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Abstract

As we continue to evolve into large-scale parallel systemeny of them employing hundreds of
computing engines to take on mission-critical roles, itngc@l to design those systems anticipating
and accommodating the occurrence of failures. Failuresrheca commonplace feature of such large-
scale systems, and one cannot continue to treat them as eptiexc Despite the current and increasing
importance of failures in these systems, our understanadfitige performance impact of these critical
issues on parallel computing environments is extremelytdidn In this paper we develop a general
failure modeling framework based on recent results fromgdascale clusters and then we exploit this
framework to conduct a detailed performance analysis oirtipeact of failures on system performance
for a wide range of scheduling policies. Our results denratesthat such failures can have a significant
impact on the mean job response time and mean job slowdower @xikting scheduling policies that
ignore failures. We therefore investigate different sehied mechanisms and policies to address these
performance issues. Our results show that periodic chéatipg of jobs seems to do little to ease this
problem. On the other hand, we demonstrate that informaitmut the spatial and temporal correlation
of failure occurrences can be very useful in designing adudieg (job allocation) strategy to enhance
system performance, with the former providing the grediesgfits.

1 Introduction

Our growing reliance on computing and information processing servicedatesnot only deploying sys-
tems that can meet the performance demands imposed on such systems) bubsdsthat are available
when needed. Several technological factors are accentuating thiemrof system failures, which are
highly undesirable since these systems could be servicing the needsloétisiof users. At the same time,
solutions for this problem need to keep the high costs of system maintenarsasapel in mind, which is
growing to be a much more important factor in Total Cost of Ownership (T@Q@eep understanding of
the occurrence of failures in real environments can be useful inalevays towards enhancing overall sys-
tem availability. It can provide realistic data when evaluating proposed safytiogether with developing
strategies for proactive prediction and remedies of faults ahead of twirrence. Application demand for
high performance is continuing to fuel research and development & $m@e parallel systems. The need
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for processing larger datasets in existing applications, and the stringevandls of emerging applications
necessitate parallelism in computational and storage devices for their depiloy The cost-effectiveness
in using off-the-shelf hardware to put together clusters has contrilbatadarge extent in the widespread
availability of parallelism, and its successful usage. At the same time, séwgraitant and challenging
applications are driving the development of large scale parallel mackingsas IBM’s BlueGene/L which
is anticipated to have 65536 nodes.

As we continue to develop such large scale parallel systems, there aralgeyortant technological
factors to keep in mind:

e Denser integration of semiconductor circuits, though preferable fdoqmeance, makes them more
susceptible to strikes by alpha particles and cosmic rays [41]. At the samdhinejs an increasing
tendency to lower operating voltages in order to reduce power consumgtich reduction in voltage
levels can increase the likelihood of bit-flips when circuits are bombardex$iyic rays and other
particles, leading to transient errors. While memory structures are typicalliathet for protection
against errors using informational redundancy, more recent stiligbdve pointed out that the error
rates in combinational circuits are likely to surpass those of memory cells in xheewade.

e At the macro granularity, we have dense blade-systems being packeddk ag a cluster. With a
high load imposed on these dense systems — both on the CPUs and on thehdiakslissipation be-
comes a very important concern, potentially leading to thermal instability thataugse system/node
breakdowns [25, 9].

e We find system software and applications becoming more complex. Such camnpiakes them
more prone to bugs and other software failures [35, 23, 38] (e.g. mdpaky, state corruption, etc.).
These bugs/failures can cause system crashes, and it has evenpgested that one should perform
pro-active shutdown/rejuvenation [39, 38] to avoid catastrophic cuesees.

All these factors point to the increasing occurrence of system failuréseifuture. Failures become
more commonplace when we consider parallel systems with thousands . nRdther than treat them
as an exception, system design needs to recognize fault occureemtejanage the resources across the
parallel system effectively so as to hide their impact from the end userswOuld ideally like to achieve
the performance of a system without any failures. Even if this is difficulttiirg there should be at most a
“graceful degradation” in performance under the presence of églufowards this goal, the present paper
specifically targets thenanagement of CPU resources on a large scale parallel system usjameral
failure modeling framework that accurately represents the node failureackexistics reported in recent
studies of extensive error logs collected from cluster systems over |oioglpe

When nodesfail, there are two important consequences on system performance:

e First, the process/task of the application running on this node dies, agr#dgloosing all its work
since it began. Further, in a parallel application, tasks frequently comatenand consequently
other tasks would also not be able to progress. In effect, this can msiaging the entire application
(either on the same nodes or on different nodes).

e Second, the unavailability of the failed node can cause longer queudaygder waiting jobs.

!Since we are mainly concerned with CPU management, we use the tesdesand CPU, interchangeably in the rest of the
paper.



In this paper, we focus mainly on the first issue. With transient hardweseseand software errors expected
to be more prevalent than permanent failures, node reboots/restarfig cany of these problems. The
duration of unavailability would then be relatively low, given the long execuiimes of many of the parallel
applications that we are targeting — those in the scientific domain at nationediaties and supercomputing
centers. Note that the impact of node recovery time can become quite imgortpatmanent failures, and
we postpone such an investigation for future work.

There are several options for managing the nodes in a faulty environ@eatcould use an optimistic
approach, and simply ignore the problem, assuming there would be no$ailiffeen a node does fail, then
the application (all its tasks) could be restarted as was just explained. vidgves our results will show,
such an approach can suffer significant performance loss comjoeaiesystem where there is no failure. At
the other end of the spectrum, we could have a more pessimistic strategg, agpdication processes are
periodically checkpointed so that when a fault occurs, the amount df tedve re-done is limited. In our
results we will show that while this can be better than ignoring the problem, gvdeads of checkpointing
can limit its benefits.

In this paper, we investigate an alternative strategy whose main philosoftgt i we have a better
idea of when and where failures occur, then one could use such irtftommiar better management of the
CPUs:

e If we could predict the time for the failure, then we could checkpoint immedidiefgre this point in
time, so that we significantly limit the work lost while reducing the checkpointieea&ds. However, it
may be very difficult to predict the exact time for failures. If, on the otterditemporal predictiorof
failures is possible with a coarser granularity (a window) [29], then kb&ating could be initiated
only within those windows.

o If we could predict the nodespatial prediction that fail, then we could either avoid scheduling jobs
on those nodes as far as possible, or only checkpoint those nodeatiEn option may not be very
fruitful since parallel applications typically require all tasks to make pregye¢ around the same rate.

One could also use a combination of spatial and temporal prediction to spkgifacus on the time and
nodes where pro-active action needs to be taken to limit the work loss @darefwhile limiting the
overheads of checkpointing.

Investigation of these alternatives requires an understanding of theefalaracteristics of real parallel
systems executing parallel applications. Unfortunately, the researchuienarovides a wide variety of
often conflicting results for different computing environments (hardveer@ software) and there seems
to be a lack of consistent conclusions in previous computer failure stuMeseover, only a few recent
studies have even considered large-scale clusters and they have terideus on sequential commercial
applications. The only exception that we are aware of is a recent st8figfixtensive error logs collected
from a large-scale distributed system consisting of close to 400 machiaea period of close to 500 days,
which includes some parallel applications. We therefore develop a demedaling framework that makes
it possible to vary the properties of the failure patterns to span the wide rainfailure characteristics
found in the research literature. This framework is exploited to understenonpact of different failure
characteristics on overall system performance and to propose dicigesinategies that can alleviate the
performance impact of different failure attributes.

A detailed simulation study using this failure modeling framework and charaetkeparallel job work-
loads from a supercomputing center reveals that the failures do adooargignificant drop in performance
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compared to a system without failures. As can be expected, an exactr&mppadiction of node failures
almost completely bridges this gap of performance loss due to failures. eQuits also show that a sig-
nificant portion of this gap can be bridged even if temporal prediction eaolbe at only a granularity of
2—4 hours. While the results from our statistical analysis demonstrate ettarns that could be exploited
to provide such coarse grain temporal prediction, the results of our simukitidy further show that even
greater performance benefits are possible by using the spatial (nelyior of failures. Hence, our so-
lution opts to exploit the statistical spatial properties of failures and doey sie\eloping a scheduling
strategy wherein nodes that have recently failed are given lower pragriiging assigned a job compared
to others. We demonstrate that this simple strategy suffices to extract mostpErtbrmance gap between
a system with failures and one without, and does significantly better than b&hdbkpointing at periodic
intervals.

The rest of this paper is organized as follows. The next section pwddarief summary of work
related to this study. Section 3 presents our evaluation methodology, incladimgystem model, our
failure modeling framework, and the performance metrics of interest. Simuleg8uits of the impact of
failures on system performance are provided in Section 4, followed bgideration of different failure-
aware scheduling strategies in Section 5.

2 Related Work

Job scheduling plays a critical role in the performance of large scalbgdasstems (e.g. referto [8, 43, 44,
10, 12, 16, 18, 32, 33, 34] and the references therein). At the samestimeduling can be used to improve
the fault-tolerance [1, 27] of a system in three broad ways. First, a taske replicated on multiple nodes
so that even if a subset of these nodes falil, the execution of a task is renttedp Studies that employ this
technique ( [30, 17]) assume a probability for node failure to determineuh®er of nodes on which to
replicate the task. Second, the system can checkpoint all the jobs palipdic that work loss is limited
when a failure occurs, and there are several studies on tuning aietpprameters [21, 4, 22]. Third, the
scheduler allocates spare nodes to a job so that it can quickly recovepitential failures [26]. With
this approach there is a trade-off between using the extra node(s) toviereresponse time versus time
for recovery. To our knowledge, there has not been prior work &lyaimg and possibly managing system
resources based on node failures.

3 Evaluation Methodology

3.1 System Model

We simulate a 320-node cluster that runs parallel workloads. A parall@gosists of multiple tasks, and
each task needs to run on a different node. After certain nodes acataliibto a job, they are dedicated to
the job until it completes (i.e., no other jobs can run on the same nodes). Mukigleb jobs can run side
by side on different nodes at the same time.

After a job arrives, it will start execution if it is the first waiting job and thestgyn has enough available
nodes to accommodate it. Otherwise, it will be kept in the waiting queue. In ther pall the waiting jobs
are managed in the First-Come-First-Serve (FCFS) order. We also cldéliveg in this exercise, which is a
most commonly used scheduling technique [44] for parallel workloadskfilang allows a job that arrived



later to start execution ahead of jobs that arrived earlier as long as datexewill not delay the start of
those jobs. Estimated job execution times are required to implement backfilling.

Our experiments use a workload that is drawn from a characterizatiomeatl supercomputing envi-
ronment at Lawrence Livermore National Labs. Job arrival, executine and size information of this
environment have been traced and characterized to fit a mathematical {Hgder-Erlang distribution of
common order). The reader is referred to [11] for details on this wodktla@ use of the model in different
evaluation exercises [44]. The workload model provides (1) artiwa, (2) execution time, and (3) size
(number of nodes that it needs) for each incoming job.

3.2 Failure Injection

A large number of studies have considered the characteristics of fadncetheir impact on performance
across a wide variety of computer systems. Tang et al. [37, 36] andd&uekal. [5, 6] have investigated
error/failure logs collected from various VAXcluster systems of diffesgnes. Lee et al. [19] and Lin et
al. [20] analyzed the error trends for Tandem systems and DCE enwenats. Xu et al. [40] performed a
study of error logs collected from a heterogeneous distributed systesisting of 503 PC servers. Heath
et al. [13] considered failure data from three different clusteredesgrranging from 18 workstations to 89
workstations. Castillo et al. [7], lyer et al. [15] and Meyer et al. [24yé explored the effects of workload
on different types of computer system failures. Vaidyanathan et dld@8onstrated that software-related
error conditions will accumulate over time which will eventually lead to crashids/és. Sahoo et al [28]
have investigated the error logs from a networked environment of clet@0tbeterogeneous servers over a
period of close to 500 days.

Many of these studies have identified statistical properties and proptsddstic models to represent
the failure characteristics of various computer systems. This includes thg 6fthailure data to Weibull,
lognormal and other specific distributions, each with different parameténgs, under the assumption
of independent and identically distributed failures [20, 19, 13]. Othatissuhave demonstrated that the
sequence of failures on some computer systems are correlated in vaagsigmd that the failures tend to
occur in bursts [37, 36, 40, 28]. Semi-Markov processes also reme proposed to model the time-series
of failure from certain systems [14, 37, 36].

Unfortunately, only a few of these previous studies have even coesid&rstered server environments
and those that have tend to focus on commercial servers like web sditeeservers and database servers.
We are not aware of any studies that investigate failures within the corftrge-scale clusters executing
parallel applications, and no failure logs collected from such parallel atingpenvironments are available
to us. Moreover, given the wide variety of often conflicting results andable of consistent conclusions
in previous computer failure studies, we expect that parallel computirigpenvents with different parallel
application workloads, system software and system hardware will simibahipi¢ a broad range of failure
behaviors. It is therefore important to have a general modeling franketlvat makes it possible to vary
the properties of the failure patterns used to investigate parallel scheddirgs. Hence, we develop such
a failure modeling framework in this section which is then exploited in Sectionsl4da understand the
impact of different failure characteristics on overall system perfooaamd to propose scheduling strategies
that can alleviate the performance impact of different failure attributes.

Our framework consists of models for each of the three primary dimensioiasiwe characteristics
together with controls over each of these dimensions and their interactitiesfirgt dimension concerns
the times at which failures occur. This includes the marginal distribution fotirte between failures as
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well as any correlation structure among the individual failures. Thengedonension concerns the assign-
ment of failures among the nodes comprising the system. This allows our fiakésvspan the range
from uniformly distributed node failures assumed in some previous failudiestuo strong correlations
between failures and nodes in order to yield the types of concentratidiagduoks on a subset of nodes
as demonstrated in several recent failure studies of large-scale sluster third dimension concerns the
down time of each failure. An overall control model is also used to directhuza any correlations or
interactions among these three dimensions. Thus, there is no loss oflijgmeseparating out the indi-
vidual dimensions, while providing the ability to explicitly control and vary eashpect of the individual
dimensions.

We now define the specific aspects of each dimension of our generaéfailodeling framework that
are used in this study to generate synthetic failure workload traces easistony of a number of failures.
We use the job workload duration to determine the total number of failurg®y making sure that the
failures are spread throughout the entire span of parallel job exesution

Time of failures. Lett; denote the time at which failutieoccurs;i = 1,..., F. Heath [13] has shown that
the marginal distribution for the times between arrivals of failures in a clustenf a Weibull distribution

with shape parameters less than 1, the PDF of which can be descrilféd jas- %(%)5*16_(%)[3 where

(£ denotes the shape parameter gndenotes the scale parameter. (Note that a Weibull distribution with
shape parameter 1 corresponds to an exponential distribution.) In tles papuse the family of Weibull
distributions to generate the inter-arrival times for failures. Specificaleypdrameters that are used are
summarized in Table 3.2. The resulting failure arrival time distributions with rdiffeshape values are
shown in Figures 3.2(a) and (b).

H scale | shape| number of failures| failures/day
0.2 78 1.2
0.55 138 2.2
18000 0.65 198 3.2
0.85 266 4.3

Table 1: The parameters that are used to generate the Weibull distributions
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As noted above, the marginal distribution characterizes the statisticalrpespef the times between



failures without any consideration of the correlation structure in the imaikrré process. Since it has been
shown in [28] that there are strong temporal correlations between faittivals, we seek to include in our
framework a general methodology for capturing different forms of tawlpmorrelations within the inter-
failure process while maintaining a perfectly consistent marginal distribufibis. makes it possible for us
to properly compare the impact of the inter-failure correlation structureioresults under a given marginal
distribution. The following methodology is used to model the temporal correlabetween failure arrival
times:

e We generate a sequence of failure inter-arrival times which follow aifsp&eibull distribution.
Note that direct use of this time-series corresponding to assuming thatltiredaare independent
and identically distributed.

e We break this sequence into segments, each of which corifdietements. Within each segment,

we order the first% elements in a descending manner, and order the rema@iimjements in an
ascending manner. Note that the degree of correlation among the intee-faihes increases with
increasing values df’.
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Figure 2: The failure arrival time distribution with different correlationgraeters5 = 0.85

Once again, using this method, we can model temporal correlation betwkeadavhile maintaining
a consistent marginal Weibull distribution. Figure 3.2 shows how the failuieahtime series vary with
different W values. Note thatl’ = 2 corresponds to the original time series and thus represents the case
where there is no correlation. In this study, we shall vary the degreeroélation according tdV €
{2,8,32,64}.

Location of failures. Letn; denote the location of failurgi = 1, ..., F'. Several previous failure analysis
studies have shown that the spatial distribution of failures among the nodesusiform [37, 13, 28]. In
fact, it has been shown in [28] that there are strong spatial correldiemseen failures and nodes where
a small fraction of the nodes incur most of the failures. Possible reasoluslén (1) some components
(both hardware and software) are more vulnerable than others [87](2d a component that just failed is
more likely to fail again in the near future [13]. In order to capture this anifierm behavior, we adopt the
Zipf distribution to model failure locations in this study. We us&o denote the skewness parameter in the
Zipf distribution. Specifically, we vary the skewness parameter of the disisibusing the values 0.01, 0.5
and 0.99, where 0.01 corresponds to an environment where fail@etoae to being uniformly distributed



among the nodes and 0.99 corresponds to a highly skewed distribution in thikienajority of failures are
concentrated on a relatively small number of nodes.

Down time of failures. Let r; denote the down time of failure i = 1, ..., F. Failure down times can
vary significantly due to the different ways of repairing the failures. #iraple reboot can re-start the
system, then the down time can be relatively small (at most around minutesgvidipuf components need
to be replaced, it could take hours or even days to recover. In this, stiiedyse a constant value to model
the down time. We vary this constant using down times of 2 minutes, 1 hour, aoard.

3.3 Performance Metrics

In our simulations, we obtain the following statistics for each job: start time, Wosk(the total loss of work
due to failures), and completion time. These statistics are then used to calcal&ikaiving performance
metrics:

¢ Utilization: The percentage of time that the system actually spends doing useful work.

e Response Timérhe time difference between when a job completes and when it arrives tpdiess
averaged over all jobs.

e Slowdown:The ratio of theesponse timef a job to the time it requires on a dedicated system, aver-
aged over all jobs. This metric provides an indication of the average slewtitat jobs experience
when they execute in the presence of other jobs compared to their runngadgation.

e Work Loss Ratio:The ratio of the work loss as a result of failures to the execution time of a job,
averaged over all jobs.

4 Impact of Failures on System Performance

We now move on to present results from detailed simulations of the system mindéig the parallel job
workloads described in the Section 3.1 that are subjected to failures ($8Q2jo

4.1 Impact of Failure Arrival Statistics

As described early in this paper, the tasks of a parallel application offemcaicate with each other in
order to make forward progress. Consequently, if any one task hasrestarted because of a failure, our
model requires restarting all the tasks. Figures 3 illustrate the impact ofilinefarrival characteristics on
system performance. The graphs show the average job slowdowwvenadje work loss ratio as a function
of average job execution time. From Figure 3, we have the following ohtens:

e The impact of shape paramet@) (If we fix the scale parameten) of the Weibull distribution, vary-
ing the value of3 (3 < 1) will lead to different number of failures, further different inter-fagurmes.
It thus has the most significant impact on the system performance among flilthie parameters:

— Failures can have a significant impact on the system performance tgefegures 3(a) (i) and
(ii)). Even an average of 1.2 failures per day can increase the av@hglowdown by up to
40%. An average of 4.3 failures per day will increase the job slowdowmpltp 300%.

8



IS
&
IS
&
IS
&

—— 4=0.01
—— B=0.20, 1.2/day 0=0.99
=0.55, 2.2/day -8 No Failure [
-5 B=0.65, 3.2/day
£=0.85, 4.3/day
No Failure

IS
S
IS
S
IS
S

35 35

—— W=2
W=64
-8 No Failure

w
&

S
S

@
a
S

Average Job Slowdown

BooNoN W
S

Average Job Slowdown

[ )
S

Average Job Slowdown

BN N W
S &
e

@
@
@

H
o B
‘
.w\
.
-
o B

o
o
o

.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95
Utilization Utilization Utilization

(i) Average job slowdown

2 2 2
—— (=0.20, 1.2/day —+ w=2 —+ 0=0.01
18 B=0.55, 2.2/day 187 W=64 18 0=0.99
-8~ B=0.65, 3.2/day -8~ No Failure =B~ No Failure
. 16 B=0.85, 4.3/day _Ler 16
< No Failure .. 5
S 14 S 14 S 14
3 3 I
12 o 12- o 12
P P »
g g g
par 1 par 1+ - 1
= = *
S o8 2ogf e Sos
o o f— > —_—
<) ) &
€ 0.6 € 0.61 £06
b T ]
g g g
<04 ./.\"’/.—P/# < o4} < 0.4]
0.2 0.2F 0.2
0 g : ' : ' o o = = = = =ns) 0 = = = = o)
0.7 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95

Utilization Utilization Utilization

(ii) Average work loss ratio

(a) Impact of inter-failure time. (b) Impact of failure temporal (c) Impact of failure spatial
5=0.2, 0.55, 0.65, 0.85W=2; correlation. 3=0.85; W=2, 64; distribution. (3=0.85; W=2;
a=0.01;r =2 minutes. a=0.5;7=2 minutes. «=0.01, 0.99 =2 minutes.

Figure 3: The impact of failures arrival characteristics.

If we look at the average work loss for differefitvalues shown in Figure 3(a)(i), we observe
an almost linear increase with Even a 0.2% work loss ratio suffices to cause a considerable
performance degradation since these are relatively long running jobs.

— Failures have a higher impact on medium to high workloads. Let us look avérage work
loss for 3 = 0.85. Under high workloads, the work loss is 40% higher than that under low
workloads. This higher work loss ratio, together with the already high systdization, lead
to a degraded performance.

e The impact of temporal correlation paramekEr(refer to Figures 3(b) (i) and (ii)). Compared to the
impact of 3 , the impact ofi” is much less pronounced. We do observe that a longer-range comelatio
can slightly increase the average work loss and further job slowdownrgarld” can cause a more
bursty failure arrivals, which can increase the chances of a job béibyg the failures.

Although temporal correlation degree does not impact the average jolielewgreatly, we feel that
it may affect the performance of individual jobs because the same job enhif nultiple times at a
higher temporal correlation degree. We are currently working on tlesssts.

e The impact of spatial correlation paramete(refer to Figures 3(c) (i) and (ii)). The impact of
is also less obvious compared to thatmbfWe observe a significantly higher work loss ratio under
low loads fora = 0.99, but this difference diminishes as the load increases. This observation may



appear counter-intuitive. However, we would like to point out that this isgusmulation artifact. In
our simulation, node 0 is always ranked the first, and will experience radteds than others with
a = 0.99. At the same time, when we try to schedule jobs onto the nodes, we alwayfsmstanode
0 as well. Under low loads, the node utilization is low and node O will be availabit afdhe time.
As a result, many jobs will be affected by the failures on node 0, leading toca mmigher work loss
ratio.

Further, we would like to point out that impacts job slowdown most at medium loads. Under low
loads, despite the work loss ratio difference, slowdown will not be tftedue to the low load. Under
high loads, different: values result in the same work loss ratio, thus leading to the same slowdown.
On the other hand, the medium loads combine both the work loss ratio andabéstoads, resulting

in a more pronounced difference.

The results presented in this section are in agreement with our studies watliséiadailure trace [28].

4.2 the Impact of Failure Down Times
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Figure 4: The impact of failure down times.

Earlier studies [] have shown that the failure down times have a great imopaitte system perfor-
mance for commercial servers such as file server, email server, wadr,setc. However, we find that,
for large-scale supercomputing clusters, an individual node’s downdoeenot impact the performance
significantly. As shown in Figures 4(a)-(c) (i)-(ii), the performance gath different failure down times
(varying from 2 minutes to 4 hours) is negligible. This is mainly due to the nafutegarallel workloads.
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These jobs cannot start execution if the system does not have enailgible nodes. Therefore, in most
of the times, the system will have a few free nodes while jobs are waiting taiexexven under high loads
(due to system fragmentation).

In summary, failures have a great impact since the job that got hit will loseoitk,wut how long the
failed node will remain down is not as important.

5 Failure-Aware Scheduling Strategies

In this section, we examine different possibilities to alleviate the impact of failuamging from those that
are oblivious to failure information (referred to &slure-oblivious checkpointingn section 5.1), to those
that have significant knowledge about when and where failures diccaection 5.2). Finally, we present
a strategy that is based on a simple observation about the failure propaniieshow that it can do a very
good job of bridging this gap without requiring extensive failure predictiapabilities.

5.1 Failure-Oblivious Checkpointing
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Figure 5: failure-oblivious checkpointing for failures that are iid.

A straightforward approach to limit the impact of work loss upon failures istiBckpointing the appli-
cation tasks periodically. Such an approach is oblivious to the occermdrailures itself, and thus does not
require any prediction about their occurrence. In this section, we &eathe effectiveness of this simple
approach using different intervals (2, 4, and 24 hours) for chaokipg. The scientific applications being
targeted in this study are long running, and manipulate large datasets. tibislythe memory state of these
applications that needs to be checkpointed but the network state of anggastbat may be in transit as
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Figure 6: failure-oblivious checkpointing for failures that have tembarapatial correlations.

well. Consequently, checkpointing costs can be quite substantial, andrcarta a few minutes especially
with several processes swapping to a few 1/0O nodes [42]. We useckmmiat cost of 5 minutes in this
exercise, and the checkpoint intervals have been chosen in ordespidHese overheads reasonable.

Figures 5 and 6 show the average slowdown, work loss ratio and abietkperhead of this approach
with different failure distributions. From this set of results, we have tHewiing observations:

e If the failures are i.i.d., oblivious checkpointing can only help the perfogaanarginally compared
to not taking any proactive actions (refer to Figures 5(a)(i-ii)). THatire performance gain due
to checkpointing further decreases as the number of failures desr@ggseomparing Figure 5(a)(ii)
which has 1.2 failures per day to Figure 5(a)(i) which has 3.2 failureslggr. With an average of
3.2 failures per day, a short checkpointing interval of 2/4 hours is bistéer a longer interval. With
1.2 failures per day, we do not observe a noticeable difference bettiferent checkpoint intervals.
Although a small checkpoint interval can limit the work loss due to failures,ghis can be offset
by the added checkpoint overheads. For example, if we checkpant 8vhours, the average work
loss due to failures is less than 0.2%, but the resulted checkpoint odeih@dove 0.4%, which
de-emphasizes the benefits of checkpoints. At the same time, a largepoimddkterval cannot
effectively limit the work loss due to failures (Figure 5 (ii)).

e For failure traces that have temporal correlation, oblivious checkpgimkires not help either (refer
to Figures 6(a)(i)).

e For failure traces that have spatial correlation, e.g., following a Zipf digioh with «=0.99, the
impact of oblivious checkpointing is again not obvious (refer to Figu(e¥(). Readers can look
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at the corresponding work loss ratios (refer to Figures 6(b)(ii)) dmtkpointing overheads (refer to
Figures 6(c)(ii)) to obtain further performance details.

5.2 Checkpointing Using Failure Prediction

5.2.1 Perfect Temporal/Spatial Prediction
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Figure 7: Exact prediction and exact checkpointing.

The previous results suggest that a checkpointing strategy obliviowsltioef occurrence is not very
rewarding. On the other hand, if one can predict when and where aefailicurs, then thepecific job
that would be affected can alone be checkpoiraractly before the point of failureThe benefits of such
a perfect prediction strategy are quantified in Figure 7. The results simwthe availability of exact
failure information before-hand can help us schedule the checkpoirimmsacompletely eliminate the
performance loss due to failures.

5.2.2 Strategies Using Temporal Correlation

While perfect prediction shows tremendous potential, it is almost impossiblesol®¢o accurately predict
when and where failures would occur. We next relax the predictability lednw(temporal) and where
(spatial) in the following way.

Even if one cannot predict exact times when failures occur, there ¢multhderlying properties that
make prediction at a coarser time granularity more feasible. For instandeesshave pointed out that the
likelihood of failures increases with the load on the nodes [2]. At the same tiiraies have also been other
studies [3] showing that load on clusters exhibit some amount of periodiaityhigher in the day/evenings,
and lower at nights. A recent study [28] has further showed that &silare correlated to the time of the
day. Such insights suggest that perhaps a time-of-day based ¢parsdarity prediction model may have
some merit. Further, examination of our failure logs earlier in this paper sbestain patterns that could be
exploited to provide such coarse grain temporal prediction. It is to be tioé¢dur point here is not to say
that such a model is feasible. Rather, we are merely trying to examine wisetttea model (if developed)
would be useful in alleviating the performance loss due to failures.

In our coarse-granularity temporal prediction model, we partition a dap@4s) inton buckets (each
bucket represent% hours). We assume that we know exactly which bucket each failuredsetonthough

13



we cannot predict the exact time within this bucket nor the specific nodeevihe failure would occur.
With this prediction model, at the beginning of each bucket, we know whetheotca failure will occur
within this bucket. If we know a failure is about to occur, we can turn orckpeints just for the duration
of this bucket. At this time, how often we should checkpoint and which jobsézkpoint become very
important questions. In order to determine which jobs to checkpuwictirhsof the failures), we examine
the following three heuristics:

e Checkpoint All.We checkpoint all the jobs that are running within this bucket. Though thigdte
will not miss checkpointing the victim, it can incur higher checkpoint ovedkday checkpointing
more jobs than necessary.

e Checkpoint Longln order to avoid excessive checkpoint overheads, this heuristgopes to only
checkpoint those jobs that have run for a certain duration (5 minutes axpariments). The rationale
is that even if we miss checkpointing the victim, it has not run long enough to sigaificant work
loss.

e Checkpoint Big.This heuristic assumes that big (in terms of the number of nodes that thejphse)
are more likely to be hit by failures because they occupy more nodes. ésud,rin this heuristic
we only checkpoint thé biggest jobs running within the bucket. Even though we have conducted
experiments with different values &f we only present results fér= 1 since the results are not very
different.
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Figure 8: Checkpointing based on relaxed prediction model for i.i.d fail{#e6.85; W =2; a=0.01;r=2
minutes).

Figures 8 (a)-(c) present the performance of these heuristics feratit bucket sizes (1, 4 and 8 hours).
With smaller buckets, while the results are closer to perfect prediction, redtpridictability at those finer
granularities can become more difficult. Figure 8 shows that these heudatidmprove the performance
noticeably even with bucket sizes of 8 hours.

Figure 9 compares these heuristics using four-hour buckets. It shawvihese heuristics have compa-
rable performances which improve job slowdown by up to 70%.

Similar trends are observed in the other failure traces (Figures 10) whigilimes that present temporal
correlations benefits more from this approach since such failure tragesore bursty failure arrivals.
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Figure 9: Comparing three heuristics using four-hour buckets for ifiarés (3=0.85;1W=2; =0.01;r=2
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Figure 10: Comparing three heuristics using four-hour buckets forréslthat have either temporal corre-
lation or spatial correlation.

5.2.3 Strategies Using Spatial Correlation: Least Failure First (LFF)

Despite the less stringent requirements from the prediction model examineel preious section, it is
quite possible as revealed in our analysis of the failure logs, that tempedhtfion of failures may be very
difficult to attain. At the same time, we note an important property of the failure logpdes that have
failed in the past are more likely to fail agatand investigate the possibility of using this observation that
can mitigate the performance loss due to failures.

We propose a scheduling strategy (rather a node assignment stratggysjo called_east Failure First
(LFF), to take advantage of this observation. The basic idea of this strategy i®timgier priority to nodes
that have exhibited the most failures until that point when assigning themso$mecifically, this objective
is achieved by the following two optimizations:

e Initial Assignment. We associate each node in the system with a failure colict) indicates the
number of failures this node has experienced so far. A node that haseaf&lure count is considered
“safer” than another node with a higher failure count. We then sort alitides in ascending order of
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their failure counts. Amongst all the available nodes, we always allocasetgaihe safest ones (i.e.,
the ones with lowest failure counts).

e Migration. It is still possible that at some point a node that is not assignedytgol is more safe
than another assigned to a job. To address this issue, when a job fim&haesed to migrate jobs
running on less safe nodes (that started after this one) to more safefariag44], migration can be
achieved by checkpointing on the original nodes and restarting on thieates nodes. We assume
the checkpointing and restarting overheads to be 5 minutes. In orderitbumrecessary overheads
(thrashing), we migrate a job from node A to node B only when the differdistween these two
failure counts is above a certain threshold.
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Figure 11 shows the performance results for LFF. As can be sedailtoe traces that have non-uniform
spatial distribution (Figure 11(c)), LFF cuts down nearly 50% of the woss incurred with failures by
simply avoiding scheduling on failure-prone nodes as far as possible .

It is to be noted that LFF does not really require any prediction aboutdgilult is only exploiting a
simple property of failures - a few nodes are likely to fail more often - whialoisonly a behavior in our
failure logs but is also borne out by similar observations in other studi¢sABthe same time, it is easy to
implement and can be easily integrated into existing parallel job schedulingyssate
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