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ABSTRACT
Scheduling in large-scale parallel systems has been and contin-
ues to be an important and challenging research problem. Several
key factors, including the increasing use of off-the-shelf clusters
of workstations to build such parallel systems, have resulted in the
emergence of a new class of scheduling strategies, broadly referred
to as dynamic coscheduling. Unfortunately, the size of both the de-
sign and performance spaces of these emerging scheduling strate-
gies is quite large, due in part to the numerous dynamic interactions
among the different components of the parallel computing environ-
ment as well as the wide range of applications and systems that can
comprise the parallel environment. This in turn makes it difficult to
fully explore the benefits and limitations of the various proposed
dynamic coscheduling approaches for large-scale systems solely
with the use of simulation and/or experimentation.

To gain a better understanding of the fundamental properties of
different dynamic coscheduling methods, we formulate a general
mathematical model of this class of scheduling strategies within
a unified framework that allows us to investigate a wide range of
parallel environments. We derive a matrix-analytic analysis based
on a stochastic decomposition and a fixed-point iteration. A large
number of numerical experiments are performed in part to examine
the accuracy of our approach. These numerical results are in ex-
cellent agreement with detailed simulation results. Our mathemati-
cal model and analysis is then used to explore several fundamental
design and performance tradeoffs associated with the class of dy-
namic coscheduling policies across a broad spectrum of parallel
computing environments.
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1. INTRODUCTION
Parallel system scheduling is challenging because of the numer-

ous factors involved in implementing a scheduler. Some of these
influencing factors are the workload, native operating system, node
hardware, network interface, network, and communication soft-
ware. The recent shift towards the adoption of off-the-shelf clus-
ters for cost-effective parallel computing makes the design of an
efficient scheduler even more crucial and challenging. Clusters are
gaining acceptance not just in scientific applications that need su-
percomputing power, but also in domains such as databases, Inter-
net services and multimedia, which place diverse demands on the
underlying system. Further, these applications have diverse charac-
teristics in terms of the computation, communication and I/O oper-
ations which raise complications when multiprogramming the sys-
tem. Traditional solutions that have been used in conventional par-
allel systems are not adequately tuned to handle the diverse work-
loads and performance criteria.

Scheduling is usually done in two steps. The first step, spatial
scheduling, consists of assigning tasks1 of an application to proces-
sors. The second step, temporal scheduling, consists of time multi-
plexing the various tasks on the corresponding processor. There is
a considerable body of literature regarding spatial scheduling (e.g.,
refer to [6]) and we do not consider this problem herein, nor do
we examine the issue of migrating tasks during execution for better
load balance. The focus of this paper is on temporal scheduling,
which is an especially important issue on clusters.

With off-the-shelf clusters, it is very tempting and quite natu-
ral to use off-the-shelf (native) operating systems, with each node
performing its own (temporal) scheduling. However, the lack of
a coordinated schedule across the system can result in a task of a
job waiting for a message from another task that is not currently
scheduled on a remote node. This problem is accentuated in cur-
rent cluster environments that employ user-level messaging (to re-
duce latencies and improve bandwidth), wherein the operating sys-
tem is unaware of the task waiting for a message. Multiprocessors
have traditionally addressed this problem using a technique called
Coscheduling/Gang Scheduling [18], wherein tasks of a job are
scheduled on their respective nodes during the same time quantum.

1In this paper, we use the term tasks to refer to the processes (as
defined by the native operating system) constituting an application
to avoid any ambiguities with stochastic processes.



However, gang scheduling is not a very attractive/scalable option
for off-the-shelf clusters, since it requires periodic synchronization
across the nodes to coordinate the effort. Longer time quanta to
offset this cost can decrease the responsiveness of the system.

As a result, there have been recent efforts [5, 19, 15] to design a
new class of scheduling mechanisms – broadly referred to as “dy-
namic coscheduling” – which approximate coscheduled execution
without explicitly synchronizing the nodes. These techniques use
local events (e.g., message arrival) to estimate what is happening at
remote nodes, and adjust their local schedules accordingly. They
are able to simply adjust task priorities to achieve this goal, leaving
it to the native operating system to do the actual scheduling. These
scheduling mechanisms have been shown to be easier to imple-
ment, incur less overheads, and result in more effective schedules
than exact coscheduling in a specific computing environment [24].

The design and performance spaces of dynamic coscheduling
mechanisms are quite complex, and a myriad of heuristics are pos-
sible to schedule the tasks. Without a unifying performance eval-
uation framework, it is very difficult to evaluate the benefits and
limitations of these different heuristics/mechanisms. Only a few
very recent studies [15, 24, 1] have even attempted to compare their
merits. With so many different parameters for the parallel system
and workload, it is difficult to perform an extensive performance
evaluation across the entire spectrum. As a result, it is difficult
to say which approaches perform best, and under what conditions,
and thus many important design and performance questions remain
open. Previous studies have used a set of static jobs [19, 5, 15] or
a very specific dynamic arrival pattern [24] on a small-scale paral-
lel system. While one could use experimentation [15] and simu-
lation [1, 24] to study small-scale systems, the suitability of these
mechanisms for large-scale systems has not been explored, which is
one of the motivating factors for our present study. Further, what is
the effect of varying the relative fraction of computation (requiring
only CPU resources), communication and I/O components in the
application, which represents different parallel workloads? Each
dynamic coscheduling mechanism has tunable parameters that can
have a significant effect on performance. How can we select values
for these parameters to get the best performance from the parallel
system? As the underlying hardware or operating system changes
(leading to different context-switch costs, interrupt costs, speeding
up the computation, faster I/O, etc.), how do the relative benefits of
the different alternatives compare? Answers to such questions are
crucial for the design of an efficient cluster environment, and a uni-
fied performance evaluation framework is needed to answer these
and other fundamental design and performance questions.

This paper therefore fills a crucial void in the performance evalu-
ation of emerging parallel scheduling strategies by developing and
exploiting the first analytical models and analysis (to our knowl-
edge) that accurately capture the execution of dynamically cosched-
uled parallel systems. We formulate a general mathematical model
of this class of scheduling strategies within a unified framework
that allows us to investigate a wide range of parallel computing en-
vironments. This general framework supports incorporating differ-
ent scheduling heuristics, workload parameters, system parameters
and overheads, policy parameters, etc. We derive a matrix-analytic
analysis of the parallel scheduling models based on a stochastic
decomposition, which leads to a vastly reduced state-space repre-
sentation and in some cases is asymptotically exact as the number
of processors increases. Measures of certain aspects of the dynamic
parallel system behavior are calculated in terms of the decomposed
model solution, and a fixed-point iteration is used to obtain the fi-
nal solution. In addition to mean job response time and maximum
system throughput measures, our analysis provides detailed statis-

tics (e.g., time spent in certain system/application states) that can
be used to explain the overall results, to isolate hotspots (for subse-
quent optimization), and to gain a better understanding of the ben-
efits and limitations of different dynamic coscheduling approaches.

A large number of numerical experiments were conducted, which
were used to make detailed comparisons among various design and
performance space issues/tradeoffs. We first demonstrate the ac-
curacy of our approach by showing the results to be in excellent
agreement with those from detailed simulations of a relatively small
parallel system, often being within 5% and always less than 10%.
As previously noted, the accuracy of our approach increases with
the size of the system and our primary interests are in large-scale
parallel systems consisting of many computing nodes. Given the
complex dynamic interactions among the different aspects of both
the parallel computing environment and the scheduling strategy,
these results provide considerable evidence of the benefits of our
approach to investigate the fundamental design and performance
problems at hand. Our numerous experiments also readily provide
and quantify the behavior of very large-scale systems, which has
not been possible in any of the previous experimental and simulation-
based research studies. Using our models and analysis, we are
able for the first time to evaluate the benefits and limitations of the
three previously proposed dynamic coscheduling mechanisms un-
der a wide range of different workload and system configurations,
thus complementing and considerably extending very recent exper-
imental and simulation-based dynamic coscheduling studies. The
advantages of such a flexible and configurable model are demon-
strated by conducting studies with different computing environ-
ments to explore and understand the fundamental design and per-
formance tradeoffs associated with the various dynamic coschedul-
ing strategies. While the motivation for the model comes from the
suitability of dynamic coscheduling mechanisms for cluster envi-
ronments, the model itself is very generic and can be used to ex-
amine the behavior of these mechanisms on a diverse set of parallel
and distributed systems subject to a diverse set of workloads.

The remainder of this paper is organized as follows. The next
section provides a brief overview of the dynamic coscheduling mech-
anisms. Section 3 presents the parallel system environment used in
our study and defines the corresponding stochastic models. We then
derive a mathematical analysis of these parallel dynamic coschedul-
ing models. Section 5 presents a representative sample of the re-
sults from our numerical experiments based on this analysis. Fi-
nally, Section 6 summarizes the contributions of this work and
identifies directions for future research.

2. DYNAMIC COSCHEDULING POLICIES
Exact coscheduling or Gang Scheduling (henceforth referred to

as just coscheduling) ensures that the tasks of a job are scheduled
on their respective nodes (processors) at the same time. This re-
quires a coordinated effort (requiring synchronization), incurring
an additional overhead. Increasing time quanta to offset this cost
can decrease the responsiveness of the system. One of the advan-
tages of coscheduling is that the network is also virtualized for each
job (and is context switched along with the job), making it possi-
ble for the task to directly deposit and pick up messages to/from the
network interface (user-level messaging). However, recent network
innovations [4, 23] have made it possible to virtualize the network
by just using the virtual memory system, and it is thus possible to
perform user-level networking even if different jobs are running on
the different nodes without compromising protection. This has led
to the exploration of dynamic coscheduling mechanisms that try
to approximate coscheduled execution without the need for syn-
chronization among the nodes. In this section we briefly review



the three previously proposed dynamic coscheduling mechanisms,
namely Spin-Block (SB), Demand-based Coscheduling (DCS) and
Periodic Boost (PB). We also describe the system (called Local
Scheduling (LS)) which does not attempt to do any coscheduling
between the nodes, and leaves it to the native operating system at
each node to time share its processor.

2.1 Local Scheduling (LS)
In this mechanism, the native operating system is left to sched-

ule the tasks at each node, with no coordinated efforts across them.
Most off-the-shelf/commercial operating system schedulers (includ-
ing Solaris, Linux, Windows NT, System V UNIX) use some ver-
sion of the multi-level feedback queue to implement time sharing.
There are a certain number of priority levels, with jobs waiting at
each level, and a time quantum associated with that level. The job
at the head of the highest level is selected to execute for that time
quantum, and at the end of this quantum it is inserted at the tail of
the next level, and the entire sequence repeats. In this paper, we as-
sociate equal time quanta for all priority levels which is the case in
Windows NT. When a task initiates an I/O operation, it relinquishes
the CPU, and is put in a blocked state. Upon I/O completion, it typ-
ically receives a priority boost and is scheduled again.

2.2 Spin Block (SB)
Versions of this mechanism have been considered in the con-

text of implicit coscheduling [5, 2] and demand-based coschedul-
ing [19]. In this scheme, a task spins on a message receive for a
fixed amount of time (spin time) before blocking itself. The ratio-
nale here is that if the message arrives in a reasonable amount of
time (spin time), the sender task is also currently scheduled and the
receiver should hold on to the CPU to increase the likelihood of
executing in the near future when the sender task is also execut-
ing. Otherwise, it should block so that CPU cycles are not wasted.
When the message does arrive, the task is woken up, and conse-
quently gets a boost in priority to get scheduled again. There are
costs associated with blocking and waking up (requires an interrupt
on message arrival). Both interrupt costs and spin time will have a
bearing on the resulting performance, and need to be studied. Our
model is flexible enough to allow either fixed or variable (adaptive)
spin times and the model derivation allows for incorporating several
heuristics that can be used to tune the spin times adaptively. How-
ever, in the results part of this paper, we focus on a fixed spin model
for comparisons, with the hope of gaining insights that can be used
to design both fixed and variable (adaptive) spin time mechanisms.

2.3 Demand-based Coscheduling (DCS)
Demand-based coscheduling [19] uses an incoming message to

schedule the task for which it is intended, and preempts the cur-
rent task if the intended receiver is not currently scheduled. The
underlying rationale is that the receipt of a message denotes the
higher likelihood of the sender task of that job being scheduled at
the remote workstation at that time. Upon message arrival, if the
intended task is not currently scheduled, an interrupt overhead is
paid for re-scheduling that task. The interrupt costs will have a
bearing on the resulting performance.

2.4 Periodic Boost (PB)
This mechanism has been proposed as an interrupt-less alterna-

tive to address the inefficiencies arising from scheduling skews be-
tween tasks. Instead of immediately interrupting the host CPU on
message arrival as in DCS, the actions are slightly delayed. A ker-
nel activity becomes active periodically to check if there is a task
with a pending (unconsumed) message, and if so it boosts the pri-

ority of that task. Even if there is no such task, but the currently
scheduled one is busy waiting for a message, the activity boosts an-
other task with useful work to do. Though interrupts are avoided,
there is the fear of delaying the actions more than necessary. At the
same time, making this too frequent would increase the overheads.
The impact of the frequency of the periodic mechanism, and the
associated costs of the activity on the resulting performance need
to be studied.

3. SYSTEM AND MODELS
Our stochastic models of the parallel systems and workloads

of interest in this study are based on the broad spectrum of par-
allel computing environments found in practice [7, 11, 12, 21].
Similarly, our stochastic models of the above dynamic coschedul-
ing mechanisms are based on actual implementations described in
the research literature [19, 15], and the costs used for the various
scheduling actions have also been drawn from experimental results.

3.1 Parallel System
We consider a parallel computer system that implements the dy-

namic coscheduling strategies of Section 2 to allocate system re-
sources to the applications submitted for execution. The parallel
system consists of P identical processors, each capable of exe-
cuting any of the parallel tasks comprising an application. Ev-
ery processor can operate at a maximum multiprogramming level
(MPL), which is usually governed by resource availability (e.g.,
memory/swap space) to provide reasonable overall performance for
the executing jobs. Processors are interconnected by a network that
has both a latency and a contention component.

Upon arrival, jobs either specify a certain number of processors
that they require (which is equal to the number of tasks in that job),
or a range of the number of processors on which they can execute.
Each of the tasks belonging to the job is then assigned to a pro-
cessor that is not already operating at its maximum MPL. Let M
denote this maximum MPL for a processor in the system. Even if
only one of the tasks cannot be assigned, the job waits in a queue
and the scheduler assigns jobs from this queue in a first-come first-
serve (FCFS) order to a processor partition of the desired size.

As noted in the introduction, our primary focus in this paper is on
temporal scheduling. We mostly consider spatial scheduling with
respect to its impact on our modeling approach.

Another primary focus in this paper is on large-scale parallel
computer systems. These computing environments can increase
the dynamic interactions and complexities of dynamic coschedul-
ing strategies. These parallel environments are also of great interest
and play an important role in many scientific and commercial ap-
plications. Moreover, it is both difficult and expensive to either
experiment with and/or simulate such large-scale computing envi-
ronments, and thus our analytic models can play an even more im-
portant role in better understanding dynamic coscheduling in these
environments. We further note that, while our approach provides
very good approximations for relatively small-scale systems, an ex-
act formulation (see Section 4) can be used together with some of
the results of our analysis to examine even smaller parallel systems.

3.2 Parallel Workload
Parallel jobs arrive to the system from an exogenous source at

rate λ. The interarrival times of these jobs are assumed to be
independent and identically distributed (i.i.d.) according to the
phase-type distribution PH(α,SA) of order mA with mean λ−1 =
−α(SA)−1e and coefficient of variation cA, where e is used to
denote the column vector of appropriate dimension containing all
ones. An arrival is placed in the FCFS system queue when all M



time-sharing slots are filled in each of the processor partitions of the
desired size. The time-sharing quantum lengths and the context-
switch overheads at each processor are respectively assumed to be
i.i.d following the phase-type distributions PH(χ,SQ) and PH(ξ,SO)

of orders mQ and mO having means τ−1 = −χ(SQ)−1e and

δ−1 = −ξ(SO)−1e, and coefficients of variation cQ and cO .
The applications comprising the system workload consist of par-

allel tasks, each of which alternates among several stages of execu-
tion in an iterative manner. The number of iterations for each appli-
cation, NA, is assumed to follow a (shifted) geometric distribution
with parameter pNA , i.e., P [NA = 1 + n] = (1−pNA)npNA , n ∈
ZZ+. We consider a general class of parallel applications in which
each iteration consists of a computation stage, followed by an I/O
stage, followed by a communication stage (i.e., sending and receiv-
ing messages among tasks). The service times of these per-iteration
computation, I/O and communication stages are respectively as-
sumed to be i.i.d. according to the order mB , mI and mC phase-
type distributions PH(β,SB), PH(η,SI) and PH(ζ,SC) with means

µ−1 = −β(SB)−1e, ν−1 = −η(SI)−1e and γ−1 = −ζ(SC)−1e,

and coefficients of variation cB , cI and cC . As part of the commu-
nication stage, a task may also have to wait for the receipt of a mes-
sage from a peer parallel task. We also consider an all-to-all com-
munication strategy, where a task may have to wait for messages
from all other tasks before proceeding. All of the above stochastic
sequences are assumed to be mutually independent.

The probability distributions assumed for the mathematical model
parameters are important in that they determine both the generality
of our solution and the usefulness of our model in practice. The use
of phase-type distributions [16, 13] for all model parameters is of
theoretical importance in that we exploit their properties to derive
solutions of various instances of our general stochastic scheduling
models. It is also of practical importance in that, since this class of
distributions is dense within the set of probability distributions on
[0,∞), any distribution on this space for the parallel environments
of interest can in principle be represented arbitrarily closely by a
phase-type distribution. Moreover, a considerable body of research
has examined the fitting of phase-type distributions to empirical
data, and a number of algorithms have been developed for doing
so; e.g., see [3, 8, 10, 17] and the references cited therein. This
includes recent work that has considered effectively approximating
heavy-tailed distributions with instances of the class of phase-type
distributions in order to analyze performance models. By appropri-
ately setting the parameters of our models, a wide range of parallel
application and system environments can be investigated.

4. MATHEMATICAL ANALYSIS
In this section we present a general mathematical analysis of

the foregoing parallel scheduling models within a unified frame-
work that allows us to investigate all classes of parallel application
and system environments of interest using a single formulation. To
the best of our knowledge, there is no previous work that has an-
alytically modeled and analyzed parallel systems under dynamic
coscheduling policies. The reasons for this center around the in-
herent complexity of such a mathematical model given the dynamic
and complex interactions among the parallel processors, making an
exact analysis intractable. After illustrating some of these prob-
lems, we present a very different and novel approach to address
the fundamental problems involved in the mathematical modeling
and analysis of this complex parallel system. Our analysis is based
on a general form of stochastic decomposition in which we derive
distributional characterizations of the dynamic interactions and de-
pendencies among the parallel processors under various dynamic

coscheduling policies. We then exploit this distributional charac-
terization to obtain a reduced state-space representation, for which
we derive a matrix-analytic analysis based on a fixed-point itera-
tion. Our analysis can be shown to be asymptotically exact in the
limit as P → ∞ for some versions of dynamic coscheduling [22],
and numerous simulation-based experiments demonstrate that this
approximation is very accurate even for relatively small-scale par-
allel systems though our primary interest is on the class of large-
scale, high-performance parallel systems.

The parallel dynamic coscheduling models can be represented
by the continuous-time stochastic process {X(t) ; t ∈ IR+}, de-
fined on the infinite, multi-dimensional state space given by ΩX =⋃∞

i=0 Ωi
X where Ω0

X ≡ {(0, jA) | jA ∈ {1, . . . ,mA}}, Ωi
X ≡

{(i, jA, j
B

1 , . . . , j
B

P ) | i ∈ ZZ+, jA ∈ {1, . . . ,mA}}, j
B

k ≡ (ik,

j
R

k , jB
k,1, . . ., jB

k,min{ik,M}, jQ
k ), ik ∈ {0, . . ., min{i,M}}, j

R

k (�)

∈ {1, . . . ,min{ik,M}}, jB
k,� ∈ {1, . . . , σNφ}, jQ

k ∈ {1, . . . ,mQ+

mO}, k ∈ {1, . . . , P}, σn ≡
∑n

�=1 φ�. The state-vector variable
i denotes the total number of parallel jobs in the system; jA de-
notes the phase of the interarrival process; ik denotes the number
of parallel jobs assigned to processor k; j

R

k (�) denotes the current
index of the �th priority ordered parallel job assigned to processor
k (where j

R

k (1) denotes the index of the parallel job currently us-
ing processor k) when ik ≥ 1 and it is defined to be equal to 1
when ik = 0; jB

k,� denotes the phase of the overall service process

(defined below) for the �th job assigned to processor k; jQ
k denotes

the phase of the quantum length process (including context-switch
overhead) at processor k; φ� denotes the number of phases in the
phase-type distribution for the �th execution stage of the overall
service process; and Nφ denotes the number of execution stages
comprising the overall service process.

The above (exact) formulation exploits known closure properties
of phase-type distributions [13], most notably that the convolution
of phase-type distributions is also of phase type. As a result, we
can generally capture the various stages of execution (e.g., compu-
tation, I/O and communication) for the classes of parallel applica-
tions of interest via a single phase-type distribution that represents
the appropriate combinations of the phase-type distributions for
each of these stages of execution as well as other system behavior
(e.g., the impact of a task waiting to receive a message). We refer to
this combined process as the overall service process. Moreover, as
described in more detail below, we note that one of the general keys
of our approach consists of capturing the various correlations and
dynamic behaviors of the parallel system and scheduling policy in
the construction and use of this overall service process.

A primary difficulty in analyzing the process {X(t) ; t ∈ IR+}
that records the state of each processor in the system is the size and
complexity of its state space ΩX . This is because the stochastic
process is infinite in multiple dimensions and it contains no struc-
ture that can be exploited to deal with the combinatorial explosion
of the multi-dimensional state space in order to obtain an exact so-
lution. To create a tractable formulation, we first partition the sys-
tem into (disjoint) sets of processors that are executing the same
collection of parallel applications. We approximate each of these
processor partitions by assuming that the distribution of the state
of each processor in a given partition is stochastically independent
and identical to the distribution of the states of the other processors
in the partition. For each processor partition, the corresponding de-
composed stochastic process {Y (t) ; t ∈ IR+}, representing each
individual processor in the partition, then can be solved in isolation
by modifying its overall service process to reflect the distributional
behavior of the other processors in the partition. Thus, the complex



dependencies among the processors of a partition and their complex
dynamic interactions are probabilistically captured, in part, via the
overall service process. Performance measures for the entire parti-
tion can be obtained by analyzing the model of a single processor
in this manner via a fixed-point iteration, and performance mea-
sures for the entire parallel system are obtained by combining the
solutions for each of the partitions in the system.

This formulation of our approach assumes a specific parallel
computing environment in which each of the processors allocated
to an application has the same MPL. This is often the case in many
large-scale parallel systems that are spatially partitioned together
with some type of packing scheme to fill holes in the time-sharing
slots. However, our approach also can be used to handle large-scale
parallel systems in which the set of processors executing an appli-
cation has different numbers of applications assigned to them. This
is achieved by further partitioning the set of processors allocated to
an application based on their MPL. Our approach is then used to
solve in isolation the decomposed stochastic process representing
each individual processor in each of these subpartitions by modify-
ing its overall service process to reflect the distributional behavior
of the other processors in the subpartition, as well as the processors
in the other subpartitions. The fixed-point iteration of our approach
is extended in a relatively straightforward manner to handle these
subpartitions, and the final solution is obtained as described above.

We note that our analysis can include important aspects of real
parallel computing environments such as the effects of increased
contention for system resources (e.g., the network) which can be
incurred by the parallel system as a result of various application and
scheduling actions. Due to space limitations, however, this analysis
is not presented here and we refer the interested reader to [22].

4.1 Matrix-Analytic Analysis
Consider a particular processor from a specific processor par-

tition. The state space of the corresponding process {Y (t) ; t ∈
IR+} is given by ΩY =

⋃∞
i=0 Ωi

Y where Ω0
Y ≡ {(0, jA) | jA ∈

{1, . . . ,mA}}, Ωi
Y ≡ {(i, jA, j

R
, jB

1 , . . . , jB
min{i,M}, j

Q) | i ∈
ZZ+, jA ∈ {1, . . . ,mA}, jR

(�) ∈ {1, . . . ,min{i,M}}, jB
k ∈

{1, . . . , σNφ}, jQ ∈ {1, . . . ,mQ + mO}}. The state-vector vari-
able i denotes the number of parallel jobs at the given processor;
jA denotes the phase of the interarrival process; j

R
(�) denotes the

current index of the �th priority ordered parallel job assigned to
the processor (where j

R
(1) denotes the index of the parallel job

currently using the processor) when i ≥ 1 and it is defined to be
equal to 1 when i = 0; jB

k denotes the phase of the overall service
process for the kth job assigned to the processor; and jQ denotes
the phase of the quantum length process (including context-switch
overhead) at the processor. Recall that Nφ denotes the number of
execution stages comprising the overall service process, that φ� de-
notes the number of phases in the phase-type distribution for the �th

execution stage of the overall service process, 1 ≤ � ≤ Nφ, and
that σn ≡

∑n
�=1 φ�. We shall refer to Ωi

Y as level i.
Let yi,d ∈ Ωi

Y , 1 ≤ d ≤ Di, i ∈ ZZ+, be a lexicographic
ordering of the elements of level i, and define D ≡

∑M−1
i=0 Di,

where Di denotes the cardinality of level i. We then define

π ≡ ( π0, π1, π2, . . . ) , (1)

πi ≡ ( π(yi,1), π(yi,2), . . . , π(yi,Di) ) , (2)

π(yi,d) ≡ lim
t→∞

P [ Y (t) = yi,d ] , (3)

for i ∈ ZZ+, yi,d ∈ Ωi
Y , 1 ≤ d ≤ Di. The limiting probabil-

ity vector π is the stationary distribution for the stochastic process
{Y (t) ; t ∈ IR+}, and the value of each of its components π(yi,d)

can be easily shown to represent the long-run proportion of time
the system spends in state yi,d ∈ Ωi

Y , a property which we exploit
later in this section and in Section 5. Assuming this process to be
irreducible and positive recurrent, the invariant probability vector
is uniquely determined by solving πQ = 0 and πe = 1, where Q
is the infinitesimal generator matrix for the process.

The generator matrix Q, organized in the same order as the ele-
ments of the stationary vector π, has a structure given by

Q =




B00 B01 0 0 0 . . .
B10 B11 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

...
...

. . .


 , (4)

where B00, B01, B10, B11 and An, n = 0, 1, 2, are finite matrices
of dimensions D×D, D×DM , DM ×D, DM ×DM and DM ×
DM , respectively. Furthermore, the matrices corresponding to the
non-homogeneous boundary of ΩY have structures given by

B00 =




Ψ0 Λ0 · · · 0 0
Φ1 Ψ1 · · ·

0 Φ2 · · ·
...

...
...

...
. . .

0 0 · · · ΦM−1 ΨM−1



, B11 = ΨM , (5)

B01 = [0 · · · 0ΛM−1]
T , B10 = [0 · · · 0ΦM ], (6)

where Φi, Ψi and Λi have dimensions Di × Di−1, Di × Di and
Di ×Di+1, respectively. The components of the stationary proba-
bility vector π are then given by [16]

(π0, π1, . . . , πM )

[
B00 B01

B10 B11 + RA2

]
= 0, (7)

πM+k = πMRk, k ∈ ZZ+, (8)

(π0, π1, . . . , πM−1) e + πM (I −R)−1e = 1, (9)

where R is the minimal non-negative solution of the equation

R2A2 + RA1 + A0 = 0, (10)

and I is the identity matrix of order DM .
While these standard matrix-analytic results make it possible for

us to numerically solve the stochastic process in a very efficient
manner, instances of the model with large parameter values can
cause the dimensions of the boundary submatrices in equation (4)
to become quite large. Following the results derived in [20] for in-
finite quasi-birth-death processes (QBDs), we next establish a the-
orem that significantly reduces the time and space complexities of
computing equations (7) and (9). We also point out that the results
in [20] for (both) infinite (and finite) QBDs were derived indepen-
dently of the analogous results for finite QBDs obtained in [9].

THEOREM 4.1. Let Q be irreducible and in the form of (4)
through (6). If the minimal non-negative solutionR of equation (10)
satisfies sp(R) < 1, and if there exists a positive probability vector
(π0, . . . ,πM ) satisfying equation (7), then the components of this
probability vector are given by

πk = −πk+1 Φk+1 R̃
−1
k , 0 ≤ k ≤ M − 1, (11)

πM = −πM−1 ΛM−1 R̃
−1
M , (12)

where R̃0 ≡ Ψ0, R̃k ≡ Ψk − ΦkR̃
−1
k−1Λk−1, 1 ≤ k ≤ M − 1,

R̃M ≡ ΨM +RA2. Furthermore, when M > 1, the vector πM−1



can be determined up to a multiplicative constant by solving

πn [ωn ] = 0, (13)

πn e = θ, θ > 0, (14)

where n = M − 1 and ωM−1 = ΨM−1 − ΦM−1R̃
−1
M−2ΛM−2 −

ΛM−1R̃
−1
M ΦM . Otherwise, when M = 1, the vector π1 can be de-

termined up to a multiplicative constant by solving equations (13)
and (14) where n = 1 and ω1 = R̃1 − Φ1R̃

−1
0 Λ0. In either case,

the vector (π0,π1, . . . ,πM ) then can be obtained from (11), (12)
and the normalizing equation (9).

Proof: From known matrix-analytic results, the stationary proba-
bility vector π is given by equations (7), (8) and (9). Substitution
of (5) and (6) into equation (7) shows that the generator matrix for
the boundary has the structure

Q̃ =




Ψ0 Λ0 · · · 0 0 0
Φ1 Ψ1 · · · 0

0 Φ2 · · ·
...

...
...

...
...

. . . 0
0 0 · · · ΦM−1 ΨM−1 ΛM−1

0 0 · · · 0 ΦM ΨM + RA2



, (15)

where we have made use of (8). The invariant vector (π0, . . . ,πM )
then satisfies, up to a multiplicative constant, the equations

π0Ψ0 + π1Φ1 = 0, (16)

πk−1Λk−1 + πkΨk + πk+1Φk+1 = 0, (17)

πM−1ΛM−1 + πM (ΨM + RA2) = 0, (18)

(π0, · · · ,πM ) e = θ > 0, (19)

for 1 ≤ k ≤ M − 1. Upon substituting R̃0, . . . , R̃M into (16) –
(18), we obtain equations (11) and (12). The non-singularity of
the matrices R̃k, 0 ≤ k ≤ M , follows from the properties of the
irreducible generator matrix and the submatrices in (4) and (15).
Substitution of (11) and (12) into (17) for k = M − 1 > 0 yields
equation (13) with n = M − 1, which then can be used together
with (14) to obtain the vector πM−1 up to a multiplicative con-
stant when M > 1. Similarly, when M = 1, equation (13) with
n = 1 is obtained by substituting (11) and R̃M into (18). The re-
maining components of the vector (π0, . . . ,πM ) are determined
up to the same multiplicative constant via recurrence using equa-
tions (11) and (12). The vector π is then uniquely determined by
the normalizing equation (9).

The use of Theorem 4.1 to calculate the probability vector π
significantly reduces the computational complexity over that of nu-
merically solving equations (7) and (9) directly. In particular, this
approach makes it possible to obtain the boundary components of
the invariant vector (up to a multiplicative constant) by solving
M + 1 matrix equations of (time and space) complexity O(D2

i ),
0 ≤ i ≤ M , as opposed to solving a single matrix equation
of (time and space) complexity O((

∑M
i=0 Di)

2). This makes it
possible for us to compute solutions for large instances of the dy-
namic coscheduling models that are otherwise prohibitively expen-
sive. Moreover, the algorithm (based on Theorem 4.1) used to com-
pute these solutions is numerically stable across a wide spectrum of
model parameters. In fact, throughout all of the numerous experi-
ments performed as part of our study, some of which are presented
in Section 5, we encountered no numerical stability problems.

4.2 Generator Matrix

The elements of the generator matrix are constructed based on
the above formulation and the dynamic transitions among the stages
of behavior for the parallel system, which also depend upon the
specific version of dynamic coscheduling of interest. A key aspect
of our approach consists of capturing these dynamic behaviors (in-
cluding correlations among the processors) in the overall service
process based on their probability distributions as well as the sys-
tem dynamics, and constructing the stochastic process of the par-
allel system to probabilistically include these behaviors under the
dynamic coscheduling policy. To simply clarify the presentation
of our approach, and in the interest of space, we briefly consider
a generic example consisting of M parallel applications that time-
share a processor partition under a simple policy (very similar to
LS) that allocates time-slices to every application in a round-robin
fashion. We refer the interested reader to [22] for additional details.

The first three stages of the overall service process for each ap-
plication represent the computation, I/O and communication stages
of execution, and thus φ1 = mB , φ2 = mI and φ3 = mC (refer
back to the definitions of ΩY and corresponding variables). In the
present example, we assume that the communication stage of each
task consists of sending a single message to one other task followed
by receiving a single message from one other task. (Note that more
general cases of sending/receiving multiple messages are addressed
within the context of our approach in Section 4.3.) We further as-
sume that the communication stage is comprised of the total proces-
sor demands for the send operation and the portion of the processor
demands for the receive operation up to the point of checking if
the message from another task has arrived; the processor demands
of the remainder of the receive operation are included as part of
the computation stage of the next iteration. For this reason, we
shall henceforth use “send stage” and “communication stage” in-
terchangeably, unless noted otherwise. A context switch occurs on
an I/O operation. At the end of the I/O stage for each iteration, the
job completes and departs the system with probability pNA , and
otherwise it proceeds to the send stage. Upon completion of this
communication stage, the application immediately enters the com-
putation stage of the next iteration if the message to be received
has already arrived, which occurs with probability p̂A(·). On the
other hand, if the message to be received has not arrived, then the
sender of the message can be in one of four (generic) states, namely
computation, I/O, send and waiting for a message from yet another
processor. The corresponding events that the sender of the message
is active in the computation, I/O or send stages occur with proba-
bility p̂B(·), p̂I(·) and p̂C(·), respectively.

Let TS denote the maximum number of iterations, at any given
time, that a waiting task can be ahead of the task that will be send-
ing the corresponding message, under the dynamic coscheduling
policy being examined. To further clarify the presentation, suppose
that TS = 0 in our generic example which implies that the sender
of a message to any task in a waiting stage must be in the same it-
eration (albeit in an earlier stage) as the waiting task. (Note that the
general case for TS is considered in Section 4.3.) We therefore have
φ4 = mB , φ6 = mC and Nφ = 6. The measures p̂A(·), p̂B(·),
p̂I(·), p̂C(·) and the order φ5 phase-type distribution for stage 5 (as
well as the measures β′

(·), η
′
(·) and ζ′

(·) used below) are all calcu-

lated from our model solution and form the basis for a fixed-point
iteration that is described in Section 4.3. More general communica-
tion strategies are handled in a similar manner. For example, in the
case of an all-to-all communication strategy, we derive a formula
for the distribution of time that the task waits for messages from all
other tasks (based on distributions conditioned on the state of the
system), and then we use a phase-type distribution to estimate (or
bound) this waiting time distribution.



The corresponding set of transition rates for this generic example
is obtained in a straightforward manner based on the formulation
and analysis described above. We note that the general case of these
transition rules are similarly obtained in a straightforward manner.
Moreover, the corresponding set of general rules for other types of
applications and dynamic coscheduling policies can be constructed
in a similar fashion within the context of our approach. This is in
fact exactly what we did for each of the coscheduling policies de-
fined in Section 2, which was then used together with our analysis
to generate the numerical results presented in Section 5. In particu-
lar, LS is quite similar to the general case of the policy considered
above, where the vector j

R
(�) is used to give a priority boost to

each job immediately upon the completion of its I/O operation. A
similar approach is used to address SB, with the addition of ex-
tending the phase-type distribution for the communication stage to
include spin times and interrupt costs (as part of the corresponding
receive operation). Somewhat more complex priority orderings are
maintained in the vector j

R
(�) for the DCS and PB strategies in

order to properly capture the local execution of applications under
these schemes. In the interest of space we omit these details of our
procedure for constructing the generator matrix elements; see [22].

4.3 Fixed-Point Iteration
Equations (7) – (9) and Theorem 4.1 form the solution to our de-

composed stochastic model, in terms of the matrix R, provided that
certain aspects of the parallel system behavior are known. For the
generic example of the previous section, these unknown measures
include p̂A, p̂B , p̂I , p̂C , β′, η′, ζ′ and the order φ5 phase-type dis-
tribution for stage 5. Estimates of these measures of the dynamic
system behavior are calculated in terms of the decomposed model
solution, and a fixed-point iteration is used to obtain the final so-
lution for the processor partition. We now briefly describe our ap-
proach, initially focusing on the generic example of the previous
section and then turning to the more general case.

Let h(y) be the index of the state y ∈ ΩY in the lexicographic or-
dering of the elements of ΩY , and let P = I + Q/max{−Q[k, k]}
be the transition probability matrix for the uniformized version of
the process {Y (t) ; t ∈ IR+}. We define D�(k, u) = {y | y ∈
ΩY , i ≥ 1, j

R
(1) = k, 1 ≤ jQ ≤ mQ, σ�−1 + 1 ≤ jB

k ≤
σ�, j

B
k = σ�−1 + u}, � = 1, 3, 4, 6, D�(k, u) = {y | y ∈

ΩY , i ≥ 1, σ�−1 + 1 ≤ jB
k ≤ σ�, j

B
k = σ�−1 + u}, � = 2, 5,

for k = 1, . . . ,M and u = 1, . . . , φ�. Also, define D̂�(k, u) =
{z | z ∈ ΩY , Q[h(z), h(y)] > 0, y ∈ D�(k, u)}, D�(k) =⋃φ�

u=1 D�(k, u), D̂�(k) =
⋃φ�

u=1 D̂�(k, u), for � = 1, . . . , 6, k =
1, . . . ,M , u = 1, . . . , φ�.

To calculate the vectors p̂B , p̂I and p̂C in terms of the decom-
posed model solution, recall that these measures represent the set
of probabilities that the sender of the message being waited for (by
the receiving task being modeled) is active in the computation, I/O
and send stages, respectively. Due to the assumptions of stochasti-
cally independent and identical processors as part of our approxi-
mate matrix-analytic solution, these probability vectors then can be
respectively expressed as

p̂B(k) = (π0,π1, . . . ,πM−1)v̂
b
1,k + πM (I −R)−1v̂r

1,k, (20)

p̂I(k) = (π0,π1, . . . ,πM−1)v̂
b
2,k + πM (I −R)−1v̂r

2,k, (21)

p̂C(k) = (π0,π1, . . . ,πM−1)v̂
b
3,k + πM (I −R)−1v̂r

3,k, (22)

where the nth element of the vector v̂b
�,k (resp., v̂r

�,k) is 1 if the nth

state of the boundary (resp., level M ) is in D�(k), and otherwise is
0, � = 1, 2, 3. The vector p̂A represents the probabilities that the
modeled task immediately enters the computation stage of the next

iteration upon completion of the communication stage because the
message to be received has already arrived. Since TS = 0, the
sender of this message must either be in stages 4, 5 or 6, and thus
we have the following expression for p̂A:

p̂A(k) =

6∑
�=4

(π0, . . . ,πM−1) v̂
b
�,k +πM (I −R)−1 v̂r

�,k. (23)

Analogously, the initial probability vectors β′
k

, η′
k

and ζ′
k

for the
stage 4, 5 and 6 phase-type distributions can be written as

β′
k
(u) =

∑
z∈D̂1(k,u), y∈D1(k,u)

π(z)P[h(z), h(y)]

∑
z∈D̂1(k), y∈D1(k)

π(z)P[h(z), h(y)]
, (24)

η′
k
(u) =

∑
z∈D̂2(k,u), y∈D2(k,u)

π(z)P[h(z), h(y)]

∑
z∈D̂2(k), y∈D2(k)

π(z)P[h(z), h(y)]
, (25)

ζ′
k
(u) =

∑
z∈D̂3(k,u), y∈D3(k,u)

π(z)P[h(z), h(y)]

∑
z∈D̂3(k), y∈D3(k)

π(z)P[h(z), h(y)]
, (26)

respectively. These expressions can be easily represented in closed-
form with the use of binary vectors in the same manner as above
for the other measures.

Finally, the phase-type distributions for stage 5 represent the
times that the sender (of the message being waited for by the receiv-
ing task being modeled) spends in the I/O stage up until entering the
send stage and gaining access to the processor. We construct these
distributions from the decomposed model solution by examining
the time until absorption in a new Markov process {Y ′(t) ; t ∈
IR+} obtained from the original process {Y (t) ; t ∈ IR+} as fol-
lows. All of the states in D3(k) are made to be absorbing states.
We then make all of the remaining (reachable) states transient with
the initial probability vector for every level i given by η′

k
πie, 1 ≤

k ≤ min{i,M}. The distributions PH(η′
k
,SI′

k ) then can be ob-
tained either directly from the process {Y ′(t) ; t ∈ IR+} con-
structed in this fashion or by fitting a phase-type distribution to
match the first several moments of the time until absorption in this
process {Y ′(t) ; t ∈ IR+}, using any of the best known methods
for doing so; e.g., see [3, 8, 10, 17] and the references cited therein.

Our approach to handling general instances of the stochastic dy-
namic coscheduling model depends in part upon the specific value
of TS for the system environment of interest. When TS is relatively
small, we simply expand our approach above to capture the cases in
which a series of up to TS additional senders are waiting for mes-
sages from other processors by repeating TS times the execution
stages 4, 5 and 6. For example, the �th set of waiting stages, con-
sisting of execution stages 4 + 3�, 5 + 3� and 6 + 3�, are entered
according to a set of rules analogous to those governing transitions
from stage 3 to stages 4, 5 and 6 where each transition rule is mul-
tiplied by the probability (1 − p̂A(j

R
(1)))�, which represents the

probability that the sender of the message to be received by the task
being modeled is itself waiting on a series of � processors to send
their corresponding messages, � = 0, . . . , TS . (Recall that j

R
(1) is

the index of the executing task.) A set of transition rules analogous
to those governing transitions from stage 6 to stage 1 are also appro-
priately constructed for each of these sets of waiting stages to make



the transition to the next set of waiting stages in the series. On the
other hand, when TS is relatively large, then we can simply use the
execution stages 4, 5 and 6 of our original approach together with
a form of the geometric distribution. In particular, upon complet-
ing stage 6, the system returns to stages 4, 5 and 6 with probability
(1− p̂A(j

R
(1))) (following appropriately modified versions of the

set of rules governing transitions from stage 3 to stages 4, 5 and 6)
and otherwise enters stage 1 according to appropriately modified
versions of the set of rules governing transitions from stage 6 to
stage 1. Of course, both approaches can be used in combination.
Finally, the sending and receiving of multiple messages is accom-
modated as follows. The sending of multiple messages is simply
incorporated in the corresponding phase-type distribution(s) of the
model. Our approach is extended to handle the case of receiving
messages from multiple tasks by replacing the expressions and ar-
guments provided above with versions of these expressions and ar-
guments based on the appropriate order statistics. As previously
noted, in the case of all-to-all communication, we derive an expres-
sion for the distribution of time that the task waits for messages
from all other tasks and use a phase-type distribution to estimate
this waiting time distribution.

Let κ = (p̂A, p̂B , p̂I , p̂C , β
′, η′, ζ′). Note that equations (20) –

(26), which determine the value of κ, are expressed in terms of the
decomposed model solution. Hence, we use a fixed-point iteration
to solve the stochastic process as follows. Initial values are chosen
for κ and the components of the stationary probability vector π are
obtained using our matrix-analytic analysis. This solution yields
new values for κ via the above equations and the model is solved
again with these new values. This iterative procedure continues
until the differences between the values of an iteration and those of
the previous iteration are arbitrarily small. Numerous experiments
were performed with this fixed-point iteration. We note that the
fixed-point iteration always converged quite rapidly, and that in all
of the cases tested, changing the initial values had no effect on the
calculated fixed-point, i.e., the model solution was insensitive to
the initial values chosen for κ.

4.4 Performance Measures
Various performance measures of interest can be obtained from

the components of the stationary vector π. In particular, the mean
number of parallel jobs in the partition can be expressed as

N =

M−1∑
k=1

kπke+MπM (I −R)−1e+πMR(I −R)−2e. (27)

Using Little’s law [14] and (27), the mean response time of a par-
allel job in the partition then can be calculated as T = λ−1N .

Another set of performance measures of interest is the long-run
proportion of time that a processor spends performing computation,
I/O, communication, context switching, and some form of waiting.
These measures can be expressed as

p̃x = (π0, . . . , πM−1) v
x
b + πM (I −R)−1vx

r , (28)

where x ∈ {B, I, C,O,W} such that B: computation; I: I/O; C:
communication; O: context switching; W: waiting. Here we use
the notation that the nth position of the vector vx

b (resp., vx
r ) con-

tains a 1 if the corresponding state of the boundary (resp., level M )
represents when the processor is performing operations of type x,
and otherwise contains a 0.

5. RESULTS
We now apply the mathematical analysis of Section 4 to study the

performance characteristics of the dynamic coscheduling strategies

defined in Section 2 within the context of the parallel system and
workload models of Section 3. A large number of numerical ex-
periments have been conducted, and a representative set of results
are presented herein. However, due to space limitations, we omit
those results that explore the impact of certain parameters on the
performance of the dynamic coscheduling strategies. This includes
context-switch costs, job duration, and resource contention. We
refer the interested reader to [22] for these additional results.

Parameter Value(s)

M 3
δ−1 (Context Switching Cost) 200 us

I (Interrupt Cost) 50 us
τ−1 (Quantum length) 20 ms

γ−1 185.48 us
γ′ γ

Priority Changes 3 us
Check for a Message 2 us

PB interval 1 ms
Fixed Maximum Spin time (SB) 200 us

Message Size 4096 bytes
Communication Pattern Nearest Neighbor

Table 1: Default Parameters Used in the Results

Some of the default parameter values used for our base-case re-
sults are provided in Table 1, and any deviations from this base case
will be explicitly noted. Many of these values have been drawn
from actual system platforms.

5.1 Validation
Given that our analysis derived in Section 4.1 considers an ap-

proximation of the (exact) stochastic process {X(t) ; t ∈ IR+}
defined at the beginning of Section 4, we first must validate the
results of our analysis against detailed simulations to demonstrate
the accuracy of our approach. Figure 1 presents the relative er-
rors of our models and analysis as a function of the arrival rate λ
for a 32-processor system. A representative sample of the results
are provided for all four dynamic coscheduling strategies under
computation-intensive, communication-intensive and I/O-intensive
workloads. In each case, our model is in excellent agreement with
detailed simulations of a relatively small-scale parallel system, of-
ten being within 5% and always less than 10%. Recall that the accu-
racy of our approach increases with the size of the system and that
our primary interests are in large-scale parallel systems consisting
of many computing nodes. With the complex dynamic interactions
among the different aspects of the parallel computing environment
and the scheduling strategy, these results provide considerable evi-
dence of the benefits of our approach to investigate the fundamental
design and performance problems at hand.

5.2 Impact of Load
Figure 2 provides a representative sample of the results for inves-

tigating the effects of the arrival rate on the mean job response time
under three types of workloads. In general, the differences between
the schemes are less significant with lower communication in the
workload, as is to be expected. Even in the CPU and I/O inten-
sive workloads, the LS and DCS mechanisms saturate earlier than
the other two, and this becomes more apparent in the communica-
tion intensive workload. Overall, we can say that LS and DCS are
not very desirable because they tend to saturate at smaller values
of λ than SB and PB, and the details on the effect of the work-
load characteristics on the relative performance of these schemes
are presented next. Note that, until now, no one has been able to
study these mechanisms for dynamic job arrivals with such a broad
spectrum of arrival rates.
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Figure 1: Validation Results.
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(a) Comm. Intensive workload (µ−1 =
0.14ms, γ−1 = 0.19ms, ν−1 = 0.024ms)

(b) CPU Intensive workload (µ−1 = 36ms,
γ−1 = 0.19ms, ν−1 = 2ms)

(c) I/O Intensive workload (µ−1 = 10ms,
γ−1 = 0.19ms, ν−1 = 5ms)

Figure 2: Impact of Load on Response Time, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19secs.

5.3 Impact of Workload Characteristics
Since communication intensive and I/O intensive workloads are

most interesting, we focus on these two workloads in Figures 3 and
4. These figures reconfirm the results in the previous subsection
for varying system load, with LS and DCS performing poorly. For
the communication intensive workload, PB does better than SB in
terms of both throughput and response time. The benefits of PB
are accentuated as the communication intensity increases. Clearly,
we can see that the fraction of the time spent in communication in-
creases with the intensity in Figures 3(e) – (f), but the increase is
more gradual for PB than for SB. This can be explained based on
the behavior in (b) and (c), where we can see MPL3-idle is signifi-
cantly higher in SB than in PB. At such high communication inten-
sities, blocking to relinquish the processor incurs context-switch
and interrupt overheads with little benefits since there is no other
work to do (everyone is blocked). PB which does not switch under
those conditions does not experience the context-switch costs, and
thus yields better performance.

For the I/O intensive workload, the differences among the schemes
are less noticeable since the performance is dictated more by the
I/O in the application than by the schemes themselves (which do
not behave differently for I/O). In fact, we expect all the response
time curves in Figure 4(d) to converge at large I/O intensities. The
reason why throughput increases and response time decreases for
this case (in contrast to the communication intensive figures), is be-
cause I/O can be performed concurrently by tasks at a node (while
computation/communication cannot) in this instance of our model.
The profile graphs show similar behavior to that of the communica-

tion intensive workload. At this point, we can also explain why SB
does marginally better than PB for I/O intensive (and, incidentally,
CPU intensive) workloads. With large computation or I/O frac-
tions, the skewness of the work to be done among the tasks of an
application also increases. This can cause tasks to spin more than
the message latencies in PB, while SB can limit the effect of such
skewness. For the communication intensive workload, this skew-
ness gets smaller, and PB realizes the full benefits of spinning.

5.4 Impact of Maximum MPL (M )
Figure 5 considers the impact of the maximum MPL (M ) on the

dynamic coscheduling strategies. Increasing M can help to reduce
the processor idling (during I/O or when waiting for a message) by
providing more opportunities to switch to another task and execute
useful work. As a result, performance improvements due to higher
values of M are more noticeable in the I/O intensive workload, or
in schemes where the waiting time is high (DCS). This is also the
reason why SB needs a higher value of M to become as competitive
as PB for the communication intensive workload. While there are
improvements in response times with increasing M , it should be
noted that too high a value for M is not appropriate due to practical
resource limitations and/or because of high swap costs.

5.5 Optimum Quantum length (τ −1)
For any scheme, a small time quantum increases the impact of

context-switch overheads, while at the same time a small quantum
can mitigate the effects of scheduling skews across processors (to
avoid large wait times). These two contrasting factors play a role in
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Figure 5: Impact of M on Response Time, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19secs.

0 5 10 15 20 25 30 35 40 45
100

110

120

130

140

150

160

170

Quantum length (τ−1) ( X millisecond)

A
ve

ra
g

e 
jo

b
 r

es
p

o
n

se
 t

im
e 

(X
 s

ec
o

n
d

s)
 

Local
SB   
DCS  
PB   

0 5 10 15 20 25 30 35 40 45
100

150

200

250

300

350

400

Quantum length (τ−1) ( X millisecond)

A
ve

ra
g

e 
jo

b
 r

es
p

o
n

se
 t

im
e 

(X
 s

ec
o

n
d

s)
 

Local
SB   
DCS  
PB   

0 5 10 15 20 25 30 35 40 45

150

200

250

300

350

400

450

Quantum length (τ−1) ( X millisecond)

A
ve

ra
g

e 
jo

b
 r

es
p

o
n

se
 t

im
e 

(X
 s

ec
o

n
d

s)
 

Local
SB   
DCS  
PB   

(a) Comm. Intensive workload ( µ−1 =
2ms, γ−1 = 0.19ms, ν−1 = 0.34ms, λ =
0.004)

(b) CPU Intensive workload ( µ−1 = 36ms,
γ−1 = 0.19ms, ν−1 = 2ms, λ = 0.0103)

(c) I/O Intensive workload ( µ−1 = 10ms,
γ−1 = 0.19ms, ν−1 = 5ms, λ = 0.0095)

Figure 6: Impact of Quantum Length (τ −1) on Response Time, 1
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determining a good operating point for the time quantum. Figure 6
captures the effect of these factors for the four schemes on the three
workload classes. In general, for the LS and DCS schemes (which
are more susceptible to scheduling skews as shown in earlier re-
sults), the second factor that can mitigate scheduling skews is more
important, causing the good operating points for LS and DCS in
Figure 6 to be more to the left than those for SB or PB. In fact, SB
and PB would prefer a long time quantum, since they do not really
rely on the native operating system scheduler and perform the task
switches whenever needed. As for the effect of the workload itself,
CPU and I/O intensive workloads should prefer longer time quanta
(because the first factor concerning context-switch overheads are
more important) than the communication intensive workload.

5.6 Optimum Spin Time
For SB, the choice of the spin time is a crucial issue. Previous

studies have not explored the full impact of spin time across a broad
spectrum of workloads. Figure 7(a) shows the effect of the spin
time on four different workloads. The curves are normalized with
respect to the performance for the default spin time. A small spin
time is preferred if either the message will arrive in a very short
time, or if it will take a very long time (so that we do not waste too
much time spinning). A slightly larger spin time will be preferred
in the other situations. The results in this figure capture this effect
for the four workloads, showing that the ideal spin time (giving the

lowest response time) is very sensitive to the workload. This makes
the selection of a good spin time on a real system very difficult, but
it further highlights the importance of the use of our models and
analysis for the proper setting of this parameter in any system of
interest. It also should be noted that in the results presented in
previous sections, the chosen spin times are reasonably close to
their ideal values (no more than 5–10% off).

5.7 Optimum PB Frequency
One of the important design considerations for PB is selecting

the frequency of the kernel activity. Across the spectrum of work-
loads ranging from very high to very low communication inten-
sities, we find that the ideal frequency of invocation lies between
0.3ms to 1ms in Figure 7(b) (the lines are normalized with respect
to a 1ms frequency). These results suggest that an invocation fre-
quency of between 0.5 to 1ms would provide good performance
across the entire workload spectrum for PB.

6. CONCLUDING REMARKS
The complex interactions among the different system compo-

nents and the numerous workload parameters have made it diffi-
cult until now to investigate the advantages and disadvantages of
dynamic coscheduling mechanisms in great detail. All previous
studies have been limited by the environments under consideration,
whether it be the underlying hardware, operating system, system
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Figure 3: Impact of Comm. Intensity, ν−1/µ−1 = 0.17,
γ−1 = 0.19ms, 1

PNA
(µ−1 + γ−1 + ν−1) = 38.19secs.

size or workload. The lack of a unifying framework for studying
the benefits and limitations of dynamic coscheduling under differ-
ent system conditions, workload parameters and system size has
been the limiting factor in these previous studies. This paper has
addressed this critical void in scheduling for parallel systems by de-
veloping and validating an accurate analytical model for studying
the design and performance spaces of dynamic coscheduling mech-
anisms across a wide range of system and workload parameters.

Specifically, we formulated a general mathematical model of var-
ious dynamic coscheduling strategies within a unified framework
that addresses the aforementioned limitations of previous studies.
We derived a matrix-analytic analysis of these scheduling models
based on a stochastic decomposition, which leads to a vastly re-
duced state-space representation, and a fixed-point iteration, which
is used to obtain the final solution. In addition to mean job response
time and maximum system throughput measures, the detailed prob-
abilistic measures from our analysis were used to help explain the
overall results and to gain fundamental insights about various as-
pects of the different dynamic coscheduling approaches. Moreover,
numerical results from our analysis were shown to be in excellent
agreement with those from detailed simulations of even relatively
small-scale systems, often within 5% and always less than 10%.

Numerical results from our analysis show that it is not advis-
able to allow the native operating systems at each node to switch
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Figure 4: Impact of I/O Intensity, µ−1 = 10ms, γ−1 =
0.19ms, 1

PNA
(µ−1 + γ−1 + ν−1) = 38.19secs.

between tasks at their disposition. Some amount of coordination
is definitely needed. Of the three previously proposed dynamic
coscheduling mechanisms, DCS does not fare as well as the oth-
ers across a broad spectrum of workload and system parameters.
SB and PB have their relative merits, with the latter faring better
whenever the workload is more communication intensive. PB is
also preferable whenever nodes are not operating at the full multi-
programming level. Our model and analysis can be used as a design
tool to fine tune the parameters for these mechanisms (spin time in
SB and periodic frequency in PB) to derive good operating points.
With SB, the choice of the spin time is important for determining
performance, while a frequency of once every 0.5–1ms provides
good performance for PB across the entire workload spectrum con-
sidered. Both of these mechanisms are relatively immune to the na-
tive operating system switching activity, by taking over whenever
the communication events call for coscheduling and becoming less
intrusive otherwise. These mechanisms are good choices regard-
less of whether the system is subject to short running interactive
jobs or long running parallel applications. It should be noted that
the results presented here for SB are with a fixed spin time, though
the model itself allows adaptive tuning of this value (which more
recently has been shown to be a better alternative). Planned fu-
ture research includes using our model and analysis to investigate
various adaptive spin time approaches.

Some of the newer insights and contributions that this study has
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provided, which have not been possible in earlier simulations or
experimental evaluations, is to be able to answer several important
issues about the the optimal frequency for invoking the periodic
boost mechanism, the optimal frequency of context switching (time
quantum length), a direct way of calculating the optimal fixed spin
time for SB without running costly simulations, and the impact of
workload characteristics on these issues. Our model and analysis
serve as a powerful tool for exploring these issues at little cost.

There are several interesting directions for future work. Along
the scheduling front, it would be interesting to find out how best a
schedule one can ever hope to achieve with a given load, to shed
light on future research in this area. Further, examining differential
services to different job types, and the ability of a scheduler to pro-
vide guaranteed (soft or hard) service to parallel jobs in the context
of a dynamically coscheduled environment are part of our future
work. Along the theoretical front, it would be interesting to ex-
tend our models and analysis of this paper to solve these problems,
as well as to investigate the problem of setting various dynamic
coscheduling parameters as mathematical optimization problems,
based in part on the results, models, analysis and/or insights pre-
sented in this paper.
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