
1

WSDL Essential

Working of WSDL (with Java)

3

Background
l  WSDL stands for Web Service Description Language
l  A specification defining how to describe Web services in

a common XML grammar
l  Before WSDL, service providers used their own way to

describe service
l  Description files are inconsistent and incompatible to

each other
l  Microsoft and IBM then proposed to combine their

technologies SCL and NASSL to WSDL
l  With the contribution from Ariba, WSDL ver 1.1 was

submitted to W3C in March 2001. Not yet an official
standard (its status is “submission acknowledged”)

l  WSDL ver 2.0 Part I was submitted in July 2007.
Recommended by W3C.

4

l  WSDL represents a contract between the
service requestor and the service provider

l  Using WSDL, a client can locate a Web service
and invoke any of its publicly available function

l  With WSDL-aware tools, the whole process can
be done automatically

l  WSDL describes four critical pieces of data
–  Interface information describing all publicly available

functions
–  Data type information for all messages and message

responses
–  Binding information about the transport protocol to be

used
–  Address information for locating the specified service

5

l  A WSDL document can be divided into six major
elements

<definitions>: Root WSDL Element

<types>: What data types will be transmitted?

<message>: What messages will be transmitted?

<portType>: What operations will be supported?

<binding>: How will the messages be transmitted
 on the wire?

<service>: Where is the service located?

6

l  definitions
–  Must be the root element
–  Define the name of the service
–  Declare the namespaces used in the document

l  types
–  Describe all the data type used by the Client and Server
–  Can be omitted if only simple data types are used

l  message
–  Define the name of the request/response messages
–  Define also the message part elements

l  portType
–  Define the combination of message elements to form a

complete one-way or round-trip operation

7

l  binding
–  Provide specific details on how a portType operation

will actually be transmitted over the wire
–  SOAP specific information can be defined here. WSDL

includes built-in extensions for defining SOAP services
l  service

–  Define the address for invoking the specified service
l  documentation (less commonly used)

–  Provide human-readable documentation
–  Similar to making comments in a program

l  import (not all WSDL tools support)
–  Allow importing other WSDL documents or XML

Schemas into a WSDL document
–  Enable a more modular WSDL document

8

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions … >
 <wsdl:types … >

 :
 </wsdl:types>
 <wsdl:message … >

 :
 </wsdl:message>
 <wsdl:portType … >
 :
 </wsdl:portType>
 <wsdl:binding … >

 :
 </wsdl:binding>
 <wsdl:service … >

 :
 </wsdl:service>
</wsdl:definitions>

A Sample WSDL file

Can be omitted if only simple data
types, e.g. int, String are used

9

An Example: NameAndAge.wsdl
<definitions>: NameAndAge

<types>: JavaBean Record
 – two variables Name and Age

<message>: 1. showRecordResquest
 2. showRecordResponse

<portType>:showRecord that consists of
 a request/response service

<binding>: Direction to use the SOAP
 HTTP transport protocol

<service>: Service available at
http://localhost:8080/axis/services/
NameAndAge

10

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions
 targetNamespace=
 "http://localhost:8080/axis/services/NameAndAge"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 :

 :
>

targetNamespace is the logical namespace for information
about this service. WSDL documents can import other
WSDL documents, and setting targetNamespace to a unique
value ensures that the namespaces do not clash

a. definitions

Default namespace. All the WSDL elements,
such as <definitions>, <types> and <message>
reside in this namespace.

11

 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl=
 "http://localhost:8080/axis/services/NameAndAge"
 xmlns:intf=
 "http://localhost:8080/axis/services/NameAndAge"
 xmlns:soapenc=
 "http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns1="enpklun:polyu.edu.hk:soap"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap=
 "http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Define the namespaces that will be used in the later
part of the document

12

<wsdl:types>
 <schema targetNamespace="enpklun:polyu.edu.hk:soap”
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="Record">
 <sequence>
 <element name="age" type="xsd:int" />
 <element name="name" nillable="true"
 type="xsd:string" />
 </sequence>
 </complexType>
 </schema>
</wsdl:types>

Default namespace, apply to
unspecified tags, e.g. schema,
sequence, complexType, element

The qName of our JavaBean,
its namespace is defined by

targetNameSpace

Two parameters of Record to be sent.
The element names are derived from
the get/set functions of the JavaBean

can be a null string

b. types – give details of complex data type

13

l  Different programming languages have different
ways to declare data types, e.g. int, double, String

l  One of the greatest challenges in building Web
services is to create a common data type system
that every programming language can understand
–  E.g. a JavaBean cannot be understood by C++ program

l  WSDL by default follows the data typing system
defined by W3C XML Schema Specification

<schema targetNamespace="enpklun:polyu.edu.hk:soap”
 xmlns="http://www.w3.org/2001/XMLSchema">

 :
</schema>

14

l  XML Schema specification includes a basic type
system for encoding most simple data types

l  Include a long list of built-in simple types, e.g.
string, float, double …. Details can be found in
http://www.w3.org/TR/2000/WD=xmlschema=0=20000407/

l  If only these data types are used in a Web service,
the WSDL document does not have the “types”
section to further explain them

l  When converting from a service or a request to
XML messages, the implementation platform, e.g.
AXIS, should know how to encode these simple
type data based on the specifications as defined in
XML Schema

15

l  For complex data types, e.g. JavaBean, XML
Schema does not have their specifications

l  If a Web service wants to use them, need to be
explained in the “types” section of its WSDL file

 <complexType name="Record">
 <sequence>
 <element name="age" type="xsd:int" />
 <element name="name" nillable="true"
 type="xsd:string" />
 </sequence>
 </complexType> •  Define that the Record type in fact

comprises only two variables in sequence
•  Quite different from the original

JavaBean specification
•  But can be understood by most languages

16

l  When the data type is defined, specify the kind
of messages that make use of that data type

l  The message element defines two kinds of
messages in this example
–  showRecordRequest
–  showRecordResponse

l  The showRecordRequest message only uses
one kind of data type: Record

l  The showRecordResponse message uses the
same kind of data type: Record

c. message

17

<wsdl:message name="showRecordRequest">
 <wsdl:part name="in0" type="tns1:Record" />
</wsdl:message>
<wsdl:message name="showRecordResponse">
 <wsdl:part name="showRecordReturn"
 type="tns1:Record" />
</wsdl:message>

•  The namespace of tns1 as defined in “definition” is
 enpklun:polyu.edu.hk:soap

•  The same as the targetNameSpace in “types”
•  Hence we are talking about the "Record” described

in “types”

The name of the parameter used in these
two messages. Only one in each message

18

<wsdl:portType name="RecordService">
 <wsdl:operation name="showRecord"
 parameterOrder="in0">
 <wsdl:input message="impl:showRecordRequest"
 name="showRecordRequest" />
 <wsdl:output message="impl:showRecordResponse"
 name="showRecordResponse" />
 </wsdl:operation>
</wsdl:portType>

The sequence of the input/output
message is matter. The example
above means that the input message
should go first and followed by the
output message

d. portType
l  Define how the messages are transmitted for

the method: showRecord

19

Four operation
patterns
supported by
WSDL 1.1
1. One-way
2. Request-
 response
3. Solicit-
 response
4. Notification

20

<wsdl:operation name="showRecord"
 parameterOrder="in0">

l  A message can have more than one “parts”
–  E.g. if showRecord() requires three input parameters,

then the input message for calling the service will have
three parts

l  For message that has more than one “parts”,
need to indicate their order, e.g. which part is the
first parameter and which part is the second

l  Assume the input message of showRecord() has
three “parts” – in0, in1 and in2, and in0 is the first,
in1 is the second and in2 is the third, then

 <wsdl:operation name="showRecord"
 parameterOrder="in0 in1 in2">

21

e. binding
l  The binding element provides specific details on

how a portType operation will actually be
transmitted over the wire

l  A single portType can have multiple bindings
using different transports e.g. HTTP or SMTP

l  Contain the following parts:
–  binding type
–  soap operation

l  function name to be called
l  details about the input parameters
l  details about the return parameters

22

<wsdl:binding name="NameAndAgeSoapBinding"
 type="impl:RecordService">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="showRecord">
 <wsdlsoap:operation soapAction="" />
 <wsdl:input name="showRecordRequest">
 :
 </wsdl:input>
 <wsdl:output name="showRecordResponse">
 :
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

Talking about the showRecord() of RecordService

Referring to the same operation as in
the portType, since same namespace

using HTTP

23

<wsdl:input name="showRecordRequest">
 <wsdlsoap:body encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://HelloBean" use="encoded" />
</wsdl:input>

<wsdl:output name="showRecordResponse">
 <wsdlsoap:body encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 namespace=
 "http://localhost:8080/axis/services/NameAndAge"
 use="encoded" />
</wsdl:output>

l  Provide more specific details to the input and
output messages with respect to the kind of
messaging protocol (soap in this case) used

24

<wsdl:service name="RecordServiceService">
 <wsdl:port binding="impl:NameAndAgeSoapBinding“
 name="NameAndAge">
 <wsdlsoap:address location=
 "http://localhost:8080/axis/services/NameAndAge" />
 </wsdl:port>
</wsdl:service>

e. service

l  Specify the location of the service

 Overview of HelloService

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloService"
targetNamespace="http://www.ecerami.com/wsdl/
HelloService.wsdl" xmlns="http://schemas.xmlsoap.org/
wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/
soap/" xmlns:tns="http://www.ecerami.com/wsdl/
HelloService.wsdl" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">

 <message name="SayHelloRequest">
 <part name="firstName" type="xsd:string"/>
 </message>
 <message name="SayHelloResponse">
 <part name="greeting" type="xsd:string"/>
 </message>
 <portType name="Hello_PortType">
 <operation name="sayHello">
 <input message="tns:SayHelloRequest"/>
 <output message="tns:SayHelloResponse"/>
 </operation>
 </portType>

<binding name="Hello_Binding" type="tns:Hello_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHello">
 <soap:operation soapAction="sayHello"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"
 namespace="urn:examples:helloservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"
 namespace="urn:examples:helloservice" use="encoded"/>
 </output>
 </operation>
 </binding>

 <service name="Hello_Service">
 <documentation>WSDL File for
 HelloService</documentation>
 <port binding="tns:Hello_Binding"

name="Hello_Port">
 <soap:address
 location="http://localhost:8080/soap/servlet/

rpcrouter"/ >
 </port>
 </service>

</definitions>

29

WSDL Invocation Tools
l  WSDL gives a full description of a Web service

–  Define the namespaces (in definition)
–  Define the data type (in types)
–  Define the messages format (in message)
–  Define the sequence of sending messages (in

portType)
–  Define the kind of the messaging system to be used,

e.g. Soap, and its implementation details (in binding)
–  Define the location of the service (in service)

l  By having the WSDL document of a Web
service, basically we have obtained all
information required to invoke this service

30

l  Since WSDL is developed based on standardized
rules (XML Schema), service providers can
automatically generate the WSDL document of a
Web service

l  Since a WSDL document is a full description of a
Web service, requestors can automatically
generate requests based on WSDL
–  Hence no need for client to develop the request

program, e.g. RecordClient (see SOAP Implementation)
l  Different software vendors have developed tools

to facilitate the above objectives
–  WebMethods ‘s GLUE
–  IBM’s WSIF (included in its ETTK package)
–  SOAP:Lite for Perl

31

Main Objectives of the Tools

l  To hide away the complication of invoking the
Web service from the client as much as possible

l  To standardize as much as possible the procedure
to client to invoke different kind of services

32

l  For example, the following is the interaction when
using AXIS and GLUE

Transport

Dispatcher

Web
Service

AXIS SERVER

WSDL2JAVA

GLUE CLIENT

2

5

10

6
7 8

9

WSDL
document

1

Call

3

Result
GLUE
Invoker Input

4

11

33

EIE424
Distributed Systems and Networking Programming –Part II
4. WSDL Essential

1. AXIS automatically generates the WSDL
document of a Web service

2. GLUE client uses the GLUE’s WSDL2JAVA tool
to retrieve the WSDL document. It obtains the
required info of the Web service and generates a
set of Java files

3. The Info is applied to a relatively standard Web
service calling program

4. A GLUE service invoker is generated to handle
the problems for invoking a SOAP service

5-9. AXIS calls the method in the service and sends
the result back to the GLUE service invoker

10. GLUE client finally gets the result

34

WSDL
document

GLUE
WSDL2JAVA

For simple data types

Java helper
class for

invoking the
service

Java
Interface of
the service

35

For complex data types

WSDL
document

GLUE
WSDL2JAVA

Java helper
class for

invoking the
service

Java
Interface of
the service

GLUE mapping
file to indicate

how to translate
the complex Java

data type and
XML schema type

Java class for
representing the

complex the
data type

36

Invoking Services using Simple
Data Types

For each of the deployed service,
a WSDL file is automatically

generated by AXIS

Location of the wsdl file of HelloName: http://
localhost:8080/axis/services/HelloName?wsdl

37

Command:
wsdl2java http://localhost:8080/axis/services/HelloName?wsdl –p
Hello

Location of the wsdl
file

The files generated should be
placed in the Hello package

File generated:
IHelloService.java – exposes the method interface
HelloServiceServiceHelper.java – dynamically bind to the service
specified by the WSDL file

38

•  Mirror the interface of the method
sayHello of the service

•  Based on this interface, a calling program
should know the method to be called, the
input and output parameters

Generated by
GLUE’s wsdl2java

39

Generated by
GLUE’s wsdl2java

Registry.bind() returns an interface to the service (described
by the specified path) that implements the specified interface

40

l  By using the helper files, a relatively standard
service calling file can be used

l  Need no knowledge about SOAP hence
enables automatic service invocation

l  To enable full automated Web service, need
an automatic process to
–  extract the method name and the class type of the

input and output parameters
–  provide the input parameter and
–  interpret the semantic meaning of the return result

41

public class Invoke_Hello {

 public String say (String name)
 throws Exception {
 IHelloService Service =
 HelloServiceServiceHelper.bind();
 return Service.sayHello(name);
 }
 public static void main (String[] args)
 throws Exception {
 Invoke_Hello invoker = new Invoke_Hello();
 String result = invoker.say("Dr Lun");
 System.out.println(result);
 }
}

Can be extracted
from the interface

Only need to provide the required
input and interpret the return result

42

Result received from the
remote service

43

Invoking Services using Complex
Data Types

Location of the wsdl file of NameAndAge: http://
localhost:8080/axis/services/NameAndAge?wsdl

The Web service NameAndAge
has a method showRecord() that

requires a JavaBean as the
input and return a JavaBean

44

File generated:
IRecordService.java – exposes the method interface
RecordServiceServiceHelper.java – dynamically bind to the
service specified by the WSDL file
Record.java – specify the structure of the class that can represent
the complex data type used in the service
RecordServiceService.map – specify how to map between the
data types in Record.java and the complex data type

45

•  Mirror the interface of the method
showRecord of the service

•  Based on this interface, a calling program
should know the method to be called, the
input and output parameters

•  Note the complex data type required by
this method

Generated by
GLUE’s wsdl2java

46

Generated by
GLUE’s wsdl2java

Similar as in the simple
data type case

47

•  Class suggests to represent the complex
data type used in this service

•  Note JavaBean is not used. Only a simple
class

•  Hence can be more easily handled by a
general invocation program

Generated by
GLUE’s wsdl2java

48

<?xml version='1.0' encoding='UTF-8'?>
<map:mappings
 xmlns:map='http://www.themindelectric.com/schema/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>
 <xsd:schema targetNamespace=
 'enpklun:polyu.edu.hk:soap'>
 <xsd:complexType name='Record'
 map:class='RecordBean.Record'>
 <xsd:sequence>
 <xsd:element name='age' map:field='age'
 type='xsd:int'/>
 <xsd:element name='name' nillable='true'
 map:field='name' type='xsd:string'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</map:mappings>

RecordServiceService.map
generated by GLUE’s wsdl2java

49

 <xsd:complexType name='Record'
 map:class='RecordBean.Record'>
 <xsd:sequence>
 <xsd:element name='age' map:field='age'
 type='xsd:int'/>
 <xsd:element name='name' nillable='true'
 map:field='name' type='xsd:string'/>
 </xsd:sequence>
 </xsd:complexType>

•  Map the element age to the age variable in
RecordBean.Record class and it is of type integer
defined in XML Schema

•  Map the element name to the name variable in
RecordBean.Record class and it is of type string
defined in XML Schema

50

package RecordBean;
public class Invoke_RecordBean {

 public Record check (Record userRecord)
 throws Exception {
 Mappings.readMappings("RecordServiceService.map");
 IRecordService Service =
 RecordServiceServiceHelper.bind();
 Record updatedRecord =
 Service.showRecord(userRecord);
 return updatedRecord;
 }

 public static void main (String[] args)
 throws Exception {
 :
 }
}

The only
difference as

compared with
the simple data

type case

51

 public static void main (String[] args)
 throws Exception {
 Invoke_RecordBean invoker = new Invoke_RecordBean();

 Record currRecord = new Record();
 // This Record is not JavaBean, but the
 // class generated by wsdl2java()
 currRecord.name = new String("Chan Tai Man");
 currRecord.age = 30;
 // Again need to pass the required parameters
 Record result = invoker.check(currRecord);
 // When result is received, need to interpret the
 // the result
 System.out.println("The user is "+result.name+".
\n");
 System.out.println("Next year he will be”+
 result.age+"years old.");
 }

The only part that is application specific

52

Result received from the
remote service

53

l  In summary, to both the case of simple or
complex data types, a very similar procedure is
required to invoke the service

l  No knowledge is required in the specific
messaging system, e.g. SOAP

l  However, the invoker program needs to know
–  the location where the wsdl file can be found (can

be solved by UDDI)
–  where to get the parameters to be sent to the

service (require the invoker program to have some
intelligence, very often application dependent)

–  how to handle the returned results from the service
(require the invoker program to have some
intelligence, very often application dependent)

