An Introduction to

Support Vector Machine




Support Vector Machine (SVM)

A classifier derived from statistical learning theory by Vapnik, et
al. in 1992

SVM became famous when, using images as input, it gave

accuracy comparable to neural-network with hand-designed
features in a handwriting recognition task

Currently, SVM is widely used in object detection & recognition,
content-based image retrieval, text recognition, biometrics,
speech recognition, etc.

Also used for regression



Outline

Linear Discriminant Function
Large Margin Linear Classifier

Nonlinear SVM: The Kernel Trick



Linear Discriminant Function

g(x) is a linear function:
g(X)=w'x+b

A hyper-plane in the feature
space

wix+b=0

(Unit-length) normal vector/
of the hyper-plane:




Linear Discriminant Function
@® denotes +1

O denotes -1

How would you classify t X
these points using a linear
discriminant function in order

to minimize the error rate?

Infinite number of answers!
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Linear Discriminant Function
@® denotes +1

O denotes -1

How would you classify
these points using a linear
discriminant function in order

to minimize the error rate?

Infinite number of answers! _

d

Which one is the best? ,




Large Margin Linear Classitier

@® denotes +1

O denotes -1

The linear discriminant + Xy
function (classifier) with the
maximum Is the best

Margin is defined as the
width that the boundary
could be increased by before
hitting a data point

Why it is the best?

o Robust to outliners and thus
strong generalization ability

o Good according to PAC
(Probably Approximately
Correct) theory.




Maximum Margin Classitication

Distance from point x; to the
hyperplane is:

Examples closest to the
hyperplane are support

vectors.

Margin M of the classifier is
the distance between
support vectors on both

sides.
Only support vectors matter;
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other training points are ignorable.



‘ Large Margin Linear Classitier

= Given a set of data points: ¢t X
{(x,y)}, i=1,2,L ,n, where | o

wix,+ b2 M2 ify=+1
wix,+bs-M?2 ify=-1

= With a scale transformation
on both w and b, the above
Is equivalent to

Fory =+1, w'x, +b=1

@® denotes +1

O denotes -1

Fory =-1, w'x. +b=<-1—]




‘ Large Margin Linear Classitier

@® denotes +1

O denotes -1

= We know that + Xy
wx +b=1

Margin

wx +b=-1
Thus w' (x*-x) = 2

= The margin width is:

M=(x"-x")'n

W 2

=(x"-X )=
Il 1wl




‘ Large Margin Linear Classitier

= Formulation:

. 2
maximize —
wi

such that

Fory =+1, w'x, +b=1

Fory =-1, w' x, +b=<-1

@® denotes +1

O denotes -1

Margin




‘ Large Margin Linear Classitier
= Formulation: t X5

L. 1 2

minimize EHWH

such that

Fory =+1, w'x, +b=1

Fory =-1, w' x, +b=<-1

@® denotes +1

O denotes -1

Margin




‘ Large Margin Linear Classitier
= Formulation: t X5

L. 1 2

minimize EHWH

such that

y.(W'x, +b) =1

@® denotes +1

O denotes -1

Margin




Solving the Optimization Problem

Quadratic
programming
with linear
constraints

Lagrangian
Function

S.t.

DL 1 2
minimizc — HW H
2

y.(W'X, +b) =1

|

minimize L (W,b, ;) = %HWHz - i a, (yl.(WTxl. +b) - 1)
=1

st. a =0

1




Solving the Optimization Problem

minimize L (W,b, ;) = %HWHz — i a, (yl.(WTxl. +b) - 1)
i=1

st. o =0
aLp =0 :> W= Eaiyixi
oW =1
aLp = :> a,y, = 0

db =l



Solving the Optimization Problem

minimize L (W,b, ;) = %HWHz - i a, (yl.(WTxl. +b) - 1)
=1

st. a =0

1

Lagrangian Dual
Problem

maximize Ea__g}: @ yyxx

11]1

st «a =0, and Eal.yl. =
i=1




Solving the Optimization Problem

From KKT (Karush—Kuhn-Tucker) condition, we know:

al.(yl.(wal.+b)—l)=O o «@/

Thus, only support vectors have ¢, =0 @/
X o
The solution has the form: / @ o 4

%

n
W = Eaiyi i = ; Ay X,
=1 &V

get 4 from p (W'x, +5)-1=0,
where X , 1s any support vector

Thus, b=y, - Zayx;™x, foranya,>0



Solving the Optimization Problem

The linear discriminant function is:
g(X)=W'x+5b= E ayxX X+b
/ESV

That is, no need to compute w explicitly for classification.

Notice it relies on a between the test point x
and the support vectors Xx;

Also keep in mind that solving the optimization problem
involved computing the x;"x;between all pairs

of training points



Large Margin Linear Classitier

@® denotes +1

O denotes -1

What if data is not linear
separable? (noisy data,
outliers, etc.)

Slack variables ¢;can be
added to allow mis-

classification of difficult x9
or noisy data points W
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Large Margin Linear Classitier

Formulation: minimize %HWHz + Ci §
i=1

such that »,(W'x,+b)=1-&
5 =0

Parameter C can be viewed as a way to control over-fitting:
it “trades off” the relative importance of maximizing the margin

and fitting the training data.

For large values of C, the optimization will choose a smaller-margin
hyperplane if that hyperplane does a better job of getting all the training
points classified correctly. Conversely, a very small value of C will
cause the optimizer to look for a larger-margin separating hyperplane,
even if that hyperplane misclassifies more points.



Solving the Optimization Problem

Formulation: (Lagrangian Dual Problem)

maximize Ea ——EE a]ylyj

11]1

such that



Solving the Optimization Problem

Again, x; with non-zero a; will be support vectors.

Solution to the dual problem is:
W= > a&yX = ; a; VX,

b=y(1- &) - ZayxTx, forany ks.t. a,>0

Again, we don’t need to compute w explicitly for
classification:

2(X)=W X+5= E ayX X+b

7€eSV




Non-linear SVMs

Datasets that are linearly separable with noise work out great:

But what are we going to do if the dataset is just too hard?

@ ® *—0— *0—0—0—0— 0>
0 X

How about... mapping data to a higher-dimensional space:




Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:
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Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

gX) =W +b="y ap(x,) ¢(x)+b

ISV

No need to know this mapping explicitly, because we only use
the of feature vectors in both the training and test.

A is defined as a function that corresponds to a
dot product of two feature vectors in some expanded feature
space:

K(Xiaxj) = ¢(Xi)T¢(Xj)



Nonlinear SVMs: The Kernel Trick

An example:

2-dimensional vectors x=[x; x,]|;
let K(x;,x;)=(1 + x;"x,)?
Need to show that K(x;,x;) = o(x)) "o(x;):
K(xp,x)=(1 + x;"x;)?
= 14 XX+ 2 206, X X35°X,7 + 2%, + 2,50,

=1 x;? \2 XXy X;) \/inl \/inz]T [1 xﬂz \2 XX xj22 \/Zxﬂ \/ijz]

= o(x) To(x;), where o(x) = [1 x; V2 x,x, x,7 N2x; V2x,]

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm__tutorial. ppt



Nonlinear SVMs: The Kernel Trick

Examples of commonly-used kernel functions:
. _ T
o Linear kernel: K(Xl.,Xj) =X; X,
: : _ r p
o Polynomial kernel: K(Xl., Xj) = (1 + X, Xj)

o Gaussian (Radial-Basis Function (RBF) ) kernel:

)

2
X, - x|

20°

K(Xiaxj) = eXp(_

o Sigmoid:
K(x;,x;)=tanh(Bx;x; + )

Mercer’s theorem: Every semi-positive definite
symmetric function is a kernel.



Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

n 1 n n
maximize Eal. -5 E Eaiajyl.yj[{(xi,xj)
=1 T 7=1

I=

such that O<q <C

The solution of the discriminant function is

2(X)= E ay KX X))+

7ESV

The optimization technique is the same.



Support Vector Machine: Algorithm

1. Choose a kernel function
2. Choose a value for C

3. Solve the quadratic programming problem
(many software packages available)

4. Construct the discriminant function from the
support vectors



Some Issues

Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating appropriate
similarity measures

Choice of kernel parameters
- e.g. 0 in Gaussian kernel
- 0 is the distance between closest points with different classifications

- In the absence of reliable criteria, applications rely on the use of a
validation set or cross-validation to set such parameters.

Optimization criterion — Hard margin v.s. Soft margin

- a lengthy series of experiments in which various parameters are
tested

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm__tutorial. ppt



Summary: Support Vector Machine

1. Large Margin Classifier
o Better generalization ability & less over-fitting

2. The Kernel Trick

o Map data points to higher dimensional space in
order to make them linearly separable.

o Since only dot product is used, we do not need to
represent the mapping explicitly.



Demo of LibSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm/




References on SVM and
Stock Prediction

http://www.svms.org/finance/HuangNakamori\WWang2005.pdf

http://cs229.stanford.edu/proj2012/ShenJiangZhang-
StockMarketForecastingusingMachinelLearningAlgorithms.pdf

http://research.ijcaonline.org/volume41/number3/
pxc3877555.pdf

and other references online ...




