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Abstract—Heartbeat monitoring during sleep is critically im-
portant to ensuring the well-being of many people, ranging
from patients to elderly. Technologies that support heartbeat
monitoring should be unobtrusive, and thus solutions that are
accurate and can be easily applied to existing beds is an
important need that has been unfulfilled. We tackle the challenge
of accurate, low-cost and easy to deploy heartbeat monitoring
by investigating whether off-the-shelf analog geophone sensors
can be used to detect heartbeats when installed under a bed.
Geophones have the desirable property of being insensitive
to lower-frequency movements, which lends itself to heartbeat
monitoring as the heartbeat signal has harmonic frequencies
that are easily captured by the geophone. At the same time,
lower-frequency movements such as respiration, can be naturally
filtered out by the geophone. With carefully-designed signal
processing algorithms, we show it is possible to detect and extract
heartbeats in the presence of environmental noise and other body
movements a person may have during sleep.

We have built a prototype sensor and conducted detailed
experiments that involve 43 subjects (with IRB approval), which
demonstrate that the geophone sensor is a compelling solution
to long-term at-home heartbeat monitoring. We compared the
average heartbeat rate estimated by our prototype and that
reported by a pulse oximeter. The results revealed that the
average error rate is around 1.30% over 500 data samples when
the subjects were still on the bed, and 3.87% over 300 data
samples when the subjects had different types of body movements
while lying on the bed. We also deployed the prototype in the
homes of 9 subjects for a total of 25 nights, and found that the
average estimation error rate was 8.25% over more than 181
hours’ data. Overall, the results shows that applying a low-pass
filter with cutoff frequency range from 7Hz to 10Hz gives us a
.

Index Terms—Heartbeat Sensor, Bed-Mounted Sensor, Sleep
Monitoring, Signal Processing

I. INTRODUCTION

When we consider a person’s well-being, it is important
to focus on the time when he/she is resting and sleeping. We
spend a large fraction of our time in sleeping, and yet, reliable
mechanisms that can monitor our sleep and heartbeats during
sleep are still missing. In the last few years, we have seen
an increasing number of wearable devices that can be used
for this purpose, but they usually need to be bundled to other
mobile devices and require frequent battery charging, which
is rather cumbersome to many users, especially patients or
elderly. As a result, we believe a better approach is to develop
bed-mounted sensors that can monitor users in a completely

unobtrusive manner. In this study, we aim to develop such
sensors that are able to detect and monitor heartbeats during
sleep. Detecting heartbeats and monitoring the heartbeat rate,
is an important part of ensuring our well-being.

Due to the importance of heartbeat monitoring during sleep,
many bed-mounted heartbeat sensing and monitoring systems
have been proposed in the literature. However, few solutions
have managed simultaneously to achieve ease of use, low cost,
high accuracy, and robustness. Firstly, many systems, such as
those proposed in [30], [21], [14], require custom-made sheets
or mattresses. For example, an air cushion is required in [30],
[14]; sensors need to be embedded in the mattress in [21].
Some systems require the user to place (film) sensors under
a certain part of the sheet [29]. These requirements are rather
cumbersome, which may greatly hinder the widespread adop-
tion of the proposed systems, particularly amongst demograph-
ics that are adverse to noticeable changes in their routines.
Secondly, many systems, such as those proposed in [16], [23],
require special sensors that yield accurate heartbeat sensing,
but can be quite costly. Thirdly, some systems are hard to
install; for example, the system proposed in [31] needs to
install a plywood board and an aluminum guide rail on the bed
surface. Because of these limitations, even though a number
of systems have been proposed, at-home heartbeat monitoring
during sleep still remains a problem for which there are no
completely suitable solutions.

In this study, we seek to fill this void by proposing a
system that is accurate, robust, low cost, and easy to use.
Our solution involves the use of a commercial off-the-shelf
analog geophone under the mattress to detect and monitor
the user’s heartbeats during sleep. Just like a geophone can
detect pressure waves (i.e. “sounds”) in the earth (e.g., [27],
[24]), our system can detect the sounds of heartbeats that
are propagated through a mattress. Therefore, we refer to our
system as heartbeat-phone, or HB-Phone in short. Compared
to other sensors, the geophone sensor has several advantages,
which make it a suitable choice for heartbeat detection1.
Firstly, it is highly sensitive to tiny motions – geophones are
often used to detect distant motions (such as earthquakes),
and can generate a noticeable response to minute movements
such as heartbeats (after going through a normal mattress).

1In this paper, we use the term geophone to refer to the analog geophone.
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Secondly, it is commercially available and rather affordable.
Thirdly, deploying a geophone-based system can be very
conveniently done, without interfering with the bed or how
it is used. As a result, we believe that HB-Phone offers a
very practical solution to at-home heartbeat monitoring during
sleep, and in this study, we show that such a solution is also
accurate and robust against environmental noise or other body
movements a person may have during sleep.

Extracting heartbeats from geophone signals, poses serious
challenges to the underlying system design, which we have
addressed in our study. The first challenge stems from the
fact that the geophone is naturally a second-order high-pass
filter, hence insensitive to low-frequency motions. Specifically,
when a movement’s frequency increases from 1Hz to 10Hz,
the geophone’s response may become 100 times stronger.
Considering that the fundamental frequency range of the heart-
beat signal falls between 0.45Hz and 3.33Hz (corresponding
to a heartbeat rate range from 27 beats to 200 beats per
minute), it is difficult to detect geophone responses at their
fundamental frequency. In this study, we address this challenge
by considering harmonic frequencies of the heartbeat signal,
i.e., integral multiples of its fundamental frequency, that are
caused by a high-frequency component in a heartbeat.

The second challenge is that geophones are highly sensitive
to noise in the environment. During sleep, a person may have
various body movements including arm swings, leg kicks, or
snoring 2. At the same time, another person may be walking
in the bedroom, or opening/closing the bedroom door. All of
these movements will be picked up by a geophone that is
installed under the bed mattress. Therefore, it is a daunting
task to extract heartbeats from all types of the noise, requiring
very careful design of both hardware and software components
to mitigate such harmful interference. In hardware design,
the key is to control the amplification to ensure heartbeat
responses are detectable and distinguishable from noise while
maximizing the amplitude of noise that we can cope with. In
software design, the key is to carefully devise signal processing
algorithms that can effectively filter out both environmental
noise and noise caused by a person’s body movements while
in sleep.

To summarize, we have made the following contributions
in this study:

1) We have developed an accurate, robust, low-cost, and
easy-to-use bed-mounted heartbeat monitoring system
HB-Phone, which is centered around a commercial
off-the-shelf analog geophone. The HB-Phone system
consists of both hardware and software components. Its
hardware components include a geophone, an amplifier
and an A/D converter; software components involve
filtering, sample auto-correlation calculation, peak find-
ing, and heartbeat extraction. Though geophones were
suggested for detecting the presence of heartbeats in [3],
[25], to our knowledge, this is the first geophone-based

2Our system has an upper bound on the amplitude of the movements it
can handle, which is dependent on the configuration of the hardware; in our
prototype, we chose to use lower-end hardware components and can cope
with body movements whose amplitude is 14 times of that of heartbeats.

Fig. 2: The geophone consists of a spring-mounted magnet that is
moving within a wire coil to generate electrical signals that measure
movements in the environment.

system that can accurately monitor the heartbeat rate in
realistic settings.

2) We have built a HB-Phone prototype and used it to
instrument an experimental bed. We have used the exper-
imental bed to collect 502 30-second geophone signals
from 34 subjects while they lay still on the bed; 301
30-second geophone signals from these subjects when
they had various types of gentle body movements while
lying on the bed. We have compared the calculated heart
rate with the results measured by a pulse oximeter, and
found that the average error rate is 1.30% in the former
case, and 3.87% in the latter case.

3) We have deployed the HB-Phone prototype in 9 homes
for a total of 25 nights, along with a pulse oximeter
and video camera. We observe that the average error
rate is 8.25%, even though the subjects had various
body movements and environmental noise during the
experiments.

The remainder of the paper is organized as follows. In
Section II, we present the hardware system design of HB-
Phone, and in Section III, we present the software design that
we have built to support heartbeat monitoring. We present our
evaluation setup and experimental results in Section IV. In
Section V, we summarize the existing bed-mounted heartbeat
monitoring systems, and compare their pros and cons. Finally,
we provide concluding remarks in Section VI.

II. HB-PHONE SYSTEM DESIGN

We show the overview of HB-Phone in Figure 1. In HB-
Phone, we place an analog geophone under a mattress to
capture movements in the environment, including the user’s
heartbeats. We first amplify the raw geophone response, and
then convert it to a digital signal. Next, we feed the digital
geophone signal to a series of signal processing functions,
which extract heartbeats and other relevant movements from
the signal. The outcome from the HB-Phone system includes
estimation of the average heartbeat rate, estimation of the
instant heartbeat rate, detection of snoring during sleep, and
detection of body movements during sleep, etc.

In this section, we first present the hardware design of HB-
Phone. Then we discuss the unique challenges we have faced
in designing the HB-Phone system.

A. HB-Phone Hardware Design and Prototype
The HB-Phone system is centered around the use of a

geophone sensor. As shown in Figure 2, a geophone consists
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Fig. 1: Overview of the HB-Phone system. An analog geophone is placed under a mattress. The raw geophone signal goes through
amplification and A/D conversion to generate a digital signal that is suitable for subsequent signal processing. A series of signal processing
methods will then be applied to detect heartbeats in the signal.

Fig. 3: The AC amplifier circuit design.

of a spring-mounted magnet that moves within a wire coil
to generate a voltage, which can thus measure the speed of
a movement at different frequencies. The use of a powerful
magnet and a differentially wound coil gives it low noise and
high sensitivity at frequencies 7Hz and above, while being less
sensitive to movements with lower frequencies. In our HB-
Phone prototype, we use the SM-24 Geophone Element [2],
whose natural frequency is at 10Hz.

The raw geophone signal is first filtered by a hardware
bandpass filter in the range from 0.25 to 10kHz, which is then
fed to a TI LMV358 amplifier circuit [7]. We have carefully
configured the amplifier circuit to ensure the HB-Phone is
robust against other types of body movements during sleep
(such as snoring, hand/arm swings, or leg kicks). For this
purpose, we first need to make sure signals caused by such
body movements stay within the range of the amplification
circuit output after amplification, i.e., 0-3V in our case; once

this range is reached, no information can be extracted from
the resulting geophone signal. That is, if we desire to extract
heartbeats in the presence of noise caused by body movements
(whose amplitude is usually much larger than that of heart-
beats), then the amplification should be kept sufficiently small
to avoid the above-mentioned situation. On the other hand, we
are limited by the ADC unit’s resolution, especially that of a
low-cost ADC unit: if the amplification is too small, then it is
hard to correctly detect heartbeats due to a combination of low
signal amplitude and low ADC resolution (i.e. quantization
error becomes dominant). In this study, our objective is to
maximize the amplitude of body movements that we can
handle in the system while still being able to detect heartbeats.
For this purpose, we configured the amplification circuit such
that the heartbeat signal’s amplitude falls within 0-200mV,
which is a range determined by the resolution of our ADC.
Given that the amplification circuit’s output range is 0-3V, we
leave 2.8V as the maximum amplitude for detectable body
movements, which is roughly 14 times of the amplitude of a
heartbeat motion.

Figure 3 shows the resulting double-stage amplification
circuit. Both the first-stage and second-stage amplifying circuit
have a RC bandpass filter in the range from 0.25Hz to 10kHz.
The gain of the first-stage amplifier is 10 so that we can reduce
some noise from the circuit itself. The maximum gain of the
second-stage amplifier circuit is 20 and the gain is adjustable
by tuning the adjustable resistor R7 shown in Figure 3. In total,
the maximum gain of this circuit is 200. The amplified signal
is based on 3.3V and quantized to 1024 levels (10 bits) using
an Arduino Duemilanove A/D converter [1]. The ADC output
signal is thus ready for subsequent signal processing and
heartbeat extraction. In the rest of this paper, we use the term
“geophone signal” to denote the signal after amplification and
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Fig. 4: The picture of our HB-Phone prototype, where the geophone
and the amplifier are glued to a wooden board that is inserted between
the memory foam mattress and bed frame.
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Fig. 5: In the ECG signal, each heartbeat pulse has a 0.1 second QRS
peak [4], which is caused by the ejection of blood from the ventricle.
This peak stores most of the energy during a heartbeat and causes
strong harmonics.

ADC.
In Figure 4, we show the picture of our prototype HB-

Phone system. We attached the geophone to a piece of wooden
lumber and insert the wood under a memory-foam mattress.
Lying down on the bed, the user does not feel the geophone
at all, and her sleep won’t be interfered in any way.

B. Unique Challenges of the HB-Phone System

HB-Phone is intended to detect heartbeats that propagate
through a mattress, which poses serious challenges to the
underlying system design. Below we explain the two major
challenges that we have faced in designing the system.

1) Insensitive to Heartbeats at the Fundamental Frequency:
A geophone is essentially a second-order high-pass filter,
which is sensitive to movements whose frequency is above
a certain threshold, referred to as Tfreq , while it is insensitive
to movements with frequencies lower than the threshold.

This can be explained as follows. As Figure 6 shows,
the geophone response increases quadratically with frequency
when the frequency varies within the range of 1-10Hz for
a given speed. For example, let us consider a movement at
1m/s, the geophone generates a voltage about 20V when the
frequency is at 10Hz, and a voltage of .2V when the frequency

Fig. 6: The response curve from the data sheet of Geophone SM-
24 [6] that we use in our prototype.
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Fig. 7: FFT results of a 30-second geophone signal when a subject,
with an average heartbeat rate of 76.86 bmp, lay still on the bed.
In the figure, we mark the heartbeat signal’s fundamental frequency
(with the number 1) and a few harmonic signals (2 means the
second harmonic frequency). In order to clearly show the harmonic
frequencies in this result, we adjusted the amplification circuit such
that the resulting heartbeat amplitude is close to 3V. In the rest of this
paper, our amplifier circuit output for heartbeats is kept at 200mV.

is 1Hz, resulting in a factor of 100 difference in the response
between these frequencies. Hence, the geophone itself works
as a high-pass filter, making it hard to detect responses to
low-frequency movements. In the response curve shown in
Figure 6, the value of Tfreq is 10Hz.

Figure 5 illustrates an ECG heartbeat pulse, in which the
QRS complex (caused by the ejection of blood from the
ventricle) stores most of the heartbeat energy and has a fre-
quency of 0.45 to 3.33Hz corresponding to the heartbeat rate
of 27 bpm and 200 bpm. In general, we would directly detect
vibrations caused by the QRS complex. However, considering
the reduced response from the geophone in this frequency
range and the noise from the environment, detecting heartbeat
signals in this way would be infeasible. Instead, we would
focus on the harmonics of the heartbeat signal as harmonics
are at higher frequencies and have much stronger geophone
responses.

Figure 7 shows the FFT results of a 30-second geophone
signal when a subject lay still on the prototype bed. On the
figure, we mark a few harmonic frequencies of the heartbeat
signal with their corresponding harmonic numbers; we use
number 1 to mark the fundamental frequency. Clearly, the
geophone’s response to the fundamental frequency is very
weak, and its response to the next few harmonics (within the
frequency range of 2-13Hz) is much stronger. In this study,
we then aim to detect heartbeats’ harmonic signals at these
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Fig. 8: (a) A 10-second geophone response signal. In this experiment,
the user was lying still on the experimental bed, without any
movement in the environment. (b) A 10-second geophone response
signal. In this experiment, the user was lying still on the experimental
bed, while a second user was walking around 1 meter away from the
bed.

frequencies.
Finally, we would like to point out that the geophone’s

response to respiration is much weaker than the response
to heartbeats because respiration has even lower fundamental
frequency. In this study, we focus on detecting heartbeats, and
have not observed noise caused by respiration. In our future
work, we will study how we can detect respiration activities
using the geophone.

2) Highly Sensitive to Noise Caused by Motion: The
geophone is very sensitive to motions if their frequency is
above the threshold Tfreq , which is also the very reason
why we choose this type of sensor in the first place. It
responds to tiny motions or vibrations in the environment
– when placed under a mattress, its response signal shows
fluctuation when someone walks in the room or someone
closes the door. Thus, we need to differentiate heartbeats from
other movements from the same user, movements from other
users, or movements/vibrations in the environment. Examples
include the subject’s body movements during sleep, snoring,
other people walking around while the subject is in sleep, fans
in the room, pets moving on the bed, etc. Since many of these
movements are more pronounced than heartbeats, detecting
heartbeats in their presence is particularly challenging.

Here, we use an example to illustrate the impact of move-
ments in the environment. Figure 8(a) shows a 10-second geo-
phone signal when a user was lying still on our experimental
bed. During the data collection period, we made sure that there
was no other movements near the bed. Next, we introduced

movements around the bed by having a second subject walk 1
meter from the bed (on a concrete floor). We show the resulting
geophone response in Figure 8(b), and mark the affected area
using the red circle. This example shows that the geophone is
very sensitive to noise in the environment, making heartbeat
detection a challenging task.

III. EXTRACTING HEARTBEATS FROM GEOPHONE
SIGNALS

Next, we partition the geophone signal into equal-length
windows (30 seconds in our case), and count how many
heartbeats in each window. Our signal processing algorithm
consists of the following steps: (1) applying a low-pass filter;
(2) calculating sample auto-correlation function (ACF), (3)
finding peaks in sample ACF data, and (4) detecting heartbeats.
We choose this method because (i) we observe that it is
possible to separate heartbeat signals from body movement
signals by filtering, and (ii) heartbeats exhibit strong periodic-
ity compared to most other body movements. Please note that
geophone is very insensitive to respiration – another common
periodic motion – due to its lower frequency.

A. FFT and Low-pass filtering

We first compute FFT on geophone signals from various
body movement patterns (we only focus on body movements
whose amplitude is at most 14 times of the heartbeat amplitude
in this study as explained in Section II) to find out whether
there is a clear separation between heartbeats and body move-
ments in the frequency domain.

We collected geophone signals when a subject performed
three different types of body movements while standing half
a meter from the bed. In this way, we can separate the signals
caused by heartbeats and those caused by body movements,
and only focus on geophone responses to body movements.
We show a few such FFT results in Figures 9(a)-(c). In these
results, we shifted the signal mean to zero to remove the
DC component. In Figure 9(a), we show the FFT results
when a subject tapped the mattress a single time during a
30-second window, representing impulse or one-time body
movements whose signal only shows a narrow peak in the
time domain. In Figure 9(b), we show the FFT results when
a subject tapped the mattress once a second for the entire
30-second window, representing long-term body motions that
last for many seconds or even minutes, whose signal will
show up in the entire signal window. In Figure 9(c), we show
the FFT results when a subject scratched the bed sheet for
a few seconds, representing body movements that last for a
relatively short period whose signal covers a portion of the
signal window.

The FFT results suggest that most geophone signals caused
by body movements have frequencies 6Hz and above, with a
sudden rise after 8Hz. Considering this, as well as the heartbeat
FFT results shown in Figure 7, we hypothesize that a low-pass
filter with a cutoff frequency between 6 and 10Hz would be
able to effectively separate heart beats and body movements.
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(b) Subject tapped the mattress once a second for 30 seconds
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(c) Subject rubbed bed sheet for a few seconds
Fig. 9: FFT results for geophone signals with different body move-
ment patterns. According to the results, the majority of frequency
components for different body movements are above 6Hz, and rise
significantly after 8Hz.

B. Calculating Sample ACF

Sample ACF [9] is often used to extract periodicity from
a time series. For this purpose, we need to shift the signal
mean to zero and square the voltage signal to produce a power
signal proportional to the instantaneous mechanical power in
the system.

Next, we calculate the sample ACF of the geophone signal
power. For a time series signal x(t), we have the following
normalized sample ACF:

f̄ ˆACF (h) =
f ˆACF (h)

f ˆACF (0)
0 ≤ h < n, (1)

where n is the number of sampling points, h is the time lag.
The Sample ACF function is defined as

f ˆACF (h) =
1

n

n−h∑
t=1

(xt+h − x)(xt − x) 0 ≤ h < n, (2)

with the sample mean

x =
1

n

n∑
t=1

xt. (3)

When the time lag is 0, the heartbeat power signal aligns
perfectly with itself and the autocorrelation reaches the max-
imum value. When the time lag starts to increase, the first
signal stays the same while the second signal shifts right. The
mismatch between two signals results in a decreased sample
ACF value. However, when we have the time lag equal to a
multiple of the heartbeat interval, heartbeat pulses in the first
signal match nicely with pulses in the second signal, yielding
a large sample ACF value. Thus, by detecting the peaks in the
sample ACF results, we can infer the periodicity of heartbeats.

C. Sample ACF Peak Finding and Measurement

In this study, we adopt the peak finding and measure
algorithm developed by Thomas C. O’Haver from University
of Maryland [5] to locate peaks in the sample ACF results.
Specifically, the algorithm detects the location and value of
peaks using the following steps:

1) We denote the first derivative of the sample ACF
f̄ ˆACF (t) as f̄ ′ ˆACF

(t). We have f̄ ′ ˆACF
(tp) = 0 at any

peak maximum with time lag tp and a downside going
trend.

2) To prevent finding peaks caused by noise, we smooth
the signal using two passes of multi-point triangular
smoothing with a proper window width.

3) We find peak maximums by checking whether the differ-
ence between the derivative of f̄ ′ ˆACF

(t) and f̄ ′ ˆACF
(t+1)

exceeds the pre-determined threshold. If it does, then the
peak lies in the vicinity of this location.

4) Since the smoothing step (step 2) could have distorted
the original signal, we need to go back to the original
signal and pick points that are near the peak location
identified in step 3. Then we apply Least Square Curve-
Fitting over these points to refine the peak location.

D. Extracting Heartbeats from Original Geophone Signals

Ideally, the number of peaks found from the sample ACF
results is equal to the number of heartbeats within the time
period. However, in practice, it is often the case that after the
first few peaks, the remaining peaks found using the above
algorithm may drift due to the quasi-periodic characteristic
of the heartbeat signal, leading to incorrect peak numbers
and locations. As an optimization technique, we only take
the first 20% of the peaks from the sample ACF results to
calculate average heartbeat interval. Suppose there are n peaks
that belong to the first 20% of the established peaks. Further
suppose the interval between the first peak and the n-th peak
is T , then the average heartbeat interval IHB is calculated as
T

n−1 . Based on the estimated IHB value, we can go back to the
original geophone signal and extract each individual heartbeat
as follows:
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1) We locate the geophone response to the first heartbeat3

in the range of [0, IHB ] by finding the maximum am-
plitude value. We use t1 to denote its time.

2) Assuming that we have already detected h heartbeats,
and that the h-th heartbeat occurs at th, then we intend
to search for the (h + 1)-th heartbeat within the time
range of [th + IHB

2 , th + 3IHB

2 ). We locate the (h+ 1)-
th heartbeat by finding the maximum amplitude value.
in this range.

3) We repeat step 2 until we find all the heartbeats.

IV. EVALUATION RESULTS

In this section, we describe our evaluation effort and present
detailed experimental results. In the first phase of evaluation,
we focused on testing HB-Phone’s heartbeat rate estimation
accuracy in a laboratory environment through controlled ex-
periments, and considered noise caused by different body
movements in the experiments. Our evaluation in this phase
involved 34 subjects, and collected over 400 minutes of
heartbeat signals. Then in the second phase, we investigated
how HB-Phone performs in real-world settings through long-
term field trials that involved 9 subjects for 25 nights. In total,
we collected over 181 hours of data in the second phase4.

In both phases, we obtained the ground-truth heartbeat
rates, H̄ , by running a similar signal processing method (as
described in Section III) on signals collected by a pulse
oximeter. Assuming the estimated heartbeat rate in the HB-
Phone system is H , then we report the estimation error rate
as |H − H̄|/H̄ .

A. Evaluation Phase I: Controlled Experiments

In the first phase of evaluation, we conducted a series of
controlled experiments in a laboratory environment emulating
a wide range of noise caused by human body movements that
are possible during sleep, and report the average estimation
accuracy of HB-Phone in these experiments.

Participants: We had a total of 34 healthy volunteer partici-
pants for this experiment, including a total of 26 males and 8
females. The mean age of the participants was 28.0 years with
a standard deviation of 7.7 years. The youngest participant was
22 years old while the eldest was 65 years old.

Experiment Procedure: The controlled experiments in the
first phase aimed to study the accuracy of HB-Phone by
comparing the estimated heartbeat rate against the ground truth
– the heartbeat rate measured by a pulse oximeter.

During the experiments, all participants were asked to lie
on the prototype bed in our lab for the duration of a trial (30
seconds), during which we recorded the geophone signal and
transported the data to a PC for subsequent signal processing.
Meanwhile, we placed a pulse oximeter on the participant’s
index finger, whose data is transferred to a PC in real time
for subsequent processing. We then obtained the number of

3Here, we do not distinguish a heartbeat and the geophone’s response to
this heartbeat.

4Our studies were approved by the Institutional Review Board (IRB) of our
institution.
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Fig. 10: Average error rates in the following heartbeat rate ranges:
[50, 60), [60, 70), [70, 80), [80, 90), [90, 100), [100, 110]. The
average error rate across all the ranges is 1.30%. The subjects were
lying still on bed in these experiments.

heartbeats in both signals, and calculated the error rate for
each trial. Each participant went through multiple trials, and
we had more than 800 trials in total.

Here, we emulated two groups of scenarios; in the first
group, the subjects were asked to lie still on bed, and in
the second group, the subjects were asked to perform body
movements with varying durations while lying on bed. The
participants were engaged in different activities before the
trails. For example, some subjects just finished running before
a trial; some subjects fell asleep during the trial (and some-
times these subjects just ran before the trial). Hence, subjects’
heartbeat rates varied considerably across all trials.

In addition, we note that our prototype bed is located in a
very noisy university lab. There are more than four hundred
computers in the same room, which were on and off during
our experiments. The bed is close to the entrance to the
room, and often people were walking in/out of the lab during
experiments. Our results show that the HB-Phone prototype is
resistant against the noise.

When the Subject Has No Body Movements: In the first
group of experiments, the subjects did not make any body
movements during a trial. As a result, the geophone signal
was dominated by geophone responses to heartbeats.

Despite the environmental noise, HB-Phone delivers very
accurate results in this scenario. We report the average error
rate of HB-Phone over 502 samples/trials in Figure 10. These
data were collected over a period of 7 months, covering
different environmental noise in the laboratory. Here, we group
the samples into 6 groups, based upon the heartbeat rate
reported by the pulse oximeter, namely, [50, 60), [60, 70),
[70, 80), [80, 90), [90, 100), [100, 110]. Then we report the
average error rate of each group. The total average rate across
all 502 samples is 1.30%. In this scenario, the cutoff frequency
value for the low pass filter does not have a noticeable impact
on the average estimation accuracy; any value above 6Hz
yields a comparable performance. These results demonstrate
that geophones are able to detect heartbeats through a mattress.

When the Subject Has Body Movements: It becomes much
more challenging to accurately extract heartbeats while the
subject has body movements while lying on bed because their
signals overlap with heartbeat signals in the frequency domain
and their amplitude is usually much larger. In HB-Phone, we
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Fig. 11: The average estimation error rate with different cut off
frequency values for the low-pass filter. Results show that a frequency
value around 8Hz gives the best results, which also agrees with the
observation in Figure 9.

carefully design the low-pass filter to minimize the impact
of body movements on the geophone signal, as discussed in
Section III-A. Our results show that while challenging, HB-
Phone is able to detect heartbeats with an average error rate
around 3.87%.

In order to separate geophone responses caused by heart-
beats and those caused by body movements, our signal pro-
cessing method takes the following two measures: (1) applying
a low pass filter to filter out frequency components above
a certain threshold (since we observe that there are several
heartbeat harmonic frequencies that are lower than body
movement signals), and (2) finding the periodicity within the
signal (since heartbeats have stronger periodicity than other
movements). As a result, the cutoff frequency’s value is the
key to HB-Phone’s estimation accuracy. We varied the cutoff
frequency from 4.5 to 16Hz and reported the resulting average
estimation error rate in Figure 11. We find that when the cutoff
frequency is around 8.4Hz, HB-Phonehas the best estimation
accuracy, with an average estimation error rate of 3.87%. This
also agrees with our observation in Section III-A from the FFT
results shown in Figure 9 – the majority of body movements’
frequency components have a sudden rise around 8Hz.

As in Section III-A, we categorize usual body movements
into the following three groups: (i) impulse movements that
include one-time movements; (ii) movements that last for
seconds or even minutes, thus longer than an experiment
window (30 seconds); and (iii) movements that last for a few
seconds, thus occupying a portion of an experiment window.
Fixing the cutoff frequency at 8.4Hz, we show the detailed
estimation error rate for the three types of body movement
patterns in Table I. We find that the average error rate is
the highest for long-duration movements, and the lowest for
impulse motions.

Impulse
Motion

Long
Motion

Short
Motion Overall

Error Rate (%) 3.34 4.07 3.89 3.87

TABLE I: The average error rate for three types of body movement
patterns. The error rate is the highest for long periods of movements
and lowest for impulse motions.

(a) (b)
Fig. 12: Our deployment setting. (a) The HB-Phone prototype was
easily installed on the bed. A video camera was used to collect
ground-truth data for the subjects’ movements. (b) A pulse oximeter
was used to collect ground-truth data for the subjects’ heartbeat rate.

B. Evaluation Phase II: Long-Term At-Home Deployment for
Heartbeat Monitoring During Sleep

In the second phase of evaluation, we deployed the HB-
Phone system in 9 subject’s homes for a total of 25 nights.
We also deployed a pulse oximeter and a video camera to
obtain ground truth for heartbeat rates and body movements5.
In total, we collected 181.1 hours’ data. Our results show that
HB-Phone is easy to use and robust against many different
types of events that occurred during sleep.

Participants: We had a total of 9 volunteer participants for
these experiments, including a total of 8 males and 1 female.
The mean age of the participants was 26.3 years with a
standard deviation of 3.9 years. The youngest participant was
22 years old while the eldest was 34 years old.

Experiment Procedure: Table II summarizes the 9 subjects’
house, floor, and bed information, among whom 7 subjects
had experiments for multiple nights, and 2 subjects had
experiments for a single night each. In total, we conducted
experiments for 25 nights.

For each experiment, we arrived at the subjects’ home 30-
60 minutes before their bed time and it took about 20 minutes
to install a HB-Phone prototype, a pulse oximeter, and a video
camera. Among these three devices, the latter two usually took
more time to install – we had to make sure the pulse oximeter
was secured on the subject’s index finger, and the video camera
could capture the view of an entire bed. The actual installation
of the HB-Phone hardware was very straightforward; we just
inserted the wood board (to which the geophone and amplifier
are attached) between the bed frame and the mattress.

Right before the subject turned off lights, we turned on
the system and started with a simple synchronization process:
the subject uses the hand that has the pulse oximeter on
to tap the mattress 20 times. We could capture this motion
from all three devices, thus synchronizing their data. During
our experiments, all participants slept through the night until
the next morning. Upon waking up, they turned off all three
devices. All the data collected were transferred to a PC for
offline processing.

The average system “on” time per night was 7.2 hours.
When processing the data, we removed the first few minutes
data as well as the last few minutes data.

5We obtained the consent from all the participants before deployment.
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Fig. 13: The average estimation error rate with different cut off
frequency values for the low-pass filter for the 25 nights’ deployment
data. The error rate drops significantly when the cutoff frequency is
above 6Hz. In this study, we choose the cutoff frequency of 9.8Hz
which gives us an error rate of 8.25%.

Cutoff Frequency for the Low-Pass Filter: In real-world
deployment, the cutoff frequency value plays a very important
role in determining the overall performance of HB-Phone. We
first report the average estimation error rate with different
cutoff frequency values in Figure 13. The results show that
when the cutoff frequency is above 6Hz, the average error
rate decreases significantly, which agrees with the observation
presented in Figure 9. In the rest of this study, we choose the
cutoff frequency value of 9.8Hz, which leads to an average
error rate of 8.25%.

Heartbeat Rate Estimation Accuracy: Next we discuss the
details involved in processing the long-term deployment data.
We have collected data for a total of 25 nights. For each night,
we partition the data sets into 30-second windows, and apply
our signal processing algorithm to each window to count the
number of heartbeats contained in that window. We compare
this number against the number calculated from the pulse
oximeter data, and compute the error rate in each window.
The detailed results are summarized in Table III. We note that
there are windows during which we were unable to detect
heartbeats, and thus we categorize each window into one of
the following four groups:

• Ground Truth Missing. On average, for 13.83% of the

Subject House Floor Bed Bed Frame Mattress
Type Type Size /Box

S1 Condo Thick carpet Queen Hardwood Thin
mini over wood box sheet

S2 Condo Thick carpet Queen Hardwood Thin
mini over wood box sheet

S3 Single Thin carpet Queen Hardwood Spring
family over wood box mattress

S4 Apt Thin carpet Queen Hardwood Spring
over concrete box mattress

S5 Single Thin carpet Queen Steel Spring
family over wood platform mattress

S6 Single Thin carpet Queen Box spring Memory
family over concrete foam

S7 Condo Thick carpet Queen Hardwood Thin
mini over wood box sheet

S8 Dorm Wood Twin Hardwood Futon
frame

S9 Apt Thin carpet Full Steel Memory
over concrete platform foam

TABLE II: We have deployed HB-Phone in 9 subject’s homes.
This table summarizes the house type and bed information of these
deployments.

total number of windows, the pulse oximeter data was
missing. We checked the video data during these windows
and found out that the missing ground truth happened
when the finger that had the pulse oximeter on moved. For
these windows, we did not attempt to extract heartbeats
from the geophone signal.

• Amplifier Range Exceeded. On average, for 5.22% of the
total number of windows, the geophone signal amplitude
reached the amplifier range (3.0V in our case) and no
useful information could be extracted from these signals.
We checked the video data and found out that during
these windows, the subject had large body movements;
for example, we observed turning, and leg/arm twitches.
For these windows, we did not attempt to extract heart-
beats from the geophone signal.

• Heartbeats Undetectable. On average, for 2.87% of the
total number of windows, our signal processing algorithm
failed to detect heartbeats – the number of detected heart-
beats was either too small or too large to be reasonable.
We checked the video data and found that there were
usually moderate movements during these windows, such
as rubbing the face, changing the lying position, moving
the arm position, etc.
To identify those windows that fall into this group, we
searched all the ground truth results, and found the
minimum heartbeat rate value (rmin = 41.6bmp) and
maximum heartbeat rate value (rmax = 91.4bmp). Then
assuming a 20% estimation error rate, we set the normal
heartbeat rate range as [.8×rmin, 1.2×rmax] = [33, 109].
If the calculated heartbeat rate from our signal processing
algorithm is outside of this range, we declare heartbeats
are undetected during this window.

• Heartbeats Detected. On average, for 78.08% of the
windows, we were able to detect heartbeats and compare
the results from HB-Phone against the ground truth. The
overall estimation error rate is 8.25%.
We further broke down these windows into the following
two groups: (1) windows without motions, and (2) win-
dows with motions. Specifically, we look at the geophone
signal during each window; if the difference between the
maximum and minimum voltages in a window is less
than 200mV, then we categorize this window as without
motions (it could still contain minor motions such as
finger movements). By looking at the data collected in 25
nights with an average error rate of 8.25%, we find that
45.70% of the windows are no-motion windows, which
have an average error rate of 5.23% , while 54.30% of
the windows have motions and their average error rate is
10.28%.

Motions During Sleep: Finally, we take the geophone signal
collected in the night of Sep. 30, 2015 (which has the lowest
average error rate, 3.05%), and plot the error rate in every
30-second window in Figure 14. In the figure, we mark the 9
windows whose error rates are above 15%, and figure out the
movements in these windows by looking at the video data.

In the first marked window, the subject stretched his leg
and then scratched the face with his right hand. In the
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% of windows % of windows % of windows % of windows Average
Subject ground truth amplifier range heartbeats heartbeats error rate

missing exceeded undetectable detected (%)
S1 5.87 6.73 2.58 84.82 14.08
S2 9.86 3.14 1.94 85.06 6.64
S3 28.16 6.22 3.62 62.00 13.53
S4 19.34 6.97 3.48 70.21 8.43
S5 10.18 0.60 1.20 88.02 3.05
S6 12.93 0.49 2.20 84.38 5.31
S7 10.18 4.38 2.19 83.25 5.41
S8 23.66 1.10 4.88 70.36 7.22
S9 8.69 0.36 0.84 90.11 4.45

Overall
(25 nights) 13.83 5.22 2.87 78.08 8.25

TABLE III: We deployed the HB-Phone prototype in 9 subjects’ homes. For each subject’s data, we report the percentage of windows (30
seconds) during which the ground truth data was missing (Pm), the percentage of windows during which the amplification maximum range
was reached (Pr), and the percentage of windows during which our signal processing algorithm failed to detect heartbeats (Pf ). Then the
percentage of windows during which we detected heartbeats is calculated as 1− (Pm +Pr +Pf ). For these windows, we report the average
estimation error rate. On average, we could detect heartbeats for 78.08% of the windows, with an average error rate of 8.25%. The results
strongly suggest that HB-Phone provides a compelling solution for heartbeat monitoring during sleep.
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Fig. 14: In this figure, we calculate the error rate every 30 seconds
for 7.3 hours on the night of Sep. 30, 2015 from 11:57 PM to 7:16
AM. Here, we mark 9 events on the figure whose error rate is above
15%.

second marked window, the subject’s chest twitched. In the
third marked window, the subject scratched his chest. In the
fourth marked window, the subject scratched his face and
then placed the hand back to the chest. In the fifth marked
window, the subject scratched his face and then changed his
facing direction. In the sixth and seventh marked windows, the
subject scratched his nose. In the eighth window, the subject
had an twitch in his left arm and then moved his left hand. In
the ninth marked window, the subject scratched his face and
placed the hand back to the chest. Then, he stretched his leg.

We note that these windows had high error rates mainly
because the subject had a combination of multiple body
movements – each single movement alone usually could be
effectively filtered out by HB-Phone as observed in other
windows. In our ongoing research, we will continue to improve
the effectiveness of HB-Phone and lower the overall error
rates.

V. RELATED WORK

A. Overview of Existing Bed-Mounted Heartbeat Sensors

Quite a few bed-mounted heartbeat sensing systems have
been developed. We can broadly categorize existing bed-
mounted heartbeat monitoring sensors into the following cat-
egories (based upon the sensor modality): air/water pressure
sensors, e.g., those in [30], [14], [28], [26], [19], [18], [17],
or piezoelectric sensor [13], [29], [23]; force sensors, e.g.,
those in [16], [12], [10]; optical sensor, e.g., those in [11];

radar sensor, i.e., those in [15]; ultrasound sensors, e.g., those
in [31], and foil pressure sensor, e.g., those in [21], [8].

We note that, among these systems, few satisfies the fol-
lowing requirements – i.e., accuracy, low cost and ease to use
– at the same time.

Sensors that Require Special Mattress/Cushion: Some
systems require specialized mattresses to monitor heartbeats,
which is cumbersome and may curb their wide adoption. For
example, Watanabe et al. [30] proposed to use a pneumatic
system that consists of an air cushion, a pressure sensor, and
electric filters for heartbeat monitoring. The air cushion is
placed under the mattress, and the sensor detects the change
of pressure due to human vital functions. Similarly, the air
mattress sensor system proposed in [14] requires an air-cell
mattress. By measuring the air pressure difference between
two air cells during heartbeats, the system can monitor a user’s
heartbeats. In [28], Tanaka et al. proposed to place a phono-
cardiographic sensor on the edge of a water-mat. The sensor
detects the acceleration of vibration caused by heartbeats.
Kortelainen et al. [21] proposed to measure heartbeat intervals
using a foil pressure sensor (piezoelectric or ferroelectric)
with electronic casing boxes placed inside of the mattress.
Hansen et al. [20] proposed to build a mattress embedded
with a sensitive motion detector. The sensor has two sheets of
different dielectric constants which generate an electric charge
while rubbing against each other, where the charge is picked
up by a capacitor-like antenna. Heartbeats are thus detected
by observing the charge variation.

Sensors that Require Special Handling of Bedding: Some
systems need to place sensors (usually film sensors) in specific
locations (usually near the heart) under the sheet, which entails
a great deal of manual overhead as it requires adjustment
every time when the user changes sleeping position/pose, or
changes the sheet. For example, Bu et al. [13] proposed to use
a piezoelectric film sensor under one’s back, near the heart.
The sensor measures pressure fluctuation due to heartbeats.
Wang et al. [29] proposed to use a polyvinylidene fluoride
piezopolymer film sensor in the thorax area under the sheet.
The sensor picks up pressure fluctuation on the bed caused by
the heartbeats. In [8], a foil pressure sensor is placed in the
thorax region under a thin mattress. Then a specially designed
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mattress is placed on top of the existing mattress and bed
frame. Similarly, Zhu et al. [32] proposed to place two pressure
sensors under a pillow, assuming that the user will always use
the pillow during sleep.

Some systems assume users always sleep on the same spot.
Mack et al. [22] proposed to place two pressure pads on
the bed surface assuming the user always sleeps in the same
location. Bruser et al. [11] proposed to monitor heartbeats by
placing four optical ballistocardiography (BCG) sensors in a
diamond configuration in the thorax area underneath a regular
bed mattress. The sensor generates light and measures the
intensity of light which is reflected or scattered back from
the mattress. Bruser et al. [12] proposed to place a slat of four
strain gauges under the thorax area in the bed slatted frame.
Rosales et al. [26] proposed to use four water transducers that
are placed vertically between mattress and bed frame, close to
the subject’s back area.
Custom-Built Sensors: Some systems require custom-built
sensors. Heise et al. [18] proposed to use a hydraulic bed
sensor that consists of a self-built hydraulic transducer and
an integrated pressure sensor. Choi and Kim [15] proposed to
build RF circuits to capture human heartbeats. The transmitter
continuously emits a sinusoidal signal and the receiver cap-
tures the signal reflected from human body. Heartbeats and
respiration are captured by detecting the phase shift between
the original signal and the reflected signal.
Costly Commercially Off-the-Shelf (COTS) Sensors: Some
systems use expensive COTS sensors. For example, sensitive
load-cell sensors placed underneath bed legs can measure the
vibration of heartbeats as discussed in [16]. Nukaya et al. [23]
proposed to use a piezoceramic system to detect heartbeats.
The sensor is bonded to the stainless steel plate sandwiched
between floor and bed legs.
Sensors That are Hard to Install: Some systems require
a considerable amount of manual installation effort. For ex-
ample, Yamana et al. [31] proposed a system that has a 40-
kHz ultrasound transmitter and receiver pair, a plywood board,
aluminum support under the board, and aluminum guide rail
on the bed surface. The wood board and aluminum guide rail
are used to hold transmitter and receiver in place while the
aluminum support is used to prevent the board from bending.
The ultrasound signal is transmitted toward the head side,
and the receiver obtains the ultrasound reflected at the below-
surface of the mattress.

B. Overview of Signal Processing for Heartbeat Detection

One of the main challenges faced by many heartbeat sensors
is to differentiate heartbeats from respiration. Most of studies
address this challenge through the fact that these two activities
have very different frequencies. Below we summarize popular
signal processing methods for heartbeat detection:
• Filtering. In [28], bandpass filters are applied to differen-

tiate these two. In [18], a low pass filter and windowed
peak-to-peak deviation is computed for heartbeat detec-
tion. In [11], highpass and lowpass filters are applied
and continuous local interval estimation algorithm is used
to extract the beat-to-beat intervals. In [31], envelope

detector and bandpass filter are applied for different
detection purposes.

• Decomposition. In [13], Empirical Mode Decomposition
(EMD) is applied to the signal, and respiration and
heartbeat waves are reconstructed by summing up waves
from EMD at different frequency ranges. In [29], wavelet
multi-resolution decomposition analysis is used for the
detection of respiration and heartbeats.

• Peak Finding Algorithm. In [15], the peak finding with
power spectral density is utilized to extract heartbeats.
In [10], the signal is first low-pass filtered, and then
heartbeats and respiration are detected by a peak finding
algorithm within a moving window.

• Machine Learning. In [12], an unsupervised learning
technique with three indicators (cross correlation, eu-
clidean distance, HV signal) is used to extract the shape
of a single heart beat from the recorded signal. In [26], a
k-means clustering method is used to extract heartbeats
from the input signal.

• Discrete Fourier Transform Analysis. In [21], sliding
Discrete Fourier Transform is applied on heartbeat signal
and principal component analysis on respiration signal.

The problem we face in this study is more challenging
than merely differentiating heartbeats and respiration. Firstly,
geophone is insensitive to low-frequency movements such
as respiration. Secondly, in this study, we seek to extract
heartbeats in the presence of other types of body movements,
which are often within the same frequency range as heartbeats.
Finally, in addition to controlled experiments within the labo-
ratory environment, we also installed our system in 9 subjects’
homes and measured their heartbeats for 25 nights.

VI. CONCLUDING REMARKS AND FUTURE DIRECTION

In this paper, we have developed HB-Phone, a bed-mounted
heartbeat monitoring system that uses a geophone sensor to
capture and extract heartbeats during sleep. The geophone is
highly sensitive to movements whose frequency is above a
certain threshold, while insensitive to lower-frequency motions
such as respiration. This characteristic lends itself to heartbeat
detection since each heartbeat pulse contains a high-frequency
component that can generate harmonic frequencies that geo-
phones can easily detect. Compared to other existing solutions,
HB-Phone uses affordable off-the-shelf hardware, making it is
very easy to deploy with an individual’s existing bed, while
also providing accurate and robust heartbeat detection.

We have built a HB-Phone prototype and conducted exten-
sive experiments that involved 43 subjects. We compared the
heartbeat rate estimated by our prototype with that reported by
a pulse oximeter. From a sample of 34 subjects, we collected
502 30-second heartbeat data during a time when the subject
was lying still, and found that the average estimation error rate
was 1.30%. We also collected 301 30-second heartbeat data
from a time when the subject was lying on bed and making a
variety of different movements. During this scenario, we found
that the average estimation error rate was 3.87%. We have also
installed our prototype in the homes of 9 different subjects for
a period of 25 nights, and found that HB-Phone can detect
heartbeats with an average error rate of 8.25%. These results
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demonstrate that HB-Phone provides a viable solution to at-
home heartbeat monitoring during sleep. In particular, this
study provides the first, strong evidence that geophones can
be used as a low-cost solution for at-home sleep monitoring.
Looking forward, there are several challenges that remain
before such a technology can be deployed as a long-running
solution to sleep monitoring. Notably, our future work will
focus on developing detailed signal processing algorithms that
focus on detecting and classifying the heartbeat shape and
other detailed information about heartbeats.
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