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ABSTRACT 1. INTRODUCTION

Scheduling in large-scale parallel systems has been and contin- Parallel system scheduling is challenging because of the numer-
ues to be an important and challenging research problem. SeveraPus factors involved in implementing a scheduler. Some of these
key factors, including the increasing use of off-the-shelf clusters influencing factors are the workload, native operating system, node
of workstations to build such parallel systems, have resulted in the hardware, network interface, network, and communication soft-
emergence of a new class of scheduling strategies, broadly referredvare. The recent shift towards the adoption of off-the-shelf clus-
to as dynamic coscheduling. Unfortunately, the size of both the de- ters for cost-effective parallel computing makes the design of an
sign and performance spaces of these emerging scheduling strateefficient scheduler even more crucial and challenging. Clusters are
gies is quite large, due in part to the numerous dynamic interactions gaining acceptance not just in scientific applications that need su-
among the different components of the parallel computing environ- percomputing power, but also in domains such as databases, Inter-
ment as well as the wide range of applications and systems that carnet services and multimedia, which place diverse demands on the
comprise the parallel environment. This in turn makes it difficult to  underlying system. Further, these applications have diverse charac-
fully explore the benefits and limitations of the various proposed teristics in terms of the computation, communication and 1/O oper-
dynamic coscheduling approaches for large-scale systems solelyations which raise complications when multiprogramming the sys-
with the use of simulation and/or experimentation. tem. Traditional solutions that have been used in conventional par-
To gain a better understanding of the fundamental properties of allel systems are not adequately tuned to handle the diverse work-
different dynamic coscheduling methods, we formulate a general loads and performance criteria.
mathematical model of this class of scheduling strategies within ~ Scheduling is usually done in two steps. The first step, spatial
a unified framework that allows us to investigate a wide range of scheduling, consists of assigning tassan application to proces-
parallel environments. We derive a matrix-analytic analysis based sSors. The second step, temporal scheduling, consists of time multi-
on a stochastic decomposition and a fixed-point iteration. A large plexing the various tasks on the corresponding processor. There is
number of numerical experiments are performed in part to examine & considerable body of literature regarding spatial scheduling (e.g.,
the accuracy of our approach. These numerical results are in ex-refer to [6]) and we do not consider this problem herein, nor do
cellent agreement with detailed simulation results. Our mathemati- we examine the issue of migrating tasks during execution for better
cal model and analysis is then used to explore several fundamentaload balance. The focus of this paper is on temporal scheduling,
design and performance tradeoffs associated with the class of dy-Which is an especially important issue on clusters.
namic coscheduling policies across a broad spectrum of parallel With off-the-shelf clusters, it is very tempting and quite natu-
computing environments. ral to use off-the-shelf (native) operating systems, with each node
performing its own (temporal) scheduling. However, the lack of
*This research has been supported in part by several NSF grantsa coordinated schedule across the system can result in a task of a
including Career Award 9701475, 0103583, 0097998, 9988164, job waiting for a message from another task that is not currently
9900701, 9818327 and 0130143. scheduled on a remote node. This problem is accentuated in cur-
rent cluster environments that employ user-level messaging (to re-
duce latencies and improve bandwidth), wherein the operating sys-
tem is unaware of the task waiting for a message. Multiprocessors
have traditionally addressed this problem using a technique called
Coscheduling/Gang Scheduling [18], wherein tasks of a job are
scheduled on their respective nodes during the same time quantum.
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However, gang scheduling is not a very attractive/scalable option tics (e.g., time spent in certain system/application states) that can
for off-the-shelf clusters, since it requires periodic synchronization be used to explain the overall results, to isolate hotspots (for subse-
across the nodes to coordinate the effort. Longer time quanta toquent optimization), and to gain a better understanding of the ben-
offset this cost can decrease the responsiveness of the system.  efits and limitations of different dynamic coscheduling approaches.
As aresult, there have been recent efforts [5, 19, 15] to design a A large number of numerical experiments were conducted, which
new class of scheduling mechanisms — broadly referred to as “dy- were used to make detailed comparisons among various design and
namic coscheduling” — which approximate coscheduled execution performance space issues/tradeoffs. We first demonstrate the ac-
without explicitly synchronizing the nodes. These techniques use curacy of our approach by showing the results to be in excellent
local events (e.g., message arrival) to estimate what is happening aagreement with those from detailed simulations of a relatively small
remote nodes, and adjust their local schedules accordingly. Theyparallel system, often being within 5% and always less than 10%.
are able to simply adjust task priorities to achieve this goal, leaving As previously noted, the accuracy of our approach increases with
it to the native operating system to do the actual scheduling. Thesethe size of the system and our primary interests are in large-scale
scheduling mechanisms have been shown to be easier to impleparallel systems consisting of many computing nodes. Given the
ment, incur less overheads, and result in more effective schedulescomplex dynamic interactions among the different aspects of both
than exact coscheduling in a specific computing environment [24]. the parallel computing environment and the scheduling strategy,
The design and performance spaces of dynamic coschedulingthese results provide considerable evidence of the benefits of our
mechanisms are quite complex, and a myriad of heuristics are pos-approach to investigate the fundamental design and performance
sible to schedule the tasks. Without a unifying performance eval- problems at hand. Our numerous experiments also readily provide
uation framework, it is very difficult to evaluate the benefits and and quantify the behavior of very large-scale systems, which has
limitations of these different heuristics/mechanisms. Only a few notbeen possible in any of the previous experimental and simulation-
very recent studies [15, 24, 1] have even attempted to compare theirbased research studies. Using our models and analysis, we are
merits. With so many different parameters for the parallel system able for the first time to evaluate the benefits and limitations of the
and workload, it is difficult to perform an extensive performance three previously proposed dynamic coscheduling mechanisms un-
evaluation across the entire spectrum. As a result, it is difficult der a wide range of different workload and system configurations,
to say which approaches perform best, and under what conditions,thus complementing and considerably extending very recent exper-
and thus many important design and performance questions remairimental and simulation-based dynamic coscheduling studies. The
open. Previous studies have used a set of static jobs [19, 5, 15] oradvantages of such a flexible and configurable model are demon-
a very specific dynamic arrival pattern [24] on a small-scale paral- strated by conducting studies with different computing environ-
lel system. While one could use experimentation [15] and simu- ments to explore and understand the fundamental design and per-
lation [1, 24] to study small-scale systems, the suitability of these formance tradeoffs associated with the various dynamic coschedul-
mechanisms for large-scale systems has not been explored, which isng strategies. While the motivation for the model comes from the
one of the motivating factors for our present study. Further, what is suitability of dynamic coscheduling mechanisms for cluster envi-
the effect of varying the relative fraction of computation (requiring ronments, the model itself is very generic and can be used to ex-
only CPU resources), communication and 1/0 components in the amine the behavior of these mechanisms on a diverse set of parallel
application, which represents different parallel workloads? Each and distributed systems subject to a diverse set of workloads.
dynamic coscheduling mechanism has tunable parameters that can The remainder of this paper is organized as follows. The next
have a significant effect on performance. How can we select valuessection provides a brief overview of the dynamic coscheduling mech-
for these parameters to get the best performance from the parallelanisms. Section 3 presents the parallel system environment used in
system? As the underlying hardware or operating system changesour study and defines the corresponding stochastic models. We then
(leading to different context-switch costs, interrupt costs, speeding derive a mathematical analysis of these parallel dynamic coschedul-
up the computation, faster I/O, etc.), how do the relative benefits of ing models. Section 5 presents a representative sample of the re-
the different alternatives compare? Answers to such questions aresults from our numerical experiments based on this analysis. Fi-
crucial for the design of an efficient cluster environment, and a uni- nally, Section 6 summarizes the contributions of this work and
fied performance evaluation framework is needed to answer theseidentifies directions for future research.
and other fundamental design and performance questions.

This paper therefore fills a crucial void in the performance evalu- 2. DYNAMIC COSCHEDULING POLICIES
Ztlolr; .?.fneTﬁ;g]l.r;gtp;;::li!cﬁh;ﬂggﬁ]g :;rgtzr?;elsspg (dtgvgl?pll?]g alrjd Exact coscheduling or Gang Scheduling (henceforth referred to
xploiting : i ) ysis {to ou W as just coscheduling) ensures that the tasks of a job are scheduled
edge) that accurately capture the execution of dynamically cosched- . . - )
uled parallel systems. We formulate a general mathematical modelOn their respective nodes (processors) at the same time. This re-
of this class of scheduling strategies within a unified framework quires a coordinated effort (requiring synchronization), incurring
an additional overhead. Increasing time quanta to offset this cost

that allows us to investigate a wide range of parallel computing en- can decrease the responsiveness of the system. One of the advan-

wronments._ This ge_ne_ral framework supports incorporating differ- tages of coscheduling is that the network is also virtualized for each
ent scheduling heuristics, workload parameters, system parameters

- . . - Job (and is context switched along with the job), making it possi-
and overheads, policy parameters, etc. We derive a matrix analytlcble for the task to directly deposit and pick up messages to/from the

ggggnswlsocsn;tit:r? Sviriilrllellez(aze% ugn\?asTIOdrzlt'jsugzzesdtact)g-: Ztcoecrr':S:'ec_network interface (user-level messaging). However, recent network
P N ) yTe P Pr& novations [4, 23] have made it possible to virtualize the network
sentation and in some cases is asymptotically exact as the numbe

: - by just using the virtual memor tem, and it is th ible t
of processors increases. MeasuresofcertalnaspectsofthedynamcléyJLIS using the virtual memory system, and it is thus possible to

arallel system behavior are calculated in terms of the decompose erform user-level networking even if different jobs are running on
P St ! o L -OMPOSEG ¢ different nodes without compromising protection. This has led
model solution, and a fixed-point iteration is used to obtain the fi-

nal solution. In addition to mean iob response time and maximum to the exploration of dynamic coscheduling mechanisms that try
’ J P to approximate coscheduled execution without the need for syn-

system throughput measures, our analysis provides detailed Statls'chronization among the nodes. In this section we briefly review



the three previously proposed dynamic coscheduling mechanismsority of that task. Even if there is no such task, but the currently
namely Spin-Block (SB), Demand-based Coscheduling (DCS) and scheduled one is busy waiting for a message, the activity boosts an-
Periodic Boost (PB). We also describe the system (called Local other task with useful work to do. Though interrupts are avoided,
Scheduling (LS)) which does not attempt to do any coscheduling there is the fear of delaying the actions more than necessary. At the
between the nodes, and leaves it to the native operating system asame time, making this too frequent would increase the overheads.

each node to time share its processor. The impact of thefrequencyof the periodic mechanism, and the
. associateccosts of the activity on the resulting performance need
2.1 Local Scheduling (LS) to be studied.

In this mechanism, the native operating system is left to sched-
ule the tasks at each node, with no coordinated efforts across them3, SYSTEM AND MODELS
Most off-the-shelf/commercial operating system schedulers (includ- o, gtqchastic models of the parallel systems and workloads
ng Solaris, Linux, Windows NT, System v UNIX) US€ SOME VeI~ ot interest in this study are based on the broad spectrum of par-
sion of the multl-lgvel feedback queue to |mpler_ner_1t time s_h_arlng. allel computing environments found in practice [7, 11, 12, 21].
There are a certain number of priority levels, with jobs waiting at gjmjjarly, our stochastic models of the above dynamic coschedul-
each level, and time guantum _assomated with that level. The_wbing mechanisms are based on actual implementations described in
at the head of the highest level is selected to execute for that time o research literature [19, 15], and the costs used for the various

quantum, and at the end .Of this quantum it is mserte_d at the tail of scheduling actions have also been drawn from experimental results.
the next level, and the entire sequence repeats. In this paper, we as-

sociate equal time quanta for all priority levels which is the case in 3.1  Parallel System

Windows NT. When a task initiates an 1/0 operation, it rel_inqu_ishes We consider a parallel computer system that implements the dy-
the CPU, and is putin a blocked state. Upon I/O completion, ittyp- hamic coscheduling strategies of Section 2 to allocate system re-
ically receives a priority boost and is scheduled again. sources to the applications submitted for execution. The parallel
29 Spin Block (SB) sys_tem consists oP identical processors, each capgble_ of exe-
) ) ’ ) ) cuting any of the parallel tasks comprising an application. Ev-
Versions of this mechanism have been considered in the CON-gry processor can operate at a maximum multiprogramming level
text of implicit coscheduling [5, 2] and demand-based coschedul- (\MpL), which is usually governed by resource availability (e.g.,
ing [19]. In this scheme, a task spins on a message receive for amemory/swap space) to provide reasonable overall performance for
fixed amount of timegpin timg before blocking itself. The ratio-  the executing jobs. Processors are interconnected by a network that
nale here is that if the message arrives in a reasonable amount ot,55 poth a latency and a contention component.
time (spin time), the sender task is also currently scheduled and the - ypon arrival, jobs either specify a certain number of processors
receiver should hold on to the CPU to increase the likelihood of that they require (which is equal to the number of tasks in that job),
executing in the near future when the sender task is also execut-gy 5 range of the number of processors on which they can execute.
ing. Otherwise, it should bloc!< so that CPU_ cycles are not wasted. gEach of the tasks belonging to the job is then assigned to a pro-
When the message does arrive, the task is woken up, and consegessor that is not already operating at its maximum MPL. Met
quently gets a boost in priority to get scheduled again. There are gengte this maximum MPL for a processor in the system. Even if
costs associated with blocking and waking up (requires an interrupt only one of the tasks cannot be assigned, the job waits in a queue
on message arrival). Both interrupt costs and spin time will have a an( the scheduler assigns jobs from this queue in a first-come first-
bearing on the resulting performance, and need to be studied. Ourserye (FCFS) order to a processor partition of the desired size.
model is flexible enough to allow either fixed or variable (adaptive)  aAs noted in the introduction, our primary focus in this paper is on
spin times and the model derivation allows for incorporating several temporal scheduling. We mostly consider spatial scheduling with
heuristics that can be used to tune the spin times adaptively. How- respect to its impact on our modeling approach.
ever, in the results part of this paper, we focus on afixed spin model  apnother primary focus in this paper is on large-scale parallel
for comparisons, with the hope of gaining insights that can be used computer systems. These computing environments can increase
to design both fixed and variable (adaptive) spin time mechanisms. the dynamic interactions and complexities of dynamic coschedul-
. ing strategies. These parallel environments are also of great interest
2.3 Demand-based COSChedu“ng (DCS) and play an important role in many scientific and commercial ap-
Demand-based coscheduling [19] uses an incoming message tlications. Moreover, it is both difficult and expensive to either
schedule the task for which it is intended, and preempts the cur- experiment with and/or simulate such large-scale computing envi-
rent task if the intended receiver is not currently scheduled. The ronments, and thus our analytic models can play an even more im-
underlying rationale is that the receipt of a message denotes theportant role in better understanding dynamic coscheduling in these
higher likelihood of the sender task of that job being scheduled at environments. We further note that, while our approach provides
the remote workstation at that time. Upon message arrival, if the very good approximations for relatively small-scale systems, an ex-
intended task is not currently scheduled, an interrupt overhead is act formulation (see Section 4) can be used together with some of
paid for re-scheduling that task. Tiwerrupt costs will have a the results of our analysis to examine even smaller parallel systems.

bearing on the resulting performance.
3.2 Parallel Workload

2.4 Periodic Boost (PB) Parallel jobs arrive to the system from an exogenous source at
This mechanism has been proposed as an interrupt-less alternarate A. The interarrival times of these jobs are assumed to be

tive to address the inefficiencies arising from scheduling skews be- independent and identically distributed (i.i.d.) according to the

tween tasks. Instead of immediately interrupting the host CPU on phase-type distribution Rid, S*) of orderm” with mean\~! =

message arrival as in DCS, the actions are slightly delayed. A ker- —a(S#)~'e and coefficient of variatior, wheree is used to

nel activity becomes active periodically to check if there is a task denote the column vector of appropriate dimension containing all

with a pending (unconsumed) message, and if so it boosts the pri-ones. An arrival is placed in the FCFS system queue wheh/all



time-sharing slots are filled in each of the processor partitions of the coscheduling policies. We then exploit this distributional charac-

desired size. The time-sharing quantum lengths and the context-terization to obtain a reduced state-space representation, for which

switch overheads at each processor are respectively assumed to bee derive a matrix-analytic analysis based on a fixed-point itera-

i.i.d following the phase-type distributions Rkl SQ) and PH¢, SO) tion. Our analysis can be shown to be asymptotically exact in the

of ordersm® andm® having means—* — fX(SQ)*lefand limit as P — oo for some versions of dynamic coscheduling [22],

571 = —¢(S9) e, and coefficients of variatioe® andc®. and numerous simulation-based experiments demonstrate that this
The applications comprising the system workload consist of par- approximation is very accurate even for relatively small-scale par-

allel tasks, each of which alternates among several stages of execu:"‘”el sys}ems though our primary interest is on the class of large-

tion in an iterative manner. The number of iterations for each appli- scale, hlgh-performan_ce parallel systems.

cation, N4, is assumed to follow a (shifted) geometric distribution The para_llel dy”*”.‘m'c coscheo_lullng models can be represented

with parametepy , ,i.e.,P[Na =1+n] = (1-pn,)" PN, € py the continuous-time S.tO.ChaSt'.C Procéss() ; ¢ & I.PW}’ de-

Z... We consider a general class of parallel applications in which finéd on the '”f'”'ts’ muld-dimensional state space givelly =

each iteration consists of a computation stage, followed by an /0 Uizo ¥x where2x = {(0,57) | j© € {1,...,m"}}, O =

. .A =B =B . . =B .
stage, followed by a communication stage (i.e., sending and receiv-{(i,5*, 71 - -,jp) | i € Z*, j* € {1,...,m™}}, j, = (i,
ing messages among tasks). The service times of these per-iteratiorjf, JEas j,fmm{ik,M}, 32y, ik € {0, ..., min{i, M}}, jf(é)
computation, 1/0 and communication stages are respectively as-. {1,...,min{ix, M}}, jB, € {1,”.70%},3-;;2 ef{l,...,m%%+

sumed to be i.i.d. according to the orde’®, m! andm® phase-
type distributions PK3, S”), PH(n, 8”) and PH¢, S¢) with means

nl= _.ﬁ(.SB) e, v 1 = _ﬂ(;gl) Héandy "= e notes the phase of the interarrival processgenotes the number
and coefficients of variation”, ' andc”. As part of the commu- ¢ parallel jobs assigned to procesgorj, (¢) denotes the current
nication stage, a task may also have to wait for the receipt of a mes-. th . ’ .

. index of thel™ priority ordered parallel job assigned to processor
sage from a peer parallel task. We also consider an all-to-all com- _R ) :
munication strategy, where a task may have to wait for messages? (Wherej, (1) denotes the index of the parallel job currently us-
from all other tasks before proceeding. All of the above stochastic 'N9 er’CeSSOVg wheni, > 1 and it is defined to be equal to 1
sequences are assumed to be mutually independent. wheni,. = 0; j;,, denotes the phase of togerall service process

The probability distributions assumed for the mathematical model (defined below) for the™ job assigned to processby ji denotes

parameters are important in that they determine both the generalitythe phase of the quantum length process (including context-switch
of our solution and the usefulness of our model in practice. The use overhead) at processér ¢, denotes the number of phases in the
of phase-type distributions [16, 13] for all model parameters is of phase-type distribution for thé" execution stage of the overall
theoretical importance in that we exploit their properties to derive service process; anl¥,; denotes the number of execution stages
solutions of various instances of our general stochastic schedulingcomprising the overall service process.
models. Itis also of practical importance in that, since this class of  The above (exact) formulation exploits known closure properties
distributions is dense within the set of probability distributions on of phase-type distributions [13], most notably that the convolution
[0, 00), any distribution on this space for the parallel environments of phase-type distributions is also of phase type. As a result, we
of interest can in principle be represented arbitrarily closely by a can generally capture the various stages of execution (e.g., compu-
phase-type distribution. Moreover, a considerable body of researchtation, 1/O and communication) for the classes of parallel applica-
has examined the fitting of phase-type distributions to empirical tions of interest via a single phase-type distribution that represents
data, and a number of algorithms have been developed for doingthe appropriate combinations of the phase-type distributions for
so; e.g., see [3, 8, 10, 17] and the references cited therein. Thiseach of these stages of execution as well as other system behavior
includes recent work that has considered effectively approximating (e.g., the impact of a task waiting to receive a message). We refer to
heavy-tailed distributions with instances of the class of phase-type this combined process as theerall service processvioreover, as
distributions in order to analyze performance models. By appropri- described in more detail below, we note that one of the general keys
ately setting the parameters of our models, a wide range of parallel of our approach consists of capturing the various correlations and

m°}, k€ {1,..., P}, on = 3}, $¢. The state-vector variable
i denotes the total number of parallel jobs in the systgthde-

application and system environments can be investigated. dynamic behaviors of the parallel system and scheduling policy in
the construction and use of this overall service process.
4. MATHEMATICAL ANALYSIS A primary difficulty in analyzing the procedsX (¢); ¢t € IR+ }

) . _ . that records the state of each processor in the system is the size and
In this section we present a general mathematical analysis of ;omplexity of its state spac@x. This is because the stochastic

the foregoing parallel scheduling models within a unified frame- ocess is infinite in multiple dimensions and it contains no struc-
work that allows us to investigate all classes of parallel application ,re that can be exploited to deal with the combinatorial explosion
and system environments of interest using a single formulation. To f the multi-dimensional state space in order to obtain an exact so-
the best of our knowledge, there is no previous work that has an- yton, To create a tractable formulation, we first partition the sys-
alytically modele(_:i _and analyzed parallel systems under dynamlc tem into (disjoint) sets of processors that are executing the same
coscheduling policies. The reasons for this center around the in-cqiection of parallel applications. We approximate each of these
herent complexity of such a mathematical model given the dynamic rqcessor partitions by assuming that the distribution of the state
and complex interactions among the parallel processors, making angt each processor in a given partition is stochastically independent
exact analysis intractable. After illustrating some of these prob- 4n igentical to the distribution of the states of the other processors
lems, we present a very different and novel approach to addressj, the partition. For each processor partition, the corresponding de-
the fundam_ental problems involved in the mathematlcal_m_odellng composed stochastic proceSs(t) ; ¢ € IRy }, representing each
and analysis of this complex parallel system. Our analysis is basedingjvidual processor in the partition, then can be solved in isolation

on a general form of stochastic decomposition in which we derive p,, mqdifying its overall service process to reflect the distributional
distributional characterizations of the dynamic interactions and de- yanavior of the other processors in the partition. Thus, the complex
pendencies among the parallel processors under various dynamic



dependencies among the processors of a partition and their complexcan be easily shown to represent the long-run proportion of time
dynamic interactions are probabilistically captured, in part, via the the system spends in stajgs € Q% , a property which we exploit
overall service process. Performance measures for the entire parti{ater in this section and in Section 5. Assuming this process to be
tion can be obtained by analyzing the model of a single processorirreducible and positive recurrent, the invariant probability vector
in this manner via a fixed-point iteration, and performance mea- is uniquely determined by solvingQ = 0 andwe = 1, whereQ
sures for the entire parallel system are obtained by combining theis the infinitesimal generator matrix for the process.
solutions for each of the partitions in the system. The generator matrig, organized in the same order as the ele-
This formulation of our approach assumes a specific parallel ments of the stationary vectar, has a structure given by
computing environment in which each of the processors allocated
to an application has the same MPL. This is often the case in many
large-scale parallel systems that are spatially partitioned together
with some type of packing scheme to fill holes in the time-sharing
slots. However, our approach also can be used to handle large-scale
parallel systems in which the set of processors executing an appli-
cation has different numbers of applications assigned to them. This
is achieved by further partitioning the set of processors allocated to whereBoo, Bo1, Bio, B11 andA,, n = 0, 1, 2, are finite matrices
an application based on their MPL. Our approach is then used to of dimensionsD x D, D X Das, Dyr X D, Dy X Dy and Dy X
solve in isolation the decomposed stochastic process representingD s, respectively. Furthermore, the matrices corresponding to the
each individual processor in each of these subpartitions by modify- non-homogeneous boundary@{- have structures given by
ing its overall service process to reflect the distributional behavior

Boo Bt 0 0 O
By Bii Ao O 0o ...
_ 0 Ay A1 Ay O ... 4
Q 0 0 Ay A Ay ... |’ “)

of the other processors in the subpartition, as well as the processors go @0 o 0 0
in the other subpartitions. The fixed-point iteration of our approach 1 !
is extended in a relatively straightforward manner to handle these

e . A . i oo=| 0 &2 - , Bui=Wu, (5)
subpartitions, and the final solution is obtained as described above. ) .

We note that our analysis can include important aspects of real : : .
parallel computing environments such as the effects of increased 0 0 - Py g Upg
contention for system resources (e.g., the network) which can be _ T _
incurred by the parallel system as a result of various application and Bor=[0 -+ 0Am—]", Bio=[0 - 02u], (6)
scheduling actions. Due to space limitations, however, this analysiswhere®,, ¥; andA; have dimension®; x D;_1, D; x D; and
is not presented here and we refer the interested reader to [22]. D, x D, ,, respectively. The components of the stationary proba-

4.1 Matrix-Analytic Analysis bility vector 7 are then given by [16]

Consider a particular processor from a specific processor par- Boo Box

o ) N ST = 0, 7
tition. The state space of the corresponding prod@sg); t (o, m1 ™) Bio B+ RA2 )
IR+ } is given byQy = 72, 2 whereQ} = {(0,5%) | j* € myver = muRY, ke€Zy (8)
{17"'7mA}}’Q§/ = {(i7jA7.7R7j1Ba"'7.j£in{i,]vf}7jQ) | i€ (71—0 T, ... ﬂNI*l)e + ﬂ-]W(I_R)*le =1 (9)
zZ*, A e {1,...,m*}, 570 € {1,...,min{i, M}}, jP € o _ _ L
{1,...,0n,}, 79 € {1,...,m? + m°}}. The state-vector vari- whereR is the minimal non-negative solution of the equation
ablei denotes the number of parallel jobs at the given processor; R?As + RA, + Ay = 0, (10)

j* denotes the phase of the interarrival procégﬂ) denotes the _ o _
current index of theﬁ_”}‘% pricrity ordered parallel job assigned to an\(/j\/IhliTeﬂt]rfelg: gigﬁc?;?érlzwgzr?faergﬁic results make it possible for
::Tllrrg;?f ej;?: (\t’:]gerf Og)ssd;r)'c\)lﬁzr;hellr;?:jxitoifstzgfﬁ] aeréﬂtl(e)lggb us to numerically solve the stochastic process in a very efficient
equal toyl whgn' _ g ‘B denotes the phase of the overall service 2NNer, instances of the model with large parameter values can
(rqocess for thdc”:ob’ z:ssi ned to thep rocessor: affd denotes cause the dim_ensions of the t_Joundary submatr!ces ?n equatiop 4)
b ) 9 proce . . to become quite large. Following the results derived in [20] for in-
the phase of the quantum length process (including context-switch ire qasi-birth-death processes (QBDs), we next establish a the-
overhe_ad) at the processor. R;]ecall Wﬁt de”F’tes the numﬁg of orem that significantly reduces the time and space complexities of
execution stages comprlsmg.t eovera serwceprqcesgpg }ht computing equations (7) and (9). We also point out that the results
notes the number of phases in the phase-type distribution féfthe in [20] for (both) infinite (and finite) QBDs were derived indepen-

execution stage of the overall service procéss, ¢ < Ny, and dently of the analogous results for finite QBDs obtained in [9].
thato, = >-)_, ¢¢. We shall refer ta23 aslevels.

Letyia € Q3,1 < d < Dj, i € Z4, be a lexicographic THEOREM 4.1. Let Q be irreducible and in the form of (4)
ordering of the elements of levél and defineD = 2?181 D;, through (6). If the minimal non-negative soluti®of equation (10)
whereD; denotes the cardinality of levél We then define satisfies spR) < 1, and if there exists a positive probability vector

(mo, ..., ) satisfying equation (7), then the components of this
m = (mo, w1, W2, .ol ), ) probability vector are given by
T, = m\Yi, 1), ™(Yi2)y -y T\Yi,D; ), (2 =
"(yd) = i [)Y(t() - ; l ! ®) ™= cmen @B, 0k MoL (D
oo v = —mu-1Auo1 Ry, (12)

fori € Z4, yi,a € 0%, 1 <d< D;. The limiting probabil- - - ~
ity vector is the stationary distribution for the stochastic process WhereRo = Wo, Ry = Wi — ®x Ry " Ap—1, 1 <k < M —1,
{Y (¢); t € R4}, and the value of each of its componenty; ) Ry = VY + RA,. Furthermore, whed/ > 1, the vectorr ar—1



can be determined up to a multiplicative constant by solving The elements of the generator matrix are constructed based on
the above formulation and the dynamic transitions among the stages

T [wn] =0, 13) of behavior for the parallel system, which also depend upon the

Thne = 0, 0 > 0, (14) specific version of dynamic coscheduling of interest. A key aspect

of our approach consists of capturing these dynamic behaviors (in-

P— J— — Pa— ~71 p— . . . .
wheren = M —landwa—1 = ¥ar—1 — Sayr—1 Ry pAar—2 cluding correlations among the processors) in the overall service

An—1R;} ®y. Otherwise, whed! = 1, the vectorr; can be de- process based on their probability distributions as well as the sys-
termined up to a multiplicative constant by solving equations (13) tem dynamics, and constructing the stochastic process of the par-
and (14) wherer = 1 andw; = R1 — ®1 Ry ' Ao. In either case, allel system to probabilistically include these behaviors under the
the vector(mo, 71, ..., m ) then can be obtained from (11), (12) dynamic coscheduling policy. To simply clarify the presentation
and the normalizing equation (9). of our approach, and in the interest of space, we briefly consider

a generic example consisting df parallel applications that time-
Proof: From known matrix-analytic results, the stationary proba- share a processor partition under a simple policy (very similar to
bility vector = is given by equations (7), (8) and (9). Substitution |s) that allocates time-slices to every application in a round-robin
of (5) and (6) into equation (7) shows that the generator matrix for fashion. We refer the interested reader to [22] for additional details.

the boundary has the structure The first three stages of the overall service process for each ap-
C W A . 0 0 0 - plication represent the computation, /0 and communication stages
0 0 : B I C
o Uy - 0 of execution, apq .thu$1 =m>,¢pa=m ar]dqbg =m (refer
back to the definitions o2y and corresponding variables). In the
~ 0 Py --- : : : present example, we assume that the communication stage of each
Q= » (19) task consists of sendingsinglemessage to one other task followed
: : : 0 by receiving ssinglemessage from one other task. (Note that more
0O 0 - Py Yy Arr—a general cases of sending/receiving multiple messages are addressed
o o - 0 ®y Wy + RA | within the context of our approach in Section 4.3.) We further as-

sume that the communication stage is comprised of the total proces-
sor demands for the send operation and the portion of the processor
demands for the receive operation up to the point of checking if
molo + m® = 0, (16) the message from another task has arrived; the processor demands
of the remainder of the receive operation are included as part of

where we have made use of (8). The invariant vegter, . .., war)
then satisfies, up to a multiplicative constant, the equations

Thoibeor W+ e ®e =0, (17 the computation stage of the next iteration. For this reason, we
mru—1Av-1 + (Y + RA2) = 0, (18) shall henceforth use “send stage” and “communication stage” in-
(o, ,mm)e = 0 >0, (19) terchangeably, unless noted otherwise. A context switch occurs on
- ~ an 1/0 operation. At the end of the 1/O stage for each iteration, the
for1 <k < M — 1. Upon substituting®o, . .., Ra into (16) — job completes and departs the system with probability,, and

(18), we obtain equations (11) and (12). The non-singularity of otherwise it proceeds to the send stage. Upon completion of this
the matriceski, 0 < k < M, follows from the properties of the ~ communication stage, the application immediately enters the com-
irreducible generator matrix and the submatrices in (4) and (15). putation stage of the next iteration if the message to be received
Substitution of (11) and (12) into (17) fa&r= M — 1 > 0 yields has already arrived, which occurs with probabifity(-). On the

equation (13) witm = M — 1, which then can be used together other hand, if the message to be received has not arrived, then the

with (14) to obtain the vectofry,—1 up to a multiplicative con- sender of the message can be in one of four (generic) states, namely
stant whenM > 1. Similarly, whenM = 1, equation (13) with computation, /0O, send and waiting for a message from yet another
n = 1 is obtained by substituting (11) arféh; into (18). The re- processor. The corresponding events that the sender of the message
maining components of the vectét, ..., ma) are determined is active in the computation, I/O or send stages occur with proba-
up to the same multiplicative constant via recurrence using equa-bility pz(-), pr(-) andpc(-), respectively.

tions (11) and (12). The vecter is then uniquely determined by Let T's denote the maximum number of iterations, at any given
the normalizing equation (9). O time, that a waiting task can be ahead of the task that will be send-

ing the corresponding message, under the dynamic coscheduling
policy being examined. To further clarify the presentation, suppose
thatTs = 0 in our generic example which implies that the sender
fof a message to any task in a waiting stage must be in the same it-
eration (albeit in an earlier stage) as the waiting task. (Note that the
general case fdFs is considered in Section 4.3.) We therefore have

The use of Theorem 4.1 to calculate the probability veetor
significantly reduces the computational complexity over that of nu-
merically solving equations (7) and (9) directly. In particular, this
approach makes it possible to obtain the boundary components o
the invariant vector (up to a multiplicative constant) by B%olving
M + 1 matrix equations of (time and space) complexit , — ~
0 < i < M, as opposed to solving a single matrixyequ)ation $a = I”B’ ¢s = m® andN, = 6. The measurepa(), ps("),
of (time and space) complexity(@fﬁo D;)?). This makes it p1(+), pc(-) and the orde%/phase-t/ype distribution for stage 5 (as
possible for us to compute solutions for large instances of the dy- well as the measuregi’('), 1. andg(') used below) are all calcu-
namic coscheduling models that are otherwise prohibitively expen- lated from our model solution and form the basis for a fixed-point
sive. Moreover, the algorithm (based on Theorem 4.1) used to com- iteration that is described in Section 4.3. More general communica-
pute these solutions is numerically stable across a wide spectrum oftion strategies are handled in a similar manner. For example, in the
model parameters. In fact, throughout all of the numerous experi- case of an all-to-all communication strategy, we derive a formula
ments performed as part of our study, some of which are presentedfor the distribution of time that the task waits for messages from all
in Section 5, we encountered no numerical stability problems. other tasks (based on distributions conditioned on the state of the

system), and then we use a phase-type distribution to estimate (or
4.2 Generator Matrix bound) this waiting time distribution.



The corresponding set of transition rates for this generic example iteration upon completion of the communication stage because the
is obtained in a straightforward manner based on the formulation message to be received has already arrived. Sifiice= 0, the
and analysis described above. We note that the general case of thesgender of this message must either be in stages 4, 5 or 6, and thus
transition rules are similarly obtained in a straightforward manner. we have the following expression fpn :
Moreover, the corresponding set of general rules for other types of
applications and dynamic coscheduling policies can be constructed 5
in a similar fashion within the context of our approach. This is in
fact exactly what we did for each of the coscheduling policies de-
fined in Section 2, which was then used together with our analysis  Analogously, the initial probability vecto;@’ andg for the
to generate the numerical results presented in Section 5. In particu-stage 4, 5 and 6 phase-type distributions can be writtén as
lar, LS is quite similar to the general case of the policy considered

6
=Y (mo,...,mm1) Vo +mm(I— R) ™ 0. (23)
=4

above, where the vect(irR(é) is used to give a priority boost to ~ Z m(2) Plh(2), h(y)]
each job immediately upon the completion of its 1/O operation. A () = 2E€D1 (kyu), y€D1 (k) (24)
similar approach is used to address SB, with the addition of ex- —* Z 7(z) Plh(2), h(y)] 7

tending the phase-type distribution for the communication stage to

. L . ) z€D1(k), yeD1 (k)
include spin times and interrupt costs (as part of the corresponding

receive operation). Somewhat more complex priority orderings are > m(z) Plh(2), h(y)]
maintained in the vectoj’ (¢) for the DCS and PB strategies in Y(w) = 2€Ds (k,u), yEDa (k,u) (25)
order to properly capture the local execution of applications under =% Z 7(2) P[h(z), h(y)] ’

these schemes. In the interest of space we omit these details of our Do (k), yEDa (k)
procedure for constructing the generator matrix elements; see [22]. )
_ _ ) > m(2) P[h(2), h(y)]
4.3 Fixed-Point Iteration , ey k), veDs (kW) -
Equations (7) — (9) and Theorem 4.1 form the solution to our de- Glw) = > m(2) Plh(z),h(y)] 20)
composed stochastic model, in terms of the mai&jyprovided that ’
certain aspects of the parallel system behavior are known. For the
generic example of the previous section, these unknown measuresespectively. These expressions can be easily represented in closed-
includepa, ps, pr, pc, 8, n', ¢’ and the ordeps phase-type dis- form with the use of binary vectors in the same manner as above
tribution for stage 5. Estimates of these measures of the dynamicfor the other measures.
system behavior are calculated in terms of the decomposed model Finally, the phase-type distributions for stage 5 represent the
solution, and a fixed-point iteration is used to obtain the final so- times that the sender (of the message being waited for by the receiv-
lution for the processor partition. We now briefly describe our ap- ing task being modeled) spends in the I/0O stage up until entering the
proach, initially focusing on the generic example of the previous send stage and gaining access to the processor. We construct these
section and then turning to the more general case. distributions from the decomposed model solution by examining
Leth(y) be the index of the statee Qy in the lexicographic or- the time until absorption in a new Markov proceSE’(¢); t €
dering of the elements 61y, and letP = I + Q/ max{—Qlk, k|} IR+ } obtained from the original proce¢d”(¢); t € IR} as fol-
be the transition probability matrix for the uniformized version of lows. All of the states irfDs(k) are made to be absorbing states.

the proces{Y (¢); t € IRy}. We defineD,(k,u) = {y | y € We then make all of the remaining (reachable) states transient with

2€D3(k), y€D3 (k)

Qy,i > 1, jR(l) =k1<9<m®o14+1<j8< the initial probability vector for every levelgiven byﬂ;me, 1<

o0, jE = o001+ u}, £ = 17374,3, De(k,u) = {y |y € k < min{i, M}. The distributions PH;;C,S{) then can be ob-

Qv,i 21,001+ 1 < ji) <op, i = o1 +u}, £ = 2,5, tained either directly from the procegd”(¢); ¢t € IRy} con-

fork =1,...,M andu = 1,...,¢,. Also, defineDe(k,u) = structed in this fashion or by fitting a phase-type distribution to

{Z | z € Qv, Q[ (2)7’1(1!)] > 0,y € De(k,u)}, De(k ) = match the first several moments of the time until absorption in this

U L Dok, w), De(k) = UL Dg(k u),foré =1,...,6,k process{Y'(t); t € IR+}, using any of the best known methods

SMou=1,...,¢. for doing so; e.g., see [3, 8, 10, 17] and the references cited therein.

To calculate the vectorﬁB, pr andpc in terms of the decom- Our approach to handling general instances of the stochastic dy-

posed model solution, recall that these measures represent the setamic coscheduling model depends in part upon the specific value
of probabilities that the sender of the message being waited for (by of T's for the system environment of interest. WHERis relatively
the receiving task being modeled) is active in the computation, /O small, we simply expand our approach above to capture the cases in
and send stages, respectively. Due to the assumptions of stochastiwhich a series of up t@’s additional senders are waiting for mes-
cally independent and identical processors as part of our approxi- sages from other processors by repeafiiagtimes the execution
mate matrix-analytic solution, these probability vectors then can be stages 4, 5 and 6. For example, e set of waiting stages, con-
respectively expressed as sisting of execution stagels+ 3¢, 5 + 3¢ and6 + 3¢, are entered
N b A according to a set of rules analogous to those governing transitions
pp(k)=(mo, ™1, , Tar—1)0Tk + Tar (L= R) " 01, (20) from stage 3 to stages 4, 5 and 6 where each transition rule is mul-
pr(k)=(mo,m1,..., mp-1)V5, + mar(I— R) 05, (21) tiplied by the probability(1 — 5.4(5"(1)))¢, which represents the
Po(k)=(mo, w1, ..., war1)05s + 7mar(I— R)T'55,,  (22) probability that the sender of the message to be received by the task
being modeled is itself waiting on a serieségbrocessors to send
where then™ element of the Vectas, (resp.vy ) is 1 if then!" their corresponding messagéss 0, ..., Ts. (Recall thaﬁR(l) is
state of the boundary (resp., level) is in D,(k), and otherwise is the index of the executing task.) A set of transition rules analogous
0,¢ = 1,2,3. The vectorp4 represents the probabilities that the to those governing transitions from stage 6 to stage 1 are also appro-
modeled task immediately enters the computation stage of the nextpriately constructed for each of these sets of waiting stages to make



the transition to the next set of waiting stages in the series. On thedefined in Section 2 within the context of the parallel system and
other hand, wheff’s is relatively large, then we can simply use the workload models of Section 3. A large number of numerical ex-
execution stages 4, 5 and 6 of our original approach together with periments have been conducted, and a representative set of results
a form of the geometric distribution. In particular, upon complet- are presented herein. However, due to space limitations, we omit
ing stage 6, the system returns to stages 4, 5 and 6 with probabilitythose results that explore the impact of certain parameters on the
(1—pa(3(1))) (following appropriately modified versions of the ~ Performance of the dynamic coscheduling strategies. This includes
set of rules governing transitions from stage 3 to stages 4, 5 and 6)context-switch costs, job duration, and resource contention. We
and otherwise enters Stage 1 according to appropriate|y modified refer the interested reader to [22] for these additional results.
versions of the set of rules governing transitions from stage 6 to

stage 1. Of course, both approaches can be used in combination. I Par?v’[“eter | Va“;e(s) |
Finally, the sending and receiving of multlple messages is accom- 5T (Context Switching Cos0) 500 TS
modated as follows. The sending of multiple messages is simply I (Interrupt Cost) 50 us
incorporated in the corresponding phase-type distribution(s) of the 7~ T (Quantum length) 20 ms
model. Our approach is extended to handle the case of receiving vt 185.48 us
messages from multiple tasks by replacing the expressions and ar- 7 2]
guments provided above with versions of these expressions and ar- C:ég:'gf?ﬁgg‘:zge gﬁz
guments based on the appropriate order statistics. As previously PB interval Tms
noted, in the case of all-to-all communication, we derive an expres- Fixed Maximum Spin time (SB) 200 us
sion for the distribution of time that the task waits for messages Message Size 4096 bytes
from all other tasks and use a phase-type distribution to estimate Communication Pattern | Nearest Neighbor

this waiting time distribution.

Letx = (pa,Ps,p1,pc,B,n’,¢’). Note that equations (20) —
(26), which determine the value &f are expressed in terms of the
decomposed model solution. Hence, we use a fixed-point iteration
to solve the stochastic process as follows. Initial values are chosen
for k and the components of the stationary probability vestare
obtained using our matrix-analytic analysis. This solution yields
new values for via the above equations and the model is solved 5.1 Validation
again with these new values. This iterative procedure continues
until the differences between the values of an iteration and those of
the previous iteration are arbitrarily small. Numerous experiments jefineq at the beginning of Section 4, we first must validate the
were performed with this fixed-point iteration. We note that the oq,its of our analysis against detailed simulations to demonstrate
fixed-point iteration always converged quite rapidly, and that in all the accuracy of our approach. Figure 1 presents the relative er-
of the cases tested, changing the initial values had no effect on the, .« ¢ our models and analysis as a function of the arrival Xate
calclullalted fixed-point, i.e., the model solution was insensitive to for a 32-processor system. A representative sample of the results
the initial values chosen for. are provided for all four dynamic coscheduling strategies under
4.4 Performance Measures computation-intensive, communicatiqn-'intensive and I/O-intensi\{e
workloads. In each case, our model is in excellent agreement with
detailed simulations of a relatively small-scale parallel system, of-
ten being within 5% and always less than 10%. Recall that the accu-
racy of our approach increases with the size of the system and that

Table 1: Default Parameters Used in the Results

Some of the default parameter values used for our base-case re-
sults are provided in Table 1, and any deviations from this base case
will be explicitly noted. Many of these values have been drawn
from actual system platforms.

Given that our analysis derived in Section 4.1 considers an ap-
proximation of the (exact) stochastic procgss(¢); ¢t € R4}

Various performance measures of interest can be obtained from
the components of the stationary vectar In particular, the mean
number of parallel jobs in the partition can be expressed as

M-1 our primary interests are in large-scale parallel systems consisting
N = Z knred+Mma(I— R) 'e+nmmR(I— R) 2e. (27) of many computing nodes. With the complex dynamic interactions
k=1 among the different aspects of the parallel computing environment
Using Little’s law [14] and (27), the mean response time of a par- and the scheduling strategy, these resul_ts proyide considerable evi-
allel job in the partition then can be calculatedZas= A\~ ' dence of the benefits of our approach to investigate the fundamental

Another set of performance measures of interest is the long-run d€sign and performance problems at hand.
proportion of _tlm(_e thata processor s_pends performing compu_tgtlon, 5.2 Impact of Load
I/0, communication, context switching, and some form of waiting.

These measures can be expressed as Figure 2 provides a representative sample of the results for inves-

. tigating the effects of the arrival rate on the mean job response time
p° = (mo, ..., "u—1)vy + (I —R)” vy, (28) under three types of workloads. In general, the differences between
wherez € {B,T,C,0, W} such that B: computation; I: /0; C: the schemes are less significant with lower communication in the

communication; O: context switching; W: waiting. Here we use workload, as is to be expected. Even |n_the CPU and I/O_|nten-
. th - - - sive workloads, the LS and DCS mechanisms saturate earlier than
the notation that the™" position of the vectow; (resp.,v;y) con-

tains a 1 if the corresponding state of the boundary (resp., el the other two, and this becomes more apparent in the communica-

represents when the processor is performing operations oftype tion intensive workload. Overall, we can say that LS and DCS are
P A - P P gop YP€ ot very desirable because they tend to saturate at smaller values
and otherwise contains a 0.

of A than SB and PB, and the details on the effect of the work-
load characteristics on the relative performance of these schemes
5. RESULTS are presented next. Note that, until now, no one has been able to

We now apply the mathematical analysis of Section 4 to study the study these mechanisms for dynamic job arrivals with such a broad
performance characteristics of the dynamic coscheduling strategiesspectrum of arrival rates.
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tion intensive workload. At this point, we can also explain why SB

Since communication intensive and I/O intensive workloads are does marginally better than PB for I/O intensive (and, incidentally,

most interesting, we focus on these two workloads in Figures 3 and CPU intensive) workloads. With large computation or I/O frac-
4. These figures reconfirm the results in the previous subsectiontions, the skewness of the work to be done among the tasks of an

for varying system load, with LS and DCS performing poorly. For

application also increases. This can cause tasks to spin more than

the communication intensive workload, PB does better than SB in the message latencies in PB, while SB can limit the effect of such
terms of both throughput and response time. The benefits of PB Skewness. For the communication intensive workload, this skew-
are accentuated as the communication intensity increases. Clearlyness gets smaller, and PB realizes the full benefits of spinning.

we can see that the fraction of the time spent in communication in-
creases with the intensity in Figures 3(e) — (f), but the increase is 5.4
more gradual for PB than for SB. This can be explained based on

Impact of Maximum MPL ( )
Figure 5 considers the impact of the maximum MR on the

the behavior in (b) and (c), where we can see MPL3-idle is signifi- dynamic coscheduling strategies. Increasidgzan help to reduce

cantly higher in SB than in PB. At such high communication inten- the processor idling (during 1/O or when waiting for a message) by

sities, blocking to relinquish the processor incurs context-switch providing more opportunities to switch to another task and execute

and interrupt overheads with little benefits since there is no other useful work. As a result, performance improvements due to higher

work to do (everyone is blocked). PB which does not switch under values ofM are more noticeable in the I/O intensive workload, or

those conditions does not experience the context-switch costs, andn schemes where the waiting time is high (DCS). This is also the

thus yields better performance. reason why SB needs a higher valuéiéfto become as competitive
For the I/O intensive workload, the differences among the schemeas PB for the communication intensive workload. While there are

are less noticeable since the performance is dictated more by theimprovements in response times with increasiy it should be

I/0 in the application than by the schemes themselves (which do noted that too high a value fad is not appropriate due to practical

not behave differently for 1/0). In fact, we expect all the response resource limitations and/or because of high swap costs.

time curves in Figure 4(d) to converge at large 1/O intensities. The

reason why throughput increases and response time decreases fd§ 5 Optimum Quantum |ength (T—l)

s cose 1 contast o he communicaton iense Tgures) e For any scheme, = smal e quantum increases th impact o

context-switch overheads, while at the same time a small quantum

_(l:_?]mput??on/ cowmli]nlcatl'orjlcagnﬁt) in tTStwstta?tcﬁ of our mo'del_. can mitigate the effects of scheduling skews across processors (to
€ profile graphs show similar behavior to that ot the communica- ;4 large wait times). These two contrasting factors play a role in
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determining a good operating point for the time quantum. Figure 6 lowest response time) is very sensitive to the workload. This makes
captures the effect of these factors for the four schemes on the threehe selection of a good spin time on a real system very difficult, but
workload classes. In general, for the LS and DCS schemes (whichit further highlights the importance of the use of our models and
are more susceptible to scheduling skews as shown in earlier re-analysis for the proper setting of this parameter in any system of
sults), the second factor that can mitigate scheduling skews is moreinterest. It also should be noted that in the results presented in
important, causing the good operating points for LS and DCS in previous sections, the chosen spin times are reasonably close to
Figure 6 to be more to the left than those for SB or PB. In fact, SB their ideal values (no more than 5-10% off).

and PB would prefer a long time quantum, since they do not really .

rely on the native operating system scheduler and perform the task2-/  Optimum PB Frequency

switches whenever needed. As for the effect of the workload itself, ~ One of the important design considerations for PB is selecting
CPU and I/0O intensive workloads should prefer longer time quanta the frequency of the kernel activity. Across the spectrum of work-
(because the first factor concerning context-switch overheads areloads ranging from very high to very low communication inten-
more important) than the communication intensive workload. sities, we find that the ideal frequency of invocation lies between
0.3ms to 1ms in Figure 7(b) (the lines are normalized with respect
to a 1ms frequency). These results suggest that an invocation fre-
quency of between 0.5 to 1ms would provide good performance
across the entire workload spectrum for PB.

5.6 Optimum Spin Time

For SB, the choice of the spin time is a crucial issue. Previous
studies have not explored the fullimpact of spin time across a broad
spectrum of workloads. Figure 7(a) shows the effect of the spin
time on four different workloads. The curves are normalized with 6. CONCLUDING REMARKS
respect to the performance for the default spin time. A small spin  The complex interactions among the different system compo-
time is preferred if either the message will arrive in a very short nents and the numerous workload parameters have made it diffi-
time, or if it will take a very long time (so that we do not waste too cult until now to investigate the advantages and disadvantages of
much time spinning). A slightly larger spin time will be preferred dynamic coscheduling mechanisms in great detail. All previous
in the other situations. The results in this figure capture this effect studies have been limited by the environments under consideration,
for the four workloads, showing that the ideal spin time (giving the whether it be the underlying hardware, operating system, system
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between tasks at their disposition. Some amount of coordination
size or workload. The lack of a unifying framework for studying is definitely needed. Of the three previously proposed dynamic
the benefits and limitations of dynamic coscheduling under differ- coscheduling mechanisms, DCS does not fare as well as the oth-
ent system conditions, workload parameters and system size hasrs across a broad spectrum of workload and system parameters.
been the limiting factor in these previous studies. This paper has SB and PB have their relative merits, with the latter faring better
addressed this critical void in scheduling for parallel systems by de- whenever the workload is more communication intensive. PB is
veloping and validating an accurate analytical model for studying also preferable whenever nodes are not operating at the full multi-
the design and performance spaces of dynamic coscheduling mechprogramming level. Our model and analysis can be used as a design
anisms across a wide range of system and workload parameters. tool to fine tune the parameters for these mechanisms (spin time in
Specifically, we formulated a general mathematical model of var- SB and periodic frequency in PB) to derive good operating points.
ious dynamic coscheduling strategies within a unified framework With SB, the choice of the spin time is important for determining
that addresses the aforementioned limitations of previous studies.performance, while a frequency of once every 0.5-1ms provides
We derived a matrix-analytic analysis of these scheduling models good performance for PB across the entire workload spectrum con-
based on a stochastic decomposition, which leads to a vastly re-sidered. Both of these mechanisms are relatively immune to the na-
duced state-space representation, and a fixed-point iteration, whichtive operating system switching activity, by taking over whenever
is used to obtain the final solution. In addition to mean job response the communication events call for coscheduling and becoming less
time and maximum system throughput measures, the detailed prob-ntrusive otherwise. These mechanisms are good choices regard-
abilistic measures from our analysis were used to help explain the less of whether the system is subject to short running interactive
overall results and to gain fundamental insights about various as-jobs or long running parallel applications. It should be noted that
pects of the different dynamic coscheduling approaches. Moreover,the results presented here for SB are with a fixed spin time, though
numerical results from our analysis were shown to be in excellent the model itself allows adaptive tuning of this value (which more
agreement with those from detailed simulations of even relatively recently has been shown to be a better alternative). Planned fu-
small-scale systems, often within 5% and always less than 10%. ture research includes using our model and analysis to investigate
Numerical results from our analysis show that it is not advis- various adaptive spin time approaches.
able to allow the native operating systems at each node to switch Some of the newer insights and contributions that this study has
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provided, which have not been possible in earlier simulations or
experimental evaluations, is to be able to answer several important[12]
issues about the the optimal frequency for invoking the periodic
boost mechanism, the optimal frequency of context switching (time
guantum length), a direct way of calculating the optimal fixed spin
time for SB without running costly simulations, and the impact of
workload characteristics on these issues. Our model and analysi
serve as a powerful tool for exploring these issues at little cost.
There are several interesting directions for future work. Along
the scheduling front, it would be interesting to find out how best a
schedule one can ever hope to achieve with a given load, to shed
light on future research in this area. Further, examining differential
services to different job types, and the ability of a scheduler to pro- [15]
vide guaranteed (soft or hard) service to parallel jobs in the context
of a dynamically coscheduled environment are part of our future
work. Along the theoretical front, it would be interesting to ex-
tend our models and analysis of this paper to solve these problems.[16]
as well as to investigate the problem of setting various dynamic
coscheduling parameters as mathematical optimization problems,
based in part on the results, models, analysis and/or insights pre-{17]
sented in this paper.

13]

(14]
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