (ASF) method, which exploits

the semantic context of the event descriptions for the ifiiger
process. ASF involves the following three steps: (1) boida
A. A Spatio-temporal Filtering Method dictionary containing all the keywords that appear in e\t
In our previous work [12], we have developedSpatio- Scriptions, (2) translating every event description intoirgary
Temporal Filtering (STF) method for parsing Blue Gene/Lvector where each element of the vector represents whether
event logs and filtering out redundant/unimportant evefie corresponding keyword appears in the description ar not
records. STF involves three steps: (1) extracting and cand (3) filtering events using adaptive semantic corretatio
egorizing failure events; (2) performing temporal filtgyin thresholds.
to compress events from the same chip locations; and (3)1) Keyword Dictionary: The keyword dictionary is the
performing spatial filtering to coalesce records of the sanb@se for developing the ASF method. The keywords in the
event across different locations. dictionary should capture the semantic context of all the
First, the raw logs have to be preprocessed, such as egents. Building the dictionary is an iterative processe&ch
formatting the entries and handling missing attributeseAf iteration, we examine an event entry, identify its keywoatwl
the preprocessing step, the next step is to extract all tappend new keywords into the dictionary. In order to idgntif
events with FATAL severity. As pointed out in Section Ilthe keywords of an event description, we have adopted the
an event can be associated with six levels of severity, af@llowing removal/replacement rules:
STF is designed to focus on filtering events with severity 1) Remove punctuation, equal signs, single quotes, double
level FATAL because these events can terminate job exe- quotes, parentheses (including the content in the paren-
cutions and thus have the most severe impact on syste theses). - . - .
) Remove indefinite articles, an, and definite article
performance. Once all the FATAL events are extracted, base
on the involved hardware components, they are categorized) Re?ﬁove words such ase, bei ng, been, i s, are,

into the following six groups: memory related failureadn), was, wer e, has, have, havi ng, do or done.
network related failuresngf), midplane switch related failures 4) Remove prepositions such a$, at, i n, on, upon,
(mp3, application I/O related failuresaio), node card related as, such, after,with,fromto, etc.

fai . 5) Replace an alphabetic-numeric representation of a rack,
ailures fc), and unknown failures. The unknown category a midplane, a link card, or a node card by the keyword

includes those FATAL events that do not have self-explagato
; . OCATI ON. . ,
entry-data fields. In order to correctly categorize an event ) Replace an eight-digit hexadecimal address by the key-
we have to examine its entry data field carefully, and often  \ord 8Di gi t Hex_Addr . _
a domain expert is needed. After the categorization step, a/) Replace a three-digit hexadecimal address by the key-

iltering i i i ' word 3Di gi t Hex Addr .
te_mporal filtering is conducted at_ every chip location, with Replace gn dighrdigt hexadecimal value by the key-
failures that are from the same job and are close to each

other coalesced into one record, and the filtering resutts fr ) Vﬁ'gﬁﬁg g't\s\,'c_,'_ed)fgit hexadecimal value by the keyword

different locations are merged in the temporal order using 2pj ?i t Hex. _
the sort-merge method. The temporal filtering is a simplgl0) Replace a numeric number by the keywdrtdvBER

- ; Replace binary digits by the keywoBi har yBit s.
threshold-based scheme, and the threshold is chosen wi Replace a register, e.g. r00, r23, etc., by the keyword
the help of domain knowledge. Finally, due to the parallel REG STER. _ _ ' _
nature of these systems and applications, an event may B8) Replace a file directory or an image directory by the

reported by multiple locations at the same time. Therefore14) iﬁeg\’\(g{;%% R%(r:ga(l)s%Y'Ietters by the corresponding lower-
we adopt a spatial filtering after the temporal filtering phas P bp y P 9

. : . case letters. . -
which removes redundant records from different locationsi5) Replace present participles and past participles dfsver

Like the temporal filtering step, spatial filtering also eoysd by their simple forms, e.gFai | i ng, Fai | ed being
a threshold, which is again determined by domain experts. replaced byFai | . o

16) Replace a’plural noun by its single form, eegr or s

) . being replaced berror,
B. An Adaptive Semantic Filtering Method 17) Rep?ace week days and months by the keywoAdE.
While STF can effectively compress Blue Gene/L data logs, After processing all 1,318,137 entries in the raw logs from

as shown in [12], it has the following drawbacks. First, iAugust 8, 2005 to November 18, 2005, we have identified
requires extensive domain knowledge, both when categorizi667 keywords. One of the advantages of this method is that
fatal events and when adopting suitable threshold valueson the arrival of new data, we only need to process the new
Second, it requires manual operations. For example, upon #ntries as described above, without affecting the earli¢a d



in any way.

2) Correlation Computationfollowing the construction of
the keyword dictionary, we next convert each event desoript £
into a binary vector for the purpose of semantic correlatior *
calculation. Suppose there aré keywords. Then the vector £
will have N elements, with each element correspondingtoone | = - .
keyword. In this way, assigning vectors to event descristio
becomes straightforward: 1 denoting the description thetu
the associated keyword, and 0 denoting otherwise. In order t (2) The number of fatal (b) The number of fatal
make this step more automatic, we can choose a reasonabfGVents after temporal filter- - ./ e spatial filtering
large value forN so that adding new logs will not require N9 With different,, val- o ige ot s values
re-doing the translations for earlier logs, even when tmese ~ Y€S
logs may introduce new keywords. This approach is furthEl- 2 Choosing appropriate valuesef, andsy, for STF.
supported by the observation that the number of raw events
may be huge, but the number of keywords stays more or Im
constant after it reaches a certain level.

After generating a binary vector for event record, we ¢
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thus believe that, by doing so, we can combine the
dvantage of STF and the advantage of a simple semantic

then compute the correlation between any two events usi_éermg technique. The principle of the adaptive semantic

the ¢ correlation coefficient [16], the computation form ot:Ner'rng |rsdth;ant ats hth\? t'mﬁi ghapr bert\r/v?et? r:ecor?fsis imr?tr?[asssy
Pearson’s Correlation Coefficient for binary variables. 0 records must have a higher correlation coetlicient o be

considered redundant, and after the time gap reaches @ncerta

B level, even two records with a perfect correlation coeffitie
0 1 Row Total will be considered unique.
R 0 Poo Pon Poy The Adaptivg ngantic Filtering (ASF) algorithm first sgrts
1 Pao) Pa Pay the log entries in time sequence and stores them into th®jobl
Column Total  Pwo) Pe N symbolic reference table as shown in Line 2 and Line 3. Then,
for each anchor event in the jobID table, if the timestamp
Fig. 1. A two-way table of item A and item B. of the current anchor event is greater than the largest time

threshold, the ASF algorithm deletes this anchor event from

Ghe joblD table; otherwise, in line 8, the algorithm compute

the semantic correlation between the current event and the
b= Proo) Par) = Poy) Paoy 7 (1) anchor event. Line 9 obtains the temporal gap between the

v/ Pty Paw) Pyoy P current event and the anchor event. If either the temporal or

whereP,;;, denotes the number of samples that are classifiif correlation criteria is satisfied, the current recorfilisred

in the i-th row andj-th column of the table. Furthermore,0Ut as indicated in Line 12. The above process is iterated for

we let P, denote the total number of samples classified BVery event record.

the ith row, and P ;) the total number of samples classified

For a 2 x 2 two-way table as shown in Figure 1, th
calculation of thep correlation coefficient reduces to

in the jth column. Thus, we hav#, ) = Z;:O P;jy and IV. EXPERIMENTAL RESULTS
Pj) = Yi_oPuj- In the two-way table, N is the total |n this study, we have applied the proposed adaptive se-
number of samples. mantic filtering technique to the raw RAS event logs colldcte

3) Adaptive Semantic FilteringASF tells whether a record from the Blue Gene/L machine. We report the detailed filgerin
is redundant or not based on its semantic context. An intkssylts in this section.
itive semantic correlation based approach would regard two
records with a high correlation between their descriptiags
redundant. A closer look at the logs, however, reveals tnat4- ASF Versus STF
addition to the correlation coefficient, the interval bedwewo First, we would like to compare the effectiveness of the
records also plays an important role in determining whetheew semantic filter ASF, and the earlier non-semantic filter
these two records are redundant. For example, if two eve®$§F. Please note that STF is expected to accurately extract
are very close to each other, even though their correlationique events from voluminous raw logs because it has
may be low, they may still be triggered by the same failurévolved extensive domain knowledge in the organization of
On the other hand, two records that are far away from eatite hardware platform, as well as the logging procedure, and
other, though their descriptions may be exactly the sanigcause it has involved a considerable amount of manuat effo
are more likely to report unigue failures. As a result, it ifrom these domain experts.
insufficient to adopt a simple thresholding technique solel Due to the space limit, instead of presenting the filtering
based on the correlation coefficients between events.ddsteresults for all types of events, we only present the resolts f
we propose to adopt an adaptive semantic filtering mechanidfATAL events here. For the sake of fairness, we first need to
which takes into consideration both semantic correlatiod acarefully tune the parameters of both algorithms to reaefr th
temporal information between events to locate unique evenbptimal operating ranges. The main parameters involved in



STF include the threshold in the temporal filtering phage intervals. For example, if the gap between the current tecor
and the threshold in the spatial filtering phasg. Figure 2(a) and the previous record], is greater than or equal to 20
plots the number of remaining FATAL events after applyingninutes, then the current record will be kept in the result
different temporal value$;,. We take the viewpoint that alog if the semantic correlation between it and its previous
job is likely to encounter only one fatal event of the samecord is less than or equal to 1.0. (Of course, since 1.0 is
type. Hence, a threshold that is too small will result in salve the maximum correlation coefficient, all the events thatuocc
fatal events from the same type for a job. On the other hangithin a window longer than 20 minutes after their preceding
since the log has a large portion of entries that do not hageents will be kept.) As another example, Equation 2 spacifie
a valid JobID field, then a large threshold may filter awathat if 7' is less than 30 seconds, then the current event will
failures encountered by different jobs. Both factors coeied, be filtered out if the semantic correlation between itsell an
we have choseny;, = 20 minutes, and this threshold yieldsits previous event is less than -1.0. In another word, all the
145371 fatal events. Of course, after choosing this thidshoevents that occur within 30 seconds after their previousitsve
we have validated our choice by examining both the originalill be filtered out.
log and the resulting log manually. After we extract the parameters in Equation 2 from the
Compared to the temporal threshold, the spatial threshatdining data, we have applied them to the test data to examin
is easier to set. Similarly, Figure 2(b) gives the number efhether they are only specific to the training data or they can
remaining fatal events after applying different spatiakfing be used to the test data as well. Fortunately, we find thaethes
threshold values,;,. We have two main observations from thiszalues are effective for all the data after careful insmecti
figure. First, applying spatial filtering is very importaiven Using the chosen parameters, ASF can condense the fatal
a zero-second spatial filtering threshold can bring down tigilures from 281462 records to 835 records, while STF pro-
number of FATAL events from 145371 to 1746. The seconguces 998 records after filtering. Though these two numbers
observation is that, the impact of different spatial thrésh are rather close, we have observed three typical scenarios
values is not as pronounced as that of the temporal filteriitg which these two filters yield different results, and that
threshold. This is because the fact that spatial filtering iésnong these three, two cases demonstrate ASF produces bette
adopted dominates the filtering effect. As a result, we choofiltering results than STF. These four scenarios are listdol

20-minute as the value fof,. (each record contains the timestamp, job ID, location, and
Using the chosen threshold values, STF can bring down tegtry data fields):

number of FATAL records from 281462 to 998, which only
constitutes 0.3546% of the raw log.

Now, let us switch our attention to the proposed adaptive
semantic filter (ASF). As presented in Section Ill, ASF adopt
different correlation coefficient threshold values acaugdto
the intervals between subsequent event records. Spdpgifical
we take the viewpoint that two records that are temporally
close to each other are likely to be correlated, and thezefor
should be coalesced into one event. As a result, we adopt
a lower correlation threshold for shorter intervals betwee
subsequent records. On the other hand, two records that are
far apart from each other should only be considered coalat
when the semantic correlation between them is high, which
suggests that we should adopt a higher threshold for events

o Advantage I: ASF can efficiently filter out semantically-

correlated records whose descriptions do not exactly
match each other.Records that are semantically

correlated should be filtered out (if they are reasonably
close to each other), even though they do not have
identical descriptions. ASF can easily achieve this
because it considers semantic correlation between
events. STF, on the other hand, compares event
descriptions word by word, which can be problematic
because many highly-correlated records do not have
identical descriptions. For example, STF has produced
the following records in its result:

. . . . [ST1]2005-11-15-12.07.42.786006 - R54-M0-N4-1:J18-U11 ciod:
with Iarger intervals from thelr precedmg events. LOGIN chdir(/xxx/xxx) failed: No such file or directory
In order to develop suitable threshold values, we have [ST2J2005-11-15-12.07.42.858706 ~ -  R64-M1-N8-1:J18-U1l  ciod:

LOGIN chdir(/xxx/xxxx/xx) failed: No such file or directory
[ST3]2005-11-15-12.07.42.779642 - R74-M0-NC-1:J18-U11 ciod:
LOGIN chdir(/xxx/xxxx/xxx) failed: No such file or directory

partitioned the data sets into two halves, the first half dgpein
training data while the second half being test data. On the
training data, we have applied different correlation cogdfit
and interval pairs, and chosen the following values whickeha

produced similar results as those from STF: In this example, all three events occur at the same time,

but at different locations, and they correspond to the same

1 if T € [20, 00) fatal failure that affects all three locations. However, in
0.9 else if T € [10, 20) the spatial filtering phase, STF only filters out records if
0.8 else if T € [5, 10) their descriptions are the same. As a result, it has kept all
Cun = 0.7 elseifT €[1,5) @ three entries. This problem, however, can be avoided by
0.0 else if T € [0.5, 1) ASF because ASF considers semantic correlation instead
—1.0 elseifT € [0, 0.5) of exact word-by-word match. Hence, the result from

whereT denotes the interval between the current record and ASF only contains one entry:

the previous record, and the time unit is a minute. Equation 2 [AS1]2005-11-15-12.07.42.786006 - R54-M0-N4-1:J18-U11 ciod:
specifies correlation coefficient threshold values foredéht LOGIN chdir(/xxx/xxx) failed: No such file or directory



This example emphasizes the importance of semantic
correlations in filtering error logs.

Advantage Il: ASF can prevent non-correlated events
from being filtered outThe previous example shows that
ASF can filter out semantically correlated events even
when their descriptions are not identical. Similarly, ASF
can also prevent non-correlated events from being blindl
filtered out just because they are close to each other. This
is because STF, in its temporal filtering phase, simply
treats all the events that are more than 20 minutes apart as
unique while all the events that are less than 20 minutes
apart as redundant. Compared to STF, ASF employs a
much more sophisticated mechanism, which not only
exploits correlation coefficient between two events, and
the threshold for the correlation coefficient also adapts
to the gap between the events. As a result, if the gap
between two events (from the same location) is less than
20 minutes, STF will filter out the second event, but ASF
will only do so if their correlation coefficient is above a
ceratin level.

As an example, ASF has produced the following se-
guence:

[AS1]2005-09-06-08.45.57.171235 R62-M0-NC-1:J18-U11
LOGIN chdir(/home/xxx/xx/run) failed: Permission denied

[AS2] 2005-09-06-08.49.34.442856 R62-MO-NC-1:J18-U11
ciod: Error loading “/home/xxxxx/XXX/Xxxx/xxxx": program image too gbi
1663615088> 532152320

ciod:

In the above sequence, ASF chooses to keep both records

Info Warning Severe

before filtering 1,367,531 | 17,121 15,749
after filtering 11,044 343 148
compression ratio 0.008 0.02 0.009
Error Failure Fatal

before filtering 109,048 1,708 281,441
after filtering 146 53 1,147
compression ratio 0.001 0.03 0.004

TABLE |

E NUMBER OF EVENTS AT ALL SEVERITY LEVELS BEFORE AND AFTER

FILTERING BY ASF.

Since these two failures, one being memory failure and
the other application I/O failure, occur within 24 seconds
from each other, ASF compresses them into one entry:

[ST1]2005-08-05-09.11.35.447278 R33-M1-NC-C:J13-Ul1 ma-
chine check interrupt

Fortunately, this problem of ASF does not affect the
filtering results much because the likelihood of having
two failures within 30 seconds is very low. In fact, we
have checked the log carefully, and found that the above
example is the only case where two distinct events occur
so close to each other. Even in such cases, the problem
will be further alleviated by the fact that the production
Blue Gene/L usually runs one job at a time, which spans
all the processors of that machine. As a result, the adverse
effect of compressing failures that occur at the same time

is negligible because they hit the same job anyway.

because the semantic correlation between them is I&sThe Blue Gene/L RAS Event Analysis

than 0.0, and according to parameters in Equation 2, theyin addition to filtering fatal events, it is also equally impo
are unique events. On the other hand, STF condensestH to filter other non-fatal events, since such infornratian
same example scenario to the only entry because the gripict a global picture about how warnings evolve into fatal

between these two events is 4 minutes:

[ST1]2005-09-06-08.45.57.171235 R62-M0-NC-1:J18-U11
LOGIN chdir(/home/xxx/xx/run) failed: Permission denied

ciod

failures, or about how a fatal failure is captured by différe
levels of logging mechanisms. STF, however, cannot be used
to filter non-fatal events due to its complexity, especially

when the number of non-fatal events (1,172,766 in our case)

Comparing the results produced by both filters, we ¢
easily tell that both entries need to be kept because efcc?{
corresponds to a different problem in the system.
Disadvantage: ASF may filter out unique events th
occur with 30 seconds from each othéwccording to
Equation 2, ASF filters out events when they occur withi

45 substantially larger than that of fatal events (281,462)
tunately, this void can be filled by the introduction of AS
which involves much less overhead and can thus yield an
gtutomatic execution.

Table | summarizes the filtering results for events at all
ﬁeverity levels. These numbers show that ASF is quite éffect

30 seconds of each other. Though in most cases, evéﬁtgiltering all types of events, achieving compressionasti

that are so close to each other are highly correlated, th
are some rare cases where different types events
take place at the same time, e.g. a memory failure and

geelow 3% (many compression ratios are below 1%). After
n{gg(;ring events of all severity levels, we can next mergerthe
jn the temporal order, and study how lower-severity events

network failure occurring at the same time. STF can avofy0!Ve t0 @ FAILURE or FATAL event, which can terminate

such problems by categorizing failures before filtering;
For example, STF has produced the following sequen
of records:

ob executions and cause machine reboots. We would note
t, the investigation of detailed rules about what ndatfa
events will lead to fatal failures, and in what fashion, isllwe

beyond the scope of this paper. In this paper, we argue that

[ST1]2005-08-05-09.11.35.447278 R33-M1-NC-C:J13-U11

chine check interrupt

[ST2]2005-08-05-09.11.59.393092 R54-M1-N8-1:J18-U01 ciod:

™such studies are made possible by the introduction of ASF.
After merging events with different severity levels, we

Error reading message prefix after LOABESSAGE on CioStream socket to observe that they form natural “clusters” consisting of imﬂt

XXX XX XX XXX XXXxX: Link has been severed

non-fatal events and one or more fatal events following them

These clusters clearly show that how events evolve in their



facility severity timestamp location entry data

CMCS INFO 2005-11-07-08.40.12.867033 - Starting SystemControlMKNOWN_LOCATION

HARDWARE  WARNING  2005-11-07-08.40.48.975133  R63-MO EndServicegcis restarting the NodeCards in midplane R63-MO as part
of Service Action 541

DISCOVERY  WARNING  2005-11-07-08.42.07.610916 R63-M0-N6  Node candoisfully functional

DISCOVERY  SEVERE 2005-11-07-08.42.07.769056  R63-M0-N6  Can noagsgmbly information for node card

DISCOVERY ERROR 2005-11-07-08.42.07.797900  R63-MO-N6  Node cardisstato ALERTs are active. Clock Mode is Low. Clock
Select is Midplane. Phy JTAG Reset is asserted. ASIC JTAG Reset is
asserted. Temperature Mask is not active. No temperature error. Temperature
Limit Error Latch is clear. PGOOD IS NOT ASSERTED. PGOOD ERROR
LATCH IS ACTIVE. MPGOOD IS NOT OK. MPGOOD ERROR LATCH
IS ACTIVE. The 2.5 volt rail is OK. The 1.5 volt rail is OK.

HARDWARE  SEVERE 2005-11-07-12.28.05.800333  R63-MO-L2  LinkCaod/@r module U58 is not accessible

MONITOR FAILURE 2005-11-07-14.11.44.893548  R63-MO-L2 No power miedJ58 found found on link card

HARDWARE SEVERE 2005-11-07-14.38.38.623219 R63-M0-L2 LinkCapav@r module U58 is not accessible

TABLE I
AN EXAMPLE EVENT SEQUENCE THAT REVEALS HOWNFO EVENTS EVOLVE INTO FAILURE EVENTS.

severity. An example cluster is shown in Table Il. Thipatterns. It has also been recognized [4], [6], [9], [22]ttha
sequence starts with an INFO event that informs the systénis critical to coalesce related events since faults pgapa
controller was starting. Thirty seconds later, all the nodelds in the time and error detection domain. The tupling concept
on midplane R63-MO were restarted, as suggested in tieveloped by Tsao [22] groups closely related events, and
following WARNING event, and another two minutes lateris a method of organizing the information in the log into a
another WARNING message points out that one of the notieerarchical structure to possibly compress failure logjs [
cards on that midplane, R63-M0-N6, was not fully functional Filtering raw logs becomes more important for larger par-
At almost the same time, a SEVERE event and an ERRGIRel and distributed systems. In our previous study [17@, w
event were recorded, which give more detailed informatistudied the failure behavior for a large-scale heterogemieo
about the node card malfunction. The SEVERE event repoA$X cluster involving 400 nodes over a 1.5 year period. In
that the assembly information could not be obtained for thkat study, we used a simple thresholding technique to Giuer
same node card, and the ERROR event reports several magaiundant entries, and the threshold was 5 minutes. In @anoth
status parameters of the node card, such as “PGOOD is pagvious study [12], we developed a spatio-temporal tool
asserted”, “MPGOOD is not OK”", etc. About 4 hours latefSTF) to filter logs collected from a Blue Gene/L prototype
a SEVERE event reports that one of the link cards’ powepnsisting of 8192 processors. STF was the first filtering too
module U58 was not accessible from the same midplane, ghdt could deal with large failure data sets, and is used@as th
about 2 hours later, the power module U58 was reportedyotaltiaseline technique in this exercise.

un-found by a FAILURE event. After the FAILURE event, the

midplane needs to be repaired by a system administratorébefo VI. CONCLUSIONS ANDFUTURE WORK

it can be used again. Parallel system event/failure logging in production envi-

The ability to locate such sequences is important fepnments has widespread applicability. It can be used to
studying failure behavior and predicting failures. Thisswapptain valuable information from the field on hardware and
impossible without a good filtering tool. In our example a&oV software failures, which can help designers make hardwate a
there are only 8 records, but they correspond to a much longgftware revisions. It can be used by system administrébors
sequence in the raw logs, with 572 records. We would noggagnosing problems in the machine, scheduling maintenanc
that, it is very difficult, if not at all impossible, to keepatik and down-times. Finally, it can be used to enhance fault
of event occurrences from a 572-entry sequence. resilience and tolerance abilities of the runtime system fo

tuning checkpointing frequencies and locations, pargtél
V. RELATED WORK scheduling, etc. With fine-grain event logging, the volunfie o

Collection and filtering of failure logs has been examinedata that is accumulated can become unwieldy over extended
in the context of small-scale systems. For example, Lin aperiods of time (months/years), and across thousands efsnod
Siewiorek [13] found that error logs usually consist of morEurther, the idiosyncracies of logging mechanisms can fead
than one failure process, making it imperative to colleesth multiple records of the same events, and these need to be
logs over extended periods of time. In [3], Buckley et aktleaned up in order to be accurate for subsequent analysis.
made recommendations about how to monitor events andn this paper, we have presented an Adaptive Semantic
create logs by using one of the largest data sets at that tirfRdtering (ASF) method, which exploits the semantic corre-
comprising 2.35 million events from a VAX/VMS systemlation as well as the temporal information between events
with 193 processors. They pointed out that data sets witb determine whether they are redundant. The ASF method
poor quality are not very helpful, and can lead to wronvolves three steps: first building a keyword dictionahert
conclusions. Their findings reiterated several importagtiés computing the correlation between events, and finally cingos
in this area, namely, lack of information in the logs (e.cappropriate correlation thresholds based on the tempa@l g
power outages), errors in the monitoring system (e.g. in thetween events. Compared to existing filtering tools, the
timestamps), and the difficulty of parsing and collectingfuk proposed filter (1) produces more accurate results, (2)sncu



less overhead, and (3) avoids frequent human interventiQrg] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreiga Ma, R. Vi-

We have validated the design of the filter using the failure
logs collected from Blue Genel/L, which consists of 128K

lalta, and A. Sivasubramaniam. Critical Event Prediction Pooactive
Management in Large-scale Computer Clusters Pioceedings of the
Ninth ACM SIGKDD International Conference on Knowledgeddisery

processors, and is the fastest supercomputer on the Top 500 and Data Mining August 2003.

Supercomputers List, over a period of 98 days.

Fault-tolerance for large-scale systems requires long-te

efforts from the entire community, and this study only serve20]
as a starting point towards this goal. There are several in-
teresting possibilities for future work, and we are paittacly

interested in investigating online statistical analy$ithes data

for predictability. Also, we are planning to use this infation
for enhancing the runtime fault-tolerance mechanisms sigch
checkpointing and job scheduling.
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