
Service-Oriented Architecture 



The Service Oriented Society 

Imagine if we had to do everything  
we need to get done by ourselves? 



From Craftsmen to Service Providers 

  Our society has become what it is today through the 
forces of 
  Specialization 
  Standardization 
  Scalability 

  It is now almost exclusively “service” oriented 
  Transportation 
  Telecommunication 
  Retail 
  Healthcare 
  Financial services 
  … 



Attributes of physical services 

  Well defined, easy-to-use, somewhat standardized interface 
  Self-contained with no visible dependencies to other services 
  (almost) Always available but idle until requests come 
  “Provision-able” 
  Easily accessible and usable readily, no “integration” required 
  Coarse grain 
  Independent of consumer context,  

  but a service can have a context 
  New services can be offered by combining existing services 
  Quantifiable quality of service 

  Do not compete on “What” but “How” 
  Performance/Quality 
  Cost 
  … 



Context, Composition and State 

  Services are most often designed to ignore the 
context in which they are used 
  It does not mean that services are stateless they 

are rather context independent ! 
  This is precisely the definition of “loosely coupled” 

  Services can be reused in contexts not known at design 
time 

  Value can be created by combining, i.e. “composing” 
services 
  Book a trip versus book a flight, car, hotel, … 



Service Interfaces 

  Non proprietary   
  All service providers offer somewhat the same 

interface 
  Highly Polymorphic  

  Intent is enough 
  Implementation can be changed in ways that do not 

break all the service consumers 
  Real world services interact with thousands of 

consumers 
  Service providers cannot afford to “break” the context 

of their consumers 



Intents and Offers 

 Service consumer expresses “intent” 
 Service providers define “offers” 

 Sometimes a mediator will: 
  Find the best offer matching an intent 
  Advertise an offer in different ways such that it 

matches different intent 
 Request / Response is just a very particular 

case of an Intent / Offer protocol 



Service Orientation and Directories 

 Our society could not be “service oriented” 
without the “Yellow Pages” 

 Directories and addressing mechanisms are 
at the center of our service oriented society 

  Imagine 
  Being able to reach a service just by using 

longitude and latitude coordinates as an 
addressing mechanism? 

  Only being able to use a service if you can 
remember its location, phone or fax number? 



Service Orientation is scalable 

 Consumers can consume and combine a lot 
of services since they don’t have to know or 
“learn” how to use a service 

 Service providers can offer their services to a 
lot more consumers because by optimizing 
  The user interface 
  Access (Geographical, Financial, …) 
  They were able to provide the best quality of 

service and optimize their implementations 



So… 

 Service orientation allows us  
  Complete freedom to create contexts in which 

services are uses and combined 
  Express intent rather than specific requests 

 Our society should be a great source of 
inspiration to design modern enterprise 
systems and architectures or understand 
what kind of services these systems will 
consume or provide 



The connected (new) world 

Over the past 20 years,  
everything got connected to everything else 



Seamless Connectivity enables “On 
Demand” Computing 
 Use software as you need 
 Much lower setup time, forget about 

  Installation 
  Implementation 
  Training 
  Maintenance 

 Scalable and effective usage of resources 
  Provision 
  Billed on true usage 
  Parallelism (CPU, Storage, Bandwidth…) 



But Seamless Connectivity is also 
questioning all our beliefs… 
  An application is NOT a single system running on a 

single device and bounded by a single organization 
  Continuum Object … Document 
  Messages and Services 

  As opposed « distributed objects » 
  Exchanges becomes peer-to-peer 

  Asynchronous communications 
  Concurrency becomes the norm while our 

languages and infrastructures did not plan for it 



…we are reaching the point of 
maximum confusion 
  Federation and Collaboration 

  As opposed to « Integration » 
  Language(s) 

  Semantic (not syntactic) 
  Declarative and Model driven (not procedural) 

  Licensing and Deployment models 
 … 



So… 

 Today, the value is not defined as much by 
functionality anymore but by connectivity 
  However, we need a new programming model 

 Why SOA today?  
  We are reaching a new threshold of 

connectivity and computing power  

Mainframe Client Server Web SOA 



Constructing Software In a 
Connected World 

From Components to Services 



Constructing software in the web era  
(J2EE, .Net, …) 

App Server 

 Client 

DB 

CCI CCI CCI 

ERP CRM 

request 
response 

Model 

ERP EAI 

b2b 

Internet 

CCI: Client Communication Interface 

Controller 

View 

ERP: Enterprise Resource Planning 

EAI: Enterprise Application Integration 



Why do we Want to Move to a New 
Application Model Today? 
  We are moving away precisely because of 

connectivity   
  J2EE, for instance was designed to build 24x7 scalable 

web-based applications 
  Job well done 

  But this is very different from, “I now want my 
application to execute business logic in many other 
systems, often dynamically bound to me” 
  JCA (J2EE Connector Architecture) is not enough 
  EAI infrastructures are not enough 



A Component now Becomes a Service 
Running Outside the Consumer Boundaries 

DB 

CCI CCI CCI 

ERP CRM 

Service Service Service 

Registry 

1 
register 

Consumer 

SOAP SOAP SOAP 

XML XML XML 

3 invoke 
2 

Discover and/or Bind 

Policies 



From Components to (Web) Services 

  Requires a client library 

  Client / Server 
  Extendable 
  Stateless 

  Fast 
  Small to medium 

granularity 

  Loose coupling via  
  Message exchanges  
  Policies 

  Peer-to-peer 
  Composable 
  Context independent 

  Some overhead 
  Medium to coarse 

granularity 



Web Services: what is changing? 

  Loose coupling (of course) 
  Web Services don’t require a CCI (Client side 

Communication Interface) 
  Very few “gears” needed to consume a service 

  Web Services can accept message content they do not 
fully understand or support 

  XML, WSDL 
  Web services are very late bound 

  Location is independent of the invocation mechanism  
  Directories 



Web Services: What is Changing? 

 Peer-to-peer interactions are possible 
 Request / response is an inefficient and  very 

limiting mode of interaction 
 As components coarsen, it is difficult to 

differentiate a client from a server 



What Happens to the Technical Services 
Typically Provided by an Application Server? 

 Transaction 
 Security 
 Connection pooling 
 Naming service 
 Scalability and failover 
 … 

 They become the “Service Fabric” 



What about the notion of “Container”? 
They become Service “Domains” 
  The notion of “container” shifts to the notion of 

“Domain Controller”  
  A domain is a collection of web services which share 

some commonalities like a “secure domain” 
  A container is a domain with one web service 
  Web Services do not always need a container 

  Consumers invoke the domain rather than the service 
directly 

  This concept does not exist in any specification… 



A Service Fabric can be more than a Bus 
with a series of Containers / Adapters 

DB 

CCI CCI CCI 

ERP CRM 

NEP NEP NEP 

Consumer 

Domain 
Controller 

Reliable 
Messaging 

Process 

Registry Tx XML XML XML Registry 

register 

Discover and/or Bind 

Policies 



Shift To A Service-Oriented Architecture 

  Function oriented 
  Build to last 
  Prolonged development 

cycles 

  Coordination oriented  
  Build to change 
  Incrementally built and 

deployed 

  Application silos 
  Tightly coupled 
  Object oriented 
  Known implementation 

  Enterprise solutions 
  Loosely coupled 
  Message oriented 
  Abstraction 

Source: Microsoft (Modified) 



So Migrating to SOA 

 Would entail 
  Organizing the business logic in a context 

independent way 
  Typically, model oriented business logic is 

wrapped behind (web) services 

 Re-implementing the controller with 
“coordination” technologies 

 …The view must be completely re-invented 



SOA 

 A dynamically organized collection of service 
assets that are composed in different ways to 
present one or more applications. 

 Advantages: Loosely couple, based upon 
common standards, reuse of existing assets, 
rapid assembling of new applications 

 Weakness: XML verbose, immature 


