
The	  Gaussian	  Distribu/on	  



Gaussian	  Mean	  and	  Variance	  

(mean) 

(variance) 

(precision – the bigger     is, the smaller      is, 
                    thus the more “precise” the distribution is.) 



The	  Gaussian	  Distribu/on	  

For the normal distribution, the values less than one standard 
deviation away from the mean account for 68.27% of the set; while 
two standard deviations from the mean account for 95.45%; and 
three standard deviations account for 99.73%. 



The	  Mul/variate	  Gaussian	  
Gaussian distribution defined over a D-dimensional vector x of continuous variables: 

where the D-dimensional vector µ is called the mean, the D x D symmetric matrix 
Σ is called the covariance, and |Σ| denotes the determinant of Σ. 



Bayes’	  Theorem	  Recall	  

posterior	  ∝	  likelihood	  ×	  prior	  

In the example of boxes of fruits: (1) sample B, then (2) sample F 
 

  p(B=r | F=o) = p(F=o | B=r) p(B=r) / p(F=o) 
 

        prior: the probability available before we observe the identity of the fruit 
 posterior: the probability obtained after we have observed the identity of the fruit 
likelihood: how probable the observed fruit is for different settings of the boxes 



Warm	  Up	  -‐	  Gaussian	  Parameter	  Es/ma/on	  

Likelihood function for the Gaussian distribution 
i.e. the probability of the data given the parameters 

Goal: Determine the parameters in the above probability distribution using 
          an observed data set x.  

x = (x1, x2, … , xN) are 
drawn independently from 
the Gaussian distribution 
                      . 



Maximum	  (Log)	  Likelihood	  
One common criterion for determining the parameters in a probability 
distribution using an observed data set is to find the parameter values that 
maximize the likelihood function (equivalent to maximizing its log). 

Remark: It would seem more natural to maximize the probability of the 
parameters given the data, not the probability of the data given the 
parameters. In fact, these two criteria are related, as we shall discuss in 
the context of curve fitting. 

sample mean, i.e., the mean 
of the observed values {xn} 

sample variance, measured with 
respect to the sample mean µML 



Proper/es	  of	  	  	  	  	  	  	  	  	  	  and	  	  
The maximum likelihood approach systematically underestimates the 
variance of the distribution – bias. 
Consider the expectations of these quantities w.r.t. the joint distr. over  
x = (x1, x2, … , xN), where each xi comes from Gauss. distr.  

Averaged across the three data sets, the mean is correct, but the variance is 
systematically under-estimated because it is measured relative to the sample 
mean and not relative to the true mean. 

e.g. 

Unbiased estimate for the variance: 



Curve	  FiLng	  Re-‐visited	  

The goal in the curve fitting problem is to be able to make predictions for the 
target variable t given some new value of the input variable x on the basis of 
a set of training data comprising N input values x = (x1, . . . , xN) and their 
corresponding target values t = (t1, . . . , tN). 

Polynomial Curve Fitting: 

Remark: The original (green) function may never be known from given condition. 



Curve	  FiLng	  Re-‐visited	  

1)  Obtain w according to a prior probability p(w) 
2)  For each input x from x1, x2, … , xN distributed uniformly over an interval, 
      generate target value t according to Gauss. distri.  

(precision) where 



Frequen/st	  -‐	  Maximum	  Likelihood	  

Determine	  	  	  	  	  	  	  	  	  	  	  	  by	  minimizing	  sum-‐of-‐squares	  error,	  	  	  	  	  	  	  	  	  	  	  	  	  .	  

(Thus the sum-of-squares error function has arisen as a consequence of  
maximizing likelihood under the assumption of a Gaussian noise distribution.) 

By maximizing the log max. likelihood w.r.t.        :  

Frequentist: w is to be fixed. 

Likelihood function: 



Sum-‐of-‐Squares	  Error	  Func/on	  Recall	  



Predic/ve	  Distribu/on	  
Because we now have a probabilistic model, these are expressed in terms 
of the predictive distribution that gives the probability distribution over t, 
rather than simply a point estimate: 



Towards	  Bayes	  –	  Maximal	  Posterior	  (MAP)	  

where α is the precision of the distribution, and M+1 is the total 
number of elements in the vector w for an Mth order polynomial. 

Bayesian: w is from a probability distribution. 

However, it would seem more natural to maximize the probability of the 
parameters given the data, not the probability of the data given the parameters. 

Recall: Frequentist maximizes the following likelihood function to determine w: 

By Bayes Theorem: 

For simplicity, 

(α is to restrict the magnitude of polynomial coefficients w) 



MAP:	  A	  Step	  towards	  more	  Bayes	  

Now,	  determine	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  by	  minimizing	  regularized	  sum-‐of-‐squares	  error,	  	  	  	  	  	  	  	  	  	  	  	  	  .	  

Goal: Maximize 

where 

and 

By maximizing the log function of RHS, it comes to minimize the following: 

with a regularization parameter given by 



Regulariza/on	  Recall	  

Penalize	  large	  coefficient	  values	  



Bayesian	  Curve	  FiLng	  

Assume that the parameters α and β are fixed and known in advance. 
(In textbook, α = 5 x 10-3, and β = 11.1) 

Given: the training data set x and t, along with a new test point x 
Goal:  predict the value of t,  
           i.e. evaluate the predictive distribution p(t | x, x, t) 

thus,	  	  	  	  	  p(T|X)	  =	  sum	  over	  W	  of	  	  p(T|X,	  W)	  p(W|X)	  	  

By	  generalize	  Bayes	  Theorem,	  	  	  	  	  p(W|T,	  X)	  =	  p(T|X,	  W)	  p(W|X)	  /	  p(T|X)	  

So, by setting X =              , we obtain 



Bayesian	  Curve	  FiLng	  

Assume that the parameters α and β are fixed and known in advance. 
(In textbook, α = 5 x 10-3, and β = 11.1) 

Given: the training data set x and t, along with a new test point x 
Goal:  predict the value of t,  
           i.e. evaluate the predictive distribution p(t | x, x, t) 

Compute 

where 

LHS can be computed by normalizing the RHS. 



Bayesian	  Curve	  FiLng	  

By some calculus, 



Bayesian	  Predic/ve	  Distribu/on	  

The predictive distribution 
resulting from a Bayesian 
treatment of polynomial 
curve fitting using an M = 9 
polynomial, with the fixed 
parameters α = 5x10−3 and 
β = 11.1 (corresponding to 
the known noise variance), 
in which the red curve 
denotes the mean of the 
predictive distribution and 
the red region corresponds 
to       standard deviation 
around the mean. 


