
Decision-Support Workload Characteristics on a Clustered
Database Server from the OS Perspective

Yanyong Zhang
�
, Jianyong Zhang

�
, Anand Sivasubramaniam

�
, Chun Liu

�
, Hubertus Franke

�

�
Department of Electrical � Computer Engg. � Department of Computer Science � Engg. � IBM T. J. Watson Research Center

Rutgers, The State University of New Jersey The Pennsylvania State University P. O. Box 218
Piscataway NJ 08854 University Park PA 16802 Yorktown Heights NY 10598-0218�

yyzhang � @ece.rutgers.edu
�

jzhang, anand, chliu � @cse.psu.edu
�
frankeh � @us.ibm.com

Abstract

A range of database services are being offered on
clusters of workstations today to meet the demand-
ing needs of applications with voluminous datasets,
high computational and I/O requirements and a
large number of users. The underlying database en-
gine runs on cost-effective off-the-shelf hardware
and software components that may not really be
tailored/tuned for these applications. At the same
time, many of these databases have legacy codes
that may not be easy to modulate based on the
evolving capabilities and limitations of clusters. An
indepth understanding of the interaction between
these database engines and the underlying operat-
ing system (OS) can identify a set of characteris-
tics that would be extremely valuable for future re-
search on systems support for these environments.
To our knowledge, there is no prior work that has
embarked on such a characterization for a clustered
database server.

Using IBM DB2 Universal Database (UDB) Ex-
tended Enterprise Edition (EEE) V7.2 Trial version
and TPC-H like1 decision support queries, this pa-
per studies numerous issues by evaluating perfor-
mance on an off-the-shelf Pentium/Linux cluster
connected by Myrinet. These include detailed per-
formance profiles of all kernel activities, as well as
qualitative and quantitative insights on the interac-
tion between the database engine and the operating
system.

1 Introductions
Clusters of workstations built with commodity processing
engines, networks and operating systems are becoming the
platform of choice for numerous high performance comput-
ing environments. Commodity hardware and software com-

1These results have not been audited by the Transaction Processing Per-
formance Council and should be denoted as “TPC-H like” workload.

ponents make the price, upgradeability and accessibility of
clusters very attractive, facilitating their widespread deploy-
ment in several application domains. It is no longer just the
traditional scientific or engineering community (for compu-
tational physics, chemistry, computer-aided design, etc.) that
are using such systems. An increasing number of commer-
cial applications (web servers, database engines, search en-
gines, e-commerce, image servers, media bases, etc.) are
being hosted on clusters, that are usually back-ends for a
web-based interface. Vendors have come out with medium
to high end database engines that can exploit a cluster’s ca-
pabilities [4, 10, 5, 7, 8].

Most commodity off-the-shelf software (including the op-
erating system) are not specifically tuned for cluster environ-
ments, and it is not clear if gluing together individual operat-
ing systems, that do not know the presence of each other, is
the best approach to handle such loads [2]. Further, off-the-
shelf operating systems are meant to be for general purpose
usage, with most of them really tuned for desktop applica-
tions or uniprocessor/SMP class server applications. Their
suitability for cluster applications is not well understood.

At the same time, these applications are in turn not exten-
sively tuned for these operating systems. An important rea-
son is the fact that the database engines have legacy codes
that have evolved over several revisions/optimizations over
the years, and it is difficult to fundamentally change their
design overnight in light of these new systems (regardless of
how modular they may be), which are still evolving.

Our goal in this paper is not to develop application-
specific operating systems, nor is it to find out what
OS mechanisms/capabilities are needed for extensibil-
ity/customization as other researchers have done [10].
Rather, coming from the applications viewpoint, we would
like to make a list of recommendations based on the exe-
cution characteristics that can benefit future developments.
We have also taken the liberty of suggesting possible mech-
anisms and their implementation (specifically in Linux) for
optimizing the execution based on these gleaned character-
istics.

A detailed characterization of the execution of applica-
tions on a cluster from the OS perspective can contribute to
the knowledge-base of information that can be used for guid-
ing future developments in systems software and applica-



tions for these environments. It would also be invaluable for
fine tuning the execution for better performance and scalabil-
ity, since each of these applications/environments has high
commercial impact. With this motivation, this paper em-
barks on characterizing the complete execution of the IBM
DB2 Universal Database (UDB) Extended Enterprise Edi-
tion Version 7.2 (which can be downloaded from [1] for 90
day free trial) 2 on a Linux cluster from the OS perspec-
tive. A comprehensive study of several database workloads
is overly ambitious and is on our future research agenda.
In this paper we focus specifically on TPC-H queries [9],
a decision-support database workload.

It is well understood that I/O is the biggest challenge
faced by database engines on uniprocessors/SMPs and there
is a large body of prior work proposing hardware and soft-
ware enhancements to address this problem. It is not clear
if I/O becomes any less important when we move the engine
to a cluster environment, since there is another factor to con-
sider, which is the network communication. System scalabil-
ity with cluster size is dependent on how parallel is the com-
putation division across the cluster nodes, how balanced are
the I/O activities on different nodes, and how does the com-
munication traffic change with data set and cluster sizes. All
this requires a careful profiling and analysis of the execution
of the queries on the database engine. To our knowledge,
there has been no prior investigation of completely charac-
terizing the execution of TPC-H on a clustered database en-
gine, and studying these characteristics for optimization at
the application-OS boundary.

The next section reviews literature related to this work,
and Section 3 gives details on the experimental setup. Sec-
tion 4 gives the overall system execution profile. Based on
the system profile, the I/O and network characteristics and
optimizations are discussed in sections 5 and 6. Finally, Sec-
tion 7 summarizes the results and contributions of this study.

2 Related Work
Operating systems support for databases has long been con-
sidered an important issue for performance [18, 13, 11]. In
fact, using the research prototype INGRES system, Stone-
braker [18] argues that the buffer manager, file system,
scheduling and ipc of Unix are not necessarily those that are
suitable for a database engine. Several other studies over the
years [20, 21] have addressed specific database engine and
OS interaction issues for buffer and virtual memory man-
agement, file system support, and network support. Most
of these studies have been on systems where the database
engine runs on a single node. While there has been some
investigation [10] for cases when the database engine runs
on multiple nodes, these have been limited to specific issues
and did not examine the complete picture. There have been
recommendations from developers in the database industry

2Our goal in this paper is NOT to benchmark the database engine on a
cluster, or commend/criticize its implementation. We understand that there
are several issues in configuring and tuning the database engine for boost-
ing performance, which we may have not attempted. In order to prevent
any misconceptions about its absolute performance, which may or may not
match the numbers available from the Transaction Processing Performance
Council, we do not give absolute execution times or mention the clock speed
of the processors used in this study.

[3] suggesting features to incorporate in Linux for database
support.

Databases on clusters have drawn little attention from the
systems angle (note that there is a large body of work on
parallel databases which are not closely related to this work),
except for certain specific issues. It has been pointed out
that one could harness the physical memory pool across the
cluster to create a larger buffer space for reducing I/O [10].

On the characterization front, there has been prior work
[14, 15] in I/O characterization for the TPC-C, TPC-D and
some production workloads using simulation on traces ob-
tained from a Windows NT SMP multiprocessor. There is
also a recent study [16] examining the I/O characteristics of
TPC-H on an Intel Xeon server. Message exchange charac-
terizations between processing nodes has not been investi-
gated previously.

This is the first study to look at the complete execution
picture of a commercial database engine on a cluster envi-
ronment with TPC-H.

3 Experimental Setup
The clustered version of DB2 that we use is based on a
shared-nothing architecture, wherein each cluster node has
its own processor, memory and disk, and the nodes are con-
nected by a communication medium that supports sockets.

Our experiments use an 8 dual node Linux/Pentium clus-
ter, that has 256 MB RAM and 18 GB disk on each node.
The nodes (both the server nodes and the client node) are
connected by both switched Myrinet and Ethernet. We use
Linux 2.4.8, which was the latest release at the time of con-
ducting the experiments. This kernel has been instrumented
in detail to glean different statistics, and also modified to
provide insight on the database engine execution since we
are treating it as a black box. We have also considered the
overheads of instrumentation by comparing the results with
those provided by the proc file system to ensure validity.

TPC-H [9] is a standard benchmark for decision-support
workloads provided by Transaction Processing Performance
Council (TPC).It contains a sequence of 22 queries (Q1 to
Q22), which examine large volumes of data, execute queries
with a high degree of complexity, and give answers to criti-
cal business questions. We downloaded the utility from TPC
site, and generated the dataset of 30 GBytes and the queries.
We fired the queries one after another to the database engine
3. There are several measures that are used to determine their
performance as specified in [9]. In this paper, our considera-
tion is the response time for each query, i.e. the time interval
between submitting the query and getting back the results.

4 Operating System Profile
We first present a set of results that depict the overall system
behavior at a glance. The following results have been ob-
tained by both sampling the statistics exposed by the Linux
proc file system (stat, net/dev, process/stat) as
well as by instrumenting the kernel. In fact, these two ap-
proaches complement each other, with each helping to vali-

3In this paper, we only present the results of the first 20 queries Q1 to
Q20.



date the results obtained from the other approach. The ker-
nel instrumentation was done by inserting code in the Linux
system call jump mechanism, as well as in the scheduler and
points where there is pre-emption (such as blocking) or re-
sumption. For instance, in a read system call, there is time
spent executing the system call operations on the CPU fol-
lowing which the process is blocked. At this instant, time
accounting for this process has to be stopped and needs to be
resumed when the CPU schedules this again. The instrumen-
tation should again account for time just before the process
leaves the system call. A high resolution timer available on
the Pentium was used for measuring time, and we observed
that the overheads and intrusiveness of the instrumentation
was negligible (overall results matched those in the proc file
system). The proc file system information is used to present
the percentage utilization of the system in different modes,
the rates/frequency of I/O, page fault and network activities.
The profile of different system calls is presented from the
kernel instrumentation.

The first set of results is shown in Table 1, which gives
system statistics for each query in terms of: the percentage
of time that the query spent executing on the CPUs in user
mode (relative to its overall execution time), the percentage
of time that the query spent executing on the CPUs in sys-
tem mode (relative to its overall execution time), the aver-
age number of page faults incurred in its execution per jiffy
(10 milliseconds in Linux), average number of file blocks
read per jiffy, average number of file blocks written per jiffy,
average number of packets sent over the network per jiffy,
the average number of packets received from the network
per jiffy, and the percentage utilization of the CPU(s) by the
database engine during I/O operations (captures the overlap
of work with I/O operations). The file block size is 4096
bytes, and the Maximum Transfer Unit (MTU) for network
packets is 3752 bytes. In addition to these, the table also
shows the top four system calls (in terms of time) exercised
by each query during its execution, and the percentage of
system time that is spent in each of these calls. We have not
included system calls that take less than 1% of system time.
These statistics help us understand what components of the
OS are really being exercised, and the relative importance of
these components.

4.1 Observations

From these results, we make the following observations:

� As is to be expected with database applications, a large
portion of execution time is spent in I/O. Disk opera-
tions are so dominating in some queries (Q1, Q8, Q12,
Q17) that the CPU utilization does not cross 50% in
these queries. I/O costs not only result in poor CPU uti-
lization overall but also in significantly increasing the
system call overhead itself. In some cases (such as
Q12), the system CPU time (overheads) even exceeds
the amount of time spent executing the useful work in
the query at the user-level. The bulk of the execution
time in the system mode is taken up by file system op-
erations (pread/pwrite). Note that this system call over-
head (system CPU time) does not include the disk laten-
cies. Rather, this high overhead is due to memory copy-

ing, buffer space management and other book-keeping
activities.

� Though the numbers are not explicitly given here, we
would like to point out that the high read overheads are
not only because of the higher number of file system
read calls, but are also due to the higher cost per invo-
cation of this call. We noticed that a pread call can run
to nearly a millisecond in some queries. Of all the sys-
tem calls considered, we found the per pread invocation
taking the maximum amount of time.

� When we examine the CPU utilization during I/O (last
column of Table 1), we find that there is some overlap of
work with disk activity in many queries. However, there
is still much room for improvement - only 5 queries out
of 22 have more than 50% CPU utilization during I/O.

� After the file system calls, we found socket calls (select,
socketcall) to be the next dominant system overhead.
Sockets are used to transmit queries and results between
the client machine and the server nodes. In addition,
sockets are also used to exchange information between
the server nodes during the processing of a query.

� Despite the dominance of I/O in many queries, queries
like Q11 have a high CPU fraction (particularly in the
user mode). Even though there are I/O operations in
these queries, their costs are overshadowed by useful
work (CPU utilization is around 66% even during pe-
riods of disk activity, and the bulk of it is in the user
mode).

In summary, from the OS designer’s viewpoint, file sys-
tem I/O and message transfers using sockets are the two cru-
cial services for optimization for this database engine (with
the former issue being much more critical).

5 I/O Subsystem: Characterization and Pos-
sible Optimizations

We find that I/O is still the dominant component in many
queries of TPC-H for clustered database servers. We now set
out to look at the I/O subsystem more closely, trying to char-
acterize its execution and look for possible optimizations.
In the interest of space we specifically present results and
suggestions for the read component of I/O (pread), which
is usually much more dominant at least in decision support
workloads, such as TPC-H.

5.1 Characteristics

Query Q6 Q14 Q19 Q12 Q15 Q7 Q17
% 20.0 19.0 16.9 15.4 13.4 12.1 10.8

Query Q8 Q10 Q1 Q13 Q3 Q4 Q18
% 10.5 10.3 10.0 10.0 9.6 9.1 9.0

Query Q20 Q2 Q9 Q5 Q16 Q11
% 7.9 5.2 5.2 4.6 4.1 3.5

Table 2: pread as a percentage of total execution time



user system page blocks blocks packets packets CPU utilization
query CPU CPU system CPU breakup (%) faults per read per written per sent per received per during IO

(%) (%) jiffy jiffy jiffy jiffy jiffy (%)

pread pwrite select ipcQ1 27.58 21.44
46.7 46.7 3.3 2.9

1.50 51.01 23.1151 0.0012 0.0015 26.87

socketcall pread select pwriteQ2 56.22 15.67
35.4 32.9 20.1 7.3

0.39 21.97 1.7718 1.9077 1.9248 53.73

pread socketcall select pwriteQ3 40.76 17.76
54.1 15.1 13.1 12.8

0.99 55.47 4.9591 0.9778 0.9938 55.40

pread select socketcall pwriteQ4 51.48 15.19
60.0 17.6 11.2 6.9

0.00 22.97 1.0478 0.3517 0.3652 68.41

socketcall pread select pwriteQ5 58.96 15.68
43.3 29.2 21.7 3.7

0.05 16.73 1.1369 2.0779 2.0849 42.81

pread ipc socketcallQ6 40.65 22.20
90.1 4.9 4.3

1.73 90.72 0.0020 0.0012 0.0012 33.49

pread pwrite ipc selectQ7 52.44 16.82
72.1 14.8 6.1 6.0

0.00 16.89 1.9467 2.3880 2.3521 31.04

pread pwrite select ipcQ8 20.65 17.71
59.5 23.7 9.4 5.8

0.01 27.63 4.8078 0.0261 0.0228 12.91

pwrite pread select ipcQ9 51.41 13.52
40.8 38.7 13.9 2.5

0.00 6.69 1.9276 0.0133 0.0136 23.21

pread socketcall select pwriteQ10 41.79 17.87
57.7 17.9 13.4 7.0

0.17 41.99 1.8880 0.8774 0.8859 18.71

socketcall pread select ipcQ11 81.00 13.28
43.6 27.0 24.8 3.9

0.49 18.87 0.0020 2.3794 2.4011 66.46

pread selet ipcQ12 14.91 19.73
78.3 15.2 5.2

0.25 40.79 0.0197 0.0102 0.0101 4.8

pread socketcall select ipcQ13 53.23 21.86
45.7 30.3 18.8 4.6

1.62 45.86 0.0034 2.0966 2.0935 32.71

pread select ipcQ14 33.57 22.19
85.6 8.3 5.1

1.01 84.78 0.0025 0.1156 0.1175 29.75

pread select ipc nanosleepQ15 55.37 18.69
71.7 14.0 10.9 1.9

0.60 75.26 0.0033 0.6260 0.7703 51.68

socketcall pread select ipcQ16 51.84 15.30
43.5 27.0 22.2 5.7

2.32 15.36 0.8454 2.4836 2.4993 46.24

pread pwrite select ipcQ17 23.71 18.26
59.4 26.1 8.7 4.9

0.00 32.76 5.2532 0.0036 0.0037 13.94

pread socketcall select pwriteQ18 52.64 14.77
61.1 17.3 13.3 5.2

0.04 17.16 0.6261 0.3890 0.3803 35.11

pread select ipc socketcallQ19 35.48 21.16
80.1 7.3 5.9 5.9

0.29 78.76 0.0032 0.3343 0.3329 23.38

pread select socketcall ipcQ20 56.98 14.72
53.4 25.6 15.3 3.6

0.00 15.74 0.1601 0.3456 0.2973 47.36

Table 1: System Profile (statistics are collected from node 1)

Table 2 sorts the queries in decreasing order based on the
fraction of total query execution time spent in the pread sys-
tem call obtained from earlier profile results. We can see that
pread is a significant portion of the execution time in many
queries. It takes over 10% of the execution time in 11 of
the queries. It should be noted that this is the time spent in
the system call (i.e. in buffer management, book-keeping,
copying across protections domains, etc.), and does not in-
clude the disk costs itself. This implies that it is not only
important to lower or hide disk access costs, but to optimize
the pread system call itself. In the interest of space, we fo-
cus on queries Q6 and Q14 which incur the maximum pread
overhead in the rest of this section (the trends/arguments are
similar for the others).

Before presenting the characterization results for these
queries, we would like to briefly explain how we believe the
reads are invoked in the query execution. The database en-
gine has several agent processes that actually perform the
work in the queries, and prefetcher processes that make
pread calls to bring in data from disk ahead of when the
agent may need it. In addition to the prefetcher reads that
are usually invoked 32 blocks (i.e. 32 * 4K = 128K bytes) at
a time, the agent also occasionally invokes pread calls, and
we find these requests are usually for individual blocks (4096

bytes). Figures 1 (a), (b) pictorially show these observations
for the two queries when one looks at the Cumulative Den-
sity Function (CDF) of read request sizes that are issued by
the prefetcher and the agents individually. The other graphs
(c), (d) in the same figure show the CDF of the temporal
separation of the pread requests. We observe that the agent
reads are more bursty, coming in closer proximity, than the
reads issued by the prefetcher.

We found that the preads issued by the agent are usually
for a block that has been recently read by the prefetcher just
before that invocation. It may come as a surprise as to why
this block could not have been serviced by the prefetcher di-
rectly (if it was only recently read), instead of going to the
kernel. One possible explanation is that the agent is doing a
write on this block, and it may not want to write into a page
that is residing in the prefetcher. Instead of making ipc calls
to remove the page from the prefetcher, it would be better to
create a copy within the agent by using a pread call directly.
For further credibility on this hypothesis, before returning
from pread calls, we modified the kernel to set the corre-
sponding data pages to be read-only mode, and we found the
agent to incur (write) segmentation faults (indicated as copy-
on-write in Table 4) on nearly all those pages (compare the
copy-to-user and copy-on-write columns for the agent in Ta-



0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IO Request Size (X 4096 bytes)

C
D

F

agent reads
prefetch reads

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IO Request Size (X 4096 bytes)

C
D

F

agent reads
prefetch reads

(a) CDF of read request
size (Q6)

(b) CDF of read request
size (Q14)

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

read inter−arrival time (second)

C
D

F

agent reads
prefetch reads

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

read inter−arrival time (second)

C
D

F

agent reads
prefetch reads

(c) CDF of inter-read time
(Q6)

(d) CDF of inter-read time
(Q14)

Figure 1: IO characterization results in terms of read request
size and time between successive reads.

ble 4). Finally, it should be noted that the agent pread calls
are much lower (both in terms of the number of calls and
in terms of the number of blocks read) than those for the
prefetcher.

prefetcher agent prefetcher agent
Query hit hit Query hit hit

ratio ratio ratio ratio
Q1 0.5711 1.0000 Q11 0.2788 1.0000
Q2 0.5321 1.0000 Q12 0.4735 1.0000
Q3 0.5164 1.0000 Q13 0.5261 1.0000
Q4 0.4873 1.0000 Q14 0.5344 1.0000
Q5 0.5991 1.0000 Q15 0.4227 1.0000
Q6 0.4729 1.0000 Q16 0.4409 1.0000
Q7 0.5182 1.0000 Q17 0.7365 1.0000
Q8 0.5300 1.0000 Q18 0.4226 1.0000
Q9 0.4683 1.0000 Q19 0.5625 1.0000
Q10 0.5082 1.0000 Q20 0.5453 1.0000

Table 3: Fraction of block requests that hit in Linux file
cache for prefetcher and agent requests

We also include in Table 3 the fraction of pread block re-
quests that hit in the Linux file cache for the prefetcher and
the agents. As was pointed out, the agent requests come very
soon after the prefetcher request for the same block, and thus
nearly always hit in the Linux file cache. With the prefetcher
requests on the other hand, we find the file cache hits range
between 40-60%. We mentioned earlier that the prefetcher
requests are usually for 32 blocks at a time. The Linux file
cache manager itself does some read ahead optimizations
based on application behavior and brings in 64 blocks (twice
this size). With a lot of regularity (sequentiality) in I/O re-
quest behavior for this workload, this read ahead tends to cut
down the number of disk accesses by around 50%, which
actually indicates that Linux file caching is quite useful in
supporting the database application.

5.2 Recommendations and Possible Optimizations

A significant portion of pread cost is expended in copying
data (that is in a block in the file cache, either already or
brought in upon disk I/O completion), from the kernel file
cache to a user page, which needs to cross a protection-
domain boundary (using the copy-to-user() mechanism). In
the current 2.4.8 Linux implementation, a copy is actually
made at this time (a patch addressing this is available [6]).

This problem of reducing copying overheads for I/O has
been looked at by several previous studies [19, 12, 17].
There are different techniques one could use, and a common
one (which is used by Linux itself in several other situations
to reduce copying) is to simply set the user page table pointer
to the buffer in the file cache. This could affect the semantics
of the pread operation in some cases, particularly when more
than one user process reads the same block. In the normal se-
mantic, once the copy is done, a process can make updates to
it without another seeing it, while the updates would be visi-
ble without copies. This is usually addressed (as is by Linux
in several other situations) by the copy-on-write mechanism,
i.e. map the frame into user space, but make it read-only.
If the user process does write into it, a segmentation fault is
incurred and at this time we actually copy the data from the
file cache buffer into another frame and update the process
page table accordingly. Some studies [12, 19, 17] suggest
that even this may not be very efficient since updating virtual
address mappings can become as expensive as copying. In-
stead, sharing of buffers between user and kernel domains is
advocated. However, this may require extensions to the ker-
nel interface, and application exploitation of this extension,
which as we pointed out early on can become cumbersome
for legacy applications.

To examine the potential benefits of such an implemen-
tation, we track the total number of copy-to-user() calls that
are made (actually one for each page) and the number of
these calls that cannot be avoided (you cannot avoid it when
there is a write segment violation and we need to do a copy-
to-user at that time), during the execution of these queries
after setting these pages to read-only mode. These numbers
are shown in Table 4. As we can observe, the number of
copy-on-writes that are actually needed is much lower than
the number of copy-to-user invocations, as was suspected
initially. In general, we get no less than 65% savings in the
number of copies, with actual savings greater than 80% for
most queries (see the last column of this table). Most of these
savings are due to the prefetcher reads. Our measurements
of copy-to-user routine for a single block using the high res-
olution timer takes around 30 microseconds for one page.
For 32 block reads that the prefetcher issues, avoiding this
cost can be a significant savings. By avoiding these copies,
we can use file system to achieve the performance of using
raw device, without all the disadvantages of using raw de-
vice. This is particularly true when the blocks hit in the file
cache (and there is no disk I/O) since this cost is a significant
portion of the overall time required to return back to the ap-
plication. Table 3 shows that this happens nearly 50% of the
time. Even with disk activity, Table 1 shows CPU utilization
higher than 50% in most queries, suggesting that removing
this burden of copying by the CPU would help query execu-
tion.



prefetcher agent totalQuery
copy-on-write copy-to-user % Reduction of copies copy-on-write copy-to-user % Reduction of copies % Reduction of copies

Q1 0 1040228 100 11551 11565 1.2 98.9
Q2 0 383334 100 63145 63145 0 85.7
Q3 0 1253107 100 52155 52157 0.003 96.0
Q4 0 997507 100 235758 235759 0.0004 80.9
Q5 0 1007919 100 307689 307689 0 100.0
Q6 0 914482 100 47 47 0 100.0
Q7 0 1084454 100 276790 276791 0.0003 79.7
Q8 0 978134 100 255057 255060 0.001 79.3
Q9 0 2478154 100 316500 316502 0.0006 88.7
Q10 0 974062 100 278213 278215 0.0007 77.8
Q11 0 170643 100 6833 6834 0.01 96.1
Q12 0 911544 100 134933 134933 0 87.1
Q13 0 184491 100 42 43 2.3 100.0
Q14 0 945619 100 38429 38430 0.003 96.1
Q15 0 1175166 100 38394 38395 0.003 96.8
Q16 0 36137 100 15001 15003 0.01 70.7
Q17 0 1968122 100 113962 113963 0.0008 94.5
Q18 0 1945777 100 502 503 0.19 100.0
Q19 0 865529 100 38429 38429 0 95.7
Q20 0 847755 100 50442 50444 0.003 94.4

Table 4: % of copy-to-user calls that can be avoided. Of the given copy-to-user calls, only the number shown under the
copy-on-write are actually needed. The statistics are given for the prefetcher and agents separately, as well as the overall
savings.

6 Network Subsystem: Characterization and
Possible Optimizations

6.1 Characteristics

We next move on to the other exercised system service,
namely TCP socket communication. As in the earlier sec-
tion, we first attempt to characterize this service based on
certain metrics that we feel are important for optimization.
We examine the message exchanges based on the following
characteristics: the message sizes, the inter-injection time ,
and the destination for a message. We present these charac-
teristics using density functions.

In the interest of space, we show these characteristics pic-
torially in Figure 2 for two queries (Q7 and Q11), which
have the highest message injection rates shown in Table 1.
These results have been obtained by instrumenting the ker-
nel and logging all the socket events, their timestamps and
arguments at the system call interface. As will be pointed
out later on, for some characteristics we also needed to log
messages themselves or at least their checksums.

From the density function graphs, we observe the follow-
ing:

� The message length CDF graph shows that just a hand-
ful of message sizes are used by DB2. In fact, we ob-
served messages were usually either 56 bytes or 4000
bytes. We hypothesize that the shorter size (56 bytes)
is used for control messages, and the larger size (4000
bytes) is used for actual data packets.

� There are many messages that are sent out in close
proximity (temporally). In fact, Figures 2 (c),(d) show
that nearly 60% of the messages are separated by less
than 1 millisecond from each other temporally. In fact,
the temporal separations are much lower for queries Q2,
Q7, Q10, Q13, Q14, Q15, Q16, Q18 and Q19. In Q7,
which is shown in Figure 2(c), while there are a few
messages that are farther apart, nearly 90% of the mes-

sages are within 1 millisecond. We found similar ob-
servations for most of the other queries as well. Com-
munication usually occurs after processing some data
from disk, which takes some time during which there
are periods of network inactivity.

� The destination PDF graph is considerably influenced
by the nature of database operations. In DB2, joins
usually involve all-to-all communication of their cor-
responding portions of the table, and thus queries that
are join intensive (such as Q11 that is shown here) have
the PDF evenly distributed across the nodes. There are
a few queries, such as Q7, that are not really join in-
tensive, but perform more specific operations that are
based on values of certain primary keys. With such exe-
cutions, there is a slight bias in communication towards
nodes that have those values.

6.2 Recommendations and Possible Optimizations

The above message characteristics say that messages are
clustered together, often coming in close temporal proximity.
Further, database operations such as joins use all-to-all com-
munication of messages which have a high probability of be-
ing the same size. These observations suggest an hypothesis
that many of these messages may actually be point-to-point
implementations of a multicast/broadcast that the database
engine would like to perform. It should be noted that a mul-
ticast can send the same information to several nodes at a
much lower cost than sending individual point-to-point mes-
sages. This saves several overheads at a node (copies, packe-
tization, protocol header compositions, buffer management,
etc.) and can also reduce network traffic/congestion if the
hardware supported it. Possible implementations of multi-
cast are discussed later in this discussion.

To find out how many of the message exchanges can be
modeled as multicasts, we investigated several approaches.
During the execution, in addition to the above events, we
also logged the messages themselves. These logs were then



0 1 2 3 4 5 6 7

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Size (bytes)

C
D

F

0 1 2 3 4 5 6 7

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Size (bytes)

C
D

F

(a)CDF of message size
(Q7)

(b) CDF of message size
(Q11)

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message send inter−arrival time (millisecond)

C
D

F

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message send inter−arrival time (millisecond)

C
D

F

(c)CDF of inter-arrival
time (Q7)

(d) CDF of inter-arrival
time (Q11)

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Message Destination

P
D

F

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Message Destination

P
D

F

(e)PDF of message desti-
nation (Q7)

(f) PDF of message desti-
nation (Q11)

Figure 2: Characterizing Message Sends

subsequently processed to compare whether successive mes-
sages were identical and addressed to different destinations.
Another approach that we tried (which is actually a possible
one to use within the OS during the course of execution itself
to detect multicasts) is to compare checksums of successive
messages. We found that both the approaches - actually
comparing the messages or comparing the checksums - gave
us similar results, and Table 5 gives the percentage of re-
duction in the number of messages that would be sent if the
underlying infrastructure supported multicasts. This infor-
mation is given for both the short and long messages to ver-
ify if multicasts are beneficial to any one class of messages
or for both.

% save % save % save % save % save % save
query of of of query of of of

total small large total small large
msg msg msg msg msg msg

Q1 44.7 71.4 38.7 Q11 9.6 28.6 0.1
Q2 20.4 58.7 0.2 Q12 8.3 7.8 2.9
Q3 48.2 64.3 38.0 Q13 24.5 75.2 0.1
Q4 22.6 58.6 0.1 Q14 27.9 80.4 0.7
Q5 8.0 7.1 8.4 Q15 46.6 56.5 0.7
Q6 76.4 78.6 45.5 Q16 59.1 63.0 56.9
Q7 57.5 71.4 56.2 Q17 41.5 66.7 27.3
Q8 29.1 75.5 4.8 Q18 11.4 32.3 0.00
Q9 66.8 78.5 61.1 Q19 26.7 79.4 0.2
Q10 25.0 73.6 0.1 Q20 21.1 62.8 0.1

Table 5: The potential impact of multicast on queries

We find that there is a substantial multicast potential in
these queries. There is a reduction in the total number of
messages ranging from 8% to as high as 76%. This poten-
tial can be realized only if the underlying network supports
multicasts (incidentally, we found a large number of these
multicasts are in fact broadcasts, which Ethernet can sup-
port). Even assuming that the underlying infrastructure (ei-
ther at the network interface level, or in the physical network
implementation) supports multicast, the message exchanges
should be injected into this infrastructure as multicast mes-
sages. This can be done at two levels. First, the application
(i.e. the database engine) can itself inject multicast messages
into the system. The other approach, which we investigate,
is to automatically detect multicast messages within the op-
erating system (or middleware before going to sockets) and
perform the optimizations accordingly. We next describe an
online mechanism for such automatic detection.

The online algorithm in the OS or middleware can make
the system wait for a certain time window while collecting
messages detected as multicasts, without actually sending
these out. At the end of this window, we send a single mul-
ticast message for all the corresponding destinations of the
saved messages. The advantage with this approach is that
we do not send a message to a destination that the application
does not send to. The drawback is that the time between suc-
cessive messages and time window may be too long a wait
that it may be better off just sending them as point-to-point
messages. Further, if the window is not long enough, we
may not detect some multicasts, and end up sending point-
to-point messages.

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

Time to wait (millisecond)

P
er

ce
nt

ag
e 

re
du

ct
io

n 
of

 to
ta

l m
es

sa
ge

s

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

Time to wait (millisecond)

P
er

ce
nt

ag
e 

re
du

ct
io

n 
of

 to
ta

l m
es

sa
ge

s

(a) Q7 (b) Q11

Figure 3: The impact of wait time on multicast message de-
tection

Consequently, it is important to understand the im-
pact of window size on multicast potential with this on-
line algorithm. If we use such an algorithm within the
OS/middleware, then the percentage reduction in the num-
ber of messages that need to be sent out with this approach
is given in Figure 3 as a function of the time window that it
waits for Q7, Q11, and Q16. As is to be expected, expand-
ing the window captures a large fraction of multicasts until
the benefits taper off. However, one cannot keep expanding a
window arbitrarily since this can slow down the application’s
forward progress in case this message is needed immediately
at the destination. We noticed that the TCP socket imple-
mentation on the underlying platform had one-way end-to-
end latencies of around 100 microseconds. So it is not un-
reasonable to wait for comparable time windows since the
message would anyway take a large fraction of that time to



leave that node. If we consider, window wait times of say
500 microseconds, then we can see reduction of around 40%
of the messages for Q7. On the other hand, Q11 does not
benefit much from such an online algorithm (nor from the
offline algorithm). We found that queries Q6, Q7, Q9, Q15,
Q16, Q17 (the graphs are not explicitly given here) had at
least 15% message reduction with a wait time of 500 mi-
croseconds.

7 Summary of Results and Concluding Re-
marks

Clustered database services that are being offered to host
applications are becoming increasingly popular in medium
and large scale enterprises, to meet the needs of demanding
queries, voluminous datasets and the large number of con-
current users. The understanding of the interactions be-
tween these applications and the underlying OS is critical
to provide better system and architectural support for such
system software. This is the first study to embark on such a
characterization and to present a range of performance statis-
tics for the execution of TPC-H queries, an important deci-
sion support workload for enterprises, on a medium sized
Linux cluster of SMP nodes (a popular configuration in to-
day’s commercial market) connected by Myrinet and Ether-
net.

Moving from a uniprocessor/SMP to a cluster does not
make I/O any less important for a database engine. We find
that disk activity can push CPU utilization as low as 30%
in some queries. The overhead of I/O is not just because of
the disk latencies, and a significant portion is in the pread
system call itself (copying costs mainly). We find that it
is extremely important to optimize the pread system call it-
self, by reducing the amount of copying. There are several
known techniques for reducing copying costs , and in this
study we examined the virtual address remapping scheme
to show how many copies can actually be avoided. By em-
ploying such a scheme, we can utilize the benefits given by
file system (such as ease to manage, structured dataset, etc),
while avoiding the disadvantages of it (file caching).

The other system service that is also exercised is the
socket communication to exchange control and data mes-
sages amongst the nodes. We find messages are often
bunched together, and there are two main message sizes (56
or 4000 bytes). Further, many of these messages are iden-
tical, suggesting potential for multicasts/broadcasts, which
the database engine implements as point-to-point messages.
We find that a significant number of messages (particularly
the shorter ones) can be reduced by multicasts.

It should be noted that our goal in this paper is not to rec-
ommend specific implementations or designs for improving
performance. Rather, we are trying to identify characteris-
tics of application-OS interactions and to suggest issues that
can help improve performance for this workload.

References

[1] DB2 Product Family. http://www-3.ibm.com/
software/data/db2/udb/downloads.html#eeelinux.

[2] GLUnix: A Global Layer Unix for a Network of Work-
stations. http://now.cs.berkeley.edu/Glunix/
glunix.html.

[3] High-Performance Database Requirements.
http://lwn.net/2001/features/KernelSummit/.

[4] IBM DB2. http://www.ibm.com/db2.

[5] IBM Informix Extended Parallel Server (XPS). http://
www-4.ibm.com/software/data/informix/xps/.

[6] Kernel Patch kiobuf. http://www-124.ibm.com/
pipermail/evms/2001-January/000039.html.

[7] Microsoft SQL server 2000.
http://www.microsoft.com/sql/default.asp.

[8] Oracle 9i Real Application Clusters.
http://www.oracle.com/ip/index.html.

[9] TPC-H Benchmark. http://www.tpc.org/tpch.

[10] J. Catozzi and S. Rabinovici. Operating System Extensions
for the Teradata Parallel VLDB. In Proceedings of Very Large
Databases Conference, pages 679–682, 2001.

[11] P. Christmann, T. Harder, K. Meyer-Wegener, and A. Sikeler.
Which Kinds of OS Mechanisms Should Be Provided for
Database Management. In Experiences with Distributed Sys-
tems, pages 213–251. J. Nehmer (ed.), Springer-Verlag, 1987.

[12] P. Druschel and L. L. Peterson. Fbufs: A highbandwidth
cross-domain transfer facility. In Proceedings of the Four-
teenth ACM Symposium on Operating System Principles,
pages 189–202, 1993.

[13] J. Gray. Notes on Database Operating Systems. In Operating
Systems: An Advanced Course. In Lecture Notes in Com-
puter Science 60, pages 393–481. Springer-Verlag, 1978.

[14] W. W. Hsu, A. J. Smith, and H. C. Young. Analysis of the
Characteristics of Production Database Workloads and Com-
parison with the TPC Benchmarks. IBM Systems Journal,
40(3), 2001.

[15] W. W. Hsu, A. J. Smith, and H. C. Young. I/O Reference
Behavior of Production Database Workloads and the TPC
Benchmarks - An Analysis at the Logical Level. To appear in
ACM Transactions on Database Systems, 2001.

[16] M. A. Kandaswamy and R. L. Knighten. I/O Phase Charac-
terization of TPC-H Query Operations. In Proceedings of the
4th International Computer Performance and Dependability
Symposium, March 2000.

[17] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A Unified
I/O Buffering and Caching System. ACM Transactions on
Computer Systems, 18(1), 2000.

[18] M. Stonebraker. Operating system support for database man-
agement. Communications of the ACM, 24(7):412–418, July
1981.

[19] M. N. Thadani and Y. A. Khalidi. An efficient zero-copy I/O
framework for UNIX. Technical Report SMLI TR-95-39, Sun
Microsystems Laboratories, Inc., May 1995.

[20] I. L. Traiger. Virtual memory management for database sys-
tems. Operating Systems Review, 16(4):26–48, 1982.

[21] S. Venkatarman. Global memory management for multi-
server database systems. Technical Report CS-TR-1996-
1325, Univ. of Wisconsin, 1996.


