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Abstract

A range of database services are being offered on clusters
of workstations today to meet the demanding needs of ap-
plications with voluminous datasets, high computational and
I/O requirements and a large number of users. The underly-
ing database engine runs on cost-effective off-the-shelf hard-
ware and software components that may not really be tai-
lored/tuned for these applications. At the same time, many
of these databases have legacy codes that may not be easy to
modulate based on the evolving capabilities and limitations
of clusters. An indepth understanding of the interaction be-
tween these database engines and the underlying operating
system (OS) can identify a set of characteristics that would
be extremely valuable for future research on systems support
for these environments. To our knowledge, there is no prior
work that has embarked on such a characterization for a clus-
tered database server.

Using a public domain version of a commercial clustered
database server and TPC-H like1 decision support queries,
this paper studies numerous issues by evaluating perfor-
mance on an off-the-shelf Pentium/Linux cluster connected
by Myrinet. The execution profile clearly demonstrates the
dominance of the I/O subsystem in the execution, and the im-
portance of the communication subsystem for cluster scala-
bility. In addition to quantifying their importance, this paper
provides further details on how these subsystems are exer-
cised by the database engine in terms of characteristics such
as request sizes, spatial and temporal distributions. These
characteristics provide insight on the benefits of possible op-
timizations in these subsystems. This includes the potential
savings by avoiding copies across protection domains during
I/O and the potential reduction in the number of messages by
employing multicasts. Mechanisms for performing such op-
timizations are also discussed.

1These results have not been audited by the Transaction Processing Per-
formance Council and should be denoted as “TPC-H like” workload.

1 Introductions

Clusters of workstations built with commodity processing en-
gines, networks and operating systems are becoming the plat-
form of choice for numerous high performance computing en-
vironments. Commodity hardware and software components
make the price, upgradeability and accessibility of clusters
very attractive, facilitating their widespread deployment in
several application domains.

The speed at which clusters are being deployed for these
diverse and challenging environments is outpacing the rate of
progress in the systems software technologies and tools that
are crucial building blocks for the applications. Most com-
modity off-the-shelf software (including the operating sys-
tem) are not specifically tuned for cluster environments, and
it is not clear if gluing together individual operating systems,
that do not know the presence of each other, is the best ap-
proach to handle such loads. Further, off-the-shelf operating
systems are meant to be for general purpose usage, with most
of them really tuned for desktop applications or uniproces-
sor/SMP class server applications. Their suitability for clus-
ter applications is not well understood. At the same time, one
does not want to design/develop operating systems specifi-
cally for clusters, which would then go against the off-the-
shelf rationale.

Just as many of today’s operating systems (such as Linux)
are not specifically customized for these emerging (some of
these - like the database engines - are not really new, but
are clustered implementations of the original version) appli-
cations on clusters, the applications are in turn not exten-
sively tuned for these operating systems. An important rea-
son is the fact that some of these, at least the database en-
gines, have legacy codes that have evolved over several revi-
sions/optimizations over the years, and it is difficult to funda-
mentally change their design overnight in light of these new
systems (regardless of how modular they may be), which are
still evolving. There is a substantial cost that is expended in
testing/debugging to write specific software that exploits spe-
cial features of the underlying system, and it is not clear if
the ensuing rewards can offset this cost. The clustered ver-
sions of these legacy applications can be viewed more as an



exercise in porting, taking into account the new technologies
and capabilities/limitations offered by the clusters. One can-
not blame these developments since commercial vendors are
often pressurized by several factors to get a product out of the
door for a target platform as early as possible, and there is
a need to support the product on several different platforms.
Consequently, we have many legacy applications, such as the
database engines which are the focus of this paper, running on
operating systems that were not the initial targets of their im-
plementation and on clusters which were not the initial target
hardware. Over a period of time, revisions/improvements to
the products are likely to address such concerns. There is vis-
ible evidence of this in the fact that there are ongoing research
activities [3] from vendors, who already have commercial of-
ferings, exploring alternate implementation styles

It is unavoidable to encounter such situations when tech-
nologies change, and it is unclear whether the application
needs to be tailored/tuned for the underlying OS on a cluster,
or vice-versa, or if we need to do a combination of the two.
With the large code base of many of these legacy database
engines, one could hypothesize that it would be easier to fine
tune the operating system, especially with an open source OS
such as Linux. A lot of work has already gone into optimizing
the legacy applications, and the issues/optimizations may not
be very different even for these new environments/OS.

This leads us to believe that there is the possibility of
a middle ground, wherein if we know what issues are re-
ally important, then we could incorporate a few mecha-
nisms/extensions in the OS and with a few user/configuration
directives (or even slight application modifications) be able
to enjoy the benefits of better matching the application with
the underlying system. At the same time, such OS mecha-
nisms/extensions may be rewarding for other applications as
well and could very well become a feature of the OS in future
offerings. Our goal in this paper is not to develop application-
specific operating systems, nor is it to find out what OS mech-
anisms/capabilities are needed for extensibility/customization
as other researchers have done [3]. Rather, coming from the
applications viewpoint, we would like to make a list of rec-
ommendations based on the execution characteristics that can
benefit future developments. We have also taken the liberty
of suggesting possible mechanisms and their implementation
(specifically in Linux) for optimizing the execution based on
these gleaned characteristics. There are, arguably, other pos-
sible mechanisms/implementations for performing the same
optimizations (even on Linux), or one could use these charac-
teristics for customizing an extensible OS [2, 6] accordingly.
Another possibility is to provide middleware that can better
match the applications with the OS based on these character-
istics.

In summary, a detailed characterization of the execution of
applications on a cluster from the OS perspective can con-
tribute to the knowledge-base of information that can be used
for guiding future developments in systems software and ap-
plications for these environments. It would also be invaluable

for fine tuning the execution for better performance and scala-
bility, since each of these applications/environments has high
commercial impact. In this paper we focus specifically on
TPC-H queries, a decision-support database workload. This
constitutes an important workload for business enterprises,
with long running queries - ranging from a few minutes to
a few days - that can benefit from the capabilities of a cluster.

It is well understood that I/O is the biggest challenge faced
by database engines on uniprocessors/SMPs [7, 8, 9, 10] and
there is a large body of prior work proposing hardware and
software enhancements to address this problem. It is not clear
if I/O becomes any less important when we move the engine
to a cluster environment, since there is another factor to con-
sider, which is the network communication. System scala-
bility with cluster size is dependent on how parallel is the
computation division across the cluster nodes, how balanced
are the I/O activities on different nodes, and how does the
communication traffic change with data set and cluster sizes.
All this requires a careful profiling and analysis of the execu-
tion of the queries on the database engine. To our knowledge,
that there has been no prior investigation of completely char-
acterizing the execution of TPC-H on a clustered database
engine, and studying these characteristics for optimization at
the application-OS boundary.

Section 2 gives details on the experimental setup. Section 3
gives the overall system execution profile and the system scal-
ability is examined in Section 4. Based on the system profile,
the I/O and network characteristics and optimizations are dis-
cussed in sections 5, 6 and 7. Finally, Section 8 summarizes
the results and contributions of this study.

2 Experimental Setup

TPC-H contains a sequence of 22 queries (Q1 to Q22), that
are fired one after another to the database engine2. In this
work, we consider response time for each query as main mea-
sure, i.e. the time interval between submitting the query and
getting back the results.

All the tables are horizontally partitioned across the entire
cluster using a hash-based scheme, and we have verified that
this results in a balanced distribution across nodes. There is a
client machine (not part of the cluster) that sends these queries
to a database coordinator node on the cluster, which then dis-
tributes the work and gives back the results to the client. Each
node of the cluster performs the queries on the rows resid-
ing on it and exchanges results via Myrinet if necessary. The
client is connected to the cluster using Myrinet. As was men-
tioned, we run experiments on an 8 dual node Linux/Pentium
cluster, that has 256 MB RAM and 18 GB disk on each node.
The nodes are connected by both switched Myrinet and Eth-
ernet, and we study these networks separately. We use Linux
2.4.8, which was the latest release at the time of conducting

2Q21 and Q22 take an inordinately long time and the results for these two
queries are not included.
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the experiments. (Please note that up to version 2.4.8. stan-
dard Linux kernels do not support raw disk IO interfaces.)
This kernel has been instrumented in detail to glean differ-
ent statistics, and also modified to provide insight on the
database engine execution since we are treating it as a black
box. We have also considered the overheads of instrumenta-
tion by comparing the results with those provided by the proc
file system to ensure validity of what is presented here.Unless
otherwise stated, the experiments use kernel level TCP over
Myrinet for communication, and the dataset is 30 GB in size.

3 Operating System Profile

We first present a set of results that depict the overall system
behavior at a glance. The following results have been ob-
tained by both sampling the statistics exposed by the Linux
proc file system (stat , net/dev , process/stat ) as
well as by instrumenting the kernel. The kernel instrumenta-
tion was done by inserting code in the Linux system call jump
mechanism, as well as in the scheduler and points where there
is pre-emption (such as blocking) or resumption. The proc file
system information is used to present the percentage utiliza-
tion of the system in different modes, the rates/frequency of
I/O, page fault and network activities. The profile of different
system calls is presented from the kernel instrumentation.

The results are shown in Table 1, which gives system statis-
tics for each query in terms of: the percentage of time that
the query spent executing on the CPUs in user mode (rela-
tive to its overall execution time), the percentage of time that
the query spent executing on the CPUs in system mode (rela-
tive to its overall execution time), the average number of page
faults incurred in its execution per jiffy (10 milliseconds in
Linux), average number of file blocks read per jiffy, aver-
age number of file blocks written per jiffy, average number
of packets sent over the network per jiffy, the average num-
ber of packets received from the network per jiffy, and the
percentage utilization of the CPU(s) by the database engine
during I/O operations (captures the overlap of work with I/O
operations). The file block size is 4096 bytes, and the Maxi-
mum Transfer Unit (MTU) for network packets is 3752 bytes.
In addition to these, the table also shows the top four system
calls (in terms of time) exercised by each query during its exe-
cution, and the percentage of system time that is spent in each
of these calls. These statistics help us understand what com-
ponents of the OS are really being exercised, and the relative
importance of these components.

From these results, we make the following observations:

� As is to be expected with database applications, the bulk
of the execution time in the system mode is taken up
by file system operations (pread/pwrite). These calls are
employed to read and write the queried relational tables,
as well as for any temporary tables that are needed along
the way. Our examination of the execution leads us to
believe that the considered database server goes via the

file system for I/O accesses, and does not directly use
raw disks or mmap operations.

Disk operations are so dominating in some queries (Q1,
Q8, Q12, Q17) that the CPU utilization does not cross
50% in these queries. I/O costs not only result in poor
CPU utilization overall (because of waiting for disk op-
erations to complete), but also in significantly increas-
ing the system call overhead itself. Note that this system
call overhead (system CPU time) does not include the
disk latencies. Rather, this high overhead is due to mem-
ory copying, buffer space management and other book-
keeping activities. In some cases (such as Q12), the sys-
tem CPU time (overheads) even exceeds the amount of
time spent executing the useful work in the query at the
user-level.

� Most of the I/O that is incurred is more due to reads
than write operations. This is particularly characteris-
tic of TPC-H queries, because most operations are for
decision-support (requiring only reads).

� Though the numbers are not explicitly given here, we
would like to point out that the high read overheads are
not only because of the higher number of file system read
calls, but are also due to the higher cost per invocation of
this call. We noticed that a pread call can run to nearly a
millisecond in some queries.Of all the system calls con-
sidered, we found the per pread invocation taking the
maximum amount of time.

� When we examine the CPU utilization during I/O (last
column of Table 1), we find that there is good overlap
of work with disk activity in some queries. As we will
point out later on in this paper, the bulk of I/O is ini-
tiated by the database prefetcher, which does not nec-
essarily come into the critical path of the execution in
many queries. However, queries such as Q12, encounter
significant blocking.

� After the file system calls, we found socket calls (select,
socketcall) to be the next dominant system overhead.

� Interprocess communication (IPC), though not as domi-
nant as the other two OS components, does come in third
in the overall system overheads.

� Despite the dominance of I/O in many queries, queries
like Q11 have a high CPU fraction (particularly in the
user mode). Even though there are I/O operations in
these queries, their costs are overshadowed by useful
work (CPU utilization is around 66% even during pe-
riods of disk activity, and the bulk of it is in the user
mode). Another point to note from this observation, and
in the fact that there is little variation in these results
from node to node, is the hypothesis that such queries
are likely to scale very well as we move to larger clus-
ters since they can benefit from higher degrees of paral-
lelism.
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user system page blocks blocks packets packets CPU utilization
query CPU CPU system CPU breakup (%) faults per read per written per sent per received per during IO

(%) (%) jiffy jiffy jiffy jiffy jiffy (%)

pread pwrite select ipcQ1 27.58 21.44
46.7 46.7 3.3 2.9

1.50 51.01 23.1151 0.0012 0.0015 26.87

socketcall pread select pwriteQ2 56.22 15.67
35.4 32.9 20.1 7.3

0.39 21.97 1.7718 1.9077 1.9248 53.73

pread socketcall select pwriteQ3 40.76 17.76
54.1 15.1 13.1 12.8

0.99 55.47 4.9591 0.9778 0.9938 55.40

pread select socketcall pwriteQ4 51.48 15.19
60.0 17.6 11.2 6.9

0.00 22.97 1.0478 0.3517 0.3652 68.41

socketcall pread select pwriteQ5 58.96 15.68
43.3 29.2 21.7 3.7

0.05 16.73 1.1369 2.0779 2.0849 42.81

pread ipc socketcallQ6 40.65 22.20
90.1 4.9 4.3

1.73 90.72 0.0020 0.0012 0.0012 33.49

pread pwrite ipc selectQ7 52.44 16.82
72.1 14.8 6.1 6.0

0.00 16.89 1.9467 2.3880 2.3521 31.04

pread pwrite select ipcQ8 20.65 17.71
59.5 23.7 9.4 5.8

0.01 27.63 4.8078 0.0261 0.0228 12.91

pwrite pread select ipcQ9 51.41 13.52
40.8 38.7 13.9 2.5

0.00 6.69 1.9276 0.0133 0.0136 23.21

pread socketcall select pwriteQ10 41.79 17.87
57.7 17.9 13.4 7.0

0.17 41.99 1.8880 0.8774 0.8859 18.71

socketcall pread select ipcQ11 81.00 13.28
43.6 27.0 24.8 3.9

0.49 18.87 0.0020 2.3794 2.4011 66.46

pread selet ipcQ12 14.91 19.73
78.3 15.2 5.2

0.25 40.79 0.0197 0.0102 0.0101 4.8

pread socketcall select ipcQ13 53.23 21.86
45.7 30.3 18.8 4.6

1.62 45.86 0.0034 2.0966 2.0935 32.71

pread select ipcQ14 33.57 22.19
85.6 8.3 5.1

1.01 84.78 0.0025 0.1156 0.1175 29.75

pread select ipc nanosleepQ15 55.37 18.69
71.7 14.0 10.9 1.9

0.60 75.26 0.0033 0.6260 0.7703 51.68

socketcall pread select ipcQ16 51.84 15.30
43.5 27.0 22.2 5.7

2.32 15.36 0.8454 2.4836 2.4993 46.24

pread pwrite select ipcQ17 23.71 18.26
59.4 26.1 8.7 4.9

0.00 32.76 5.2532 0.0036 0.0037 13.94

pread socketcall select pwriteQ18 52.64 14.77
61.1 17.3 13.3 5.2

0.04 17.16 0.6261 0.3890 0.3803 35.11

pread select ipc socketcallQ19 35.48 21.16
80.1 7.3 5.9 5.9

0.29 78.76 0.0032 0.3343 0.3329 23.38

pread select socketcall ipcQ20 56.98 14.72
53.4 25.6 15.3 3.6

0.00 15.74 0.1601 0.3456 0.2973 47.36

Table 1: System Profile (statistics are collected from node 1)

4 System and Workload Scalability

The previous experiments used the 8-node dual configuration
on a 30 GB dataset, with Myrinet as the interconnect. We
briefly present results to discuss the scalability of the execu-
tion as a function of number of nodes, the network (switched
1.26 Gbps Myrinet vs 100 Mbps Ethernet), and to study the
trade-offs between a larger cluster vs a smaller one with more
processors at each node (compare 4 node duals with 8 node
uniprocessors), in Figure 1 for a 1 GB dataset. Results are
normalized with respect to the 8 node dual configuration. It
should be noted that a complete scalability study across the
spectrum of parameters is well beyond the scope of this pa-
per. Rather we are only trying to point out the relative perfor-
mance and issues to understand the implications of some of
these parameters.

We observe that increasing the number of nodes has sev-
eral advantages. First, you get higher parallelism in compu-
tation and in I/O. The other significant benefit is in the ability
to harness more physical memory (buffer space) across the
nodes for the same dataset [16], which can reduce I/O fur-
ther. The downside is the additional communication that may
be incurred. We find that the benefits outweigh the draw-

backs for nearly all queries except Q2 and Q17, even when
we move from 1 to 2 nodes. This can be explained by the fact
that Q2 has higher communication and Q17 has much lower
CPU utilization that can benefit from parallelism (see Table
1). Moving on to 4 or 8 nodes, we find that in Q9, Q10, Q11,
and Q20, overheads from parallelism hurt their performance
as well. In nearly all other queries, we find significant savings
(particularly at the smaller cluster sizes) from parallelism. A
large portion of this savings is due to the higher buffer avail-
ability (reducing the total I/O, and not just providing parallel
accesses to disks), that results in a superlinear performance
improvement for queries such as Q9, Q11, Q12, Q15, and
Q20. In general, we observe that 4 and 8 dual node configu-
rations are good operating points for this dataset size of those
considered. After a certain size, the savings from larger mem-
ory drop a little, with the overheads also offsetting a large
portion of these savings and the gain in parallelism.

Next, when we compare the 4 node dual with the 8 unipro-
cessor nodes, we find that there is no clear winner. In Q1, Q3,
Q4, Q5, Q6, Q8, Q12, Q14, Q17, Q18, and Q19, the unipro-
cessor node configuration is better, and the 4 node dual is bet-
ter for the others. If you look at these queries in Table 1, these
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Figure 1: For each query, there are six bars (from left to right) showing the query response (execution) time under the
following six configurations respectively: (i) one 2-way SMP node; (ii) two 2-way SMP nodes, myrinet; (iii) four 2-way SMP
nodes, myrinet; (iv) eight 2-way SMP nodes, myrinet; (v) eight uniprocessor nodes, myrinet; and (vi) eight 2-way SMP node,
100Mbps Ethernet. We normalize the execution times under each configuration with respect to the time under configuration
(iv). The dataset under examination is 1G. Note that the bars which reach the top of the graph actually exceed 10, and they
are chopped in order to better show the differences between others.

have much lower CPU utilization, suggesting that disk activ-
ity is the bottleneck here. Even though both configurations
provide the same number of CPUs, the 8 node configuration
provides higher disk parallelism that benefits these queries.
In the others, the communication is higher, and that becomes
much more of a problem with a small 1 GB database consid-
ered in these experiments than the I/O parallelism.

It should be noted that in all these experiments we have
usedconstant problem size scaling[4], with the physical
memory increasing as we increase the cluster size. It would
also be interesting to explore memory constrained scaling,
or to consider a smaller cluster with more memory per node
compared to a larger cluster with less memory per node (say
keeping the overall cluster cost in dollars the same). Such
issues are beyond the scope of this paper and we intend to
explore these in the future.

When we move from a slow network (Ethernet) to a fast
switched Myrinet platform, on the average query execution
gets speeded up by 25%. We are not explicitly presenting
results varying different dataset sizes, though we have con-
ducted those experiments. In general, a larger dataset scales
better as a function of the cluster size.

Before concluding this section, we would like to reiterate
the importance of I/O and communication as we move to the
future. Definitely, communication becomes important with
larger clusters. At the same time, I/O can benefit signifi-
cantly from such clusters not only because of the parallelism

to disks, but also because of the higher memory capacities.
Still, the I/O bottleneck would continue to pose challenges for
clustered database services as dataset sizes increase. Further,
I/O and communication become all that much more promi-
nent with faster CPUs, and these are the focus of our attention
in the rest of this paper.

5 I/O Subsystem: Characterization
and Possible Optimizations

The results from the system profile clearly illustrate the im-
portance of I/O for database servers. We now set out to look
at the I/O subsystem more closely, trying to characterize its
execution and look for possible optimizations.

5.1 Characteristics

Table 2 sorts the queries in decreasing order based on the frac-
tion of total query execution time spent in the pread system
call obtained from earlier profile results. We can see that
pread is a significant portion of the execution time in many
queries. It takes over 10% of the execution time in 11 of the
queries. It should be noted that this is the time spent in the
system call (i.e. in buffer management, book-keeping, copy-
ing across protections domains, etc.), and does not include
the disk costs itself. This implies that it isnot only important
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Query Q6 Q14 Q19 Q12 Q15 Q7 Q17 Q8 Q10 Q1
% of exec. time 20.0 19.0 16.9 15.4 13.4 12.1 10.8 10.5 10.3 10.0

Query Q13 Q3 Q4 Q18 Q20 Q2 Q9 Q5 Q16 Q11
% of exec. time 10.0 9.6 9.1 9.0 7.9 5.2 5.2 4.6 4.1 3.5

Table 2: pread as a percentage of total execution time

to lower or hide disk access costs, but to optimize the pread
system call itself.In the interest of space, We focus on query
Q6 which incurs the maximum pread overhead in the rest of
this section. (the trends/arguments are similar for the others).
Further, as with the profile results, we did not observe much
variation across the nodes, and consequently examine the ex-
ecutions from the viewpoint of each node.
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Figure 2: IO characterization results in terms of read request
size and time between successive reads.

First, we would like to briefly explain how we believe the
reads are invoked in the query execution. DB2 has several
agent processes that actually perform the work in the queries,
and prefetcher processes that make pread calls to bring in data
from disk ahead of when the agent may need it. Figure 2
shows that the agent reads are more bursty, coming in closer
proximity, than the reads issued by the prefetcher.

We found that the preads issued by the agent are usually
for a block that has been recently read by the prefetcher just
before that invocation. It may come as a surprise as to why
this block could not have been serviced by the prefetcher di-
rectly (if it was only recently read), instead of going to the
kernel. One possible explanation is that the agent is doing a
write on this block, and it may not want to write into a page
that is residing in the prefetcher. Instead of making instead

of making ipc calls to remove the page from the prefetcher, it
would be better to create a copy within the agent by using a
pread call directly.

For further credibility on this hypothesis, before returning
from pread calls, we modified the kernel to set the corre-
sponding data pages to be read-only mode, and we found the
agent to incur (write) segmentation faults (indicated as copy-
on-write in Table 4) on nearly all those pages (compare the
copy-to-user and copy-on-write columns for the agent in Ta-
ble 4). Finally, it should be noted that the agent pread calls are
much lower (both in terms of the number of calls and in terms
of the number of blocks read) than those for the prefetcher.

We also include in Table 3 the fraction of pread block re-
quests that hit in the Linux file cache for the prefetcher and
the agents. As was pointed out, the agent requests come very
soon after the prefetcher request for the same block, and thus
nearly always hit in the Linux file cache. With the prefetcher
requests on the other hand, we find the file cache hits range
between 40-60%. We mentioned earlier that the prefetcher
requests are usually for 32 blocks at a time. The Linux
file cache manager itself does some read ahead optimizations
based on application behavior and brings in 64 blocks (twice
this size). With a lot of regularity (sequentiality) in I/O re-
quest behavior for this workload, this read ahead tends to cut
down the number of disk accesses by around 50%.

One can observe this regularity or patterns in the I/O re-
quest blocks by looking at Figure 3 (a) which shows the block
number (expressed as a combination of inode + block number
within file) requests that are issued to system. Further, Figure
3 (b) gives the same information for those requests that miss
in the Linux file cache (on the average, every alternate request
from (a) would miss here). One can visually observe regular-
ity/sequentiality in both the requests that are generated and
in the addresses that miss in the file cache. Prefetching and
read-ahead are thus extremely useful for these executions.

5.2 Recommendations and Possible Optimiza-
tions

The previous subsection showed that system overheads in
preads (not in the actual disk I/O) are a significant portion
of the execution time. These read calls are usually for several
blocks (32) by the prefetcher (that dominate the occasional
single block reads by agent), and these blocks are hardly mod-
ified (TPC-H being a decision support workload, this obser-
vation is not very surprising). Further, many of these blocks
are actually present already in the Linux file cache. We next
explore how we can optimize the pread calls based on this
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Query prefetcher hit ratio agent hit ratio Query prefetcher hit ratio agent hit ratio
Q1 0.5711 1.0000 Q11 0.2788 1.0000
Q2 0.5321 1.0000 Q12 0.4735 1.0000
Q3 0.5164 1.0000 Q13 0.5261 1.0000
Q4 0.4873 1.0000 Q14 0.5344 1.0000
Q5 0.5991 1.0000 Q15 0.4227 1.0000
Q6 0.4729 1.0000 Q16 0.4409 1.0000
Q7 0.5182 1.0000 Q17 0.7365 1.0000
Q8 0.5300 1.0000 Q18 0.4226 1.0000
Q9 0.4683 1.0000 Q19 0.5625 1.0000
Q10 0.5082 1.0000 Q20 0.5453 1.0000

Table 3: Fraction of block requests that hit in Linux file cache for prefetcher and agent requests
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(b) Page cache miss address (Q6)

Figure 3: pread request addresses and the corresponding ad-
dresses that miss in the Linux page cache (that are sent to
disk)

information.

A significant portion of pread cost is expended in copy-
ing data (that is in a block in the file cache, either already
or brought in upon disk I/O completion), from the kernel
file cache to a user page, which needs to cross a protection-
domain boundary (using thecopy-to-user()mechanism). In
the current 2.4.8 Linux implementation, a copy is actually
made at this time.

This problem of reducing copying overheads for I/O has
been looked at by several previous studies [14, 5, 12]. There
are different techniques one could use, and a common one is
to simply set the user page table pointer to the buffer in the
file cache. This could affect the semantics of the pread op-

eration in some cases, particularly when more than one user
process reads the same block. In the normal semantic, once
the copy is done, a process can make updates to it without
another seeing it, while the updates would be visible with-
out copies. This is usually addressed (as is by Linux in sev-
eral other situations) by thecopy-on-writemechanism, Some
studies [5, 14, 12] suggest that even this may not be very ef-
ficient since updating virtual address mappings can become
as expensive as copying. Instead, sharing of buffers between
user and kernel domains is advocated. In this paper, we are
not trying to advocate any particular technique for reducing
these copies. Rather, we would like to find out what would be
the benefit of reducing copy costs.

Remember, that a copy-to-user is actually needed when the
pread is not page aligned and/or is interested in only part of
the page. However, from our characterization results we find
that most requests are page aligned and are in fact for an inte-
gral (32) number of papers. As a result, one could use the vir-
tual remapping approach to implement the reduction of copies
in these queries.

To examine the potential benefits of such an implementa-
tion, we track the total number of copy-to-user() calls that are
made (actually one for each page) and the number of these
calls that cannot be avoided (you cannot avoid it when there is
a write segment violation and we need to do a copy-to-user at
that time), during the execution of these queries after setting
these pages to read-only mode. These numbers are shown in
Table 4. As we can observe, the number of copy-on-writes
that are actually needed is much lower than the number of
copy-to-user invocations, as was suspected initially. In gen-
eral, we get no less than 65% savings in the number of copies,
with actual savings greater than 80% for most queries (see the
last column of this table). Most of these savings are due to the
prefetcher reads. Our measurements of copy-to-user routine
for a single block using the high resolution timer takes around
30 microseconds for one page. For 32 block reads that the
prefetcher issues, avoiding this cost can be a significant sav-
ings. This is particularly true when the blocks hit in the file
cache (and there is no disk I/O) since this cost is a significant
portion of the overall time required to return back to the ap-
plication. Table 3 shows that this happens nearly 50% of the
time. Even with disk activity, Table 1 shows CPU utilization
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prefetcher agent totalQuery
copy-on-write copy-to-user % Reduction of copies copy-on-write copy-to-user % Reduction of copies % Reduction of copies

Q1 0 1040228 100 11551 11565 1.2 98.9
Q2 0 383334 100 63145 63145 0 85.7
Q3 0 1253107 100 52155 52157 0.003 96.0
Q4 0 997507 100 235758 235759 0.0004 80.9
Q5 0 1007919 100 307689 307689 0 100.0
Q6 0 914482 100 47 47 0 100.0
Q7 0 1084454 100 276790 276791 0.0003 79.7
Q8 0 978134 100 255057 255060 0.001 79.3
Q9 0 2478154 100 316500 316502 0.0006 88.7
Q10 0 974062 100 278213 278215 0.0007 77.8
Q11 0 170643 100 6833 6834 0.01 96.1
Q12 0 911544 100 134933 134933 0 87.1
Q13 0 184491 100 42 43 2.3 100.0
Q14 0 945619 100 38429 38430 0.003 96.1
Q15 0 1175166 100 38394 38395 0.003 96.8
Q16 0 36137 100 15001 15003 0.01 70.7
Q17 0 1968122 100 113962 113963 0.0008 94.5
Q18 0 1945777 100 502 503 0.19 100.0
Q19 0 865529 100 38429 38429 0 95.7
Q20 0 847755 100 50442 50444 0.003 94.4

Table 4: % of copy-to-user calls that can be avoided. Of the given copy-to-user calls, only the number shown under the
copy-on-write are actually needed. The statistics are given for the prefetcher and agents separately, as well as the overall
savings.

higher than 50% in most queries, suggesting that removing
this burden of copying by the CPU would help query execu-
tion.

There is a caveat that we would like to point out with
respect to the page remapping solution for reducing copy-
ing costs particularly with this database workload. With the
prefetcher being quite active, and getting pages that are very
often found in the Linux file cache, there is the possibility of
very soon having a number of virtual address mappings to the
file cache buffers (rather than to the buffers in the prefetcher
itself). The file cache would then have to be made much
larger (the buffer manager in the database engine uses several
hundred megabytes of memory while the file cache is much
smaller), or we will keep replacing entries in the file cache.
File cache replacements may also need to be handled as copy-
on-replacements, which can become a concern. These issues
lead us to believe that a closer examination of the subtle in-
teractions between the prefetching engine (that runs at user
level) and the Linux file cache is needed, so that we under-
stand the full ramifications of the pros and cons of these is-
sues. Such a detailed exploration is well beyond the scope of
this paper.

6 Network Subsystem: Characteriza-
tion and Possible Optimizations

6.1 Characteristics

We next move on to the other exercised system service,
namely TCP socket communication. As in the earlier section,
we first attempt to characterize this service based on certain
metrics that we feel are important for optimization. We ex-
amine the message exchanges based on the following charac-
teristics: the message sizes, the inter-injection time (between

successive messages by an application), and the destination
for a message. We present these characteristics using den-
sity functions. The inter-injection time (or injection rate) and
message size properties are captured by drawing their corre-
sponding Cumulative Density Functions (CDF). The destina-
tion for a message is captured by a Probability Density Func-
tion (PDF) showing the probability of a message from a node
heading to a specific node (7 possibilities on a 8 node cluster).

In the interest of space, We show the network subsystem
characteristics pictorially in Figure 4 for query Q16, which
has the highest message injection rates shown in Table 1.
Many of the results are similar across queries, and we ex-
plicitly mention the differences in the text if there are any.
These results have been obtained by instrumenting the kernel
and logging all the socket events, their timestamps and argu-
ments at the system call interface. As will be pointed out later
on, for some characteristics we also needed to log messages
themselves or at least their checksums.

From the density function graphs, we observe the follow-
ing:

� The message length CDF graph shows that just a hand-
ful of message sizes are used by the database engine. In
fact, we observed messages were usually either 56 bytes
or 4000 bytes. We hypothesize that the shorter size (56
bytes) is used for control messages, and the larger size
(4000 bytes) is used for actual data packets. Other mes-
sage sizes were not very common. We found that Q1, Q6
and Q7 only send short messages, and short messages
are the dominant part of Q15 communication (though
there are a few long messages here as well). In the rest
of the queries, we observed that there were around 40%
short messages on the average.

� There are many messages that are sent out in close prox-
imity (temporally). In fact, Figure 4 (b) shows that
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Figure 4: Characterizing Message Sends

nearly 60% of the messages are separated by less than
1 millisecond from each other temporally. In fact, the
temporal separations are much lower for queries Q2, Q7,
Q10, Q13, Q14, Q15, Q16, Q18 and Q19. We found
similar observations for most of the other queries as well.

� The destination PDF graph is considerably influenced
by the nature of database operations. In this engine,
joins usually involve all-to-all communication of their
corresponding portions of the table, and thus queries that
are join intensive (such as Q11 and Q16 that are shown
here) have the PDF evenly distributed across the nodes.
There are a few queries, such as Q7, that are not really
join intensive, but perform more specific operations that
are based on values of certain primary keys. With such
executions, there is a slight bias in communication to-
wards nodes that have those values. Further, the engine
uses a coordinator node that manages the query execu-
tion across the cluster, and this node performs a little
different (we mentioned earlier that communication pat-
tern was one issue that was different across nodes) than
the others. In the other nodes, joins dominate most of the
queries in general, and the communication load is more
or less balanced.

6.2 Recommendations and Possible Optimiza-
tions

The above message characteristics say that messages are clus-
tered together, often coming in close temporal proximity. Fur-
ther, database operations such as joins use all-to-all commu-
nication of messages which have a high probability of being
the same size. These observations suggest an hypothesis that
many of these messages may actually be point-to-point imple-
mentations of a multicast/broadcast that the database engine
would like to perform. It should be noted that a multicast can
send the same information to several nodes at a much lower
cost than sending individual point-to-point messages. This
saves several overheads at a node (copies, packetization, pro-
tocol header compositions, buffer management, etc.) and can
also reduce network traffic/congestion if the hardware sup-
ported it. Possible implementations of multicast are discussed
later in this discussion.

To find out how many of the message exchanges can be
modeled as multicasts, we investigated several approaches.
During the execution, in addition to the above events, we
also logged the messages themselves. These logs were then
subsequently processed to compare whether successive mes-
sages were identical and addressed to different destinations.
Another approach that we tried (which is actually a possible
one to use within the OS during the course of execution itself
to detect multicasts) is to compare checksums of successive
messages. We would like to point out that we found that mes-
sages do indeed differ in the first 56 bytes, and that too in
only 3 of these 56 bytes in most cases. After numerous exper-
iments, we feel that the first 56 bytes are the header/control
information, and the 3 bytes that really vary include the desti-
nation id and a possible sequence number. In our analysis of
tracking the number of multicast possibilities, we ignore these
three bytes, and check the differences for the rest to verify
whether they contain the same information. If they do, then
we identify that message as a multicast possibility (and the
number of messages that would be incurred in a system that
supports multicast would go down in this case). We found
that both the approaches - actually comparing the messages
or comparing the checksums - gave us similar results, and
Table 5 gives the percentage of reduction in the number of
messages that would be sent if the underlying infrastructure
supported multicasts. This information is given for both the
short and long messages to verify if multicasts are beneficial
to any one class of messages or for both.

We find that there is a substantial multicast potential in
these queries. There is a reduction in the total number of mes-
sages ranging from 8% to as high as 76%. In general, we find
that the multicast potential is greater for the smaller (possibly
control) messages than the longer (possibly data) messages.
As was pointed out in the earlier results, both short and long
messages are equally common in many queries, and we need
to optimize both these classes.

This potential can be realized only if the underlying net-
work supports multicasts (incidentally, we found a large num-
ber of these multicasts are in fact broadcasts, which Ethernet
can support). Even assuming that the underlying infrastruc-
ture (either at the network interface level, or in the physical
network implementation) supports multicast, the message ex-
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% reduction of % reduction of % reduction of % reduction of % reduction of % reduction ofquery
total messages small messages large messages

query
total messages small messages large messages

Q1 44.7 71.4 38.7 Q11 9.6 28.6 0.1
Q2 20.4 58.7 0.2 Q12 8.3 7.8 2.9
Q3 48.2 64.3 38.0 Q13 24.5 75.2 0.1
Q4 22.6 58.6 0.1 Q14 27.9 80.4 0.7
Q5 8.0 7.1 8.4 Q15 46.6 56.5 0.7
Q6 76.4 78.6 45.5 Q16 59.1 63.0 56.9
Q7 57.5 71.4 56.2 Q17 41.5 66.7 27.3
Q8 29.1 75.5 4.8 Q18 11.4 32.3 0.00
Q9 66.8 78.5 61.1 Q19 26.7 79.4 0.2
Q10 25.0 73.6 0.1 Q20 21.1 62.8 0.1

Table 5: The potential impact of multicast on queries

changes should be injected into this infrastructure as multi-
cast messages. This can be done at two levels. First, the
application (i.e. the database engine) can itself inject multi-
cast messages into the system. Our conversations with DB2
developers indicate that multicast is used by this database en-
gine for purposes like replication, fault recovery etc., but not
extensively for data exchanges when processing a query. Fur-
ther, to work across numerous different platforms, sometimes
it may be easier from the programming viewpoint for these
applications to simply treat multicasts as point-to-point mes-
sages. The other approach, which we investigate, is to auto-
matically detect multicast messages within the operating sys-
tem (or middleware before going to sockets) and perform the
optimizations accordingly. We next describe an online mech-
anism for such automatic detection. It should be noted that
Table 5 gives an upper bound on message reductions by an
offline analysis of the message traces, and the online version
has only limited window of events to examine for detecting
multicasts.

The online algorithm in the OS or middleware can make the
system wait for a certain time window while collecting mes-
sages detected as multicasts, without actually sending these
out. At the end of this window, we send a single multicast
message for all the corresponding destinations of the saved
messages. The advantage with this approach is that we do
not send a message to a destination that the application does
not send to. The drawback is that the time between succes-
sive messages and time window may be too long a wait that
it may be better off just sending them as point-to-point mes-
sages. Further, if the window is not long enough, we may
not detect some multicasts, and end up sending point-to-point
messages.

Consequently, it is important to understand the impact of
window size on multicast potential with this online algorithm.
If we use such an algorithm within the OS/middleware, then
the percentage reduction in the number of messages that need
to be sent out with this approach is given in Figure 5 as a
function of the time window that it waits for Q7, Q11, and
Q16. As is to be expected, expanding the window captures a
large fraction of multicasts until the benefits taper off. How-
ever, one cannot keep expanding a window arbitrarily since
this can slow down the application’s forward progress in case
this message is needed immediately at the destination. We
noticed that the TCP socket implementation on the underly-

ing platform had one-way end-to-end latencies of around 100
microseconds. So it is not unreasonable to wait for compa-
rable time windows since the message would anyway take a
large fraction of that time to leave that node. If we consider,
window wait times of say 500 microseconds, then we can see
reduction of around 40% and 25% of the messages for Q7 and
Q16 respectively. On the other hand, Q11 does not benefit
much from such an online algorithm (nor from the offline al-
gorithm). We found that queries Q6, Q7, Q9, Q15, Q16, Q17
(the graphs are not explicitly given here) had at least 15%
message reduction with a wait time of 500 microseconds. It
is, however, important to understand the ramifications of this
wait time on query execution for eventual savings. Another
point to note is that, if the send on one node and correspond-
ing receive on another are not closely tied to each other (i.e.
there is some temporal slackness), then one can increase the
time window more aggressively. The underlying protocol can
perhaps be extended to carry this slackness information back
and forth to enable such decisions.

The observation about online monitoring of slackness, sug-
gests that a more realistic implementation of this algorithm
should make adaptive changes to the time window during
the course of execution. As it finds that despite waiting, it
is not able to combine messages as multicasts, it can adap-
tively decrease the window so that query execution does not
get slowed down (in fact, it can do this even when it finds
all the possible multicasts within a shorter time). Similarly,
when the underlying protocol detects more slackness (this can
be done at the receiver by examining the time difference be-
tween when the message gets in and when it is actually used),
the algorithm can adaptively increase the window. The win-
dow may also need to be tuned based on the message size.

7 Optimizing I/O and Communication
Simultaneously

One other issue that we considered for optimizing I/O and
communication at the same time was the reduction of copies
when there is the possibility of reading from disk and sim-
ply sending the data out to another cluster node. A system
with a storage area network or a network attached storage
disk (NASD) would facilitate direct access of remote data by
a node, but the environment that we are conducting the eval-
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Figure 5: The impact of wait time on multicast message detection

uations on do not provide such capabilities. A node has to
necessarily involve the remote CPU (specifically its counter-
part database process) to retrieve data from its disk. Similarly
the CPU has to be involved in the write to remote disk as well.
Some of the optimizations that an OS could do, when there is
no direct remote access hardware support, is to optimize the
overheads that are involved when moving data from one I/O
channel (say the disk) to another, is to manage buffers effec-
tively by reducing copying costs [12, 5].

To evaluate the possibilities with this approach, we instru-
mented all the socket and I/O calls, and compared all the
data that is read/written from disks and the socket messages.
However, we did not find very close similarity in the con-
tent across these channels to suggest significant benefits from
this approach. This can be attributed to the fact that several
queries require a node to send out specific columns of a ta-
ble after reading from disk. This usually requires retrieving
all the columns of a row from the disk since it is stored in
row-major order on disk, and then selecting the columns to
send out. Sometimes, only select rows need to be sent based
on some predicate. Such filtering/selection operations cannot
be offloaded to Linux (to ask it to read from disk and per-
form these operations and then send the result out on sockets,
thus reducing crossing protection boundaries and copying).
Hence, we do not see too much scope for optimizing these
mechanism unless the OS can allow extensibility/modularity
to perform such operations. Earlier studies examining cross-
channel buffer management [12] showed benefits for web
servers, where the data is not really processed/filtered as is
the case for these database engines. Further, in a cluster with
hardware capabilities like a storage area network or NASD, it
would be useful to incorporate intelligence at the disk so that
these operations can be carried out to reduce transfer traffic
as pointed out by others [11, 13, 15].

8 Summary of Results and Conclud-
ing Remarks

This is the first study to embark on a detailed characteriza-
tion and to present a range of performance statistics for the

execution of TPC-H queries on a medium sized Linux clus-
ter of SMP nodes (a popular configuration in today’s com-
mercial market) connected by Myrinet and Ethernet. This
has required distributing the tables of this workload across
the disks of the cluster, implementing the queries, detailed
kernel instrumentation to log events, and kernel modifica-
tions/extensions to better understand the interaction of the
database server with the OS. A brief summary of the issues
that are observed from the evaluation follows.

Moving from a uniprocessor/SMP to a cluster does not
make I/O any less important for a database engine. We find
that disk activity can push CPU utilization as low as 30% in
some queries. The overhead of I/O is not just because of the
disk latencies, and a significant portion is in the pread system
call itself (copying costs mainly). Further, most of the I/O ac-
tivity is because of the database prefetcher, that brings in large
chunks of data (32 blocks at a time), ahead of use, and this is
able to do a fairly good job because of reasonably good reg-
ularity/sequentiality in the queries. The read ahead feature of
the Linux file cache, further helps in reducing the overheads
providing hit rates of around 50%. While prefetching mech-
anisms, whether in the database engine or in the Linux file
cache, can be tailored (it probably already is) for such sequen-
tiality, the only consideration is the buffer space availability
which in turn depends on physical memory availability. On
the other hand, we find that it is extremely important to opti-
mize the pread system call itself, by reducing the amount of
copying. In this decision support workload that is read dom-
inated, reducing copies can significantly reduce read over-
heads without sacrificing much on sharing costs. One could
afford to pay higher penalties at writes if needed, if that can
cut down read costs significantly. There are several known
techniques for reducing copying costs , and in this study we
examined the virtual address remapping scheme to show how
many copies can actually be avoided. This scheme helps us
achieve the objective without requiring any modifications to
the legacy database code, but a more detailed investigation of
the cost of address remappings is warranted since this can be-
come expensive as pointed out earlier . It is our belief that
asynchronous I/O provisioning in Linux [1] would also help,
though this would again require application modifications.
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The other system service that is also exercised is the
socket communication to exchange control and data messages
amongst the nodes. While this may not be as dominant as
I/O, we find 5-10% of the execution time is spent in socket
calls even for a 8-node cluster, and this issue will become
more important for larger clusters. We find that many of
these messages are identical, suggesting potential for mul-
ticasts/broadcasts, which the database engine implements as
point-to-point messages.

It should be noted that our goal in this paper is not to rec-
ommend specific implementations or designs for improving
performance. Rather, we are trying to identify characteristics
of application-OS interactions and to suggest issues that can
help improve performance for this workload.

Our ongoing work is examining how best to provide the
support that the database engine requires, and how to manage
the resources effectively in the presence of multiple users. In
addition, we are investigating other TPC workloads, as well
as other cluster applications such as web and multimedia ser-
vices for similar studies.
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