
http://sim.sagepub.com
SIMULATION

DOI: 10.1177/0037549704044080
 2004; 80; 191 SIMULATION

Yanyong Zhang and Anand Sivasubramaniam
 ClusterSchedSim: A Unifying Simulation Framework for Cluster Scheduling Strategies

http://sim.sagepub.com/cgi/content/abstract/80/4-5/191
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATION Additional services and information for

 http://sim.sagepub.com/cgi/alerts Email Alerts:

 http://sim.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com

ClusterSchedSim: A Unifying Simulation
Framework for Cluster Scheduling Strategies
Yanyong Zhang
Department of Electrical & Computer Engineering
Rutgers University
Piscataway, NJ 08854
yyzhang@ece.rutgers.edu

Anand Sivasubramaniam
Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA 16802

As clusters are being deployed to support a wide range of parallel workloads, scheduling becomes a
challenging research issue because these workloads exhibit diverse characteristics and impose vary-
ing quality-of-service requirements. Many scheduling strategies are thus proposed, each intended for
a different application/system setting. Due to the lack of a uniform simulation platform, a significant
amount of research effort is spent in building a unique simulator for each algorithm, which may lead
to false conclusions. This article presents ClusterSchedSim, which is a unifying simulation frame-
work of cluster scheduling strategies. The core of ClusterSchedSim includes the node model and
an interconnect model. ClusterSchedSim has implemented variations of popular cluster scheduling
schemes, and it is flexible enough to add on new schemes. Using ClusterSchedSim, one can con-
veniently compare different scheduling schemes, profile their executions, and understand the impact
of different application and system configuration parameters.

Keywords: Scheduling, cluster, simulation, performance evaluation

1. Introduction

With the growing popularity of clusters, their usage in di-
verse application domains poses interesting challenges. At
one extreme, we find clusters taking on the role of super-
computing engines to tackle the “grand challenges” at dif-
ferent national laboratories. At the other extreme, clusters
have also become the “poor man’s” parallel computer (on
a smaller scale). In between, we find a diverse spectrum of
applications—including graphics/visualization and com-
mercial services such as Web and database servers—being
hosted on clusters.

With the diverse characteristics exhibited by these ap-
plications, there is a need for smart system software that
can understand their demands to provide effective re-
source management. The CPUs across the cluster are
among the important resources that the system software
needs to manage. Hence, scheduling of tasks (in an online
fashion) across the CPUs of a cluster is very important.
From the user’s perspective, this can have an important

|
|
|
|

SIMULATION, Vol. 80, Issue 4–5, April–May 2004 191-206
©2004 The Society for Modeling and Simulation International

DOI: 10.1177/0037549704044080

consequence on the response times for the jobs submit-
ted. From the system manager’s perspective, this deter-
mines the throughput and overall system utilization, which
are an indication of the revenues earned and the costs of
operation.

Scheduling for clusters has drawn and continues to draw
a considerable amount of interest in the scientific commu-
nity. However, each study has considered its own set of
workloads and its own underlying platform(s), and there
has not been much work in unifying many of the previous
results using a common infrastructure. The reason is par-
tially due to a lack of a set of tools that everyone can use for
such a uniform comparison. At the same time, the field is
still ripe for further ideas/designs that future research could
develop for the newer application domains and platforms
as they evolve. Already, the design space of solutions is ex-
ceedingly vast to experimentally (on actual deployments)
try them out and verify their effectiveness.

All these observations motivate the need for cluster
scheduling tools (for a common infrastructure to evalu-
ate existing solutions and to aid future research) that can
encompass a diverse range of platforms and application
characteristics. If actual deployment is not a choice, then
these tools should either use analytical models or simu-
lation. While analytical models have been successful in

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

modeling certain scheduling mechanisms, their drawbacks
are usually in the simplifying assumptions made about the
underlying system and/or the applications. It is not clear
whether those assumptions are valid for future platforms
and/or application domains.

Instead, this article describes the design of a simulator,
called ClusterSchedSim, that can be used to study a wide
spectrum of scheduling strategies over a diverse set of ap-
plication characteristics. Our model includes workloads of
supercomputing environments that may span hundreds of
processors and can take hours (or even days) to complete.
Such jobs have typically higher demands on the CPU and
the network bandwidth. We also include workloads repre-
sentative of commercial (server) environments in which a
high load of short-lived jobs (with possibly higher demands
on the input/output [I/O] subsystem) can be induced. Pre-
vious research [1-14] has shown that not one scheduling
mechanism is preferable across these diverse conditions,
leading to a plethora of solutions to address this issue. Our
simulator provides a unifying framework for describing
and evaluating all these earlier proposals.At the same time,
it is modular and flexible enough to allow extensions for
future research.

An overview of ClusterSchedSim is given in Figure 1.
ClusterSchedSim consists of the following modules:

• ClusterSim. This is a detailed simulator of a cluster system
that includes the cluster nodes and interconnect. It simu-
lates the operating system (OS) functionality as well as
the user-level application tasks on each cluster node.

• Workload package. As mentioned, we provide a diverse
set of workloads, including those at the supercomputing
centers, those for a commercial server, and even some
multimedia workloads, although this is not explicitly de-
scribed within this article. This package is implemented
on top of the cluster model.

• Scheduling strategy package. This package is imple-
mented on top of the cluster model and workload model.
It includes a complete set of scheduling strategies that are
designed for various workloads. It includes both the as-
signment of tasks to nodes of the cluster (spatial schedul-
ing) and the temporal scheduling of tasks at each cluster
node.

• Instrumentation package. This package is implemented on
top of the cluster model and scheduling strategies. It can
instrument the executions at the application level, sched-
uler level, and even the operating system level to obtain
an accurate profile of the execution. The instrumentation
can be easily turned on, turned off, or partially turned on
based on user needs.

• Configurable parameter package. We provide numerous
configurable parameters to specify the system configura-
tion (e.g., number of cluster nodes, context- switch cost,
etc.), scheduler behavior (e.g., time quanta), and overheads
for different operations.

In the rest of this article, we go over the details of the
implementation of these different features within Cluster-
SchedSim. This simulator, as mentioned earlier, can be use-

ful for several purposes (Fig. 1). In this article, we specif-
ically illustrate its benefits using three case studies:

• To pick the best scheduler for a particular workload. Clus-
terSchedSim consists of a complete set of cluster schedul-
ing strategies, and we can compare these strategies for
a particular workload type and choose the best. For in-
stance, we show that gang scheduling [5-9] is a good
choice for communication-intensive workloads, while dy-
namic coscheduling strategies, such as periodic boost [10,
15, 16] and spin block [12], are better choices otherwise.

• To profile the execution of a scheduler. To understand why a
scheduler may not be doing as well as another, a detailed
execution profile is necessary. Using the execution pro-
files, one can understand the bottleneck in the execution
and thus optimize the scheduler. For instance, we find that
gang scheduling incurs more system overheads than some
dynamic coscheduling schemes such as periodic boost.

• To fine-tune parameters for a particular scheduler. The
schedulers, together with the underlying cluster platform,
have numerous parameters that may affect the perfor-
mance significantly. ClusterSchedSim makes all these pa-
rameters configurable, and one can use these to tune the
setting for each scheduler. For instance, our experiments
show that a multiprogramming level (MPL) between 5 and
16 is optimal for some dynamic coscheduling schemes
[15].

The rest of this article is organized as follows. The next
section describes the system platform that ClusterSched-
Sim tries to model and the workload model we use in the
simulator. Section 3 explains how the core cluster simu-
lator (ClusterSim) is implemented. Section 4 presents all
the scheduling strategies and their implementations. The
instrumentation and parameter packages for the simula-
tor are discussed in section 5. Section 6 illustrates the us-
ages of ClusterSchedSim, and section 7 summarizes the
conclusions.

2. System Platform and Workloads

Before we present our simulation model, we first describe
the system platform and workloads we try to model.

2.1 System Platform

We are interested in those clusters used to run parallel jobs
because scheduling on such systems is particularly chal-
lenging. The following features are usually common to
these clusters, and they are adopted in our simulator:

• Node model. Each cluster node can configure its hardware
and operating system to form either a homogeneous or a
heterogeneous cluster. Furthermore, to boost the perfor-
mance/cost ratio, most of today’s clusters have either a
single processor or dual processors per node. On the other
hand, scheduling on Symmetric Multiprocessors (SMP)
has been extensively studied earlier [16-20], and it is thus
not the focus of this article. Our simulator considers one
processor per node. However, SMP support can be added

192 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

A SIMULATION FRAMEWORK FOR CLUSTER SCHEDULING STRATEGIES

Scheduling
Strategies

ClusterSchedSim

Instrumentation

Configurable
Parameter

Workload
Parameter

System
parameters

To compare
the scheduling
strategies

To profile
the execution
of a scheduler

To fine tune
the parameters

ClusterSim

Workload
Model

Scheduler
Parameter To understand the

impact of system
parameters

To design
new scheduling
schemes

Figure 1. Overview of ClusterSchedSim

with little effort: one just needs to slightly modify the CPU
scheduler component. Also, we use nodes and processors
interchangeably unless explicitly stated.

• User-level networking. Traditional communication mech-
anisms have necessitated going via the operating sys-
tem kernel to ensure protection. Recent network interface
cards (NICs) such as Myrinet provide sufficient capabili-
ties/intelligence, whereby they are able to monitor regions
of memory for messages to become available and directly
stream them out onto the network without being explicitly
told to do so by the operating system. Similarly, an incom-
ing message is examined by the NIC and directly trans-
ferred to the corresponding application receive buffers in
memory (even if that process is not currently scheduled
on the host CPU). From an application’s point of view,
sending translates to appending a message to a queue in
memory, and receiving translates to (waiting and) dequeu-
ing a message from memory. To avoid interrupt processing
costs, the waiting is usually implemented as polling (busy-
wait). Experimental implementations of variations of this
mechanism on different hardware platforms have demon-
strated end-to-end (application-to-application) latencies
of 10 to 20 microseconds for short messages, while most
traditional kernel-based mechanisms are an order of mag-
nitude more expensive. User-level messaging is achieved
without compromising protection since each process can
only access its own send/receive buffers (referred to as an
endpoint). Thus, virtual memory automatically provides
protected access to the network.

Several ULNs [21, 22; see also http://www.viarch.org]
based on variations of this paradigm have been developed.

User-level messaging, though preferable for lowering the
communication overhead, actually complicates the issue
from the scheduling viewpoint. A kernel-based blocking
receive call would be treated as an I/O operation, with the
operating system putting the process to sleep. This may
avoid idle cycles (which could be given to some other
process at that node) spent polling for message arrival in a
user-based mechanism. Efficient scheduling support in the

context of user-level messaging thus presents interesting
challenges.

2.2 Parallel Workloads and Performance Metrics

We are interested in the environments where a stream of
parallel jobs dynamically arrive, with each requiring a
number of processors/nodes. The job model we develop
in this study is shown in Figure 2a. A parallel job consists
of several tasks, and each task executes a number of iter-
ations. During each iteration, the task computes, performs
I/O, sends messages, and receives messages from its peer
tasks. The chosen structure for a parallel job stems from our
experiences with numerous parallel applications. Several
scientific applications, such as those in the NAS bench-
marks [23] and Splash suite [24], exhibit such behavior.
For instance, computation of a parallel multidimensional
fast-Fourier transform (FFT) requires a processor to per-
form a 1-D FFT, following which the processors exchange
data with each other to implement a transpose, and the se-
quence repeats iteratively. I/O may be needed to retrieve
the data from the disk during the 1-D FFT operation since
these are large data sets. Even when one moves to newer
domains such as video processing, which requires high
computational and data speeds to meet real-time require-
ments, each processor waits for a video frame from another
processor, processes the frame, and then streams the result
to the next processor in a pipelined fashion. All of these
application behaviors can be captured by our job structure
via appropriate tuning of the parameters.

Specifically, every job has the following parameters:

• Arrival time
• Number of iterations it has to compute
• Number of nodes/processors it requires
• For each task of the job, we have the following parameters:

Volume 80, Number 4–5 SIMULATION 193

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� � �
� � �
� � �

� � �
� � �
� � �
� � �� � �� � �
	 	 		 	 		 	 	

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �

� � �

� � �

Compute

IO
Comm

Repeat

Nearest Neighbor (NN)

All-to-All (AA) Linear

Tree

0 1 2 3

3

0 1

2

0 1

3 2

0 1 2 3
1

1

2

3

4 4

(a) application model (b) communication pattern

Figure 2. Job structure

– Distribution of the compute time during each itera-
tion. Each task may follow a different distribution.

– Distribution of the I/O time during each iteration.
Each task may follow a different distribution.

– Communication pattern. The four common commu-
nication patterns are illustrated in Figure 2b.

It should be noted that developing models for these pa-
rameters is beyond the scope of this study. The simulator
will take the job trace as the input, which includes the above
parameters.

A parallel workload consists of a stream of such jobs.
By varying these parameters, we can generate workloads
with different offered load and job characteristics (e.g., its
communication intensity, I/O intensity, CPU intensity, or
skewness between tasks).

From our simulator, we can calculate various perfor-
mance metrics. To name just a few, the following met-
rics are important from both the system’s and user’s
perspective:

• Response time: This is the time difference between when a
job completes and when it arrives in the system, averaged
over all jobs.

• Wait time: This is the average time spent by a job waiting
in the arrival queue before it is scheduled.

• Execution time: This is the difference between response
and wait times.

• Slowdown: This is the ratio of the response time to the
time taken on a system dedicated solely to this job. It is an
indication of the slowdown that a job experiences when
it executes in multiprogrammed fashion compared to run-
ning in isolation.

• Throughput: This is the number of jobs completed per unit
time.

• Utilization: This is the percentage of time that the system
actually spends in useful work.

• Fairness: The fairness to different job types (computation,
communication, or I/O intensive) is evaluated by compar-
ing (the coefficient of variation of) the response times be-
tween the individual job classes in a mixed workload. A
smaller variation indicates a more fair scheme.

3. ClusterSim: The Core Cluster Simulator

3.1 CSIM Simulation Package

ClusterSchedSim is built using CSIM [25]. CSIM is a
process-oriented discrete event simulation package. A
CSIM program models a system as a collection of CSIM
processes that interact with each other. The model main-
tains simulated time, so that we can model the time and
performance of the system. CSIM provides various simu-
lation objects. In ClusterSchedSim, we extensively use the
following two objects: CSIM processes and events.

CSIM processes represent active entities, such as the
operating system activities, the application tasks, or the
interconnect between cluster nodes. In this article, we use
tasks to denote the real operating system processes and pro-
cesses for CSIM processes. At any instant, only one task
can execute on the CPU, but several tasks can appear to
execute in parallel by time sharing the CPU at a fine gran-
ularity. Tasks relinquish the CPU when their time slices
expire or are blocked on some events. Similarly, several
different CSIM processes, or several instances of the same
CSIM process, can be active simultaneously. Each of these
processes or the instances appear to run in parallel in terms
of the simulated time, but they actually run sequentially on
a single processor (where the simulation takes place). The
illusion of parallel execution is created by starting and sus-
pending processes as time advances and as events occur.
CSIM processes execute until they suspend themselves by

194 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

A SIMULATION FRAMEWORK FOR CLUSTER SCHEDULING STRATEGIES

doing one of the following actions:

• execute a hold statement (delay for a specified interval of
time),

• execute a statement that causes the processes blocked on
an event, or

• terminate.

Processes are restarted when the time specified in a hold
statement elapses or when the event occurs. The CSIM
runtime package guarantees that each instance of every
process has its own runtime environment. This environ-
ment includes local (automatic) variables and input argu-
ments.All processes have access to the global variables of a
program.

The CSIM processes synchronize with each other via
CSIM events. A CSIM event is similar to a conditional
variable provided by the operating system. An event can
have one of two states: occurred and not occurred.A pair of
processes synchronize by one waiting for the event to oc-
cur (by executing the statement wait(event)) and the other
changing its state from not occurred to occurred (by exe-
cuting the statement set(event)). When a process executes
wait(event), it is put in the wait queue associated with the
event. There can be two types of wait queues: ordered and
nonordered. Only one process in the ordered queue will re-
sume execution upon the occurrence of the event, while all
the events will resume execution in the nonordered queue.
Furthermore, a process can also specify a time-out limit on
how much time it will wait. In such case, the process will
resume execution if either of the following two conditions
are true: (1) the event occurs within the bound, or (2) the
time-out limit is reached.

CSIM allows the sequential execution model. The cur-
rent version of ClusterSchedSim is not parallelized because
the simulation time is not the primary concern. First, we
focus on clusters of small to medium sizes. Second, we
focus on the impact of different application and system
parameters on the choice of scheduling strategies.

3.2 Structure of ClusterSim

A cluster consists of a number of nodes that are connected
by the high-speed interconnect. ClusterSim models such a
system.As shown in Figure 3, it has the following modules:

• Cluster node module. A cluster node has the three major
modules: the CPU, memory, and NIC. Furthermore, the
CPU hosts both application tasks and operating system
daemons.

– Application Tasks
A parallel job consists of multiple tasks, with each
task mapping to an application task of a cluster node.
As observed in many parallel workloads [23, 24], a
task alternates between computation, I/O, and com-
munication phases in an iterative fashion. In the
communication phase, the application task sends

N I C

N I C

. . .

High-speed Interconnect

Memory
Memory

Task A Task B

Scheduler

User

Kernel

C P U

Task A Task B

Scheduler

User

Kernel

C P U

Figure 3. Structure of the core cluster simulator

messages to one or more of its peers and then re-
ceives messages from those peers. An application
task is implemented using a CSIM process. The fol-
lowing pseudo-code of the CSIM process describes
the typical behavior of an application task:

DoAppTask{
for (i=0; i<NumIterations; i++){

DoCompute(t);

DoIO(t);

for (j=0; j<NumMsgs; j++){
DoSend();

}

for (j=0; j<NumMsgs; j++){
DeReceive();

}
}

}

In the compute phase DoCompute(t), the task will
use the CPU for t units of simulated time. However,
the actual gap between the end of the compute phase
and the beginning may be larger than t because of
the presence of other tasks on the same node. At
the beginning of the compute phase, the application
task registers the desired compute time with the CPU
scheduler and then suspends itself until the compute
time has been achieved by waiting on the CSIM
event EJobDone. The event will be set by the CPU
scheduler after the computing is done. The details
about how the CPU scheduler keeps track of the
compute time for each task will be discussed below
when the CPU scheduler is presented.

In the I/O phase DoIO(t), the task will relinquish
CPU and waits for the I/O operation (which takes
t units of simulated time) to complete by executing
hold(t).After the I/O operation is completed, it will
be put back in the ready queue of the CPU scheduler.

Volume 80, Number 4–5 SIMULATION 195

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

In the communication phase, a task sends out mes-
sages to its peers and then receives messages. From
the perspective of a task, sending out a message
(DoSend(msg)) involves composing the message, ap-
pending it to the end of its outgoing message queue,
and then notifying the NIC by setting the event
EMsgArrivalNIC. Then the message will be Direct
MemoryAccessed (DMA-ed) to the NIC. The appli-
cation task experiences the overhead of composing
the message, and the DMA overhead will be expe-
rienced by the NIC (the details are presented below
when the network interface module is discussed).
The overhead of composing the message is modeled
by DoCompute(overhead) because the task needs the
CPU to finish this operation.
When a task tries to receive a message, it first checks
its incoming message queue to see whether the mes-
sage has arrived. If the message has not yet arrived,
it will enter the busy-wait phase. With user-level
networking, the task will not relinquish the CPU
while waiting for a message. Instead, it polls the
message queue periodically. However, polling is
an expensive operation in terms of the simulation
cost (the time taken to complete the simulation) be-
cause each polling requires CSIM state changes. In-
stead, we use the interrupt-based approach to model
the busy-wait phase: the CSIM process that imple-
ments the task will suspend its execution by exe-
cuting Wait(EMsgArrival) and will be woken up
later when the message arrives. Please note that this
is just an optimization to make the simulation more
efficient, and the task is still running on the CPU un-
til either its quantum expires or the message arrives.
After the message arrives, the task decomposes the
message. The overhead of decomposing a message
is modeled by DoCompute(overhead).
The pseudo-codes for routines DoCompute(t),
DoIO(t), DoSend(msg), and DoReceive(msg) are as
follows:

DoCompute(t){
WaitUntilScheduled();
Register t with Scheduler;
wait(EComputeDone);

}

DoIO(t){
WaitUntilScheduled();
remove the job from the ready queue;
hold(t);
insert the job to the ready queue;

}

DoSend(msg){
WaitUntilScheduled();
DoCompute(composition overhead);
Compose the message;
Append the message to the message
queue;

set(EMsgArrivalNIC);
}

DoReceive(msg){
WaitUntilScheduled();
if (message has not arrived){

wait(EMsgArrival);
}
WaitUntilScheduled();

DoCompute(decomposition overhead);
Decompose the message;

}

In the above pseudo-codes, we frequently use the
function WaitUntilScheduled(). When the task re-
turns from this function, it will be running on the
CPU. This function makes sure that all the applica-
tion operations that need the CPU only take place
after the task is being scheduled.
The frequency and duration of the compute, I/O, and
communication phases and the communication pat-
terns are determined by the workloads (section 2.2).

– CPU Scheduler
The CPU scheduler is the heart of a cluster node.
Tasks on the same CPU implicitly synchronize with
each other via the CPU scheduler. The CPU sched-
uler manages the execution of all the application
tasks, and it is implemented by a CSIM process.
In a real operating system, the scheduler becomes
active whenever the timer interrupt is raised (e.g.,
1 millisecond in Sun Solaris and 10 milliseconds
in Linux) to check whether preemption is needed.
This corresponds to the polling method. This polling
method can be easily implemented by making the
scheduler process blocked on the timer event. Us-
ing this method, if the simulated time is 1000 sec-
onds (which is much shorter than a typical simulated
time) and the timer interrupt becomes active every
1 millisecond, then the scheduler process will be-
come active 1,000,000 times. In CSIM, waking up
a process is a costly operation, and this approach
will lead to an unreasonably long simulation time.
To reduce the simulation time and improve the scal-
ability of the simulator, we use an interrupt method
instead. The scheduler becomes active only when
the currently running task needs to be preempted
either because its time slice expires or a higher pri-
ority task is made available. This interrupt-based
method can be implemented by executing the state-
ment timed_wait(EScheduler, timer). The timer
will be set to the duration of a time slice. The event
EScheduler will be set when new tasks that have
higher priorities become ready to execute. Either
these tasks are newly allocated to the node, or they
just become ready after waiting for some events
(e.g., I/O completion). However, in a real operating
system, the preemption does not take place as soon
as such tasks are available. Instead, it will happen
when the next timer interrupt arrives. To model this
behavior, we delay signaling the event EScheduler
until the next timer interrupt.When the scheduler be-
comes active, it will preempt the currently running
task and pick the task that has the highest priority to
schedule next.
After presenting the basic operation of the CPU
scheduler, we next discuss a few details:

∗ Compute time. If the task that will run next is
doing computation (i.e., waiting for the event
EComputeDone), then the value of timer is the
smaller one between the time quantum and the

196 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

A SIMULATION FRAMEWORK FOR CLUSTER SCHEDULING STRATEGIES

remaining compute time. The next time the
scheduler becomes active, it will update the
running task’s remaining compute time and its
remaining time quantum. If the task is done
with its computation, it will notify the appli-
cation task by executing set(EComputeDone).
Furthermore, if the time quantum has not ex-
pired, then the application will continue its ex-
ecution until either quantum expiration or pre-
emption by a higher priority task.

∗ Context switches. If a different task will
be scheduled next, then a context-switch
overhead must be paid. During the context
switch, the application task will not make any
progress. Hence, the context switch is modeled
by executing hold(overhead).

As a result, the high-level behavior of the scheduler
process is described by the following pseudo-code.

DoScheduler(){
while(1){

timer = min(quantum, compute
time);

timed_wait(EScheduler, timer);

if(timer expires && compute time
> 0 && compute time < quantum){

//the task just completes
computation, and will enter the
next application stage
update the compute time;
if(compute time == 0)
set(EComputeDone);

}

if(EScheduler || compute time ==
0 || compute time > quantum){
//the current quantum expires, and

the next task will be scheduled
if (compute time > 0) update

the compute time;
inserts the current task to

the ready queue;
pick the candidate task to

schedule;
if (current task != candidate

task)
hold(overhead);

}
}

Different CPU schedulers manage the ready tasks
in different ways. In ClusterSim, we model the CPU
scheduler of Sun Solaris, which is based on the mul-
tilevel feedback queue model. There are 60 prior-
ity levels (0 to 59, with a higher number denoting
a higher priority), with a queue of runnable/ready
tasks at each level. The task at the head of the high-
est priority queue will be executed. Higher priority
levels get smaller time slices than lower priority lev-
els, which range from 20 milliseconds for level 59 to
200 milliseconds for level 0. At the end of the quan-
tum, the currently executing task is degraded to the
end of the queue of the next lower priority level.
Task priority is boosted (to the head of the level 59
queue) when they return to the runnable/ready state

P
C

I
B

us

Send
Net

DMA

Network Interface Card

N
etw

ork

Recv
Net

DMA

Memory

Host
DMA

CPU

Control Data

Figure 4. Overview of the network interface card

from the blocked state (completion of I/O, signal
on a semaphore, etc.). This design strives to strike
a balance between compute and I/O- bound jobs,
with I/O-bound jobs typically executing at higher
priority levels to initiate the I/O operation as early
as possible.

– Memory
A parallel job often requires a large amount of mem-
ory. This problem is accentuated when we multi-
program a large number of tasks that can involve
considerable swapping overheads. For this reason,
several systems (e.g., Zhang et al. [15, 26]) limit
the MPL so that swapping overheads are kept to
a minimum. Under the same rationale, we use the
multiprogramming level directly to modulate mem-
ory usage rather than explicitly model memory con-
sumption.

– Network Interface Card (NIC)
An NIC connects its host CPU to the interconnect. It
sends the outgoing messages to the interconnect and
deposits the incoming messages to the appropriate
endpoints in the host memory. We implement the
NIC module using a CSIM process.
As illustrated in Figure 4, the NIC has (at least) the
following active entities: the CPU, the host DMA
engine, the net send DMA engine, and the net re-
ceive DMA engine. The CPU programs the DMA
engines, and the DMA engines complete the DMA
operations.
After an application task appends an outgoing mes-
sage to its message queue (in the memory), it wakes
up the NIC CPU, which in turns programs the host
DMA engine, and the host DMA engine will DMA
the message from the host memory to the outgoing
message queue that resides on the NIC. Then the
net send DMA engine will DMA the message to the
interconnect. Similarly, after the NIC CPU is wo-
ken up by the interconnect network for an incoming
message, it will first program the net receive DMA
engine and then the host DMA engine. These two
engines will DMA the message to the correspond-
ing endpoints that reside in the host memory. The

Volume 80, Number 4–5 SIMULATION 197

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

host operating system is completely bypassed in this
whole process.

A straightforward way of implementing the NIC is
to have a CSIM process for each of the active en-
tities. However, this approach will lead to a high
simulation overhead because CSIM processes are
expensive both time-wise and space-wise. Instead,
we simplify the model slightly but without compro-
mising accuracy. In our approach, we use one CSIM
process to implement the entire NIC. The NIC pro-
cess will be idle if there is no messaging activity by
executing wait(EMsgArrivalNIC). After it is woken
up by either the host CPU or the network, it will
check both the outgoing and the incoming message
queues. For each outgoing message, it first executes
hold(DMAoverhead)= to model the DMA operation and
then sends the message to the interconnect. For each
incoming message, the NIC first identifies its desti-
nation task, deposits the message to the appropriate
endpoint, and then notifies the task by executing
set(EMsgArrival). We include the DMA overhead
to and from the interconnect in the end-to-end la-
tency, which will be experienced by the interconnect
module. This way, the timing for both the outgo-
ing messages and the incoming messages is correct
since we only have one CSIM process.
The pseudo-code for the network interface process
is as follows.

DoNIC(){
while(1){

wait(EMsgArrivalNIC);
while(out-going queue not empty){

hold(DMA overhead);
deliver the message to the

interconnect network;
}
while(in-coming queue not empty)

deliver the message to the
application process;

}
}

• High-speed interconnect model. For the interconnect, we
need to model the time it takes to exchange messages be-
tween any pair of nodes. Ideally, one would like to create a
CSIM process between each pair (link) of nodes to model
the details and overheads of the transfer. While we al-
low this functionality in our simulator, we observed that
the overheads of creating a large number of CSIM pro-
cesses considerably slows down the simulation. Instead,
we provide an alternate model that a user can choose that
contains only one CSIM process. This process receives all
messages (between any pair of nodes), orders them based
on anticipated delivery time (i.e., calculated using models
as in Pakin, Lauria, and Chien [22]), waits for the time be-
tween successive deliveries, and then passes each message
to its appropriate destination NIC at the appropriate time.
Note that this is mainly for simulation overhead (we ob-
served that it does not significantly affect the results since
software overheads at the CPU scheduler and its efficiency
are much more dominant), and if necessary, one can use
the detailed model.

As mentioned above, when the NIC is discussed, the inter-
connect will calculate the time when a message will arrive
at the message queue on the destination NIC (we call it
the completion time of the message). This delay consists of
two parts: the end-to-end latency and the NIC DMA over-
head. We adopt a linear model to determine the end-to-
end latency. The interconnect can serve several messages
simultaneously. However, the network receive DMA en-
gine of the destination NIC can only complete the DMA
operations sequentially. For instance, message m that is
addressed to node n arrives at the interconnect at time t . It
will be ready for the NIC n to pick up (DMA) at time t+L,
where L is the interconnect latency for m (L is a function
of the message size). Suppose that some other messages
are being DMA-ed or waiting to be DMA-ed to the NIC
n, then m will be DMA-ed only when it is the first one in
the message queue (which will be later than t + L).

The CSIM process that implements the interconnect
manages all the messages before their completion. As
soon as a new message arrives, it calculates the com-
pletion time as described above and inserts the mes-
sage into its queue. When the queue is not empty,
the interconnect process keeps track of the gap be-
fore the next message’s completion time and executes
timed_wait(EMsgArrivalNetwork, timeout), which en-
ables the interconnect to preempt if a new message
with an earlier completion time arrives. If its queue
is empty, the interconnect process will again exe-
cute timed_wait(EMsgArrivalNetwork, timeout), with
timeout being set to a very large value.

The pseudo-code for the interconnect process is as follows:

DoInterconnect(){
while(1){

if (network is busy) timeout =
infinity;

else timeout = completion time of the
first message - now;

wait(EMsgArrivalNetwork, timeout);

if (EMsgArrivalNetwork occurs){
set network busy;
calculate the completion time of

the message;
insert the message into the queue;

}

if (timeout){
if (queue empty) set network idle;

}
}

}

4. Scheduling Strategy Package

We have looked at our cluster simulation model and the
considered workloads. In this section, we discuss how to
implement a wide range of scheduling strategies on top of
these two components.

4.1 Summary of Cluster Scheduling Strategies

A parallel job consists of more than one task. Each task
will be mapped to a different cluster node and will be

198 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

A SIMULATION FRAMEWORK FOR CLUSTER SCHEDULING STRATEGIES

communicating with other peer tasks (see section 2.2).
Communication between tasks includes sending messages
to and receiving messages from its peers. User-level net-
working bypasses the operating system, thus leading to
higher data rates, shorter one-way latencies, and lower host
CPU utilization. However, user-level networking compli-
cates the scheduling. If a task is waiting for a message from
one of its peer tasks, but that task is not being scheduled,
then the CPU resource will be wasted because the CPU
scheduler is unaware that the task that is currently running
is not doing useful work. As a result, the key to the effi-
ciency of a scheduler lies in its ability to coschedule the
communicating tasks across different cluster nodes.

To achieve this goal, over the past decade, significant
research literature has been devoted to scheduling parallel
jobs on cluster platforms.A large number of strategies have
been proposed, which can be broadly categorized into the
following three classes based on how they coschedule tasks
across nodes:

• Space-sharing schemes. Space-sharing schemes [27, 28]
assign jobs side by side. Each node is dedicated to a job
until it completes. Hence, tasks from the same job are
always coscheduled. The downside of these schemes is
high system fragmentation and low utilization.

• Exact coscheduling schemes. To address the inefficiencies
of space sharing, exact coscheduling, or gang scheduling
[5-9], allows time sharing on each node. It manages the
scheduling via a 2-D scheduling matrix (called the Ouster-
hout matrix), with columns denoting the number of nodes
in the system and rows denoting the time slices. Tasks from
the same job are scheduled into the same row to guarantee
the coscheduling. At the end of each time slice, every node
synchronizes with each other and switches to the next slice
simultaneously. Figure 5 illustrates such a scheduling ma-
trix, which defines eight processors and four time slices.
The number of time slices (rows) in the scheduling matrix
is the same as the maximum MPL on each node, which
in turn is determined by the memory size. As mentioned
before, we usually keep it at a low to moderate level. To
offset the synchronization cost across the entire cluster, ex-
act coscheduling schemes usually employ relatively large
time slices, which will still lead to low system utilization.

• Dynamic coscheduling schemes. Dynamic coscheduling
schemes are proposed to further boost system utiliza-
tion [10, 12, 13, 29]. These schemes allocate multiple
tasks (from different jobs) to a node and leave the tem-
poral scheduling of that node to its local CPU scheduler.
No global synchronization is required, so coscheduling
is difficult to realize. However, they propose heuristics to
reschedule tasks that can use the CPU for useful work
(computation, handling messages, etc.) as much as pos-
sible. Based on when the rescheduling is done, we can
classify the dynamic coscheduling schemes into the fol-
lowing two broad categories:

– Rescheduling on demand. Schemes in this category
try to reschedule the tasks whenever certain events
occur. The most common triggering events include
the following:

∗ No message arrival within a time period. Af-
ter a task waits for a message for some time,
and the message has not arrived within that
time, the scheduling schemes suspect that its
counterpart is not being scheduled, so they will
remove this task from the CPU and initiate a
rescheduling.

∗ Message arrival. The rationale here is that an
incoming message indicates the counterpart is
being scheduled, so that the scheduler must
schedule its destination task immediately if it
is not already running.

– Periodically rescheduling. These schemes do not re-
quire the scheduler to react to every event in order to
avoid thrashing. Instead, they periodically examine
the running task and all the ready tasks and resched-
ule if the running task is busy-waiting while some
other ready tasks have useful work to do.

Dynamic coscheduling schemes involve low schedul-
ing overhead, but the downside is that it cannot guarantee
coscheduling.

4.2 Implementing the Cluster Scheduling Strategies

Numerous scheduling strategies have been proposed by
earlier studies. However, this work is the first attempt to im-
plement these different variations within a unified frame-
work. Figure 6 summarizes the flow of this framework and
also includes an example of the flow (shown on the right
side). To facilitate the schedulers, we need to add a front-
end logic to the system, while ClusterSim can serve as the
back end. The front end can run on a different machine or
on any one of the cluster nodes. All the incoming parallel
jobs are accepted by the front end at first. As mentioned in
section 3, we adopt a low to moderate maximum MPL on
each node. Hence, many jobs will wait before they can be
scheduled, especially under the high load. The front end
sorts the waiting jobs according to their priority order. It
also calculates the spatial schedule (i.e., where a task will
be scheduled) and, in some cases, the temporal schedule
(i.e., how the tasks on the same node will be scheduled).
Finally, it will distribute the schedule to each back-end
cluster node. If the temporal schedule is calculated by the
front end (as in exact coscheduling), the back-end cluster
node will just follow the schedule. Otherwise, it will make
its own scheduling decision (as in dynamic coscheduling).

4.2.1 Implementing the Front End

The meta-scheduling is conducted by the front end. All the
incoming jobs are first accepted by the front end. We use
a CSIM process to implement the front-end logic.

First, the front-end process must handle job arrivals and
departures. The simulator can be driven by either a job trace
or a synthetically generated workload. In either case, the
front end knows a priori when the next arrival will take
place, and let us assume timer denotes the gap until the

Volume 80, Number 4–5 SIMULATION 199

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

P0 P1 P2 P3 P4 P5 P6 P7

time-slice 0 J0
1 J1

1 J2
1 J3

1 J4
1 J5

1 J6
1 J7

1

time-slice 1 J0
2 J1

2 J2
2 J3

2 J4
2 J5

2 J6
2 J7

2

time-slice 2 J0
3 J1

3 J2
3 J3

3 J0
4 J1

4 J0
5 J1

5

time-slice 3 J0
6 J1

6 J2
6 J3

6 J0
4 J1

4 J0
5 J1

5

Figure 5. The scheduling matrix defines spatial and time allocation. J k
i denotes the kth task of job i.

FRONT

END

Arrival Queue

A
B

CSort the waiting jobs in the arrival queue

Calculate the spatial and temporal schedule

Distribute the schedule to the cluster nodes

Each cluster node performs temporal scheduling

Node 1

Node 2

Node 3

A.1 B.1

A.2 C.1

A.3 C.2

A.3
C.2

A.2
C.1

A.1
B.1BACK

END

Job arrival

Job departure

Figure 6. Flowchart of the cluster scheduler framework

next arrival. However, the front end does not know when
the next departure will happen. As a result, it waits for the
event by executing timed_wait(ESched, timer). The CSIM
event ESched is set by one of the back-end cluster schedulers
when one of the tasks running on that node completes. Then
the front-end process will check if all the tasks from that
job have completed.

Upon a job arrival, the front-end process first inserts the
job into the arrival queue. Different queue service disci-
plines are included in ClusterSchedSim (e.g., first come,
first serve [FCFS]; shortest job first; smallest job first; first
fit; best fit; worst fit).

Upon a job arrival, as well as a task completion, the
front end will recalculate the spatial schedule by trying to
schedule more waiting jobs into the system. Calculating the
spatial schedule for space sharing and dynamic coschedul-

ing is rather simple: we need to just look for as many nodes
that are having less than maximum MPL tasks as required
by the job. On the other hand, it is much more challenging
to calculate the schedule for exact coscheduling schemes
because its schedule determines both spatial and tempo-
ral aspects, and the schedule will determine the efficiency
of the scheme. Furthermore, the tasks from the same job
must be scheduled into the same row, which makes it more
challenging. We have implemented the exact coscheduling
heuristics that are proposed in our earlier work [15, 16, 26,
30, 31].

After the schedule is calculated, the front-end process
will distribute it to each of the affected cluster nodes. If a
cluster node needs to execute a new task, the front end will
create a CSIM process to execute the new application task,
insert the new task into the task queue, and then notify the

200 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

A SIMULATION FRAMEWORK FOR CLUSTER SCHEDULING STRATEGIES

CPU scheduler if the new task has a higher priority.
The pseudo-code for the front-end process is as follows:

DoFrontEnd(){
while(1){

timer = next job arrival - now;
timed_wait(ESchedule, timer);

if(timer expires){ // job arrival
Insert into the waiting queue;

}

re-calculate the schedule;
distribute the schedule to affected
cluster nodes;

}
}

4.2.2 Implementing the Back End Using
ClusterSim

In this section, we discuss how to enhance ClusterSim to
implement the back end for the three classes of scheduling
schemes.

• Space sharing. We do not need to make any modifications
to implement space-sharing schemes. As soon as a back-
end cluster node gets notified by the front end, it will start
executing the new task until it completes.

• Exact coscheduling. Figure 5 depicts the global scheduling
matrix for exact coscheduling schemes. Each node will get
the schedule of the corresponding column. For instance,
node P0 will be executing tasks J 0

1 , J 0
2 , J 0

3 , and J 0
6 , in the

specified order, spending T seconds to each task (T is the
time slice).

We must modify the CPU scheduler on each cluster node
to execute the temporal schedule. First, the time slice for
each task will become T , not the default value from the
original scheduler. Second, at the end of each time slice,
the task will be moved to the end of the priority queue of
the same level.

• Dynamic coscheduling. To accommodate the rescheduling
of the tasks, the dynamic coscheduling schemes need to
modify the implementations of the application task, the
NIC, and the operating system.

As mentioned in section 4.1, dynamic coscheduling
heuristics employ one or more of the following techniques:
(1) on-demand rescheduling because of no message within
a time period, (2) on-demand rescheduling because of a
message arrival, and (3) periodic rescheduling.

The first technique requires modifications to the imple-
mentation of the application tasks. If the message has not
arrived within a specified time period since the task starts
waiting, the application task will block itself to relinquish
the CPU while waiting for the message. This leads to a new
implementation of DoReceive, which is shown as follows:

DoReceive(Message msg){

WaitUntilScheduled();
If (msg is not in the message queue){

wait(EMsgArrival, timer);
WaitUntilScheduled();
if(event occurs){

DoCompute(overhead of decomposing
msg);

Decompose the message;
}

if(timer expires){
remove the task from the running
queue;

change the task status from running
to blocked;

wait(EMsgArrival);

WaitUntilScheduled();
if(event occurs){

DoCompute(overhead of
decomposing msg);

Decompose the message;
}

}
}

}

Please note that in the above pseudo-code, the task exe-
cutes wait(EMsgArrival) twice. The first wait is a CSIM
optimization to avoid polling (section 3), and the second
implements the operating system blocking.

If the second technique is employed, after the NIC process
receives a message from the network, it first identifies its
destination task. It then checks the status of that task by
accessing a certain memory region. If the task is in block
state (as a result of the first technique), the NIC will raise
an interrupt, and the interrupt service routine will wake up
the task, remove it from the block queue, boost its priority
to the highest level, and insert it to the head of priority
queue. If the destination task is in the ready queue but
not currently running, the network interface process will
raise an interrupt as well. This interrupt service routine
will boost the task to the highest priority level and move
it to the head of the priority queue.

To implement the second technique, we must add more
modules to the NIC and the operating system. Figure 7a
shows the new modules. In Figure 7a, we refer to the NIC
module in the original ClusterSim as the message dis-
patcher. In addition to the message dispatcher, we need
two more modules to check the running task and the task
status. These two operations involve very low overheads
(around 2-3 ns), and the overheads will be overlapped with
the activities of the message dispatcher. As a result, we do
not use CSIM processes to implement them and can save a
significant amount of simulation time. The operating sys-
tem in the original ClusterSim only has the CPU scheduler
module. Now it will have an interrupt service routine mod-
ule as well. The interrupt service routine is modeled using
a CSIM process because its overheads are much higher
(around 50-60 ns), and it must preempt other tasks to use
the CPU. It has a higher priority than any application task.
The interrupt service routine process will be waiting for
the event EInterrupt, which will be set by the NIC. The
overhead of the interrupt service routine is accommodated
using DoCompute(overhead).

The third technique reschedules the tasks periodically. It
requires a new module in the operating system: the peri-

Volume 80, Number 4–5 SIMULATION 201

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

A

B

C

Scheduler
Interrupt
Service
Routine

Priority
Queue

D

Blocked
Queue

USER

KERNEL

MEMORY

Message Dispatcher

Check the
currently

running task

Check the
task’s
status

NETWORK INTERFACE

A

B

C

Scheduler
Periodic
Boost

Daemon

Priority
Queue

D

Blocked
Queue

USER

KERNEL

MEMORY

Message Dispatcher

NETWORK INTERFACE

(a) On-demand re-scheduling due to message arrival (b) Periodic re-scheduling

Figure 7. The enhancements of ClusterSim

odic rescheduling daemon, which is implemented using a
CSIM process (Fig. 7b). The CSIM process wakes up pe-
riodically by executing hold(period). Upon its wakeup,
if the currently running task is not doing anything useful
(e.g., it is waiting for a message), then the daemon will
examine every task in the ready queue and pick one that
has useful work to do. The overhead of the daemon is also
accommodated by executing DoCompute(overhead).

5. Performance Instrumentation and
Configurable Parameters

ClusterSchedSim provides a detailed performance instru-
mentation package and a complete set of configurable
parameters.

5.1 Instrumentation Package

ClusterSchedSim includes a set of instrumentation patches
that offer detailed execution statistics at different levels.
Using these statistics, one can easily locate the bottleneck
of a scheduling strategy under certain system and work-
load configurations. To name just a few, from the job’s
perspective, we can obtain the following statistics:

• Wait time versus execution time. From the user’s perspec-
tive, the response time is an important performance mea-
surement. Furthermore, a job’s response time can be bro-
ken down into two parts: the time between its arrival and
its starting execution (wait time) and the time between its
execution and its completion (execution time). Quantify-
ing the time a job spends in these two phases can indicate
the relative efficiencies of both the front end and the back
end of the scheduler. This information is especially useful
in comparing different classes of scheduling strategies.

• Degree of coscheduling. This quantifies a scheduler’s ef-
fectiveness in coscheduling the tasks, especially for dy-
namic coscheduling heuristics. To obtain this information,
we define the scheduling skewness, which is the average
interval between the instant when a task starts waiting for
a message from its counterpart (at this time, its counterpart
is not being scheduled) and the instant when its counter-
part is scheduled. If a scheduler has a larger scheduling
skewness, its degree of coscheduling is poorer.

• Pace of progress. This defines the average CPU time a
job receives over a time window W . We use this figure
to measure the fairness of different dynamic coscheduling
heuristics. If a heuristic favors a particular type of jobs
(e.g., those that are communication intensive), then those
jobs will have a much higher pace of progress. On the other
hand, heuristics that are fair will lead to uniform pace of
progress for each job.

From the system’s perspective, we can obtain many in-
teresting statistics as well by detailed instrumentation:

• Loss of capacity. This measures the unused CPU re-
source due to the spatial and temporal fragmentation of
the scheduling strategies. While jobs are waiting in the
arrival queue, the system often has available resources.
However, due to the fragmentation a scheduler has, these
resources cannot be used by the waiting jobs. We call job
arrivals/departures the scheduling events. ti is the gap be-
tween events i and i − 1, fi is 1 if there are waiting jobs
during ti and 0 otherwise, and ni denotes the number of
available slots in the system. If the maximum MPL is M ,
and there are m tasks on a node, then it has M−m available
slots. Suppose T is the temporal span of the simulation,
and N is the cluster size, then loss of capacity is defined

as
∑

fi×ni×ti
T ×N

.

202 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

A SIMULATION FRAMEWORK FOR CLUSTER SCHEDULING STRATEGIES

• Loss of CPU resource. This measures the ratio of the CPU
resource, though used but spent on noncomputing activi-
ties. Specifically, computing includes the time tasks spend
in their compute phase and the time they spend in compos-
ing/decomposing messages. Noncomputing activities in-
clude context switches, busy-waiting, interrupt overheads,
and scheduling overheads. Compared to the loss of capac-
ity, it says, from a fine granularity, how efficient the tempo-
ral scheduling phase of a scheduler (especially a dynamic
coscheduling heuristics) is.

5.2 Configurable Parameters

As mentioned earlier, ClusterSchedSim provides a com-
plete set of system and scheduler parameters, which can
be tuned to represent different system configurations and
to study the optimal settings for different scheduling strate-
gies. To name just a few, the system parameters that can be
configured are as follows:

• Cluster size. We can vary this parameter to study a cluster
with thousands of nodes that represent the supercomputing
environment or a cluster with tens of nodes that represent
a smaller but more interactive environment. Varying the
cluster size can help one understand the scalability of dif-
ferent schemes.

• Maximum multiprogramming level. Intuitively, a higher
multiprogramming level can reduce a job’s wait time, but
it can also reduce the probability of coscheduling, espe-
cially for dynamic coscheduling schemes. By varying this
parameter, one can study how well different schedulers
adapt to a higher multiprogramming level.

• System overheads. We can also vary the overheads that
are involved in various operating system activities, such
as context switches, interrupts, and scheduling queue ma-
nipulations. These parameters can check how sensitive a
scheduling scheme is to the system overheads.

As far as the scheduling schemes are concerned, we can
vary the following parameters:

• Time quanta. For scheduling schemes that employ time
sharing on each node, time quanta play an important role
in determining the performance. Time quanta that are too
small will lead to thrashing (due to the dominance of con-
text switch overheads), while overly large time quanta
will have higher fragmentation (a task can finish before
its quantum ends).

• Busy-wait duration. Under some dynamic coscheduling
schemes, a task blocks itself after busy-waiting for a mes-
sage for a time period (the threshold). The duration of
this busy-waiting period is essential to the success of the
scheduler. If the duration is too short, then interrupts are
needed later to wake up the message even though they will
arrive shortly; if the duration is too long, then more CPU
resource will be wasted.

• Rescheduling frequency. To avoid wasting CPU resources,
certain dynamic coscheduling heuristics reschedule the
tasks periodically. This frequency determines the effi-
ciency of such heuristics. If it takes place too often, then it

may lead to thrashing, while too infrequent rescheduling
may lead to poor CPU utilization.

6. Case Studies: Using ClusterSchedSim

We can use ClusterSchedSim (1) to determine the best
scheduler for a particular workload and system setting, (2)
to profile the execution for a particular scheduler to locate
its bottleneck, (3) to understand the impact of the emerg-
ing trends in computer architecture, (4) to tune the system
and scheduler parameters to the optimal setting, and (5) to
design and test new schedulers. In this section, we present
case studies for the first three usages.

• Comparison of scheduling strategies. It is an important
problem to choose the best scheduling strategy for a partic-
ular workload under a certain system configuration. Using
ClusterSchedSim, we can easily configure the system and
workloads and compare different heuristics under these
configurations. Figure 8a-c shows such examples. In Fig-
ure 8a, we use a real job trace collected from a 320-node
cluster at the Lawrence Livermore National Laboratory
to compare the space-sharing scheme and gang schedul-
ing [30]. It clearly shows that gang scheduling performs
better for this workload. In Figure 8b,c, we configure a
much smaller cluster (32 nodes) and run two synthetic
workloads, one communication intensive and the other
I/O intensive [16]. The results show that gang scheduling
is better for communication-intensive workloads (some
dynamic coscheduling schemes are very close, though),
and dynamic coscheduling schemes are better for I/O-
intensive workloads.

• Execution profile. To explain why one particular scheme
performs better than another, one needs to obtain the de-
tailed execution profiles to understand the bottlenecks
of each scheme. Using ClusterSchedSim, one can eas-
ily get such profiles. An example is shown in Figure 9,
which shows how much time a CPU spends in computing,
spinning (busy-wait), interrupt overheads, context-switch
overheads, and being idle, respectively. Focusing on the
two schemes—gang scheduling and periodic boost—we
find that gang scheduling spends a smaller fraction of its
execution in spinning (because of exact coscheduling) but
a much larger fraction being idle (poorer per node utiliza-
tion). These statistics can easily explain the results pre-
sented in Figure 8. Such statistics can be easily obtained
using a simulation tool, and neither an actual experimen-
tation nor an analytical model can do the same.

• Impact of the system parameters. We not only need to
study the performance of a scheduler under one sys-
tem setting, but it is also important to evaluate how the
scheduler fares when the system parameters vary. Clus-
terSchedSim provides a set of configurable parameters,
which can facilitate such studies. An example is shown
in Table 1, which compares how gang scheduling and dy-
namic coscheduling schemes perform when system over-
heads (e.g., context-switch overheads, time quanta, and
interrupt costs) change. It shows that gang scheduling will
benefit from a smaller time quantum because it can re-
duce the system fragmentation. On the other hand, dy-
namic coscheduling schemes that employ a on-demand

Volume 80, Number 4–5 SIMULATION 203

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

utilization

A
ve

ra
ge

 jo
b

re
sp

on
se

 ti
m

e
(X

 1
04 s

ec
on

ds
)

Space Sharing
GS, MPL 5

Local GS SB DCS DCS−SB PB PB−SB SY PB−SY DCS−SY
0

1

2

3

4

5

6

7

8

9

10

A
vg

 J
ob

 R
es

po
ns

e
T

im
e

(X
 1

0
4 s

ec
on

ds
)

 wait time
 exec. time

Local GS SB DCS DCS−SB PB PB−SB SY PB−SY DCS−SY
0

1

2

3

4

5

6

7

8

9

10

A
vg

 J
ob

 R
es

po
ns

e
T

im
e

(X
 1

0
4 s

ec
on

ds
)

 wait time
 exec. time

(a) Space sharing vs. exact
co-scheduling against a real job
trace

(b) Exact co-scheduling vs. dy-
namic co-scheduling against a
synthetic workload that is com-
munication intensive

(c) Exact co-scheduling vs. dy-
namic co-scheduling against a
synthetic workload that is I/O in-
tensive

Figure 8. A comparison between different scheduling schemes

Figure 9. A detailed execution profile for gang scheduling and a set of dynamic coscheduling schemes

rescheduling technique (e.g., SB, DCS) benefit more from
a lower interrupt cost or a lower context-switch cost be-
cause they incur a larger number of interrupts and context
switches compared to other schemes that employ periodic
rescheduling (e.g., PB).

7. Concluding Remarks

The past few decades have witnessed the rise of clusters
among diverse computing environments, ranging from su-

percomputing centers to commercial (server) settings. The
diversity in the workload characteristics and workload re-
quirements has posed new challenges in job scheduling
for such systems. A plethora of scheduling heuristics have
been proposed. It is thus critical to conduct a comprehen-
sive and detailed evaluation of these schemes. Due to the
numerous parameters and its complexity, both actual im-
plementations and analytical models are not appropriate to
perform the evaluation.

204 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

A SIMULATION FRAMEWORK FOR CLUSTER SCHEDULING STRATEGIES

Table 1. Impact of system overheads on response time

Q = 200 msec, CS = 2 msec Q = 100 msec, CS = 1 msec Q = 100 msec, CS = 2 msec
Scheme 1.000 0.896 0.977

GS CS = 200 µµµsec, I = 50µµµsec CS = 100 µµµsec, I = 25µµµsec CS = 100 µµµsec, I = 50µµµsec

SB 1.000 0.648 0.642
DCS 1.000 0.902 0.904

DCS-SB 1.000 0.710 0.804
PB-SB 1.000 0.670 0.687

PB 1.000 0.89

We have developed ClusterSchedSim, a unified simu-
lation framework, that models a wide range of schedul-
ing strategies for cluster systems. The core of this frame-
work lies in a detailed cluster simulation model, Cluster-
Sim. ClusterSim simulates nodes across the cluster and
the interconnect. On the basis of this core, we have built
the following modules: (1) a set of parallel workloads
that are often hosted on clusters; (2) scheduling strate-
gies, including space sharing, exact coscheduling, and dy-
namic coscheduling strategies; (3) detailed instrumenta-
tion patches that can profile the executions at different lev-
els; and (4) a complete set of configurable parameters, both
for the scheduling schemes and the system settings.

ClusterSchedSim is a powerful tool. It can be used to
perform various studies in cluster scheduling. For exam-
ple, one can determine the best scheduler under a cer-
tain workload and system setting, profile the execution
of a particular scheduler to locate its bottleneck, quan-
tify the impact of system parameters on a scheduler, tune
the system and scheduling parameters to the optimal set-
ting, and design and test new scheduling schemes. On
the other hand, ClusterSchedSim is modular enough that
it can be easily extended to accommodate new modules
and new scheduling strategies. For example, we have ex-
tended it by incorporating scheduling pipelined real-time
workloads and a mixed stream of workloads with di-
verse quality-of-service requirements [32]. We have made
ClusterSchedSim publicly available at the following site:
www.ece.rutgers.edu/∼yyzhang/clusterschedsim.

9. References

[1] Setia, S. K., M. S. Squillante, and S. K. Tripathi. 1994. Analysis
of processor allocation in multiprogrammed, distributed-memory
parallel processing systems. IEEE Transactions on Parallel and
Distributed Systems 5 (4): 401-20.

[2] Leutenegger, S. T., and M. K. Vernon. 1990. The performance of mul-
tiprogrammed multiprocessor scheduling policies. In Proceedings
of the ACM SIGMETRICS 1990 Conference on Measurement and
Modeling of Computer Systems, pp. 226-36.

[3] Zahorjan, J., and C. McCann. 1990. Processor scheduling in shared
memory multiprocessors. In Proceedings of the ACM SIGMET-
RICS 1990 Conference on Measurement and Modeling of Com-
puter Systems, pp. 214-25.

[4] Tucker, A. 1993. Efficient scheduling on shared-memory multipro-
cessors. Ph.D. diss., Stanford University, Stanford, CA.

[5] Ousterhout, J. K. 1982. Scheduling techniques for concurrent sys-
tems. In Proceedings of the 3rd International Conference on Dis-
tributed Computing Systems, pp. 22-30.

[6] Feitelson, D. G., and L. Rudolph. 1992. Gang scheduling performance
benefits for fine-grained synchronization. Journal of Parallel and
Distributed Computing 16 (4): 306-18.

[7] Feitelson, D. G., and L. Rudolph. 1992. Coscheduling based on run-
time identification of activity working sets. Technical Report Re-
search Report RC 18416(80519), IBM T. J. Watson Research Cen-
ter.

[8] The connection machine CM-5 technical summary. 1991. Cambridge,
MA: Thinking Machines Corporation.

[9] Franke, H., J. Jann, J. E. Moreira, P. Pattnaik, and M. A. Jette. 1999.
Evaluation of parallel job scheduling for ASCI Blue-Pacific. In
Proceedings of Supercomputing, November.

[10] Nagar, S., A. Banerjee, A. Sivasubramaniam, and C. R. Das. 1999.
A closer look at coscheduling approaches for a network of work-
stations. In Proceedings of the Eleventh Annual ACM Symposium
on Parallel Algorithms and Architectures, June, pp. 96-105.

[11] Nagar, S., A. Banerjee, A. Sivasubramaniam, and C. R. Das. 1999.
Alternatives to coscheduling a network of workstations. Journal
of Parallel and Distributed Computing 59 (2): 302-27.

[12] Arpaci-Dusseau, A. C., D. E. Culler, and A. M. Mainwaring. 1998.
Scheduling with implicit information in distributed systems. In
Proceedings of the ACM SIGMETRICS 1998 Conference on Mea-
surement and Modeling of Computer Systems.

[13] Sobalvarro, P. G. 1997. Demand-based coscheduling of parallel jobs
on multiprogrammed multiprocessors. Ph.D. diss., Department
of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA.

[14] Buchanan, M., and A. Chien. 1997. Coordinated thread scheduling
for workstation clusters under Windows NT. In Proceedings of
the USENIX Windows NT Workshop, August.

[15] Zhang, Y., A. Sivasubramaniam, J. Moreira, and H. Franke. 2000. A
simulation-based study of scheduling mechanisms for a dynamic
cluster environment. In Proceedings of the ACM 2000 Interna-
tional Conference on Supercomputing, May, pp. 100-9.

[16] Zhang, Y., A. Sivasubramaniam, J. Moreira, and H. Franke. 2001.
Impact of workload and system parameters on next generation
cluster scheduling mechanisms. IEEE Transactions on Parallel
and Distributed Systems 12 (9): 967-85.

[17] Crovella, M., P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos.
1991. Multiprogramming on multiprocessors. In Proceedings of
the IEEE Symposium on Parallel and Distributed Processing, pp.
590-97.

[18] Ghosal, D., G. Serazzi, and S. K. Tripathi. 1991. The processor
working set and its use in scheduling multiprocessor systems.
IEEE Transactions on Software Engineering 17 (5): 443-53.

[19] Herlihy, M., B.-H. Lim, and N. Shavit. 1992. Low contention load
balancing on large-scale multiprocessors. In Proceedings of the
Symposium on Parallel Algorithms and Architectures, June, pp.
219-27.

[20] Karlin, A. R., K. Li, M. S. Manasse, and S. Owicki. 1991. Em-
pirical studies of competitive spinning for a shared-memory

Volume 80, Number 4–5 SIMULATION 205

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

Zhang and Sivasubramaniam

multiprocessor. In The 13th Symposium on Operating Systems
Principles, October, pp. 41-55.

[21] von Eicken, T., A. Basu, V. Buch, and W. Vogels. 1995. U-net: A
user-level network interface for parallel and distributed comput-
ing. In Proceedings of the 15th ACM Symposium on Operating
System Principles, December.

[22] Pakin, S., M. Lauria, and A. Chien. 1995. High performance mes-
saging on workstations: Illinois fast messages (FM) for Myrinet.
In Proceedings of Supercomputing ’95, December.

[23] Bailey, D., J. Barton, T. Lasinski, and H. Simon. 1991. The NAS
parallel benchmarks. International Journal of Supercomputer Ap-
plications 5 (3): 63-73.

[24] Singh, J. P., W.-D. Weber, and A. Gupta. 1991. SPLASH: Stanford
ParallelApplications for Shared-Memory. Technical Report CSL-
TR-91-469, Computer Systems Laboratory, Stanford University.

[25] Microelectronics and Computer Technology Corporation. 1990.
CSIM user’s guide. Austin, TX: Microelectronics and Computer
Technology Corporation.

[26] Zhang, Y., H. Franke, J. Moreira, and A. Sivasubramaniam. 2000.
Improving parallel job scheduling by combining gang scheduling
and backfilling techniques. In Proceedings of the International
Parallel and Distributed Processing Symposium, May, pp. 133-
42.

[27] Lifka, D. 1995. The ANL/IBM SP scheduling system. In Proceed-
ings of the IPPS Workshop on Job Scheduling Strategies for Par-
allel Processing, April, pp. 295-303.

[28] Tucker, L. W., and G. G. Robertson. 1988. Architecture and applica-
tions of the connection machine. IEEE Computer 21 (8): 26-38.

[29] Dusseau, A. C., R. H. Arpaci, and D. E. Culler. 1996. Effective dis-
tributed scheduling of parallel workloads. In Proceedings of the
ACM SIGMETRICS 1996 Conference on Measurement and Mod-
eling of Computer Systems, pp. 25-36.

[30] Zhang,Y., H. Franke, J. Moreira, andA. Sivasubramaniam. 2003.An
integrated approach to parallel scheduling using gang-scheduling,
backfilling and migration. IEEE Transactions on Parallel and Dis-
tributed Systems 14 (3): 236-47.

[31] Zhang, Y., H. Franke, J. Moreira, and A. Sivasubramaniam. 2000.
The impact of migration on parallel job scheduling for distributed
systems. In Proceedings of 6th International Euro-Par Conference
Lecture Notes in Computer Science 1900, August/September, pp.
245-51.

[32] Zhang, Y., and A. Sivasubramaniam. 2001. Scheduling best-effort
and pipelined real-time applications on time-shared clusters. In
Proceedings of the Thirteenth Annual ACM Symposium on Paral-
lel Algorithms and Architectures, July, pp. 209-18.

Yanyong Zhang is an assistant professor in the Department of
Electrical & Computer Engineering, Rutgers University, Piscat-
away, New Jersey.

Anand Sivasubramaniam is an associate professor in the De-
partment of Computer Science and Engineering, Pennsylvania
State University, University Park, Pennsylvania.

206 SIMULATION Volume 80, Number 4–5

 © 2004 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.
 at RUTGERS UNIV on June 28, 2007 http://sim.sagepub.comDownloaded from

http://sim.sagepub.com

