Introduction to SOAP

(Simple Object Access Protocol)




What is SOAP?

« SOAP is a simple, lightweight XML protocol for
exchanging structured and typed information on the Web

« Overall design goal: KISS (keep it simple and stupid)
« Can be implemented in a weekend
o Stick to absolutely minimum of functionality
« Make it Modular and Extensible
« No application semantics and no transport semantics
« Think “"XML datagram”




SOAP Contains Four Parts:

« An extensible envelope expressing (mandatory)
« what features and services are represented in a message;
« who should deal with them,
« Whether they are optional or mandatory.

« A set of encoding rules for data (optional)

o Exchahnge instances of application-defined data types and directed
graphs

« Uniform model for serializing abstract data models that can not
directly be expressed in XML schema

« A Convention for representation RPC (optional)
« How to make calls and responses
« A protocol binding to HTTP and HTTP-EF (optional)




SOAP Example in HTTP

SOAP-HTTP Binding
HTTP Request

SOAP Body
SOAP Header

<SOAP:Envelope xmins:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

</SOAP:Envelope>




SOAP Example in SIP (session initial
protocol)

SOAP-SIP Binding
SIP Request
SOAP Body

<SOAP:Envelope xmiIns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

</SOAP:Envelope>




<SOAP:Envelope xmIns:SOAP="http://[schemas.xmlsoap.org/soap/envelope”
SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP:Header>
<m:Messagelnfo xmIns:m="http://www.info.org/soap/message">
<m:to href="mailto:you@your.com"/>
<m:from href="mailto:me@my.com"/>
<m:contact href="mailto:someone@my.com">
</m:Messagelnfo>
</SOAP:Header>
<SOAP:Body>
<msg:Message xmins:m="http://www.info.org/soap/message">
<msg:subject>Your house is on fire!</msg:subject>
<msg:feed href="ram://livenews.com/yourhouse"/>
</msg:Message>
</SOAP:Body>
</SOAP:Envelope>




SOAP Stack Examples
- Services - Services - Services

SOAP SOAP SOAP

- Services - Services - Services - Services

SOAP SOAP SOAP SOAP




Note Again: SOAP is a Protocol!

« What does this mean?
o It is not a distributed object system
o It is not an RPC system
o It is not even a Web application
« Your application decides what your application is!
« You can build a tightly coupled system
...Or...
« You can build a loosely coupled system

« Tunneling is a property of the application, not the
protocol




SOAP is Designed for Evolvability

« How are features and services deployed in the Web?
« Often by extending existing applications
« Spreading from in the small to the large over time
« This means that:
« Applications have different capabilities at all times
« We have to support this
« This requires that:

» Applications supporting a particular feature or service
should be able to employ this with no prior
agreement;

» Applications can require that the other party either
understand and abide by the new feature or service or
abort the operation

9




Why Not Roll My Own XML Protocol?

« SOAP allows you to define your particular feature or
service in such a way that it can co-exist with other
features and services within a SOAP message

« What is a feature or a service?
 Authentication service
« Payment service
o Security service
« Transaction management service
 Privacy service

« Not owning the message means easier deployment and
better interoperability




What is Interoperability?

« Interoperability is the intersection of features and service
supported by two or more communicating peers:

Interoperability

Y/




Extensibility vs. Evolvability

« Extensibility: Cost pr new feature/service increases

over time . Feature set 3 N

Feature set 2

Feature set 1
® >

Time
 Evolvability: Cost pr new feature/service is flat

Feature set 3
C >

Feature set 2
C >

Feature set 1
® >




SOAP and Composability

« We are looking at two types of composability of features
and services within a message:

 Vertical: multiple features and services can exist
simultaneously within the same message

« Horizontal: features and services within a message can
be intended for different recipients.

 This is not boxcarring but rather the HTTP proxy
model and as we shall see, the SOAP messaging
model as well




Vertical Composability

« Allows for independent features to co-exist

<SOAP:Envelope xmIns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP:Header>

</SOAP:Header>
<SOAP:Body>

</SOAP:Body>
</SOAP:Envelope>




Horizontal Composability

o Allows for intermediaries

<SOAP:Envelope xmIns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP:Header>

</SOAP:Header>
<SOAP:Body>

</SOAP:Body>
</SOAP:Envelope>




Modularity through XML Namespaces

« The SOAP envelope namespace
o http://schemas.xmlsoap.org/soap/envelope/
» Resolves to the SOAP Envelope Schema

« The SOAP encoding namespace
o http://schemas.xmlsoap.org/soap/encoding/
« Resolves to the SOAP Encoding Schema

« Separate namespaces help enforce modularity

« SOAP Envelope Schema provides formal definition of
Envelope




The SOAP Envelope

A SOAP envelope defines a SOAP message

« Basic unit of exchange between SOAP processors
SOAP messages are one-way transmissions

« From sender through intermediaries to receiver

« Often combined to implement patterns such as request/response
Messages are routed along a "message path”

« Allows for processing at one or more intermediate nodes in
addition to the ultimate destination node.

« A node is a SOAP processor and is identified by a URI
Envelopes can be nested

« Only outer envelope is "active" to the receiving SOAP processor




SOAP Headers

« Allows for modular addition of features and services
« Open-ended set of headers
« Authentication, privacy, security etc. etc.

» Can address any SOAP processor using the "actor”
attribute

« Can be optional/mandatory using the
"mustUnderstand” attribute

oo




Semantics of SOAP Headers

« Contract between sender and recipient

« Recipient is described by "actor" attribute
« Allows for different types of negotiation:

« Take it or leave it directly supported

o Let's talk about it can be built on top
« And for different settings:

« Server dictated

« Peer-to-peer

« Dictated by third party




The SOAP actor Attribute

« The "Actor" attribute is a generalization of the HTTP
Connection header field

« Instead of hop-by-hop vs. end-to-end, the actor
attribute can address any SOAP processor because it
IS a URI

o Special cases:
 "next hop" has a special URI assigned to it
« "end" is the default destination for a header
« "end" is the destination for the body




The SOAP mustUnderstand Attribute

« The "mustUnderstand” is the same as "mandatory" in
the HTTP Extension Framework

« Requires that the receiving SOAP processor must

?ccept, understand and obey semantics of header or
ail

o It is up to the application to define what
"understand" means

« This allows old applications to gracefully fail on
services that they do not understand




SOAP Body

« Special case of header
« Default contract between sender and ultimate recipient
o Different from HTTP's header/body separation
« Defined as a header with attributes set to:
o Implicit mustUnderstand attribute is always "yes"
« Implicit actor attribute is always "the end"

web://foo




SOAP Fault

ThedS(l)AP Fault mechanism is designed to support the composability
mode

» Is not a scarce resource as in HTTP where there can be only one
(the Highlander principle)

A SOAP message can carry one SOAP Fault element
« Must be placed in the Body of the message

The Fault Detail element carries information for faults resulting from
the body

%eta(ijl information for faults resulting from headers are carried in the
eader

The SOAP fault code extension mechanism is for SOAP only
« Application faults should use existing SOAP fault codes
« Client code is for request faults
« Server code is for processing faults




« A SOAP message containing an authentication service:

<SOAP:Envelope xmins:SOAP="http://schemas.xmlsoap.org/soap/envelope”
SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP:Header>
<m:Authentication xmins:m="http://www.auth.org/simple">
<m.credentials>Henrik</m:credentials>

</m:Authentication>

</SOAP:Header>
<SOAP:Body>
... body goes here ...
</SOAP:Body>
</SOAP:Envelope>




o ...results in a fault because the credentials were bad:

<SOAP:Envelope xmins:SOAP="http://schemas.xmlsoap.org/soap/envelope”
SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP:Header>

<m:Authentication xmins:m="http://www.auth.org/simple">
<m:realm>Magic Kindom</m:realm>

</m:Authentication>
</SOAP:Header>
<SOAP:Body>
<SOAP:Fault>
<SOAP:faultcode>SOAP:Client</faultcode>
<SOAP:faultstring>Client Error</faultstring>
</SOAP:Fault>
</SOAP:Body>
</SOAP:Envelope>




SOAP and "Binary"” Data

- "Binary" can in fact mean any data that is to be tunneled
through SOAP

« Encrypted data, images, XML documents, SOAP
envelopes as data

« Can be carried in two ways
« Within the envelope as binary blob
« Referenced from within the SOAP envelope
« References can point to anything including
« MIME multipart, HTTP accessible resources etc.
o Integrity can be obtained through manifest




Binding to HTTP

« The purpose of the HTTP protocol binding is two-fold

« To ensure that SOAP is carried in a way that is
consistent with HTTP’s message model

« Intent is not to break HTTP

e TO indicate to HTTP servers that this is a SOAP
message

o Allows HTTP servers to act on a SOAP message
without knowing SOAP

« Binding only works for HTTP POST requests
« SOAP intermediary is not the same as HTTP intermediary
o Only HTTP origin server can be SOAP intermediary

27




HTTP Request

« Use HTTP POST request method name
« Use the SOAPAction HTTP header field
o It cannot be computed — the sender must know
o It should indicate the intent — not the destination
« SOAP request doesn't require SOAP response

POST /Accounts/Henrik HTTP/1.1

Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "http://lelectrocommerce.org/MyMessage™

<SOAP:Envelope...




HTTP Response

« Successful responses can 2xx status codes
« All 3xx, 4xx, and 5xx status codes work as normal
« SOAP faults must use 500 status code
« SOAP response doesn't require SOAP request
« Response can in fact be empty

HTTP/1.1 200 Ok
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP:Envelope...




Purpose of SOAP Encoding

« Given a schema in any notation consistent with the data
model defined by SOAP, a schema for an XML grammar
may be constructed




Purpose of SOAP Encoding... 2

« Given a type-system schema and a particular graph of
values conforming to that schema, an XML instance may
be constructed.




Purpose of SOAP Encoding... 3

« Given an XML instance produced in accordance with
these rules, and given also the original schema, a copy
of the original value graph may be constructed.




Simple Example




Basic Rules (in part)

« All values are represented as element content

« An element may be "independent" (top level of
serialization) or "embedded" (everything else)

« Values can be single-reference or multi-reference

« A multi-reference value is represented as the content of
an independent element. It has an unqualified attribute
named "id" and of type "ID".

« An accessor can point to a multi-reference value with a
local, unqualified attribute named "href" and of type "uri
-reference”

« The root attribute can be used to indicate roots that are
not true roots in a graph




Indicating the Type

« For each element containing a value, the type of the
value is represented by at least one of the following
conditions:

« The containing element instance contains an xsi:type
attribute,

« The containing element instance is itself contained
within an element containing a (possibly defaulted)
SOAP-ENC:arrayType attribute or

« The name of the element bears a definite relation to
the type, that type then determinable from a schema.




Simple Types

« A "simple type" is a class of simple values

« SOAP uses all the types found in the section "Built-in data
types" of "XML Schema Part 2: Datatypes”

« A simple value is represented as character data, that is,
without any sub-elements




Simple Type Examples




Compound Types

« A “compound” type is a class of compound values

« Each related value is potentially distinguished by a role
name, ordinal or both (accessor)

« Supports traditional types like structs and arrays

« Supports nodes with with many distinct accessors, some
of which occur more than once

« Preserves order but doesn't require ordering distinction in
the underlying data model




Struct Compound Type

« A compound value in which accessor name is the only
distinction among member values, and no accessor has
the same name as any other




Array Compound Type

« A compound value in which ordinal position serves as the
only distinction among member values




General Compound Type

« A compound value with a mixture of accessors
distinguished by name and accessors distinguished by
both name and ordinal position




Serializing Relationships

- The root element of the serialization serves only as lexical
container.

« Elements can reflect arcs or nodes

« Independent elements always reflect nodes

« Embedded elements always reflect arcs

« Element names correspond to node or arc labels
« Arcs are always encoded as embedded elements




1:1 Relationships

« A 1:1 relationship is expressed by simple containment.
For example, if a student attends a course, the canonical
XML looks like




1:n and n:1 Relationships

« A 1:many relationship is expressed by multiple elements
for the 1:many direction or single element for the many
:1 direction.




m:n Relationships

« A many:many relationship is expressed by using
references in both directions.




SOAP and RPC

« A method invocation is modeled as a struct
« A method response is modeled as a struct

o Struct contains an accessor for each [in] or [in/out] or
[out] parameter.

ne request struct is both named and typed identically to
ne method name.

ne response struct name is not important

he first accessor is the return value followed by the
parameters in the same order as in the method signature




Summary

« SOAP envelope provides
« Composability in the vertical (Shopping basket)
« Composability in the horizontal (Amtrak)
« SOAP can be used with many protocols
« Easy to deploy with existing infrastructure
« SOAP is fundamentally a one-way message
« Supports request/response, RPC etc.
 Your application decides what it is!




