
XSLT

2

What is XSL?
•  XSL stands for Extensible Stylesheet Language
•  CSS was designed for styling HTML pages, and can be used to

style XML pages
•  XSL was designed specifically to style XML pages, and is

much more sophisticated than CSS
•  XSL consists of three languages:

–  XSLT (XSL Transformations) is a language used to transform XML
documents into other kinds of documents (most commonly HTML, so
they can be displayed)

–  XPath is a language to select parts of an XML document to transform
with XSLT

–  XSL-FO (XSL Formatting Objects) is a replacement for CSS

XSLT
•  XSLT stands for Extensible Stylesheet Language

Transformations
•  XSLT is used to transform XML documents into

other kinds of documents--usually, but not
necessarily, XHTML

•  XSLT uses two input files:
–  The XML document containing the actual data
–  The XSL document containing both the “framework”

in which to insert the data, and XSLT commands to do
so

4

How does it work?
•  The XML source document is parsed into an XML

source tree
•  You use XPath to define templates that match

parts of the source tree
•  You use XSLT to transform the matched part and

put the transformed information into the result tree
•  The result tree is output as a result document
•  Parts of the source document that are not matched

by a template are typically copied unchanged

Very simple example
•  File data.xml:

   <?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="render.xsl"?>
<message>Howdy!</message>

•  File render.xsl:
   <?xml version="1.0"?>

<xsl:stylesheet version="1.0”
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!-- one rule, to transform the input root (/) -->
 <xsl:template match="/">
 <html><body>

 <h1><xsl:value-of select="message"/></h1>
 </body></html>

 </xsl:template>
</xsl:stylesheet>

The .xsl file
•  An XSLT document has the .xsl extension
•  The XSLT document begins with:

   <?xml version="1.0"?>
   <xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/
 XSL/Transform">

•  Contains one or more templates, such as:
   <xsl:template match="/"> ... </xsl:template>

•  And ends with:
   </xsl:stylesheet>

Finding the message text
•  The template <xsl:template match="/"> says to

select the entire file
–  You can think of this as selecting the root node of the

XML tree

•  Inside this template,
–  <xsl:value-of select="message"/> selects the

message child
–  Alternative Xpath expressions that would also work:

•  ./message
•  /message/text() (text() is an XPath function)
•  ./message/text()

Putting it together
•  The XSL was:

 <xsl:template match="/">
 <html><body>

 <h1><xsl:value-of select="message"/></h1>
 </body></html>

 </xsl:template>

•  The <xsl:template match="/"> chooses the root
•  The <html><body> <h1> is written to the output file
•  The contents of message is written to the output file
•  The </h1> </body></html> is written to the output file

•  The resultant file looks like:

 <html><body>
 <h1>Howdy!</h1>
 </body></html>

How XSLT works
•  The XML text document is read in and stored as a

tree of nodes
•  The <xsl:template match="/"> template is used

to select the entire tree
•  The rules within the template are applied to the

matching nodes, thus changing the structure of the
XML tree
–  If there are other templates, they must be called

explicitly from the main template
•  Unmatched parts of the XML tree are not changed
•  After the template is applied, the tree is written out

again as a text document

Where XSLT can be used
•  With an appropriate program, such as Xerces,

XSLT can be used to read and write files
•  A server can use XSLT to change XML files into

HTML files before sending them to the client
•  A modern browser can use XSLT to change XML

into HTML on the client side
–  This is what we will mostly be doing in this class

•  Most users seldom update their browsers
–  If you want “everyone” to see your pages, do any XSL

processing on the server side
–  Otherwise, think about what best fits your situation

xsl:value-of
•  <xsl:value-of select="XPath expression"/>

selects the contents of an element and adds it to
the output stream
–  The select attribute is required
–  Notice that xsl:value-of is not a container, hence it

needs to end with a slash

•  Example (from an earlier slide):
   <h1> <xsl:value-of select="message"/> </h1>

xsl:value-of
<xsl:value-of select="XPath expression"/>

Remarks: The <xsl:value-of> element inserts a text
string representing the value of the first element (in
document order) specified by the select attribute.

If the XPath expression returns more than a single
node, the <xsl:value-of> element returns the text of
the first node returned.

If the node returned is an element with substructure,
<xsl:value-of> returns the concatenated text nodes of
that element's subtree with the markup removed (like
the data() function).

xsl:for-each
•  xsl:for-each is a kind of loop statement
•  The syntax is

 <xsl:for-each select="XPath expression">
 Text to insert and rules to apply
 </xsl:for-each>

•  Example: to select every book (//book) and make an
unordered list () of their titles (title), use:

 <xsl:for-each select="//book">
 <xsl:value-of select="title"/>
 </xsl:for-each>

Filtering output

•  You can filter (restrict) output by adding a criterion
to the select attribute’s value:

 <xsl:for-each select="//book">

 <xsl:value-of
 select="title[../author='Terry Pratchett']"/>

 </xsl:for-each>

•  This will select book titles by Terry Pratchett

Filter details

•  Here is the filter we just used:
 <xsl:value-of
 select="title[../author='Terry Pratchett’]"/>

•  author is a sibling of title, so from title we have to
go up to its parent, book, then back down to author

•  This filter requires a quote within a quote, so we need
both single quotes and double quotes

•  Legal filter operators are:
 = != < >
–  Numbers should be quoted, but apparently don’t have to be

But it doesn’t work right!
•  Here’s what we did:

 <xsl:for-each select="//book">

 <xsl:value-of
 select="title[../author='Terry Pratchett']"/>

 </xsl:for-each>

•  This will output and for every book, so we will
get empty bullets for authors other than Terry Pratchett

•  There is no obvious way to solve this with just xsl:value-
of

xsl:if

•  xsl:if allows us to include content if a given
condition (in the test attribute) is true

•  Example:
 <xsl:for-each select="//book">
 <xsl:if test="author='Terry Pratchett'">

 <xsl:value-of select="title"/>

 </xsl:if>
 </xsl:for-each>

•  This does work correctly!

xsl:choose
•  The xsl:choose ... xsl:when ... xsl:otherwise

construct is XML’s equivalent of Java’s
switch ... case ... default statement

•  The syntax is:
<xsl:choose>
 <xsl:when test="some condition">
 ... some code ...
 </xsl:when>
 <xsl:otherwise>
 ... some code ...
 </xsl:otherwise>
</xsl:choose>

• xsl:choose is often
 used within an
 xsl:for-each loop

xsl:sort
•  You can place an xsl:sort inside an xsl:for-each
•  The attribute of the sort tells what field to sort on
•  Example:

 <xsl:for-each select="//book">
 <xsl:sort select="author"/>
 <xsl:value-of select="title"/> by
 <xsl:value-of select="author">
 </xsl:for-each>

–  This example creates a list of titles and authors, sorted

by author

xsl:text

•  <xsl:text>...</xsl:text> helps deal with two
common problems:
–  XSL isn’t very careful with whitespace in the

document
•  This doesn’t matter much for HTML, which collapses all

whitespace anyway (though the HTML source may look ugly)
•  <xsl:text> gives you much better control over whitespace; it

acts like the <pre> element in HTML

–  Since XML defines only five entities, you cannot
readily put other entities (such as) in your XSL

•  &nbsp; almost works, but is visible on the page
•  Here’s the secret formula for entities:

<xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>

21

Using XSL to create HTML
•  Our goal is to turn this:
   <?xml version="1.0"?>

<library>
 <book>
 <title>XML</title>
 <author>Gregory Brill</author>
 </book>
 <book>
 <title>Java and XML</title>
 <author>Brett McLaughlin</author>
 </book>
</library >

•  Into HTML that displays
something like this:

   Book Titles:
 • XML
 • Java and XML
Book Authors:
 • Gregory Brill
 • Brett McLaughlin

§  Note that we’ve
grouped titles and
authors separately

22

Desired HTML
   <html>

 <head>
 <title>Book Titles and Authors</title>
 </head>
 <body>
 <h2>Book titles:</h2>

 XML
 Java and XML

 <h2>Book authors:</h2>

 Gregory Brill
 Brett McLaughlin

 </body>
</html>

Red text is data extracted
from the XML document	

White text is our
HTML template	

We don’t necessarily
know how much data
we will have	

23

All of books.xsl

   <?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/
 XSL/Transform">
<xsl:template match="/">
<html>
 <head>
 <title>Book Titles and Authors</title>
 </head>
 <body>
 <h2>Book titles:</h2>

 <xsl:for-each select="//book">

 <xsl:value-of select="title"/>

 </xsl:for-each>

 <h2>Book authors:</h2>

 <xsl:for-each
 select="//book">

 <xsl:value-of
 select="author"/>

 </xsl:for-each>

 </body>
</html>
</xsl:template>
</xsl:stylesheet>

24

XQuery + HTML

   <html>
 <head>
 <title>Book Titles and Authors</title>
 </head>
 <body>
 <h2>Book titles:</h2>

   {
   for $x in doc("books.xml")/library/

book/title
   return {data($x)}

   }

  

 <h2>Book authors:</h2>

{

 for $x in doc("books.xml")/
library/book/author

 return {data($x)}
 }

 </body>
</html>

Creating tags from XML data
•  Suppose the XML contains

<name>Dr. AAA's Home Page</name>
<url>http://www.ece.rutgers.edu/~aaa</url>

•  And you want to turn this into

Dr. AAA's Home Page

•  We need additional tools to do this
–  It doesn’t even help if the XML directly contains

Dr. AAA's Home Page -- we still can’t move it to the
output

–  The same problem occurs with images in the XML

Creating tags--solution 1
•  Suppose the XML contains

 <name>Dr. AAA's Home Page</name>
 <url>http://www.ece.rutgers.edu/~aaa</url>

•  <xsl:attribute name="..."> adds the named attribute to the
enclosing tag

•  The value of the attribute is the content of this tag
•  Example:

   <a>
 <xsl:attribute name="href">
 <xsl:value-of select="url"/>
 </xsl:attribute>
 <xsl:value-of select="name"/>

•  Result:
 Dr. AAA's Home Page

Creating tags--solution 2
•  Suppose the XML contains

 <name>Dr. AAA's Home Page</name>
 <url>http://www.ece.rutgers.edu/~aaa</url>

•  An attribute value template (AVT) consists of braces { }
inside the attribute value

•  The content of the braces is replaced by its value
•  Example:

  
 <xsl:value-of select="name"/>

•  Result:
 Dr. AAA's Home Page

Modularization
•  Modularization--breaking up a complex program

into simpler parts--is an important programming
tool
–  In programming languages modularization is often

done with functions or methods
–  In XSL we can do something similar with

xsl:apply-templates
•  For example, suppose we have a DTD for book

with parts titlePage, tableOfContents, chapter,
and index
–  We can create separate templates for each of these parts

Book example
•  <xsl:template match="/">

 <html> <body>
 <xsl:apply-templates/>
 </body> </html>
</xsl:template>

•  <xsl:template match="tableOfContents">
 <h1>Table of Contents</h1>
 <xsl:apply-templates select="chapterNumber"/>
 <xsl:apply-templates select="chapterName"/>
 <xsl:apply-templates select="pageNumber"/>
</xsl:template>

•  Etc.

xsl:apply-templates
•  The <xsl:apply-templates> element applies a

template rule to the current element or to the
current element’s child nodes

•  If we add a select attribute, it applies the template
rule only to the child that matches

•  If we have multiple <xsl:apply-templates>
elements with select attributes, the child nodes
are processed in the same order as the <xsl:apply-
templates> elements

When templates are ignored
•  Templates aren’t used unless they are applied

–  Exception: Processing always starts with select="/"
–  If it didn’t, nothing would ever happen

•  If your templates are ignored, you probably forgot
to apply them

•  If you apply a template to an element that has
child elements, templates are not automatically
applied to those child elements

Applying templates to children
•  <book>

 <title>XML</title>
 <author>Gregory Brill</author>
 </book>

•  <xsl:template match="/">
 <html> <head></head> <body>
 <xsl:value-of select="/book/title"/>
 <xsl:apply-templates select="/book/author"/>
 </body> </html>
</xsl:template>

<xsl:template match="/book/author">
 by <i><xsl:value-of select="."/></i>
</xsl:template>

With this line:
XML by Gregory Brill

Without this line:
XML

Calling named templates
•  You can name a template, then call it, similar to the way you

would call a method in Java
•  The named template:

 <xsl:template name="myTemplateName">
 ...body of template...
 </xsl:template>

•  A call to the template:
 <xsl:call-template name="myTemplateName"/>

•  Or:
 <xsl:call-template name="myTemplateName">
 ...parameters...
 </xsl:call-template>

Templates with parameters
•  Parameters, if present, are included in the content of

xsl:template, but are the only content of xsl:call-
template

•  Example call:
<xsl:call-template name="doOneType">
 <xsl:with-param name="header" select="'Lectures'"/>
 <xsl:with-param name="nodes" select="//lecture"/>
</xsl:call-template>

•  Example template:
<xsl:template name="doOneType">
 <xsl:param name="header"/>
 <xsl:param name="nodes"/>
 ...body of template...
</xsl:template>

•  Parameters are matched up by name, not by position

Single quotes inside double
quotes make this a string

This parameter is a
typical XPath expression

