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Abstract— Many sensor applications are being developed that require
the location of wireless devices, and localization schemes have been devel-
oped to meet this need. However, as location-based services become more
prevalent, the localization infrastructure will become the target of mali-
cious attacks. These attacks will not be conventional security threats, but
rather threats that adversely affect the ability of localization schemes to
provide trustworthy location information. This paper identifies a list of at-
tacks that are unique to localization algorithms. Since these attacks are di-
verse in nature, and there may be many unforseen attacks that can bypass
traditional security countermeasures, it is desirable to alter the underlying
localization algorithms to be robust to intentionally corrupted measure-
ments. In this paper, we develop robust statistical methods to make lo-
calization attack-tolerant. We examine two broad classes of localization:
triangulation and RF-based fingerprinting methods. For triangulation-
based localization, we propose an adaptive least squares and least median
squares position estimator that has the computational advantages of least
squares in the absence of attacks and is capable of switching to a robust
mode when being attacked. We introduce robustness to fingerprinting lo-
calization through the use of a median-based distance metric. Finally, we
evaluate our robust localization schemes under different threat conditions.

I. INTRODUCTION

The infrastructure provided by wireless networks promises to have
a significant impact on the way computing is performed. Not only will
information be available while we are on the go, but new location-
aware computing paradigms along with location-sensitive security
policies will emerge. Already, many techniques have emerged to pro-
vide the ability to localize a communicating device [1–5].

Enforcement of location-aware security policies (e.g., this laptop
should not be taken out of this building, or this file should not be
opened outside of a secure room) requires trusted location informa-
tion. As more of these location-dependent services get deployed, the
very mechanisms that provide location information will become the
target of misuse and attacks. In particular, the location infrastruc-
ture will be subjected to many localization-specific threats that cannot
be addressed through traditional security services. Therefore, as we
move forward with deploying wireless systems that support location
services, it is prudent to integrate appropriate mechanisms that protect
localization techniques from these new forms of attack.

The purpose of this paper is to examine the problem of secure lo-
calization from a viewpoint different from traditional network security
services. In addition to identifying different attacks and misuse faced
by wireless localization mechanisms, we take the viewpoint that these
vulnerabilities can be mitigated by exploiting the redundancy present
in typical wireless deployments. Rather than introducing countermea-
sures for every possible attack, our approach is to provide localization-
specific, attack-tolerant mechanisms that shield the localization infras-
tructure from threats that bypass traditional security defenses. The idea
is to live with bad nodes rather than eliminate all possible bad nodes.

We begin in Section II by presenting an overview of several tech-
niques used in wireless localization, as well as discuss efforts that have

been made to provide security to localization. Following the review,
we explore localization-specific attacks that can be mounted against
wireless localization services in Section III. To address these attacks,
we propose the use of robust statistical methods. In Section V and
Section VI we focus our discussion on applying robust mechanisms
to two broad classes of localization: triangulation and fingerprinting
methods. We introduce the notion of coordinated adversarial attacks
on the location infrastructure, and present a strategy for launching a
coordinated attack on triangulation-based methods. For triangulation-
based localization, we propose the use of least median squares (LMS)
as an improvement over least squares (LS) for achieving robustness to
attacks. We formulate a linearization of the least squares location esti-
mator in order to reduce the computational complexity of LMS. Since
LS outperforms LMS in the absence of aggressive attacks, we devise
an online algorithm that can adaptively switch between LS and LMS
to ensure that our localization algorithm operates in a desirable regime
in the presence of varying adversarial threats. For fingerprinting-based
location estimation, we show that the use of traditional Euclidean dis-
tance metrics is not robust to intentional attacks launched against the
base stations involved in localization. We propose a median-based
nearest neighbor scheme that employs a median-based distance metric
that is robust to location attacks. The use of median does not require
additional computational resources, and in the absence of attacks has
performance comparable to existing techniques. Finally, we present
conclusions in Section VII.

II. RELATED WORK

Broadly speaking, there are two main categories of localization
techniques: those that involve range estimation, and those that do not
[1]. Range-based localization algorithms involve measuring physical
properties that can be used to calculate the distance between a sensor
node and an anchor point whose location is known. Time of Arrival
(TOA) is an important property that can be used to measure range,
and arises in GPS [6]. The Time Difference of Arrival (TdOA) is also
widely used, and has been used in MIT’s Cricket [2], and appeared
in [7, 8]. In addition, APS [3] pointed out that the Angle of Arrival
(AOA) can be used to calculate the relative angle between two nodes,
which can be further used to calculate the distance. The RSSI value
of the received signal, together with the signal propagation model, is
also a good indicator of the distance between two nodes [9, 10]. Other
properties of arriving signals can also be exploited. One interesting ex-
ample is to use visual cuing [11], which tries to determine the position
and orientation of a mobile robot from visual cues obtained from color
cylinders strategically placed in the field of the view.

Range-free localization algorithms do not require the measurement
of physical distance-related properties. For example, one can count the
number of hops between a sensor node and an anchor point, and further
convert the hop counts to physical distances, such as in [12–14]. As
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another example, a sensor node can estimate its location using the cen-
troid of those anchor nodes that are within its radio range, such as in
Centroid [15]. Similarly, APIT [16] employs an area-based estimation
scheme to determine a node’s location. Compared to range-based lo-
calization algorithms, these schemes do not require special hardware,
and their accuracies are thus lower as well.

Secure localization has received attention only recently. In [4], the
authors listed a few attacks that might affect the correctness of localiza-
tion algorithms along with a few countermeasures. One technique that
may be used to defend against wormhole attacks is to employ packet
leashes [17]. SecRLoc [5] employs a sectored antenna, and presented
an algorithm that makes use of the property that two sensor nodes that
can hear from each other must be within the distance 2r assuming r is
fixed in order to defend against attacks. A different approach to secur-
ing location information was presented in [18], where the concept of
location verification was introduced. Compared to these studies, our
paper takes a distinct approach that we should learn how to live with
bad guys rather than defeating each type of attack. In addition, we also
identify a more complete list of attacks that are unique to localization
algorithms.

III. ATTACKS UNIQUE TO LOCALIZATION

Different localization methods are built upon the measurement of
some basic properties. In Table I, we enumerate several properties that
are used by localization algorithms, along with different threats that
may be employed against these properties. The threats we identify are
specific to localization, and are primarily non-cryptographic attacks
that are directed against the measurement process. Consequently, these
attacks bypass conventional security services.

We note, however, that there are many classical security threats that
may be launched against a wireless or sensor network, which can have
an adverse affect on the localization process. For example, a Sybil
attack can disrupt localization services by allowing a device to claim
multiple identities. In order to address the Sybil attack, one may em-
ploy entity verification techniques, such as radio resource testing or
the verification of key sets, which were presented in [19]. In general,
for attacks that are cryptographic in nature, there are extensive efforts
to migrate traditional security services, such as authentication, to the
sensor platform in order to handle these threats.

Even so, though, it should be realized that it is unlikely that any sin-
gle technique will remove all possible threat models and, in spite of
the security countermeasures that are employed, many adversarial at-
tacks will be able to bypass security layers. To address threats that are
non-cryptographic, or threats that bypass conventional security coun-
termeasures, we take the viewpoint that statistical robustness needs to
be introduced into the wireless localization process.

We now explore several of these threats. We start by looking at
methods that employ time of flight. The basic concept behind time of
flight methods is that there is a direct relationship between the distance
between two points, the propagation speed, and the duration needed
for a signal to propagate between these two points. For time of flight
methods, an attacker may try to bias the estimation of distance to a
larger value by forcing the observed signal to come from a multipath.
This may be accomplished by placing a barrier sufficiently close to the
transmitter and effectively removing the line-of-sight signal. Another
technique that may be used to falsely increase the distance estimate
occurs in techniques employing round-trip time of flight. Here, an ad-
versarial target that does not wish to be located by the network receives
a transmission and holds it for a short time before retransmitting. An
attack that skews the distances to smaller values can be accomplished
by exploiting the propagation speed of different media. For example,
in CRICKET [2], the combination of an RF signal and an ultrasound

Fig. 1. (Left) Operation of localization using hop count, (Middle)
Wormhole attack on hop count methods, and (Right) Jamming attack
on hop count methods.

signal allows for the estimation of distance since the acoustic signal
travels at a slower propagation velocity. An adversary located near the
target may therefore hear the RF signal and then transmit an ultrasound
signal that would arrive before the original ultrasound signal can reach
the receiver [4].

As another example, consider a location system that uses signal
strength as the basis for location. Such a system is very closely tied to
the underlying physical-layer path loss model that is employed (such
as a free space model where signal strength decays in inverse propor-
tion to the square of distance). In order to attack such a system, an
adversary could introduce an absorbing barrier between the transmit-
ter and the target, changing the underlying propagation physics. As
the signal propagates through the barrier, it is attenuated, and hence
the target would observe a significantly lower received signal strength.
Consequently, the receiver would conclude that it is further from the
transmitter than it actually is.

Hop count based localization schemes [13] usually consist of two
phases. In the first phase, per-hop distance is measured. In the sec-
ond phase, anchor points flood beacons to individual sensor nodes,
which count the number of hops between them, and these hop counts
are translated into physical distances. As a result, adversaries can ini-
tiate attacks as follows: (1) manipulate the hop count measurement,
and (2) manipulate the translation from hop count to physical distance.
A number of tricks can be played to tweak hop count measurements,
ranging from PHY-layer attacks, such as increasing/decreasing trans-
mission power, to network layer attacks that tamper with the routing
path. Since PHY-layer attacks have been discussed earlier, we now
focus on some possible network layer attacks, namely jamming [20]
and wormholes [17]. By jamming a certain area between two nodes,
beacons may take a longer route to reach the other end (as shown in
Figure 1), which increases the measured hop count. While jamming
may not always increase the hop count, for it may not block the short-
est path between the two nodes, the other type of attacks, which involve
wormhole links, are more harmful because they can often significantly
shorten the shortest path and result in a much smaller hop count. Fig-
ure 1 illustrates such a scenario: the shortest path between anchor L
and node A has 7 hops, while the illustrated wormhole brings the hop
count down to 3. Consequently, these attacks can also affect the trans-
lation from hop count to physical distance. In addition, if adversaries
can manage to physically remove or displace some sensor nodes, even
correct hop counts are not useful for obtaining accurate location calcu-
lations.

Localization methods that use neighbor locations are built upon the
implicit assumption that neighbors are uniformly distributed in space
around the wireless device. These localization methods, such as the
Centroid method, can be attacked by altering the shape of the received
radio region. For example, an attacker can shrink the effective radio
region through blocking some neighbors by introducing a strong ab-
sorbing barrier around several neighbors. Another approach to shrink-
ing the radio region is for an adversary to employ a set of strategically
located jammers. Since these neighbors are not heard by the wireless
device, the location estimate will be biased toward the unblocked side.
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Property Example Algorithms Attack Threats

Time of Flight Cricket
Remove direct path and force radio transmission to employ a multipath; Delay transmis-
sion of a response message; Exploit difference in propagation speeds (speedup attack,
transmission through a different medium).

Signal Strength RADAR, SpotON, Nibble
Remove direct path and force radio transmission to employ a multipath; Introduce dif-
ferent microwave or acoustic propagation loss model; Transmit at a different power than
specified by protocol; Locally elevate ambient channel noise.

Angle of Arrival APS
Remove direct path and force radio transmission to employ a multipath; Change the signal
arrival angel by using reflective objects, e.g., mirrors; Alter clockwise/counter-clockwise
orientation of receiver (up-down attack).

Region Inclusion APIT, SerLoc
Enlarge neighborhood by wormholes; Manipulate the one-hop distance measurements;
Alter neighborhood by jamming along certain directions.

Hop Count DV-Hop
Shorten the routing path between two nodes through wormholes; Lengthen the routing
path between two nodes by jamming; Alter the hop count by manipulating the radio range;
Vary per-hop distance by physically removing/displacing nodes.

Neighbor Location Centroid Method, SerLoc
Shrink radio region (jamming); Enlarge radio region (transmit at higher power, worm-
hole); Replay; Modify the message; Physically move locators; Change antenna receive
pattern.

TABLE I
PROPERTIES EMPLOYED BY DIFFERENT LOCALIZATION ALGORITHMS AND ATTACKS THAT MAY BE LAUNCHED AGAINST THESE PROPERTIES.

IV. ROBUST LOCALIZATION: LIVING WITH BAD GUYS

As discussed in the previous section, wireless networks are suscep-
tible to numerous localization-specific attacks. These attacks will be
mounted by clever adversaries, and as a result will behave dramatically
different from measurement anomalies that arise due to the underlying
wireless medium. For example, signal strength measurements may be
significantly altered by opening doorways in a hallway, or by the pres-
ence of passersby. Although these errors are severe, and can degrade
the performance of a localization scheme, they are not intentional, and
therefore not likely to provide a persistent bias to any specific local-
ization scheme. However, the attacks mentioned in Section III will be
intelligent and coordinated, causing significant bias to the localization
results.

Solutions that can combat some of these localization attacks have
been proposed, often involving conventional security techniques [4,5].
However, as noted earlier, it is unlikely that conventional security will
be able to remove all threats to wireless localization. We therefore take
the viewpoint that instead of coming up with solutions for each attack,
it is essential to achieve robustness to unforeseen and non-filterable
attacks. Particularly, localization must function properly even in the
presence of these attacks.

Our strategy to accomplish this is to take advantage of the redun-
dancy in the deployment of the localization infrastructure to provide
stability to contaminated measurements. In particular, we develop sta-
tistical tools that may be used to make localization techniques robust
to adversarial data. As a byproduct, our techniques will be robust to
non-adversarial corruption of measurement data. For the purpose of
the discussion, we shall focus our attention on two classes of localiza-
tion schemes: triangulation, and the method of RF fingerprinting. We
have chosen these two methods since they represent a broad survey of
the methods used. Our discussion and evaluations will focus on the
case where we localize a single device. Localizing multiple nodes in-
volves applying the proposed techniques for each device that is to be
localized.

The methods we will propose here make use of the median. Median-
based approaches for data aggregation in sensor networks have re-
cently been proposed [21, 22], and use the median as a resilient esti-
mate of the average of aggregated data. On the other hand, localizing a
device involves estimating a device’s position from physical measure-
ments not directly related to position, such as signal strength. Apply-
ing robust techniques to wireless sensor localization is challenging as

it involves not only integrating robust statistical methods that estimate
position from other types of measurements, but also must consider im-
portant issues such as computational overhead.

V. ROBUST METHODS FOR TRIANGULATION

Triangulation methods constitute a large class of localization algo-
rithms that exploit some measurement to estimate distances to anchors,
and from these distances an optimization procedure is used to deter-
mine the optimal position. The robust methods that we describe can
be easily extended to other localization techniques, such as the Cen-
troid method.

Triangulation methods involve gathering a collection of {(x, y, d)}
values, where d represents an estimated distance from the wireless
device to an anchor at (x, y). These distances d may be stem from
different types of measurements, such as hop counts in multi-hop net-
works (as in the case of DV-hop [13]), time of flight (as in the case of
CRICKET), or signal strength. For example, in a hop-based scheme
like DV-hop, following the flooding of beacons by anchor nodes, hop
counts are measured between anchor points and the wireless device,
which are then transformed into distance estimates.

In the ideal case, where the distances are not subjected to any mea-
surement noise, these {(x, y, d)} values map out a parabolic surface

d2(x, y) = (x − x0)
2 + (y − y0)

2, (1)

whose minimum value (x0, y0) is the wireless device location. Gath-
ering several {(xj , yj , dj)} values and solving for (x0, y0) is a simple
least squares problem that accounts for overdetermination of the sys-
tem and the presence of measurement noise.

However, such an approach is not suitable in the presence of mali-
cious perturbations to the {(x, y, d)} values. For example, if an ad-
versary alters the hop count, perhaps through a wormhole attack or
jamming attack, the altered hop count may result in significant devia-
tion of the distance measurement d from its true value. The use of a
single, significantly incorrect {(x, y, d)} value will drive the location
estimate significantly away from the true location in spite of the pres-
ence of other, correct {(x, y, d)} values. This exposes the vulnerability
of least squares localization method to attacks, and we would like to
find a robust alternative, as discussed below, to reduce the impact of
attacks on localization.
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A. Robust Fitting: Least Median of Squares

The vulnerability of the least squares algorithm to attacks is essen-
tially due to its non-robustness to “outliers”. The general formulation
for the LS algorithm minimizes the cost function

J(θ) =

N∑
i=1

[ui − f(vi, θ)]
2, (2)

where θ is the parameter to be estimated, ui corresponds to the i-th
measured data sample, vi corresponds to the absissas for the parame-
terized surface f(vi, θ), |yi − f(xi, θ)| is the residue for the i-th sam-
ple, and N is the total number of samples. Due to the summation in
the cost function, a single influential outlier may ruin the estimation.

To increase robustness to outliers, a robust cost function is needed.
For example, the method of least median of squares, introduced by
Rousseeuw and described in detail in [23], is one of the most com-
monly used robust fitting algorithms. Instead of minimizing the sum-
mation of the residue squares, LMS fitting minimizes the median of
the residue squares

J(θ) = medi[yi − f(xi, θ)]
2. (3)

Now a single outlier has little effect on the cost function, and won’t
bias the estimate significantly. It is known that in absence of noise,
LMS tolerates up to 50 percent outliers among N total measurements,
and still give the correct estimate [23].

The exact solution for LMS is computationally prohibitive. An ef-
ficient and statistically robust alternative [23] is to solve random sub-
sets of {(xi, yi)} values to get several candidate θ̂. The median of
the residue squares for each candidate is then computed, and the one
with the least median of residue squares is chosen as a tentative esti-
mate. However, this tentative estimate is obtained from a small subset
of samples. It is desirable to include more samples that are not out-
liers for a better estimation. So, the samples are reweighted based on
their residues for the tentative estimate, followed by a reweighted least
squares fitting to get the final estimate.

The samples can be reweighted in various ways. A simple thresh-
olding method given by [23] is

wi =

{
1, | ri

s0
| ≤ γ

0, otherwise
(4)

where γ is a predetermined threshold, ri is the residue of the i-th sam-
ple for the least median subset estimate θ̂, and s0 is the scale estimate
given by [23]

s0 = 1.4826(1 +
5

N − p
)

√
medir2

i (θ̂), (5)

where p is the dimension of the estimated variable. The term (1 +
5

N−p
) is used to compensate the tendency for a small scale estimate

when there are few samples.
Assume we are given a set of N samples, and that we aim to es-

timate a p-dimensional variable θ from this ensemble. The proce-
dure for implementing the robust LMS algorithm is summarized as
follows:

1) Choose an appropriate subset size n, the total number of subsets
randomly drawn M , and a threshold γ.

2) Randomly draw M subsets of size n from the data ensemble.
Find the estimate θ̂j for each subset. Calculate the median of
residues r2

ij for every θ̂j . Here i = 1, 2, · · · , N is the index for
samples, while j = 1, 2, · · · , M is the index for the subsets.

3) Define m = arg minj medi{r2
ij}, then θ̂m is the subset esti-

mate with the least median of residues, and {rim} is the corre-
sponding residues.
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Fig. 2. The contour plot of the equation (8): probability to get at least
one good subset over contamination ratio and the number of subsets
when n = 4.

4) Calculate s0 = 1.4826(1 + 5
N−p

)
√

medir2
im.

5) Assign weight wi to each sample using Equation (4).
6) Do a weighted least squares fitting to all data with weights {wi}

to get the final estimate θ̂.

B. Robust Localization with LMS

In the absence of attacks, the device location estimate (x̂0, ŷ0) can
be found by least squares, i.e.

(x̂0, ŷ0) = arg min
(x0,y0)

N∑
i=1

[
√

(xi − x0)2 + (yi − y0)2 − di]
2. (6)

In presence of attacks, however, the adversary produces “outliers”
in the measurements. Instead of identifying this misinformation, we
would like to live with them and still get a reasonable location esti-
mate (identification of misinformation will come out as a byproduct
naturally). To achieve this goal, we use LMS instead of least squares
to estimate the location. That is, we can find (x̂0, ŷ0) such that

(x̂0, ŷ0) = arg min
(x0,y0)

medi[
√

(xi − x0)2 + (yi − y0)2−di]
2. (7)

Then the above LMS procedure can be used.
However, before using the algorithm, we need to consider two is-

sues: First, how to choose the appropriate n and M for LMS-based
localization? Second, how to get an estimate from the samples effi-
ciently? The answers depend on the required performance and the af-
fordable computational complexity. Considering that power is limited
for sensor networks, and that the computational complexity of LMS
depends on both the parameters and algorithmic implementation, we
would like to gain the robustness of LMS with minimal additional
computation compared to least squares, while exhibiting only negli-
gible performance degradation. These two issues are now addressed.
1) How to choose the appropriate n and M?

The basic idea of the LMS implementation is that, hopefully, at least
one subset among all subsets does not contain any contaminated sam-
ples, and the estimate from this good subset will thus fit the inlier (non-
corrupted) data well. Since the inlier data are the majority (> 50%) of
the data, the median of residues corresponding to this estimate will be
smaller than that from the bad subsets.

We now calculate the probability P to get at least one good subset
without contamination. Assuming the contamination ratio is ε, i.e, εN
samples are outliers, it is easy to get that

P = 1 − (1 − (1 − ε)n)M . (8)

0-7803-9202-7/05/$20.00 (C) 2005 IEEE



For a fixed M and ε, the larger n, the smaller is P . So the size of a
subset n is often chosen such that it’s just enough to get an estimate. In
our case, although the minimum number of samples needed to decide
a location is 3, we have chosen n = 4 to reduce the chance that the
samples are too close to each other to produce a numerically stable
position estimate.

Once n is chosen, we can decide the value of P for a given pair of
M and ε. A contour plot of P over a grid of M and ε is shown in
Figure 2. For larger ε, a larger M is needed to obtain a satisfactory
probability of at least one good subset. Depending on how much con-
tamination the network localization system is required to tolerate and
how much computation the system can afford, M can be chosen cor-
respondingly. Because the energy budget of the sensors is limited, and
the functionality of the sensor network may be ruined when the con-
tamination ratio is high, we chose M = 20 in our simulations, so that
the system is resistant up to 30 percent contamination with P ≥ 0.99.
2) How to get a location estimate from the samples efficiently?

To estimate the device location (x0, y0) from the measurements
{xi, yi, di}, we can use the least squares solution specified by equa-
tion (6). This is a nonlinear least squares problem, and usually involves
some iterative searching technique, such as gradient descent or New-
ton method, to get the solution. Moreover, to avoid local minimum, it
is necessary to rerun the algorithm using several initial starting points,
and as a result the computation is relatively expensive. Considering
that sensors have limited power, and LMS finds estimates for M sub-
sets, we may want to have a suboptimal but more computationally ef-
ficient algorithm.

Recall that equation (6) is equivalent to solving the following equa-
tions when N ≥ 2:

(x1 − x0)
2 + (y1 − y0)

2 = d2
1

(x2 − x0)
2 + (y2 − y0)

2 = d2
2 (9)

...

(xN − x0)
2 + (yN − y0)

2 = d2
N

Averaging all the left parts and right parts respectively, we get

1

N

N∑
i=1

[(xi − x0)
2 + (yi − y0)

2] =
1

N

N∑
i=1

d2
i . (10)

Subtracting each side of the equation above from equation (9), we lin-
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Fig. 3. The comparison between linear LS, and nonlinear LS starting
from the linear estimate.

earize to get the new equations

(x1 − 1

N

N∑
i=1

xi)x0 + (y1 − 1

N

N∑
i=1

yi)y0 =

1

2
[(x

2
1 − 1

N

N∑
i=1

x
2
i ) + (y

2
1 − 1

N

N∑
i=1

y
2
i ) − (d

2
1 − 1

N

N∑
i=1

d
2
i )]

.

.

. (11)

(xN − 1

N

N∑
i=1

xi)x0 + (yN − 1

N

N∑
i=1

yi)y0 =

1

2
[(x

2
N − 1

N

N∑
i=1

x
2
i ) + (y

2
N − 1

N

N∑
i=1

y
2
i ) − (d

2
N − 1

N

N∑
i=1

d
2
i )],

which can be easily solved using linear least squares.
Due to the subtraction, the optimum solution of the linear equations

(11) is not exactly the same as the optimum solution of the nonlinear
equations (9), or equivalently equation (6). However, it can save com-
putation and also serve as the starting point for the nonlinear LS prob-
lem. We noticed that there is a non-negligible probability of falling
into a local minimum of the error surface when a random initial value
is used with Matlab’s fminsearch function to find the solution to equa-
tion (6). We observed that initiating the nonlinear LS from the linear
estimate does not get trapped in a local minimum. In other words,
the linear estimate is close to the global minimum of the error surface.
A comparison of the performance of the linear LS technique, and the
nonlinear LS searching starting from the linear estimate is presented
in Figure 3. Nonlinear searching from the linear estimate performs
better than the linear method at the price of a higher computational
complexity. Here, we only used 30 samples, and that the performance
difference between the linear and nonlinear methods should decrease
as the number of samples increases.

C. Simulation

To test the performance of localization using LMS, we need to
build a threat model first. In this work, we assume that the adver-
sary successfully gains the ability to arbitrarily modify the distance
measurements for a fraction ε of the total anchor nodes. The con-
tamination ratio ε should be less than 50 percent, the highest con-
tamination ratio LMS can tolerate. The goal of the adversary is to
drive the location estimate as far away from the true location as pos-
sible. Rather than randomly perturbing the measurements of these
contaminated devices, the adversary should coordinate his corruption
of the measurements so that they will push the localization toward
the same wrong direction. The adversary will thus tamper measure-
ments so they lie on the parabolic surface d2

a(x, y) with a minimum
at (xa, ya). As a result the localization estimate will be pushed to-
ward (xa, ya) from the true position (x0, y0) in the absence of robust
countermeasures. The larger distance between (xa, ya) and (x0, y0),
the larger the estimate deviates from (x0, y0). So we use the distance
da =

√
(xa − x0)2 + (ya − y0)2 as a measurement of the strength

of the attack.
In our simulation, in addition to the underlying sensor network, we

had a localization infrastructure with N = 30 anchor nodes that were
randomly deployed in a 500 × 500m2 region. We assume that the
sensor to be localized gets a set of {xi, yi, di} observations by either
DV-hop or another distance measurement scheme. In other words, the
dj may come from multihop measurements. The measurement noise
obeys a Gaussian distribution with mean 0 and variance σ2

n. The adver-
sary tampers Nε measurements such that they all “vote” for (xa, ya).
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Fig. 4. The performance comparison between LS and LMS for local-
ization in presence of attack.
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Fig. 5. (a) The impact of ε on the performance of LS and LMS
algorithms at σn = 15. (b) The impact of σn on the performance of
LS and LMS algorithms at ε = 0.2.

LS and LMS localization algorithms are applied to the data to ob-
tain the estimates (x̂0, ŷ0). For computational simplicity, we use lin-
ear least squares to get location estimates, realizing that a nonlinear
least squares approach will improve the performance a little, but won’t
change the other features of the algorithms. The distance between the
estimate and the true location is the corresponding estimation error.

For each contamination ratio ε and measurement noise level σn, we
observed the change of the square root of mean square error (MSE)
with the distance da =

√
(xa − x0)2 + (ya − y0)2. As an example,

the performances at two different pairs of σn and ε are presented in
Figure 4, where the value at each point is the average over 2000 trials.
As expected, the estimation error of ordinary LS increases as da in-
creases due to the non-robustness of the least squares to outliers. The
estimation error of LMS increases first until it reaches the maximum at
some critical value of da. After this critical value, the error decreases
slightly and then stabilizes. In other words, if LMS is used in local-
ization, it’s useless or even harmful for the adversary to attempt to
conduct too powerful of an attack.

The performance of the LS and LMS algorithms are affected by both
the contamination ratio and the noise level. Figure 5 (a) illustrates the
degradation of the performance as ε increases at a fixed σn = 15,
while Figure 5(b) illustrates the impact of measurement noise σn on
the performance at a fixed ε = 0.2. Not surprisingly, the higher the
contamination ratio, the larger the measurement noise, the larger is the
estimation error. Also, since we chose n and M so the system would
be robust up to 30 percent contamination, 35 percent contamination re-
sults in severe performance degradation as shown in Figure 5(a). More
computations might improve the performance at high contamination
ratio, but as noted earlier, due to the limitation of the power in sensor
network, we trade the performance for reduced complexity.

We also noticed from Figure 4 and Figure 5 (b) that at low attacking
strength, the performance of LS is actually better than LMS. In order to
elucidate the reason for this behavior, let us look the simpler problem
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Fig. 6. Example linear regression demonstrating that LMS performs
worse than LS when the inlier and outlier data are too close.
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Fig. 7. The performance of the switching algorithm comparing to LS
and LMS algorithms.

of fitting a line through data. In Figure 6, we present the line-fitting
scenario using an artificial data set with 40 percent contamination. We
generated 50 samples, among which 20 samples with x = 31, · · · , 50
are the contaminated outliers. When the outlier data are well separated
from the inlier data, LMS can detect this and fit the inlier data only,
which gives a better fitting than LS. However, when the outlier data
are close to the inlier data, it’s hard for LMS to tell the difference, so
it may fit part of the inlier data and part of the outlier data, thus giving
a worse estimate than LS.

Therefore, when the attack strength is low, LS performs better than
LMS. Further, in this case, LS also has a lower computational cost.
Since power consumption is an important concern for sensor networks,
we do not want to use LMS when not necessary. We have developed
an algorithm, discussed below, where we may switch between LS and
LMS estimation and achieve the performance advantages of each.

D. An Efficient Switched LS-LMS Localization Scheme

We use the observation that when outliers exist, the variance of the
data will be larger than that when no outlier exists. Moreover, the far-
ther outliers are from the inliers, the larger the variance. This suggests
that the variance of the data can be used to indicate the distance be-
tween inliers and outliers. Therefore, we can do a LS estimate over the
data first, and use the residues to estimate the data variance σ̂n from
the residuals ri, i.e.

σ̂n =

√∑N

i=1
r2

i

N − 2
.

Then the ratio σ̂n
σn

represents the variance expansion due to possible
outliers. If the normal measurement noise level σn is known, which is
a reasonable assumption in practice, we can compare the σ̂n

σn
to some

threshold T . If σ̂n
σn

> T , we choose to apply the LMS algorithm;
otherwise, we just use the LS estimate we have calculated. We refer
to this as the switched algorithm. In our simulation, we found that
T = 1.5 gives quite good results over all tested ε and σn pairs. Two
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examples with different ε and σn are shown in Figure 7. After the
switching strategy is deployed, the performance curves (the triangles
in Figure 7) are very close to the lower envelop of the performance of
LS and LMS algorithms.

VI. ROBUST METHODS FOR RF-BASED FINGERPRINTING

A different approach to localization is based upon radio-frequency
fingerprinting. One of the first implementations was the RADAR sys-
tem [9, 24]. The system was shown to have good performance in an
office building. In this section, we will show how robustness can be
applied to such a RF-based system to obtain attack-tolerant localiza-
tion.

In RADAR, multiple base stations are deployed to provide overlap-
ping coverage of an area, such as a floor in an office building. During
set up, a mobile host with known position broadcasts beacons peri-
odically. The signal strengths at each base station are measured and
stored. Each record has the format of {x, y, ss1, · · · , ssN}, where
(x, y) is the mobile position, and ssi is the received signal strength
in dBm at the i-th base station. N , the total number of base stations,
should be at least 3 to provide good localization performance. To re-
duce the noise effect, each ssi is usually the average of multiple mea-
surements collected over a time period. The collection of all measure-
ments forms a radio map that consists of the featured signal strengths,
or fingerprints, at each sampled position.

Following setup, a mobile may be localized by broadcasting bea-
cons and using the signal strengths measured at each base station. To
localize the mobile user, we search the radio map collected in the setup
phase, and find the fingerprint that best matches the signal strengths
observed. That is, the central base station compares the observed sig-
nal energy {ss′1, · · · , ss′N} with the recorded {x, y, ss1, · · · , ssN},
and pick the location (x, y) that minimizes the Euclidean distance√∑N

i=1
(ssi − ss′i)2 as the location estimate of the mobile user. This

technique is called nearest neighbor in signal space (NNSS). A slight
variant of the technique involves finding the k nearest neighbors in sig-
nal space, and averaging their coordinates to get the location estimate.
It was shown in [9] that averaging 2 to 4 nearest neighbors improves
the location accuracy significantly.

The location estimation method described above is not robust to pos-
sible attacks. If the reading of signal strength at one base station is
corrupted, the estimate can be dramatically different from the true lo-
cation. Such an attack can be easily launched by inserting an absorbing
barrier between the mobile host and the base station. Sudden change of
local environment, such as turning on a microwave near one base sta-
tion, can also cause incorrect signal strength readings. To obtain rea-
sonable location estimates, in spite of attacks or sudden environmental
changes, we propose to deploy more base stations and use a robust
estimation method to utilize the redundancy introduced. In particular,

instead of minimizing the Euclidean distance
√∑N

i=1
(ssi − ss′i)2 to

find nearest neighbors in signal space, we can minimize the median of
the distances in all dimensions, i.e. minimize medN

i=1(ssi − ss′i)
2 to

get the “nearest” neighbor. In this way, a corrupted estimate won’t bias
the neighbor searching significantly.

We tested the proposed method through simulations. As pointed
out in [9], the radio map can be generated either by empirical mea-
surements, or by signal propagation modeling. Although the modeling
method is less accurate than the empirical method, it still captures the
data fairly well and provides good localization. In [9] a wall attenua-
tion factor model was used to fit the collected empirical data and, after
compensating for attenuation due to intervening walls, it was found
that the signal strength varies with the distance in a trend similar to
the generic exponential path loss [25]. In our simulation, we use the
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Fig. 8. (a) The CDF of the error distance for the NNSS method in
Euclidean distance and in median distance, with and without an attack
(one reading is modified to α · ssi, where α = 0.6). (b) Median of the
error distance vs. the attacking strength α (one reading is modified to
α · ssi).

model, which we adopted from [9],

P (d)[dBm] = P (d0)[dBm] − 10γlog(
d

d0
), (12)

to generate signal strength data. We used the parameter d0 = 1m,
P (d0) = 58.48 and γ = 1.523, which were obtained in [9] when
fitting the model with the empirical data. We emphasize that the trends
shown in our results are not affected by the selection of the parameters.
We also added random zero-mean Gaussian noise with variance 1dBm
so that the received signal strengths at a distance have a similar amount
of variation as was observed in [9].

The rectangular area we simulated was similar to the region used in
[9], and had a size 45m × 25m, which is a reasonable size for a large
indoor environment. Instead of three base stations, we employed six to
provide redundancy for robust localization. We collected samples on
a grid of 50 regularly spaced positions in order to form the radio map.
During localization, a mobile sends beacons, and the signal strengths
at the base stations are recorded. The nearest neighbors in signal space
in terms of Euclidean distance and median distance are each found.
The coordinates of the four nearest neighbors are averaged to get the
final location estimate of the mobile user.

To simulate the attack, we randomly choose one reading ssi and
modify it to α · ssi, where α indicates the attacking strength. α = 1
means no attack. Figure 8 (a) shows the cumulative distribution func-
tion (CDF) of the error distance for the NNSS method in Euclidean
distance and in median distance, with and without an attack. In pres-
ence of an attack with α = 0.6, which is very easy to launch from
a practical point of view, the Euclidean-based NNSS method shows
significantly larger error than when there is no attack, while for the
median-based NSSS approach there is little change (the curves with
and without attack almost completely overlap in Figure 8 (a)). Al-
though its performance is slightly worse than Euclidean-NNSS in the
absence of attacks, median-NNSS is much more robust to possible at-
tacks. In Figure 8 (b), we plot the 50th percentile value of the error
distance for a series of α from 0.2 to 1.8. NNSS in median distance
shows good performance across all α’s.

With six base stations, the system can tolerate attacks on up to two
readings. For simplicity, we assume the adversary randomly selects
two readings and modifies them to α · ssi. We note that such an
approach is not a coordinated attack, and there may be better attack
strategies able to produce larger localization error. Figure 9 (a) shows
the CDF of the error distance at α = 0.6, and Figure 9 (b) shows the
change of median error distance with α. Again, the median-NNSS ex-
hibits better resistance to attacks. We observed the same phenomenon
as that in the triangulation method: it is better for the adversary to not
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Fig. 9. (a) The CDF of the error distance for the NNSS method in
Euclidean distance and in median distance, with and without an attack
(two readings are modified to α · ssi, where α = 0.6). (b) Median
of the error distance vs. the attacking strength α (two readings are
modified to α · ssi).

be too greedy when attacking the localization scheme. Finally, we note
that the computational requirements for Euclidean-NNSS and median-
NNSS are comparable. The fact that there is only marginal perfor-
mance improvement for Euclidean-NNSS when there are no attacks
suggests that a switched algorithm is not critical for fingerprinting-
based localization.

VII. CONCLUSIONS

As wireless networks are increasingly deployed for location-based
services, these networks are becoming more vulnerable to misuses and
attacks that can lead to false location calculation. Towards the goal
of securing localization, this paper has made two main contributions.
It first enumerates a list of novel attacks that are unique to wireless
localization algorithms. Further, this paper proposes the idea of toler-
ating attacks, instead of eliminating them, by exploiting redundancies
at various levels within wireless networks. We explored robust statis-
tical methods to make localization attack-tolerant. We examined two
broad classes of localization: triangulation and RF-based fingerprint-
ing methods. For triangulation-based localization, we examined the
use of a least median squares estimator for estimating position. We
provided analysis for selecting system parameters. We then proposed
an adaptive least squares and least median squares position estimator
that has the computational advantages of least squares in the absence
of attacks and switches to a robust mode when being attacked. For
fingerprinting-based localization, we introduced robustness through
the use of a median-based distance metric.
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