
Failure Data Analysis of a Large-Scale Heterogeneous Server Environment

Ramendra K. Sahoo
Exploratory Server Systems Dept.

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598, USA

Anand Sivasubramaniam
Dept. of Computer Science & Engg.

Pennsylvania State University
University Park, PA 16802, USA

Mark S. Squillante
Mathematical Sciences Dept.

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598, USA

Yanyong Zhang
Dept. of Electrical & Computer Engg.

Rutgers University
Piscataway, NJ 08854, USA

Abstract

The growing complexity of hardware and software man-
dates the recognition of fault occurrence in system deploy-
ment and management. While there are several techniques
to prevent and/or handle faults, there continues to be a
growing need for an in-depth understanding of system er-
rors and failures and their empirical and statistical proper-
ties. This understanding can help evaluate the effectiveness
of different techniques for improving system availability, in
addition to developing new solutions. In this paper, we ana-
lyze the empirical and statistical properties of system errors
and failures from a network of nearly 400 heterogeneous
servers running a diverse workload over a year. While im-
provements in system robustness continue to limit the num-
ber of actual failures to a very small fraction of the recorded
errors, the failure rates are significant and highly variable.
Our results also show that the system error and failure pat-
terns are comprised of time-varying behavior containing
long stationary intervals. These stationary intervals exhibit
various strong correlation structures and periodic patterns,
which impact performance but also can be exploited to ad-
dress such performance issues.

1. Introduction

Our growing reliance on computing and information pro-
cessing services mandates deploying systems that can not
only meet the performance demands imposed on such sys-
tems, but are also available when needed. Several tech-
nological factors are accentuating the problem of system
failures, which are highly undesirable since these systems
could be servicing the needs of hundreds of users. At the
same time, solutions for this problem need to keep the high

costs of system maintenance personnel in mind, which is
growing to be a much more important factor in Total Cost
of Ownership (TCO). A deep understanding of the occur-
rence of failures in real environments can be useful in sev-
eral ways towards enhancing overall system availability. It
can provide realistic data when evaluating proposed solu-
tions, together with developing strategies for pro-active pre-
diction and remedies of faults ahead of their occurrence. To-
wards this goal, in this paper we conduct a detailed em-
pirical and statistical analysis of system errors and failures
from a production environment of nearly 400 server ma-
chines with data collected over a year.

As our growing needs for performance continue to fuel
the development of high performance systems/servers, there
are several associated technological factors to keep in mind:

� Denser integration of semiconductor circuits, though
preferable for performance, makes them more suscep-
tible to strikes by alpha particles and cosmic rays [20].
At the same time, there is an increasing tendency to
lower operating voltages in order to reduce power con-
sumption. Such reduction in voltage levels can in-
crease the likelihood of bit-flips when circuits are bom-
barded by cosmic rays and other particles, leading to
transient errors. While memory structures are typi-
cally the target for protection against errors using in-
formational redundancy, more recent studies [14] have
pointed out that the error rates in combinational cir-
cuits are likely to surpass those of memory cells in the
next decade.

� At the macro granularity, we have dense blade-systems
being packed in a rack as a cluster. With a high load im-
posed on these dense systems – both on the CPUs and
on the disks – heat dissipation becomes a very impor-
tant concern, potentially leading to thermal instability
that can cause system/node breakdowns [1].



� We find system software and applications be-
coming more complex. Such complexity makes
them more prone to bugs and other software fail-
ures [15, 9, 18] (e.g., memory leaks, state corrup-
tion, etc.). These bugs/failures can cause system
crashes.

� Networking (whether it be the Internet, or a lo-
cal/system/storage area network) has made it conve-
nient to deploy systems that are inherently parallel
in nature (whether it be functional – different sys-
tems performing different operations – or data par-
allelism – different systems performing same opera-
tions but on different pieces of data). This can not only
be performance-efficient, but can also make it eas-
ier to write and deploy distributed programs/systems.
However, the growing reliance on each other make
nodes within a parallel/distributed system more sus-
ceptible to another’s failures/errors [19].

All these factors point to the increasing occurrence of
system failures in the future. Rather than treat them as an ex-
ception, system design needs to recognize fault occurrence,
and manage the resources effectively so as to hide their im-
pact from the end users. One would ideally like to achieve
the performance of a system without any failures. Even if
this is difficult to attain, there should be at most a “grace-
ful degradation” in performance under the presence of fail-
ures.

There are several broad solution strategies for address-
ing this issue:

� We could implement designs that recognize the occur-
rence of failures when the system/application is de-
ployed initially and provision sufficient redundancy to
avoid problems when failures occur. For instance, one
could provision redundancy in the I/O subsystem (e.g.,
RAID), duplicate file servers themselves, etc. Though
this may not be the most effective use of the additional
hardware/software, which may have been used to im-
prove performance in the first place, the diminishing
fraction of the hardware/software procurement contri-
bution to the TCO may motivate the use of this strat-
egy in some environments.

� Instead of provisioning redundancy at deployment, one
could anticipate failures just ahead of their occur-
rence and perform pro-active counter-measures. For
instance, it has been suggested that one should perform
pro-active shutdown/rejuvenation [18] to avoid catas-
trophic consequences due to different software failures
occurring due to system aging. Similarly, finding al-
ternate servers (or alternate routes to the same server),
by-passing any non-important steps in the execution,
etc., may be done when failures are anticipated.

� Instead of anticipating failures and taking pro-active
measures, the option may be to deal with failures when
they actually occur, e.g., replacing cluster nodes/disks
when they fail, reconfiguring routers, etc. Some of this
may be automated, though a human may be needed for
a lot of other actions.

Each of the above techniques has its pros and cons, and
their extensive trade-offs may need to be analyzed in detail
to pick the best option (or a combination) for the environ-
ment being studied. Our point here is not to favor any one
over another. Rather, we note that across these techniques
there is an important need to gain a detailed understand-
ing of system errors and failures and their underlying prop-
erties. For instance, the choice of using redundancy at ini-
tial deployment would depend largely on the frequency of
failures – higher frequency favors the choice of this tech-
nique. The effectiveness of pro-active action depends sig-
nificantly on how accurately we can predict the occurrence
of failures. Being very conservative when we cannot pre-
dict failures accurately can affect performance. In the strat-
egy of taking actions only when failures occur, understand-
ing failure properties can help prepare personnel appropri-
ately (help select personnel based on their expertise), or-
der spare parts, reduce the down-time by isolating the prob-
lem and proposing remedies, etc. Finally, across these tech-
niques, a characterization of system errors and failures can
serve as a valuable workload to study the effectiveness of
any schemes that may be developed. All these serve as mo-
tivating reasons for studying the errors and failures in real
production systems and characterizing their behavior in de-
tail.

Recognizing the importance of studying system failures,
there have been several attempts at a detailed characteriza-
tion of data from real-world systems as will be summarized
in the next section. Many of these studies [16, 17, 19, 3]
have been in the 1980s and early 1990s, where the hardware
and software were significantly different. Today’s systems
pose a much higher level of sophistication in the kinds of
applications that they run, and in the complexity of the sys-
tem software and hardware. A more closely related study is
the one presented in [19] where event logs from a networked
system of around 500 Windows NT server systems is stud-
ied. Their study uses a production environment from a busi-
ness enterprise where the applications are mainly commer-
cial, in addition to services such as file and email ser-
vice. Beyond including such commercial services, the net-
worked system of servers that we examine is much more
diverse, containing heterogeneous hardware ranging from
single CPU servers to 2/4/8/12-way SMPs, and even clus-
ters, and the workload includes several long-running scien-
tific applications as well.

We have collected extensive error logs from a networked
environment of heterogeneous servers at the IBM Thomas

2



J. Watson Research Center consisting of close to 400 ma-
chines (many having multiple processors) over a period of
close to 500 days that provides information about both non-
critical events (which may simply be alarms) and critical
events (which cause node failures). We conduct detailed
empirical and statistical analysis of these event logs. The
results of our analysis demonstrate that, even though there
continue to be considerable improvements in system ro-
bustness to limit the number of actual failures to a very
small fraction of the recorded errors, the failure rates are
quite significant and highly variable. Our results further
show that the system error and failure patterns are com-
prised of non-stationary behavior containing long stationary
intervals many spanning more than a day. These stationary
intervals exhibit various forms of strong correlation struc-
tures, including possible long-range dependence, together
with significant periodic behavior and considerable cross-
correlation between less-serious errors and more-serious er-
rors plus failures. Moreover, the failures are not uniformly
distributed among the nodes and a small fraction of the
nodes incur most of the failures, with less than 4% of the
nodes experiencing almost 70% of the failures. This behav-
ior has also been observed in other studies [16, 8, 19] that
have attempted to characterize the failure properties of real
systems. The failures at the nodes incurring the most fail-
ures also have a strong temporal correlation with time of
day at the hourly level and these temporal correlation pat-
terns vary over time with such behavior differing among the
individual nodes.

The rest of this paper is organized as follows. The next
section provides a brief summary of work related to this
study. An explanation of the system log collection and the
associated analyses are given in Sections 3 and 4, respec-
tively. Finally, Section 5 summarizes the results of this
study.

2. Related Work

The impact of failures on dependability and availabil-
ity of distributed server systems has received much atten-
tion over the last decade. Tang [16, 17] studied the er-
ror/failure log collected from a VAXcluster system consist-
ing of seven machines and four storage controllers. They
found that 98.8% of the errors are recovered, and 46% of the
failures are caused by external errors. Using a semi-Markov
failure model, they further pointed out that failure distribu-
tions on different machines are correlated rather than inde-
pendent. Xu [19] performed a study of error logs collected
from a heterogeneous distributed system consisting of 503
PC servers. They showed that failures on a machine tend
to occur in bursts, possibly because common solutions such
as reboots cannot completely remove the problem causing
the failure. They also observed a strong indication of error

propagation across the network, which leads to the correla-
tion between failures of different nodes. These studies use
the empirical (marginal) distribution obtained from their re-
spective datasets to build failure models. Heath [3] collected
failure data from three different clustered servers, ranging
from 18 workstations to 89 workstations. They assumed the
times between failures are independent and identically dis-
tributed, and fit the failure data using a Weibull distribution
with a shape parameter less than 1. In addition, they used a
property of this Weibull distribution – nodes that just failed
are more likely to fail again in the near future – to moti-
vate a new resource management strategy.

The impact of workload on both software and hardware
failures has also been studied. Castillo [2] considered work-
load as a factor in predicting software failures. Iyer [6]
examined the effect of workload on the reliability of the
IBM 3081 operating system. The study validated a load-
hazard model. Mourad [11] conducted a study on the IBM
MVS/XA operating system and found that error distribu-
tion is heavily dependent on the type of system utilization.
Meyer [10] looked at the impact of workload on the com-
puter system dependability. Vaidyanathan [18] explained
that software related error conditions will accumulate over
time which will eventually lead to crashes/failures.

3. System Environment and Failure Data

Environment: Our study is based on events collected from
��� nodes in a machine room at the IBM Thomas J. Wat-
son Research Center that support a broad and diverse user
community. Note that we use the term node to denote one
machine, irrespective of the number of CPUs it may con-
tain. For instance, a 4-way or 8-way SMP is still denoted
as 1 node. All of the nodes run (possibly different ver-
sions of) the AIX operating system and are connected by a
high-speed network. The processors are also heterogeneous
across the collection of nodes. The majority of nodes are
primarily used for scientific applications, with a few of the
nodes being used to execute commercial applications. Most
of the scientific applications are parallel codes using MPI
that solve problems related to weather forecasting, speech
recognition, etc., while most of the commercial applications
are parallel and sequential codes for database, mail serving,
and related activities. A description of the workloads run-
ning on these ��� nodes is provided in Table 1.

Event Collection Mechanism: We obtained extensive event
logs from these ��� nodes over a representative period of
��� days during 2002 and 2003. This was procured using
the Reliability Availability and Serviceability (RAS) facil-
ity of the AIX operating system. This facility uses the al-
ready available mechanism wherein the kernel/applications
log their errors in the special file ����������. A daemon
(���������) is started during system initialization, which

3



No. of Nodes Description
72 Computational Linguistics
48 Computational Physics
50 Libraries/Computing Services
112 Protein Folding
8 DB2 server
2 SAMBA Server
15 DCE/DFS
13 GPFS/GSA File Server
3 Web server,Loadleveler/scheduler
20 Misc. (incl. license server, mail server, etc.)
4 ADSM/Backup system
48 Weather modeling

Table 1. Node breakup for workloads.

continuously monitors this special file for any events of in-
terest. The label of each new entry in this file is compared
against a database of error record templates. If there is a
match, then additional information about the system envi-
ronment and/or hardware status is added, before the entry is
posted to an error log. The default temporal granularity for
logging in AIX is 1 minute, and typically system configu-
ration parameters such as buffer sizes are set based on this
default to avoid excessive overheads. Though this could be
modulated for a finer resolution, we opted against doing so,
because: (i) it could affect the performance of many server
critical applications, thus interfering with their everyday us-
age; (ii) it requires changing the resolution on all the nodes
which may not be very desirable (on the other hand 1 minute
resolution is provided as a default); and (iii) as will be de-
scribed shortly, we eventually need to filter the data (elim-
inating multiple reports of the same errors) which uses a
resolution of about 5 minutes to remove redundant events
within this window, making a resolution of 1 minute suf-
ficient for the logging itself. More details of RAS logging
mechanism for AIX are described in [4].

Each entry of the system error log contains information
on various aspects of the error. This includes the node num-
ber (Node) which denotes the location of the error, error
identifier (ID), time stamp (Time), error type (Type) which
denotes the error severity, error class (Class) which de-
notes the subsystem affected by the error and a short de-
scription of the problem (Description). AIX error logging
provides error templates for ��� different types of errors.
These errors can be broadly classified based on the type of
error (i.e., the error severity) and affected subsystem (i.e.,
hardware or software related). Specifically, there are 5 error
types: (1) TEMP: Error condition recovered after a number
of unsuccessful attempts; (2) PERF: Performance of the de-
vice/component has degraded to below an acceptable level;
(3) UNKN: Unknown error (Cannot determine the sever-
ity); (4) PEND: Loss of availability of a device or compo-
nent is imminent; and (5) PERM: Permanent Error (Unre-
coverable/Most Severe Error). Similarly, there are 4 error
classes of interest: (1) Class O: Informational errors only;

(2) Class S: Software related errors; (3) Class U: Undeter-
mined errors; and (4) Class H: Hardware related errors. We
provide a few representative error examples along with their
error types and error classes in Table 2.

Type Class Description
PEND H CPU Failure Predicted
TEMP H Communication Protocol Error
PERF O Unable to Allocate Space in Kernel Heap
PEND S Potential Data Loss Condition
TEMP O Recoverable Software Error
PERM S Configuration Failed

Table 2. Examples of Error log entries.

Event Processing and Filtering: The raw event logs col-
lected using the above mechanism include planned and
scheduled maintenance, shutdowns and reboots, in addition
to other errors in hardware and software. In all, a total of
�	 ���	 ��	 raw events were collected from these ��� nodes
over a period of ��� days. It is to be noted that this raw data
needs to be processed in order to eliminate certain repeti-
tive/redundant events, system outages and scheduled main-
tenance, so as to be useful in subsequent analysis. Such fil-
tering of raw data is a difficult task, as has also been pointed
out in related studies [16]. Our filtering process consists of
several iterations of spurious and redundant log removal, us-
ing a time window defined as threshold time (
��). The basic
premise is that events that appear within a very short time
interval at a node are a result of the same errors [16]. The fil-
tering algorithm records any new event type as a new event
ID and any new node number as a new node ID. It compares
the event ID and node ID at any time 
 with the event ID
and node ID of all events since time 

 � 
���. If both the
��s are same, the filtering process only records the event
ID and node ID corresponding to time 

 � 
 ���, discard-
ing the recorded event at time 
 . If either of the IDs are dif-
ferent, it records the events as two distinct events.

There are trade-offs that we need to consider when
choosing 
��. On the one hand, a very small value would
lessen the chances of removing two entirely different events
that could be tagged as duplicates when a larger threshold
value is used. At the same time, the smaller threshold would
eliminate a much smaller fraction of spurious events. We
found that a threshold value of 5 minutes (i.e., 
 �� � � min-
utes) did a fairly good job of eliminating spurious events
while bringing down the size of the log considerably. Note
that this threshold value is also comparable to the values
used in related studies [16].

Through this simple filtering process, we were able to
eliminate ���	 of the total raw events, ending up with
a total of ���	 ��� distinct events, over the period of ���
days. As the result of a major scheduled system mainte-

4



nance event within this time interval and because our sta-
tistical procedure for determining stationarity requires in-
put time-series whose lengths are a power of 2, we identi-
fied a representative period of ��� days (	�� minutes) from
the original dataset and use this refined dataset as the ba-
sis for our study. The refined dataset consists of �	�	 ���
filtered events over the ��� days whose properties are in-
vestigated as part of our empirical and statistical data anal-
ysis.

Note that not all of these events are actual failures; e.g.,
some could be informative or warnings as explained in the
error classification above. The information in the system er-
ror log entries made it possible for us to identify actual fail-
ures that caused the corresponding node to go down. Such
failures consist of PERM type errors and a small subset of
PEND type error entries in the log. We shall henceforth re-
fer to this collection of entries in the log as failures. The
remaining PEND type log entries together with the TEMP,
PERF and UNKN type entries in the system log represent
actual errors detected and logged by RAS that do not re-
sult in a failure. This is either because of some corrective
action taken to address the problem or because the problem
was transient. Table 3 provides a breakdown of the error
and failure counts categorized by the type and class fields
in their log entry.

Class O Class S Class U Class H Total
TEMP 11420 1000 141705 143841 297966
PERF 1929 0 8410 28828 39167
UNKN 9109 4352 6646 12 20119
PEND 500 156613 5274 0 162387
PERM 0 0 0 664 664
TOTAL 22958 161965 162035 173345 520303
Failures 498 123 0 664 1285

Table 3. Error and failure counts.

4. Data Analysis

In this section we present the results of an analysis of the
error and failure data from the large distributed system de-
scribed in Section 3. Our focus is on a representative in-
terval of the data consisting of a total of 364 days (	��

minutes) starting in early 2002 and ending in early 2003.
The corresponding datasets are obtained after prefiltering
and removal of extraneous events such as scheduled sys-
tem maintenance, as discussed in Section 3. We first con-
sider the properties of the aggregate system-wide error and
failure data, starting with a simple empirical analysis of the
raw datasets and then turning to a deeper statistical analysis
of the properties of the underlying stochastic processes. We
then consider some related properties of such events from
the perspective of individual nodes.

4.1. System-Wide Errors and Failures

The time-series datasets of failures and different types
of errors contain periods with multiple events every minute
and other periods with no events over many consecutive
minutes. Hence, our analysis considers two different but re-
lated views of each of these time-series datasets, i.e., the
number of events per minute, or rate process, and the time
between events, or increment process, for the sequences of
failures and different types of errors.

General statistics for the raw rate processes (i.e., num-
ber of events of each type, daily average number of events
of each type, and the average, variance and maximum of the
number of events of each type per minute) and the raw in-
crement processes (i.e., number of minutes spanned by the
events of each type, and the average, variance and maxi-
mum of the number of minutes between events of each type)
are provided in Table 4. We observe that the failures rep-
resent a relatively small fraction of the events in the error
logs, with the number of TEMP and PEND errors exceed-
ing the number of failures by 	 orders of magnitude while
the number of PERF and UNKN errors exceed the num-
ber of failures by an order of magnitude. This suggests that
a large number of errors may be resolved before an actual
failure occurs, which could be due to increased error re-
porting or improved system robustness or a combination of
both. We further observe that the average time between fail-
ures is 	 orders of magnitude larger than the average time
between all errors (see row 2 of Table 4(b)). The variabil-
ity of the interfailure times is also relatively large having a
coefficient of variation (CV: ratio of standard deviation to
mean) that exceeds 	�, whereas the variability of the inter-
error times is significantly larger having a CV that exceeds
��. Many of these trends are fairly consistent with previous
results in the literature (e.g., [16, 19, 5]), although the frac-
tion of error events that represent actual failures (0.25%) ap-
pears to be smaller (possibly reflecting improvements in er-
ror reporting and/or system robustness), the rate at which
errors and failures occur have increased (possibly because
reporting capabilities have improved and because hardware
and software have become more complex), and the variance
in such error/failure occurrences have also increased.

To gain a better understanding of the properties of these
raw failure and error datasets, we next consider the corre-
sponding empirical (marginal) distribution for each of the
processes. As a representative sample of our results, Fig-
ure 1 presents the empirical distribution for the interfailure
times (a) and the empirical distribution for the number of
errors per minute (b), where both axes are in log-scale. Ob-
serve the non-monotonic characteristics in both processes
that suggest the raw datasets may contain mixtures of dif-
ferent statistical behaviors, which is most apparent in the
error rate process plots. We further observe from these re-

5



TEMP PERF UNKN PEND All Errors Failures
Events 297966 39167 20119 162387 519018 1285
Daily Avg 818.39 107.58 55.26 446.01 1425.53 3.53
Average 0.57 0.07 0.04 0.31 0.99 0.002
Variance 12.42 1.03 0.28 7.76 28.25 0.01
Maximum 468 175 99 350 691 16

(a)

TEMP PERF UNKN PEND All Errors Failures
Minutes 524229 522279 523415 523822 524229 519486
Average 1.76 13.33 26.02 3.24 1.01 404.27
Variance 412.70 9028.64 18841.8 2821.2 207.2 1045520
Maximum 5794 6267 5917 5971 5792 8631

(b)

Table 4. General statistics: (a) rate pro-
cesses; (b) increment processes. (Times in
minutes.)

sults: (1) the very rapid initial declines in the distribution
functions, where the majority of the probability mass oc-
curs for very small values on the x-axis; and (2) the rela-
tively long tails of the distributions for large values on the
x-axis, where there are also significant gaps in the tail dis-
tribution with probability mass 0 for relatively large inter-
vals on the x-axis. The decay rates of the tails flatten out for
larger values on the x-axis, although the tails are obviously
bounded at the maximum values provided in Table 4. On
the other hand, it is important to point out that the statistical
significance of these long tails in both plots is quite limited,
given that the set of points with the smallest positive prob-
ability mass represents occurrences of a single event and
the set of points with the next smallest positive probabil-
ity mass represents occurrences of two events. These results
on the tail properties of the empirical marginal distributions
help to explain the corresponding high variance of the fail-
ure and error processes which were previously observed for
the CV. While some of these trends are consistent with pre-
vious results in the literature [16, 19, 3], the differences in
magnitude and other characteristics (such as tail properties
and non-monotonicity) noted above are reflective of the dif-
ferences in our raw failure and error datasets.

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

Interfailure Times (Minutes)

P
ro

b
ab

ili
ty

 (
L

o
g

 S
ca

le
)

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Errors per Minute

P
ro

b
ab

ili
ty

 (
L

o
g

 S
ca

le
)

(a) (b)

Figure 1. Empirical (marginal) distributions.

In an attempt to explore the empirical properties of these
marginal distributions of the raw datasets in more detail,
we consider the corresponding empirical hazard rate func-
tions [7] defined as �
�� � �
���
� � � 
��� where �
��
is the marginal density function and � 
�� is the marginal
cumulative distribution function. Figure 2 plots the hazard
rate function for the marginal distributions in Figure 1 of the
raw interfailure (a) and intererror (b) times. We observe that
�
�� � � because �
�� � �� for the interfailure times and
that �
�� � � because �
�� � �� for the intererror times.
The empirical hazard rate functions of both processes de-
crease rapidly with increasing �, which is as expected and
is also consistent with previous results (e.g., [16, 3]). How-
ever, for larger values of �, we observe that �
�� tends to
rise with increasing values of � and this is especially sharp
for the intererror times. This implies that failures and errors
become increasingly likely as the time since the last failure
and error increases beyond a certain point, strictly with re-
spect to the marginal distributions of the corresponding raw
interfailure and intererror datasets. Such behavior is differ-
ent from some previous results where the trend in the tail of
the empirical hazard rate function is either flat (e.g., [16]) or
decreasing (e.g., [3]). We further observe from the results in
Figure 2 additional evidence of possible mixtures of differ-
ent statistical behaviors in the raw error and failure datasets.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Minutes

E
rr

o
r 

H
az

ar
d

 R
at

e

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Minutes

E
rr

o
r 

H
az

ar
d

 R
at

e

(a) (b)

Figure 2. Hazard rate functions.

The above results present an empirical analysis of the
raw datasets used in our study together with a few compar-
isons against some of the corresponding results in the re-
search literature. In order to gain a deeper understanding of
the statistical properties of our time-series datasets and to
aid in the development of stochastic failure models based
on this data, we turn to consider a more detailed statisti-
cal analysis of the time-varying properties and correlation
structures of the underlying stochastic error and failure pro-
cesses. The first important issue of interest concerns the sta-
tionarity of these error and failure processes, where a time
series is said to be stationary if it is invariant to shifts in time
with respect to statistical measures. Motivated by its effec-
tive use in a recent Web traffic study [13], we use a spe-

6



cific statistical procedure, called Auto-SLEX [12], to parti-
tion the error and failure rate and increment processes into
stationary intervals. Auto-SLEX has the advantages that it
does not identify changes in the level of a time series and
it only identifies changes in the correlation structure, be-
cause the partitioning is based on second-order properties
of the process and ignores the level information contained
in the spectral value at zero frequency; refer to [12, 13]
for additional technical details. The corresponding results
for error/failure rate and increment processes demonstrate
that these processes are clearly nonstationary and that they
contain relatively long time intervals which are stationary.
In particular, during the entire dataset interval of 	�� min-
utes we find 2 stationary intervals in the error+failure rate
process of length ���	 minutes, 5 stationary intervals of
length ���� minutes, 9 stationary intervals of length 	���
minutes, and 19 stationary intervals of length ��	� min-
utes. It is quite interesting to observe so many long station-
ary intervals, representing more than 5.6 days, 2.8 days, 34
hours and 17 hours, respectively. Moreover, during the same
dataset interval we find a few stationary intervals in the fail-
ure increment process that span more than 28 days. Note
that these results are very consistent across a wide range of
parameter settings for the Auto-SLEX procedure, including
its defaults.

Another important statistical issue of interest concerns
the correlation structures contained within stationary inter-
vals of the error and failure processes. We therefore con-
sider next the sample autocorrelation function (ACF) [7] for
the stationary intervals of the processes of interest. As a rep-
resentative sample of our results, Figure 3(a) plots the ACF
for a stationary interval of the error+failure rate process of
length ���� minutes. These results demonstrate significant
correlation structures together with significant periodic be-
havior on the order of 10–11 minutes. The slow decay of the
ACF with increasing lag suggests possible long-range de-
pendence within relatively long stationary intervals of the
error+failure rate process. It is interesting to note that very
consistent ACF results were obtained for different station-
ary intervals of this process of length ����minutes, includ-
ing almost identical periodic behavior on the order of 10–11
minutes. To gain a deeper understanding of the strong cor-
relation structures in the error+failure rate process, we par-
tition the set of errors and failures into less-serious errors
(TEMP, PERF, UNKN) and more-serious errors (PEND)
plus failures, and then compute the ACF for each of these
2 separate time series. Interestingly, while each of these
ACFs exhibit considerable correlation structures, the mag-
nitude of this correlation is much smaller than that shown in
Figure 3(a) and this correlation dies out fairly quickly with
increasing lag. Some forms of periodic behavior also ex-
ist in both ACFs, but once again the magnitude is smaller
and it dies out more quickly. These results suggest that the

strong correlation structures in the error+failure rate process
of Figure 3(a) might be due, in part, to the interactions be-
tween the statistical properties of the less-serious errors and
the more-serious errors plus failures.

0 200 400 600 800 1000

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

−1000 −500 0 500 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Lag

A
C

F

(a) (b)

Figure 3. Sample ACF and CCF.

In order to further explore the strong correlation struc-
tures of the error+failure rate processes, we next consider
the sample cross-correlation function (CCF) [7] between
common stationary intervals for the less-serious error rate
processes and the more-serious error plus failure rate pro-
cesses discussed above. Figure 3(b) plots a representative
sample of our CCF results for a common stationary inter-
val of length ���� minutes. Note that the positive-valued
lags of the CCF plot show the relationship between less-
serious errors and more-serious errors plus failures at lags of
� minutes apart, whereas the negative-valued lags show the
correlation between less-serious errors and more-serious er-
rors plus failures at lags of �� minutes apart (i.e., the less-
serious errors follow the more-serious errors plus failures
with a distance of � minutes). We observe from these re-
sults that there are significant cross-correlation structures
between these two partitions of the error+failure rate pro-
cess together with considerable periodic behavior. It is in-
teresting to note that fairly consistent CCF results were
obtained for different common stationary intervals of the
error+failure rate process. These results tend to support
the view that the strong correlation structures in the er-
ror+failure rate processes might be due, in part, to the sta-
tistical interactions between the time-series of less-serious
and more serious events, and they provide further insights
into the forms of these statistical interactions.

4.2. Per-Node Errors and Failures

System errors and failures most directly impact the nodes
where they occur, as this is the level at which system per-
formance is impacted and can be addressed. In this section
we analyze some of the properties of the error and failure

7



datasets from the perspective of individual nodes to investi-
gate these issues and to further gain a better understanding
of the underlying stochastic error and failure processes.

We first consider the empirical (marginal) distribution
for each of the raw failure and error datasets at individ-
ual nodes, together with the empirical hazard rate functions
for the corresponding marginal distributions of the raw in-
terfailure and intererror times. Upon comparing our results
with those in Figure 1, we find that each of the empirical
marginal distributions for the individual nodes exhibit char-
acteristics and trends fairly similar to those observed for the
corresponding system-wide marginal distributions. A repre-
sentative sample of the empirical hazard rate functions for
these per-node marginal distributions from the perspective
of a specific node (ID 59) is provided in Figure 4, both for
the empirical distribution of the raw interfailure times (a)
and the empirical distribution of the raw intererror times
(b). We observe that the hazard rate functions in Figure 4
for an individual node have characteristics and trends simi-
lar to those found in the corresponding system-wide hazard
rate functions in Figure 2, although there are some consid-
erable differences in magnitude. This suggests that some of
the empirical properties associated with the marginal distri-
butions for the system-wide raw failure and error datasets
may also hold to some extent for a subset of the individual
nodes, especially those which encounter a relatively large
number of errors and failures.

10
0

10
1

10
2

10
3

10
−2

10
−1

Minutes

F
ai

lu
re

 H
az

ar
d

 R
at

e 
(N

o
d

e 
59

)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Minutes

E
rr

o
r 

H
az

ar
d

 R
at

e 
(N

o
d

e 
59

)

(a) (b)

Figure 4. Hazard rate functions for node 59.

We next consider the manner in which the raw failures
are distributed among the individual nodes comprising the
distributed system. Figure 5 plots the number of failures as a
function of the node ID, where the nodes are listed in nonin-
creasing order with respect to the number of failures. These
results clearly illustrate that the raw failures are not uni-
formly distributed among the set of nodes and that a small
fraction of the nodes incur the overwhelming majority of
the failures. In fact, less than 4% of the nodes incur almost
70% of the failures. The distribution has a large probabil-
ity mass for the first 3 nodes, followed by a rapid decrease
to a second tier of probability mass, followed by a rapidly
decaying tail. Clearly there are strong forms of correlation

Figure 5. Failures as a function of node ID.

between certain individual nodes and failures. According
to [2, 6, 5, 11], the workload has an important impact on
the reliability of the underlying system. Thus, upon exam-
ining the workloads running on each node, we find that 3
of the top 5 nodes (IDs 82, 79 and 330) were serving as
file servers, while the remaining 2 nodes (IDs 59 and 4)
were serving as database servers. This suggests the follow-
ing possible explanation for the high failure rates on these
5 nodes. Firstly, it seems reasonable to hypothesize that the
nodes operating as file/database servers for the entire dis-
tributed system will experience a much higher load than
the other computing nodes, even though the utilization of
each node is not available to us in our study. Secondly, ear-
lier studies such as [16] have observed that most (hardware)
failures occur in the I/O subsystem, which is a primary op-
eration of a file/database server.

Given the strong concentration of failures on relatively
few nodes, we next consider the empirical (marginal) dis-
tribution of the time at which failures occur on the 5 nodes
with the most failures. Figure 6 plots the corresponding re-
sults where the raw failures are aggregated at an hourly level
for each of the 24 hours in a day. These results clearly illus-
trate that the failures at the top 5 nodes also have strong
correlations with time of day at the hourly level. Node 82
encounters essentially no failures after 1am until around 6
am when a concentrated probability mass of failures con-
tinues to rise over several consecutive hours through noon,
and then there is a decreasing trend in the probability mass
of failures through midnight. The failures experienced at
node 79 are somewhat more persistent and spread out over
the 24 hours in a day, with positive failure intensities every
hour and with peak failure intensities occurring in the 14th,
1st, 11th and 20th hours. Nodes 79 and 82 incur the largest
per-hour failure intensities at hours 14 and 12, respectively.
The failures encountered at node 59 are also somewhat per-
sistent with positive failure intensities every hour and they
consist of several cycles of varying forms of oscillating fail-
ure intensities. Node 330 experiences somewhat fewer cy-
cles of relatively similar forms of oscillating failure intensi-
ties throughout the 24 hours in a day, although the variabil-
ity of these peaks and valleys is considerably smaller than

8



0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Bucket No (Hour of the day)

P
ro

b
ab

ili
ty

Node 82
Node 79
Node 59
Node 330
Node 4

Figure 6. Distribution of daily failures.

those found at node 59. The failures encountered at node 4
tend to be more clustered, where essentially no failures oc-
cur in hours 1 and 2, hours 13 through 21, and hours 23 and
24, and the largest probability mass of failures occurs dur-
ing hours 3 through 5, and hours 8 and 10.

The next issue of interest concerns how these temporal
correlations vary over longer time horizons. In Figure 7 we
plot the number of raw failures per hour at the 5 nodes with
the most failures over the entire duration of our time-series
dataset. These results clearly illustrate that the temporal cor-
relations vary over time and that the patterns of such behav-
ior differ among the individual nodes. In particular, Node 82
experiences no failures for the first quarter of the time-series
and then it encounters bursts of failures that are fairly well
spread out over the remainder of the time-series, with the
majority of bursts being of size 3, a few being of size 4, and
a single burst of size 5. No failures are experienced at node
79 for almost the entire second half of the time-series, while
the first half contains bursts of failures that are more clus-
tered than those at node 82, most of which are of size 3.
With few exceptions, the failures at node 79 dominate the
system failures during the first half of the time-series. Node
59 encounters no failures for more than the first third of the
time-series and then it experiences bursts of failures that are
fairly well spread out over the remainder of the time-series,
with the majority of bursts being of size 1, several being of
size 2, a few being of size 3, a couple being of size 4, and
a single burst of size 5. No failures are experienced at node
330 for almost the entire first half of the time-series, fol-
lowed by a cluster of failure bursts of sizes 1–3 close to
the middle of the time-series. Node 330 also encounters an-
other cluster of somewhat similar failure bursts towards the
end of the time-series, with several single failures spread
out in between the two clusters of failures. The failures ex-

perienced at node 4 are quite bursty and dispersed, with all
of these failures concentrated at 16 points in time over the
entire duration of our time-series dataset. Node 4 also en-
counters the maximum hourly burst of 9 failures among the
top 5 nodes.

0 1000 2000 3000 4000 5000 6000 7000 8000

0

5

10

0

5

10

F
ai

lu
re

s

0

5

10

O
f

0

5

10

N
u

m
b

er
0

5

10

Time (Minutes)

Node 82

Node 79

Node 59

Node 330

Node 4

Figure 7. Failures as a function of time.

We feel that the failures for these nodes, and their time-
varying behavior, are influenced considerably by the load
that is imposed on them. Investigating such correlations be-
tween the nature and intensity of the workload, and the fail-
ure properties is part of our future work.

5. Concluding Remarks

Evolving technological trends and growing system com-
plexity necessitate taking failures into account when design-
ing systems for the next generation. This issue becomes par-
ticularly important when designing and deploying servers
that must cater to the needs of hundreds of users without sig-
nificant disruption of service. While there are several (pro-
active and post-active) techniques for dealing with and mit-
igating the impact of failures, there is a critical need to un-
derstand the failure behavior of real systems. Such an under-
standing can not only help evaluate and tune existing tech-
niques, but also develop new mechanisms.

Towards this goal, we collected event logs of system
health from 395 server class systems in a machine room
at the IBM Thomas J. Watson Research Center over a
year. This production environment contains several het-
erogeneous servers – from multiprocessor (2/4/8/12-way)
SMPs to clusters – running a diverse spectrum of workloads
– from traditional file and email services, to commercial ap-
plications such as transaction processing and even long run-
ning scientific applications.

9



An examination of these logs demonstrates that al-
though improvements in system robustness continue to
limit the number of actual failures to a very small frac-
tion of the recorded errors, the failure rates are still sig-
nificant and highly variable. The results of our analysis
also show that the underlying stochastic error and fail-
ure processes exhibit time varying behavior and different
forms of strong correlation structures, including possi-
ble long-range dependence, significant periodic behavior,
and considerable cross-correlation between less-serious er-
rors and more-serious errors plus failures. In particular,
the system error and failure patterns are clearly nonsta-
tionary and they consist of relatively long time intervals
that are stationary, many spanning more than a day. More-
over, the failures are not uniformly distributed among the
nodes and a small fraction of the nodes incur most of
the failures, with less than 4% of the nodes experienc-
ing almost 70% of the failures. The failures at the nodes
incurring the most failures also have a strong temporal cor-
relation with time of day at the hourly level and these
temporal correlation patterns vary over time with such be-
havior differing among the individual nodes.

There are several interesting directions for future work,
in terms of using the data collected as well as further work
in data collection itself. Using this data, we would like to
evaluate previously proposed techniques for enhancing sys-
tem availability. In addition, we would like to explore the
possibility of predicting failures based on events occurring
at a node, or across the network, and their usefulness in pro-
active system maintenance. In terms of data collection, we
would like to procure more data not only from other en-
vironments, but even within the production system studied
here in the hope of gaining more insights on how hardware
and software advancements, and workload evolutions, im-
pact the failure properties.

Acknowledgements: We thank H. Ombao and B. Ray for
making available to us an implementation of the Auto-
SLEX procedure. We also thank Dr. R. Iyer and the anony-
mous referees for invaluable comments which helped us
improve the quality of the presentation. A. Sivasubrama-
niam is supported in part by NSF grants 0325056, 9988164,
0097998 and 0130143, an IBM faculty award and an IBM
SUR equipment grant.

References

[1] Power and Temperature-aware Computing. Special Issue,
IEEE Computer, 36(12), 2003.

[2] X. Castillo and D. P. Siewiorek. A workload dependent soft-
ware reliability prediction model. In Proc. Intl. Symp. Fault-
Tolerant Computing, pp. 279–286, 1982.

[3] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster
availability using workstation validation. In Proc. ACM SIG-

METRICS Conf. Measurement and Modeling of Computer
Systems, pp. 217–227, 2002.

[4] IBM Corporation. Problem solving and troubleshooting in
AIX 5.l. IBM Redbooks, 2002.

[5] R. Iyer, D. Rossetti, M. Hsueh. Measurement and modeling
of computer reliability as affected by system activity. ACM
Trans. Computer Systems, 4(3):214–237, 1986.

[6] R. K. Iyer and D. J. Rossetti. Effect of system workload on
operating system reliability: A study on IBM 3081. IEEE
Trans. Soft. Eng., SE-11(12):1438–1448, 1985.

[7] S. Karlin and H. M. Taylor. A First Course in Stochastic Pro-
cesses. Academic Press, Second edition, 1975.

[8] I. Lee and R. K. Iyer. Software dependability in the tan-
dem guardian operating system. IEEE Trans. Soft. Eng.,
39(4):455–467, 1995.

[9] M. Lyu and V. Mendiratta. Software fault tolerance in a clus-
tered architecture: Techniques and reliability modeling. In
Proc. 1999 IEEE Aerospace Conf., pp. 141–150, 1999.

[10] J. Meyer and L. Wei. Analysis of workload influence on de-
pendability. In Proc. Intl. Symp. Fault-Tolerant Computing,
pp. 84–89, 1988.

[11] S. Mourad and D. Andrews. On the reliability of the
IBM MVS/XA operating system. IEEE Trans. Soft. Eng.,
13(10):1135–1139, 1987.

[12] H. Ombao, J. Raz, R. vonSachs, and B. Malow. Automatic
statistical analysis of bivariate non-stationary time-series. In
J. American Statistical Association, Vol. 96, pp. 543–560,
2001.

[13] A. Radovanović, B. Ray, and M. S. Squillante. Statistical
properties of traffic patterns in large-scale commercial Web
sites and their performance implications. Technical report,
IBM Research Division, 2003.

[14] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on soft
error rate of combinational logic. In Proc. Intl. Conf. De-
pendable Systems and Networks, pp. 389–398, 2002.

[15] M. Sullivan and R. Chillarege. Software defects and their im-
pact on system availability – A study of field failures in oper-
ating systems. In Proc. Int. Symp. Fault Tolerant Computer
Systems, pp. 2–9, 1991.

[16] D. Tang, R. K. Iyer, and S. S. Subramani. Failure analysis
and modelling of a VAXcluster system. In Proc. Intl. Symp.
Fault-tolerant Computing, pp. 244–251, 1990.

[17] D. Tang, R. K. Iyer. Impact of correlated failures on depend-
ability in a VAXcluster system. In IFIP Working Conf. De-
pendable Computing for Critical Applications, 1991.

[18] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S.
Trivedi. Analysis and implementation of software rejuve-
nation in cluster systems. In Proc. ACM SIGMETRICS Conf.
Measurement and Modeling of Computer Systems, pp. 62–
71, 2001.

[19] J. Xu, Z. Kallbarczyk, and R. K. Iyer. Networked win-
dows NT system field failure data analysis. Technical Re-
port CRHC 9808 University of Illinois at Urbana- Cham-
paign, 1999.

[20] J. Zeigler. Terrestrial Cosmic Rays. IBM J. Research and
Development, 40(1):19–39, 1996.

10


