
1

Mobile Network Management and Robust Spatial
Retreats via Network Dynamics

Ke Ma, Yanyong Zhang, Wade Trappe
Wireless Information Network Laboratory (WINLAB)

Rutgers University, 73 Brett Rd., Piscataway, NJ 08854.

Abstract— The mobility provided by mobile ad hoc and sen-
sor networks will facilitate new mobility-oriented services. Recent
work has demonstrated that, for many issues, mobility is advanta-
geous to network operations. This paper proposes that the need for
mobility may be captured by formulating the movement of nodes
as a classical dynamical system. Motivated by classical mechanics,
we propose the notion of network dynamics, where the position
and movement of mobile devices evolve according to forces arising
from system potential functions that capture the operational goals
of the network. We argue that, in the context of moving commu-
nicating nodes, the equations of motion should be formulated as a
steepest descent minimization of the system potential energy. Fur-
ther, since global information is not practical in sensor networks,
we introduce distributed algorithms that yield more practical im-
plementations of network dynamics. The resulting algorithms are
generic, and may be applied to produce balanced network configu-
rations for different initial network deployments. As a second ap-
plication of network dynamics, we examine the problem of adapt-
ing a mobile sensor network to the threat of a jammer. We show
that the combination of spatial escape strategies with network dy-
namics prevents network partitioning that might arise from a mo-
bile jammer.

I. INTRODUCTION

Wireless networks are being used for scenarios where a
fixed communication infrastructure cannot be suitably em-
ployed. Many examples of such networks are gaining popu-
larity, ranging from tactical networks for military communica-
tions, to rapidly-deployable mobile ad hoc networks for emer-
gency management, to mobile sensor networks [1–3]. Although
these networks naturally involve wireless communications, they
are differentiated from many other wireless networks by the
inherent mobility of the underlying communication infrastruc-
ture. By comparison, in a cellular system, the base station is
in a fixed location and mobile devices communicate with this
fixed infrastructure. Similarly, sensor networks usually involve
static sensors using multihop routing to deliver data [4].

Incorporating mobility into the underlying communication
infrastructure allows for new types of mobility-oriented net-
work services. The network becomes a dynamic entity capa-
ble of adjusting to its environment [1–3]. This vision of mobile
networks requires that we formulate laws governing why and
how nodes should be mobile. There may be several objectives
that these laws are meant to achieve. For example, a mobile
ad hoc sensor network may consist of devices that are initially
clustered near each other, and mobility may be used to achieve
uniform coverage over a particular region. Or, as another ex-
ample, a mobile ad hoc network may be subjected to a jamming
attack, and the underlying mobility laws may direct the devices
to evacuate the jammed area [5].

In this paper, we formulate the laws governing the motion
of mobile devices as a dynamical system involving forces act-
ing upon network entities. These forces induce mobility, and
adjust the network system as a whole towards a state of min-
imal conflict, or minimal potential energy. The description

of these forces may take many forms, ranging from repulsive
forces that disperse tightly clustered radio devices, to attractive
forces meant to cause sensor devices to gather near areas of
high importance. We begin the discussion of this model, which
we call network dynamics, in Section II. We formulate the rela-
tionship between network devices as forces arising from a po-
tential energy, and apply Newton’s laws of motion to govern
the dynamics of the networked system. We show that network
dynamics is better formulated as a minimization of a potential
energy function via steepest descent. In Section III, we present
distributed algorithms that may be used to implement network
dynamics in practice. We then examine two applications of dis-
tributed network dynamics. The first application, presented in
Section IV, focuses on using network dynamics to control the
coverage distribution of sensors over a region. In Section V,
we apply network dynamics to achieve a robust spatial retreat
strategy that maintains desirable connectivity in the presence of
a jamming attack. We conclude in Section VI.

II. NETWORK DYNAMICS

A mobile ad hoc network is a collection of mobile devices,
and may be viewed as a dynamical system– the positions and
speeds of devices change with time. The dynamics of classical
mechanics systems are described via underlying laws of mo-
tion and laws of force between objects [6]. The concept of
forces, the corresponding notion of potential energy, and the
laws of motion may be used to manage the movement of a mo-
bile sensor network. Appropriately defining potential functions
and forces, yields a general framework that allows one to opti-
mally use mobility to govern a network’s operations.

A. Classical Dynamics and Mobile Networks

Throughout this paper, we shall look at a mobile sensor net-
work as a dynamical system of N devices subject to the laws
of classical mechanics. Each device will be able to communi-
cate with its neighbors through some wireless communication
protocol. Since the devices are mobile, we will associate with
each device j a position vector pj and a momentum vector qj .
We will, for simplicity, assume that all devices are located in
two-dimensions and that, for each device, both pj and qj are
two-dimensional vectors. For the purpose of our discussion,
since we are looking at the system as a mechanical system, we
will arbitrarily assign each network device a mass of 1, thus
momentum and velocity are equivalent.

N -body dynamical systems appear commonly in physics in
order to model classical mechanical systems, such as from
gravitational modeling or in electrostatics. In these problems,
the dynamical relationship between position and momentum
of these N bodies evolves based upon Newton’s second law,
which describes the motion of a body in the presence of a field

0-7803-9466-6/05/$20.00 ©2005 IEEE MASS 2005 Workshop - RPMSN05

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1

0

1

2

−1

−0.5

0

0.5

1

X−direction

Y−direction

P
o
te

n
ti
a
l
U

(x
,y

)

Well of
AttractionWell of

Repulsion

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X−direction

Y−direction

P
o
te

n
ti
a
l
U

(x
,y

)

Flow is in
the positive
X−direction

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

15

20

Radial Distance, d

P
o
te

n
ti
a
l
E

n
e
rg

y
 U

(d
)

Potential
Increases
Steeply

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

4

5

Radial Distance, d

P
o

te
n

ti
a

l
E

n
e

rg
y
 U

(d
)

Potential U
Force Magnitude f

ij

(c) (d)

Fig. 1. (a) The potential function U indicating basins of attraction and repul-
sion, (b) the potential function U encouraging a flow in the positive x direc-
tion, (c) the Lennard-Jones potential, and (d) the potential and magnitude of the
linear-force model.

of force. The forces acting upon a conservative dynamical sys-
tem arise as the negative gradient of the potential energy func-
tion U . This potential function may be comprised of two com-
ponents: external and internal. External potentials arise from
externally applied forces, while internal potentials correspond
to the attractive or repulsive forces between bodies of the sys-
tem. Typically, the internal potentials are restricted to two-body
interactions, such as the gravitational pull between two objects.

We may collectively refer to the position vector of each
of the N bodies by a 2N -dimensional position vector p =
[p1, · · · ,pN], and similarly for the momentum vector. Hence,
the potential energy may be viewed as U(p) =

∑

j Uext(pj)+
∑

i

∑

j>i Uint(pi,pj). Newton’s classical equations of mo-

tions give d
dt

qj = fj and fj = −∇jU(p), where ∇j is the
gradient at the j-th body’s position pj . Applying the relation-

ship between position and velocity, d
dt

pj = qj , yields a set of
coupled differential equations for the N bodies.

B. Potential Functions for Network Dynamics

Mobility between bodies is governed by the description of
the potential function U(p), which in turn yields force and
causes motion. We therefore need to define potential functions
that suitably capture the need for causing mobile devices to
move. We will do this in two parts: first describing possible
external potential functions Uext(p), and then describe internal
(i.e. pairwise) potential functions Uint(pi,pj).

External potential functions may be viewed as representing
factors coming from the environment that should influence the
motion of a sensor. For example, suppose that a sensor network
has been deployed to perform monitoring functions. It may be
that there are regions of the network that deserve more atten-
tion than other regions, and therefore we might wish for mobile
devices to be attracted to these regions. As another example, it
might be desirable for a set of monitoring devices to migrate,
perhaps to monitor a moving asset with a known trajectory or
perhaps to sweep through a coverage area. We present such
potentials in Figure 1 (a) and (b).

Internal potentials typically correspond to either attractive
or repulsive pairwise interactions between entities. An at-
tractive potential is the gravitational potential U(pi,pj) =

−G
‖pi−pj‖

where G is the gravitational constant and we have

taken the masses to be 1. An example of a repulsive poten-
tial is Coulomb’s potential from electrostatics, U(pi,pj) =

QiQj

4πǫ0‖pi−pj‖
, where Qi and Qj are charges and ǫ0 is the per-

mittivity of free space. In general, we desire potential functions
that are capable of dispersing mobile nodes without causing
them to separate too greatly from each other. These potential
functions, often known as dispersive potentials, involve repul-
sive and attractive components. An example of such a potential
function is the Lennard-Jones potential from thermophysics [7]

U(pi,pj) = 4ǫ

[

(

σ
‖pi−pj‖

)12

−
(

σ
‖pi−pj‖

)6
]

, where σ de-

scribes the radial intercept, and ǫ governs the well depth, as
depicted in Figure 1 (c).

The forces between any two nodes may be calculated via the
gradient of the potential function. In order to keep the formula-
tion of the force calculation simple, throughout this paper, we
have chosen to use the following linear-force potential function

U(d) =

{

c
2d2 − cr0d + C d ≤ R

K otherwise
, (1)

where d = ‖pi − pj‖ is the distance between nodes at pi and
pj , c, r0, R, C and K are preset parameters. In this case, the
force fij between nodes i and j is linear,

fij =

{

c(r0 − d)uij d ≤ R
0 otherwise

. (2)

Here uij is the unit vector in the direction pi − pj . We have
depicted an example of the potential and magnitude of fij in
Figure 1 (d). We may adjust r0 and R to control the amount of
repulsive and attractive forces.

C. Ideal Simulation Framework and Convergence

In order for network dynamics to be used to govern the mo-
tion between objects, the information describing the evolution
of the potential functions must either be available to a central
entity serving as the motion administrator, or must be avail-
able to each mobile device. It is not only unreasonable to ex-
pect that a continuous-time representation of system potential
function to be available, but it is also generally intractable to
explicitly solve an arbitrary system of equations that would de-
scribe the system’s motion. Therefore, we envision that the use
of network dynamics will involve discrete time steps. As a re-
sult, at every time step, we will assume that a description of the
system’s potential function is available. We will examine the
natural discretization of Newton’s equations of motion, and ar-
gue that such a formulation leads to mobile devices performing
extra mobility. To address this concern, we propose to formu-
late the equations governing network dynamics using steepest
descent optimization methods.

Suppose we have a system of N objects, and consider the
evolution of the N objects’ position in time n. Here, we will
represent time discretely by breaking time into intervals of
length T . A typical discretization involves updating the i-th
object’s position via

pi(n + 1) = pi(n) + µpqi(n) (3)

qi(n + 1) = qi(n + 1) + µqfi(n), (4)

where µp and µq are step sizes, and the force fi(n) =
−∇iU(p(n)) may be determined at each time step. The time-
evolution of the network’s motion is then determined by letting
the above system evolve.

3

The classical equations of motion are second-order in time,
meaning that the coupled equations tie in position, velocity and
acceleration. This is suitable for mechanics, but results in unde-
sirable properties from the point-of-view of network dynamics.
Specifically, the coupling between position, velocity and accel-
eration implies that it is quite likely that, even when the system
has reached a configuration with minimal potential energy, the
N bodies will still have velocity, and hence kinetic energy. As
a result, the system will escape its desirable configuration and
have to compensate later by applying forces in the opposite di-
rection. To visualize this, simply consider the classical pendu-
lum, in which the pendulum achieves its minimal potential at
the base of the trajectory, the momentum causes the pendulum
to swing past and increase potential energy. The increased po-
tential causes the pendulum to reverse direction and oscillate
around the point of minimal potential.

This behavior is undesirable as the mobile device wastes
movement, and hence power, compensating for momentum. We
therefore, would like to modify the equations of motion to re-
move the effect of momentum. This may be accomplished by
making the equations first-order, and have the force affect the
distance traveled. For example, we may simply create an itera-
tive system p(n + 1) = p(n) − v∇U(p(n)). We see that we
are simply making a step of size v in the direction of steepest
descent to minimize the potential function U . Now, once the
nodes have moved into a configuration with minimal potential
U , they stop moving and don’t move unless a disruption is in-
troduced that necessitates the relocation of devices. For suitable
choice of v, convergence will follow from the convergence of
steepest descent methods. In the following sections, where we
discuss distributed versions, we shall use our steepest descent
formulation and will discuss the selection of v.

III. DISTRIBUTED IMPLEMENTATIONS OF NETWORK

DYNAMICS

In this section, we discuss the mapping of network dynamics
on an actual network and its implementation in a completely
distributed fashion with realistic constraints.

A. Overview of Distributed Network Dynamics

In Section II, we discussed the discretization of network dy-
namics. The straight-forward way to formulate network dynam-
ics involves a centralized controller with knowledge of each de-
vice’s position and the ability to communicate its directives to
each mobile device. In practice, however, such a formulation
is unrealistic as sensor networks, by their inherently ad hoc na-
ture, do not have a centralized infrastructure. Consequently, we
must devise a set of distributed algorithms whereby each node
makes decisions based on its local environment in an attempt to
achieve the minimum system potential energy. Although there
are different ways of implementing distributed network dynam-
ics, there are some common features amongst these different
schemes. A node can only “feel” the forces from the nodes that
are within its radio range. Every node j periodically calculates
the total force fj from all its neighbors. If the magnitude of
the total force is above a threshold, i.e. ‖fj‖ > δ, then node
j will start moving in the direction of fj . While moving, the
node will broadcast its location information and receive loca-
tion updates from its neighbors if necessary, thereby allowing
each node to periodically calculate its new force and adjust its
movement during the next time slice. The system dynamics
proceeds until each node’s net force below the threshold δ.

B. System Model and Performance Metrics

We now describe the system setup and the performance met-
rics that we will use in formulating and evaluating our network
dynamics algorithms.
System Model: We have made the following assumptions re-
garding the sensor network: The network is deployed on a 2D
plane. Nodes have mobility, and there is a maximum velocity
associated with a mobile node. Every node knows its own lo-
cation. This can be achieved by devices such as GPS [8], or
through various wireless localization algorithms [9].

Performance Metrics: We propose the following metrics to
evaluate the proposed distributed algorithms:

• Movement efficiency: The average ratio of the Euclidean
distance between a node’s initial position (x, y) and
its final location (x′, y′) to the distance a node actu-
ally travels. If a network dynamics algorithm makes a
node travel a total of d to reach its final location, then
that node’s movement efficiency may be calculated as
√

(x − x′)
2

+ (y − y′)
2
/d. The closer this ratio is to 1,

the less extra distance a node must travel before it reaches
the real destination. We measure the total system’s per-
formance by averaging the movement efficiency over all
nodes.

• Convergence time: When a network dynamics algorithm
converges, every node within the network will have a force
which is below the specified threshold. At the same time,
the system potential energy U will have reached its mini-
mum. In general, a shorter convergence time is preferred.

• Messaging overhead: Without a centralized controller, a
distributed algorithm learns external information through
exchanging messages. These messages are costly as they
consume energy.

C. Sequential Movement Algorithm

We will describe two distributed algorithms. The first al-
gorithm is a sequential algorithm, which we refer to as Se-
quential Distributed Network Dynamics (SDND). SDND is a
straightforward implementation of network dynamics in which
the nodes within a neighborhood of each other allow only a sin-
gle node to move. While this node is moving, the other neigh-
bor nodes in its radio range must remain stationary.

Suppose node i receives a force from its neighbors, and we
have ‖fi‖ > δ. Therefore, it will try to move along the direction
of fi so that the potential energy U can decrease. Before moving
it must ensure that all the neighbors are not moving. We em-
ploy the following protocol to guarantee this. It first broadcasts
a ReqMove message to all its neighbors and waits for their
replies. It stays in the wait state until all the reply messages
arrive. As soon as the ReqMove message reaches a neighbor
node, the neighbor node replies with a GrantMove message
if it is not in the wait state itself; otherwise, the neighbor node
replies with a NoMove message. The neighbor node enters the
blocked state upon sending out the GrantMove message, and
each blocked node maintains a wake list, including those nodes
that it has sent GrantMove messages to and that will wake it
up later. Any node that is in the blocked state cannot move until
it is woken up by every one from its wake list. The node that
intends to move, i.e. node i, can only start movement after it
receives a GrantMove message from each of its neighbors. If
no reply is received from a neighbor node within a time win-
dow, we assume that the neighbor node has either moved out
of the range or failed, and simply ignore that neighbor. This

4

Algorithm: The Node that Intends to Move

wait(random delay);
send(ReqMove);
state = WAIT;
while (received(NoMove) == TRUE) do

send(DoneMove);
wait(random delay);
send(ReqMove);

end
state = MOVE;
f = calculateForce();
while (‖f‖ > δ) do

move(f, v, T);
f = calculateForce();

end
send(DoneMove);
state = NORMAL;

Algorithm 1: Sequential Distributed Network Dynamics Algorithm for the node
that intends to move.

Algorithm: The Neighbor Node

while (1) do
msg = waitForMsg();
if (msg == ReqMove) then

if (state == WAIT) then
send(NoMove);

else
send(GrantMove);
state = BLOCKED;

end

end
if (msg == DoneMove) then

state = NORMAL;

end

end

Algorithm 2: Sequential Distributed Network Dynamics Algorithm for neigh-
boring nodes.

algorithm is deadlock-free: if two nodes send out ReqMove
messages at the same time, neither of them can proceed be-
cause they will not receive GrantMove messages from each
other. In this scenario, it is possible that some neighbor nodes
have already replied with GrantMove to one of them and en-
tered blocked state. Hence, these two competing nodes, after
receiving NoMove from each other, should send DoneMove
messages immediately to wake them up. After this collision,
these two nodes can each back off for a random delay, and re-
initiate the entire process.

Once all the GrantMove messages reach node i, it starts to
move at a constant velocity of v. Its movement is broken down
into time slices with duration T . At the beginning of time slice
n, it calculates the force fi(n), and during that time slice, it
moves in the direction of fi(n). We note that it is not necessary
to exchange messages to update the location information of the
neighbors because the neighbors are static during i’s movement.
The combination of time slice duration T and velocity v can
have a significant impact on the convergence performance. For
a particular T , a large v can cause a node to quickly approach
the destination, but may also cause the node to overshoot its
destination, which may prevent convergence. Consequently, a
conservative value of v should be chosen. The node keeps mov-
ing until it reaches a position pi where the force it receives is
below the threshold, i.e. ‖fi‖ < δ. At this time, i stops move-
ment and wakes up all the neighbors that are blocked by sending
the DoneMove message.

The algorithms for the node that intends to move, and the rest
of the neighboring nodes are presented in Algorithms 1 and 2.

D. Parallel Movement Algorithm

The strategy behind the sequential movement algorithm is
rather straightforward and easy to implement. However, the

SDND algorithm suffers from inefficiencies due to its sequen-
tial nature. In particular, SDND may lead to high messaging
overheads because a large number of messages must be ex-
changed to serialize the movements. Additionally, since SDND
limits the amount of devices that may move at any time, SDND
can experience slow convergence. In order to address these is-
sues, we next propose a parallel version of network dynamics
algorithm, which we call the Parallel Distributed Network Dy-
namics (PDND) algorithm.

In PDND, any node that intends to move can start move-
ment immediately, and does not need to get approval from its
neighbors. A moving node advertises its location every T time,
while a stationary node updates its location information at a
much coarser granularity. Every node maintains a neighbor ta-
ble which records each neighbor’s location. Note that this in-
formation may not be up-to-date. Based on the neighbor table,
each node calculates the total force using its neighbors’ posi-
tions. If a node’s force is greater than the threshold, then that
node will move along the direction of the force for T time. Af-
ter T time, it sends out its new location, and re-calculates the
force, and determines whether it needs to move in the next time
slice, and the direction if it needs to. It stops moving when
the total force it receives is below the threshold δ. Every node
repeats this process iteratively until all the nodes reach steady
state.

Unlike the case in the sequential algorithm, where the move-
ment of a node involved a fixed velocity in the direction of the
node’s net force, for our parallel movement algorithm we pro-
pose the use of an adaptive velocity. The motivation for us-
ing an adaptive velocity is that it will allow the dynamics of
the network to converge to steady-state quicker. In particular,
we would like to control the velocity of each node based on
the magnitude of the force. To accomplish this, we propose to
use the following strategy to determine the velocity: If fi(n) is
the force at the ith node at the beginning of the nth time slice,
and fi(n + 1) is the force at the beginning of the (n + 1)th
time slice, then the velocity during the (n + 1)th time slice is

vi(n + 1) = ‖fi(n+1)‖
‖fi(n+1)−fi(n)‖vmax.. The rationale behind this

strategy is that, if the current force is still large compared to the
change in the force from the last time slice, then this indicates
that the node is still far from its destination, and it can move at
a faster speed. On the other hand, if the current force is small
compared to the difference, the node needs to slow down be-
cause it is already close to the convergence point. When fi(n)
and fi(n + 1) have positive projections on each other, the node
is still moving in roughly the same direction. Intuitively, it is
safe for it to speed up since, in this case, ‖fi(n + 1) − fi(n)‖
is a relatively small number. When fi(n) and fi(n + 1) have
negative projections on each other, the node has overshot and
it needs to move backwards to converge. This node needs to
lower its velocity because the convergence point is rather close.
The velocity is made small because ‖fi(n+1)− fi(n)‖ is large.

The PDND algorithm is summarized in Algorithm 3. This is
a completely distributed implementation, wherein the nodes do
not need to synchronize with each other. For this algorithm, the
location update interval T is an important parameter. A smaller
T can reduce the oscillation of the movement, thus resulting in
a faster convergence. At the same time, a smaller T , however,
also incurs more overhead because more control messages (lo-
cation update messages) will be exchanged.

5

Algorithm: Parallel Movement Algorithm

old f = f;
f = calculateForce(my location, neighbor location);
while (‖f‖ > δ) do

new f = f;
v = calculateVelocity(old f, new f);
move(f, v, T);
send(my location);
old f = f;
f = calculateForce(my location, neighbor location);

end

Algorithm 3: Parallel Distributed Network Dynamics Algorithm.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

Fig. 2. All the nodes are clustered together in the initial topology.

IV. APPLYING NETWORK DYNAMICS TO MANAGING

MOBILE SENSOR COVERAGE AND TOPOLOGY

We will now explore an application of network dynamics to
the problem of managing the coverage area provided by a de-
ployment of sensor nodes. To set up the problem, suppose that
a set of sensor nodes are deployed to monitor a particular re-
gion. In many applications, it is difficult to initially deploy the
sensors to have a uniformly random coverage over the whole
region, especially when the region is large. Rather, since it is
often easier to deploy the sensors over a smaller region, or ran-
domly over a larger region, it is desirable to then have the nodes
adjust themselves to provide full coverage over the entire area.
We may employ the proposed distributed network dynamics al-
gorithms in conjunction with suitable dispersive potential func-
tion to help the nodes evenly cover the network field. We will
begin our discussion of such strategies by first looking at the
model for the forces that we use, and then present the results of
both sequential and parallel algorithms.

Force Model: In this application, the forces come from two
sources: internal interaction between nodes, and repulsive
forces around the boundary of the sensor region. We describe
each type of force below:

• The force between two nodes i and j. In this case study, we
use the linear-force model to calculate the force between
neighboring nodes i and j:

fij =

{

c(r0 − dij)uij if dij ≤ R
0 otherwise

, (5)

where dij is the Euclidean distance between i and j, c >
0 and r0 > 0 are two pre-set constants, R is the radio-
range, and uij is the unit vector starting at j and pointing
to i. r0 denotes the balanced distance between two nodes
where the resulting force is zero. If r0 < R, then fij is an
attractive force when r0 < dij < R, and a repulsive force
otherwise; if r0 ≥ R, fij is always a repulsive force. The
total force exerted on i is fi =

∑

j∈N(i) fij , where N(i) is

the set of neighboring nodes of i.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

(a) Final topology after applying sequen-

tial movement algorithm

(b) Final topology after applying parallel

movement algorithm

10
0

10
1

10
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (in second)

c
o

v
e
ra

g
e
 (

in
 p

e
rc

e
n

ta
g

e
)

v=4m/s

v=10m/s

v=20m/s

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (in second)

c
o

v
e
ra

g
e
 (

in
 p

e
rc

e
n

ta
g

e
)

v=4m/s, T=0.1s

v=4m/s, T=1s

v=10m/s, T=0.1s

v=10m/s, T=1s

(c) Network field coverage time series for

sequential algorithm

(d) Network field coverage time series for

parallel algorithm

10
0

10
1

10
2

0

1

2

3

4

5

6

7

8

9
x 10

4

time (in second)

p
o

te
n

ti
a
l
e
n

e
rg

y

v=4m/s

v=10m/s

v=20m/s

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

time (in second)

p
o

te
n

ti
a
l
e
n

e
rg

y

v=4m/s, T=0.1s

v=4m/s, T=1s

v=10m/s, T=0.1s

v=10m/s, T=1s

(e) System potential energy time series

for sequential algorithm

(f) System potential energy time series for

parallel algorithm

Fig. 3. Distributed network dynamics algorithms can make a clustered initial
topology (shown in Figure 2) become a uniform topology.) The time axis is in
log-scale.

The parameter r0 is a parameter that may be used to govern
the distance between two adjacent nodes in the final net-
work configuration. In particular, the area of the coverage
region, and the number of mobile node affect the choice of
r0. It should be noted that if there are not enough nodes
to sufficiently cover the region, and r0 > R, then the net-
work will ultimately end up partitioned into many small
subnetworks.

• The force from the network boundary: In our experiments,
we model the effect of the boundary as a region of repul-
sive force of width d0 around the region’s boundary. If
the distance between a node and the boundary is less than
a pre-set value d0, and the node’s net force is towards the
boundary, then the force exerted on that node is a repulsive
force that cancels the component of the net force perpen-
dicular to the boundary. The net result is that the boundary
potential cancels potentials that would force the node to
invade this boundary region. We assume that each node
is already pre-programmed with the boundary’s location
prior to deployment.

Simulation Results: In our experiments, we first created an
initial random deployment involving 180 nodes clustered about
the center of the network field, as shown in Figure 2. The net-
work field is 100 × 100 m2, and all the nodes are initially de-
ployed in a small area of size 20 × 20 m2. Each node’s radio
range is 10m, and r0 in Equation 5 is set to 10m. Usually, if
there are N nodes over a network field of area A, then the value
of r0 should be governed by the equation:

√

A/Nπ < r0 ≤ R

6

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)
y

 (
in

 m
e

te
r)

(a) Initial topology where the nodes are

randomly deployed in the network field

(b) Final topology after applying parallel

movement algorithm

10
0

10
1

10
2

10
3

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

time (in second)

c
o

v
e

ra
g

e
 (

in
 p

e
rc

e
n

ta
g

e
)

v=4m/s, T=0.1s

v=4m/s, T=1s

v=10m/s, T=0.1s

v=10m/s, T=1s

10
0

10
1

10
2

10
3

1000

1500

2000

2500

3000

3500

4000

4500

time (in second)

p
o

te
n

ti
a
l
e
n

e
rg

y

v=4m/s, T=0.1s

v=4m/s, T=1s
v=10m/s, T=0.1s

v=10m/s, T=1s

(c) Network field coverage time series (d) System potential energy time series

Fig. 4. Applying parallel PDND algorithm to an initial network topology
where the nodes are randomly distributed. The time axis is in log-scale.

where R is the radio range. Following the initial deployment,
we applied both the sequential algorithm and the parallel algo-
rithm with the linear-force model, with δ = 0.1.

Figures 3(a) and (b) show that both algorithms can success-
fully make the 180 nodes uniformly distributed across the net-
work field. The edges in these two figures denote the radio
connection between any two neighboring nodes. Careful in-
spection of Figures 3(a) and (b) reveals that there are differ-
ences between the final configurations produced by the sequen-
tial and parallel algorithm. Compared to the initial topology,
the advantage of the uniform topology is obvious. In order to
witness the convergence process, we also recorded the network
field coverage time series, as well as how the system potential
energy evolves with time. Figures 3(c) and (d) present the time
series of the network coverage ratio for the sequential and par-
allel algorithms respectively. The network coverage ratio is the
percentage of the network field that is covered by the wireless
nodes. For the sequential algorithm, we present results for dif-
ferent velocities, while for the parallel algorithm we examine
both different velocities as well as time slice durations T . We
applied Monte Carlo integration methods to calculate the cov-
erage ratio. Suppose the network field is a rectangle, whose
upper-left coordinate is (x0, y0), and bottom-right coordinate
(x1, y1). We may randomly generate N locations (x, y) within
the field (i.e. x is a uniformly random number between [x0, x1],
and y is a uniformly random number between [y0, y1]). Among
these N locations, suppose that n locations are covered by the
mobile nodes. Then the corresponding coverage ratio is n/N .
We chose a value of N sufficiently large to guarantee our esti-
mate was stable. Irrespective of the algorithm and the param-
eters, the overall trend is that the coverage ratio starts from a
poor value, and becomes 100% by the end of the algorithm.
More importantly, we observe that the coverage ratio keeps in-
creasing until it reaches 100%. The time series of the system
potential energy are presented in Figures 3(e) and (f). Similar
trends are also observed here: as time progresses, the potential
energy keeps increasing, until reaching the minimum.

Sometimes it is more convenient to randomly place sen-
sor nodes over the network field, and the corresponding initial
topology will look like the one shown in Figure 4(a). We have
applied both sequential and parallel algorithms to this topol-

ogy, and only show the results for the parallel case for space
considerations. Figures 4(b)-(d) show the final topology after
the PDND algorithm converges, the network field coverage ra-
tio time series in the course of convergence, and how the system
potential energy evolves.

V. APPLYING NETWORK DYNAMICS TO SPATIAL

RETREATS

In this section, we discuss a second application of network
dynamics that involves repairing mobile sensor networks sub-
jected to attacks of radio interference.

A. Jamming attacks and Spatial Retreats

The shared nature of the wireless medium makes wireless
networks susceptible to a broad array of security threats. In
particular, one class of powerful attacks that has received at-
tention recently is jamming [5, 10–12]. Adversaries may easily
jam legitimate wireless communications by either continuously
emitting RF signals, or by interrupting the transmission and re-
ception of legitimate packets [12]. Either way, the net result is
that legitimate traffic will be interfered with. Jamming attacks
can have a particularly deleterious effect as the presence of a
jammer may block whole regions of the network.

To defend against jamming attacks, two strategies were re-
cently proposed in [5], namely channel surfing and spatial re-
treats. In this paper, we are interested in spatial retreats, in
which jammed nodes try to evacuate from jammed regions. As
such, spatial retreats are suitable for mobile networks. In the re-
mainder of this section, we discuss our proposed spatial retreat
strategy, and show how network dynamics may be incorporated
into spatial retreats to achieve robustness in network communi-
cations.

The rationale behind spatial retreats is that when mobile
nodes are interfered with, they should simply move to a safe lo-
cation. Assuming each mobile node can detect jamming attacks
in a timely fashion [12], the key to the success of this strategy
is to decide where the mobile nodes should escape to and how
these nodes should coordinate their escapes. Merely escaping
from a jammed region is not a sufficient defense mechanism,
however, as a mobile adversary can move through the coverage
area and cause large swaths of the network to relocate. By do-
ing so, an adversary can cause the network to become unevenly
distributed, or even partitioned, thereby severing network com-
munications.

Therefore, spatial retreat strategies should be robust to mo-
bile jammers. In order to achieve this robustness, our spatial
retreat strategy has two phases: (1) Escape phase. In this phase,
the nodes that are located within the jammed area move to
“safe” regions, and stay connected with the rest of the network.
(2) Reconstruction phase. After the jammed nodes escape from
the jammed area, a distributed network dynamics algorithm is
applied to re-adjust the network deployment to be more uni-
formly covered. In particular, after the jammer has moved on,
the jammed area will leave a hole in the network coverage, and
network dynamics will serve to quickly fill in the hole and re-
store network coverage.

We begin by discussing the escape strategy that we have de-
veloped. Suppose the network is connected before the jamming
attack, i.e. every node within the jammed area is connected with
nodes outside via one-hop or through multiple hops. In the ex-
ample shown in Figure 5(a), before the jamming attack, node A
was directly connected with A’, node B was directly connected
with B’, node D was directly connected with D’, and C was

7

A
B

C

D

D’

A’

B’

A

D’

A’

B’

A

(a) The network topology when the jam-

ming attack occurs. The jammed area is

highlighted by the gray area.

(b) The dashed line marks the trace

through which node A escapes from the

jammed area and re-connects to the rest

of the network.

Fig. 5. Escaping from the jammed area.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

(a) The topology before the jamming

attack

(b) The topology after the jammer

moves from the bottom to the top.

Fig. 6. A mobile jammer may partition the network.

connected with D’ via D. After the jamming attack is detected,
the nodes within the jammed area choose a random direction
to evacuate. While moving, each node continuously runs the
jamming detection algorithm until it leaves the jammed area.
As soon as it leaves the jammed area, it tests whether there are
some nodes within its radio range. If not, it moves along the
boundary of the jammed area until it re-connects to the rest of
the network. In Figure 5(a), if node A moves along the bound-
ary, it will eventually arrive at a location which is between the
location of A’ and the original location of A, where it can re-
connect to A’.

In order to make sure a node moves along the boundary of
the jammed area, the node must continually run the jamming
detection algorithm. Following the hull-tracing strategy in [5],
it can use the simple strategy: whenever it feels the jammer’s
power is increasing, it makes a 90 degree left turn; whenever
it feels the jammer’s power is decreasing, it makes a 90 degree
right turn. After it has moved a total r distance, where r is its
radio range, the node will probe to see whether there is another
node in its radio range (probing can also occur at a finer gran-
ularity). If not, it will continue moving along the boundary.
Figure 5(b) illustrates how node A chooses a random direction
to escape from the jammed area, and how it re-connects to the
rest of the network using the simple policy.

We next turn to the reconstruction phase. Although our sim-
ple escape strategy guarantees that every jammed node can es-
cape from the jammed area and successfully connect to the rest
of the network, a serious problem remains. As we noted earlier,
if the jammer is mobile, its movement may cause the network
to become severely unbalanced, or even partitioned. As an ex-
ample, in Figure 6, we depict an initial network configuration
(Figure 6(a)), and then introduce a jammer that moves in the
y-direction through the middle of the network. The result is a
network that is severely partitioned (Figure 6(b)).

In order to address this problem, we propose to apply the
network dynamics to continuously repair the network topology,
regardless of the jammer movement. In this scenario, there are
three types of forces in the network field: the forces between

the nodes, the force from the boundary of the region, and the
force from the boundary of the jammed area. We used the same
model for the internode forces and region boundary forces as
we used in Section IV. The force that we used for the boundary
of the jammed area is similar to the force for the boundary of the
network field. Nonetheless, we cannot pre-program the jammed
area boundary as in the case of network field boundary. Instead,
jammed area mapping techniques such as the one proposed in
[10] should be incorporated here.

We now examine robust spatial retreats by looking at an ex-
periment involving a mobile jammer cutting across the network
coverage area. Figure 7 illustrates the evolution of the net-
work’s topology as the jammer moves through the network,
and the robust spatial retreat algorithm not only evacuates the
jammed area but also repairs regions left empty by the mobile
jammer. In this experiment, we used PDND. Overall, the ben-
efit of applying distributed network dynamics is two-fold: (1)
as soon as the victim nodes escape from the jammed area, in-
stead of gathering around the boundary, the nodes redistribute
to cover the rest of the network field more evenly; and (2) as
soon as the jammer leaves the current location, the resulting
“hole” can be quickly repaired.
sectionRelated Literature

The mobility of the communication infrastructure is a dis-
tinguishing feature of mobile ad hoc and sensor networks. It
has become a recent trend in the area of mobile communica-
tions to look for scenarios where mobility can improve network
performance. Kansal et al. propose that mobility can address
topology adaptivity, increase network and energy capacity, and
also help a network redistribute resources [13]. Goldenberg et
al. [1] examined cases where mobility improves network per-
formance. They presented one of the first algorithms for con-
trolling node mobility to improve network performance. This
distributed algorithm adjusts the locations of mobile devices ac-
cording to local information to achieve global communication
objectives.

Another application of mobility addresses the coverage area
provided by a sensor network deployment [2, 3, 14–17]. These
papers use controlled mobility to enhance sensor coverage fol-
lowing a non-ideal initial deployment of sensors. Along a sim-
ilar vein, a technique that used mobility to repair networks in
the presence or faults due to energy consumption (depleted bat-
teries) was presented in [18].

The work of Howard et al. [16] is one of the first papers to
look at mobile devices as particles that exert forces upon each
other, as well as introduce the notion that repulsive forces may
be used to demarcate boundaries and objects. They used the
traditional equations of motion as their guidelines for govern-
ing motion. The authors did not address important issues, such
as the waste of energy as a result of momentum causing min-
imal potential configurations to be overshot. Their techniques
were adopted in [2, 14, 19]. Wang et al. presented the linear-
force model that we used in our work [2]. Poduri et al. follow
the construction of Howard et al. and incorporate modifica-
tions that attempt to maintain a level of connectivity between
nodes [19]. Nonlinear force models were employed in [14]. In
[14], the authors present an off-line algorithm that may be run
at cluster heads to determine where to move sensors in order
to maximize sensor field coverage. The drawback of such a
scheme is the cluster head must receive messages from mobile
sensors, compute positions, and then issue commands to sen-
sor nodes before the coverage is improved. By contrast, our
distributed algorithms are online and adjust to needs to change
the configuration, and exhibit improved coverage as the system

8

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x (in meter)

y
 (

in
 m

e
te

r)

Fig. 7. Robust spatial retreats repairs the effect of a jammer passing through the coverage region using the PDND algorithm.

reconfigures step-by-step towards convergence.
The issue of jamming detection was briefly studied by Wood

and Stankovic in [10] in the context of sensor networks. Several
different models for jammers, along with multimodal detection
mechanisms were presented in [12]. Countermeasures for cop-
ing with jammed regions in wireless networks has been studied
in [5]. In [5], two countermeasures are presented for coping
with jamming. The first method, channel surfing, involves a
form of on-demand link-layer frequency hopping, where valid
participants change the channel they are communicating on
when a denial of service attack occurs. The second method,
spatial retreats, focused on the case of a stationary jammer, and
did not deal with the pernicious effects of a mobile jammer.

VI. CONCLUDING REMARKS

This paper presented a framework for managing the mobility
in a mobile ad hoc network by defining suitable potential en-
ergy functions. The design of these potential functions captures
the operational goals of the network, and can encourage nodes
to gather, disperse, or migrate. We argued that the equations of
motions should not directly follow those of classical mechan-
ics, and instead proposed that the equations of motion should
follow a steepest descent formulation to minimize potential en-
ergy. Since centralized control of motion is not practical, we
devised several distributed algorithms, whereby devices make
movement decisions based on the position information of other
devices within their radio range. The performance of network
dynamics may be evaluated by measuring convergence time,
the efficiency of the node movement, messaging overhead, as
well as by monitoring the evolution of the system potential en-
ergy with time. Using these performance metrics, we evaluated
our distributed algorithms on the problem of dispersing an ini-
tially clustered deployment of sensors to achieve roughly uni-
form coverage. We observed that our algorithms successfully
adjust the topology and, during convergence, monotonically in-
crease network coverage. We then examined the application
of network dynamics to the problem of managing a MANET’s
topology in the presence of a jamming attack. In particular, sim-
ple spatial retreat strategies, whereby jammed nodes seek to es-
cape the jammed area, can lead to fractured network topologies.
By employing network dynamics in conjunction with a jam-
ming escape algorithm, we developed a robust spatial retreat

strategy capable of repairing network partitioning as a jamming
device cuts through the MANET.

REFERENCES

[1] D. Goldenberg, J. Lin, and A. Morse, “Towards mobility as a network
control primitive,” in Proc. ACM MobiHoc’04, May 2004, pp. 163–174.

[2] G. Wang, G. Cao, and T. Porta, “Movement-assisted sensor deployment,”
in Proc. IEEE INFOCOM’04, Mar. 2004, pp. 2469–2479.

[3] G. Wang, G. Cao, T. Porta, and W. Zhang, “Sensor relocation in mobile
sensor networks,” in Proc. IEEE INFOCOM’05, Mar. 2005.

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp.
102–114, 2002.

[5] W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing and spatial
retreats: defenses against wireless denial of service,” in Proceedings of
the 2004 ACM workshop on Wireless security, 2004, pp. 80 – 89.

[6] R. P. Feynman, Feynman Lectures On Physics, Addison Wesley, 1970.
[7] C.G. Gray and K. E. Gubbins, The Theory of Molecular Fluids 1: Fun-

damentals, Clarence Press, Oxford, 1984.
[8] P. Enge and P. Misra, Global Positioning System: Signals, Measurements

and Performance, Ganga-Jamuna Pr, 2001.
[9] K. Langendoen and N. Reijers, “Distributed localization in wireless sen-

sor networks: a quantitative comparison,” Comput. Networks, vol. 43, no.
4, pp. 499–518, 2003.

[10] A. Wood, J. Stankovic, and S. Son, “JAM: A jammed-area mapping ser-
vice for sensor networks,” in 24th IEEE Real-Time Systems Symposium,
2003, pp. 286 – 297.

[11] A. Wood and J. Stankovic, “Denial of service in sensor networks,” IEEE
Computer, vol. 35, no. 10, pp. 54–62, October 2002.

[12] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in Proceedings of
the 2005 ACM International Symposium on Mobile Ad Hoc Networking
and Computing.

[13] A. Kansal, M. Rahimi, D. Estrin, W. Kaiser, G. Pottie, and M. Srivastava,
“Controlled mobility for sustainable wireless sensor networks,” in Proc.
IEEE SECON’04, Oct. 2004, pp. 1–6.

[14] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization
based on virtual forces,” in Proc. IEEE INFOCOM’03, Mar. 2003, pp.
1293–1303.

[15] A. Howard, M. Mataric, and G. Sukhatme, “An incremental deploy-
ment algorithm for mobile robot teams,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’02), Sept. 2002, pp.
2849–2854.

[16] A. Howard, M. Mataric, and G. Sukhatme, “Mobile sensor network de-
ployment using potential fields: a distributed, scalable solution to the area
coverage problem,” in Proc. The 6th International Symposium on Dis-
tributed Autonomous Robotics Systems (DARS’02), June 2002.

[17] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. on Robotics and Automations,
pp. 243–255, 2004.

[18] S. Ganeriwal, A. Kansal, and M. B. Srivastava, “Self aware actuation for
fault repair in sensor networks,” in Proc. IEEE International Conference
on Robotics and Automation (ICRA’04), Apr. 2004, pp. 5244–5249.

[19] S. Poduri and G.S. Sukhatme, “Constrained coverage for mobile sen-
sor networks,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2004, pp. 165–171.

