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Abstract—The prevalence of mobile devices especially smart-
phones has attracted research on mobile content delivery tech-
niques. In this paper, we propose to take advantage of the storage
available at wireless access points to bring content closer to
mobile devices, hence improving the downloading performance.
Specifically, we propose to have a separate popularity based cache
and a prefetch buffer at the network edge to capture both long-
term and short-term content access patterns. Further, we point
out that it is insufficient to rely on a device’s past history to
predict when and where to prefetch, especially in urban settings;
instead, we propose to derive a prediction model based on the
aggregated network-level statistics.

We discuss the proposed mobile content caching/prefetching
method in the context of the MobilityFirst future Internet
architecture. In MobilityFirst, when mobile clients move between
network attachment points (e.g., Wi-Fi access points), their
network association records are logged by the network, which
then naturally facilitates the network-level mobility prediction.
Through detailed simulations with real taxi mobility traces, we
show that such a strategy is more effective than earlier schemes in
satisfying content requests at the edge (higher cache hit ratios),
leading to shorter content download latencies. Specifically, the
fraction of requests satisfied at the edge increases by a factor of
2.9 compared to a caching only approach, and by 45% compared
to individual user-based prediction and prefetching.

I. INTRODUCTION

We are currently witnessing tremendous growth in the

access of content using mobile devices. In fact, Cisco Visual

Networking Index [1] reports that global mobile data traffic

reached 1.5 exabytes per month at the end of 2013, and

global mobile devices and connections in 2013 grew to 7

billion. The rapid rise of mobile content access has led

to a dense deployment of wireless networks especially in

urban environments, including WiFi access points (APs) and

cellular base stations (macro cells and small cells). Users will

now traverse multiple access points (AP) and base stations,

encountering frequent network connection transitions within a

session (e.g., watching a YouTube video), which in turn makes

mobile content delivery while maintaining the user’s seamless

quality of experience, a daunting task.

The current TCP/IP Internet architecture is poorly suited

for content delivery to mobile devices in this manner. A

common criticism is the so-called identity-location conflation

problem [2], where an IP address in the Internet is used to

both identify an interface as well as its network location.

As a result, connections break when an endpoint changes

network addresses, requiring application-layer workarounds to

provide the mobility support. Several future Internet architec-

ture designs have been proposed to refactor naming, address-

ing and routing for location-independent communication [3],

[4], [5], [6]. In this paper, we consider MobilityFirst [3],

[7], a mobility-centric architecture that supports large-scale,

efficient and robust network services with mobility as the

norm. In MobilityFirst, we associate every endpoint with a

global unique identifier (GUID), which is decoupled from its

network address or location, and rely on a dynamic global

name resolution service (GNRS), such as those in [8], [9], [10],

[11], to track and resolve the mapping between GUID and

its network address(es). MobilityFirst aims to support smooth

mobile content delivery exploiting real-time GNRS updates

and queries.

The key to mobile content delivery is to ensure seamless de-

livery when devices move between networks. In MobilityFirst,

a mobile device updates GNRS with its latest network address

when it moves to (i.e., connects to) a new access point (AP).

We envision that these APs, when equipped with storage, can

be utilized as a distributed content caching system (similar

to the concept of PacketCloud [12] and EdgeClouds [13]),

such that a mobile client downloads chunks of content from

APs it connects to over time, thus avoiding reaching out to

the original content server. The download performance (i.e.,

latency, throughput) can be greatly improved when the content

chunks are available locally at the AP [12], [13], [14], [15].

However, achieving the above goal is not trivial: we need

to determine what chunks should be placed at which AP(s)

prior to the client’s arrival at that AP. There is a need to both

anticipate what content users may request (e.g., popularity)

as well as take advantage of the individual user’s current

content access pattern. To effectively achieve this goal, we

propose an EdgeBuffer framework in which an AP’s storage is

separated into cache buffer and prefetch buffer, with the former

caching popular content chunks while the latter buffering

chunks that are likely to be accessed by individual mobile

client. That is, while most popular content chunks at an AP

are cached at the cache buffer, those most “urgent” content

chunks that are expected to be needed for a client in the near

future are prefetched and buffered at the AP’s prefetch buffer.

Caching popular content chunks has been extensively studied978-1-4799-8461-9/15/$31.00 2015 IEEE



in the literature [16], [17], [18]. In this paper, we focus on

prefetching content chunks for individual mobile devices, by

predicting the next network the device is moving to, and at

what time, and examine how best to partition the storage at

the AP.
In the literature, earlier studies [15], [19] have looked

at mobility prediction and content prefetching based upon

personalized mobility models. These studies reported that

individual mobility patterns are highly predictable in certain

areas (e.g., suburban locations), due to limited and predictable

human habits (e.g., daily commute) and road conditions.

Though these observations are true in less populated areas,

we find that they do not hold true in urban areas (e.g.,

San Francisco) due to more complex road networks, frequent

traffic congestion, and vehicles such as taxis taking different

passengers and thus not following the same route. As a result,

personalized (such as daily) mobility patterns are less likely

to be useful in these areas. We need to take into consideration

the latest mobility information from nearby devices to make

accurate predictions. Therefore, in this paper, we develop

a network (access point) level mobility model based upon

aggregated mobility information collected by the network,

which better captures time-varying mobility patterns than

personalized mobility models.
MobilityFirst is ideally suited to develop such a network-

level mobility model. Since each mobile device updates its

latest network address with GNRS when entering a new access

network, GNRS naturally observes each device’s mobility

pattern. Based upon the aggregated mobility patterns from all

the devices that pass the network, we build a mobility model

for each network – we model user movement as a second-order

Markov chain with fallback to first-order [20], and build such

network transition probability table (NPT) at each AP. Given

the previous AP of a mobile client, the NPT at current AP

returns the probable future AP and corresponding transition

probability for the client. Each AP also builds a residence

time history table (RHT) by extracting statistics from recent

residence times observed by the AP. An AP then estimates

a particular device’s residence time based upon the residence

times of past clients.
In this paper, we have made the following contributions:

• We have developed a content caching and prefetching

framework in which an access point has separate cache

buffer and prefetch buffer for popularity-based content

caching and mobility prediction-based prefetching. Our

framework can capture both long-term aggregated con-

tent access pattern and short-term individual user access

pattern, thus considerably improving the cache hit ratio.

• We have investigated various aspects of the caching and

prefetching framework, especially on how to split the

storage into a cache component and a prefetch compo-

nent, and size them correctly, determined by the mobility

and access patterns at the AP.

• We have developed a network-level mobility prediction

model within the MobilityFirst architecture, taking into

consideration latest mobility information from nearby

Globally Unique Flat Identifier (GUID) 

John’s _laptop_1 

Sue’s_mobile_2

Server_1234 

Sensor@XYZ 

Media File_ABC 

Host  

Naming 

Service 

Network 

Sensor 

Naming 

Service 

Content 

Naming 

Service 

Global Name Resolution Service 

Network address: 

Net1.local_ID 

Net2.local_ID 

Context 

Naming 

Service 

Taxis in NYC 

Fig. 1: Name-locator separation and mapping in MobilityFirst

mobile devices. This model is more accurate than pre-

diction based upon individual device traces.

We have generated an access point level user mobility

workload based upon a real taxicab trace [21] and the wireless

coverage database [22], and use it for simulation. Our eval-

uation shows that our scheme improves the overall cache hit

ratio by 289% and 45% compared to caching only approach

and individual user based prediction approach.

II. BACKGROUND ON MOBILITYFIRST

The MobilityFirst architecture [3], [7] is built opon a name-

based service layer that serves as the “narrow-waist” of the

protocol stack. As shown in Figure 1, this layer uses flat

globally unique identifiers (GUIDs) to name all network-

attached objects including hosts, content, services and even

abstract context.

A GUID can be assigned to a network object by one of

multiple name certification services (NCSs), and is derived

through a cryptographic hash of the public key that corre-

sponds to that object. The GUID then works as the long-lasting

network identifier for the object, and is decoupled from its

network address(es).

A dynamic global name resolution service, called GNRS,

manages the GUID to network address mappings and provides

fast responses to mapping requests and changes, such as

inserts, lookups, and updates. Such a service can be imple-

mented in different ways, e.g., DMAP [8], Auspice [9] and

DONA [11]. In DMAP, the name resolution infrastructure is

designed as an in-network 1-hop DHT with servers distributed

all across the Internet; Auspice uses a resolver replica place-

ment engine that automates the placement of geo-distributed

name resolvers to facilitate name resolution; DONA relies on

a class of resolution handlers (RHs) deployed at each domain

to translate names into locations.

Such name-based service model with GNRS naturally sup-

ports of mobile content delivery [23]: a client requests content

directly by content name, and routers query the GNRS to get

updated content location(s); the GNRS mapping of the client

is updated whenever the client moves to a new network, thus

the content can be delivered to the client correctly later.



Global Name Resolution Service

(GNRS)Internet

Backbone

1

23

AP2 AP3

client A

4

AP1

NPT

RHT

CRT

previous AP next AP transition probability

AP2 AP4 0.82

* AP4 0.53

network transition probability table

content GUID recent usage count

1234 23

content request table

prefetch buffer

cache buffer

mean(s) median(s) 25th %ile(s) std(s)

AP2 25.7 21.4 18.9 7.7

* 32.4 29.9 25.3 10.5

previous

 AP

residence time history table

residence time history stats

Fig. 2: EdgeBuffer: mobility prediction and content caching/prefetching framework in MobilityFirst

III. EDGEBUFFER: CONTENT CACHING AND

PREFETCHING AT THE EDGE

With the increasing deployment of wireless access points,

a mobile client may achieve better connectivity to retrieve

content, but at the same time need to associate with multiple

access points during a content retrieval session. Caching and

prefetching content chunks at these APs can reduce the content

download latencies, improve the throughput, and mitigate

jitter. For example, when a mobile client connects to an AP,

it issues a request (with a specific content chunk number);

the request can be satisfied locally if the requested chunk is

already cached at the AP due to its popularity. Additionally,

if the network can predict which AP the client will connect to

next, and at what time, then the predicted next AP can prefetch

suitable chunks before the client arrives. In both cases, the

client can directly access the content from the network edge,

instead of going to the hosting server or CDN. This is the main

idea of EdgeBuffer, which uses the distributed storage at APs

to capture long-term aggregated content access patterns (i.e.,

popularity based), as well as the short-term individual client’s

access pattern based upon the client’s mobility information.

A. Popularity-based Caching

The access point can build a content request table capturing

long-term, local content request patterns as shown in Figure 2.

The table maintains a recent usage count (RUC) for each chunk

of content that has been requested through the AP within a

time window. The RUC value is managed using an explicit

aging method with a periodic aging function as discussed

in [16]. For a given aging parameter α(0 < α < 1), suppose

the aging period is T and there are n requests for content x

in the period, the aging function is:

C(x)|t+T ← α ∗ (C(x)|t + n) (1)

where C(x) is the RUC value of content x. Normally, every

time when a content is requested, its RUC value increments

by one; periodically (i.e., every aging period), each RUC value

C(x) is multiplied by α.
When cache buffer is full and a new chunk arrives, the AP

compares its RUC value with that of cached chunks. Cache
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Fig. 3: Residence times for the same taxi at the same AP vary
significantly.

replacement takes place when the new arriving chunk’s RUC

value is higher than the lowest RUC value of cached chunks.

B. Mobility Prediction and Prefetching

In addition to caching popular content chunks, we also

focus on prefetching chunks for mobile clients. The key to

prefetching suitable content chunks before the client arrives

at an AP is accurate mobility prediction – as soon as a client

associates to an AP, the AP needs to predict how long the

client will stay in the current network, and which network it

is moving towards.

Previous work has proposed to conduct mobility prediction

based upon each individual user’s mobility trace [15], [19],

with the assumption that user mobility/commute trace is

highly regular and predictable. However, we argue that this

assumption only holds true in less populated areas, but not true

in urban areas with complex road networks and frequent traffic

congestions. In such urban areas, the time, as well as the route,

taken to travel between two locations may vary considerably.

To support our point, from the San Francisco (SF) taxicabs

mobility dataset [21] that consists of 536 cabs’ GPS trace, we

randomly picked two cabs and plotted their residence times at

a specified AP in Figure 3. Figure 3 shows that the residence

time for the same cab at the same AP varies significantly in

crowded areas. In this paper, we therefore investigate mobility

prediction at the network/AP level using aggregated mobility

traces.

1) Spatial and Temporal Prediction: Conducting mobility

prediction at the network/AP level is challenging on today’s In-

ternet due to the lack of aggregated mobile network association
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traces. GNRS in MobilityFirst, however, naturally keeps track

of each mobile client’s network association trace – whenever a

mobile client gets associated to a new AP/network, it updates

the name resolution service about the association, thus making

network-level mobility prediction feasible.

In this work, we consider mobility prediction in two or-

thogonal dimensions: spatial prediction (which AP will the

client connect to next) and temporal prediction (how long will

the client stay at the current AP). That is, spatial prediction

determines where to prefetch content chunks, and temporal

prediction determines what content chunks to prefetch. To fa-

cilitate these two types of prediction, we assume that each AP

maintains the corresponding network association records. Each

record consists of the following three fields: (1) previous AP,

(2) residence time, and (3) next AP. Based upon the association

records, the AP builds a network transition probability table

and residence time history table, as illustrated in Figure 2.

Our spatial prediction predicts a client’s next AP given the

combination of its previous and current APs. The key data

structure for spatial prediction is what we call network tran-

sition probability table (NPT). We build NPT from the AP’s

association records through a second-order Markov predictor

with fallback to first-order. NPT takes the (previous AP, next

AP) tuple as input, and returns the transition probability to the

corresponding next AP.

Our temporal prediction predicts a client’s residence time

given the combination of its previous and current APs. From

an AP’s association records, we build its residence time history

table (RHT) – we first classify the records into different

bins according to the previous AP, and then calculate the

statistics of residence times in each bin, including the mean,

median, 25 percentile and standard deviation. If the previous

AP information is not available, then the prediction falls back

to look at all the residence times without binning.

Figure 2 and Figure 4 illustrate how these two tables are

built using an example. In the example, client A was associated

with AP1, AP2, and then AP3. After leaving AP1, it connected

to AP2, and sent out an update message to GNRS through

AP2. GNRS then responded to AP2 with the client’s previous

location (AP1 in this case), and notified AP1 with the user’s

current location (AP2). AP2 then logged the association record

(without the next AP field) as shown in Algorithm 1, and AP1

filled the corresponding association record’s next AP field with

AP2, as shown in Algorithm 2. The same process took place

after the client left AP2 and connected with AP3. In this way,

AP2 figured out each association record’s previous AP, next

AP, and residence time. Using these association records, AP2
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Fig. 5: Content prefetching protocol

can construct its NPT and RHT.

Algorithm 1: Recording client association history

Input: GNRS update ack message Mu, association

timestamp tassoc
Output: client association record Rassoc

Data: client c, previous AP APprev

1 (APprev, c)←rcvGNRSAckMsg(Mu)
2 Rassoc.insertPreviousAP(c, APprev)
3 Rassoc.insertAssocTime(c, tassoc)

Algorithm 2: Building network transition probability table

(NPT) and residence time history table (RHT)

Input: GNRS notification message Mn, the time

receiving the msg tleave , client association record

Rassoc

Output: NPT , RHT

Data: client c, previous AP APprev , next AP APnxt

1 (APnxt, c)←rcvGNRSNotiMsg(Mn)
2 APprev ← getPreviousAP(Rassoc, c)
3 tassoc ← getAssocTime(Rassoc, c)
4 ∆t ← tleave − tassoc
5 Rassoc.remove(c)
6 NPT .update(APprev, APnxt)
7 RHT .update(∆t , APprev)

C. Content Prefetching Protocol

Using NPT and RHT, an AP predicts when a mobile client

will leave the current network (temporal prediction), and

to which network it will move (spatial prediction). Follow-

ing prediction, the predicted next network conducts content

prefetching. Below we explain our prefetching protocol using

the example shown in Figure 5:

1) Association: Let us assume that at time t0, a client leaves

AP0 and makes an association with AP1.

2) Temporal Prediction: As soon as the association is made,

AP1 predicts the client’s residence time, Tr, as the

median value of the residence time samples that are



considered. Since we need to start prefetching before the

estimated departure time (t0 + Tr), AP1 sets Tp as the

25th percentile of the residence time samples. As such,

the system will start prefetching around time t0 + Tp.

Please note that past residence time statistics are available

in the RHT.

3) Spatial Prediction: At time t0 + Tp, if the client is still

associated with AP1, AP1 then predicts the client’s next

AP by looking up the NPT and picking the K (usually

K < 3) most likely next APs (as shown in Algorithm 3).

In this example, we have K = 2, and next APs are AP2

and AP3.

At the same time, AP1 examines which chunk the client

is going to download next at the estimated departure time

(t0 + Tr), which will also be the first prefetch chunk.

Finally, AP1 sends out a Prefetch message to K next APs.

The Prefetch message contains the following information:

content ID, chunk ID, and the transition probability.

4) Prefetching: Suppose the Prefetch message reaches AP2

and AP3 after a short delay. Both APs predict the

residence time for the client, and calculate what chunks

the client will request during the estimated residence time

as shown in Algorithm 4. If these chunks are not yet

cached in the popularity-based cache, the APs will fetch

them right away. The prefetch buffer uses LRU as the

replacement policy.

Algorithm 3: Predicting client mobility at an AP

Input: client c, elapsed time since client’s association t0,

previous associated AP APprev , current

transferring chunk ID chk0 of content contc,

transition probability threshold Pthres

Output: Prefetch message

1 if checkClientAssoc(c) == true then

2 t1 ←getResiMedianbyRHT(APprev)
3 ∆t ← t1 − t0
4 chks ←calcPrefetchStartChk(contc, chk0,∆t)
5 Pv ←getNxtAPVectorbyNPT(APprev)
6 P = 0
7 i = 0
8 while P < Pthres do

9 (APnxt, Ptransit)←getAPwithTopProb(Pv , i)
10 SndPrefMsg(APnxt, contc, chks , Ptransit)
11 P ← P + Ptransit

12 i← i+ 1
13 end

14 end

IV. EVALUATION

We have developed a trace-driven simulator and conducted

detailed evaluations of the proposed mobile content delivery

scheme.

Algorithm 4: Calculating prefetch range

Input: Prefetch message Mp, popularity cache buffer

Bcach, prefetch buffer Bpref

Output: prefetch chunk range

1 (APsrc, contc, chks)←rcvPrefMsg(Mp)
2 ∆t ← getResiMeanbyRHT(APsrc)
3 chke ← calcPrefetchEndChk(contc, chks ,∆t)
4 chk range ←checkMem(Bcach, Bpref , contc, chks , chke)
5 if chk range 6= 0 then

6 prefetch(chk range, contc)
7 end

A. Simulation Setup and Workload Generation

We developed a discrete event-driven simulator to evaluate

EdgeBuffer. We generated realistic taxi mobile access work-

load by integrating a GPS trace of taxicabs in San Francisco

(SF dataset) [21] and a wireless AP coverage database in

SF (WiGLE database) [22]. The SF dataset contains GPS

coordinates of 536 taxis for around 3 weeks in the Bay Area.

In the original trace, the location update interval was typically

1 minute, and we inserted finer-grain location updates (with

an update interval of 1 second) to the original dataset. The

WiGLE database provides the AP deployment map in SF,

and we cleaned up the database by merging APs that are

within a certain distance of each other. In this study, we

focus on two distance thresholds: 250m and 100m, referring

to the resulting workloads as SF-250 and SF-100 respectively.

Specifically, there are 687 APs in SF-250, and 2589 APs in

SF-100 workload.

In the simulator, we use one node to represent the content

hosting server and another node to represent the name reso-

lution server. Each AP (corresponding to a node in simulator)

is connected to both servers through a 50Mbps link with 20

millisecond delay. We further assume that a client is always

associated with the closest AP, and sequentially downloads

content chunks from the connected AP with an average link

bandwidth of 2Mbps and 4Mbps for SF-250 and SF-100,

respectively. The content server contains 100,000 files. Each

file is 100 MB in size and has 100 chunks. The popularity of

the content follows a Zipf distribution with a default parameter

of 0.75, consistent with the observations in the web request

traces [24]. In the simulations, we assume each AP has 10GB

of storage for content caching and prefetching, with 8GB and

2GB allocated for each by default.

B. Prediction Accuracy

We first evaluate the accuracy of spatial prediction and tem-

poral prediction for our network-level prediction (netPredict)

and individual user based prediction (userPredict). Note that to

implement user based prediction, we use a taxi’s AP transition

history to predict the next AP(s) that it will move to, and

use the taxi’s history residence time at an AP to predict its

residence time at this AP.
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We measure the spatial prediction accuracy as the percent-

age of instances in which a client indeed moves to one of the

K predicted AP(s). We report the result in Figure 6. The figure

shows that our network-level prediction has a much higher

prediction accuracy than the user based prediction. Moreover,

using our network-level prediction method, we can achieve a

very high spatial prediction accuracy with a small K value

(e.g., the value is 0.929 and 0.907 with K = 3 for SF100

and SF250). In the following simulations, unless otherwise

specified, we set the transition probability threshold Pthres

in Algorithm 3 as 0.8, which corresponds to K = 2.46 in

average.

Unlike spatial prediction, accurate temporal prediction is

much harder due to the high variation in residence times. To

support the point, we randomly picked one AP from SF-250

and SF-100 workloads and plot the histogram of the AP’s

residence times in Figure 7. The histogram shows that the

residence time at an AP follows a log-normal distribution,

which is in agreement with the conclusion in [25], in which

the authors discovered that the residence times in a campus

environment follow a log-normal distribution.

In our temporal prediction, we predict a client’s residence

time as the median value of history residence time samples.

We then measure the temporal prediction error as the average

difference between the estimated residence time and the actual

value. Using this definition, we investigate the estimation error

at different history sample size, as seen in Figure 8. The results

show that our prediction method is consistently more accurate
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than user based prediction because it can dynamically capture

the traffic condition. Moreover, a modest history sample size

is needed to get the optimal prediction accuracy. Specifically,

at sample size of 50, the estimation error for our network-level

prediction is 25.2s and 12.8s, while the estimation error for

individual user based prediction is 30.6s and 15.8s, for SF-250

and SF-100. The prediction for SF-100 is better than SF-250

because of a smaller AP range. We use this history sample

size as the default value.

We have also studied the prediction accuracy for a Beijing

taxi drive trace [26], and the results show very similar trends.

In the interest of space, we do not present these results here.

C. Hit Ratio at the Edge Buffers

We next evaluate the benefits of having caching and

prefetching in the system. When a content request is satisfied

at the AP’s edge buffer, the multi-hop Internet path is replaced

by a one hop path, the round-trip time is thus much smaller,

and a higher throughput can generally be obtained. Therefore,

the hit ratio at the edge buffers characterizes the performance

gain of caching and prefetching regardless of different network

settings (i.e., network topology, backhaul bandwidth and delay,

wireless condition, etc), we thus focus on the cache hit ratio

as the main metric here. Note that this metric is the “cache”

hit ratio in terms of content chunks which includes hits from

both the cache and the prefetch buffer.

1) Comparison of Four Edge Caching Strategies: We first

compare the performance of four edge caching strategies: (1)

LRU, in which we use the entire AP storage as an LRU

cache, (2) popCache, in which we use the entire AP storage

as a popularity-based cache, (3) popCache+userPredict, in

which we partition the storage at an AP into two parts:

a popularity-based cache and a prefetch buffer based upon

user-level mobility prediction, (4) popCache+netPredict, in

which we partition the storage at an AP into two parts: a

popularity-based cache and a prefetch buffer based upon AP-

level mobility prediction. In EdgeBuffer, we adopt the fourth

strategy, i.e., popCache+netPredict.

We report the performance of the four strategies with

different Zipf exponent parameters using SF-100 workload
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Fig. 9: Cache hit ratio for four edge caching strategies (with SF-100
workload).
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Fig. 10: For popCache+userPredict and popCache+netPredict, we
break down the total cache hits into hits from cache and hits
from prefetch buffer. Since the contributions from the cache are
almost identical, we only show the cache contribution for pop-
Cache+netPredict here.

in Figure 9. Further, for popCache+userPredict and pop-

Cache+netPredict, we break down the total cache hits into

hits from cache and hits from prefetch buffer, and show the

breakdown in Figure 10. In fact, we have results for both

SF-100 and SF-250 workloads, but choose to show only one

because the trends are very similar. From the results, we

have the following observations. First, with reasonable Zipf

exponent values, prefetching is more effective than caching.

As the Zipf exponent becomes larger, the content access pop-

ularity distribution becomes much sharper, caching becomes

much more important than prefetching, and the difference

between LRU cache and popularity-based cache becomes less

important. As a result, all four strategies converge when we

have large Zipf exponent values. Second, our strategy always

fares better than the other three in achieving local hits at

the edge. The detailed breakdown results show that our AP-

level prefetching is more effective than individual user based

prefetching.

Next let us look at the detailed performance when the

Zipf exponent parameter is 0.75, which is a common value

in web server access [24]. Here, the hit ratios are 0.078,

0.116, 0.312(0.109 from cache and 0.203 from prefetching),

and 0.451(0.108 from cache and 0.343 from prefetching)
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Fig. 11: Hit ratio with different prefetch buffer sizes. Note that an
AP has a total of 10GB storage.

respectively for SF-100. The results show that the average

hit ratio in our scheme offers 478% improvement over the

traditional LRU cache scheme. Compared with popularity

cache scheme, there is 289% improvement in hit ratio, which

shows the importance of prefetching. Compared to individual

user based prefetching, our AP-level prediction can lead to

a 45% overall improvement. If we only focus on the hits

due to prefetching, our scheme improves 69% over user-

based prediction, further proving that our network aggregated

prediction is more effective in urban settings.

2) Size Allocation between Cache and Prefetch Buffer:

Next, we look at the impact of different cache and prefetch

buffer size combinations, given that the sum of these two is

fixed. In this set of simulations, we set the Zipf exponent

parameter to be 0.75, and vary the load in the system. The

original SF-250 workload has around 3 weeks of data with 536

taxis and 687 APs. We increased the load by compressing the

total number of taxis that appeared across three weeks into

one week and further into one day, thus getting workloads

SF-250-1w and SF-250-1d.

We report the results in Figure 11, and have the following

observations. First, there exists an “optimal” size for the

prefetch buffer – after the prefetch buffer reaches a certain

size, cache hit ratio starts to drop. Second, the optimal size

varies with the load of the system. A lighter load requires

a smaller prefetch buffer: SF-250 shows an optimal prefetch

buffer at 3% of the total storage capacity, while SF-250-1d

shows an optimal prefetch buffer at 40% of the total storage

capacity. Third, the penally of having a prefetch buffer that is

too small is much larger than the penalty of having a prefetch

buffer that is too big. This is because when the Zipf exponent

is 0.75, and the content space is reasonably large, prefetching

plays a bigger role than caching.

We have also derived a guideline on how to size the prefetch

buffer: Bpref ≥ ∆t ∗K ∗ ρ ∗ n ∗M , where ∆t is the interval

between the time when a chunk is prefetched and the time

when the chunk is requested by the client (∆t = t1 − t0 as

in Algorithm 3), K is the number of next AP(s) conducting

prefetching (2.46 in our case), ρ is the mobile client arrival

rate, n is the number of chunks prefetched for an arrival client,
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Fig. 12: Hit ratio at different padding level.

and M is the size of a chunk. This guideline ensures the

prefetch buffer is large enough so that the prefetched chunks

will not be replaced before they are consumed by the client.

The resulting buffer size matches our simulation results well.

3) Prefetching More Chunks: In this set of results, we

explore the impact of prefetching more chunks than what

is given by Algorithm 4. Prefetching additional chunks may

increase the hit ratio if our residence time estimation is erring

on the small side, but it may evict useful chunks if the prefetch

buffer is full1. Here, we introduce the parameter, padding ratio,

to measure the amount of extra chunks that are prefetched.

Assuming that we are supposed to fetch N chunks, a padding

ratio of p means that pN
2

extra chunks are prefetched at both

sides of the prefetch range.

We report the cache hit ratio at different padding levels

in Figure 12, which shows the hit ratio goes up as we

fetch more chunks. The hit ratio is about 38.4%, 35.7% and

18.5% higher with 300% padding ratio for SF-250, SF-100

and SF-250-1d. The main reason is that under the default

simulation configuration, the prefetch buffer is large enough

to accommodate prefetching extra chunks for SF-250 and SF-

100. However, with heavier traffic load, prefetching too many

chunks for each client will hurt the overall hit ratio, as seen

from the degrading performance of SF-250-1d after padding

ratio of 2.

4) Network Transition Probability Threshold: We investi-

gate the impact of different transition probability threshold on

the caching performance. The transition probability threshold

determines the number of top probable next AP(s) that will

conduct the prefetching, thus vastly affect the prefetching

overhead and caching hit ratio.

The results are shown in Figure 13. The values for SF-250

are: 0.382, 0.405, 0.423, 0.446, 0.471; the values for SF-100

are: 0.403, 0.419, 0.435, 0.454, 0.477. The results show that

we can achieve good performance with a small K value (like

1.35), such that the prefetch overhead is kept modest.

1Prefetching consumes backhaul bandwidth in addition to AP’s buffer
storage, thus causes bandwidth waste if the chunks prefetched are not used.
Such impact is not evaluated in this paper.
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Fig. 13: Hit ratio at different transition probability threshold. We also
calculate the average value of K at each threshold.

V. RELATED WORK

A. Future Internet Architecture

A number of clean-slate future Internet architecture designs

have been proposed recently to address challenges faced

by today’s IP network. Such designs are generally centered

around a name-based service – they address a network object

by its unique name/identifier instead of a network address.

Thus, the communication with any network object appears to

be no different than that if it were a fixed endpoint, resulting

in a location-independent communication paradigm.

These Internet architectures differ from each other in how

they realize name-based service, especially in the presence

of mobility. Several information-centric architectures (such as

TRIAD [27] and NDN [4]) and flat-label routing architectures

(such as ROFL [28]) propose a name-based routing approach

which includes an object name into the routers’ forwarding

table and forwards packets directly based on the name, without

using network-level addresses. While this approach is con-

ceptually simple, the size of the forwarding table becomes

overwhelmingly huge, and the propagation of routing updates

usually causes substantial overhead and delays within a large

network. It may be a challenge for mobile content delivery

where clients frequently transit from one network to another.

On the other hand, some other architectures (like Mobil-

ityFirst [3], XIA [5], HIP [6] and AIP [29]) places object

names outside of the routing plane and uses a name reso-

lution service to translate names to addresses. In particular,

MobilityFirst enables name-based service through dynamic

in-network name resolution (GNRS) where both end-hosts

and routers can query, and a GNRS mapping update when

an endpoint moves. Such approach is well suited for mobile

content delivery especially in case of fast mobility of hosts,

as it only introduces a round-trip update or lookup latency

without significantly lengthening the data path or causing

too many routing updates during mobility. Moreover, GNRS

oversees each mobile client’s network movement trace, thus

enables a network-level mobility prediction. Our work is based

on such a mobility-centric architecture design.



B. Caching and Prefetching

Traditionally, content caching [16], [17] and CDN [18] are

utilized to facilitate content distribution and retrieval. They

normally measure the long-term content access pattern and

cache the most frequently used or most recently used contents.

However, most of such work doesn’t consider the impact of

short-term user mobility on caching performance.

On the other hand, prefetching [30], [31], [32] has been

proposed to proactively preload data from servers instead of

passively waiting on content requests. However, it is often used

in the context of prefetching related content that is expected to

be used in the near future according to users’ access patterns or

the content’s structural relationship. Authors in [14], [15], [19]

propose to prefetch parts of large content objects to different

AP locations by utilizing a client’s mobility pattern. While

Sprinkler [14] assumes that mobile client’s route is known as

prerequisite, other work [15], [19] requires mobility prediction.

These studies propose a personalized mobility models where

each mobile client predicts its future connection based on

its own history. Alternatively, authors in [25], [33] have

demonstrated how to use traces of several users to build user

mobility model in a college campus environment. We argue

that a network-level aggregated prediction model is preferred

for a complicated urban environment. Incidentally, in [19],

[20], [33], authors all use a second-order Markov model to

predict mobile client’s future location.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we present the design of EdgeBuffer, which

aims to improve mobile client’s content download perfor-

mance by leveraging aggregated network-level prediction and

prefetching as well as popularity-based caching at the network

edge. Through detailed simulations, we show that such a

scheme can significantly increase the fraction of content re-

quests that can be satisfied at the edge, avoiding long latencies

involved in reaching out to the original hosting server or CDN

server. Our results also shed light on important issues such as

how to allocate the size between cache buffer and prefetch

buffer, when to prefetch more chunks, and by how much.

EdgeBuffer shares the same vision as many projects (e.g.,

PacketCloud, EdgeClouds) that advocate pushing network

services towards the edge of the Internet. It is enabled by a

fast emerging class of future Internet architectures that focus

on addressing the challenges caused by mobile clients. In this

paper, we sketch out the initial design of EdgeBuffer, and show

that it is a promising approach in supporting mobile content

delivery. Towards realizing its full potential, in our future

direction, we will investigate more sophisticated prediction

algorithms (e.g., leveraging detailed client’s information like

speed and direction together with network-level statistics),

and also build large-scale prototypes and conduct real-world

experiments to improve its design and quantify its benefits.
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