
An Integrated Approach to Parallel Scheduling Using
Gang-Scheduling, Backfilling and Migration

Y. Zhangy H. Frankez J. E. Moreiraz A. Sivasubramaniamy

y Department of Computer Science& Engineering z IBM T. J. Watson Research Center
The Pennsylvania State University P. O. Box 218

University Park PA 16802 Yorktown Heights NY 10598-0218
fyyzhang, anandg@cse.psu.edu ffrankeh, jmoreirag@us.ibm.com

Abstract

Effective scheduling strategies to improve response times,
throughput, and utilization are an important consideration
in large supercomputing environments. Such machines
have traditionally used space-sharing strategies to accom-
modate multiple jobs at the same time. This approach,
however, can result in low system utilization and large
job wait times. This paper discusses three techniques that
can be used beyond simple space-sharing to greatly im-
prove the performance figures of large parallel systems.
The first technique we analyze is backfilling, the second
is gang-scheduling, and the third is migration. The main
contribution of this paper is an evaluation of the benefits
from combining the above techniques. We demonstrate
that, under certain conditions, a strategy that combines
backfilling, gang-scheduling, and migration is always bet-
ter than the individual strategies for all quality of service
parameters that we consider.

1 Introduction

Large scale parallel machines are essential to meet the
needs of demanding applications at supercomputing en-
vironments. In that context, it is imperative to provide
effective scheduling strategies to meet the desired qual-
ity of service parameters from both user and system per-
spectives. Specifically, we would like to reduce response
and wait times for a job, minimize the slowdown that a
job experiences in a multiprogrammed setting compared
to when it is run in isolation, maximize the throughput and
utilization of the system, and be fair to all jobs regardless
of their size or execution times.

Scheduling strategies can have a significant impact on
the performance characteristics of a large parallel sys-
tem [2, 3, 4, 7, 10, 13, 14, 17, 18, 21, 22]. Early strategies
used a space-sharing approach, wherein jobs can run con-
currently on different nodes of the machine at the same

time, but each node is exclusively assigned to a job. Sub-
mitted jobs are kept in a priority queue which is always
traversed according to a priority policy in search of the
next job to execute. Space sharing in isolation can re-
sult in poor utilization since there could be nodes that are
unutilized despite a waiting queue of jobs. Furthermore,
the wait and response times for jobs with an exclusively
space-sharing strategy can be relatively high.

We analyze three approaches to alleviate the problems
with space sharing scheduling. The first is a technique
called backfilling [6, 14], which attempts to assign unuti-
lized nodes to jobs that are behind in the priority queue (of
waiting jobs), rather than keep them idle. To prevent star-
vation for larger jobs, (conservative) backfilling requires
that a job selected out of order completes before the jobs
that are ahead of it in the priority queue are scheduled to
start. This approach requires the users to provide an esti-
mate of job execution times, in addition to the number of
nodes required by each job. Jobs that exceed their execu-
tion time are killed. This encourages users to overestimate
the execution time of their jobs.

The second approach is to add a time-sharing dimen-
sion to space sharing using a technique called gang-
scheduling or coscheduling [16, 22]. This technique vir-
tualizes the physical machine by slicing the time axis
into multiple virtual machines. Tasks of a parallel job
are coscheduled to run in the same time-slices (same vir-
tual machines). In some cases it may be advantageous to
schedule the same job to run on multiple virtual machines
(multiple time-slices). The number of virtual machines
created (equal to the number of time slices), is called the
multiprogramming level (MPL) of the system. This multi-
programming level in general depends on how many jobs
can be executed concurrently, but is typically limited by
system resources. This approach opens more opportuni-
ties for the execution of parallel jobs, and is thus quite ef-
fective in reducing the wait time, at the expense of increas-
ing the apparent job execution time. Gang-scheduling

does not depend on estimates for job execution time.

The third approach is to dynamically migrate tasks of
a parallel job. Migration delivers flexibility of adjusting
your schedule to avoid fragmentation [3, 4]. Migration
is particularly important when collocation in space and/or
time of tasks is necessary. Collocation in space is im-
portant in some architectures to guarantee proper commu-
nication among tasks (e.g., Cray T3D, CM-5, and Blue
Gene). Collocation in time is important when tasks have
to be running concurrently to make progress in communi-
cation (e.g., gang-scheduling).

It is a logical next step to attempt to combine these ap-
proaches – gang-scheduling, backfilling, and migration
– to deliver even better performance for large parallel
systems. Progressing to combined approaches requires
a careful examination of several issues related to back-
filling, gang-scheduling, and migration. Using detailed
simulations based on stochastic models derived from real
workloads, this paper analyzes (i) the impact of over-
estimating job execution times on the effectiveness of
backfilling, (ii) a strategy for combining gang-scheduling
and backfilling, (iii) the impact of migration in a gang-
scheduled system, and (iv) the impact of combining gang-
scheduling, migration, and backfilling in one scheduling
system.

We find that overestimating job execution times does
not really impact the quality of service parameters, re-
gardless of the degree of overestimation. As a result, we
can conservatively estimate the execution time of a job in
a coscheduled system to be the multiprogramming level
(MPL) times the estimated job execution time in a ded-
icated setting after considering the associated overheads,
such as context-switch overhead. These results help us
construct a backfilling gang-scheduling system, called
BGS, which fills in holes in the Ousterhout scheduling
matrix [16] with jobs that are not necessarily in first-come
first-serve (FCFS) order. It is clearly demonstrated that,
under certain conditions, this combined strategy is always
better than the individual gang-scheduling or backfilling
strategies for all the quality of service parameters that we
consider. By combining gang-scheduling and migration
we can further improve the system performance param-
eters. The improvement is larger when applied to plain
gang-scheduling (without backfilling), although the ab-
solute best performance was achieved by combining all
three techniques: gang-scheduling, backfilling, and mi-
gration.

The rest of this paper is organized as follows. Sec-
tion 2 describes our approach to modeling parallel job
workloads and obtaining performance characteristics of
scheduling systems. It also characterizes our base work-
load quantitatively. Section 3 analyzes the impact of
job execution time estimation on the overall performance

from system and user perspectives. We show that rele-
vant performance parameters are almost invariant to the
accuracy of average job execution time estimation. Sec-
tion 4 describes gang-scheduling, and the various phases
involved in computing a time-sharing schedule. Sec-
tion 5 demonstrates the significant improvements in per-
formance that can be achieved with time-sharing tech-
niques, particularly when enhanced with backfilling and
migration. Finally, Section 6 presents our conclusions and
possible directions for future work.

2 Evaluation methodology

When selecting and developing job schedulers for use in
large parallel system installations, it is important to un-
derstand their expected performance. The first stage is to
have a characterization of the workload and a procedure
to synthetically generate the expected workloads. Our
methodology for generating these workloads, and from
there obtaining performance parameters, involves the fol-
lowing steps:

1. Fit a typical workload with mathematical models.

2. Generate synthetic workloads based on the derived
mathematical models.

3. Simulate the behavior of the different scheduling
policies for those workloads.

4. Determine the parameters of interest for the different
scheduling policies.

We now describe these steps in more detail.

2.1 Workload modeling

Parallel workloads often are over-dispersive. That is, both
job interarrival time distribution and job service time (ex-
ecution time on a dedicated system) distribution have co-
efficients of variation that are greater than one. Distribu-
tions with coefficient of variation greater than one are also
referred to as long-tailed distributions, and can be fitted
adequately with Hyper Erlang Distributions of Common
Order. In [12] such a model was developed, and its ef-
ficacy demonstrated by using it to fit a typical workload
from the Cornell University Theory Center. Here we use
this model to fit a typical workload from the ASCI Blue-
Pacific System at Lawrence Livermore National Labora-
tory (LLNL), an IBM RS/6000 SP.

Our modeling procedure involves the following steps:

1. First we group the jobs into classes, based on the
number of nodes they require for execution. Each
class is a bin in which the upper boundary is a power
of 2.

2. Then we model the interarrival time distribution for
each class, and the service time distribution for each
class as follows:

(a) From the job traces, we compute the first three
moments of the observed interarrival time and
the first three moments of the observed service
time.

(b) Then we select the Hyper Erlang Distribution
of Common Order that fits these 3 observed
moments. We choose to fit the moments of the
model against those of the actual data because
the first 3 moments usually capture the generic
features of the workload. These three moments
carry the information on the mean, variance,
and skewness of the random variable, respec-
tively.

Next, we generate various synthetic workloads from the
observed workload by varying the interarrival rate and ser-
vice time used. The Hyper Erlang parameters for these
synthetic workloads are obtained by multiplying the inter-
arrival rate and the service time each by a separate mul-
tiplicative factor, and by specifying the number of jobs
to generate. From these model parameters synthetic job
traces are obtained using the procedure described in [12].
Finally, we simulate the effects of these synthetic work-
loads and observe the results.

Within a workload trace, each job is described by its
arrival time, the number of nodes it uses, its execution
time on a dedicated system, and an overestimation factor.
Backfilling strategies require an estimate of the job exe-
cution time. In a typical system, it is up to each user to
provide these estimates. This estimated execution time is
always greater than or equal to the actual execution time,
since jobs are terminated after reaching this limit. We cap-
ture this discrepancy between estimated and actual exe-
cution times for parallel jobs through anoverestimation
factor. The overestimation factor for each job is the ratio
between its estimated and actual execution times. Dur-
ing simulation, the estimated execution time is used ex-
clusively for performing job scheduling, while the actual
execution time is used to define the job finish event.

In this paper, we adopt what we call the� model of
overestimation. In the� model,� is the fraction of jobs
that terminate at exactly the estimated time. This typically
corresponds to jobs that are killed by the system because
they reach the limit of their allocated time. The rest of the
jobs (1 � �) are distributed such that the distribution of
jobs that end at a certain fraction of their estimated time
is uniform. This distribution is shown in Figure 1. It has
been shown to represent well actual job behavior in large
systems [6]. To obtain the desired distribution for execu-
tion times in the� model, in our simulations we compute

the overestimation factor as follows: Lety be a uniformly
distributed random number in the range0 � y < 1. If
y < �, then the overestimation factor is 1 (i.e., estimated
time = execution time). Ify � �, then the overestimation
factor is(1��)=(1� y).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1−Φ

Φ

Execution time as fraction of estimated time

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n
p(

x)
 fo

r
jo

bs

Distribution of job execution time

Figure 1: The� models for overestimation.

2.2 Workload characteristics

The baseline workload is the synthetic workload gener-
ated from the parameters directly extracted from the ac-
tual ASCI Blue-Pacific workload. It consists of 10,000
jobs, varying in size from 1 to 256 nodes, in a system
with a total of 320 nodes. Some characteristics of this
workload are shown in Figures 2 and 3. Figure 2 reports
the distribution of job sizes (number of nodes). For each
job size, between 1 and 256, Figure 2(a) shows the num-
ber of jobs of that size, while Figure 2(b) plots the number
of jobs withat mostthat size. (In other words, Figure 2(b)
is the integral of Figure 2(a).) Figure 3 reports the dis-
tribution of total CPU time, defined as job execution time
on a dedicated setting times its number of nodes. For each
job size, Figure 3(a) shows the sum of the CPU times for
all jobs of that size, while Figure 3(b) is a plot of the sum
of the CPU times for all jobs ofat mostthat size. (In other
words, Figure 3(b) is the integral of Figure 3(a).) From
Figures 2 and 3 we observe that, although large jobs (de-
fined as those with more than 32 nodes), represent only
30% of the number of jobs, they constitute more than 80%
of the total work performed in the system. This baseline
workload corresponds to a system utilization of� = 0:55.
(System utilization is defined in Section 2.3.)

In addition to the baseline workload of Figures 2 and 3
we generate 8 additional workloads, of 10,000 jobs each,
by varying the model parameters so as to increase aver-
age job execution time. More specifically, we generate
the 9 different workloads by multiplying the average job

0 32 64 96 128 160 192 224 256
0

50

100

150

200

250

300

350

400

450

500

Job size (number of nodes)

N
um

be
r

of
 jo

bs

Distribution of job sizes

0 32 64 96 128 160 192 224 256
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Job size (number of nodes)

N
um

be
r

of
 jo

bs

Cumulative distribution of job sizes

(a) (b)

Figure 2: Workload characteristics: distribution of job sizes.

0 32 64 96 128 160 192 224 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

Job size (number of nodes)

T
ot

al
 C

P
U

 ti
m

e
(s

)

Distribution of CPU time

0 32 64 96 128 160 192 224 256
0

1

2

3

4

5

6

7

8

9

10
x 10

8

Job size (number of nodes)

T
ot

al
 C

P
U

 ti
m

e
(s

)

Cumulative distribution of CPU time

(a) (b)

Figure 3: Workload characteristics: distribution of cpu time.

execution time by a factor from1:0 to 1:8 in steps of0:1.
For a fixed interarrival time, increasing job execution time
typically increases utilization, until the system saturates.

2.3 Performance metrics

The synthetic workloads generated as described in Sec-
tion 2.1 are used as input to our event-driven simulator of
various scheduling strategies. We simulate a system with
320 nodes, and we monitor the following parameters:

� tai : arrival time for jobi.

� tsi : start time for jobi.

� tei : execution time for jobi (in a dedicated setting).

� tfi : finish time for jobi.

� ni: number of nodes used by jobi.

From these we compute:

� tri = tfi � tai : response time for jobi.

� twi = tsi � tai : wait time for jobi.

� si =
max(tr

i
;�)

max(te
i
;�) : the slowdown for jobi. To reduce

the statistical impact of very short jobs, it is common
practice [5, 6] to adopt a minimum execution time of
� seconds. This is the reason for themax(�;�) terms
in the definition of slowdown. According to [6], we
adopt� = 10 seconds.

To report quality of service figures from a user’s perspec-
tive we use the average job slowdown and average job
wait time. Job slowdown measures how much slower
than a dedicated machine the system appears to the users,
which is relevant to both interactive and batch jobs. Job

wait time measures how long a job takes to start execu-
tion and therefore it is an important measure for inter-
active jobs. In addition to objective measures of quality
of service, we also use these averages to characterize the
fairness of a scheduling strategy. We evaluate fairness by
comparing average and standard deviation of slowdown
and wait time for small jobs, large jobs, and all jobs com-
bined. As discussed in Section 2.2, large jobs are those
that use more than 32 nodes, while small jobs use 32 or
fewer nodes.

We measure quality of service from the system’s per-
spective with two parameters: utilization and capacity
loss. Utilization is the fraction of total system resources
that are actually used during the execution of a workload.
Let the system haveN nodes and executem jobs, where
jobm is the last job to finish execution. Also, let the first
job arrive at timet = 0. Utilization is then defined as

� =

Pm
i=1 nit

e
i

tfm �N
(1)

A system incurs loss of capacity when (i) it has jobs
waiting in the queue to execute, and (ii) it has empty nodes
(either physical or virtual) but, because of fragmentation,
it still cannot execute those waiting jobs. Before we can
define loss of capacity, we need to introduce some more
concepts. Ascheduling eventtakes place whenever a new
job arrives or an executing job terminates. By definition,
there are2m scheduling events, occurring at times i, for
i = 1; : : : ; 2m. Let ei be the number of nodes left empty
between scheduling eventsi andi+1. Finally, let�i be 1
if there are any jobs waiting in the queue after scheduling
eventi, and 0 otherwise. Loss of capacity in a purely
space-shared system is then defined as

� =

P2m�1
i=1 ei(i+1 � i)�i

tfm �N
(2)

To compute the loss of capacity in a gang-scheduling
system, we have to keep track of what happens in each
time-slice. Please note that here one time-slice is not ex-
actly equal to one row in the matrix since the last time-
slice could be shorter than a row in time due to the fact
that a scheduling event could happen in the middle of a
row. Letsi be the number of time slices between schedul-
ing eventi and scheduling eventi+1. We can then define

� =

P2m�1
i=1 [ei(i+1 � i) + T � CS � si � ni] �i

tfm �N
(3)

where

� T is the duration of one row in the matrix;

� CS is the context-switch overhead (as a fraction of
T);

� ni is the number of occupied nodes between schedul-
ing eventsi andi+1, more specifically,ni+ei = N .

A system is in a saturated state when increasing the load
does not result in an increase in utilization. At this point,
the loss of capacity is equal to one minus the maximum
achievable utilization. More specifically,� = 1� �max.

3 The impact of overestimation on
backfilling

Backfilling is a space-sharing optimization technique.
With backfilling, we can bypass the priority order im-
posed by the job queuing policy. This allows a lower pri-
ority job j to be scheduled before a higher priority jobi as
long as this reschedule does not incur a delay on the start
time of job i for that particular schedule. This require-
ment of not delaying higher priority jobs is exactly what
imposes the need for an estimate of job execution times.
The effect of backfilling on a particular schedule can be
visualized in Figure 4. Suppose we have to schedule five
jobs, numbered from 1 to 5 in order of arrival. Figure 4(a)
shows the schedule that would be produced by a FCFS
policy without backfilling. Note the empty space between
timesT1 andT2, while job3 waits for job2 to finish. Fig-
ure 4(b) shows the schedule that would be produced by a
FCFS policy with backfilling. The empty space was filled
with job 5, which can be executed before job3 without
delaying it.

A common perception with backfilling is that one needs
a fairly accurate estimation of job execution time to per-
form good backfilling scheduling. Users typically provide
an estimate of job execution time when jobs are submit-
ted. However, it has been shown in [6] that there is not
necessarily correlation between estimated and actual ex-
ecution times. Since jobs are killed when the estimated
time is reached, users have an incentive to overestimate
the execution time. This is indeed a major impediment
to applying backfilling to gang-scheduling. The effective
rate at which a job executes under gang-scheduling de-
pends on many factors, including: (i) what is the effective
multiprogramming level of the system, (ii) what other jobs
are present, and (iii) how many time slices are occupied
by the particular job. This makes it even more difficult to
estimate the correct execution time for a job under gang-
scheduling.

We conducted a study of the effect of overestimation on
the performance of backfilling schedulers using a FCFS
prioritization policy. The results are summarized in Fig-
ure 5 for the� model. Figures 5(a) and 5(b) plot average
job slow down and average job wait time, respectively,
as a function of system utilization for different values of
�. We observe very little impact of overestimation. For

time

space

-

6

1

2

3

4

5

T1 T2 time

space

-

6

1

2

3

45

T1 T2
(a) (b)

Figure 4: FCFS policy without (a) and with (b) backfilling. Job numbers correspond to their position in the priority
queue.

utilization up to� = 0:90, overestimation actually helps
in reducing job slowdown. However, we can see a little
benefit in wait time from more accurate estimates.

We can explain why backfilling is not that sensitive to
the estimated execution time by the following reasoning:
On average, overestimation impacts both the jobs that are
running and the jobs that are waiting. The scheduler com-
putes a later finish time for the running jobs, creating
larger holes in the schedule. The larger holes can then
be used to accommodate waiting jobs that have overesti-
mated execution times. The probability of finding a back-
filling candidate effectively does not change with the over-
estimation.

Even though the average job behavior is insensitive
to the average degree of overestimation, individual jobs
can be affected. To verify that, we group the jobs into
10 classes based on how close is their estimated time to
their actual execution time. For the� model, classi,
i = 0; : : : ; 9 includes all those jobs for which their ra-
tio of execution time to estimated time falls in the range
(i � 10%,(i + 1) � 10%]. Figure 6 shows the average
job wait time for (i) all jobs, (ii) jobs in class 0 (worst es-
timators) and (iii) jobs in class 9 (best estimators) when
� = 0:2. We observe that those users that provide good
estimates are rewarded with a lower average wait time.
The conclusion is that the “quality” of an estimation is
not really defined by how close it is to the actual execu-
tion time, but by how much better it is compared to the
average estimation. Users do get a benefit, and therefore
an encouragement, from providing good estimates.

Our findings are in agreement with the work described
in [19]. In that paper, the authors describe mechanisms
to more accurately predict job execution times, based on
historical data. They find that more accurate estimates of
job execution time lead to more accurate estimates of wait
time. The authors do observe an improvement in average
job wait time, for a particular Argonne National Labora-
tory workload, when using their predictors instead of pre-
viously published work [1, 9].

4 Gang-scheduling

In the previous sections we only considered space-sharing
scheduling strategies. An extra degree of flexibility in
scheduling parallel jobs is to share the machine resources
not only spatially but also temporally by partitioning the
time axis into multiple time slices [2, 4, 8, 11, 20]. As an
example, time-sharing an 8-processor system with a mul-
tiprogramming level of four is shown in Figure 7. The fig-
ure shows the scheduling matrix (also called theOuster-
hout matrix) that defines the processors and each time-
slice. Jji represents thej-th task of jobJi. The matrix is
cyclic in that time-slice 3 is followed by time-slice 0. One
cycle through all the rows of the matrix defines aschedul-
ing cycle.Each row of the matrix defines an 8-processor
virtual machine, which runs at1=4th of the speed of the
physical machine. We use these four virtual machines
to run two 8-way parallel jobs (J1 andJ2) and several
smaller jobs (J3, J4, J5, J6). All tasks of a parallel job
are always coscheduled to run concurrently, which means
that all tasks of a job should be assigned to the same row
in the matrix. This approach gives each job the impres-
sion that it is still running on a dedicated, albeit slower,
machine. This type of scheduling is commonly called
gang-scheduling[2]. Note that some jobs can appear in
multiple rows (such as jobsJ4 andJ5).

4.1 Considerations in building a scheduling
matrix

Creating one more virtual machine for the execution of a
new 8-way job in the case of Figure 7 requires, in princi-
ple, only adding one more row to the Ousterhout matrix.
However, there is a cost associated with time-sharing, due
mostly to: (i) the cost of the context-switches themselves,
(ii) additional memory pressure created by multiple jobs
sharing nodes, and (iii) additional swap space pressure
caused by more jobs executing concurrently. For that rea-
son, the degree of time-sharing is usually limited by a pa-
rameter that we call, in analogy to uniprocessor systems,
the multiprogramming level (MPL). A gang-scheduling

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
00

0
se

co
nd

s)

φ=0.2

φ=0.4

φ=0.6

φ=0.8

φ=1.0

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

φ=0.2

φ=0.4

φ=0.6

φ=0.8

φ=1.0

(a) Wait time (b) Slow down

Figure 5: Average job slowdown and wait time for backfilling under� model of overestimation.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(x

10
00

 s
ec

on
ds

)

worst estimators

average

best estimators

Figure 6: The impact of good estimation from a user perspective for the� model of overestimation.

system with multiprogramming level of 1 reverts back to
a space-sharing system.

In our particular simulation of gang-scheduling, we
make the following assumptions and scheduling strate-
gies:

1. Multiprogramming levels are kept at modest levels,
in order to guarantee that the images of all tasks in
a node remain in core. This eliminates paging and
significantly reduces the cost of context switching.
Furthermore, the time slices are sized so that the cost
of the resulting context switches are small. More
specifically, in our simulations, we use MPL� 5,
and CS (context switch overhead fraction)� 5%.

2. Assignments of tasks to processors are static. That
is, once spatial scheduling is performed for the tasks
of a parallel job, they cannot migrate to other nodes.

3. When building the scheduling matrix, we first at-

tempt to schedule as many jobs for execution as pos-
sible, constrained by the physical number of proces-
sors and the multiprogramming level. Only after that
we attempt toexpanda job, by making it occupy
multiple rows of the matrix. (See jobsJ4 andJ5 in
Figure 7.)

4. For a particular instance of the Ousterhout matrix,
each job has an assignedhome row. Even if a job
appears in multiple rows, one and only one of them
is the home row. The home row of a job can change
during its life time, when the matrix is recomputed.
The purpose of the home row is described in Sec-
tion 4.2.

Gang-scheduling is a time-sharing technique that can
be applied together with any prioritization policy. In par-
ticular, we have shown in previous work [7, 15] that gang-
scheduling is very effective in improving the performance
of FCFS policies. This is in agreement with the results

P0 P1 P2 P3 P4 P5 P6 P7
time-slice 0 J1 J1 J1 J1 J1 J1 J1 J1
time-slice 1 J2 J2 J2 J2 J2 J2 J2 J2
time-slice 2 J3 J3 J3 J3 J4 J4 J5 J5
time-slice 3 J6 J6 J6 J6 J4 J4 J5 J5

Figure 7: The scheduling matrix defines spatial and time allocation.

in [4, 17]. We have also shown that gang-scheduling
is particularly effective in improving system responsive-
ness, as measured by average job wait time. However,
gang scheduling alone is not as effective as backfilling
in improving average job response time, unless very high
multiprogramming levels are allowed. These may not be
achievable in practice by the reasons mentioned in the pre-
vious paragraphs.

4.2 The phases of scheduling

Every job arrival or departure constitutes ascheduling
eventin the system. For each scheduling event, a new
scheduling matrix is computed for the system. Even
though we analyze various scheduling strategies in this
paper, they all follow an overall organization for comput-
ing that matrix, which can be divided into the following
steps:

1. CleanMatrix: The first phase of a scheduler re-
moves every instance of a job in the Ousterhout ma-
trix that is not at its assigned home row. Removing
duplicates across rows effectively opens the opportu-
nity of selecting other waiting jobs for execution.

2. CompactMatrix: This phase moves jobs from less
populated rows to more populated rows. It further
increases the availability of free slots within a single
row to maximize the chances of scheduling a large
job.

3. Schedule:This phase attempts to schedule new jobs.
We traverse the queue of waiting jobs as dictated by
the given priority policy until no further jobs can be
fitted into the scheduling matrix.

4. FillMatrix: This phase tries to fill existing holes in
the matrix by replicating jobs from their home rows
into a set of replicated rows. This operation is essen-
tially the opposite ofCleanMatrix .

The exact procedure for each step is dependent on the
particular scheduling strategy and the details will be pre-
sented as we discuss each strategy.

5 Scheduling strategies

When analyzing the performance of the time-shared
strategies we have to take into account the context-switch
overhead. Context switch overhead is the time used by the
system in suspending a currently running job and resum-
ing the next job. During this time, the system is not doing
useful work from a user perspective, and that is why we
characterize it as overhead. In the IBM RS/6000 SP, con-
text switch overhead includes the protocol for detaching
and attaching to the communication device. It also in-
cludes the operations to stop and continue user processes.
When the working set of time-sharing jobs is larger than
the physical memory of the machine, context switch over-
head should also include the time to page in the working
set of the resuming job. For our analysis, we character-
ize context switch overhead as a percentage of time slice.
Typically, context switch overhead values should be be-
tween 0 to 5% of time slice.

5.1 Gang-scheduling (GS)

The first scheduling strategy we analyze is plain gang-
scheduling (GS). This strategy is described in Section 4.
For gang-scheduling, we implement the four scheduling
steps of Section 4.2 as follows.

CleanMatrix: The implementation of CleanMatrix is
best illustrated with the following algorithm:
for i = first row to last row

for all jobs in row i
if row i is not home of job, remove job

It eliminates all occurrences of a job in the scheduling
matrix other than the one in its home row.

CompactMatrix: We implement the CompactMatrix
step in gang-scheduling according to the following algo-
rithm:
for i = least populated row to most populated row

for j = most populated row to i+1
for each job in row i

if it can be moved to row j, then move job

We traverse the scheduling matrix from the least popu-
lated row to the most populated row. We attempt to find
new homes for the jobs in each row. The goal is to pack
the most jobs in the least number of rows.

Schedule: The Schedule phase for gang-scheduling tra-
verses the waiting queue in FCFS order. For each job, it
looks for the row with the least number of free columns
in the scheduling matrix that has enough free columns to
hold the job. This corresponds to a best fit algorithm. The
row to which the job is assigned becomes its home row.
We stop when the next job in the queue cannot be sched-
uled right away.

FillMatrix: After the schedule phase completes, we
proceed to fill the holes in the matrix with the existing
jobs. We use the following algorithm in executing the Fill-
Matrix phase.

do{
for each job in starting time order

for each row in matrix,
if job can be replicated in same columns

do it and break
} while matrix changes

The algorithm attempts to replicate each job at least
once (In the algorithm, once a chance of replicating a job
is found, we stop looking for more chances of replicat-
ing the same job, but instead, we start other jobs) , al-
though some jobs can be replicated multiple times. We go
through the jobs in starting time order, but other ordering
policies can be applied.

5.2 Backfilling gang-scheduling (BGS)

Gang-scheduling and backfilling are two optimization
techniques that operate on orthogonal axes, space for
backfilling and time for gang scheduling. It is tempting
to combine both techniques in one scheduling system that
we call backfilling gang-scheduling(BGS). In principle
this can be done by treating each of the virtual machines
created by gang-scheduling as a target for backfilling. The
difficulty arises in estimating the execution time for par-
allel jobs. In the example of Figure 7, jobsJ4 andJ5 exe-
cute at a rate twice as fast as the other jobs, since they ap-
pear in two rows of the matrix. This, however, can change
during the execution of the jobs, as new jobs arrive and
executing jobs terminate.

Fortunately, as we have shown in Section 3, even sig-
nificant average overestimation of job execution time has
little impact on average performance. Therefore, it is rea-
sonable to attempt to use a worst case scenario when es-
timating the execution time of parallel jobs under gang-
scheduling. We take the simple approach of computing
the estimated time under gang-scheduling as the product
of the estimated time on a dedicated machine and the mul-
tiprogramming level.

In backfilling, each waiting job is assigned a maximum
starting time based on the predicted execution times of the
current jobs. That start time is a reservation of resources

for waiting jobs. The reservation corresponds to a partic-
ular time in a particular row of the matrix. It is possible
that a job will be run before its reserved time and in a
row different than reserved. However, using a reservation
guarantees that the start time of a job will not exceed a
certain limit, thus preventing starvation.

The issue of reservations impact both the CompactMa-
trix and Schedule phases. When moving jobs in Com-
pactMatrix we must make sure that the moved job does
not conflict with any reservations in the destination row.
In the Schedule phase, we first attempt to schedule each
job in the waiting queue, making sure that its execution
does not violate any reservations. If we cannot start a job,
we compute the future start time for that job in each row
of the matrix. We select the row with the lowest start-
ing time, and make a reservation for that job in that row.
This new reservation could be different from the previous
reservation of the job. The reservations do not impact the
FillMatrix phase, since the assignments in this phase are
temporary and the matrix gets cleaned in the next schedul-
ing event.

To verify that the assumption that overestimation of job
execution times indeed do not impact overall system per-
formance, we experimented with various values of�. Re-
sults are shown in Figure 8. For those plots,BGS with all
four phases and MPL=5 was used. We observe that differ-
ences in wait time are insignificant across the entire range
of utilization. For moderate utilizations of up to 75%, job
slowdown differences are also insignificant. For utiliza-
tions of 85% and higher, job slowdown exhibits larger
variation with respect to overestimation, but the variation
is nonmonotonic and perfect estimation is not necessarily
better.

5.3 ComparingGS, BGS, and BF

We compare three different scheduling strategies, with a
total of seven configurations. They all use FCFS as the
prioritization policy. The first strategy is a space-sharing
policy that uses backfilling to enhance the performance
parameters. We identify this strategy asBF. We also use
three variations of the gang-scheduling strategy, with mul-
tiprogramming levels 2, 3, and 5. These configurations
are identified byGS-2, GS-3, GS-5, respectively. Fi-
nally, we consider three configurations of the backfilling
gang-scheduling strategy. That is, backfilling is applied to
each virtual machine created by gang-scheduling. These
are referred to asBGS-2, BGS-3. andBGS-5, for multi-
programming level 2, 3, and 5. The results presented here
are based on the�-model, with� = 0:2. We use the per-
formance parameters described in Section 2.3, namely (i)
average slow down, (ii) average wait time, and (iii) aver-
age loss of capacity, to compare the strategies.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

Φ=0.2

Φ=0.4

Φ=0.6

Φ=0.8

Φ=1.0

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

4

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
04 s

ec
on

ds
)

Φ=0.2

Φ=0.4

Φ=0.6

Φ=0.8

Φ=1.0

Figure 8: Average job wait time and slow down forBGS (best) with� model of overestimation.

Figure 9 shows the average job slow down for all our
seven configurations. Each plot ((a), (b), (c), and (d)) is
for a different value of context switch overhead as a frac-
tion of time slice. The time slice is 200 seconds. If we
look only at the case of zero context switch overhead, we
observe that regular gang scheduling (GS strategies) re-
sults in very high slow downs, even at low or moderate
(less than� = 0:75) utilizations.BF always performs bet-
ter thanGS-2 andGS-3. It also performs better thanGS-
5 when utilization is greater than 0.65. The combined ap-
proach (BGS) is always better than its individual compo-
nents (BF andGS with corresponding multiprogramming
level). The improvement in average slow down is mono-
tonic with the multiprogramming level. This observation
also applies most of the time for the standard deviation.
Given a highest tolerable slow down,BGS allows the sys-
tem to be driven to much higher utilizations. We want to
emphasize that significant improvements can be achieved
even with the low multiprogramming level of 2. For in-
stance, if we choose a maximum acceptable slow down of
20, the resulting maximum utilization is� = 0:67 for GS-
5, � = 0:76 for BF and� = 0:82 for BGS-2. That last
result represents an improvement of 20% overGS-5 with
a much smaller multiprogramming level. WithBGS-5,
we can drive utilization as high as� = 0:87.

At all combinations of context switch overhead and uti-
lization, BGS outperformsGS with the same multipro-
gramming level.BGS also outperformsBF at low context
switch overheads 0% or 1%. Even at context switch over-
head of 2% or 5%,BGS has significantly better slowdown
thanBF in an important operating range. For 2%,BGS-5
saturates at� = 0:93 whereasBF saturates at� = 0:95.
Still, BGS-5 is significantly better thanBF for utiliza-
tion up to� = 0:92. For context switch overhead of 5%,
BGS-5 is superior toBF only up to� = 0:83. Therefore,
we have two options in designing the scheduler system:

we either keep the context switch overhead low enough
thatBGS is always better thanBF or we use an adaptive
scheduler that switches betweenBF andBGS depending
on the utilization of the system. Let�critical be the uti-
lization at whichBF starts performing better thanBGS.
For utilization smaller than�critical, we useBGS. When
utilization goes beyond�critical, we useBF. Further in-
vestigation of adaptive scheduling is beyond the scope of
this paper.

Figure 10 shows the average job wait time for all our
seven configurations. Again, each plot is for a different
value of context-switch overhead. We observe that reg-
ular gang-scheduling (GS strategies) results in very high
wait times, even at low or moderate (less than� = 0:75)
utilizations. Even with 0% context switching overhead,
saturation takes place at� = 0:84 for GS-5 and at
� = 0:79 for GS-3. At 5% overhead, the saturations oc-
cur at� = 0:73 and� = 0:75 for GS-3 andGS-5 respec-
tively. Backfilling performs better than gang-scheduling
with respect to wait time for utilizations above� = 0:72.
It saturates at� = 0:95. The combined approach (BGS) is
always better than its individual components (BF andGS
with corresponding multiprogramming level) for a zero
context switch overhead. The improvement in average job
wait time is monotonic with the multiprogramming level.
This observation also applies most of the time for the stan-
dard deviation. WithBGS and zero context switch over-
head, the machine appears faster, more responsive and
more fair.

We further analyze the scheduling strategies by com-
paring the behavior of the system for large and small jobs.
(As defined in Section 2.2, a small job uses 32 or fewer
nodes, while a large job uses more than 32 nodes.) The
results for slowdown and wait times are shown in Fig-
ure 11, when a 0% context switch overhead is used. With
respect to slowdown, we observe that,BGS-5 always per-

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

(a) 0% (b) 1%

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

120

utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

(c) 2% (d) 5%

Figure 9: Average job slowdown for four different values of context switch overhead.

forms better thanBF for either large or small jobs. With
respect to wait time, we observe that the improvement
generated byBGS is actually larger for large jobs. In
other words, for any given utilization, the difference in
wait time between large and small jobs is less inBGS-5
than inBF. Both for BF andBGS, the machine appears
less responsive to large jobs than to small jobs as utiliza-
tion increases. However, the difference is larger forBF.

At first, theBF results for slow down and wait time for
large and small jobs may seem contradictory: small jobs
have smaller wait times but larger slow down. Slow down
is a relative measure of the response time normalized by
the execution time. Since smaller jobs tend to have shorter
execution time, the relative cost of waiting in the queue
can be larger. We note thatBGS is very effective in af-
fecting the wait time for large and small jobs in a way that
ends up making the system feel more equal to all kinds of
jobs.

Whereas Figures 9 through 11 report performance from
a user’s perspective, we now turn our attention to the sys-
tem’s perspective. Figure 12 is a plot of the average ca-
pacity loss as a function of utilization for all our seven

strategies. By definition, all strategies saturate at the line
� = 1 � �max, which is indicated by the dashed line
in Figure 12. Again, the combined policies deliver con-
sistently better results than the pure backfilling and gang
scheduling (of equal MPL) policies. The improvement is
also monotonic with the multiprogramming level. How-
ever, all backfilling based policies (pure or combined) sat-
urate at essentially the same point. Loss of capacity comes
from holes in the scheduling matrix. The ability to fill
those holes actually improves when the load is very high.
We observe that the capacity loss forBF actually starts to
decrease once utilization goes beyond� = 0:83. At very
high loads (� > 0:95) there are almost always small jobs
to backfill holes in the schedule. Looking purely from a
system’s perspective, we note that pure gang-scheduling
can only be driven to utilization between� = 0:82 and
� = 0:87, for multiprogramming levels 2 through 5. On
the other hand, the backfilling strategies can be driven to
up to� = 0:95 utilization.

To summarize our observations, we have shown that
the combined strategy of backfilling with gang-scheduling
(BGS) can consistently outperforms the other strategies

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
03 s

ec
on

ds
)

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
03 s

ec
on

ds
)

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

(a) 0% (b) 1%

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
03 s

ec
on

ds
)

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
03 s

ec
on

ds
)

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

(c) 2% (d) 5%

Figure 10: Average job wait times for four different values of context switch overhead.

(backfilling and gang-scheduling separately) from the per-
spectives of responsiveness, slow down, fairness, and
utilization. ForBGS to realize this advantage, context
switch cost must be kept low. We have shownBGS to
be superior toBF over the entire spectrum of workloads
when the context switch overhead is 1% or less of the time
slice.

5.4 Migration gang-scheduling (MGS)

We now analyze how gang-scheduling can be improved
through the addition of migration capabilities. The pro-
cess of migration embodies moving a job to any row in
which there are enough free processors to execute that job
(not just on the same columns). There are basically two
options each time we attempt to migrate a jobA from a
source rowr to a target rowp (in either case, rowp must
have enough free nodes):

� Option 1: We migrate the jobs in rowp that exe-
cute on the CPUs where the processes of A reside,
to make space for A in rowp. This is shown picto-

rially in figure 13 where 3 processes of job J in row
2 occupy the same columns as job A in row 1. Job J
is migrated to 4 other processes in the same row and
job A is replicated in this row. Consequently when
we move from row 1 to row 2 in the scheduling cycle,
job A does not need to be migrated (one-time effort).

� Option 2: Instead of migrating job J to make space
for A, we can directly migrate job A to those slots
in row p that are free. This approach lets other jobs
in row p proceed without migration, but the down
side is that each time we come to rowp, job A in-
curs migration costs (recurring). This is again shown
pictorially in figure 13.

We can quantify the cost of each of these two options
based on the following model. For the distributed system
we target, namely the IBM RS/6000 SP, migration can
be accomplished with a checkpoint/restart operation. Let
S(A) be the set of jobs in target rowp that overlap with
the nodes of jobA in source rowr. LetC be the total cost
of migrating one job, including the checkpoint and restart
operations. We consider the case in which (i) checkpoint

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

BF, Large
BF, Small
BGS−5, Large
BGS−5, Small

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
04 s

ec
on

ds
) BF, Large

BF, Small
BGS−5, Large
BGS−5, Small

(a) slowdown (b) wait time

Figure 11: Slowdown and wait time for large and small jobs.

and restart each have the same costC=2, (ii) the costC
is independent of the job size, and (iii) checkpoint and
restart are dependent operations (i.e., you have to finish
checkpoint before you can restart). During the migration
process, nodes participating in the migration cannot make
progress in executing a job. The total amount of resources
(processor� time) wasted during this process is the over-
head for the migration operation.

The overhead for option 1 is

(
C

2
� jAj+ C �

X

J2S(A)

jJ j); (4)

wherejAj and jJ j denote the number of tasks in jobsA
andJ , respectively. The operations for option 1 are illus-
trated in Figure 13(a), with a single jobJ in setS(A). The
first step is to checkpoint jobJ in its current set of nodes.
This checkpointing operation takes timeC=2. As soon as
the checkpointing is complete we can resume execution
of job A. Therefore, jobA incurs an overheadC2 � jAj.
To resume jobJ in its new set of nodes requires a restart
step of timeC2 . Therefore, the total overhead for jobJ is
C � jJ j.

The overhead for option 2 is estimated by

(C � jAj+
C

2
�
X

J2S(A)

jJ j): (5)

The migration for option 2 is illustrated in Figure 13(b),
with a single jobJ in setS(A). The first step is to check-
point jobA. This checkpoint operation takes timeC2 . Af-
ter jobA is checkpointed we can resume execution of job
J . Therefore, the overhead for jobJ is C

2 � jJ j. To re-
sume jobA we need to restart it in its new set of proces-
sors, which again takes timeC2 . The overhead for jobA
is thenC � jAj.

As discussed, migration in the IBM RS/6000 SP re-
quires a checkpoint/restart operation. Although all tasks
can perform a checkpoint in parallel, resulting in aC that
is independent of job size, there is a limit to the capacity
and bandwidth that the file system can accept. Therefore
we introduce a parameterQ that controls the maximum
number of tasks that can be migrated in any time-slice.

When migration is used, the scheduling proceeds along
the following steps:

step reason
ClearMatrix Maximize holes
CollapseMatrix-1 Compaction without migration
Schedule-1 Accommodate new jobs after compaction
CollapseMatrix-2 Compaction with migration
Schedule-2 Accommodate new jobs after migration
FillMatrix-1 Replicate jobs without migration
FillMatrix-2 Replicate jobs after migrating destination

The ordering results in applying optimizations without in-
curring unnecessary costs. We first attempt to optimize
without migration (CollapseMatrix-1,Schedule-1). After
Schedule-1, we then attempt to collapse with migration
(CollapseMatrix-2) and repeat scheduling (Schedule-2) to
accommodate new jobs. After we are done accommodat-
ing new jobs, we do FillMatrix-1 first because it does not
incur a migration cost. Then we try FillMatrix-2 with mi-
gration.

The algorithm for CollapseMatrix-2 is the same as for
CollapseMatrix-1 inGS. The only difference are the con-
ditions for moving a job. With migration, a job can be
moved to any row and any set of columns, provided that
(i) enough empty columns are available in the destina-
tion row, (ii) number of migrated tasks does not violate
theQ parameter, and (iii) a job must make progress, that
is, it must execute in at least one row for every cycle of
scheduling. The last requirement is identical as for gang-
scheduling (GS). If migration is required to move a job to

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

utilization

A
ve

ra
ge

 c
ap

ac
ity

 lo
ss

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

utilization

A
ve

ra
ge

 c
ap

ac
ity

 lo
ss

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

(a) 0% (b) 1%

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

utilization

A
ve

ra
ge

 c
ap

ac
ity

 lo
ss

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

utilization

A
ve

ra
ge

 c
ap

ac
ity

 lo
ss

GS−2
GS−3
GS−5
BF
BGS−2
BGS−3
BGS−5

(c) 2% (d) 5%

Figure 12: Loss of capacity forBGS, GS, and BF, with different context-switch overheads.

a new target row, we consider the two options described
above (option 1 and option 2) and choose the one with the
least estimated cost. FillMatrix-2 uses the same algorithm
as FillMatrix-1, with the following constraints when de-
ciding to replicate a job in a new row. First, the job must
not already be replicated in that row. Second, the row
must have sufficient empty columns to execute the job
and the total number of migrated tasks must not exceed
parameterQ. Only option 1 (move jobs in target row) is
considered for FillMatrix-2, and therefore those jobs must
not be present in any other row of the schedule. Given
these algorithms, we ensure that migration never incurs
recurring cost. That is, a job will not ping-pong between
different columns within the same scheduling matrix.

5.5 Migration backfilling gang-scheduling
(MBGS)

Just as we augmented plain gang-scheduling (GS) with
migration, the same can be done with backfilling gang-
scheduling (BGS). This creates the migration backfill-
ing gang-scheduling (MBGS). The differences between

MGS andMBGS are in the CollapseMatrix and Sched-
ule steps.MBGS use the same scheduling asBGS, that
is, backfilling is performed in each row of the matrix, and
reservations are created for jobs that cannot be immedi-
ately scheduled. When compacting the matrix,MBGS
must make sure that reservations are not violated.

5.6 Comparing GS, BGS, MGS, and
MBGS

Table 1 summarizes some of the results from migra-
tion applied to gang-scheduling and backfilling gang-
scheduling. For each of the nine workloads (numbered
from 0 to 8) we present achieved utilization (�) and aver-
age job slowdown (s) for four different scheduling poli-
cies: (i) backfilling gang-scheduling without migration
(BGS), (ii) backfilling gang-scheduling with migration
(MBGS), (iii) gang-scheduling without migration (GS),
and (iv) gang-scheduling with migration (MGS). We also
show the percentage improvement in job slowdown from
applying migration to gang-scheduling and backfilling
gang-scheduling. Those results are from the best case

1

2

8 96 PPPPPPPPP1 2 3 4 5 P7 10

A J

A1

2 J

8 96 PPPPPPPPP1 2 3 4 5 P7 10

A

(a) Migration option 1:J is migrated to CPUs P6-P9 in row 2 so thatA can executed in CPUs P1-P3 in row
2. This requires checkpointing J at the beginning of the time quantum (for row 2) incurringC=2 cost, and
then the restart cost for those processes in the destination CPUs incurring anotherC=2 cost. Note thatA
can start executing in row 2 afterC=2 time whileJ can start only afterC time units. The migration cost is
indicated by the black region. WhetherA is removed from row 1 or not is optional (depends on the steps of
the algorithm).

1

2

1

2

8 96 PPPPPPPPP1 2 3 4 5 P7 10

A

J

A
8 96 PPPPPPPPP1 2 3 4 5 P7 10

J A
(b) Migration option 2:A is directly migrated to CPUs P7-P9. This requires checkpointA at the beginning
of the time quantum for row 2 (incurringC=2 cost), and restartingA in the destination CPUs subsequently
(incurring anotherC=2 cost). Even though onlyA’s processes are being migrated at P1-P3,J has to wait for
C=2 time before it can execute (on all four of its CPUs).A can begin execution afterC time units in CPUs
P7-P9. The migration cost is indicated by the black region. Again, whetherA is removed from row 1 or not
is optional (depends on the steps of the algorithm). If it is not removed, a recurring migration cost is incurred
each time we transition from row 1 to row 2 in the schedule.

Figure 13: The two migration options.

for each policy: zero cost and unrestricted number of mi-
grated tasks, with an MPL of 5.

We can see an improvement from the use of migra-
tion throughout the range of workloads, for both gang-
scheduling and backfilling gang-scheduling. We also note
that the improvement is larger for mid-to-high utiliza-
tions between 70 and 90%. Improvements for low uti-
lization are less because the system is not fully stressed,
and the matrix is relatively empty. Therefore, there are
not enough jobs to fill all the time-slices, and expanding
without migration is easy. At very high loads, the ma-
trix is already very full and migration accomplishes less
than at mid-range utilizations. Improvements for back-
filling gang-scheduling are not as impressive as for gang-
scheduling. Backfilling gang-scheduling already does a
better job of filling holes in the matrix, and therefore the
potential benefit from migration is less. With backfilling
gang-scheduling the best improvement is 50% at a utiliza-
tion of 89%, whereas with gang-scheduling we observe
benefits as high as 92%, at utilization of 88%.

We note that the maximum utilization with gang-
scheduling increases from 86% without migration to 94%
with migration. Maximum utilization for backfilling

gang-scheduling increases from 96% to 98% with mi-
gration. Migration is a mechanism that significantly im-
proves the performance of gang-scheduling without the
need for job execution time estimates. However, it is
not as effective as backfilling in improving plain gang-
scheduling. The combination of backfilling and migration
results in the best overall gang-scheduling system.

Figure 14 shows average job slowdown and average
job wait time as a function of the parameterQ, the max-
imum number of task that can be migrated in any time
slice. Each line is for a different combination of schedul-
ing mechanism and migration cost (e.g., BGS/10 repre-
sents backfilling gang-scheduling with migration cost of
10 seconds. The time slice is 200 seconds). We con-
sider two representative workloads, 2 and 5, since they
define the bounds of the operating range of interest. Be-
yond workload 5, the system reaches unacceptable slow-
downs for gang-scheduling, and below workload 2 there
is little benefit from migration. We note that migration can
significantly improve the performance of gang-scheduling
even with as little as 64 tasks migrated. (Note that the case
without migration is represented by the parameterQ = 0
for number of migrated tasks.) We also observe a mono-

Table 1: Percentage improvements from migration.

work backfilling gang-scheduling gang-scheduling
load BGS MBGS % s GS MGS % s

� s � s better � s � s better
0 0.55 2.5 0.55 2.1 19.2% 0.55 3.9 0.55 2.6 33.7%
1 0.61 3.2 0.61 2.5 23.9% 0.61 7.0 0.61 4.0 42.5%
2 0.66 3.8 0.66 2.9 24.8% 0.66 18.8 0.66 6.9 63.4%
3 0.72 6.5 0.72 3.7 43.1% 0.72 44.8 0.72 13.5 69.9%
4 0.77 8.0 0.77 5.1 36.6% 0.78 125.6 0.77 29.4 76.6%
5 0.83 11.9 0.83 7.6 36.2% 0.83 405.6 0.83 54.4 86.6%
6 0.89 22.4 0.88 11.0 50.8% 0.86 1738.0 0.88 134.2 92.3%
7 0.94 34.9 0.94 20.9 40.2% 0.86 4147.7 0.94 399.3 90.4%
8 0.96 67.9 0.98 56.8 16.4% 0.86 5941.5 0.97 1609.9 72.9%

tonic improvement in slowdown and wait time with the
number of migrated tasks, for both gang-scheduling and
backfilling gang-scheduling. Even with migration costs
as high as 30 seconds, or 15% of the time slice, we still
observe a benefit from migration. Most of the benefit of
migration is accomplished atQ = 64 migrated tasks, and
we choose that value for further comparisons. Finally, we
note that the behaviors of wait time and slowdown follow
approximately the same trends. Thus, for the next analysis
we focus on slowdown.

Figure 15 compares loss of capacity, slowdown, and
wait time for all four time-sharing strategies:GS, BGS,
MGS and MBGS. Results shown are for MPL of 5,
� = 0:2, and (forMGS and MBGS) a migration cost
of 10 seconds (5% of the time-slice). We observe that
MBGS is always better than the other strategies, for all
three performance parameters and across the spectrum of
utilization. Correspondingly, GS is always worse than the
other strategies. The relative behavior ofBGS andMGS
deserves a more detailed discussion.

With respect to loss of capacity,MGS is consistently
better thanBGS. MGS can drive utilization up to 98%
while BGS saturates at 96%. With respect to wait time,
BGS is consistently better thanMGS. Quantitatively, the
wait time with MGS is 50-100% larger than withBGS
throughout the range of utilizations. With respect to slow-
down, we observe thatBGS is always better thanMGS
and that the difference increases with utilization. For
workload 5, the difference is as high as a factor of 5. At
first, it is not intuitive thatBGS can be so much better
thanMGS in the light of the loss of capacity and wait time
results. The explanation is thatBGS favors short-running
jobs when backfilling, thus reducing the average job slow-
down. To verify that, we further investigated the behavior
of MGS andBGS in two different classes of jobs: one
class is comprised of the jobs with running time shorter
than the median (680 seconds) and the other class of jobs

with running time longer than or equal to the median. For
the shorter jobs, slowdown withBGS andMGS are 18.9
and 104.8, respectively. On the other hand, for the longer
jobs, slowdown withBGS andMGS are 4.8 and 4.1, re-
spectively. These results confirm thatBGS favors short
running jobs. We note that the penalty for longer jobs in
BGS (as compared toMGS) is very small, whereas the
benefit for shorter jobs is quite significant.

We emphasize that MBGS, which combines all tech-
niques (gang-scheduling, backfilling, and migration), pro-
vides the best results. In particular, it can drive utilization
higher thanMGS, and achieves better slow down and wait
times thanBGS. Quantitatively, wait times withMBGS
are 2 to 3 times shorter than withBGS, and slowdown is
1.5 to 2 times smaller.

6 Conclusions

This paper has reviewed several techniques to enhance
job scheduling for large parallel systems. We started with
an analysis of two commonly used strategies: backfilling
and gang-scheduling. We showed how the two could be
combined into a backfilling gang-scheduling (BGS) strat-
egy that is always superior to its two components when
the context switch overhead is kept low. WithBGS, we
observe a monotonic improvement in job slowdown, job
wait time, and maximum system utilization with the mul-
tiprogramming level.

Further improvement in scheduling efficacy can be
accomplished with the introduction of migration. We
have demonstrated that both plain gang-scheduling and
backfilling gang-scheduling benefit from migration. The
scheduling strategy that incorporates all our techniques:
gang-scheduling, backfilling, and migration consistently
outperforms the others for average job slow down, job
wait time, and loss of capacity. It also achieves the high-

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Maximum number of migrated tasks

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
03 s

ec
on

ds
)

Workload 2, MPL of 5, T = 200 seconds

MGS/0
MGS/10
MGS/20
MGS/30
MBGS/0
MBGS/10
MBGS/20
MBGS/30

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Maximum number of migrated tasks

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

Workload 2, MPL of 5, T = 200 seconds

MGS/0
MGS/10
MGS/20
MGS/30
MBGS/0
MBGS/10
MBGS/20
MBGS/30

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Maximum number of migrated tasks

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
04 s

ec
on

ds
)

Workload 5, MPL of 5, T = 200 seconds

MGS/0
MGS/10
MGS/20
MGS/30
MBGS/0
MBGS/10
MBGS/20
MBGS/30

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

Maximum number of migrated tasks

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

Workload 5, MPL of 5, T = 200 seconds

MGS/0
MGS/10
MGS/20
MGS/30
MBGS/0
MBGS/10
MBGS/20
MBGS/30

Figure 14: Slowdown and wait time as a function of number of migrated tasks.

est system utilization, allowing the system to reach up to
98% utilization. When a maximum acceptable slowdown
of 20 is adopted, the system can achieve 94% utilization.

References

[1] A. B. Downey. Using Queue Time Predictions for
Processor Allocation. In IPPS’97 Workshop on Job
Scheduling Strategies for Parallel Processing, vol-
ume 1291 ofLecture Notes in Computer Science,
pages 35–57. Springer-Verlag, April 1997.

[2] D. G. Feitelson.A Survey of Scheduling in Mul-
tiprogrammed Parallel Systems. Technical Report
RC 19790 (87657), IBM T. J. Watson Research Cen-
ter, October 1994.

[3] D. G. Feitelson. Packing schemes for gang
scheduling. In Job Scheduling Strategies for Par-
allel Processing, IPPS’96 Workshop, pages 89–110,
March 1996. LNCS 1162.

[4] D. G. Feitelson and M. A. Jette.Improved Uti-
lization and Responsiveness with Gang Schedul-
ing. In IPPS’97 Workshop on Job Scheduling Strate-
gies for Parallel Processing, volume 1291 ofLec-
ture Notes in Computer Science, pages 238–261.
Springer-Verlag, April 1997.

[5] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn,
K. C. Sevcik, and P. Wong.Theory and Practice
in Parallel Job Scheduling. In IPPS’97 Workshop
on Job Scheduling Strategies for Parallel Process-
ing, volume 1291 ofLecture Notes in Computer Sci-
ence, pages 1–34. Springer-Verlag, April 1997.

[6] D. G. Feitelson and A. M. Weil.Utilization and
predictability in scheduling the IBM SP2 with
backfilling . In 12th International Parallel Process-
ing Symposium, pages 542–546, April 1998.

[7] H. Franke, J. Jann, J. E. Moreira, and P. Pattnaik.
An Evaluation of Parallel Job Scheduling for
ASCI Blue-Pacific. In Proceedings of SC99, Port-
land, OR, November 1999. IBM Research Report
RC21559.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Utilization

Lo
ss

 o
f c

ap
ac

ity

κ=1−ρ
BMGS−5, φ=0.2, C=10, Q=64
BGS−5, φ=0.2
MGS−5, C=10, Q=64
GS−5
BF

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

Utilization

A
ve

ra
ge

 jo
b

sl
ow

do
w

n

BMGS−5, φ=0.2, C=10, Q=64

BGS−5, φ=0.2

MGS−5, C=10, Q=64

GS−5

BF

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Utilization

A
ve

ra
ge

 jo
b

w
ai

t t
im

e
(X

 1
04 s

ec
on

ds
)

BMGS−5, φ=0.2, C=10, Q=64

BGS−5, φ=0.2

MGS−5, C=10, Q=64

GS−5

BF

Figure 15: Average loss of capacity, job slowdown, and job wait time as a function of utilization forGS, MGS, BGS,
andMBGS.

[8] H. Franke, P. Pattnaik, and L. Rudolph.Gang
Scheduling for Highly Efficient Multiprocessors.
In Sixth Symposium on the Frontiers of Massively
Parallel Computation, Annapolis, Maryland, 1996.

[9] R. Gibbons.A Historical Application Profiler for
Use by Parallel Schedulers. In IPPS’97 Workshop
on Job Scheduling Strategies for Parallel Process-
ing, volume 1291 ofLecture Notes in Computer Sci-
ence, pages 58–77. Springer-Verlag, April 1997.

[10] B. Gorda and R. Wolski.Time Sharing Massively
Parallel Machines. In International Conference on
Parallel Processing, volume II, pages 214–217, Au-
gust 1995.

[11] N. Islam, A. L. Prodromidis, M. S. Squillante, L. L.
Fong, and A. S. Gopal.Extensible Resource Man-
agement for Cluster Computing. In Proceedings
of the 17th International Conference on Distributed
Computing Systems, pages 561–568, 1997.

[12] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira,
and J. Riordan.Modeling of Workload in MPPs.

In Proceedings of the 3rd Annual Workshop on Job
Scheduling Strategies for Parallel Processing, pages
95–116, April 1997. In Conjuction with IPPS’97,
Geneva, Switzerland.

[13] H. D. Karatza.A Simulation-Based Performance
Analysis of Gang Scheduling in a Distributed Sys-
tem. In Proceedings 32nd Annual Simulation Sym-
posium, pages 26–33, San Diego, CA, April 11-15
1999.

[14] D. Lifka. The ANL/IBM SP scheduling system. In
IPPS’95 Workshop on Job Scheduling Strategies for
Parallel Processing, volume 949 ofLecture Notes in
Computer Science, pages 295–303. Springer-Verlag,
April 1995.

[15] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and
M. A. Jette. An Infrastructure for Efficient Par-
allel Job Execution in Terascale Computing En-
vironments. In Proceedings of SC98, Orlando, FL,
November 1998.

[16] J. K. Ousterhout.Scheduling Techniques for Con-
current Systems. In Third International Confer-

ence on Distributed Computing Systems, pages 22–
30, 1982.

[17] U. Schwiegelshohn and R. Yahyapour.Improving
First-Come-First-Serve Job Scheduling by Gang
Scheduling. In IPPS’98 Workshop on Job Schedul-
ing Strategies for Parallel Processing, March 1998.

[18] J. Skovira, W. Chan, H. Zhou, and D. Lifka.The
EASY-LoadLeveler API project . In IPPS’96
Workshop on Job Scheduling Strategies for Parallel
Processing, volume 1162 ofLecture Notes in Com-
puter Science, pages 41–47. Springer-Verlag, April
1996.

[19] W. Smith, V. Taylor, and I. Foster.Using Run-
Time Predictions to Estimate Queue Wait Times
and Improve Scheduler Performance. In Proceed-
ings of the 5th Annual Workshop on Job Schedul-
ing Strategies for Parallel Processing, April 1999.
In conjunction with IPPS/SPDP’99, Condado Plaza
Hotel & Casino, San Juan, Puerto Rico.

[20] K. Suzaki and D. Walsh. Implementation of
the Combination of Time Sharing and Space
Sharing on AP/Linux. In IPPS’98 Workshop on
Job Scheduling Strategies for Parallel Processing,
March 1998.

[21] K. K. Yue and D. J. Lilja. Comparing Proces-
sor Allocation Strategies in Multiprogrammed
Shared-Memory Multiprocessors. Journal of Par-
allel and Distributed Computing, 49(2):245–258,
March 1998.

[22] B. B. Zhou, R. P. Brent, C. W. Jonhson, and
D. Walsh.Job Re-packing for Enhancing the Per-
formance of Gang Scheduling. In Job Scheduling
Strategies for Parallel Processing, IPPS’99 Work-
shop, pages 129–143, April 1999. LNCS 1659.

