
A Simulation-based Study of Scheduling Mechanisms for a
Dynamic Cluster Environment �

Yanyong Zhang Anand Sivasubramaniam Jose Moreira Hubertus Franke

Department of Computer Science & Engineering IBM T. J. Watson Research Center
The Pennsylvania State University P. O. Box 218

University Park, PA 16802 Yorktown Heights, NY 10598
fyyzhang,anandg@cse.psu.edu fjmoreira,frankehg@us.ibm.com

ABSTRACT
Scheduling of processes onto processors of a parallel ma-
chine has always been an important and challenging area of
research. The issue becomes even more crucial and di�cult
as we gradually progress to the use of o�-the-shelf work-
stations, operating systems, and high bandwidth networks
to build cost-e�ective clusters for demanding applications.
Clusters are gaining acceptance not just in scienti�c applica-
tions that need supercomputing power, but also in domains
such as databases, web service and multimedia, which place
diverse Quality-of-Service (QoS) demands on the underlying
system. Further, these applications have diverse character-
istics in terms of their computation, communication and I/O
requirements, making conventional parallel scheduling solu-
tions, such as space sharing or coscheduling, an unattractive
option. At the same time, leaving it to the native operat-
ing system of each node to make decisions independently
can lead to ine�ective use of system resources whenever
there is communication. Instead, an emerging class of dy-
namic coscheduling mechanisms, that attempt to take reme-
dial actions to guide the system towards coscheduled execu-
tion without requiring explicit synchronization, o�er a lot of
promise for cluster scheduling. Using a detailed simulator,
this paper evaluates the pros and cons of di�erent dynamic
coscheduling alternatives, while comparing their advantages
over traditional coscheduling (and not performing any co-
ordinated scheduling at all). The impact of dynamic job
arrivals, job characteristics and di�erent system parameters
on these alternatives are evaluated in terms of several per-
formance criteria.
Keywords: Parallel Scheduling, Coscheduling, Dynamic
Coscheduling, Clusters, Simulation.

�This research has been supported in part by NSF Career
Award MIP-9701475, grant CCR-9900701, and equipment
grants CDA-9617315 and EIA-9818327.

1. INTRODUCTION
Scheduling of processes onto processors of a parallel ma-
chine has always been an important and challenging area
of research. Its importance stems from the impact of the
scheduling discipline on the throughput and response times
of the system. The research is challenging because of the nu-
merous factors involved in implementing a scheduler. Some
of these in
uencing factors are the parallel workload, pres-
ence of any sequential and/or interactive jobs, native op-
erating system, node hardware, network interface, network,
and communication software. The recent shift towards the
adoption of o�-the-shelf clusters/networks of workstations
(called COWs/NOWs) for cost-e�ective parallel computing,
makes the design of an e�cient scheduler even more crucial
and challenging. Clusters are gaining acceptance not just
in scienti�c applications that need supercomputing power,
but also in domains such as databases, web service and mul-
timedia, which place diverse Quality-of-Service (QoS) de-
mands on the underlying system (not just higher throughput
and/or lower response times). Further, these applications
have diverse characteristics in terms of the computation,
communication and I/O operations which raises complica-
tions in multiprogramming the system. Traditional solu-
tions that have been used in conventional parallel systems
are not adequately tuned to handle the diverse workloads
and performance criteria required by cluster environments.
This paper investigates the design space of scheduling strate-
gies for clusters by extensively evaluating nine di�erent al-
ternatives to understand their pros and cons, and compares
them with a conventional solution (coscheduling).

Scheduling is usually done in two steps. The �rst step, spa-
tial scheduling, consists of assigning processes to nodes. (A
node can have one or more processors, and runs a single op-
erating system image.) The second step, temporal schedul-
ing, consists of time multiplexing the various processes as-
signed to a node for execution by the processors of that
node. There is a considerable body of literature regarding
spatial scheduling and we do not delve on this problem in
this paper, nor do we examine the issue of migrating pro-
cesses during execution for better load balance. Without
loss of generality, for this paper we assume one processor
(CPU) per node, and an incoming job speci�es how many
CPUs it needs, and executes one task (process) on each of
the allocated CPUs.

The second scheduling step, temporal scheduling, is perhaps
more important for a cluster. Just as common o�-the-shelf
(COTS) hardware has driven the popularity of clusters, it
is rather tempting to leave it to the native (COTS) operat-
ing system scheduler to take care of managing the processes
assigned to its node. However, the lack of global knowl-
edge at each node can result in lower CPU utilization, and
higher communication or context switching overheads. As a
result, there have traditionally been two approaches to ad-
dress this problem. The �rst is space sharing [8], which is
a straightforward extension of batching to parallel systems.
Multiple jobs can execute concurrently at di�erent nodes,
but each node is exclusively allocated to one process of a
job, which then runs to completion. Space sharing is simple
to implement, and reduces context switching costs. How-
ever, space sharing in isolation can result in poor utilization
(nodes can be free even though there are jobs waiting). Also,
the lack of multiprogramming can hurt when a process per-
forms a lot of I/O. The second approach is a hybrid scheme,
called (exact) coscheduling or gang scheduling [12, 5, 4, 6],
that combines time sharing with space sharing. The pro-
cesses of a job are scheduled on their respective nodes at
the same time for a given time quantum, the expiration of
which results in a synchronization between the nodes (using
logical or physical clocks) to decide on the next job to run.
This scheme usually requires long time quanta to o�set high
context switching and synchronization costs. Longer time
quanta make the system less responsive for interactive and
I/O intensive jobs (database services, graphics and visual-
ization applications etc.). In addition, strict coscheduling
also keeps the CPU idle while a process is performing I/O
within its allotted quantum [6].

Recently, there has been interest in developing strategies
that approximate coscheduling behavior without requiring
explicit synchronization between the nodes (that still com-
bine space and time sharing). We refer to this broad class
of strategies that approximate coscheduled execution as dy-
namic coscheduling mechanisms. The enabling technologies
that have made this approach possible is the ability of the
network interface card (NIC) and messaging layers to pro-
vide protected multi-user access to the network in conjunc-
tion with user-level messaging. It is not necessary to perform
network context switching when the processes are switched
out on their respective CPUs as was necessary [17, 7] until
recently. Dynamic coscheduling strategies try to hypothe-
size what is scheduled at remote nodes using local events
(messaging actions/events in particular), to guide the na-
tive operating system scheduler towards coscheduled execu-
tion whenever needed. These strategies o�er the promise
of coscheduling, without the related overheads and scalabil-
ity/reliability problems.

Prior to our work [10, 11], there were only two suggestions
[1, 15, 2] on how local messaging actions can be used to
implement dynamic coscheduling. Both these mechanisms
incur interrupts which can hurt performance under some
situations. We have proposed two alternates called Periodic
Boost and Spin Yield, and have experimentally shown Pe-
riodic Boost to outperform the rest using a cluster of eight
Sun Ultra Enterprise servers running MPI applications [10,
11]. While our earlier study is a preliminary foray into this
area, a comprehensive exercise exploring the pros and cons

of these di�erent alternatives is needed to answer several
open and crucial questions:

� How do the di�erent dynamic coscheduling alterna-
tives compare when one considers dynamic job arrivals
with di�erent job sizes (number of CPUs) and exe-
cution times? Our earlier exercise considered only a
few (constant) pre-determined number of jobs, each
demanding a constant number of CPUs and taking
the same execution time. How does the arrival rate
(load) of the jobs a�ect the average response times
and throughput of the system?

� What is the impact of job characteristics on the per-
formance of the system for the di�erent scheduling al-
ternatives? Speci�cally, how do the schemes compare
as one varies the relative fraction of the computation
(requiring CPU and memory resources only), commu-
nication and I/O performed by a job? What is the
impact of a multiprogrammed workload consisting of
di�erent job mixes? As mentioned earlier, clusters are
intended to take on the demands of diverse applica-
tions, each with its own computation, communication
and I/O characteristics (for instance, a database ap-
plication may be I/O intensive while a scienti�c appli-
cation may be CPU or communication intensive), and
should still meet the QoS requirements of each ap-
plication. In addition, how does the work imbalance
and skewness between the tasks (executing on di�erent
CPUs) a�ect the performance of each alternative?

� How do the system parameters such as the multipro-
gramming level at each node and the operating system
costs for context switching and interrupt processing af-
fect the relative performance of the schemes?

We attempt to answer these questions using an extensive
simulation framework and an abstraction of a real workload
[6] that has been drawn from an actual supercomputing en-
vironment (Lawrence Livermore National Labs). Eight dif-
ferent dynamic coscheduling strategies are evaluated using
this infrastructure, and compared with exact co-scheduling
(as well as with not performing any coordinated scheduling
at all) to draw revealing insights. To our knowledge, there
has not been any prior work exploring this extensive design
space using a spectrum of performance metrics (through-
put, response time, wait time, and utilization) and dynamic
workloads.

The rest of this paper is organized as follows. The next sec-
tion explains the di�erent scheduling alternatives and how
they are modeled in our simulator. Section 3 gives details on
the simulator itself, together with the simulation parameters
and performance metrics under consideration. The perfor-
mance results are presented in Section 4. Finally, Section
5 summarizes the observations and outlines directions for
future research.

2. SCHEDULING STRATEGIES
In the following discussion, we give a quick overview of user-
level messaging. We then present the (exact) coscheduling
model followed by the native operating system scheduler at

each node that is modeled as the core around which the
dynamic coscheduling mechanisms are structured. Finally,
the details of the di�erent coscheduling heuristics are pre-
sented. All the models have been designed and developed
based on our implementation [10, 11] of these mechanisms
on an actual Sun Solaris cluster connected by Myrinet.

2.1 User-level Networking (ULN)
Traditional communication mechanisms have necessitated
going via the operating system kernel to ensure protection.
Recent network interface cards (NIC) such as Myrinet, pro-
vide su�cient capabilities/intelligence, whereby they are able
to monitor regions of memory for messages to become avail-
able, and directly stream them out onto the network with-
out being explicitly told to do so by the operating system.
Similarly, an incoming message is examined by the NIC,
and directly transferred to the corresponding application
receive bu�ers in memory (even if that process is not cur-
rently scheduled on the host CPU). From an application's
point of view, sending translates to appending a message to
a queue in a region of its virtual address space (called an end-
point), and receiving translates to (waiting and) dequeuing
a message from its endpoint. To avoid interrupt processing
costs, the waiting is usually implemented as polling (busy-
wait). Experimental implementations of variations of this
mechanism on di�erent hardware platforms have demon-
strated end-to-end (application-to-application) latencies of
10-20 microseconds for short messages [18, 19, 13], while
most traditional kernel-based mechanisms are an order of
magnitude more expensive.

User-level messaging, though preferable for lowering the com-
munication overhead, actually complicates the issue from
the scheduling viewpoint. A kernel-based blocking receive
call, would be treated as an I/O operation, with the oper-
ating system putting the process to sleep. This may avoid
idle cycles (which could be given to some other process at
that node) spent polling for message arrival in a user-based
mechanism. E�cient scheduling support in the context of
user-level messaging thus presents interesting challenges.

2.2 Coscheduling or Gang Scheduling (GS)
Exact coscheduling or Gang Scheduling (we will henceforth
refer to this as just coscheduling) ensures that the pro-
cesses/tasks of a job are scheduled on their respective nodes
at the same time. This usually requires some means of
explicit or implicit synchronization to make a coordinated
scheduling decision at the end of each time quantum.

The simulation model is based on the implementation of
the GangLL scheduler [9, 6] on the Blue Paci�c machine
at Lawrence Livermore National Labs. The model uses
an Ousterhout [12] matrix with the columns representing
the CPUs and rows representing the time quanta (as many
rows as the multiprogramming level). In an actual system,
the multiprogramming level (MPL) will be set based on the
available resources (such as memory, swap space etc.) that
can handle a certain number of jobs concurrently without
signi�cantly degrading performance. A job is allocated the
required number of cells in a single row if available. Else, it
is made to wait in an arrival queue (served in FCFS order)
until there are enough free cells in a row. During each time
quantum, a CPU executes the assigned job for that row in

the matrix, and does not move to the next row until the
next quantum (regardless of whether the process is waiting
for a message, or performing I/O, or even �nishes before
the quantum ends). At the end of the quantum, a context
switch cost is incurred. This not only includes the tradi-
tional costs, but also the cost for synchronizing between the
nodes before it schedules the job for the next quantum (Gan-
gLL [6] actually uses physical clocks with large time quanta
instead of explicit synchronization). Message receives are
implemented as busy-waits (spinning), though some of this
time could get hidden if the process is context switched out
(quantum expires).

2.3 Local Scheduling
We refer to the system which does not make any coordi-
nated scheduling decisions across the nodes as local schedul-
ing. The native operating system is left to schedule the
processes at each node. As in coscheduling, each node can
again handle a maximum of MPL processes at any time,
with the di�erence that an arriving job does not have to
wait until free slots are found in a single row. Rather, a job
can be scheduled to the corresponding CPUs that are not
already operating at their full MPL capacity (can be a dif-
ferent row position for each column if one is to look at this
problem as �lling the Ousterhout matrix) . If the job cannot
�nd that many CPUs, it waits in an arrival queue (served in
FCFS order) until it does. A brief description of the native
scheduler (multi-level feedback queue) at each node, which
closely resembles the Solaris scheduler, follows.

There are 60 priority levels (0 to 59 with a higher number de-
noting a higher priority) with a queue of runnable processes
at each level. The process at the head of the highest prior-
ity queue is executed �rst. Higher priority levels get smaller
time slices than lower priority levels, that range from 20 ms
for level 59 to 200 ms for level 0. At the end of the quan-
tum, the currently executing process is degraded to the end
of the queue of the next lower priority level. Process prior-
ity is boosted (to the head of the level 59 queue) when they
return to the runnable state from the blocked state (comple-
tion of I/O, signal on a semaphore etc.) This design strives
to strike a balance between compute and I/O bound jobs,
with I/O bound jobs typically executing at higher priority
levels to initiate the I/O operation as early as possible. The
scheduler, which runs every millisecond, ensures that lower
priority processes are preempted if a higher priority process
becomes runnable (the pre-emption may thus not take place
immediately after priority changes). For fairness, the prior-
ities of all processes are raised to level 59 every second.

The ULN messaging actions explained above are used as is
in local; send is simply an append to a queue in memory and
receive is busy waiting (spinning) in user-space for message
arrival (consuming CPU cycles) This scheme has been con-
sidered as a baseline to show the need for a better scheduling
strategy.

2.4 Dynamic Coscheduling Strategies
As mentioned earlier, these strategies rely on messaging ac-
tions to guide the system towards coscheduled execution,
and there is no coordinated e�ort explicitly taken to achieve
this goal. Logically, there are two components in the inter-
action between a scheduler and the communication mech-

anism. The �rst is related to how the process waits for a
message. This can involve: (a) just spinning (busy wait); (b)
blocking after spinning for a while; or (c) yielding to some
other process after spinning for a while. The second com-
ponent is related to what happens when a message arrives
and is transferred to application-level bu�ers. Here again,
there are three possibilities: (a) do no explicit rescheduling;
(b) interrupt the host and take remedial steps to explicitly
schedule the receiver process; and (c) periodically examine
message queues and take steps as in (b). These two com-
ponents can be combined to give a 3 � 3 design space of
dynamic coscheduling strategies as shown in Table 1.

What do you do How do you wait for a message?
on message arrival? Busy Wait Spin Block Spin Yield

No Explicit Reschedule Local SB SY
Interrupt & Reschedule DCS DCS-SB DCS-SY
Periodically Reschedule PB PB-SB PB-SY

Table 1: Design space of Dynamic Coscheduling
strategies

In the following discussion, we limit our explanations to fa-
miliarize the reader with these strategies and to explain how
they are simulated, rather than give a detailed discussion of
their implementation on an actual operating system. For a
detailed description of the implementation of these di�erent
strategies on a Sun Solaris cluster connected by Myrinet,
the reader is referred to [10]. The simulation models and
parameters are based on our earlier experimental exercises.
All these strategies use the same scheme described above in
local to assign the processes (tasks) of an arriving job to the
di�erent CPUs.

2.4.1 Spin Block (SB)
Versions of this mechanism have been considered by others
in the context of implicit coscheduling [3, 1] and demand-
based coscheduling [15]. In this scheme, a process spins on
a message receive for a �xed amount of time before blocking
itself. The �xed time for which it spins, henceforth referred
to as spin time, is carefully chosen to optimize performance.
The rationale here is that if the message arrives in a rea-
sonable amount of time (spin time), the sender process is
also currently scheduled and the receiver should hold on to
the CPU to increase the likelihood of executing in the near
future when the sender process is also executing. Otherwise,
it should block so that CPU cycles are not wasted.

The simulation model sets the spin time for a message slightly
higher than the expected end-to-end latency (in the absence
of any contention for network or node resources) of the mes-
sage it is waiting for. If the corresponding message arrives
within this period, the mechanism works the same way as
the earlier scheduling schemes (busy-wait). Else, the process
makes a system call to block using a semaphore operation.
On subsequent message arrival, the NIC �rmware (having
been told that the process has blocked) raises an interrupt,
which is serviced by the kernel to unblock the process. As
mentioned earlier, the process gets a priority boost (to the
head of the queue of the highest priority level) on wakeup.
Costs for blocking/unblocking a process, context switches
resulting from these operations, and interrupt processing are
modeled in the simulation.

2.4.2 Spin Yield (SY)
In SB, the process blocks after spinning. This has two conse-
quences. First, an interrupt is required to wake the process
on message arrival (which is an overhead). Second, the block
action only relinquishes the CPU and there is no hint given
to the underlying scheduler as to what should be scheduled
next. In our earlier work [10], we have proposed Spin Yield
(SY) as an alternative to address these problems. In this
strategy, after spinning for the required spin time, the pro-
cess does not block. Instead, it lowers its priority, boosts the
priority of another process (based on the pending messages
of the other processes at that workstation), and continues
spinning. This avoids an interrupt (since the process keeps
spinning albeit at a lower priority), and gives hints to the
scheduler as to what should be scheduled next.

In the simulation, the time spent spinning before yielding
is again set similar to the SB mechanism. On yielding, the
process priority is dropped to a level that is one below the
lowest priority of a process at that node and the priority
of another process with a pending (unconsumed) message is
boosted to the head of level 59 (the details on the algorithm
that is used to select the candidate for boosting is described
later in the context of the PB mechanism). The application
resumes spinning upon returning from the yield mechanism
(system call), and the scheduler is likely to preempt this
process at the next millisecond boundary. System call costs,
together with the overheads for manipulating the priority
queues are accounted for in the yield call.

2.4.3 Demand-based Coscheduling (DCS)
Demand-based coscheduling [15] uses an incoming message
to schedule the process for which it is intended, and pre-
empts the current process if the intended receiver is not
currently scheduled. The underlying rationale is that the
receipt of a message denotes the higher likelihood of the
sender process of that job being scheduled at the remote
workstation at that time.

Our DCS model is similar to the one discussed in [15]. Every
1 millisecond, the NIC �nds out which process is currently
being scheduled on its host CPU. The NIC uses this infor-
mation to raise an interrupt (if the receiver process is not
currently scheduled) on message arrival after transferring it
to the corresponding endpoint. The interrupt service routine
simply raises the priority of this receiver process to the head
of the queue for level 59 so that it can possibly get sched-
uled at the next scheduler invocation (millisecond bound-
ary). The application sends and receives (implemented as
busy-waits) remain the same as in Local. The model again
ensures that the costs for interrupts and queue manipula-
tions are included based on experimental results.

2.4.4 Periodic Boost (PB)
We have proposed this as another interrupt-less alternative
to address the ine�ciencies arising from scheduling skews
between processes. Instead of immediately interrupting the
host CPU on message arrival as in DCS, the NIC functional-
ity remains the same as in the baseline ULN receive mecha-
nism. A kernel activity (thread) becomes active every 1 mil-
lisecond (the resolution of the scheduler activation), checks
message queues and boosts the priority of a process based
on some heuristic. Whenever the scheduler becomes active

(at the next millisecond boundary), it would pre-empt the
current process and schedule the boosted process.

There are several heuristics that one could use within the
PB mechanism to decide on who or when to boost. In this
paper, we use one of the eight heuristics identi�ed in [21],
which can be explained brie
y as follows. The PB mecha-
nism goes about examining message queues in a round-robin
fashion starting with the current process, and stops at the
�rst process performing a receive with the message that it
is receiving present in the endpoint bu�ers (message has
arrived but has not yet been consumed by a receive call).
This process is then boosted to the head of level 59 queue.
If there is no such process, then again going about it in a
round-robin fashion, the mechanism tries to �nd a process
which is not within a receive call (this can be incorporated
easily into the existing ULN mechanism by simply setting
a
ag in the endpoint when the application enters a receive
call, and resetting it when it exits from the call). It then
boosts this process if there is one. Else, the PB mechanism
does nothing. This algorithm is used in �nding a candidate
for boosting in the SY mechanism as well.

The simulation models the details of the PB mechanism,
incorporating the costs associated with polling the endpoints
to �nd pending message information, and the subsequent
costs of manipulating priority queues.

2.4.5 DCS-SB, PB-SB, DCS-SY, PB-SY
One could combine the choices for the two messaging actions
as was shown in Table 1 to derive integrated approaches
that get the better (or worse) of both choices. As a re-
sult, there is nothing preventing us from considering the
four alternatives - Demand-based coscheduling with Spin-
Block (DCS-SB), Periodic Boost with Spin-Block (PB-SB),
Demand-based coscheduling with Spin-Yield (DCS-SY) and
Periodic Boost with Spin Yield (PB-SY) - as well.

3. EXPERIMENTAL PLATFORM
Before we present performance results, we give details on
the simulation platform, the workloads used to drive the
simulator, the parameters that are varied in this exercise,
and the performance metrics of interest.

3.1 Simulator

CPU

task A task B . .

scheduler

NIC

CPU

task A task B . .

scheduler

NIC

.

Network

EFGH

Arrival Queue

Figure 1: Structure of the Simulator

We use a discrete-event simulator that has been built us-
ing the process-based CSIM package. The simulator has
the following modules for each node in the system: network
interface, operating system scheduler, and the application

process. In addition, there is a network module that con-
nects the di�erent nodes. Since the focus of this paper is
more on the scheduling mechanisms, we use a simple linear
model for the network that is parameterized by the message
size and do not consider network contention though the con-
tention at the interface is modeled. The network interface
module examines incoming messages from the network and
deposits them into the corresponding endpoint. Similarly, it
waits for outgoing messages and delivers them into the net-
work module. Costs for these operations have been drawn
from microbenchmarks run on our experimental platform
discussed in our earlier work [10, 11, 16]. The core scheduler
at each node uses a multi-level feedback queue that has been
discussed in Section 2.3. The scheduler becomes active every
1 millisecond at each node (similar to the Solaris scheduler).
At this time, it checks if the quantum has expired for the
currently scheduled process, and if so it preempts and re-
schedules another. Even if the quantum has not expired,
the scheduler consults the feedback queues to check if there
is a ready process with a priority higher than the currently
scheduled one for possible preemption. There are two other
components to the scheduler that correspond to interrupts
and the periodic boost mechanism respectively. The inter-
rupt mechanism is used in SB, DCS, PB-SB, DCS-SB, and
DCS-SY, and becomes active immediately after the network
interface module raises an interrupt. After accounting for
interrupt processing costs, the scheduling queues may need
to be manipulated in this mechanism. The periodic boost
mechanism is used in PB, PB-SB and PB-SY, and becomes
active every 1 millisecond to check the endpoints for mes-
sages and manipulate the scheduling queues as described
in the previous section. Costs for the queue manipulations
have again been drawn from our experimental studies.

Our simulator hides all the details of the scheduling models
from the application process. The application interface that
the simulator o�ers allows the
exibility of specifying the
computation time, communication events (sends or receives
with message sizes and destinations), and I/O overheads.
The development of the simulator has itself been a signi�-
cant e�ort, but we do not delve further into the implemen-
tation details.

3.2 Workloads
We are interested in using realistic workloads to drive the
performance evaluation. Towards this, we are interested in
capturing the dynamic behavior of the environment (i.e. dy-
namic job arrivals), di�erent job execution times and job
sizes (number of CPUs), and the characteristics of each job
(computation, communication and I/O fractions) as well.

To capture the dynamic behavior of the environment, our
experiments use a workload that is drawn from a character-
ization of a real supercomputing environment at Lawrence
Livermore National Labs. Job arrival, execution time and
size (number of CPUs - henceforth referred to as tasks) infor-
mation of this environment have been traced and character-
ized to �t a mathematical model (Hyper-Erlang distribution
of common order). The reader is referred to [6] for details
on this work and the use of the model in di�erent evalua-
tion exercises [20]. However, due to the immense simulation
details involved in this exercise (unlike in any of the previ-
ous studies) requiring the modeling of scheduling queues at

granularities smaller than even a millisecond, it is not fea-
sible to simulate very large systems. As a compromise, we
have limited ourselves to clusters of upto 32 nodes, and se-
lect jobs from the characterized model that fall within this
limit. However, we feel that the general trends and conclu-
sions would apply to larger systems as well.

As can be expected, the characteristics of each job in the
system can further have an impact on the performance re-
sults. In particular, the time spent in the computation (only
the CPU is required), communication and I/O activities,
and the frequency of these operations, can interact with the
scheduling strategies in di�erent ways. It is easy to draw
false conclusions if one does not consider all these di�erent
artifacts in the performance evaluation. In reality, a job can
be intensive in any one of the three components - computa-
tion (CPU), communication or I/O - or can have di�erent
proportions of these components. To consider these di�erent
situations, we identify six di�erent job types with di�erent
proportions of these components. Our evaluations use eight
di�erent workloads, termed WL1 to WL8, with the �rst six
using jobs of the corresponding class in isolation as shown
in Table 2. In the seventh workload (WL7) a job has an
equal probability of falling in any of the six job types, so
that we consider the e�ect of a mixed load on the system.
The last workload (WL8) considers an equal mix of the three
job classes that are each intensive in one of the three com-
ponents (CPU, I/O and communication).

Job Type Comp. (%) I/O (%) Comm. (%)
J1 35 15 50
J2 35 50 15
J3 35 35 30
J4 90 5 5
J5 35 5 60
J6 65 5 30

Workload Job Types in Workload
WL1 J1
WL2 J2
WL3 J3
WL4 J4
WL5 J5
WL6 J6
WL7 equal mix of J1 thru' J6
WL8 equal mix of J2, J4 & J5

Table 2: Workloads

For the results presented in this paper, the communication is
nearest-neighbor (i.e. Task i of a job talks to Tasks i�1 and
i+1) with a constant message size of 4096 bytes. We have ex-
perimented with other communication parameters/patterns
as well, and we �nd that the overall results/trends presented
in this paper still hold. Once the relative proportions and
corresponding times in the three components are derived
for a given job, its tasks iteratively go through a sequence of
compute, I/O, sends/receives to/from its nearest neighbors
as shown in Figure 2. By �xing the raw 1-way latency of
a 4096 byte message (from an experimental platform), the
cost of communication per iteration in the ideal case (when
everything is balanced) is known. Based on this and the rel-
ative proportion of the other two components (compute and

I/O) as determined by the job type, the computation and
I/O times per iteration can be calculated. Together with the
total job execution time (given by the characterized model),
these individual times determine the number of iterations
that a job goes through.

It is also important to note that the work imbalance/skewness
(and the resulting mismatch of the sends and receives) can
have a signi�cant impact on results. As a result, the skew-
ness (s), which is expressed as a percentage of the computa-
tion and I/O fractions of the tasks, is another parameter that
is varied in the experiments. Formally, the CPU and I/O
components of each iteration of a task that were calculated
earlier, are each multiplied by a factor (1+unif(�s=2; s=2))
where unif(x; y) generates a random number between x and
y using a uniform distribution. If s is set to 0, then all tasks
spend the same computation and I/O times in each itera-
tion, and thus arrive at the communication events at the
same time. In this case, the execution time for this job will
match the one picked for it from the characterized model
[6] on a dedicated (non-multiprogrammed) system. A larger
skewness implies that tasks will arrive at the communication
events at di�erent times, and the overall execution time per
iteration will depend on who comes last to the send/receive
calls. This also implies that the execution time is likely to
get larger compared to that derived from the characterized
model (each iteration can get elongated) with a larger s. The
e�ectiveness of the scheduling mechanisms can be evaluated
by how well they are able to hide the increase in execution
times.

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
������
���
���
������
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

Repeat

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

Compute

IO
Send

Recv

Figure 2: Job Structure

3.3 Parameters
Several parameters and costs can be varied in the simulator,
and some of these (and the values that are used) are given in
Table 3. Many of the times given in this table have been ob-
tained from microbenchmarks on actual operating systems
and Myrinet clusters with a ULN connecting the machines
[10, 16].

3.4 Metrics
This exercise considers several metrics that are important
from both the system and user's perspective:

� Response Time: This is the time di�erence between
when a job completes and when it arrives in the sys-
tem, averaged over all jobs.

Parameter Value(s)

p (# of nodes or CPUs) 32, 16
MPL (Multiprogramming Level) 2, 4, 5, 16

s (Skewness) 150%, 20%
CS (Context Switch Cost)
Dynamic Coscheduling 200 us, 100 us

GS 2 ms, 1 ms
I (Interrupt Cost) 50 us, 25 us

Q (GS Time Quantum) 200 ms, 100 ms
Move between queues 3 us
Check an endpoint 2 us

Message Size 4096 bytes
1-way Message Latency 185.48 us

Table 3: Simulation parameters and values used in
experiments. Unless explicitly mentioned otherwise
the default (underlined) values are used.

� Wait Time: This is the average time spent by a job
waiting in the arrival queue before it is scheduled.

� Execution Time: This is the di�erence between Re-
sponse and Wait times.

� Throughput: This is the number of jobs completed per
unit time.

� Utilization: This is the percentage of time that the
system actually spends in useful work.

We have also examined fairness issues, but the results are
not presented here due to space limitations. The reader is
referred to [21] for these results and detailed performance
pro�les of the executions.

4. PERFORMANCE RESULTS
Even though we have conducted numerous experiments vary-
ing the di�erent parameters to obtain the di�erent perfor-
mance metrics for all workloads, we present only represen-
tative results.

4.1 Impact of Load
As the load increases (higher arrival rates and job execution
times), the system is likely to be more heavily utilized. As a
result, jobs are likely to experience longer wait and response
times. The job characterization e�ort [6] provides a way of
cranking the induced load, and the resulting e�ect on the
response time of the system is plotted against the system
utilization in Figure 3 for the mixed workload (WL7).

Local, SY, DCS and DCS-SY, which all use spin-based re-
ceives, saturate even before the utilization reaches 50%, and
are thus not seen in the Figure. We �nd that GS can go only
as high as 57% before saturation. The remaining schemes -
DCS-SB, PB-SY, PB-SB, SB and PB - perform signi�cantly
better than GS. Of these, PB, PB-SB and SB, perform the
best with the utilization going as high as 77% before satu-
ration.

4.2 Impact of the nature of workload

0.5 0.55 0.6 0.65 0.7 0.75 0.8

1

3

5

7

9

utilization

A
vg

 J
ob

 R
es

po
ns

e
T

im
e(

 X
 1

04 s
ec

on
ds

)

Local
GS
SB
DCS
DCS−SB
PB
PB−SB
SY
PB−SY
DCS−SY

Figure 3: Impact of Load on Response Time (WL7,
p=32, MPL=5, s=20%)

Next, we examine the impact of the computation, commu-
nication and I/O components of the workload on the per-
formance of the di�erent schemes. WL4, WL5, WL2 and
WL3 are CPU intensive, communication intensive, I/O in-
tensive and evenly balanced (between the three components)
workloads respectively. The response times of the ten alter-
natives for these four workloads are presented in Figure 4.
The response time is further broken down into the wait time
in the arrival queue, and the execution time. It should be
noted that some of the bars which hit the upper boundary of
the y-axis have been truncated (and the execution portion
of these bars is not visible).

Local GS SB DCS DCS−SB PB PB−SB SY PB−SY DCS−SY
0

1

2

3

4

5

6

7

8

9

10

A
vg

 J
ob

 R
es

po
ns

e
T

im
e

(X
 1

0
4 s

ec
on

ds
)

 wait time
 exec. time

Local GS SB DCS DCS−SB PB PB−SB SY PB−SY DCS−SY
0

1

2

3

4

5

6

7

8

9

10

A
vg

 J
ob

 R
es

po
ns

e
T

im
e

(X
 1

0
4 s

ec
on

ds
)

 wait time
 exec. time

(a) WL4 (b) WL5

Local GS SB DCS DCS−SB PB PB−SB SY PB−SY DCS−SY
0

1

2

3

4

5

6

7

8

9

10

A
vg

 J
ob

 R
es

po
ns

e
T

im
e

(X
 1

0
4 s

ec
on

ds
)

 wait time
 exec. time

Local GS SB DCS DCS−SB PB PB−SB SY PB−SY DCS−SY
0

1

2

3

4

5

6

7

8

9

10

A
vg

 J
ob

 R
es

po
ns

e
T

im
e

(X
 1

0
4 s

ec
on

ds
)

 wait time
 exec. time

(c) WL2 (d) WL3

Figure 4: Impact of the nature of Workload on Re-
sponse Time (p=32, MPL=5, s=20%)

For the CPU intensive workload (WL4), Local and SY are
simply not acceptable (this is true for the other workloads
as well). Both DCS and DCS-SY have higher response times
than the rest, mainly because of the longer wait in the ar-
rival queue. GS has the next highest response time for this
workload. For a high computation proportion, even a 20%
skewness can make a di�erence in causing a load imbalance
between the tasks, leading to ine�ciencies in GS. There is

not a signi�cant di�erence between the response times of the
other �ve schemes for this workload. When the computation
is high, the ine�ciencies due to in-exact coscheduling is not
really felt (since receives are infrequent), and any skewness
is well hidden by the scheduling mechanism.

On the other hand, when one examines the communica-
tion intensive workload (WL5), the di�erences are more pro-
nounced. DCS and DCS-SY become much worse here. The
performance of GS, SB, PB-SB and PB-SY is comparable,
with PB giving the best performance. When the commu-
nication component becomes high, there is a stronger need
for coscheduling. Further, the skewness between the execut-
ing tasks of an application gets lower with a lower compute
fraction, making the ine�ciencies of GS less important.

On the other hand, in the I/O intensive (WL2) or mixed
workload (WL3), the occurrence of I/O activities within a
time quantum keeps the CPU idle for the remainder of the
quantum in GS. When the I/O portion is more intensive
(WL2), the impact of non-coscheduled execution is not felt.
As a result, there is not a signi�cant di�erence between SB,
DCS-SB, PB, PB-SB and PB-SY. Finally, the evenly bal-
anced workload (WL3) reiterates the observations made for
the communication intensive workload, though to a lesser
degree, while showing that GS is not as good as SB/PB/PB-
SB/PB-SY because of the presence of I/O activities.

As in the previous subsection, we �nd that the PB, SB,
PB-SY and PB-SB schemes are uniformly good for all the
workloads. Of these, PB is clearly the best for the com-
munication intensive workload. DCS-SB falls in the next
category. GS is reasonable as long as the execution does not
lead to work imbalances.

4.3 Impact of Multiprogramming level (MPL)
As one increases the multiprogramming level, larger number
of jobs can be simultaneously accommodated in the system
which works in favor of lowering wait times. Larger MPL
also allows the system to �nd alternate work (that is use-
ful) to do when processes block (or yield). However, larger
MPLs also imply a larger number of context switches dur-
ing execution, which increases execution times. In addition,
larger MPL also decreases the likelihood of the tasks being
coscheduled in the dynamic coscheduling mechanisms. It is
thus interesting to study the impact of MPL to understand
these factors and their interplay. Table 4 shows the change
in response times normalized (with respect to MPL=2) for
WL2 with MPL=5, and WL4 and WL5 with MPL=5 and
16. The reader is referred to [21] for the detailed perfor-
mance pro�le graphs of these executions.

In Local, the overheads with a larger MPL dominate over
other factors resulting in larger response times when we go
from MPL level of 2 to 5 for all 3 workloads. Moving from
MPL level of 2 to 5 results in lowering the percentage of
time spent in useful computation (increasing the spin com-
ponent in the spinning alternatives). In these experiments
again, we �nd that schemes incorporating PB and SB in
some form or the other, are able to provide a more scalable
improvement in response times with increasing MPLs com-
pared to the rest. At lower MPLs, the SB mechanisms are
not able to keep the CPU fully occupied. (reader is referred

Scheme WL2 WL4 WL5

MPL=5 MPL=5 MPL=16 MPL=5 MPL=16

Local 0.30 0.37 - 15.44 -

GS -0.25 -0.20 -0.34 -0.30 -0.41

SB -0.69 -0.36 -0.48 -0.44 -0.54

DCS -0.27 -0.13 -0.34 0.18 -

DCS-SB -0.68 -0.35 -0.44 -0.21 -0.38

PB -0.65 -0.25 -0.38 -0.41 -0.52

PB-SB -0.71 -0.34 -0.45 -0.43 -0.54

SY -0.29 2.82 - 4.59 -

PB-SY -0.64 -0.24 0.36 -0.28 2.78

DCS-SY -0.58 -0.44 -0.81 -0.42 -0.94

Table 4: Impact of MPL: Normalized Change in
Response Time with respect to MPL = 2 (p=32,
s=20%)

to [21] for the idle times in the performance pro�le). This
is even more signi�cant for the I/O intensive and commu-
nication intensive workloads which block more frequently.
When the MPL is increased, while the context switch times
do go up, it is seen that the reduction in the idling is more
than adequate to compensate for any overheads. With the
PB mechanism, we �nd that it is better than SB at lower
MPL levels (because it blocks less frequently), particularly
for the communication intensive workload (WL5). SB really
needs much higher MPL levels before its performance be-
comes comparable to PB. From the workload viewpoint, I/O
and communication intensive workloads have larger changes
(and will better bene�t) with MPL compared to the CPU
intensive workload.

It is to be noted that after a point, one can expect response
times to eventually go up (even though this is shown for
only 1 of the schemes at MPL = 16 in Table 4) due to the
overheads dominating any potential bene�ts.

4.4 Impact of Skewness
Skewness (work imbalance) between the tasks of a job can
determine the amount of time that a receiver spins or blocks
for a message. Hence, it would be interesting to study how
the mis-match of the sends and receives a�ects the perfor-
mance of the scheduling mechanisms. Figure 5 shows the
response times for the di�erent schemes with two di�er-
ent skewness values (20% and 150%) for the CPU intensive
workload.

Local GS SB DCS DCS−SB PB PB−SB SY PB−SY DCS−SY
0

1

2

3

4

5

6

7

8

9

10

 A
vg

 J
ob

 R
es

po
ns

e
T

im
e

(X
 1

0
4 se

co
nd

s)

 wait time
 exec. time

Figure 5: Impact of Skewness on Response Time
(WL4, p=32, MPL=5, s=20% (left bar) and 150%
(right bar))

Even if a job is running in isolation on a dedicated system,
increasing the skewness would increase its execution time (as
per the explanation for skewness given in Section 3.2). This
e�ect is clearly seen for GS on the two workloads where the
execution time goes up from s=20% to 150% since GS does
not have much scope for hiding the impact of this skewness.
On the other hand, the dynamic coscheduling mechanisms
can potentially better utilize the CPUs than GS for larger
skewness values. We can see that most of these schemes are
better able to hide the e�ect of the skewness compared to
GS; the spin time increase for a larger skewness for the spin-
ning mechanisms, and the idle time increase for the blocking
mechanisms, are not as high as the increase in spin times
for GS (such performance pro�les are not given here due to
space limitations and the reader is referred to [21] for further
details). Between the spinning and blocking mechanisms,
we �nd that the latter are better able to hide the e�ect of
skewness as can be expected. We have also tried a similar
experiment for the communication intensive workload, and
we have found that the e�ect of skewness is less pronounced
for this workload. This is because skewness is varied as a
percentage, rather than as an absolute value. As a result,
the skew is higher in the compute intensive workload than
in the communication intensive workload. The latter tends
to inherently synchronize the tasks more often.

4.5 Impact of System Overheads
In all of the above discussion, the context switch and in-
terrupt processing costs were kept constant at 200 and 50
microseconds respectively for all schemes except GS (where
the context switch was set at 2 milliseconds to account for
the synchronization between the CPUs). These parameters
can also have an e�ect on the relative performance of the
schemes and Table 5 shows these e�ects for SB, DCS, DCS-
SB, PB, PB-SB and GS. The response times in this Table
have been normalized with respect to the �rst column. It
should be noted that there are no interrupts in the PB and
GS mechanisms.

Scheme Q = 200ms, Q = 100ms, Q = 100ms,
CS = 2ms CS = 1ms CS = 2ms

GS 1.000 0.896 0.977

CS = 200us, CS = 100us, CS = 100us,
I = 50us I = 25us I = 50us

SB 1.000 0.647 0.659
DCS 1.000 0.902 0.904

DCS-SB 1.000 0.710 0.804
PB-SB 1.000 0.670 0.687
PB 1.000 0.89

Table 5: Impact of System Overheads on Response
Time (WL5, p=32, MPL=5, s=20%)

The context switch times in GS are determined not only by
the costs of swapping in/out processes at each node, but also
due to the explicit synchronization between the nodes. As
a result context switch costs in GS are usually much higher
than for the schemes which do not require any explicit syn-
chronization. If we keep the ratio of the time quantum to
the context switch overhead the same (100:1), we �nd that a
smaller quantum helps this scheme. This is because with a
smaller quantum, the amount of time in the quantum that is

wasted due to blocking (for I/O) or spinning (for a message)
becomes smaller. By the time the process gets rescheduled,
the operation may be complete, thus allowing better overlap
with useful computation. As is to be expected, increasing
the overhead percentage due to context switches (i.e. col-
umn 3 compared to column 2), extends the execution time
(and thereby the response time) of a job.

With the overheads dropping (column 2 compared to column
1), the response times reduce for the di�erent coschedul-
ing heuristics. We �nd the bene�ts more signi�cant for the
blocking mechanisms compared to those that employ spin-
ning. Blocking executions typically involve many more con-
text switches (each block involves a switch), and thus ben-
e�ts from the lower associated costs. As interrupt costs go
up with no changes to the context switch costs (column 2
to 3), the response times for the mechanisms which incur
interrupts (DCS, DCS-SB, SB and PB-SB) increase.

5. CONCLUDING REMARKS
Advances in user-level networking (ULN) allows us to ex-
plore a new domain of dynamic coscheduling mechanisms
that o�er a potential improvement over conventional schedul-
ing strategies (such as space sharing or coscheduling) for
parallel machines. These mechanisms become even more
important for cluster environments where applications with
diverse characteristics and QoS requirements coexist. Until
now, the understanding and knowledge of the relative perfor-
mance of dynamic coscheduling mechanisms is rather limited
[10, 3, 1, 15]. While our previous work [10] did a preliminary
examination of these dynamic coscheduling mechanisms, the
study was rather limited due to the workloads that were con-
sidered, the experiments that were conducted, the in
exibil-
ity of the underlying system in modulating parameters, and
the performance metrics that were evaluated. For the very
�rst time, this paper has presented a comprehensive evalua-
tion study of the di�erent dynamic coscheduling alternatives
using realistic and dynamic workloads with varying job sizes,
execution times, and characteristics, in studying the impact
of di�erent system and workload parameters on numerous
performance metrics. This exercise has required the devel-
opment of a comprehensive and
exible simulator, which has
itself been a substantial e�ort. Using this simulator, we have
been able to examine the suitability of di�erent scheduling
mechanisms under varying conditions.

There is clearly a great need for some coordinated scheduling
e�ort between the nodes to accommodate the parallel jobs.
Gang scheduling (GS), as has been the norm, results in high
wait times in the arrival queue. Further, GS executions do
not fare as well as the dynamic coscheduling alternatives
when: (a) the skewness between the tasks of a job is high
(GS is not able to hide the spin times as well as the dynamic
coscheduling mechanisms); (b) the jobs are I/O intensive
(GS wastes the rest of the time quantum); and (c) when the
costs for explicitly synchronizing the nodes between time
quanta becomes high (perhaps, for large systems). Of the
dynamic coscheduling mechanisms, we �nd Periodic Boost
(PB) outperforming the other schemes. It is able to get the
advantages of spinning (to avoid interrupt processing costs),
and is able to relinquish the CPU whenever needed.

We have not been able to delve into the issue of di�erent

heuristics for the Periodic Boost mechanism and their fair-
ness in this paper due to space limitations. The reader
is referred to [21] for a preliminary investigation into this
area, and we plan to explore this issue in greater depth in
the future. We are also interested in theoretically modeling
the scheduling mechanisms/heuristics so that we can under-
stand how well they perform (and how close they are to the
optimal). Recently, a related study [14] shows how bu�er-
ing and latency tolerance (separating the posting of a receive
from the time when the receiver should actually block) can
be used to minimize the impact of non-coscheduled execu-
tion. However, their study assumes that all the communi-
cation latency can be hidden, in which case coscheduling is
not important. However, this is not completely realistic, and
we propose to explore the possibility of exploiting commu-
nication slackness (gap between posting of a receive and the
time the data is actually needed) within the PB heuristics
for even better performance.

6. REFERENCES

[1] A. C. Arpaci-Dusseau, D. E. Culler, and A. M.
Mainwaring. Scheduling with Implicit Information in
Distributed Systems. In Proceedings of the ACM
SIGMETRICS 1998 Conference on Measurement and
Modeling of Computer Systems, 1998.

[2] M. Buchanan and A. Chien. Coordinated Thread
Scheduling for Workstation Clusters under Windows
NT. In Proceedings of the USENIX Windows NT
Workshop, August 1997.

[3] A. C. Dusseau, R. H. Arpaci, and D. E. Culler.
E�ective Distributed Scheduling of Parallel
Workloads. In Proceedings of the ACM SIGMETRICS
1996 Conference on Measurement and Modeling of
Computer Systems, pages 25{36, 1996.

[4] D. G. Feitelson and L. Rudolph. Coscheduling based
on Run-Time Identi�cation of Activity Working Sets.
Technical Report Research Report RC 18416(80519),
IBM T. J. Watson Research Center, October 1992.

[5] D. G. Feitelson and L. Rudolph. Gang Scheduling
Performance Bene�ts for Fine-Grained
Synchronization. Journal of Parallel and Distributed
Computing, 16(4):306{318, December 1992.

[6] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and
M. A. Jette. Evaluation of Parallel Job Scheduling for
ASCI Blue-Paci�c. In Proceedings of Supercomputing,
November 1999.

[7] A. Hori, H. Tezuka, and Y. Ishikawa. Global State
Detection Using Network Preemption. In Proceedings
of the IPPS Workshop on Job Scheduling Strategies
for Parallel Processing, pages 262{276, April 1997.
LNCS 1291.

[8] D. Lifka. The ANL/IBM SP Scheduling System. In
Proceedings of the IPPS Workshop on Job Scheduling
Strategies for Parallel Processing, pages 295{303,
April 1995. LNCS 949.

[9] J. E. Moreira, H. Franke, W. Chan, L. L. Fong, M. A.
Jette, and A. Yoo. A Gang-Scheduling System for
ASCI Blue-Paci�c. In Proceedings of the 7th
International Conference on High-Performance
Computing and Networking(HPCN'99), volume 1593

of Lecture Notes in Computer Science, pages 831{840,
April 1999.

[10] S. Nagar, A. Banerjee, A. Sivasubramaniam, and
C. R. Das. A Closer Look at Coscheduling Approaches
for a Network of Workstations. In Proceedings of the
Eleventh Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 96{105, June
1999.

[11] S. Nagar, A. Banerjee, A. Sivasubramaniam, and
C. R. Das. Alternatives to Coscheduling a Network of
Workstations. Journal of Parallel and Distributed
Computing, 59(2):302{327, November 1999.

[12] J. K. Ousterhout. Scheduling Techniques for
Concurrent Systems. In Proceedings of the 3rd
International Conference on Distributed Computing
Systems, pages 22{30, May 1982.

[13] S. Pakin, M. Lauria, and A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages
(FM) for Myrinet. In Proceedings of Supercomputing
'95, December 1995.

[14] F. Petrini and W. Feng. Bu�ered Coscheduling: A
New Method for Multitasking Parallel Jobs on
Distributed Systems. Technical report, Los Alamos
National Laboratory, September 1999.

[15] P. G. Sobalvarro. Demand-based Coscheduling of
Parallel Jobs on Multiprogrammed Multiprocessors.
PhD thesis, Dept. of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, January 1997.

[16] R. Subrahmaniam. Implementing Coscheduling
Heuristics for Windows NT Clusters. Master's thesis,
Dept. of Computer Science and Engineering, Penn
State University, University Park, PA 16802, October
1999.

[17] Thinking Machines Corporation, Cambridge,
Massachusetts. The Connection Machine CM-5
Technical Summary, October 1991.

[18] Speci�cation for the Virtual Interface Architecture.
http://www.viarch.org.

[19] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U-Net: A User-Level Network Interface for Parallel
and Distributed Computing. In Proceedings of the
15th ACM Symposium on Operating System
Principles, December 1995.

[20] Y. Zhang, H. Franke, J. Moreira, and
A. Sivasubramaniam. Improving Parallel Job
Scheduling by Combining Gang Scheduling and
Back�lling Techniques. In Proceedings of the
International Parallel and Distributed Processing
Symposium, May 2000. To appear.

[21] Y. Zhang, A. Sivasubramaniam, J. Moreira, and
H. Franke. A Simulation-based Study of Scheduling
Mechanisms for a Dynamic Cluster Environment.
Technical Report CSE-99-022, Dept. of Computer
Science and Engineering, The Pennsylvania State
University, November 1999.

