
An Introduction to  
Support Vector Machine 



Support Vector Machine (SVM) 

n  A classifier derived from statistical learning theory by Vapnik, et 
al. in 1992 

n  SVM became famous when, using images as input, it gave 
accuracy comparable to neural-network with hand-designed 
features in a handwriting recognition task 

n  Currently, SVM is widely used in object detection & recognition, 
content-based image retrieval, text recognition, biometrics, 
speech recognition, etc. 

n  Also used for regression 



Outline 

n  Linear Discriminant Function 
n  Large Margin Linear Classifier 
n  Nonlinear SVM: The Kernel Trick 
 



Linear Discriminant Function 

n  g(x) is a linear function: 
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n  A hyper-plane in the feature 
space 

n  (Unit-length) normal vector 
of the hyper-plane: 
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n  How would you classify 
these points using a linear 
discriminant function in order 
to minimize the error rate? 

Linear Discriminant Function 
denotes +1 

denotes -1 
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n  Infinite number of answers! 
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x1 

x2 n  How would you classify 
these points using a linear 
discriminant function in order 
to minimize the error rate? 

Linear Discriminant Function 
denotes +1 

denotes -1 

n  Infinite number of answers! 

n  Which one is the best? 



Large Margin Linear Classifier  

“safe zone” 
n  The linear discriminant 

function (classifier) with the 
maximum margin is the best 

n  Margin is defined as the 
width that the boundary 
could be increased by before 
hitting a data point 

n  Why it is the best? 
q  Robust to outliners and thus 

strong generalization ability 
q  Good according to PAC 

(Probably Approximately 
Correct) theory.   

Margin 
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Maximum Margin Classification 
n  Distance from point xi to the 

hyperplane is: 
  
 
n  Examples closest to the 

hyperplane are support 
vectors.  

n  Margin M of the classifier is 
the distance between 
support vectors on both 
sides. 
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Support Vectors 

Only support vectors matter;  
other training points are ignorable. 
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Large Margin Linear Classifier  

n  Given a set of data points: 

n  With a scale transformation 
on both w and b, the above 
is equivalent to  
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wTxi + b ≥ M/2      if yi = +1 
 

wTxi + b ≤ - M/2    if yi = -1 



Large Margin Linear Classifier  

n  We know that 

n  The margin width is: 
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Thus wT (x+-x-) = 2  



Large Margin Linear Classifier  

n  Formulation:  
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Large Margin Linear Classifier  

n  Formulation:  
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Large Margin Linear Classifier  

n  Formulation:  

x1 
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Solving the Optimization Problem  
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2
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Quadratic 
programming  

with linear 
constraints 
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Solving the Optimization Problem  
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Solving the Optimization Problem  
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Solving the Optimization Problem  

n  The solution has the form:  

( )( ) 1 0T
i i iy bα + − =w x

n  From KKT (Karush–Kuhn–Tucker) condition, we know:  

n  Thus, only support vectors have   0iα ≠

1 SV
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get b  from  yk (wT xk +b)−1= 0,    

where xk  is any support vector
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Thus, b = yk - Σαiyixi 
Txk    for any αk > 0 



Solving the Optimization Problem  

g (x) = wT x +b = αi yi xi
T x

i∈SV
∑ +b

n  The linear discriminant function is:  

n  Notice it relies on a dot product between the test point x 
and the support vectors xi 

n  Also keep in mind that solving the optimization problem 
involved computing the dot products xi

Txj between all pairs 
of training points 

That is, no need to compute w explicitly for classification. 



Large Margin Linear Classifier  

n  What if data is not linear 
separable? (noisy data, 
outliers, etc.) 

n  Slack variables ξi can be 
added to allow mis-
classification of difficult 
or noisy data points 
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Large Margin Linear Classifier  

n  Formulation: 
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n  Parameter C can be viewed as a way to control over-fitting:    
it “trades off” the relative importance of maximizing the margin 
and fitting the training data. 
n  For large values of C, the optimization will choose a smaller-margin 

hyperplane if that hyperplane does a better job of getting all the training 
points classified correctly. Conversely, a very small value of C will 
cause the optimizer to look for a larger-margin separating hyperplane, 
even if that hyperplane misclassifies more points. 



Solving the Optimization Problem  

n  Formulation: (Lagrangian Dual Problem) 
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Solving the Optimization Problem  

n  Again, xi with non-zero αi will be support vectors. 

n  Solution to the dual problem is: 
  

 
 
b= yk(1- ξk) - Σαiyixi

Txk    for any k s.t. αk>0 

Again, we don’t need to compute w explicitly for 
classification: 
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Non-linear SVMs 
n  Datasets that are linearly separable with noise work out great: 

0 x 

0 x 

x2 

0 x 

n  But what are we going to do if the dataset is just too hard?  

n  How about… mapping data to a higher-dimensional space: 



Non-linear SVMs:  Feature Space 
n  General idea:  the original input space can be mapped to 

some higher-dimensional feature space where the 
training set is separable: 

Φ:  x → φ(x) 



Nonlinear SVMs: The Kernel Trick 
n  With this mapping, our discriminant function is now: 

SV
( ) ( ) ( ) ( )T T

i i
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g b bφ αφ φ
∈
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n  No need to know this mapping explicitly, because we only use 
the dot product of feature vectors in both the training and test. 

n  A kernel function is defined as a function that corresponds to a 
dot product of two feature vectors in some expanded feature 
space: 

( , ) ( ) ( )T
i j i jK φ φ≡x x x x



Nonlinear SVMs: The Kernel Trick 

 2-dimensional vectors x=[x1   x2];   
 
     let K(xi,xj)=(1 + xi

Txj)2
, 

  
     Need to show that K(xi,xj) = φ(xi) 

Tφ(xj): 
   

     K(xi,xj)=(1 + xi
Txj)2

, 

                           = 1+ xi1
2xj1

2 + 2 xi1xj1
 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2 

       = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2   xj2

2  √2xj1  √2xj2]  
       = φ(xi) 

Tφ(xj),    where φ(x) =  [1  x1
2  √2 x1x2   x2

2   √2x1  √2x2] 
 

n  An example: 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



Nonlinear SVMs: The Kernel Trick 

q  Linear kernel: 

2
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n  Examples of commonly-used kernel functions: 

q  Polynomial kernel: 

q  Gaussian (Radial-Basis Function (RBF) ) kernel: 

q  Sigmoid: 

Mercer’s theorem:  Every semi-positive definite 
symmetric function is a kernel. 



Nonlinear SVM: Optimization 
n  Formulation: (Lagrangian Dual Problem) 
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n  The solution of the discriminant function is 

g (x) = αi yi K (xi ,x)
i∈SV
∑ +b

n  The optimization technique is the same. 



Support Vector Machine: Algorithm 

n  1. Choose a kernel function 

n  2. Choose a value for C 

n  3. Solve the quadratic programming problem 
(many software packages available) 

n  4. Construct the discriminant function from the 
support vectors  



Some Issues 
n  Choice of kernel 
    - Gaussian or polynomial kernel is default 
    - if ineffective, more elaborate kernels are needed 
    - domain experts can give assistance in formulating appropriate 

similarity measures 
 
n  Choice of kernel parameters 
   - e.g. σ in Gaussian kernel 
   - σ is the distance between closest points with different classifications  
   - In the absence of reliable criteria, applications rely on the use of a 

validation set or cross-validation to set such parameters.  
 
n  Optimization criterion – Hard margin v.s. Soft margin 
   - a lengthy series of experiments in which various parameters are 

tested  

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  



Summary: Support Vector Machine 

n  1. Large Margin Classifier  
q  Better generalization ability & less over-fitting 

n  2. The Kernel Trick 
q  Map data points to higher dimensional space in 

order to make them linearly separable. 
q  Since only dot product is used, we do not need to 

represent the mapping explicitly. 



Demo of LibSVM 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
 



References on SVM and 
Stock Prediction 

http://www.svms.org/finance/HuangNakamoriWang2005.pdf 
 
http://cs229.stanford.edu/proj2012/ShenJiangZhang-
StockMarketForecastingusingMachineLearningAlgorithms.pdf 
 
http://research.ijcaonline.org/volume41/number3/
pxc3877555.pdf 
and other references online … 


