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Abstract. This paper evaluates the impact of task migration on gang-
scheduling of parallel jobs for distributed systems. With migration, it is
possible to move tasks of a job from their originally assigned set of nodes
to another set of nodes, during execution of the job. This additional

exibility creates more opportunities for �lling holes in the scheduling
matrix. We conduct a simulation-based study of the e�ect of migration
on average job slowdown and wait times for a large distributed system
under a variety of loads. We �nd that migration can signi�cantly improve
these performance metrics over an important range of operating points.
We also analyze the e�ect of the cost of migrating tasks on overall system
performance.

1 Introduction

Scheduling strategies can have a signi�cant impact on the performance charac-
teristics of large parallel systems [3, 5{7, 12, 13, 17]. When jobs are submitted for
execution in a parallel system they are typically �rst organized in a job queue.
From there, they are selected for execution by the scheduler. Various priority
ordering policies (FCFS, best �t, worst �t, shortest job �rst) have been used
for the job queue. Early scheduling strategies for distributed systems just used
a space-sharing approach, wherein jobs can run side by side on di�erent nodes
of the machine at the same time, but each node is exclusively assigned to a job.
When there are not enough nodes, the jobs in the queue simply wait. Space
sharing in isolation can result in poor utilization, as nodes remain empty despite
a queue of waiting jobs. Furthermore, the wait and response times for jobs with
an exclusively space-sharing strategy are relatively high [8].

Among the several approaches used to alleviate these problems with space
sharing scheduling, two have been most commonly studied. The �rst is a tech-
nique called back�lling, which attempts to assign unutilized nodes to jobs that



are behind in the priority queue (of waiting jobs), rather than keep them idle. A
lower priority job can be scheduled before a higher priority job as long as it does
not delay the start time of that job. This requirement of not delaying higher pri-
ority jobs imposes the need for an estimate of job execution times. It has already
been shown [4, 13, 18] that a FCFS queueing policy combined with back�lling
results in e�cient and fair space sharing scheduling. Furthermore, [4, 14, 18] have
shown that overestimating the job execution time does not signi�cantly change
the �nal result.

The second approach is to add a time-sharing dimension to space sharing
using a technique called gang-scheduling or coscheduling [9]. This technique vir-
tualizes the physical machine by slicing the time axis into multiple space-shared
virtual machines [3, 15], limited by the maximummultiprogramming level (MPL)
allowed in the system. The schedule is represented as a cyclical Ousterhout ma-
trix that de�nes the tasks executing on each processor and each time-slice. Tasks
of a parallel job are coscheduled to run in the same time-slices (same virtual
machines). A cycle through all the rows of the Ousterhout matrix de�nes a
scheduling cycle.

Gang-scheduling and back�lling are two optimization techniques that oper-
ate on orthogonal axes, space for back�lling and time for gang-scheduling. The
two can be combined by treating each of the virtual machines created by gang
scheduling as a target for back�lling. We have demonstrated the e�cacy of this
approach in [18].

The approaches we described so far adopt a static model for space assign-
ment. That is, once a job is assigned to nodes of a parallel system it cannot
be moved. We want to examine whether a more dynamic model can be bene�-
cial. In particular, we look into the issue of migration, which allows jobs to be
moved from one set of nodes to another, possibly overlapping, set [16]. Imple-
menting migration requires additional infrastructure in many parallel systems,
with an associated cost. Migration requires signi�cant library and operating sys-
tem support and consumes resources (memory, disk, network) at the time of
migration [2].

This paper addresses the following issues which help us understand the im-
pact of migration. First, we determine if there is an improvement in the system
performance metrics from applying migration, and we quantify this improve-
ment. We also quantify the impact of the cost of migration (i.e., how much time
it takes to move tasks from one set of nodes to another) on system performance.
Finally, we compare improvements in system performance that come from better
scheduling techniques, back�lling in this case, and improvements that come from
better execution infrastructure, as represented by migration. We also show the
bene�ts from combining both enhancements.

The rest of this paper is organized as follows. Section 2 describes the mi-
gration algorithm we use. Section 3 presents our evaluation methodology for
determining the quantitative impact of migration. In Section 4, we show the re-
sults from our evaluation and discuss the implications. Finally, Section 5 presents
our conclusions.



2 The Migration Algorithm

Our scheduling strategy is designed for a distributed system, in which each
node runs its own operating system image. Therefore, once tasks are started
in a node, it is preferable to keep them there. Our basic (nonmigration) gang-
scheduling algorithm, both with and without back�lling, works as follows. At
every scheduling event (i.e., job arrival or departure) a new scheduling matrix
is derived:

{ We schedule the already executing jobs such that each job appears in only
one row (i.e., into a single virtual machine). Jobs are scheduled on the same
set of nodes they were running before. That is, no migration is attempted.

{ We compact the matrix as much as possible, by scheduling multiple jobs
in the same row. Without migration, only noncon
icting jobs can share the
same row. Care must be taken in this phase to ensure forward progress. Each
job must run at least once during a scheduling cycle.

{ We then attempt to schedule as many jobs from the waiting queue as pos-
sible, using a FCFS traversal of that queue. If back�lling is enabled, we can
look past the �rst job that cannot be scheduled.

{ Finally, we perform an expansion phase, in which we attempt to �ll empty
holes left in the matrix by replicating job execution on a di�erent row (virtual
machine). Without migration, this can only be done if the entire set of nodes
used by the job is free in that row.

The process of migration embodies moving a job to any row in which there
are enough free processors. There are basically two options each time we attempt
to migrate a job A from a source row r to a target row p (in either case, row p
must have enough nodes free):

{ Option 1: We migrate the jobs which occupy the nodes of job A at row p,
and then we simply replicate job A, in its same set of nodes, in row p.

{ Option 2: We migrate job A to the set of nodes in row p that are free. The
other jobs at row p remain undisturbed.

We can quantify the cost of each of these two options based on the following
model. For the distributed system we target, namely the IBM RS/6000 SP,
migration can be accomplished with a checkpoint/restart operation. (Although it
is possible to take a more e�cient approach of directly migrating processes across
nodes [1, 10, 11], we choose not to take this route.) Let S(A) be the set of jobs in
target row p that overlap with the nodes of job A in source row r. Let C be the
total cost of migrating one job, including the checkpoint and restart operations.
We consider the case in which (i) checkpoint and restart have the same cost C=2,
(ii) the cost C is independent of the job size, and (iii) checkpoint and restart are
dependent operations (i.e., you have to �nish checkpoint before you can restart).
During the migration process, nodes participating in the migration cannot make
progress in executing a job. We call the total amount of resources (processor �



time) wasted during this process capacity loss. The capacity loss for option 1 is

(
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where jAj and jJ j denote the number of tasks in jobs A and J , respectively. The
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The �rst use of migration is during the compact phase, in which we consider
migrating a job when moving it to a di�erent row. The goal is to maximize the
number of empty slots in some rows, thus facilitating the scheduling of large
jobs. The order of traversal of jobs during compact is from least populated row
to most populated row, wherein each row the traversal continues from smallest
job (least number of processors) to largest job. During the compact phase, both
migration options discussed above are considered, and we choose the one with
smaller cost.

We also apply migration during the expansion phase. If we cannot replicate
a job in a di�erent row because its set of processors are busy with another
job, we attempt to move the blocking job to a di�erent set of processors. A
job can appear in multiple rows of the matrix, but it must occupy the same
set of processors in all the rows. This rule prevents the ping-pong of jobs. For
the expansion phase, jobs are traversed in �rst-come �rst-serve order. During
expansion phase, only migration option 1 is considered.

As discussed, migration in the IBM RS/6000 SP requires a checkpoint/restart
operation. Although all tasks can perform a checkpoint in parallel, resulting in a
C that is independent of job size, there is a limit to the capacity and bandwidth
that the �le system can accept. Therefore we introduce a parameter Q that
controls the maximum number of tasks that can be migrated in any time-slice.

3 Methodology

Before we present the results from our studies we �rst need to describe our
methodology.We conduct a simulation based study of our scheduling algorithms
using synthetic workloads. The synthetic workloads are generated from stochas-
tic models that �t actual workloads at the ASCI Blue-Paci�c system in Lawrence
Livermore National Laboratory (a 320-node RS/6000 SP). We �rst obtain one
set of parameters that characterizes a speci�c workload. We then vary this set
of parameters to generate a set of nine di�erent workloads, which impose an
increasing load on the system. This approach, described in more detail in [5, 18],
allows us to do a sensitivity analysis of the impact of the scheduling algorithms
over a wide range of operating points.

Using event driven simulation of the various scheduling strategies, we monitor
the following set of parameters: (1) tai : arrival time for job i, (2) tsi : start time



for job i, (3) tei : execution time for job i (on a dedicated setting), (4) tfi : �nish
time for job i, (5) ni: number of nodes used by job i. From these we compute:

(6) tri = tfi � tai : response time for job i, (7) twi = tsi � tai : wait time for job

i, and (8) si = max(tr
i
;T )

max(te
i
;T )

: the slowdown for job i, where T is the time-slice

for gang-scheduling. To reduce the statistical impact of very short jobs, it is
common practice [4] to adopt a minimum execution time. We adopt a minimum
of one time slice. That is the reason for the max(�; T ) terms in the de�nition of
slowdown.

To report quality of service �gures from a user's perspective we use the
average job slowdown and average job wait time. Job slowdown measures how
much slower than a dedicated machine the system appears to the users, which
is relevant to both interactive and batch jobs. Job wait time measures how
long a job takes to start execution and therefore it is an important measure for
interactive jobs.

We measure quality of service from the system's perspective with utilization.
Utilization is the fraction of total system resources that are actually used for
the execution of a workload. It does not include the overhead from migration.
Let the system have N nodes and execute m jobs, where job m is the last job
to �nish execution. Also, let the �rst job arrive at time t = 0. Utilization is then
de�ned as

� =

Pm

i=1 nit
e
i

N � tfm �MPL
: (3)

For the simulations, we adopt a time slice of T = 200 seconds, multiprogram-
ming levels of 2, 3, and 5, and consider four di�erent values of the migration cost
C: 0, 10, 20, and 30 seconds. The cost of 0 is useful as a limiting case, and rep-
resents what can be accomplished in more tightly coupled single address space
systems, for which migration is a very cheap operation. Costs of 10, 20, and 30
seconds represent 5, 10, and 15% of a time slice, respectively.

To determine what are feasible values of the migration cost, we consider
the situation that we are likely to encounter in the next generation of large
machines, such as the IBM ASCI White. We expect to have nodes with 8 GB of
main memory. If the entire node is used to execute two tasks (MPL of 2) that
averages to 4 GB/task. Accomplishing a migration cost of 30 seconds requires
transferring 4 GB in 15 seconds, resulting in a per node bandwidth of 250 MB/s.
This is half the bandwidth of the high-speed switch link in those machines.
Another consideration is the amount of storage necessary. To migrate 64 tasks,
for example, requires saving 256 GB of task image. Such amount of fast storage
is feasible in a parallel �le system for machines like ASCI White.

4 Experimental Results

Table 1 summarizes some of the results from migration applied to gang-schedul-
ing and back�lling gang-scheduling. For each of the nine workloads (numbered
from 0 to 8) we present achieved utilization (�) and average job slowdown (s)



for four di�erent scheduling policies: (i) back�lling gang-scheduling without mi-
gration (BGS), (ii) back�lling gang-scheduling with migration (BGS+M), (iii)
gang-scheduling without migration (GS), and (iv) gang-scheduling with migra-
tion (GS+M). We also show the percentage improvement in job slowdown from
applying migration to gang-scheduling and back�lling gang-scheduling. Those
results are from the best case for each policy: 0 cost and unrestricted number of
migrated tasks, with an MPL of 5.

We can see an improvement from the use of migration throughout the range
of workloads, for both gang-scheduling and back�lling gang-scheduling. We also
note that the improvement is larger for mid-to-high utilizations between 70 and
90%. Improvements for low utilization are less because the system is not fully
stressed, and the matrix is relatively empty. Therefore, there are not enough
jobs to �ll all the time-slices, and expanding without migration is easy. At very
high loads, the matrix is already very full and migration accomplishes less than
at mid-range utilizations. Improvements for back�lling gang-scheduling are not
as impressive as for gang-scheduling. Back�lling gang-scheduling already does a
better job of �lling holes in the matrix, and therefore the potential bene�t from
migration is less. With back�lling gang-scheduling the best improvement is 45%
at a utilization of 94%, whereas with gang-scheduling we observe bene�ts as high
as 90%, at utilization of 88%.

We note that the maximum utilization with gang-scheduling increases from
85% without migration to 94% with migration. Maximum utilization for back-
�lling gang-scheduling increases from 95% to 97% with migration. Migration
is a mechanism that signi�cantly improves the performance of gang-scheduling
without the need for job execution time estimates. However, it is not as e�ective
as back�lling in improving plain gang-scheduling. The combination of back�lling
and migration results in the best overall gang-scheduling system.

work back�lling gang scheduling gang scheduling
load BGS BGS+M % s GS GS+M % s

� s � s better � s � s better

0 0.55 2.5 0.55 2.4 5.3% 0.55 2.8 0.55 2.5 11.7%
1 0.61 2.8 0.61 2.6 9.3% 0.61 4.4 0.61 2.9 34.5%
2 0.66 3.4 0.66 2.9 15.2% 0.66 6.8 0.66 4.3 37.1%
3 0.72 4.4 0.72 3.4 23.2% 0.72 16.3 0.72 8.0 50.9%
4 0.77 5.7 0.77 4.1 27.7% 0.77 44.1 0.77 12.6 71.3%
5 0.83 9.0 0.83 5.4 40.3% 0.83 172.6 0.83 25.7 85.1%
6 0.88 13.7 0.88 7.6 44.5% 0.84 650.8 0.88 66.7 89.7%
7 0.94 24.5 0.94 13.5 44.7% 0.84 1169.5 0.94 257.9 77.9%
8 0.95 48.7 0.97 42.7 12.3% 0.85 1693.3 0.94 718.6 57.6%

Table 1. Percentage improvements from migration.

Figure 1 shows average job slowdown and average job wait time as a function
of the parameter Q, the maximum number of task that can be migrated in any



time slice. We consider two representative workloads, 2 and 5, since they de�ne
the bounds of the operating range of interest. Beyond workload 5, the system
reaches unacceptable slowdowns for gang-scheduling, and below workload 2 there
is little bene�t from migration.We note that migration can signi�cantly improve
the performance of gang-scheduling even with as little as 64 tasks migrated.
(Note that the case without migration is represented by the parameter Q = 0
for number of migrated tasks.) We also observe a monotonic improvement in
slowdown and wait time with the number of migrated tasks, for both gang-
scheduling and back�lling gang-scheduling. Even with migration costs as high
as 30 seconds, or 15% of the time slice, we still observe bene�t from migration.
Most of the bene�t of migration is accomplished at Q = 64 migrated tasks, and
we choose that value for further comparisons. Finally, we note that the behaviors
of wait time and slowdown follow approximately the same trends. Thus, for the
next analysis we focus on slowdown.
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Fig. 1. Slowdown and wait time as a function of number of migrated tasks. Each line
is for a combination of scheduling policy and migration cost.

Figure 2 shows average job slowdown as a function of utilization for gang-
scheduling and back�lling gang-scheduling with di�erent multiprogramming lev-



els. The upper left plot is for the case with no migration (Q = 0), while the other
plots are for a maximum of 64 migrated tasks (Q = 64), and three di�erent mi-
gration costs, C = 0, C = 20, and C = 30 seconds, corresponding to 0, 10, and
15% of time slice, respectively. We observe that, in agreement with Figure 1, the
bene�ts from migration are essentially invariant with the cost in the range we
considered (from 0 to 15% of the time slice).

From a user perspective, it is important to determine the maximum utiliza-
tion that still leads to an acceptable average job slowdown (we adopt s � 20 as
an acceptable value). Migration can improve the maximum utilization of gang-
scheduling by approximately 8%. (From 61% to 68% for MPL 2, from 67% to 74%
for MPL 3, and from 73% to 81% for MPL 5.) For back�lling gang-scheduling,
migration improves the maximum acceptable utilization from from 91% to 95%,
independent of the multiprogramming level.
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Fig. 2. Slowdown as function of utilization. Each line is for a combination of scheduling
policy and multiprogramming level.



5 Conclusions

In this paper we have evaluated the impact of migration as an additional feature
in job scheduling mechanisms for distributed systems. Typical job scheduling for
distributed systems uses a static assignment of tasks to nodes. With migration
we have the additional ability to move some or all tasks of a job to di�erent
nodes during execution of the job. This 
exibility facilitates �lling holes in the
schedule that would otherwise remain empty. The mechanism for migration we
consider is checkpoint/restart, in which tasks have to be �rst vacated from one
set of nodes and then reinstantiated in the target set.

Our results show that there is a de�nite bene�t from migration, for both
gang-scheduling and back�lling gang-scheduling. Migration can lead to higher
acceptable utilizations and to smaller slowdowns and wait times for a �xed uti-
lization. The bene�t is essentially invariant with the cost of migration for the
range considered (0 to 15% of a time-slice). Gang-scheduling bene�ts more than
back�lling gang-scheduling, as the latter already does a more e�cient job of �ll-
ing holes in the schedule. Although we do not observe much improvement from
a system perspective with back�lling scheduling (the maximum utilization does
not change much), the user parameters for slowdown and wait time with a given
utilization can be up to 45% better. For both gang-scheduling and back�lling
gang-scheduling, the bene�t is larger in the mid-to-high range of utilization,
as there is not much opportunity for improvements at either the low end (not
enough jobs) or very high end (not enough holes). Migration can lead to a better
scheduling without the need for job execution time estimates, but by itself it is
not as useful as back�lling. Migration shows the best results when combined
with back�lling.
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