
Channel Surfing: Defending Wireless Sensor Networks
from Interference

Wenyuan Xu
WINLAB

Rutgers University
North Brunswick, NJ 08902

wenyuan@winlab.rutgers.edu

Wade Trappe
WINLAB

Rutgers University
North Brunswick, NJ 08902
trappe@winlab.rutgers.edu

Yanyong Zhang
WINLAB

Rutgers University
North Brunswick, NJ 08902

yyzhang@winlab.rutgers.edu

ABSTRACT
Wireless sensor networks are susceptible to interference that
can disrupt sensor communication. In order to cope with
this disruption, we explore channel surfing, whereby the sen-
sor nodes adapt their channel assignments to restore network
connectivity in the presence of interference. We explore two
different approaches to channel surfing: coordinated channel
switching, where the entire sensor network adjusts its chan-
nel; and spectral multiplexing, where nodes in a jammed
region switch channels while nodes on the boundary of a
jammed region act as radio relays between different spectral
zones. For spectral multiplexing, we have devised both syn-
chronous and asynchronous strategies to facilitate the spec-
tral scheduling needed to improve network fidelity when sen-
sor nodes operate on multiple channels. In designing these
algorithms, we have taken a system-oriented approach that
has focused on exploring actual implementation issues under
realistic network settings. We have implemented these pro-
posed methods on a testbed of 30 Mica2 sensor nodes, and
the experimental results show that these strategies can each
repair network connectivity in the presence of interference
without introducing significant overhead.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms
Security, Reliability, Experimentation

Keywords
Jamming, Radio Interference, Channel Surfing

1. INTRODUCTION
As wireless networks become increasingly pervasive, it is

very likely that the radio environment will not be favor-
able. Notably, as an increasing number of wireless devices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’07, April 25-27, 2007, Cambridge, Massachusetts, USA.
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...$5.00.

are deployed that use “open spectrum”, it will be inevitable
that there will be problems of spectrum coexistence. This is
the well-known near-far problem of communications, which
manifests itself in dense urban environments where cord-
less phones suffer degraded performance when many de-
vices operate simultaneously within a small distance of each
other. Interference problems can be projected for sensor net-
works as more sensor devices are deployed. Another reason
stems from the fact that most sensor networks will consist
of commodity devices that can be easily purchased and re-
programmed to interfere with communications.

Whether intentional or not, interference/jamming will be
a serious threat to the availability of sensor services. The
traditional approach to coping with radio jamming is to em-
ploy sophisticated physical-layer technologies (e.g. spread
spectrum). Such methods imply more expensive transceivers
and most commodity sensor and wireless networks do not
employ sufficiently strong spreading to survive jamming. In-
stead, systems like the Berkeley Mica2, Zigbee and 802.11
are based upon carrier-sensing for medium access, and hence
are particularly susceptible to radio interference. Recent
studies [1,2], have revealed the relative ease with which jam-
ming can be conducted on such networks.

In this paper, we examine the ability of a sensor network
to cope with radio interference. We propose the use of chan-
nel surfing, whereby the sensor nodes adapt their frequency
allocations as needed to avoid interference. The challeng-
ing research question here is how to establish network con-
nectivity between multiple frequency zones. The inherent
diversity in network configuration, interference model, and
platform setup suggests that no single solution is sufficient.
We examine three strategies to restore network connectivity
across multiple channels, each having unique characteristics
and advantages. Although channel surfing may be applied
to more general wireless networks (e.g. 802.11), in order
to validate our strategies, we focused our study on a sensor
network platform, and have implemented our methods on a
30-node Mica2 sensor network testbed. During the process
of implementation, we have overcome a number of challenges
and have demonstrated that all three strategies can maintain
network operations in the presence of jamming/interference.

We begin the paper in Section 2 by providing an overview
of the sensor network and interference model used in our
studies. We next introduce the channel surfing in Section 3
and Section 4, where we detail a set of increasingly sophisti-
cated channel surfing protocols. In Section 5 and Section 6,
we describe our validation effort on our sensor testbed. We
wrap up the paper by discussing related work in Section 7,
and provide concluding remarks in Section 8.

499

2. SYSTEM MODELS
We now outline the basic sensor communication and jam-

ming model that we use throughout this paper.

Our Sensor Communication Paradigm: Channel surf-
ing requires that sensor radios change their channel alloca-
tions. Thus, the radios employed must have a notion of a
channel. Most sensors have a natural form of channeliza-
tion that is accomplished by changing the carrier frequency.
For example, in our validation, we use the 916.7MHz Mica2
platform and separate the channels by 800KHz.

Another important factor in the sensor communication
paradigm is the choice of the data dissemination method
and the associated routing protocol. In this work, we have
chosen to focus on the many-to-one model in which many
sensors report their findings to one or a few sinks. Specif-
ically, our studies focus on tree-based routing schemes [3],
whereby a routing tree is formed with the sink node serving
as the root of the tree. A node selects its routing parent as
its best radio neighbor in the direction of the tree’s root. A
node usually has a parent (except the sink) and one or more
children (except the leaf nodes), whereby it receives data
packets from its children, and sends packets to its parent. A
node’s parent and children are considered its neighbors. Be-
sides the parent and children, there may be other nodes that
are within a node’s communication range. These nodes are
not neighbors of the node. In this paper, we use the term
neighbor to refer to the topology-based relationship rather
than a physical location-based relationship.

Our Interference Model: When considering issues of ra-
dio interference and jamming, it must be emphasized that
there is a very broad range of capabilities that one might as-
sume is available to the interferer, ranging from whether the
interferer is incidental or intentional, powerful or resource-
constrained, narrowband or broadband, or static or adap-
tive. It is immediately apparent that if the jammer is a
high-powered, broadband source of interference (e.g. capa-
ble of occupying all channels simultaneously), then there
is no hope for building a resilient sensor network short of
choosing a different PHY-layer transceiver with a power-
ful anti-jam margin [4, 5]. Further, it should also be noted
that an aggressive adversary may jam a single channel (e.g.
by reprogramming another sensor) at a time and rapidly
switch between channels to effectively disrupt network ser-
vices across all channels. Both cases represent powerful,
aggressive broadband jamming adversaries.

Instead of considering powerful interference models for
which the only viable defense might be powerful physical
layer techniques, in this work, we consider a non-intentional
or a relatively benign adversary in which the interferer blocks
one (or even a few) of the channels at a time. This model
been considered elsewhere in the literature [1, 2, 6, 7]. Fur-
ther, even if the interferer hops to different channels, we
assume that the interferer stays on one channel for a brief
period of time before switching to another channel. Re-
lated to these assumptions, we note that we consider tradi-
tional security threats (such as authentication, communica-
tion confidentiality, and coping with node compromise) to
be orthogonal to the issues discussed in this paper.

A jammer, whether incidental or intentional, can signif-
icantly affect the reliability of the network’s communica-
tions. As the starting point for coping with jamming, it is
necessary to detect jamming. In this paper, we utilize our
detection scheme of [2], which involves a consistency check-

ing process on each node to ensure reliable identification of
jamming attacks.

3. CHANNEL SURFING OVERVIEW
In channel surfing, those nodes that detect themselves as

jammed nodes should immediately switch to another orthog-
onal channel and wait for opportunities to reconnect to the
rest of the network. After the jammed nodes lose connec-
tivity, their neighbors, which we refer to as boundary nodes,
will discover the disappearance of their jammed neighbor
nodes and temporally switch to the new channel to search
for them. If the lost neighbors are found on the new chan-
nel, the boundary nodes will participate in rebuilding the
connectivity of the entire network.

Channel surfing imposes several challenges to the underly-
ing design. The first challenge concerns the potential bound-
ary nodes. The basic scheme specifies that a boundary
node should switch to a new channel after its neighbors are
jammed and have escaped to the new channel. However, if
a node immediately probes the next channel whenever it ex-
periences a poor link quality with any of its neighbors, the
system will enter a non-stable state because wireless sensor
networks inherently experience frequent link quality degra-
dations or even topological changes [8,9]. Fortunately, after
carefully studying the working of the underlying system, we
found that it is possible for boundary nodes to correctly dif-
ferentiate jammed neighbors from those neighbors that just
had a poor link with the boundary node. This can be ex-
plained as follows. For the tree-based routing, a node has
precisely two types of neighbors: a parent and several chil-
dren. If a node has a poor connection with its parent, it will
first attempt to find another suitable parent node. Only if
there is no suitable replacement parent will the node probe
the next channel. In this way, the node does not need to
switch channels if it can still maintain its normal network
operations. In the case of losing a node’s children, if the
lost child node was not jammed, but just connected to a
new parent, the node should hear its former child’s routing
announcement. If it does not witness the child’s routing an-
nouncement within a specified window of time, then it will
probe the next channel looking for its lost child.

After detecting the loss of a neighbor, the boundary node
should not switch to the new channel too quickly, it may
arrive at the new channel before the jammed nodes. To un-
derstand this, consider a scenario where the jammer starts
interference at time t0. At that time, the jammed nodes
will not be able to send out packets. However, since it takes
less time for a node to detect the absence of a neighbor
than it does for a node to decide it is jammed, the bound-
ary nodes will detect the absence of a jammed node at time
t0 + δ1, while the jammed node will declare itself jammed
at t0 + δ2, where δ2 > δ1. If the boundary nodes switch to
the new channel immediately after t0 +δ1, they will not find
the jammed nodes there. Rather than have the boundary
node wait on the next channel, which would prevent it from
conducting its primary objective of relaying messages to the
sink, or have the node constantly flip-flop between channels
looking for its children, we should make the boundary nodes
wait for at least an additional δ2 − δ1 amount of time be-
fore switching to the next channel. The values of δ1 and δ2

are characteristic of the particular routing protocol, and the
jamming detection scheme.

In addition to the switch timing for a boundary node, it is

500

important to have a discovery protocol by which a boundary
node can find its neighbors on the new channel. After a
node switches to the new channel searching for its neighbors,
it should send out an “inquiry” message, such as “Is my
neighbor X here?” If it receives a reply from X, it will
start working on repairing the connectivity between X and
the sink. Otherwise, it waits for time δ to send another
message. If the node does not hear from X after a few trials,
it assumes the child is not jammed, returns to the original
channel and resumes its original operation in the network.
In total, the time spent probing the next channel should be
less than δ2 to avoid a cascading of channel probing.

It is desirable to choose the next channel so that the ad-
versary cannot predict what channel the nodes will surf to.
We may choose to chain the channel selections using a keyed
pseudo-random generator. If the n-th channel assignment is
C(n), then we take C(n+1) = EK(C(n)), where K is a key
shared by all nodes in the network that is used exclusively
for channel assignment. If ever C(n + 1) = C(n), then the
channel assignment proceeds to C(n + 2) and so on until
a different channel is selected. Finally, if the jammer can
block several channels, then after a jammed node escapes to
a new channel, it should first detect whether the channel is
jammed before it starts working on that channel.

4. CHANNEL SURFING STRATEGIES
After the boundary nodes discover that their neighbors

are jammed and have escaped to another channel, they will
attempt to reconnect the jammed nodes with the rest of the
network. We propose two different classes of techniques that
the boundary nodes can use to repair network connectivity:
(1) Coordinated Channel Switching, in which the boundary
nodes participate in transitioning the entire network to the
new channel to rebuild total network connectivity on the
new channel; and (2) Spectral Multiplexing, where bound-
ary nodes multiplex between the old channel and the new
channel, serving as a “bridge” that connects nodes operating
on different channels.

4.1 Coordinated Channel Switching
In coordinated channel switching, the entire network must

coordinate its evasion of the interference by switching to
the next channel and resuming network operation there.
The strategy involves by a transition phase during which
an increasing amount of nodes switch to the next channel.
Following the transition, the entire network resumes stable
operation on the next channel. The scheme begins with
the jammed nodes detecting they are jammed. After a set
amount of time, the boundary nodes will notice that they
have not received messages from their jammed neighbors.
The boundary nodes will then probe the next interference-
free channel, searching for their lost neighbors. If the bound-
ary node finds a neighbor residing on the next channel, it
will switch back to the old channel, broadcast a channel
switch command, and return to the new channel. Once a
node receives this notice, it rebroadcasts the command and
switches to the channel specified.

Algorithm Walk-through: In order to illustrate the Co-
ordinated Channel Switching algorithm, let us walk through
the example depicted in Figures 1(a)-(d). Here, the jam-
mer X affects nodes {D, I, J, O}. Upon detecting they are
jammed, these four nodes switch to channel 2, as shown in
Figure 1(a). The dashed-dot lines indicate links that exist in

DC

H I J K

N O P

S TQ R

A B E

GF

L
M

X

DC

H I J K

N O P

S TQ R

A B E

GF

L M

X

(a) (b)
DC

H I J K

N O P

S TQ R

A B E

GF

L
M

X

DC

H I J K

N O P

S TQ R

A B E

GF

L M

X

(c) (d)

Channel 2Channel 1
Channel 1

Announcement

Figure 1: A walk-through of coordinated channel
switching. The shaded area depicts the jammed
area, with the jammer X at the center.

channel 2, while the dotted lines correspond to links in the
first channel. The boundary nodes {C, E, H, K, N, P, S, T}
will notice that their jammed neighbors are no longer on
channel 1, and will probe channel 2. After finding the
jammed nodes on the new channel, the boundary nodes re-
turn to the original channel temporarily and broadcast a
switching notice (which contains the ID of the sender node,
and the channel to switch to) to the rest of the network,
propagating through the channel 1 subnetwork, as shown in
Figure 1(c). The boundary nodes join the jammed nodes
on the new channel after broadcasting the notice. Shortly
thereafter, the rest of the nodes will switch to the new chan-
nel after receiving the switching notice, and reestablish the
network on channel 2, as shown in Figure 1(d).

Algorithm Challenges: The major challenge facing this
scheme is the fact that unreliable links can cause some nodes
to miss a channel switch notice. However, the switch com-
mand is typically broadcasted independently by multiple
boundary nodes. Thus a node is very likely to receive at
least one notice. Even should a node not receive a switch
notice, it will still autonomously move to the next channel as
it will detect that it cannot receive messages from neighbors
that have already switched to the new channel.

Discussion: One advantage of this scheme is its simplicity.
Further, the success of performing a coordinated channel
switch doesn’t depend on the likelihood that each individual
node can detect the loss of its neighbors but, rather, as long
as one of the boundary nodes finds its lost neighbors in the
new channel and informs the rest of network, the network
will resume its connectivity in the new channel in spite of
the radio interference. Finally, we note that the broadcasted
channel switch command should be authenticated [10] to
prevent malicious message injection by the adversary.

4.2 Spectral Multiplexing
Performing a coordinated channel switch requires the en-

tire network to reestablish the routing tree as the link con-
nectivity will not be the same on the new channel. The
global nature of coordinated channel switching can be a
source for significant network cost, and a natural alterna-
tive is to employ a local response where only jammed nodes
switch channels, while non-jammed nodes remain on the
original channel. To guarantee the communication between

501

A

B

C

D

E

F slot 1 A, B, C, E, F

slot 2 C, D

(a) the network topology (b) the global schedule

Figure 2: The synchronous spectral multiplexing al-
gorithm.

these two frequency zones, boundary nodes have to work
on both channels by repeatedly switching back and forth
between two channels to relay packets, a process we call
spectral multiplexing.

For spectral multiplexing, the primary challenge lies in the
fact that the boundary nodes must carefully decide when
they should be on which channel so that they can mini-
mize the number of packets not delivered due to the sender-
receiver frequency mismatch. If the boundary nodes are con-
figured with dual radios, as suggested in [6], this scheduling
is unnecessary. However, commercial sensor platforms only
have one radio interface. It is thus crucial to ensure that the
sender and the receiver are able to work on the same chan-
nel when they want to exchange messages. Synchronization
is thus needed to coordinate the spectral schedules of the
sender and the receiver. The overall scheduling objective is
to ensure that multiplexing nodes are on the right channel
when the neighbors on that channel are ready to transmit1.

In general, there are two ways of coordinating schedules
from different entities: one is to have all the entities adopt
synchronous schedules, and the other is to operate in an
asynchronous fashion. In synchronous multiplexing all nodes
share the same schedule by dividing the global time axis into
different slots and assigning one slot to a channel; while in
asynchronous multiplexing, each node operates on a local
schedule, and boundary nodes make local decisions about
when to switch channel.

4.2.1 Synchronous Spectral Multiplexing
In synchronous spectral multiplexing, the entire network

is governed by one global clock [12]. The global time axis
is divided into slots, and multiple slots form a round. The
number of slots in a round is determined by the number of
channels the network is allowed to operate on at any specific
time. (In this paper, we limit our discussions on situations
where the network works on 2 channels simultaneously, and
the discussion can be easily extended to cover situations with
more than 2 channels.) Each slot is assigned to a single chan-
nel, and during that time slot, network nodes may only use
the corresponding channel– regardless of whether they are
jammed, boundary nodes, or not. At the end of a time slot,
the entire network utilizes the next channel and, again, the
nodes that are not using the next channel do not transmit,
nor must they switch channels unless they are multiplexing
boundary nodes. By following this global schedule, we can
avoid frequency mismatch between a pair of communicators.

Algorithm Walk-through: Figure 2(a) presents an ex-
ample network scenario in which D is jammed, and switches
to channel 2. Its parent node, C, thus becomes a bound-

1The need for scheduling transmissions has also been con-
sidered in the context of duty cycling, as in S-MAC [11], in
order to preserve energy.

Ch 2Ch 1

...

...

...

...

...

root

1 hop

2 hop

n-1 hop

n hop

t

t

t

t

t

SYNCSYNC

Figure 3: The synchronization mechanism for the
synchronous spectral multiplexing strategy.

ary node, and has to multiplex between two channels. The
rest of the nodes continue to work on channel 1. The global
schedule for this case is shown in Figure 2(b), which has two
slots for each round, with slot 1 allocated to channel 1, and
slot 2 to channel 2. Following this schedule, during slot 1,
nodes {A, B, E, F} work as normal. Node C sends out pack-
ets to its parent A, but does not receive any packets from
D. At the end of slot 1, these nodes stop their activities on
channel 1, and node C switches to channel 2. During slot
2, the only transmitting node is D, and C buffers all the
packets it receives from D. At the end of slot 2, D ends its
transmissions and C switches to channel 1. These two slots
keep alternating in this fashion until the radio interference
ends, or for the lifetime of the network.

Algorithm Challenges: There are several practical chal-
lenges associated with this scheme.

Synchronization: In order to efficiently synchronize node
schedules, instead of synchronizing the physical clock of each
network node, in our implementation we let each node adopt
a timer to demarcate slots and synchronize these timers. In
addition, instead of employing traditional pair-wise synchro-
nization, the root initiates the synchronization process by
broadcasting SYNC packets to its children, and the children
broadcast SYNC to their children, and so on as depicted in
Figure 3. This simple protocol can effectively minimize the
synchronization error between a pair of neighbors to 4τ ,
which only includes delays involved in sending, propagating,
and receiving SY NC packets. To avoid the timer drift on
different nodes, SY NC packets are sent periodically at an
interval much larger than the slot duration. This process is
made more complicated because synchronizing parties may
not be on the same channel at the time of synchronization.
To ensure that nodes on both channels are synchronized, the
boundary nodes should send these SY NC packets in rapid
succession across both channels.

Initiation: As soon as a boundary node discovers that
jammed nodes have evaded to the new channel, it will send
a message to the root on the original channel that contains
a list of the channels it will be working on. Eventually,
the root will have the full list of channels the network has
to operate on, and it will create a slotted channel schedule
based on this list, and broadcast the schedule down the tree,
along with the clock synchronization packets.

Slot Duration: Slot duration is an important parame-
ter in the synchronous spectral multiplexing algorithm. At
first glance, it seems intuitive that a shorter slot duration
is more desirable because, if a node stays on one channel
short enough, the required buffer space will be smaller and,
more importantly, less latency would be incurred. However,
we found that a smaller slot can be problematic as well,
mainly due to the overhead associated with switching chan-
nels. Before a node switches to a new channel, it has to

502

complete receiving all the packets that are in transmission.
In order to guarantee this, after the Timer expires, we let
each node wait for a small amount of time for all the possi-
ble transmissions to complete. In our implementation, this
translates into the parent node waiting a little longer than
child nodes because the receiving side is usually the parent
node in tree-based routing. Another problem with short slot
durations is that proportionately the synchronization errors
will be relatively large with respect to the duration of a slot,
thereby affecting this scheme’s efficiency. Finally, we note
that there is a radio startup cost associated with switching
channels (e.g. 250msec for the CC1000 radio chip in the
Mica2 mote).

In this study, we choose to adopt the largest slot dura-
tions that can satisfy the available buffer space constraints,
and we consider our underlying sensing application model
to have a periodic traffic pattern. Further, we have empiri-
cally witnessed that boundary nodes are more likely parent
nodes of the jammed nodes (children of jammed nodes typi-
cally look for alternate parents on the original channel), and
thus boundary nodes will merely receive on channel 2, but
will both receive and send on channel 1. Specifically, based
on the traffic rate from each channel and the buffer size,
each boundary node calculates the longest stay time it can
have on each channel (usually a node should stay on each
channel for the same amount of time). In order to under-
stand the calculation, let us look at an example. Suppose
a boundary node A has a buffer that can support 10 slots,
and it has 1 child on channel 1 that produces 20 packets per
second, and 2 children on channel 2 each of which produces
10 packets per second. A can at most stay on each channel
for 250 msecs. By spending 250 msecs on each channel, it
will receive 10 packets in a round (5 from each channel),
which will fill up its buffer. After each boundary node inde-
pendently calculates a slot duration, the sink will collect all
the information, chooses the smallest one as the global slot
duration and announces this.

Discussion: Synchronous multiplexing adopts a determin-
istic global schedule that governs the channel assignment
of every node in the network. The deterministic nature of
this algorithm guarantees that it can work well even un-
der complex scenarios where multiple nodes need to work
on multiple channels and these nodes are neighbors of each
other. However, in order to achieve this, every node in the
network must pay the extra overhead needed to maintain
synchrony.

4.2.2 Asynchronous Multiplexing
In the asynchronous multiplexing algorithm, a node is

only aware of its neighbors’ channel information, but not
the channel information of a remote node. The simplest
spectral scheduling method is to have a boundary node flip
its radio frequency between two channels in a round-robin
fashion. However, a completely random round-robin multi-
plexing strategy ignores the schedules of the communicating
parties, and would thus fare poorly. For example, suppose
a jammed node, working on the new channel, sends packets
at times 10, 20, 30, 40, and 50. If the corresponding bound-
ary node stays on the new channel during time windows [1,
6], [13, 18], [25, 30], [37, 42], [49, 54], then it will miss the
packets sent at 10, 20, and 30. The resulting packet loss ra-
tio for the jammed node is now as high as 60%. The above
example illustrates the limitation of a random round-robin

A

B
C

D

B

C

D

A

1 4 7 11 14 17 21 24

Ch 1 Ch 2

(a) the topology (b) the round-robin schedule

Figure 4: Illustration of the round-robin asyn-
chronous spectral multiplexing algorithm.

scheme and highlights the need for some level of coordina-
tion between the boundary node and its neighbors for the
asynchronous multiplexing scheme.

Algorithm Walk-through: Figure 4 illustrates the idea
behind the asynchronous multiplexing scheme. In this ex-
ample, the boundary node A has to receive packets from
three nodes, B, C, and D, with the first two working on
channel 1 and the last one working on channel 2. Suppose
all three nodes send packets every 10 time units, starting
at time 1, 4, and 7 respectively. In this case, starting from
time 0, A decides to stay on one channel for 5 time units
and then switches to the next channel for 5 time units. In
this way, A can receive every packet from its neighbors.

Algorithm Challenges: The challenges associated with
this schemes include synchronization and slot duration.

Synchronization: To coordinate the schedules of a bound-
ary node and its children, we have adopted a simple proto-
col that involves the boundary node announcing its schedule
(the duration it will stay in the new channel) by notifying its
children just after it switches to a new channel. In the exam-
ple in Figure 4(a), A notifies nodes B and C of its schedule
as soon as it switches to channel 1, so that they can start
transmissions when A enters channel 1, and stop transmis-
sions after A leaves channel 1. Similarly, it also notifies D
whenever it is on channel 2. We note that a child node must
buffer both its own packets as well as packets coming from
its own children while waiting for the dual-mode parent to
return to the channel it is working on. To counteract the
possibility that the notifications could be lost, a child should
start to send its buffered packets immediately after it hears
from its parent.

Slot Duration: Determining the slot duration in the asyn-
chronous spectral multiplexing is easier than in the case of
the synchronous spectral multiplexing, because in the for-
mer situation, not only can different boundary nodes em-
ploy different schedules, but they can also stay for a different
amount time on each channel. For example, considering the
boundary node usually is the parent of the jammed nodes,
the boundary node should stay longer on the channel 1 than
channel 2, as it has to forward all the packets received in
both channels to its parent via channel 1.

Due to the nature of asynchronous spectral multiplexing,
nodes can determine their slot durations in a more flexible
fashion. Suppose a boundary node decides to stay on chan-
nel 1 for t1 time and channel 2 for t2 time (t1 ≥ t2), where
t1 and t2 are chosen according to the traffic volume on each
channel and its buffer size. For example, it can choose to
have t1

r1
+ t2

r2
= B where r1 and r2 are the traffic rates on

the two channels respectively, and B is the buffer size. Af-
ter setting this baseline schedule, the boundary node can
adapt its switching rate as a response to varying network
conditions (e.g. topology change, traffic rate change, etc).

503

0

41

40 42

43
47

48

51
52

54

30

32
34

3

9

2

1

11

45

31

50

33

4
6

35

49

44 46

53

10

39 msgs(0.2048 msgs/sec)
Yield 1.0239

0

41

40 42

43
47

48

51
52

54

30

32
34

3

9

2

1

11

45

31

50

33

4

6

35

49

44 46

53

10

Jammer

(a) (b) (c)

Figure 5: Our Mica2 testbed is shown in (a). It consists of 30 motes that are placed on the floor. The
sink is located at the bottom of the figure, with a programming board attached to it. The network topology
is captured and presented in (b) and (c), with the former showing the topology prior to introducing the
jammer, and the latter showing the topology shortly after the jammer is introduced.

Discussion: Compared to synchronous multiplexing, asyn-
chronous multiplexing does not maintain a global schedule,
and thus incurs less synchronization overhead. The ad-
vantage of asynchronous multiplexing is more pronounced
when the jammed region is small and regular. For larger
jammed areas, we will have more boundary nodes working
on multiple channels, and thus the overhead gap between
synchronous and asynchronous techniques lessens. A final
advantage of the asynchronous method its ability to adapt
to local traffic and buffer conditions.

5. SENSOR TESTBED AND METRICS
We now focus on our experimental validation efforts, and

note some practical issues we faced.

5.1 Testbed Configuration
We have built our sensor network testbed using 30 Mica2

sensor motes. These devices each have a 902 − 928 MHz
Chipcon CC1000 radio. We used 916.7MHz as the original
channel and separated our channels by 800KHz, effectively
giving us 32 channels. The operating system running on
each mote was TinyOS version 1.1.7 [13]. We attached one
of the motes to a MIB510CA programming board in order
to act as the network sink. In order to conduct experi-
ments that exhibit repeatable characteristics, we chose an
indoor laboratory area where we could fix the deployment
across the experiments, as illustrated in Figure 5 (a). Due to
space limitations, we reduced the radio range of each mote
to roughly 2.5 feet by tuning the transmission power of each
down to -5dBm.

We modified the Surge application, which uses a tree-
based routing algorithm for a single network sink. Since our
focus was on channel-oriented networking issues associated
with interference resistance, we did not employ message ac-
knowledgements or retransmissions. In addition to this ba-
sic communication model, we note that each sensor message
contains a sequencing field (in the routing header) that can
be used to estimate performance statistics, i.e. link qual-
ity [9]. Finally, we note that our packet size was 32 bytes,
and that a node can buffer at most 24 packets (across all
channels).

5.2 Building a Jamming-Resistant Network
After preparing the underlying sensor network testbed, we

next implemented the channel surfing framework and the
three strategies. In the implementation of these strategies,

we faced several challenges. First, we modified the buffering
mechanism to address the fact that buffered packets may
need to be sent on different channels.

The second issue we addressed was related to the replace-
ment policy of the mote neighbor table. Each Mica2 mote
maintains a neighbor table recording the link quality be-
tween each node in its radio range (e.g. radio neighbors) and
itself. The motes in our testbed only have 16 entries in their
neighbor table. The default policy in TinyOS sorts the radio
neighbors based on the link quality. This policy, however,
must be modified to implement channel surfing strategies.
To understand this, suppose node A’s child, B, is jammed.
A is supposed to find the link quality between B and itself
has degraded, and then probe the next channel to search for
B. However, since B is jammed, the estimated link quality
between A and B may be so low that B is evicted from A’s
neighbor table. In this case, A loses awareness of the exis-
tence of B, and will not look for it on the other channel. In
order to address this problem, we modified the replacement
policy so that it always sorts a node’s topological neighbors
(i.e. the parent node and children nodes) ahead of non-
topological radio neighbors.

The third issue is related to link quality estimation. Es-
timating the link quality involves comparing the number of
packets a node receives with the number of packets it ex-
pects by using the sequence numbers of the packets. How-
ever, when we operate on multiple channels, this estimation
mechanism may cause problems because a dual-mode node
will have roughly a 50% link quality, and thus nodes on both
channels will not choose the dual-mode nodes as their par-
ents, hindering the realization of spectral multiplexing. We
address this by assigning independent sequence numbers on
different channels, so that the estimated link quality for a
dual-mode node on both channels is sufficiently high.

5.3 Performance Metrics for Channel Surfing
In this study, we used the following performance metrics

to evaluate the effectiveness of channel surfing strategies:

• Network Recovery: The main objective of channel surf-
ing is to ensure network availability in the presence
of jamming. Therefore, we first measure whether the
channel surfing strategies can restore network perfor-
mance (number of packets delivered to the sink) from
jamming. Further, we also measure the latency re-
quired for these strategies to recover network perfor-
mance.

504

Jammer turned on Jammer

turned on

Network recovered

Jammer detected

(a) (b)

Figure 6: The number of packets delivered to the sink in every 10-packet window throughout the experiment
for (a) first normal and then jammed network conditions, and (b) the coordinated chanel surfing strategy.

• Protocol overhead: Another class of metrics are re-
lated to the overhead introduced by the channel surf-
ing strategies. One obvious concern is that nodes may
unnecessarily switch channels. As a result, we have
measured the number of channel switches every node
experiences throughout the duration of an experiment.

6. EXPERIMENTAL RESULTS

6.1 The Impact of Jamming/Interference
We deployed the testbed as illustrated in Figure 5(a), and

the resulting tree-shaped routing topology (Figure 5 (b))
was captured using the Surge Network Viewer. In the rout-
ing tree, the root node, node 0, corresponds to the network
sink. We then conducted an experiment to study the net-
work behavior under normal indoor conditions as well as the
impact that a single jammer can have on the network. In this
experiment, we first let the network run for more than 20
minutes prior to introducing a jammer. For our jammer, we
used the same device as legitimate nodes, thus the jammer
can only jam one channel at a time. In particular, we used
the constant jammer of [2], which is a mote that bypasses
the MAC-layer to continually transmit random bits into the
network. Figure 5 (c) shows the location of the jammer, and
the fact that the jammer destroyed the connections between
several nodes and the sink. Specifically, in this example,
nodes {9, 10, 33, 52, 53} lost their connections because they
were directly affected by the jammer, while nodes {1, 2, 3, 4}
lost their connections because their parents were jammed.

We present time series for the number of packets delivered
to the sink in a window of 10 packet intervals (that is, during
this window, each sensor node generates 10 packets) from six
randomly chosen nodes in Figure 6(a). In these results, each
node generated and sent packets at a rate of 1 packet every
5 seconds. Under a perfect network condition, we expect
each node to deliver 10 packets in a 10-packet window, but
even under normal network conditions prior to jamming, the
traces exhibit short-term fluctuations. After introducing the
jammer, nodes 9 and 53 were not able to deliver packets to
the sink. As discussed earlier, that is because either these
nodes were jammed, or all their possible parent nodes were
jammed. As a result, the packet delivery ratio became 0.
We note that although node 4 lost its former parent due
to jamming, it later found a replacement parent via normal

route discovery on channel 1 and hence its packet delivery
became normal after a short interruption.

6.2 Coordinated Channel Switching Results
We conducted experiments to study the effectiveness of

the coordinated channel switching method described in Sec-
tion 4.1, in which the entire network changes its operating
channel to a new channel. We observed that the coordinated
channel switching method completely restores connectivity
for every sensor to the network sink on the new channel
as indicated by the packets-delivered time series shown in
Figure 6(b). Here we selected a sampling of six nodes, and
observed that regardless of a node’s position, they can re-
sume operations on the new channel quickly and almost at
the same time. The switching latency is roughly the sum
of jamming detection latency, probing time, and the broad-
cast latency. Specifically, the transition phase only took 46
packet intervals, and 39 out of the 46 intervals were used
for the jammed nodes to detect they are jammed as well
as for the boundary nodes to find out their children nodes
are missing. We would like to emphasize that we purpose-
fully let a node wait for a rather long time period (i.e. 39
packet intervals) before probing the next channel after it
detects a poor link quality between itself and its children.
We take the viewpoint that sensor networks will experience a
LOT more temporary topological changes than longer-term
jamming/interference, and that we therefore must reduce the
false positives of channel probing to achieve more stable net-
work operations. Also, we would like to point out that even
with such a conservative approach, we could improve the re-
covery process by having jammed nodes buffer packets dur-
ing the network transition periods.

We also measured the total number of channel switches
for these six nodes versus time. As expected, we saw that,
prior to introducing the jammer, no nodes switched chan-
nels because our algorithms were tuned to have very low
false positives on determining whether to probe the next
channel. As soon as the jammer started, since nodes 53 and
54 were directly affected, they switched channels, and stayed
there afterwards, thus switching only once. Node 42, how-
ever, reported 3 channel switches because it was a boundary
node that first switched to channel-2 probing for its child,
then switched back to the original channel to broadcast the
switch notice, and finally switched back to the new chan-

505

Jammer turned on

Jammer detected

41

45

44

Jammer turned on

Jammer detected

(a) (b) (c)

Figure 7: Statistics for the spectral multiplexing strategies: (a) packet delivery time series in a 5-packet
window for the synchronous case, (b) total number of channel switches vs. time for the synchronous case,
(c) packet delivery time series for asynchronous spectral multiplexing.

nel to resume network operations. Other boundary nodes
exhibited similar behavior, while more distant nodes only
switched once. Overall, the coordinated channel switch in-
curs very few channel switches. Finally, we note that we also
conducted experiments with multiple simultaneous jammers
in different positions, and observed that the coordinated
method was able to repair the network in these cases with
latencies on the order of 50 packet intervals.

6.3 Spectral Multiplexing Results
We now examine spectral multiplexing. In these methods,

we only switch channels for the jammed nodes while a subset
of nodes multiplex between the original and new channels.
We note that it is unfair to compare coordinated channel
switching with spectral multiplexing under the same net-
work configuration because these two strategies are compli-
mentary to each other, each designed to deal with different
situations. Specifically, the coordinated strategy is suitable
for cases where a large region of the network is jammed,
while the multiplexing strategy is suitable for cases with
much smaller jammed regions. Thus, for spectral multiplex-
ing we block fewer nodes to have a smaller jammed region.
One further difference between these two types of strategies
is that spectral multiplexing typically requires more buffer
space for storing packets during multiplexing. Given the
limited buffer space on the motes, we chose to adopt a lower
data rate (1 packet every 10 seconds) than the rate in earlier
experiments.

6.3.1 Synchronous Spectral Multiplexing
In the synchronous spectral multiplexing experiment, we

used the same general layout as shown in Figure 5(a). Af-
ter the network had run for 40 packet intervals, the jam-
ming/interference process began. The jammed region con-
sisted of nodes 52, 53, and 10, and these three nodes promptly
switched to channel 2. After the jammed nodes evaded to
the new channel, their former parents detected their disap-
pearance, and became the boundary nodes. Nodes 41 and
45 were such examples because they used to be the parents
for nodes 10 and 52, respectively. The boundary nodes then
announced themselves on the new channel, and waited to be
selected as parents by the nodes on channel 2. In this exper-
iment, all three jammed nodes chose node 41 as their parent.
Thus, node 41 started working on two channels, while node

45 went back to work on channel 1. Overall, node 41 had
four child nodes, three on channel 2 (nodes 52, 53, and 10),
and one on channel 1 (node 44). In this experiment, the
slot duration was 6.1 seconds, so that the number of packets
buffered per channel was roughly 3 to 6 packets.

Figure 7(a) presents the time series of the number of pack-
ets delivered to the sink from six nodes in a 5-packet window.
These six nodes include the three jammed nodes (nodes 52,
53, and 10), one boundary node (node 41), one potential
boundary node (node 45), and one child of the boundary
node that worked on channel 1 (node 44). The plot shows
that the jammed nodes resumed their normal packet delivery
performance. All other nodes were not affected much by the
jammer. The interval during which the jammed nodes had
disrupted services was roughly 48 packet intervals, which
is similar to the recovery time in the coordinated channel
surfing strategy. Again, during the total recovery latency of
50 packet intervals, the boundary nodes waited for around
39 packet intervals before switching to the new channel to
search for their children. After the boundary nodes found
their children on the new channel, it only took them 11
packet intervals to start working on dual channels.

We report the total number of channel switches for these
six nodes in Figure 7(b). These numbers agree with the
discussion above regarding how different nodes responded
to the emulated jamming in the experiment (e.g. node 41
continually switches channels). Interestingly, as noted ear-
lier, node 45 started out as a dual-mode node and it initially
switched channels frequently. However, after a short period
of time, it was not selected as a dual-mode parent for any
nodes on channel 2. It then returned to channel 1 and no
longer switched channels.

6.3.2 Asynchronous Spectral Multiplexing
Our asynchronous experiment used a similar setup as the

synchronous multiplexing experiment. The jammed region
consisted of nodes 53, 54, and 11. After the jammed nodes
evaded to channel 2, their former parents, i.e. nodes 42
and 10, also switched to channel 2, and announced their
willingness to work on channel 2. Node 42 was chosen to be
the parent by all three jammed nodes, and started flipping
between both channels in a round-robin manner, while node
10 continued on channel 1. From then on, node 42 had three
children (the three jammed nodes on channel 2).

506

Jammer

turned on

Network recoverd in Channel 2

Jammer chased to channel 2

Network recovered in channel 3

Jammer

detected

9

2, 51

42

41

30

(a) (b)

Figure 8: (a) Packet delivery time series for the coordinated channel switch strategy when the jammer follows
the network’s channel surfing. (b) Time series illustrating the amount of times a node has changed its channel
during the network’s operation.

Figure 7(c) presents the time series for the number of
packets delivered to the sink from the above-mentioned nodes
in a 5-packet window: the three jammed nodes (nodes 53,
54, and 11), one boundary node (node 42), and one potential
boundary node (node 10). It is clear from this figure that the
asynchronous multiplexing scheme can quickly recover the
connections between the jammed nodes and the sink with-
out affecting other nodes in the network. As in the case of
synchronous multiplexing, this scheme also incurred roughly
a 50-packet service disruption period for the jammed nodes.
We also recorded the total number of channel switches for
these six nodes and observed trends analogous to those re-
ported for synchronous multiplexing.

6.4 Channel Surfing Discussion
Though the results presented above have shown that the

three channel surfing strategies fare comparably, we empha-
size that it is better to evaluate these strategies according
to the network and interference scenarios for which they are
most appropriate. Coordinated channel surfing, which re-
quires all network nodes to switch their channel, is most suit-
able for cases where a large region is jammed, and the jam-
ming occurs on a longer time scale (e.g. from a long-duration
unintentional interference source). Spectrum multiplexing,
however, is more effective for transient jamming where a
few nodes are affected for a short duration. Here, we should
determine whether to adopt synchronous or asynchronous
spectral multiplexing based on the underlying traffic model.
For instance, synchronous spectral multiplexing is more suit-
able for regular traffic patterns, while asynchronous spectral
multiplexing can better cope with irregular (e.g. bursty)
traffic.

6.5 Channel Following Jammers
We were also interested in more challenging interference

scenarios, such as when the jammer follows the network as it
channel surfs. We conducted experiments with this jammer
model, and found that all the three proposed schemes could
restore network connectivity in such cases. Due to space
limits, we do not provide results for all three schemes here,
but rather show the experimental results for the coordinated
channel switch scheme.

The network setup was the same as in Figure 5(a). We

started the network on channel 1, and then introduced the
jammer approximately at the 40th packet interval, as de-
picted in Figure 8 (a). Shortly thereafter, the network adapted,
with all nodes switching to the second channel after an over-
all latency of approximately 47 packet intervals. We as-
sumed that the jammer took 50 packet intervals to find the
new channel the network moved to, and thus the jammer
switched to channel 2 at the 140th packet interval. The
network again adapted to the interference, switching to the
third channel after a total latency of roughly 51 packet in-
tervals. Examining the packet delivery time series for node
51 illustrates an interesting phenomena regarding the effec-
tiveness of a jammer: when the jammer was on channel 1
it was not entirely effective in disrupting the operation of
node 51 while when the jammer was on channel 2, it was
more effective at disrupting the communications from node
51. We believe this is due to the irregularity of the Mica2
radio. In addition to packet delivery traces, we recorded the
amount of times different nodes switched channels, as shown
in Figure 8 (b). This curve shows that the protocol does not
require an excessive amount of channel switching, typically
requiring either one or three channel change attempts prior
to settling on the new channel. We draw the reader’s at-
tention to the channel change trace for node 41 and node
42. During the first channel change, these nodes switched
back to the original channel to broadcast the change chan-
nel command, thus requiring a total of 3 channel changes.
However, after the jammer follows them to the new chan-
nel, both the radio dynamics and the underlying network
topology have changed, and in this case only node 42 was
involved in switching back to channel 2 to announce the
change channel command.

7. RELATED WORK
Coping with jamming and interference is usually a topic

that is addressed through conventional PHY-layer commu-
nication techniques. In these systems, spreading techniques
(e.g. frequency hopping) are commonly used to provide
resilience to interference [4, 5]. Although such PHY-layer
techniques can address the challenges of an RF interferer,
they require more advanced transceivers and have not found
widespread deployment in commercial sensor networks. We
note that our frequency scheduling and synchronization meth-

507

ods are similar to those used in physical layer frequency hop-
ping and TDMA [14], though our techniques operate on a
much coarser time-scale.

The issue of detecting and mapping jamming for sensor
networks was studied by Wood and Stankovic in [15]. The
problem of jamming detection was further studied by Xu
et al. in [2], where the authors presented several jamming
models and explored the need for more advanced form of
detection algorithms to identify jamming. Additional jam-
ming strategies were studied by Law et al. [1], and the
efficiency of these methods was quantified in terms of the
amount of resources needed to conduct an attack. Further
work on jamming has studied MAC-layer jamming attacks
on reservation-based medium access control schems [16].

Countermeasures for coping with jammed regions in wire-
less networks has been studied in [6, 17–19]. In [17], the
use of error correcting codes is proposed to cope with jam-
ming. In [6], two countermeasures are presented for coping
with jamming. The first method, channel surfing, serves
as the motivation for this paper. The second method, spa-
tial retreats, was studied in more detail in [18] and involves
mobile nodes physically moving away from the interference
to reestablish connections. In [19], wormhole-based anti-
jamming techniques are studied analytically. The proposed
approaches try to ensure the successful delivery of at least
one alarm message for each event, instead of resuming con-
tinuous network connectivity. Our work builds on these ef-
forts by providing system validation.

The use of multiple channels has been proposed as a means
to enhance the throughput and performance of wireless mesh
networks, e.g. [20–22], and cellular networks. In this area,
the radio devices are resource-rich compared to sensors, and
often have multiple-radio interfaces. The challenge here
is assigning the channels and/or time slots across multiple
nodes to avoid collisions and congestion. These works are
primarily intended to enhance performance in normal con-
ditions, and do not attempt to cope with unexpected jam-
ming/interference, as is described in this paper. Generally,
channel allocation for these scenarios is achieved with the
aid of a centralized entity or via a common control channel.
In our work, we have not resorted to centralized entities or
control channels in order to achieve jamming resistance.

8. CONCLUDING REMARKS
Many commercial wireless sensor networks are susceptible

to radio interference/jamming. To ensure the availability
of sensor communications, interference defense mechanisms
must be developed that are distributed, easy to scale, and
have low false positives. We have tackled this challenge in
this paper by presenting a family of channel surfing strate-
gies that can restore connectivity in the presence of radio
interference. We presented two families of channel surfing
strategies: the first, coordinated channel switching, involves
the entire sensor network changing its operating frequency;
the second family, which we refer to as spectral multiplex-
ing, changes the operating frequency in a neighborhood local
to the interference, with boundary nodes acting as a radio-
bridge across different channels. We implemented our strate-
gies on a testbed of Mica2 motes, and have reported their
performance for several interference scenarios. We found
that our broadcast-assist strategy, as well as our multiplex-
ing schemes, can effectively repair the network with short la-
tency. Our study serves as an initial systems effort towards

building interference-resistant sensor networks and future
investigations will involve examining more advanced jam-
ming scenarios.

9. REFERENCES
[1] Y. Law, P. Hartel, J. den Hartog, and P. Havinga, “Link-layer

jamming attacks on S-MAC,” in Proceedings of the 2nd
European Workshop on Wireless Sensor Networks (EWSN
2005), 2005, pp. 217 – 225.

[2] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of
launching and detecting jamming attacks in wireless networks,”
in MobiHoc ’05: Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and computing,
2005, pp. 46–57.

[3] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a
Tiny Aggregation Service for Ad-Hoc Sensor Networks,” in
Proceedings of the Usenix Symposium on Operating Systems
Design and Implementation, 2002.

[4] J. G. Proakis, Digital Communications, McGraw-Hill, 4th
edition, 2000.

[5] C. Schleher, Electronic Warfare in the Information Age,
MArtech House, 1999.

[6] W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing
and spatial retreats: defenses against wireless denial of
service,” in Proceedings of the 2004 ACM workshop on
Wireless security, 2004, pp. 80 – 89.

[7] A. Wood and J. Stankovic, “Denial of service in sensor
networks,” IEEE Computer, vol. 35, no. 10, pp. 54–62,
October 2002.

[8] J. Zhao and R. Govindan, “Understanding packet delivery
performance in dense wireless sensor networks,” in SenSys ’03:
Proceedings of the 1st international conference on Embedded
networked sensor systems, 2003, pp. 1–13.

[9] A. Woo, T. Tong, and D. Culler, “Taming the underlying
challenges of reliable multihop routing in sensor networks,” in
SenSys ’03: Proceedings of the 1st international conference
on Embedded networked sensor systems, 2003, pp. 14–27.

[10] A. Perrig, R. Szewczyk, D. Tygar, V. Wen, and D. Culler,
“SPINS: security protocols for sensor networks,” Wireless
Networks, vol. 8, no. 5, pp. 521–534, 2002.

[11] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac
protocol for wireless sensor networks,” in Proceedings of the
IEEE INFOCOM, 2002, vol. 3, pp. 1567– 1576.

[12] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync
protocol for sensor networks,” in SenSys ’03: Proceedings of
the 1st international conference on Embedded networked
sensor systems, 2003, pp. 138–149.

[13] “Tinyos homepage,” http://webs.cs.berkeley.edu/tos/.

[14] S. S. Rappaport and D. M. Grieco, “Spread-spectrum signal
acquisition - Methods and technology,” IEEE Communications
Magazine, vol. 22, pp. 6–21, June 1984.

[15] A. Wood, J. Stankovic, and S. Son, “JAM: A jammed-area
mapping service for sensor networks,” in 24th IEEE Real-Time
Systems Symposium, 2003, pp. 286 – 297.

[16] A. Rajeswaran and R. Negi, “Dos analysis of reservation based
mac protocols,” in Proceedings of the IEEE International
Conference on Communications, 2005.

[17] G. Noubir and G. Lin, “Low-power DoS attacks in data
wireless lans and countermeasures,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 7, no. 3, pp. 29–30, 2003.

[18] K. Ma, Y. Zhang, and W. Trappe, “Mobile network
management and robust spatial retreats via network
dynamics,” in Proceedings of the The 1st International
Workshop on Resource Provisioning and Management in
Sensor Networks (RPMSN05), 2005.

[19] M. Cagalj, S. Capkun, and J.P. Hubaux, “Wormhole-Based
Anti-Jamming Techniques in Sensor Networks,” to appear in
IEEE Transactions on Mobile Computing, January 2007.

[20] A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized Channel
Assignment and Routing Algorithms for Multi-Channel
Wireless Mesh Networks,” ACM Mobile Computing and
Communications Review, vol. 8, no. 2, pp. 50–65, 2004.

[21] J. So and N. Vaidya, “Multi-channel MAC for ad hoc network:
Handling multi-channel hidden terminals using a single
transceiver,” in Proceedings of ACM MobiHoc, 2003, pp. 222 –
233.

[22] R.Garces and J. G. L. Aceves, “Collision avoidance and
resolution multiple access for multi-channel wireless networks,”
in Proceedings of IEEE INFOCOM, 2000, pp. 595–602.

508

