
Introduction to SOAP
(Simple Object Access Protocol)

2

What is SOAP?

•  SOAP is a simple, lightweight XML protocol for
 exchanging structured and typed information on the Web

•  Overall design goal: KISS (keep it simple and stupid)
•  Can be implemented in a weekend
•  Stick to absolutely minimum of functionality

•  Make it Modular and Extensible
•  No application semantics and no transport semantics
•  Think “XML datagram”

3

SOAP Contains Four Parts:

•  An extensible envelope expressing (mandatory)
•  what features and services are represented in a message;
•  who should deal with them,
•  whether they are optional or mandatory.

•  A set of encoding rules for data (optional)
•  Exchange instances of application-defined data types and directed

 graphs
•  Uniform model for serializing abstract data models that can not

 directly be expressed in XML schema
•  A Convention for representation RPC (optional)

•  How to make calls and responses
•  A protocol binding to HTTP and HTTP-EF (optional)

4

SOAP Envelope

SOAP Example in HTTP

HTTP Request
SOAP-HTTP Binding

SOAP Header
SOAP Body

POST /Accounts/Henrik HTTP/1.1
Host: www.webservicebank.com
Content-Length: nnnn
Content-Type: text/xml; charset="utf-8"
SOAPAction: "Some-URI"

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP:Header>
 <t:Transaction xmlns:t="some-URI" SOAP:mustUnderstand="1">
 5
 </t:Transaction>
 </SOAP:Header>
 <SOAP:Body>
 <m:Deposit xmlns:m="Some-URI">
 <m:amount>200</m:amount>
 </m:Deposit>
 </SOAP:Body>
</SOAP:Envelope>

5

SOAP Example in SIP (session initial
 protocol)

SOAP Envelope

SIP Request
SOAP-SIP Binding

SOAP Body

SERVICE sip:broker.ubiquity.net SIP/2.0
To: sip:broker.ubiquity.net
From: sip:proxy.ubiquity.net
Call-ID:648324@193.195.52.30
CSeq: 1 SERVICE
Via: SIP/2.0/UDP proxy.ubiquity.net
Content-Type: text/xml
Content-Length: 381

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP:Body>
 <m:SetCreditStatus xmlns:m="http://www.ubiquity.net/sipservices">
 <m:user>sip:jo@ubiquity.net</m:user>
 <m:status>super</m:status>
 </m:SetCreditStatus>
 </SOAP:Body>
</SOAP:Envelope>

6

… or SOAP by Itself…
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP:Header>
 <m:MessageInfo xmlns:m="http://www.info.org/soap/message">
 <m:to href="mailto:you@your.com"/>
 <m:from href="mailto:me@my.com"/>
 <m:contact href="mailto:someone@my.com">
 </m:MessageInfo>
 </SOAP:Header>
 <SOAP:Body>
 <msg:Message xmlns:m="http://www.info.org/soap/message">
 <msg:subject>Your house is on fire!</msg:subject>
 <msg:feed href="ram://livenews.com/yourhouse"/>
 </msg:Message>
 </SOAP:Body>
</SOAP:Envelope>

7

SOAP Stack Examples

SOAP

HTTP

TCP

Protocol Binding
SOAP

SIP

TCP

Protocol Binding
SOAP

SIP

UDP

Protocol Binding

SOAP

MIME Multipart
Protocol Binding

…

SOAP

SMTP

TCP

Protocol Binding
SOAP

TCP
Protocol Binding

SOAP

UDP
Protocol Binding

Services Services Services Services

Services Services Services

8

Note Again: SOAP is a Protocol!

•  What does this mean?
•  It is not a distributed object system
•  It is not an RPC system
•  It is not even a Web application

•  Your application decides what your application is!
•  You can build a tightly coupled system
…or…
•  You can build a loosely coupled system

•  Tunneling is a property of the application, not the
 protocol

9

SOAP is Designed for Evolvability

•  How are features and services deployed in the Web?
•  Often by extending existing applications
•  Spreading from in the small to the large over time

•  This means that:
•  Applications have different capabilities at all times
•  We have to support this

•  This requires that:
•  Applications supporting a particular feature or service

 should be able to employ this with no prior
 agreement;

•  Applications can require that the other party either
 understand and abide by the new feature or service or
 abort the operation

10

Why Not Roll My Own XML Protocol?

•  SOAP allows you to define your particular feature or
 service in such a way that it can co-exist with other
 features and services within a SOAP message

•  What is a feature or a service?
•  Authentication service
•  Payment service
•  Security service
•  Transaction management service
•  Privacy service

•  Not owning the message means easier deployment and
 better interoperability

11

What is Interoperability?

•  Interoperability is the intersection of features and service
 supported by two or more communicating peers:

Peer B Peer A

Interoperability

12

Extensibility vs. Evolvability

•  Extensibility: Cost pr new feature/service increases
 over time

•  Evolvability: Cost pr new feature/service is flat

Time

Time

Feature set 3

Feature set 3

Feature set 2

Feature set 2

Feature set 1

Feature set 1

13

SOAP and Composability

•  We are looking at two types of composability of features
 and services within a message:
•  Vertical: multiple features and services can exist

 simultaneously within the same message
•  Horizontal: features and services within a message can

 be intended for different recipients.
•  This is not boxcarring but rather the HTTP proxy

 model and as we shall see, the SOAP messaging
 model as well

14

Vertical Composability

•  Allows for independent features to co-exist

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP:Header>
 <a:authentication …>…</a:authentication>
 <s:security …> … </s:security>
 <t:transactions …> … </t:transactions>
 <p:payment …> … </p:payment>
 </SOAP:Header>
 <SOAP:Body>
 <m:mybody> … </m:mybody>
 </SOAP:Body>
</SOAP:Envelope>

 <a:authentication …>…</a:authentication>
 <s:security …> … </s:security>
 <t:transactions …> … </t:transactions>
 <p:payment …> … </p:payment>

 <m:mybody> … </m:mybody>

15

Horizontal Composability

•  Allows for intermediaries

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP:Header>
 <a:authentication actor="intermediary a"…>…</a:authentication>
 <s:security actor="intermediary b"…> … </s:security>
 <t:transactions actor="intermediary c"…> … </t:transactions>
 <p:payment actor="destination"…> … </p:payment>
 </SOAP:Header>
 <SOAP:Body>
 <m:mybody> … </m:mybody>
 </SOAP:Body>
</SOAP:Envelope>

 <a:authentication actor="intermediary a"…>…</a:authentication>
 <s:security actor="intermediary b"…> … </s:security>
 <t:transactions actor="intermediary c"…> … </t:transactions>
 <p:payment actor="destination"…> … </p:payment>

 <m:mybody> … </m:mybody>

16

Modularity through XML Namespaces

•  The SOAP envelope namespace
•  http://schemas.xmlsoap.org/soap/envelope/
•  Resolves to the SOAP Envelope Schema

•  The SOAP encoding namespace
•  http://schemas.xmlsoap.org/soap/encoding/
•  Resolves to the SOAP Encoding Schema

•  Separate namespaces help enforce modularity
•  SOAP Envelope Schema provides formal definition of

 Envelope

17

The SOAP Envelope

•  A SOAP envelope defines a SOAP message
•  Basic unit of exchange between SOAP processors

•  SOAP messages are one-way transmissions
•  From sender through intermediaries to receiver
•  Often combined to implement patterns such as request/response

•  Messages are routed along a "message path"
•  Allows for processing at one or more intermediate nodes in

 addition to the ultimate destination node.
•  A node is a SOAP processor and is identified by a URI

•  Envelopes can be nested
•  Only outer envelope is "active" to the receiving SOAP processor

18

SOAP Headers

•  Allows for modular addition of features and services
•  Open-ended set of headers

•  Authentication, privacy, security etc. etc.
•  Can address any SOAP processor using the "actor"

 attribute
•  Can be optional/mandatory using the

 "mustUnderstand" attribute

Start web://bar web://toto web://foo

19

Semantics of SOAP Headers

•  Contract between sender and recipient
•  Recipient is described by "actor" attribute

•  Allows for different types of negotiation:
•  Take it or leave it directly supported
•  Let's talk about it can be built on top

•  And for different settings:
•  Server dictated
•  Peer-to-peer
•  Dictated by third party

20

The SOAP actor Attribute

•  The "Actor" attribute is a generalization of the HTTP
 Connection header field
•  Instead of hop-by-hop vs. end-to-end, the actor

 attribute can address any SOAP processor because it
 is a URI

•  Special cases:
•  "next hop" has a special URI assigned to it
•  "end" is the default destination for a header
•  "end" is the destination for the body

21

The SOAP mustUnderstand Attribute

•  The "mustUnderstand" is the same as "mandatory" in
 the HTTP Extension Framework
•  Requires that the receiving SOAP processor must

 accept, understand and obey semantics of header or
 fail

•  It is up to the application to define what
 "understand" means

•  This allows old applications to gracefully fail on
 services that they do not understand

22

SOAP Body

•  Special case of header
•  Default contract between sender and ultimate recipient
•  Different from HTTP's header/body separation
•  Defined as a header with attributes set to:

•  Implicit mustUnderstand attribute is always "yes"
•  Implicit actor attribute is always "the end"

Start web://bar web://toto web://foo

23

SOAP Fault

•  The SOAP Fault mechanism is designed to support the composability
 model
•  Is not a scarce resource as in HTTP where there can be only one

 (the Highlander principle)
•  A SOAP message can carry one SOAP Fault element

•  Must be placed in the Body of the message
•  The Fault Detail element carries information for faults resulting from

 the body
•  Detail information for faults resulting from headers are carried in the

 header
•  The SOAP fault code extension mechanism is for SOAP only

•  Application faults should use existing SOAP fault codes
•  Client code is for request faults
•  Server code is for processing faults

24

SOAP Fault Example

•  A SOAP message containing an authentication service:
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP:Header>
 <m:Authentication xmlns:m="http://www.auth.org/simple">
 <m:credentials>Henrik</m:credentials>
 </m:Authentication>
 </SOAP:Header>
 <SOAP:Body>
 … body goes here …
 </SOAP:Body>
</SOAP:Envelope>

25

SOAP Fault Example… 2

•  …results in a fault because the credentials were bad:
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP:Header>
 <m:Authentication xmlns:m="http://www.auth.org/simple">
 <m:realm>Magic Kindom</m:realm>
 </m:Authentication>
 </SOAP:Header>
 <SOAP:Body>
 <SOAP:Fault>
 <SOAP:faultcode>SOAP:Client</faultcode>
 <SOAP:faultstring>Client Error</faultstring>
 </SOAP:Fault>
 </SOAP:Body>
</SOAP:Envelope>

26

SOAP and "Binary" Data

•  "Binary" can in fact mean any data that is to be tunneled
 through SOAP
•  Encrypted data, images, XML documents, SOAP

 envelopes as data
•  Can be carried in two ways

•  Within the envelope as binary blob
•  Referenced from within the SOAP envelope

•  References can point to anything including
•  MIME multipart, HTTP accessible resources etc.
•  Integrity can be obtained through manifest

27

Binding to HTTP

•  The purpose of the HTTP protocol binding is two-fold
•  To ensure that SOAP is carried in a way that is

 consistent with HTTP’s message model
•  Intent is not to break HTTP

•  To indicate to HTTP servers that this is a SOAP
 message
•  Allows HTTP servers to act on a SOAP message

 without knowing SOAP
•  Binding only works for HTTP POST requests
•  SOAP intermediary is not the same as HTTP intermediary

•  Only HTTP origin server can be SOAP intermediary

28

HTTP Request

POST /Accounts/Henrik HTTP/1.1
Content-Type: text/xml; charset="utf-8“
Content-Length: nnnn
SOAPAction: "http://electrocommerce.org/MyMessage"

<SOAP:Envelope...

•  Use HTTP POST request method name
•  Use the SOAPAction HTTP header field

•  It cannot be computed – the sender must know
•  It should indicate the intent – not the destination

•  SOAP request doesn't require SOAP response

SOAPAction: "http://electrocommerce.org/MyMessage"

29

HTTP Response

•  Successful responses can 2xx status codes
•  All 3xx, 4xx, and 5xx status codes work as normal
•  SOAP faults must use 500 status code
•  SOAP response doesn't require SOAP request

•  Response can in fact be empty

HTTP/1.1 200 Ok
Content-Type: text/xml; charset="utf-8“
Content-Length: nnnn

<SOAP:Envelope...

30

Purpose of SOAP Encoding

•  Given a schema in any notation consistent with the data
 model defined by SOAP, a schema for an XML grammar
 may be constructed

Type
Modeling
Language

XML
Schema

31

Purpose of SOAP Encoding… 2

•  Given a type-system schema and a particular graph of
 values conforming to that schema, an XML instance may
 be constructed.

XML
Schema

XML
Instance

Value
Graph

32

Purpose of SOAP Encoding… 3

•  Given an XML instance produced in accordance with
 these rules, and given also the original schema, a copy
 of the original value graph may be constructed.

XML
Instance

Value
Graph

XML
Schema

33

Simple Example

<Address id="Address-3">
 <street>28 Sea Dr #103</street>
 <city>Unicity</city>
 <state>CA</state>
</Address>
<Student id="Student-2567">
 <name>Michael</name>
 <dormaddr href="#Address-3"/>
 <attends href="#Course-19"/>
 <attends href="#Course-253"/>
</Student>

34

Basic Rules (in part)

•  All values are represented as element content
•  An element may be "independent" (top level of

 serialization) or "embedded" (everything else)
•  Values can be single-reference or multi-reference
•  A multi-reference value is represented as the content of

 an independent element. It has an unqualified attribute
 named "id" and of type "ID".

•  An accessor can point to a multi-reference value with a
 local, unqualified attribute named "href" and of type "uri
-reference“

•  The root attribute can be used to indicate roots that are
 not true roots in a graph

35

Indicating the Type

•  For each element containing a value, the type of the
 value is represented by at least one of the following
 conditions:
•  The containing element instance contains an xsi:type

 attribute,
•  The containing element instance is itself contained

 within an element containing a (possibly defaulted)
 SOAP-ENC:arrayType attribute or

•  The name of the element bears a definite relation to
 the type, that type then determinable from a schema.

36

Simple Types

•  A "simple type" is a class of simple values
•  SOAP uses all the types found in the section "Built-in data

 types" of "XML Schema Part 2: Datatypes"
•  A simple value is represented as character data, that is,

 without any sub-elements

37

Simple Type Examples
<element name="age" type="int"/>
<element name="height" type="float"/>
<element name="displacement"
 type="negativeInteger"/>
<element name="color">
 <simpleType base="xsd:string">
 <enumeration value="Green"/>
 <enumeration value="Blue"/>
 </simpleType>
</element>
<age>45</age>
<height>5.9</height>
<displacement>-450</displacement>
<color>Blue</color>

38

Compound Types

•  A “compound” type is a class of compound values
•  Each related value is potentially distinguished by a role

 name, ordinal or both (accessor)
•  Supports traditional types like structs and arrays
•  Supports nodes with with many distinct accessors, some

 of which occur more than once
•  Preserves order but doesn't require ordering distinction in

 the underlying data model

39

Struct Compound Type

•  A compound value in which accessor name is the only
 distinction among member values, and no accessor has
 the same name as any other
<e:Book>
 <author>Henry Ford</author>
 <preface>When I…</preface>
 <intro>This is a book.</intro>
</e:Book>

40

Array Compound Type

•  A compound value in which ordinal position serves as the
 only distinction among member values

<SOAP-ENC:Array
 SOAP-ENC:arrayType="xyz:Order[2]">
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>
 <Order>
 <Product>Peach</Product>
 <Price>1.48</Price>
 </Order>
</SOAP-ENC:Array>

41

General Compound Type

•  A compound value with a mixture of accessors
 distinguished by name and accessors distinguished by
 both name and ordinal position
<PurchaseLineItems>
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>
 <Order>
 <Product>Peach</Product>
 <Price>1.48</Price>
 </Order>
</PurchaseLineItems>

42

Serializing Relationships

•  The root element of the serialization serves only as lexical
 container.

•  Elements can reflect arcs or nodes
•  Independent elements always reflect nodes
•  Embedded elements always reflect arcs
•  Element names correspond to node or arc labels
•  Arcs are always encoded as embedded elements

43

1:1 Relationships

•  A 1:1 relationship is expressed by simple containment.
 For example, if a student attends a course, the canonical
 XML looks like
<Student>
 <name>Alice</name>
 <attends>
 <name>Greek</name>
 </attends>
</Student>

44

1:n and n:1 Relationships

•  A 1:many relationship is expressed by multiple elements
 for the 1:many direction or single element for the many
:1 direction.
<Teacher id="Teacher-1">
 <name>Alice</name>
 <teaches>
 <name>Greek</name>
 </teaches>
 <teaches >
 <name>English History</name>
 </teaches>
</Teacher>

45

m:n Relationships

•  A many:many relationship is expressed by using
 references in both directions.

<Student id="Student-1">
 <name>Alice<name>
 <attends href="#Course-1"/>
 <attends href="#Course-2"/>
</Student>
<Course id="Course-1">
 <name>Greek</name>
 <attendee href="Student-1"/>
</Course>

46

SOAP and RPC

•  A method invocation is modeled as a struct
•  A method response is modeled as a struct
•  Struct contains an accessor for each [in] or [in/out] or

 [out] parameter.
•  The request struct is both named and typed identically to

 the method name.
•  The response struct name is not important
•  The first accessor is the return value followed by the

 parameters in the same order as in the method signature

47

Summary

•  SOAP envelope provides
•  Composability in the vertical (Shopping basket)
•  Composability in the horizontal (Amtrak)

•  SOAP can be used with many protocols
•  Easy to deploy with existing infrastructure

•  SOAP is fundamentally a one-way message
•  Supports request/response, RPC etc.
•  Your application decides what it is!

