
Performance Implications of Failures in Large-Scale Cluster
Scheduling

Yanyong Zhang∗, Mark S. Squillante†, Anand Sivasubramaniam‡, Ramendra K. Sahoo§

Abstract

As we continue to evolve into large-scale parallel systems,many of them employing hundreds of
computing engines to take on mission-critical roles, it is crucial to design those systems anticipating
and accommodating the occurrence of failures. Failures become a commonplace feature of such large-
scale systems, and one cannot continue to treat them as an exception. Despite the current and increasing
importance of failures in these systems, our understandingof the performance impact of these critical
issues on parallel computing environments is extremely limited. In this paper we develop a general
failure modeling framework based on recent results from large-scale clusters and then we exploit this
framework to conduct a detailed performance analysis of theimpact of failures on system performance
for a wide range of scheduling policies. Our results demonstrate that such failures can have a significant
impact on the mean job response time and mean job slowdown under existing scheduling policies that
ignore failures. We therefore investigate different scheduling mechanisms and policies to address these
performance issues. Our results show that periodic checkpointing of jobs seems to do little to ease this
problem. On the other hand, we demonstrate that informationabout the spatial and temporal correlation
of failure occurrences can be very useful in designing a scheduling (job allocation) strategy to enhance
system performance, with the former providing the greatestbenefits.

1 Introduction

Our growing reliance on computing and information processing services mandates not only deploying sys-
tems that can meet the performance demands imposed on such systems, but also those that are available
when needed. Several technological factors are accentuating the problem of system failures, which are
highly undesirable since these systems could be servicing the needs of hundreds of users. At the same time,
solutions for this problem need to keep the high costs of system maintenance personnel in mind, which is
growing to be a much more important factor in Total Cost of Ownership (TCO). A deep understanding of
the occurrence of failures in real environments can be useful in several ways towards enhancing overall sys-
tem availability. It can provide realistic data when evaluating proposed solutions, together with developing
strategies for proactive prediction and remedies of faults ahead of their occurrence. Application demand for
high performance is continuing to fuel research and development of large scale parallel systems. The need

∗Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA.
Email:yyzhang@ece.rutgers.edu

†Mathematical Sciences Department, IBM T.J. Watson Research Center,1101 Kitchawan Road, Yorktown Heights, NY 10598-
0218 USA. Email: mss@watson.ibm.com

‡Department of Computer Science and Engineering, Pennsylvania State University, 316 Pond Laboratory, University Park, PA
16802-6106 USA. Email: anand@cse.psu.edu

§Exploratory Server Systems Department, IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY
10598-0218 USA. Email: rsahoo@us.ibm.com

1

for processing larger datasets in existing applications, and the stringent demands of emerging applications
necessitate parallelism in computational and storage devices for their deployment. The cost-effectiveness
in using off-the-shelf hardware to put together clusters has contributedto a large extent in the widespread
availability of parallelism, and its successful usage. At the same time, severalimportant and challenging
applications are driving the development of large scale parallel machines,such as IBM’s BlueGene/L which
is anticipated to have 65536 nodes.

As we continue to develop such large scale parallel systems, there are several important technological
factors to keep in mind:

• Denser integration of semiconductor circuits, though preferable for performance, makes them more
susceptible to strikes by alpha particles and cosmic rays [41]. At the same time,there is an increasing
tendency to lower operating voltages in order to reduce power consumption. Such reduction in voltage
levels can increase the likelihood of bit-flips when circuits are bombarded bycosmic rays and other
particles, leading to transient errors. While memory structures are typically the target for protection
against errors using informational redundancy, more recent studies [31] have pointed out that the error
rates in combinational circuits are likely to surpass those of memory cells in the next decade.

• At the macro granularity, we have dense blade-systems being packed in a rack as a cluster. With a
high load imposed on these dense systems – both on the CPUs and on the disks –heat dissipation be-
comes a very important concern, potentially leading to thermal instability that cancause system/node
breakdowns [25, 9].

• We find system software and applications becoming more complex. Such complexity makes them
more prone to bugs and other software failures [35, 23, 38] (e.g. memoryleaks, state corruption, etc.).
These bugs/failures can cause system crashes, and it has even beensuggested that one should perform
pro-active shutdown/rejuvenation [39, 38] to avoid catastrophic consequences.

All these factors point to the increasing occurrence of system failures inthe future. Failures become
more commonplace when we consider parallel systems with thousands of nodes. Rather than treat them
as an exception, system design needs to recognize fault occurrence,and manage the resources across the
parallel system effectively so as to hide their impact from the end users. One would ideally like to achieve
the performance of a system without any failures. Even if this is difficult to attain, there should be at most a
“graceful degradation” in performance under the presence of failures. Towards this goal, the present paper
specifically targets themanagement of CPU resources on a large scale parallel system using ageneral

failure modeling framework that accurately represents the node failure characteristics reported in recent

studies of extensive error logs collected from cluster systems over long periods.

When nodes1 fail, there are two important consequences on system performance:

• First, the process/task of the application running on this node dies, consequently loosing all its work
since it began. Further, in a parallel application, tasks frequently communicate and consequently
other tasks would also not be able to progress. In effect, this can causerestarting the entire application
(either on the same nodes or on different nodes).

• Second, the unavailability of the failed node can cause longer queueing delays for waiting jobs.

1Since we are mainly concerned with CPU management, we use the terms,nodeandCPU, interchangeably in the rest of the

paper.

2

In this paper, we focus mainly on the first issue. With transient hardware errors and software errors expected
to be more prevalent than permanent failures, node reboots/restarts canfix many of these problems. The
duration of unavailability would then be relatively low, given the long execution times of many of the parallel
applications that we are targeting – those in the scientific domain at national laboratories and supercomputing
centers. Note that the impact of node recovery time can become quite importantfor permanent failures, and
we postpone such an investigation for future work.

There are several options for managing the nodes in a faulty environment.One could use an optimistic
approach, and simply ignore the problem, assuming there would be no failures. When a node does fail, then
the application (all its tasks) could be restarted as was just explained. However, as our results will show,
such an approach can suffer significant performance loss comparedto a system where there is no failure. At
the other end of the spectrum, we could have a more pessimistic strategy, where application processes are
periodically checkpointed so that when a fault occurs, the amount of work to be re-done is limited. In our
results we will show that while this can be better than ignoring the problem, the overheads of checkpointing
can limit its benefits.

In this paper, we investigate an alternative strategy whose main philosophy isthat if we have a better
idea of when and where failures occur, then one could use such information for better management of the
CPUs:

• If we could predict the time for the failure, then we could checkpoint immediatelybefore this point in
time, so that we significantly limit the work lost while reducing the checkpoint overheads. However, it
may be very difficult to predict the exact time for failures. If, on the other hand,temporal predictionof
failures is possible with a coarser granularity (a window) [29], then checkpointing could be initiated
only within those windows.

• If we could predict the nodes (spatial prediction) that fail, then we could either avoid scheduling jobs
on those nodes as far as possible, or only checkpoint those nodes. The latter option may not be very
fruitful since parallel applications typically require all tasks to make progress at around the same rate.

One could also use a combination of spatial and temporal prediction to specifically focus on the time and
nodes where pro-active action needs to be taken to limit the work loss upon failure while limiting the
overheads of checkpointing.

Investigation of these alternatives requires an understanding of the failure characteristics of real parallel
systems executing parallel applications. Unfortunately, the research literature provides a wide variety of
often conflicting results for different computing environments (hardwareand software) and there seems
to be a lack of consistent conclusions in previous computer failure studies.Moreover, only a few recent
studies have even considered large-scale clusters and they have tended to focus on sequential commercial
applications. The only exception that we are aware of is a recent study [28] of extensive error logs collected
from a large-scale distributed system consisting of close to 400 machines over a period of close to 500 days,
which includes some parallel applications. We therefore develop a general modeling framework that makes
it possible to vary the properties of the failure patterns to span the wide range of failure characteristics
found in the research literature. This framework is exploited to understandthe impact of different failure
characteristics on overall system performance and to propose scheduling strategies that can alleviate the
performance impact of different failure attributes.

A detailed simulation study using this failure modeling framework and characterized parallel job work-
loads from a supercomputing center reveals that the failures do accountfor a significant drop in performance

3

compared to a system without failures. As can be expected, an exact temporal prediction of node failures
almost completely bridges this gap of performance loss due to failures. Our results also show that a sig-
nificant portion of this gap can be bridged even if temporal prediction can be done at only a granularity of
2–4 hours. While the results from our statistical analysis demonstrate clear patterns that could be exploited
to provide such coarse grain temporal prediction, the results of our simulation study further show that even
greater performance benefits are possible by using the spatial (node) behavior of failures. Hence, our so-
lution opts to exploit the statistical spatial properties of failures and does so by developing a scheduling
strategy wherein nodes that have recently failed are given lower priorityat being assigned a job compared
to others. We demonstrate that this simple strategy suffices to extract most of the performance gap between
a system with failures and one without, and does significantly better than blindlycheckpointing at periodic
intervals.

The rest of this paper is organized as follows. The next section provides a brief summary of work
related to this study. Section 3 presents our evaluation methodology, includingour system model, our
failure modeling framework, and the performance metrics of interest. Simulationresults of the impact of
failures on system performance are provided in Section 4, followed by consideration of different failure-
aware scheduling strategies in Section 5.

2 Related Work

Job scheduling plays a critical role in the performance of large scale parallel systems (e.g. refer to [8, 43, 44,
10, 12, 16, 18, 32, 33, 34] and the references therein). At the same time, scheduling can be used to improve
the fault-tolerance [1, 27] of a system in three broad ways. First, a task can be replicated on multiple nodes
so that even if a subset of these nodes fail, the execution of a task is not impacted. Studies that employ this
technique ([30, 17]) assume a probability for node failure to determine the number of nodes on which to
replicate the task. Second, the system can checkpoint all the jobs periodically so that work loss is limited
when a failure occurs, and there are several studies on tuning checkpoint parameters [21, 4, 22]. Third, the
scheduler allocates spare nodes to a job so that it can quickly recover from potential failures [26]. With
this approach there is a trade-off between using the extra node(s) to improve the response time versus time
for recovery. To our knowledge, there has not been prior work in analyzing and possibly managing system
resources based on node failures.

3 Evaluation Methodology

3.1 System Model

We simulate a 320-node cluster that runs parallel workloads. A parallel jobconsists of multiple tasks, and
each task needs to run on a different node. After certain nodes are allocated to a job, they are dedicated to
the job until it completes (i.e., no other jobs can run on the same nodes). Multiple parallel jobs can run side
by side on different nodes at the same time.

After a job arrives, it will start execution if it is the first waiting job and the system has enough available
nodes to accommodate it. Otherwise, it will be kept in the waiting queue. In this paper, all the waiting jobs
are managed in the First-Come-First-Serve (FCFS) order. We also use backfilling in this exercise, which is a
most commonly used scheduling technique [44] for parallel workloads. Backfilling allows a job that arrived

4

later to start execution ahead of jobs that arrived earlier as long as its execution will not delay the start of
those jobs. Estimated job execution times are required to implement backfilling.

Our experiments use a workload that is drawn from a characterization of areal supercomputing envi-
ronment at Lawrence Livermore National Labs. Job arrival, execution time and size information of this
environment have been traced and characterized to fit a mathematical model(Hyper-Erlang distribution of
common order). The reader is referred to [11] for details on this work and the use of the model in different
evaluation exercises [44]. The workload model provides (1) arrivaltime, (2) execution time, and (3) size
(number of nodes that it needs) for each incoming job.

3.2 Failure Injection

A large number of studies have considered the characteristics of failuresand their impact on performance
across a wide variety of computer systems. Tang et al. [37, 36] and Buckley et al. [5, 6] have investigated
error/failure logs collected from various VAXcluster systems of different sizes. Lee et al. [19] and Lin et
al. [20] analyzed the error trends for Tandem systems and DCE environments. Xu et al. [40] performed a
study of error logs collected from a heterogeneous distributed system consisting of 503 PC servers. Heath
et al. [13] considered failure data from three different clustered servers, ranging from 18 workstations to 89
workstations. Castillo et al. [7], Iyer et al. [15] and Meyer et al. [24] have explored the effects of workload
on different types of computer system failures. Vaidyanathan et al. [38] demonstrated that software-related
error conditions will accumulate over time which will eventually lead to crashes/failures. Sahoo et al [28]
have investigated the error logs from a networked environment of close to400 heterogeneous servers over a
period of close to 500 days.

Many of these studies have identified statistical properties and proposed stochastic models to represent
the failure characteristics of various computer systems. This includes the fitting of failure data to Weibull,
lognormal and other specific distributions, each with different parameter settings, under the assumption
of independent and identically distributed failures [20, 19, 13]. Other studies have demonstrated that the
sequence of failures on some computer systems are correlated in various ways and that the failures tend to
occur in bursts [37, 36, 40, 28]. Semi-Markov processes also have been proposed to model the time-series
of failure from certain systems [14, 37, 36].

Unfortunately, only a few of these previous studies have even considered clustered server environments
and those that have tend to focus on commercial servers like web servers, file servers and database servers.
We are not aware of any studies that investigate failures within the context of large-scale clusters executing
parallel applications, and no failure logs collected from such parallel computing environments are available
to us. Moreover, given the wide variety of often conflicting results and thelack of consistent conclusions
in previous computer failure studies, we expect that parallel computing environments with different parallel
application workloads, system software and system hardware will similarly exhibit a broad range of failure
behaviors. It is therefore important to have a general modeling framework that makes it possible to vary
the properties of the failure patterns used to investigate parallel schedulingissues. Hence, we develop such
a failure modeling framework in this section which is then exploited in Sections 4 and 5 to understand the
impact of different failure characteristics on overall system performance and to propose scheduling strategies
that can alleviate the performance impact of different failure attributes.

Our framework consists of models for each of the three primary dimensions of failure characteristics
together with controls over each of these dimensions and their interactions. The first dimension concerns
the times at which failures occur. This includes the marginal distribution for thetime between failures as

5

well as any correlation structure among the individual failures. The second dimension concerns the assign-
ment of failures among the nodes comprising the system. This allows our framework to span the range
from uniformly distributed node failures assumed in some previous failure studies to strong correlations
between failures and nodes in order to yield the types of concentrations offailures on a subset of nodes
as demonstrated in several recent failure studies of large-scale clusters. The third dimension concerns the
down time of each failure. An overall control model is also used to directly capture any correlations or
interactions among these three dimensions. Thus, there is no loss of generality in separating out the indi-
vidual dimensions, while providing the ability to explicitly control and vary eachaspect of the individual
dimensions.

We now define the specific aspects of each dimension of our general failure modeling framework that
are used in this study to generate synthetic failure workload traces each consisting of a number of failures.
We use the job workload duration to determine the total number of failures (F) by making sure that the
failures are spread throughout the entire span of parallel job executions.

Time of failures. Let ti denote the time at which failurei occurs,i = 1, . . . , F . Heath [13] has shown that
the marginal distribution for the times between arrivals of failures in a cluster follow a Weibull distribution

with shape parameters less than 1, the PDF of which can be described asf(T) = β
η
(T

η
)β−1e

−(T
η

)β

where

β denotes the shape parameter andη denotes the scale parameter. (Note that a Weibull distribution with
shape parameter 1 corresponds to an exponential distribution.) In this paper, we use the family of Weibull
distributions to generate the inter-arrival times for failures. Specifically, the parameters that are used are
summarized in Table 3.2. The resulting failure arrival time distributions with different shape values are
shown in Figures 3.2(a) and (b).

scale shape number of failures failures/day
0.2 78 1.2
0.55 138 2.218000
0.65 198 3.2
0.85 266 4.3

Table 1: The parameters that are used to generate the Weibull distributions

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

inter−failure times (Minutes)

P
ro

ba
bi

lit
y

shape=0.2
shape=0.85

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

6

Failures

A
rr

iv
al

 T
im

e
(x

 s
ec

on
ds

)

shape=0.2
shape=0.55
shape=0.65
shape=0.85

(a) Cumulated distribution function (b) Time series

Figure 1: The failure arrival time distribution with different shape parameters.

As noted above, the marginal distribution characterizes the statistical properties of the times between

6

failures without any consideration of the correlation structure in the inter-failure process. Since it has been
shown in [28] that there are strong temporal correlations between failurearrivals, we seek to include in our
framework a general methodology for capturing different forms of temporal correlations within the inter-
failure process while maintaining a perfectly consistent marginal distribution.This makes it possible for us
to properly compare the impact of the inter-failure correlation structure on our results under a given marginal
distribution. The following methodology is used to model the temporal correlations between failure arrival
times:

• We generate a sequence of failure inter-arrival times which follow a specific Weibull distribution.
Note that direct use of this time-series corresponding to assuming that the failures are independent
and identically distributed.

• We break this sequence into segments, each of which containsW elements. Within each segment,

we order the firstW2 elements in a descending manner, and order the remainingW
2 elements in an

ascending manner. Note that the degree of correlation among the inter-failure times increases with
increasing values ofW .

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

inter−failure times (Minutes)

P
ro

ba
bi

lit
y

W=2
W=8
W=32
W=64

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

6

Failures

A
rr

iv
al

 T
im

e
(x

 s
ec

on
ds

)

W=2
W=8
W=32
W=64

(a) Cumulated distribution function (b) Time series

Figure 2: The failure arrival time distribution with different correlation parameters.β = 0.85

Once again, using this method, we can model temporal correlation between failures while maintaining
a consistent marginal Weibull distribution. Figure 3.2 shows how the failure arrival time series vary with
differentW values. Note thatW = 2 corresponds to the original time series and thus represents the case
where there is no correlation. In this study, we shall vary the degree of correlation according toW ∈

{2, 8, 32, 64}.

Location of failures. Letni denote the location of failurei, i = 1, . . . , F . Several previous failure analysis
studies have shown that the spatial distribution of failures among the nodes isnot uniform [37, 13, 28]. In
fact, it has been shown in [28] that there are strong spatial correlationsbetween failures and nodes where
a small fraction of the nodes incur most of the failures. Possible reasons include: (1) some components
(both hardware and software) are more vulnerable than others [37]; and (2) a component that just failed is
more likely to fail again in the near future [13]. In order to capture this non-uniform behavior, we adopt the
Zipf distribution to model failure locations in this study. We useα to denote the skewness parameter in the
Zipf distribution. Specifically, we vary the skewness parameter of the distribution using the values 0.01, 0.5
and 0.99, where 0.01 corresponds to an environment where failures are close to being uniformly distributed

7

among the nodes and 0.99 corresponds to a highly skewed distribution in which the majority of failures are
concentrated on a relatively small number of nodes.

Down time of failures. Let ri denote the down time of failurei, i = 1, . . . , F . Failure down times can
vary significantly due to the different ways of repairing the failures. If asimple reboot can re-start the
system, then the down time can be relatively small (at most around minutes). However, if components need
to be replaced, it could take hours or even days to recover. In this study, we use a constant value to model
the down time. We vary this constant using down times of 2 minutes, 1 hour, and 4hours.

3.3 Performance Metrics

In our simulations, we obtain the following statistics for each job: start time, workloss (the total loss of work
due to failures), and completion time. These statistics are then used to calculate the following performance
metrics:

• Utilization: The percentage of time that the system actually spends doing useful work.

• Response Time:The time difference between when a job completes and when it arrives to the system,
averaged over all jobs.

• Slowdown:The ratio of theresponse timeof a job to the time it requires on a dedicated system, aver-
aged over all jobs. This metric provides an indication of the average slowdown that jobs experience
when they execute in the presence of other jobs compared to their running inisolation.

• Work Loss Ratio:The ratio of the work loss as a result of failures to the execution time of a job,
averaged over all jobs.

4 Impact of Failures on System Performance

We now move on to present results from detailed simulations of the system modelrunning the parallel job
workloads described in the Section 3.1 that are subjected to failures (Section 3.2).

4.1 Impact of Failure Arrival Statistics

As described early in this paper, the tasks of a parallel application often communicate with each other in
order to make forward progress. Consequently, if any one task has to be restarted because of a failure, our
model requires restarting all the tasks. Figures 3 illustrate the impact of the failure arrival characteristics on
system performance. The graphs show the average job slowdown and average work loss ratio as a function
of average job execution time. From Figure 3, we have the following observations:

• The impact of shape parameter (β). If we fix the scale parameter (η) of the Weibull distribution, vary-
ing the value ofβ (β < 1) will lead to different number of failures, further different inter-failure times.
It thus has the most significant impact on the system performance among all the failure parameters:

– Failures can have a significant impact on the system performance (referto Figures 3(a) (i) and
(ii)). Even an average of 1.2 failures per day can increase the average job slowdown by up to
40%. An average of 4.3 failures per day will increase the job slowdown byup to 300%.

8

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

β=0.20, 1.2/day
β=0.55, 2.2/day
β=0.65, 3.2/day
β=0.85, 4.3/day
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

W=2
W=64
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

α=0.01
α=0.99
No Failure

(i) Average job slowdown

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

β=0.20, 1.2/day
β=0.55, 2.2/day
β=0.65, 3.2/day
β=0.85, 4.3/day
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

W=2
W=64
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

α=0.01
α=0.99
No Failure

(ii) Average work loss ratio

(a) Impact of inter-failure time.
β=0.2, 0.55, 0.65, 0.85; W=2;
α=0.01;r =2 minutes.

(b) Impact of failure temporal
correlation. β=0.85; W=2, 64;
α=0.5;r=2 minutes.

(c) Impact of failure spatial
distribution. β=0.85; W=2;
α=0.01, 0.99; r=2 minutes.

Figure 3: The impact of failures arrival characteristics.

If we look at the average work loss for differentβ values shown in Figure 3(a)(i), we observe
an almost linear increase withβ. Even a 0.2% work loss ratio suffices to cause a considerable
performance degradation since these are relatively long running jobs.

– Failures have a higher impact on medium to high workloads. Let us look at theaverage work
loss forβ = 0.85. Under high workloads, the work loss is 40% higher than that under low
workloads. This higher work loss ratio, together with the already high system utilization, lead
to a degraded performance.

• The impact of temporal correlation parameterW (refer to Figures 3(b) (i) and (ii)). Compared to the
impact ofβ , the impact ofW is much less pronounced. We do observe that a longer-range correlation
can slightly increase the average work loss and further job slowdown. A largerW can cause a more
bursty failure arrivals, which can increase the chances of a job being hit by the failures.

Although temporal correlation degree does not impact the average job slowdown greatly, we feel that
it may affect the performance of individual jobs because the same job may be hit multiple times at a
higher temporal correlation degree. We are currently working on these results.

• The impact of spatial correlation parameterα (refer to Figures 3(c) (i) and (ii)). The impact ofα

is also less obvious compared to that ofβ. We observe a significantly higher work loss ratio under
low loads forα = 0.99, but this difference diminishes as the load increases. This observation may

9

appear counter-intuitive. However, we would like to point out that this is just a simulation artifact. In
our simulation, node 0 is always ranked the first, and will experience more failures than others with
α = 0.99. At the same time, when we try to schedule jobs onto the nodes, we always start from node
0 as well. Under low loads, the node utilization is low and node 0 will be available most of the time.
As a result, many jobs will be affected by the failures on node 0, leading to a much higher work loss
ratio.

Further, we would like to point out thatα impacts job slowdown most at medium loads. Under low
loads, despite the work loss ratio difference, slowdown will not be affected due to the low load. Under
high loads, differentα values result in the same work loss ratio, thus leading to the same slowdown.
On the other hand, the medium loads combine both the work loss ratio and reasonable loads, resulting
in a more pronounced difference.

The results presented in this section are in agreement with our studies with a realistic failure trace [28].

4.2 the Impact of Failure Down Times

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

2 minutes
4 hours
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

2 minutes
4 hours
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

2 Minutes
4 hours
No Failure

(i)

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

2 minutes
4 hours
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

2 minutes
4 hours
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

2 Minutes
4 hours
No Failure

(ii)
(a) β=0.65; W=2; α=0.01; r=2

minutes, 4 hours.
(b) β=0.65;W=64;α=0.01;r=2

minutes, 4 hours.
(c) β=0.65; W=2; α=0.99; r=2

minutes, 4 hours.

Figure 4: The impact of failure down times.

Earlier studies [] have shown that the failure down times have a great impacton the system perfor-
mance for commercial servers such as file server, email server, web server, etc. However, we find that,
for large-scale supercomputing clusters, an individual node’s down timedoesnot impact the performance
significantly. As shown in Figures 4(a)-(c) (i)-(ii), the performance gap with different failure down times
(varying from 2 minutes to 4 hours) is negligible. This is mainly due to the nature of the parallel workloads.

10

These jobs cannot start execution if the system does not have enough available nodes. Therefore, in most
of the times, the system will have a few free nodes while jobs are waiting to execute, even under high loads
(due to system fragmentation).

In summary, failures have a great impact since the job that got hit will lose its work, but how long the
failed node will remain down is not as important.

5 Failure-Aware Scheduling Strategies

In this section, we examine different possibilities to alleviate the impact of failures, ranging from those that
are oblivious to failure information (referred to asfailure-oblivious checkpointingin section 5.1), to those
that have significant knowledge about when and where failures occur(in section 5.2). Finally, we present
a strategy that is based on a simple observation about the failure properties, and show that it can do a very
good job of bridging this gap without requiring extensive failure predictioncapabilities.

5.1 Failure-Oblivious Checkpointing

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 R
at

io
 o

f C
he

ck
po

in
t O

ve
rh

ea
d

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

(i) β=0.65;W=2; α=0.01;r=2 minutes, 4 hours.

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 R
at

io
 o

f C
he

ck
po

in
t O

ve
rh

ea
d

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

(ii) β=0.20;W=2; α=0.01;r=2 minutes, 4 hours.

Figure 5: failure-oblivious checkpointing for failures that are iid.

A straightforward approach to limit the impact of work loss upon failures is bycheckpointing the appli-
cation tasks periodically. Such an approach is oblivious to the occurrence of failures itself, and thus does not
require any prediction about their occurrence. In this section, we evaluate the effectiveness of this simple
approach using different intervals (2, 4, and 24 hours) for checkpointing. The scientific applications being
targeted in this study are long running, and manipulate large datasets. It is not only the memory state of these
applications that needs to be checkpointed but the network state of any messages that may be in transit as

11

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 R
at

io
 o

f C
he

ck
po

in
t O

ve
rh

ea
d

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

(i) Temporal correlation.β=0.65;W=64;α=0.01;r=2 minutes, 4 hours.

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 R
at

io
 o

f C
he

ck
po

in
t O

ve
rh

ea
d

(%
)

2 hours
4 hours
24 hours
No Checkpoint
No Failure

(ii) Spatial correlation.β=0.65;W=2; α=0.99;r=2 minutes, 4 hours.

Figure 6: failure-oblivious checkpointing for failures that have temporal or spatial correlations.

well. Consequently, checkpointing costs can be quite substantial, and can run into a few minutes especially
with several processes swapping to a few I/O nodes [42]. We use a checkpoint cost of 5 minutes in this
exercise, and the checkpoint intervals have been chosen in order to keep these overheads reasonable.

Figures 5 and 6 show the average slowdown, work loss ratio and checkpoint overhead of this approach
with different failure distributions. From this set of results, we have the following observations:

• If the failures are i.i.d., oblivious checkpointing can only help the performance marginally compared
to not taking any proactive actions (refer to Figures 5(a)(i-ii)). The relative performance gain due
to checkpointing further decreases as the number of failures decreases (by comparing Figure 5(a)(ii)
which has 1.2 failures per day to Figure 5(a)(i) which has 3.2 failures perday). With an average of
3.2 failures per day, a short checkpointing interval of 2/4 hours is betterthan a longer interval. With
1.2 failures per day, we do not observe a noticeable difference between different checkpoint intervals.
Although a small checkpoint interval can limit the work loss due to failures, thisgain can be offset
by the added checkpoint overheads. For example, if we checkpoint every 2 hours, the average work
loss due to failures is less than 0.2%, but the resulted checkpoint overhead is above 0.4%, which
de-emphasizes the benefits of checkpoints. At the same time, a larger checkpoint interval cannot
effectively limit the work loss due to failures (Figure 5 (ii)).

• For failure traces that have temporal correlation, oblivious checkpointing does not help either (refer
to Figures 6(a)(i)).

• For failure traces that have spatial correlation, e.g., following a Zipf distribution with α=0.99, the
impact of oblivious checkpointing is again not obvious (refer to Figures 6(a)(ii)). Readers can look

12

at the corresponding work loss ratios (refer to Figures 6(b)(ii)) and checkpointing overheads (refer to
Figures 6(c)(ii)) to obtain further performance details.

5.2 Checkpointing Using Failure Prediction

5.2.1 Perfect Temporal/Spatial Prediction

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

No Prediction
Exact Prediction/Checkpointing
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

No Prediction
Exact Prediction/Checkpointing
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

No Prediction
Exact Prediction/Checkpointing
No Failure

(a) failures that are i.i.d:β=0.85;
W=2; α=0.01;r=2 minutes.

(b) failures with temporal corre-
lation: β=0.85; W=64; α=0.5;
r=2 minutes.

(c) failures with spatial correla-
tion: β=0.85;W=2;α=0.99;r=2
minutes.

Figure 7: Exact prediction and exact checkpointing.

The previous results suggest that a checkpointing strategy oblivious to failure occurrence is not very
rewarding. On the other hand, if one can predict when and where a failure occurs, then thespecific job

that would be affected can alone be checkpointedexactly before the point of failure. The benefits of such
a perfect prediction strategy are quantified in Figure 7. The results showthat the availability of exact
failure information before-hand can help us schedule the checkpoint to almost completely eliminate the
performance loss due to failures.

5.2.2 Strategies Using Temporal Correlation

While perfect prediction shows tremendous potential, it is almost impossible to beable to accurately predict
when and where failures would occur. We next relax the predictability of when (temporal) and where
(spatial) in the following way.

Even if one cannot predict exact times when failures occur, there couldbe underlying properties that
make prediction at a coarser time granularity more feasible. For instance, studies have pointed out that the
likelihood of failures increases with the load on the nodes [2]. At the same time,there have also been other
studies [3] showing that load on clusters exhibit some amount of periodicity,e.g. higher in the day/evenings,
and lower at nights. A recent study [28] has further showed that failures are correlated to the time of the
day. Such insights suggest that perhaps a time-of-day based coarse-granularity prediction model may have
some merit. Further, examination of our failure logs earlier in this paper showscertain patterns that could be
exploited to provide such coarse grain temporal prediction. It is to be notedthat our point here is not to say
that such a model is feasible. Rather, we are merely trying to examine whethersuch a model (if developed)
would be useful in alleviating the performance loss due to failures.

In our coarse-granularity temporal prediction model, we partition a day (24hours) inton buckets (each

bucket represents24
n

hours). We assume that we know exactly which bucket each failure belongs to, though

13

we cannot predict the exact time within this bucket nor the specific node where the failure would occur.
With this prediction model, at the beginning of each bucket, we know whether or not a failure will occur
within this bucket. If we know a failure is about to occur, we can turn on checkpoints just for the duration
of this bucket. At this time, how often we should checkpoint and which jobs to checkpoint become very
important questions. In order to determine which jobs to checkpoint (victimsof the failures), we examine
the following three heuristics:

• Checkpoint All.We checkpoint all the jobs that are running within this bucket. Though this heuristic
will not miss checkpointing the victim, it can incur higher checkpoint overheads by checkpointing
more jobs than necessary.

• Checkpoint Long.In order to avoid excessive checkpoint overheads, this heuristic proposes to only
checkpoint those jobs that have run for a certain duration (5 minutes in ourexperiments). The rationale
is that even if we miss checkpointing the victim, it has not run long enough to incur significant work
loss.

• Checkpoint Big.This heuristic assumes that big (in terms of the number of nodes that they use)jobs
are more likely to be hit by failures because they occupy more nodes. As a result, in this heuristic
we only checkpoint thek biggest jobs running within the bucket. Even though we have conducted
experiments with different values ofk, we only present results fork = 1 since the results are not very
different.

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

1 Hour − All
4 Hour − All
8 Hour − All
No Failure
No Prediction

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

1 Hour − Long
4 Hour − Long
8 Hour − Long
No Failure
No Prediction

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

1 Hour − Big
4 Hour − Big
8 Hour − Big
No Failure
No Prediction

(a) Checkpoint All (b) Checkpoint Long (c) Checkpoint Big

Figure 8: Checkpointing based on relaxed prediction model for i.i.d failures(β=0.85;W=2; α=0.01;r=2
minutes).

Figures 8 (a)-(c) present the performance of these heuristics for different bucket sizes (1, 4 and 8 hours).
With smaller buckets, while the results are closer to perfect prediction, note that predictability at those finer
granularities can become more difficult. Figure 8 shows that these heuristicscan improve the performance
noticeably even with bucket sizes of 8 hours.

Figure 9 compares these heuristics using four-hour buckets. It showsthat these heuristics have compa-
rable performances which improve job slowdown by up to 70%.

Similar trends are observed in the other failure traces (Figures 10) while thefailures that present temporal
correlations benefits more from this approach since such failure traces have more bursty failure arrivals.

14

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

4 Hour − All
4 Hour − Long
4 Hour − Big
No Failure
No Prediction

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

4 Hour − All
4 Hour − Long
4 Hour − Big
No Failure
No Prediction

0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

Utilization

A
ve

ra
ge

 R
at

io
 o

f C
he

ck
po

in
t O

ve
rh

ea
d

(%
)

4 Hour − All
4 Hour − Long
4 Hour − Big
No Failure
No Prediction

(a) Average job slowdown (b) Average work loss ratio (c) Average checkpoint overhead

Figure 9: Comparing three heuristics using four-hour buckets for idd failures (β=0.85;W=2; α=0.01;r=2
minutes).

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

4 Hour − All
4 Hour − Long
4 Hour − Big
No Failure
No Prediction

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

4 Hour − All
4 Hour − Long
4 Hour − Big
No Failure
No Prediction

(a) Temporal corre-
lation: β=0.85; W=64; α=0.01;
r=2 minutes.

(b) Spatial correlation:β=0.85;
W=2; α=0.99;r=2 minutes.

Figure 10: Comparing three heuristics using four-hour buckets for failures that have either temporal corre-
lation or spatial correlation.

5.2.3 Strategies Using Spatial Correlation: Least Failure First (LFF)

Despite the less stringent requirements from the prediction model examined in the previous section, it is
quite possible as revealed in our analysis of the failure logs, that temporal prediction of failures may be very
difficult to attain. At the same time, we note an important property of the failure logs - nodes that have

failed in the past are more likely to fail again- and investigate the possibility of using this observation that
can mitigate the performance loss due to failures.

We propose a scheduling strategy (rather a node assignment strategy for jobs), calledLeast Failure First

(LFF), to take advantage of this observation. The basic idea of this strategy is to give lower priority to nodes
that have exhibited the most failures until that point when assigning them to jobs. Specifically, this objective
is achieved by the following two optimizations:

• Initial Assignment. We associate each node in the system with a failure count, which indicates the
number of failures this node has experienced so far. A node that has a lower failure count is considered
“safer” than another node with a higher failure count. We then sort all thenodes in ascending order of

15

their failure counts. Amongst all the available nodes, we always allocate jobs to the safest ones (i.e.,
the ones with lowest failure counts).

• Migration. It is still possible that at some point a node that is not assigned to any job is more safe
than another assigned to a job. To address this issue, when a job finishes,we need to migrate jobs
running on less safe nodes (that started after this one) to more safe ones. As in [44], migration can be
achieved by checkpointing on the original nodes and restarting on the destination nodes. We assume
the checkpointing and restarting overheads to be 5 minutes. In order to avoid unnecessary overheads
(thrashing), we migrate a job from node A to node B only when the difference between these two
failure counts is above a certain threshold.

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

Least Failure First
No Prediction
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

Least Failure First
No Prediction
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

25

30

35

40

45

Utilization

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

Least Failure First
No Prediction
No Failure

(i) Average job slowdown

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

Least Failure First
No Prediction
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

Least Failure First
No Prediction
No Failure

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Utilization

A
ve

ra
ge

 W
or

k
Lo

ss
 R

at
io

 (
%

)

Least Failure First
No Prediction
No Failure

(ii) Average work loss ratio

(a) failures that are i.i.d.:β=0.65;
W=2; α=0.01;r=2 minutes.

(b) failures with temporal corre-
lation: β=0.65; W=64; α=0.01;
r=2 minutes.

(c) failures with spatial correla-
tion: β=0.65;W=2;α=0.99;r=2
minutes.

Figure 11: Least failure first

Figure 11 shows the performance results for LFF. As can be seen, forfailure traces that have non-uniform
spatial distribution (Figure 11(c)), LFF cuts down nearly 50% of the workloss incurred with failures by
simply avoiding scheduling on failure-prone nodes as far as possible .

It is to be noted that LFF does not really require any prediction about failures. It is only exploiting a
simple property of failures - a few nodes are likely to fail more often - which isnot only a behavior in our
failure logs but is also borne out by similar observations in other studies [37]. At the same time, it is easy to
implement and can be easily integrated into existing parallel job scheduling strategies.

16

References

[1] S. Albers and G. Schmidt. Scheduling with unexpected machine breakdowns. Discrete Applied Math-

ematics, 110(2-3):85–99, 2001.

[2] S. M. andD. Andrews. On the reliability of the ibm mvs/xa operating system.In IEEE Trans. Software

Engineering, volume October, 1987.

[3] M. Arlitt and T. Jin. Workload Characterization of the 1998 World Cup E-Commerce Site. Technical
Report Technical Report HPL-1999-62, HP, May 1999.

[4] J. L. Bruno and E. G. Coffman. Optimal Fault-Tolerant Computing on Multiprocess Systems.Acta
Informatica, 34:881–904, 1997.

[5] M. F. Buckley and D. P. Siewiorek. Vax/vms event monitoring and analysis. InFTCS-25, Computing

Digest of Papers, pages 414–423, June 1995.

[6] M. F. Buckley and D. P. Siewiorek. Comparative analysis of event tupling schemes. InFTCS-26,
Computing Digest of Papers, pages 294–303, June 1996.

[7] X. Castillo and D. P. Siewiorek. A workload dependent software reliability prediction model. InProc.

12th. Intl. Symp. Fault-Tolerant Computing, pages 279–286, June 1982.

[8] D. Feitelson. A survey of scheduling in multiprogrammed parallel systems.IBM Research Technical

Report, RC 19790, 1994.

[9] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches: Simple Techniques for
Reducing Leakage Power. InProceedings of the International Symposium on Computer Architecture

(ISCA), pages 148–157, 2002.

[10] H. Franke, J. Jann, J. E. Moreira, and P. Pattnaik. An evaluationof parallel job scheduling for asci blue-
pacific. InProc. of SC’99. Portland OR, IBM Research Report RC 21559 , IBM TJ Watson Research

Center, November 1999.

[11] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and M. A. Jette. Evaluation of Parallel Job Scheduling
for ASCI Blue-Pacific. InProceedings of Supercomputing, November 1999.

[12] B. Gorda and R. Wolski. Time sharing massively parallel machines. InProc. of ICPP’95. Portland
OR, pages 214–217, August 1995.

[13] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster availability using workstation valida-
tion. In Proceedings of the ACM SIGMETRICS 2002 Conference on Measurement and Modeling of
Computer Systems, pages 217–227, 2002.

[14] M. C. Hsueh, R. K. Iyer, and K. S. Trivedi. A measurement-based performability model for a multi-
processor system. InComputer Performance and Reliability, pages 337–352, 1987.

[15] R. K. Iyer and D. J. Rossetti. Effect of system workload on operating system reliability: A study on
ibm 3081. InIEEE Trans. Software Engineering, volume SE-11, pages 1438–1448, 1985.

17

[16] B. Kalyanasundaram and K. R. Pruhs. Fault-tolerant scheduling. In 26th Annual ACM Symposium on
Theory of Computing, pages 115–124, 1994.

[17] S. Kartik and C. S. R. Murthy. Task allocation algorithms for maximizing reliability of distributed
computing systems. InIEEE Transactions on Computer Systems, volume 46, pages 719–724, 1997.

[18] E. Krevat, J. G. Castanos, and J. E. Moreira. Job scheduling for the bluegene/l system. InJSPP, 2003.

[19] I. Lee and R. K. Iyer. Analysis of software halts in tandem system. In Proceedings 3rd Intl. Software
Reliability Engineering, pages 227–236, October 1992.

[20] T. Y. Lin and D. P. Siewiorek. Error log analysis: Statistical modelling and heuristic trend analysis.
IEEE Trans. on Reliability, 39(4):419–432, October 1990.

[21] Y. Ling, J. Mi, and X. Lin. A Variational Calculus Approach to Optimal Checkpoint Placement.IEEE

Transactions on Computer Systems, 50(7):699–708, July 2001.

[22] G. M. Lohman and J. A. Muckstadt. Optimal Policy for Batch Operations: Backup, Checkpointing,
Reorganization, and Updating.ACM Transactions on Database Systems, 2(3):209–222, 1977.

[23] M. Lyu and V. Mendiratta. Software Fault Tolerance in a Clustered Architecture: Techniques and
Reliability Modeling. InProceedings 1999 IEEE Aerospace Conference, pages 141 –150, 1999.

[24] J. Meyer and L. Wei. Analysis of workload influence on dependability. In Proceedings of the Interna-
tional Symposium on Fault-Tolerant Computing, pages 84–89, 1988.

[25] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin. ASystematic Methodology to Compute
the Architectural Vulnerabilityi Factors for a High-Performance Microprocessor. InProceedings of the

International Symposium on Microarchitecture (MICRO), pages 29–40, 2003.

[26] J. S. Plank and M. G. Thomason. Processor allocation and checkpoint interval selection in cluster
computing systems.Journal of Parallel and Distributed Computing, 61(11):1570–1590, November
2001.

[27] X. Qin, H. Jiang, and D. R. Swanson. An efficient fault-tolerant scheduling algorithm for real-time
tasks with precedence constraints in heterogeneous systems.citeseer.nj.nec.com/qin02efficient.html.

[28] R. Sahoo, A. Sivasubramaniam, M. Squillante, and Y. Zhang. Failure Data Analysis of a Large-
Scale Heterogeneous Server Environment. InProceedings of the 2004 International Conference on

Dependable Systems and Networks, pages 389–398, 2004, to appear.

[29] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta, and A. Sivasubramaniam.
Critical event prediction for proactive management in large-scale computer clusters. InKDD, pages
426–435, August 2003.

[30] S. M. Shaltz, J. P. Wang, and M. Goto. Task allocation for maximizing reliability of distributed com-
puter systems. InIEEE Transactions on Computer Systems, volume 41, pages 1156–1168, 1992.

18

[31] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the effect of technology
trends on soft error rate of combinational logic. InProceedings of the 2002 International Conference

on Dependable Systems and Networks, pages 389–398, 2002.

[32] M. S. Squillante.Matrix-Analytic Methods in Stochastic Parallel-Server Scheduling Models.Advances
in Matrix-Analytic Methods for Stochastic Models, Notable Publications, 1998.

[33] M. S. Squillante, F. Wang, and M. Papaefthymiou.Stochastic Analysis of Gang Scheduling in Parallel
and Distributed Systems.Technical Report, IBM Research Division, 1996.

[34] M. S. Squillante, Y. Zhang, A. Sivasubramanian, N. Gautam, J. E. Moreira, and H. Franke. Mod-
eling and analysis of dynamic coscheduling in parallel and distributed environments. Performance

Evaluation Review, 30(1):43–54, June 2002.

[35] M. Sullivan and R. Chillarege. Software Defects and Their Impact on System Availability - A Study
of Field Failures in Operating Systems. InProceedings of The 21st International Symposium on Fault

Tolerant Computer Systems (FTCS), pages 2–9, 1991.

[36] D. Tang and R. K. Iyer. Impact of correlated failures on dependability in a vaxcluster system. InIFIP

Working Conference on Dependable Computing for Critical Applications, 1991.

[37] D. Tang, R. K. Iyer, and S. S. Subramani. Failure analysis and modelling of a vaxcluster system. In
Proceedings 20th. Intl. Symposium on Fault-tolerant Computing, pages 244–251, 1990.

[38] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi. Analysis and Implementation of
Software Rejuvenation in Cluster Systems. InProceedings of the ACM SIGMETRICS 2001 Conference

on Measurement and Modeling of Computer Systems, pages 62–71, June 2001.

[39] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi. Analysis and implementation of
software rejuvenation in cluster systems. InSIGMETRICS 2001, pages 62–71, 2001.

[40] J. Xu, Z. Kallbarczyk, and R. K. Iyer. Networked windows nt system field failure data analysis.
Technical Report CRHC 9808 University of Illinois at Urbana- Champaign, 1999.

[41] J. Zeigler. Terrestrial Cosmic Rays.IBM Journal of Research and Development, 40(1):19–39, January
1996.

[42] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. TheImpact of Migration on Parallel Job
Scheduling for Distributed Systems . InProceedings of 6th International Euro-Par Conference Lecture
Notes in Computer Science 1900, pages 245–251, Aug/Sep 2000.

[43] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. Improving parallel job scheduling by
combining gang scheduling and backfilling techniques. InProceedings of the International Parallel

and Distributed Processing Symposium, pages 133–142, May 2000.

[44] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An integrated approach to parallel schedul-
ing using gang- scheduling backfilling and migration.IEEE Transactions on Parallel and Distributed

Systems, 14(3):236–247, March 2003.

19

