
Client-Server Model

Client-Server Model

•  Client application program running on the local
machine requests a service from another
application program – server – running on the
remote machine.

•  Commonly server provides service to any client,
not a particular client

•  Generally, a client application program that
requests a service should run only when it is
needed. A server program providing service
should run all the time, as it does not know when
its services will be needed.

Client-Server Model

•  A client opens the communication channel
using IP address of the remote host and the
port address of the specific server program
running on the host – Active open.

•  Request-response may be repeated several
times, the process is finite.

•  The client closes the communication channel
with an Active close.

Client-Server Model
•  A server program opens its door for incoming

requests from clients but never initiates a service
unless explicitly requested – Passive open.

•  A server program is infinite – runs unless a
problem occurs.

•  Concurrency in client: two or more clients can run
at the same time on a machine – current trend,
alternatively: one client must start, run, and
terminate before another client may start
(iterative).

Client-Server Model
•  Concurrency in server: An iterative server can

process only one request at a time whereas a
concurrent server can process many requests at
the same time – share its time.

•  Connectionless iterative server: the ones that
use UDP are iterative, server uses one single
port, arriving packets wait in line,

•  Connection oriented concurrent server: the
ones that use TCP are normally concurrent,

Client-Server Model

•  A connection is established between server and
each client, remains open until the entire
stream is processed

•  Each connection requires a port and many
connections may remain open simultaneously,

•  Server can use only one well-known port.
•  Solution: use additional ephemeral ports
•  Client makes request through the well-known

port, once the connection is made, server
assigns a temporary port to this connection.

Client-Server Model

•  => well-known port is free to receive requests
for additional connections

•  A program is code (in UNIX) and defines all
the variables and actions to be performed on
those variables.

•  A process is an instance of a program.
•  An OS creates a process when executing a

program, several processes can be created from
one program running concurrently.

Client-Server
1. _ can provide a service.
a) An iterative server
b) A concurrent server
c) A client
d)  (a) and (b)
2. The client program is _ as it terminates after it has been served.
a) Active
b) Passive
c)  Finite
d)  Infinite

Client-Server
3. A connection oriented concurrent server uses _ ports.
a)  Ephemeral
b) Well-known
c) Active
d)  (a) and (b)
4. Machine A requests service X from machine B. Machine B

requests service Y from machine A. What is the total number
of application programs required?

a) One
b) Two
c)  Three
d) Four

Client-Server
5. A server program, once it issues _, waits for clients to request

its service.
a) An active open
b) A passive open
c) An active request
d) A finite open
6. _ processes requests one at a time.
a) An iterative client
b) An iterative server
c) A concurrent client
d) A concurrent server

Client-Server
7.In a connection oriented concurrent server, the _ is used for

connection only.
a)  Ephemeral port
b) Well-known port
c)  Infinite port
d)  (a) and (b)
8. _ is an instance of a _.
a)  Process; service
b) Program; process
c)  Process; program
d) Structure; process

Socket
•  Socket: is a construct that supports network

input/output.
•  An application creates a socket when it needs a

connection to a network.
•  It then establishes a connection to a remote

application via the socket.
•  Communication is achieved by reading data

from the socket and writing data to it.
•  Socket acts as an endpoint.

Socket
•  A socket is defined in the OS as a structure.
•  Simplified socket structure with five fields:

 - Family: defines the protocol group (IPv4, IPv6,
UNIX domain protocols)
 - Type: defines the exchange-type (stream, packet,
raw)
 - Protocol: set to zero for TCP/ UDP
 - Local address: combination of local IP and
application port address.
 - Remote address: combination of remote IP and
application port address.

Socket
•  Stream socket: to be used with connection

oriented protocol (TCP)
•  Datagram socket: to be used with

connectionless protocol (UDP)
•  Raw socket: some protocols (ICMP) directly

use the service of IP. Raw sockets are used in
these applications.

Socket
•  Connectionless iterative server: receives a request

packet from UDP, processes the request, gives
response to the UDP to send to the client,

•  Packets are stored in a queue, and processed in
order of arrival.

•  Server function:
 - Create a socket (asks the OS)
 - Bind (asks the OS to enter information in the
socket related to the server – server socket
binding)

Socket
 - Repeats steps infinitely:
 a) receive a request (asks the OS to wait for a
request to this socket and receive it)
 b) process (by itself)
 c) send (response sent to the client)

• Client function:
 - Create a socket (asks the OS)
 - Repeats steps as long as it has requests:

Socket

 a) send a request (asks the OS)
 b) receive (asks the OS to wait for a response
and deliver it when it has arrived)
 - Destroy (asks the OS to destroy the socket
once requests are exhausted)

Socket

•  Connection oriented concurrent server:
•  A connection for each client, one buffer for

each connection
•  Parent and child server: server running

infinitely accepting connections is parent, after
establishing connection, parent creates child-
server and ephemeral ports to handle the client.

Socket
•  Server function:

 - Create a socket (asks the OS)
 - Bind (asks the OS to enter information in the socket
related to the server – server socket binding)
 - Listen (asks the OS to be passive and listen to the
client
 - Repeats steps infinitely:
 a) Create a child (temporary child process is assigned
to serve the client, parent is free)
 b) create a new socket (to be used by the child
process)

Socket

c) Repeat (the following steps as long as the child
has requests from the client)

 - Read (child reads a stream of bytes from the
connection)

 - Process (the child processes the stream of bytes)
 - write (the child writes the result as a stream of
bytes to the connection)

d) Destroy (asks the OS to destroy the temporary
socket once the client has been served)

Socket
•  Client function:

 - Create a socket
 - Connect (asks the OS to make a connection)
 - Repeats steps as long as it has data to send:
 a) Write (sends a stream of bytes to the server)
 b) Read (receives a stream of bytes from the
server)
 - Destroy (asks the OS to destroy the socket
once it has finished)

Socket
1. The _ socket is used with a connection oriented protocol.
a)  Stream
b)  Datagram
c)  Raw
d)  Remote
2. The _ socket is used with a connectionless protocol.
a)  Stream
b)  Datagram
c)  Raw
d)  Remote

Socket
3. The _ socket is used with a protocol that directly uses the

services of IP.
a)  Stream
b)  Datagram
c)  Raw
d)  Remote
4. A _ server serves multiple clients, handling one request at a

time.
a)  Connection-oriented iterative
b)  Connection-oriented concurrent
c)  Connectionless iterative
d)  Connectionless concurrent

Socket
5. A _ server serves multiple clients simultaneously.
a)  Connection-oriented iterative
b)  Connection-oriented concurrent
c)  Connectionless iterative
d)  Connectionless concurrent

Socket
•  Data structures:

 sockaddr_in
 sin_family: 16-bit integer specifying protocol
 sin_port: 16-bit field specifying port number
(application)
 s_addr: 32-bit Internet address
 hostent
 h_name: character string of text address of host

Socket
 h_alias: alternative names
 h_addrtype: type of address
 h_length: Address length
 h_addr_list: additional addresses

Socket
Socket Commands:
‘socket’ – creates a socket
‘gethostbyname’ – returns a host IP address

 corresponding to a name
 ‘gethostname’ – returns the host name
‘connect’ – requests a connection with a remote

 socket
‘bind’ – assigns an address and port number to a

 socket

Socket
Socket Commands:
‘listen’ – server is ready for connection requests

 and listens for them
‘accept’ – accepts a connection request over a

 socket
 ‘send’ – sends data through a socket
‘recv’ – receives data from a socket
‘close’ – closes a socket

Socket

Does the client or the server or both usually
 execute each of the following socket
 commands?

a. Socket b. connect c. bind d. accept
e. Listen f. send g. recv h. close

Socket

Client server example: outline / framework of
socket related calls

‘client and server run concurrently on different
machines’

Socket
Client:
socket (creates a socket)
…..
gethostbyname (maps remote host name to an IP

address)
……
Connect (issues a connection request to a

specific server on the remote host)
…..

Socket
exchange information using ‘send’ and ‘recv’

commands
…..
close (terminate connection)

Server:
socket (creates a socket)
…..
gethostname (get the local host name)

Socket
gethostbyname (maps the host name to an IP

address)
…..
bind (specifies the IP address and the port

number and associates them with the socket)
…..
listen (puts socket in passive mode; ready to

accept request)
…..

Socket

 accept (accepts a connection request)
 …..
 exchange information using ‘send’ and ‘recv’
commands
 …..
 close (terminates current connection)

