
Part II: Document Type Definition

Imposing structure on XML documents

Document Type Descriptors

•  Document Type Descriptors (DTDs) impose
structure on an XML document.

•  There is some relationship between a DTD and a
schema, but it is not close – there is still a need
for additional “typing” systems.

•  The DTD is a syntactic specification.

Example: An Address Book
<person>

 <name> MacNiel, John </name>

 <greet> Dr. John MacNiel </greet>

 <addr>1234 Huron Street </addr>

 <addr> Rome, OH 98765 </addr>

 <tel> (321) 786 2543 </tel>

 <fax> (321) 786 2543 </fax>

 <tel> (321) 786 2543 </tel>

 <email> jm@abc.com </email>

</person>

Exactly one name
At most one greeting

As many address lines
as needed (in order)

Mixed telephones
and faxes

As many
as needed

Specifying the structure

•  name to specify a name element
•  greet? to specify an optional

 (0 or 1) greet elements
•  name,greet? to specify a name followed by an

 optional greet

Specifying the structure (cont)

•  addr* to specify 0 or more address lines
•  tel | fax a tel or a fax element

•  (tel | fax)* 0 or more repeats of tel or fax

•  email* 0 or more email elements

Specifying the structure (cont)

So the whole structure of a person entry is specified
by

name, greet?, addr*, (tel | fax)*, email*

This is known as a regular expression. Why is it
important?

Regular Expressions

Each regular expression determines a corresponding finite
state automaton. Let’s start with a simpler example:

name, addr*, email

This suggests a simple parsing program

name

addr

email

Another example

name,address*,(tel | fax)*,email*

name

address

tel
tel

fax

fax

email

email

Adding in the optional greet further
complicates things

email

 A DTD for the address book
<!DOCTYPE addressbook [
 <!ELEMENT addressbook (person*)>
 <!ELEMENT person
 (name, greet?, address*, (fax | tel)*, email*)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT greet (#PCDATA)>
 <!ELEMENT address (#PCDATA)>
 <!ELEMENT tel (#PCDATA)>
 <!ELEMENT fax (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
]>

Two DTDs for the relational DB

<!DOCTYPE db [
 <!ELEMENT db (projects,employees)>
 <!ELEMENT projects (project*)>
 <!ELEMENT employees (employee*)>

 <!ELEMENT project (title, budget, managedBy)>
 <!ELEMENT employee (name, ssn, age)>
 ...

]>

<!DOCTYPE db [
 <!ELEMENT db (project | employee)*>
 <!ELEMENT project (title, budget, managedBy)>
 <!ELEMENT employee (name, ssn, age)>
 ...

]>

Some things are hard to specify

Each employee element is to contain name, age and
ssn elements in some order.

<!ELEMENT employee
 ((name, age, ssn) | (age, ssn, name) |

 (ssn, name, age) | ...
)>

Suppose there were many more fields !

Summary of XML regular expressions

•  A The tag A occurs
•  e1,e2 The expression e1 followed by e2
•  e* 0 or more occurrences of e
•  e? Optional -- 0 or 1 occurrences
•  e+ 1 or more occurrences
•  e1 | e2 either e1 or e2
•  (e) grouping

It’s easy to get confused…

<!ELEMENT PARTNER (NAME?, ONETIME?, PARTNRID?,

PARTNRTYPE?, SYNCIND?, ACTIVE?, CURRENCY?,
DESCRIPTN?, DUNSNUMBER?, GLENTITYS?, NAME*,
PARENTID?, PARTNRIDX?, PARTNRRATG?,
PARTNRROLE?, PAYMETHOD?, TAXEXEMPT?, TAXID?,
TERMID?, USERAREA?, ADDRESS*, CONTACT*)>

Cited from oagis_segments.dtd (one of the files in the Novell
Developer Kit http://developer.novell.com/ndk/
indexexe.htm)

<PARTNER> <NAME> Ben Franklin </NAME> </PARTNER>
Q. Which NAME is it?

Specifying attributes in the DTD

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 dimension CDATA #REQUIRED
 accuracy CDATA #IMPLIED >

The dimension attribute is required; the accuracy
attribute is optional.

CDATA is the “type” of the attribute -- it means
string.

Specifying ID and IDREF attributes

<!DOCTYPE family [
 <!ELEMENT family (person)*>
 <!ELEMENT person (name)>
 <!ELEMENT name (#PCDATA)>
 <!ATTLIST person

 id ID #REQUIRED
 mother IDREF #IMPLIED
 father IDREF #IMPLIED
 children IDREFS #IMPLIED>
]>

Some conforming data
<family>
 <person id="jane" mother="mary" father="john">
 <name> Jane Doe </name>
 </person>
 <person id="john" children="jane jack">
 <name> John Doe </name>
 </person>
 <person id="mary" children="jane jack">
 <name> Mary Doe </name>
 </person>
 <person id="jack" mother=”mary" father="john">
 <name> Jack Doe </name>
 </person>
</family>

Consistency of ID and IDREF attribute
values

• If an attribute is declared as ID
–  the associated values must all be distinct (no

confusion)
• If an attribute is declared as IDREF

–  the associated value must exist as the value of
some ID attribute (no dangling “pointers”)

• Similarly for all the values of an IDREFS
attribute

• ID and IDREF attributes are not typed

An alternative specification

<!DOCTYPE family [
 <!ELEMENT family (person)*>
 <!ELEMENT person (mother?, father?, children, name)>
 <!ATTLIST person id ID #REQUIRED>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT mother EMPTY>
 <!ATTLIST mother idref IDREF #REQUIRED>
 <!ELEMENT father EMPTY>
 <!ATTLIST father idref IDREF #REQUIRED>
 <!ELEMENT children EMPTY>
 <!ATTLIST children idrefs IDREFS #REQUIRED>
]>

The revised data

<family>
 <person id = "jane”>

 <name> Jane Doe </name>
 <mother idref = "mary”></mother>
 <father idref = "john"></father>

 </person>
 <person id = "john”>

 <name> John Doe </name>
 <children idrefs = "jane jack"> </children>

 </person>
 ...

</family>

A useful abbreviation

When an element has empty content we can use

 <tag blahblahbla/> for <tag blahblahbla></tag>

For example:

 <family>
 <person id = "jane”>

 <name> Jane Doe </name>
 <mother idref = "mary”/>

 <father idref = "john”/>
 </person>
 ...
 </family>

An example
<db>
 <movie id=“m1”>
 <title>Waking Ned Divine</title>
 <director>Kirk Jones III</director>
 <cast idrefs=“a1 a3”></cast>
 <budget>100,000</budget>
 </movie>
 <movie id=“m2”>
 <title>Dragonheart</title>
 <director>Rob Cohen</director>
 <cast idrefs=“a2 a9 a21”></cast>
 <budget>110,000</budget>
 </movie>
 <movie id=“m3”>
 <title>Moondance</title>
 <director>Dagmar Hirtz</director>
 <cast idrefs=“a1 a8”></cast>
 <budget>90,000</budget>
 </movie>
 :

 <actor id=“a1”>
 <name>David Kelly</name>
 <acted_In idrefs=“m1 m3 m78” >
 </acted_In>
 </actor>
 <actor id=“a2”>
 <name>Sean Connery</name>
 <acted_In idrefs=“m2 m9 m11”>
 </acted_In>
 <age>68</age>
 </actor>
 <actor id=“a3”>
 <name>Ian Bannen</name>
 <acted_In idrefs=“m1 m35”>
 </acted_In>
 </actor>
 :
</db>

Schema.dtd

<!DOCTYPE db [
 <!ELEMENT db (movie+, actor+)>
 <!ELEMENT movie (title,director,casts,budget)>
 <!ATTLIST movie id ID #REQUIRED>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT director (#PCDATA)>
 <!ELEMENT casts EMPTY>
 <!ATTLIST casts idrefs IDREFS #REQUIRED>
 <!ELEMENT budget (#PCDATA)>

Schema.dtd (cont’d)

 <!ELEMENT actor (name, acted_In,age?, directed*)>
 <!ATTLIST actor id ID #REQUIRED>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT acted_In EMPTY>
 <!ATTLIST acted_In idrefs IDREFS #REQUIRED>
 <!ELEMENT age (#PCDATA)>
 <!ELEMENT directed (#PCDATA)>
]>

Constraints on IDs and IDREFs

•  ID stands for identifier. No two ID attributes
with the same name may have the same value (of
type CDATA)

•  IDREF stands for identifier reference. Every value
associated with an IDREF attribute must exist as
an ID attribute value

•  IDREFS specifies several (0 or more) identifiers

Connecting the document with its DTD
In line:

 <?xml version="1.0"?>
 <!DOCTYPE db [<!ELEMENT ...> …]>
 <db> ... </db>

Another file:
 <!DOCTYPE db SYSTEM "schema.dtd">

A URL:
 <!DOCTYPE db SYSTEM

 "http://www.schemaauthority.com/schema.dtd">

Well-formed and Valid Documents

•  Well-formed applies to any document (with or
without a DTD): proper nesting of tags and unique
attributes

•  Valid specifies that the document conforms to the
DTD: conforms to regular expression grammar,
types of attributes correct, and constraints on
references satisfied

Summary on XML and DTD

•  XML is a new data format. Its main virtues are
widespread acceptance and the (important) ability
to handle semistructured data (data without
schema).

•  DTDs provide some useful syntactic constraints on
documents. As schemas they are weak.

Shortcomings of DTDs
w  Non-XML syntax
w  Only one DTD referenced per document
w  No support for namespace
w  Useful for documents, but not so good for

data:
w  No support for structural re-use such as inheritance

w Object-oriented-like structures aren’t supported
w  No support for data types

w Can’t do data validation
w  Can have a single key item (ID), but:

w No support for multi-attribute keys
w No support for foreign keys (references to other

keys)
w No constraints on IDREFs (reference only a

Section)

