
Service-Oriented Architecture

The Service Oriented Society

Imagine if we had to do everything
we need to get done by ourselves?

From Craftsmen to Service Providers

  Our society has become what it is today through the
forces of
  Specialization
  Standardization
  Scalability

  It is now almost exclusively “service” oriented
  Transportation
  Telecommunication
  Retail
  Healthcare
  Financial services
  …

Attributes of physical services

  Well defined, easy-to-use, somewhat standardized interface
  Self-contained with no visible dependencies to other services
  (almost) Always available but idle until requests come
  “Provision-able”
  Easily accessible and usable readily, no “integration” required
  Coarse grain
  Independent of consumer context,

  but a service can have a context
  New services can be offered by combining existing services
  Quantifiable quality of service

  Do not compete on “What” but “How”
  Performance/Quality
  Cost
  …

Context, Composition and State

  Services are most often designed to ignore the
context in which they are used
  It does not mean that services are stateless they

are rather context independent !
  This is precisely the definition of “loosely coupled”

  Services can be reused in contexts not known at design
time

  Value can be created by combining, i.e. “composing”
services
  Book a trip versus book a flight, car, hotel, …

Service Interfaces

  Non proprietary
  All service providers offer somewhat the same

interface
  Highly Polymorphic

  Intent is enough
  Implementation can be changed in ways that do not

break all the service consumers
  Real world services interact with thousands of

consumers
  Service providers cannot afford to “break” the context

of their consumers

Intents and Offers

 Service consumer expresses “intent”
 Service providers define “offers”

 Sometimes a mediator will:
  Find the best offer matching an intent
  Advertise an offer in different ways such that it

matches different intent
 Request / Response is just a very particular

case of an Intent / Offer protocol

Service Orientation and Directories

 Our society could not be “service oriented”
without the “Yellow Pages”

 Directories and addressing mechanisms are
at the center of our service oriented society

  Imagine
  Being able to reach a service just by using

longitude and latitude coordinates as an
addressing mechanism?

  Only being able to use a service if you can
remember its location, phone or fax number?

Service Orientation is scalable

 Consumers can consume and combine a lot
of services since they don’t have to know or
“learn” how to use a service

 Service providers can offer their services to a
lot more consumers because by optimizing
  The user interface
  Access (Geographical, Financial, …)
  They were able to provide the best quality of

service and optimize their implementations

So…

 Service orientation allows us
  Complete freedom to create contexts in which

services are uses and combined
  Express intent rather than specific requests

 Our society should be a great source of
inspiration to design modern enterprise
systems and architectures or understand
what kind of services these systems will
consume or provide

The connected (new) world

Over the past 20 years,
everything got connected to everything else

Seamless Connectivity enables “On
Demand” Computing
 Use software as you need
 Much lower setup time, forget about

  Installation
  Implementation
  Training
  Maintenance

 Scalable and effective usage of resources
  Provision
  Billed on true usage
  Parallelism (CPU, Storage, Bandwidth…)

But Seamless Connectivity is also
questioning all our beliefs…
  An application is NOT a single system running on a

single device and bounded by a single organization
  Continuum Object … Document
  Messages and Services

  As opposed « distributed objects »
  Exchanges becomes peer-to-peer

  Asynchronous communications
  Concurrency becomes the norm while our

languages and infrastructures did not plan for it

…we are reaching the point of
maximum confusion
  Federation and Collaboration

  As opposed to « Integration »
  Language(s)

  Semantic (not syntactic)
  Declarative and Model driven (not procedural)

  Licensing and Deployment models
 …

So…

 Today, the value is not defined as much by
functionality anymore but by connectivity
  However, we need a new programming model

 Why SOA today?
  We are reaching a new threshold of

connectivity and computing power

Mainframe Client Server Web SOA

Constructing Software In a
Connected World

From Components to Services

Constructing software in the web era
(J2EE, .Net, …)

App Server

 Client

DB

CCI CCI CCI

ERP CRM

request
response

Model

ERP EAI

b2b

Internet

CCI: Client Communication Interface

Controller

View

ERP: Enterprise Resource Planning

EAI: Enterprise Application Integration

Why do we Want to Move to a New
Application Model Today?
  We are moving away precisely because of

connectivity
  J2EE, for instance was designed to build 24x7 scalable

web-based applications
  Job well done

  But this is very different from, “I now want my
application to execute business logic in many other
systems, often dynamically bound to me”
  JCA (J2EE Connector Architecture) is not enough
  EAI infrastructures are not enough

A Component now Becomes a Service
Running Outside the Consumer Boundaries

DB

CCI CCI CCI

ERP CRM

Service Service Service

Registry

1
register

Consumer

SOAP SOAP SOAP

XML XML XML

3 invoke
2

Discover and/or Bind

Policies

From Components to (Web) Services

  Requires a client library

  Client / Server
  Extendable
  Stateless

  Fast
  Small to medium

granularity

  Loose coupling via
  Message exchanges
  Policies

  Peer-to-peer
  Composable
  Context independent

  Some overhead
  Medium to coarse

granularity

Web Services: what is changing?

  Loose coupling (of course)
  Web Services don’t require a CCI (Client side

Communication Interface)
  Very few “gears” needed to consume a service

  Web Services can accept message content they do not
fully understand or support

  XML, WSDL
  Web services are very late bound

  Location is independent of the invocation mechanism
  Directories

Web Services: What is Changing?

 Peer-to-peer interactions are possible
 Request / response is an inefficient and very

limiting mode of interaction
 As components coarsen, it is difficult to

differentiate a client from a server

What Happens to the Technical Services
Typically Provided by an Application Server?

 Transaction
 Security
 Connection pooling
 Naming service
 Scalability and failover
 …

 They become the “Service Fabric”

What about the notion of “Container”?
They become Service “Domains”
  The notion of “container” shifts to the notion of

“Domain Controller”
  A domain is a collection of web services which share

some commonalities like a “secure domain”
  A container is a domain with one web service
  Web Services do not always need a container

  Consumers invoke the domain rather than the service
directly

  This concept does not exist in any specification…

A Service Fabric can be more than a Bus
with a series of Containers / Adapters

DB

CCI CCI CCI

ERP CRM

NEP NEP NEP

Consumer

Domain
Controller

Reliable
Messaging

Process

Registry Tx XML XML XML Registry

register

Discover and/or Bind

Policies

Shift To A Service-Oriented Architecture

  Function oriented
  Build to last
  Prolonged development

cycles

  Coordination oriented
  Build to change
  Incrementally built and

deployed

  Application silos
  Tightly coupled
  Object oriented
  Known implementation

  Enterprise solutions
  Loosely coupled
  Message oriented
  Abstraction

Source: Microsoft (Modified)

So Migrating to SOA

 Would entail
  Organizing the business logic in a context

independent way
  Typically, model oriented business logic is

wrapped behind (web) services

 Re-implementing the controller with
“coordination” technologies

 …The view must be completely re-invented

SOA

 A dynamically organized collection of service
assets that are composed in different ways to
present one or more applications.

 Advantages: Loosely couple, based upon
common standards, reuse of existing assets,
rapid assembling of new applications

 Weakness: XML verbose, immature

