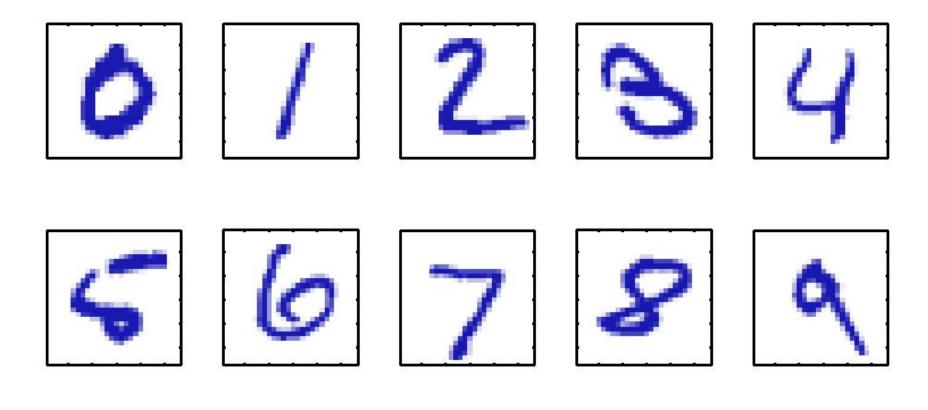
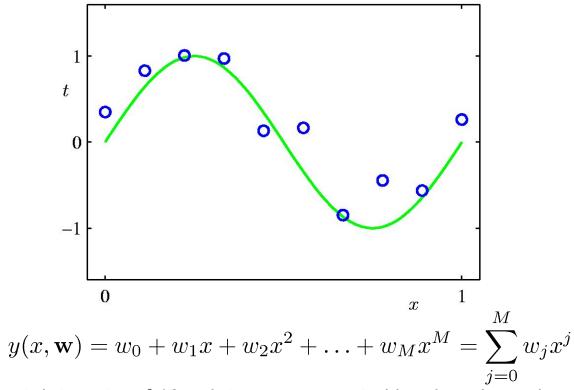


Example

Handwritten Digit Recognition

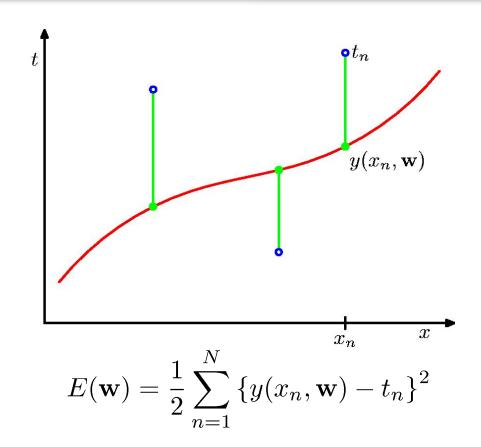


Polynomial Curve Fitting



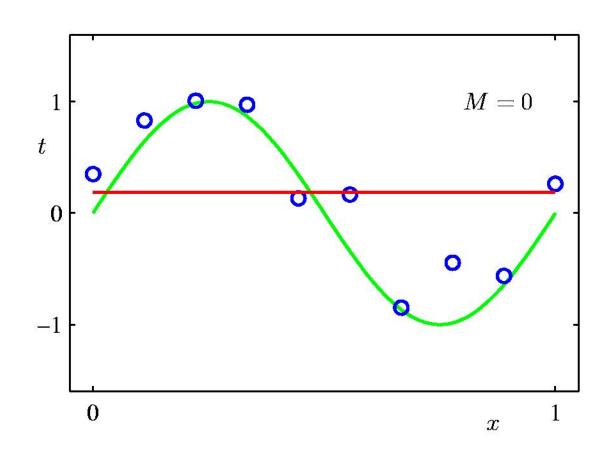
- The input data set x of 10 points was generated by choosing values of x_n , for n = 1, ..., 10, spaced uniformly in range [0, 1].
- The target data set t was obtained by first computing the corresponding values of the function $\sin(2\pi x)$ and then adding a small level of random noise having a Gaussian distribution to each corresponding value t_n .

Sum-of-Squares Error Function

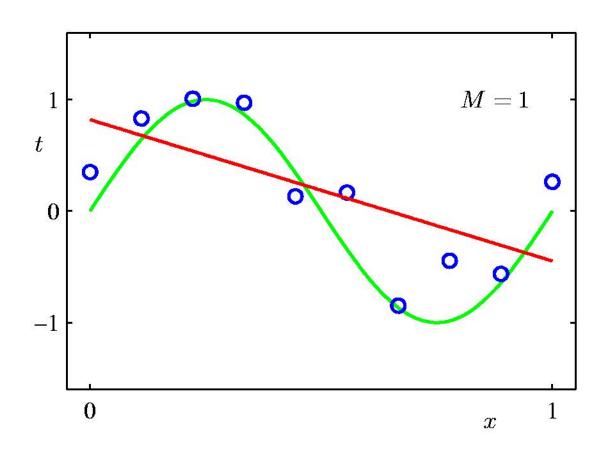


Note: E(w) is a quadratic function w.r.t. each w_i . Thus the partial derivative of E(w) w.r.t. each w_i is a linear function of w's.

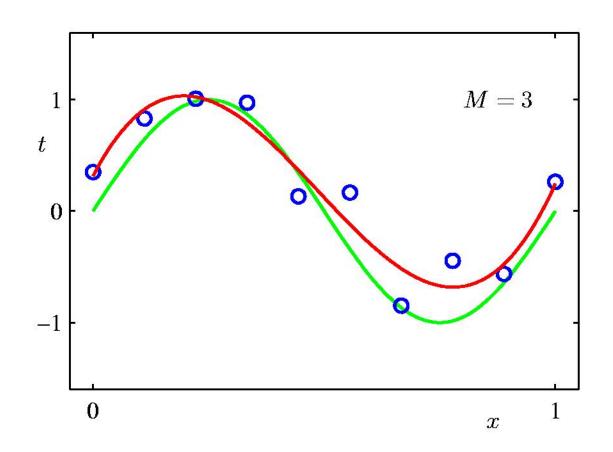
Oth Order Polynomial



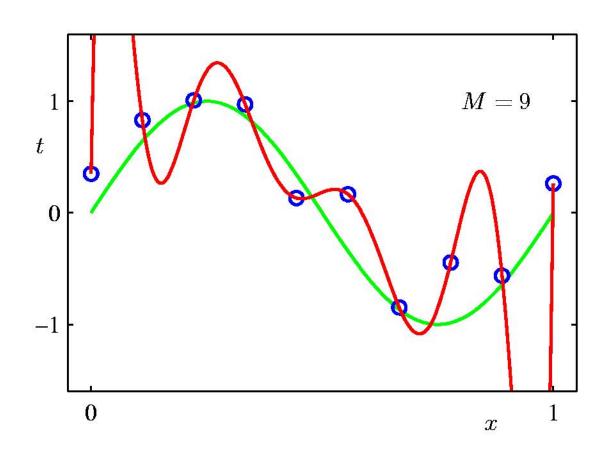
1st Order Polynomial



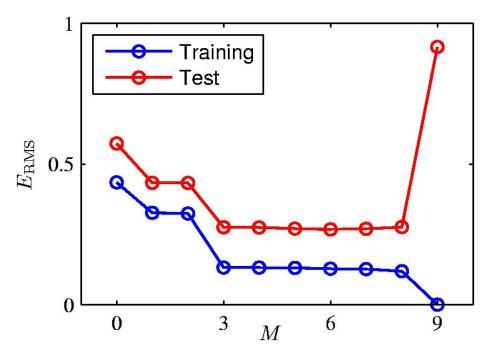
3rd Order Polynomial



9th Order Polynomial



Over-fitting



Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

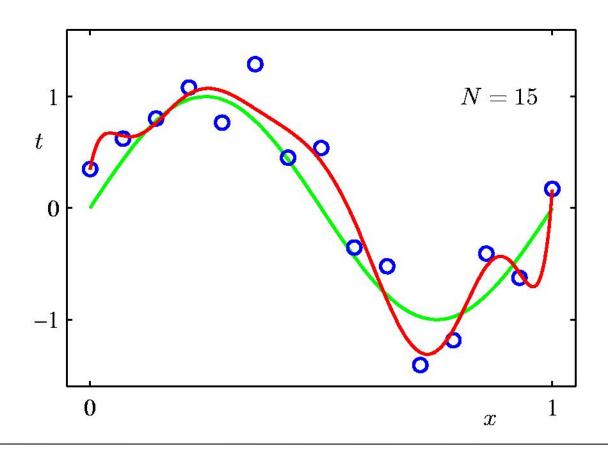
Test set: 100 data points generated using exactly the same procedure used to generate the training set points but with new choices for the random noise values included in the target values t_n .

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

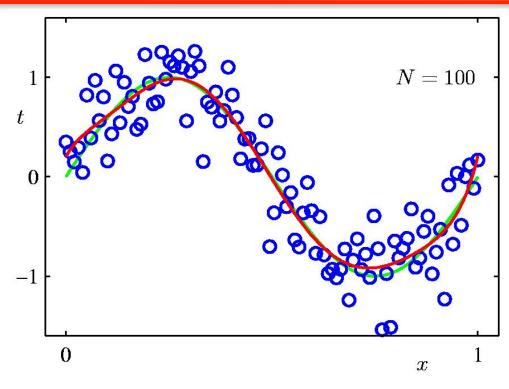
Data Set Size: N=15

9th Order Polynomial



Data Set Size: N = 100

9th Order Polynomial



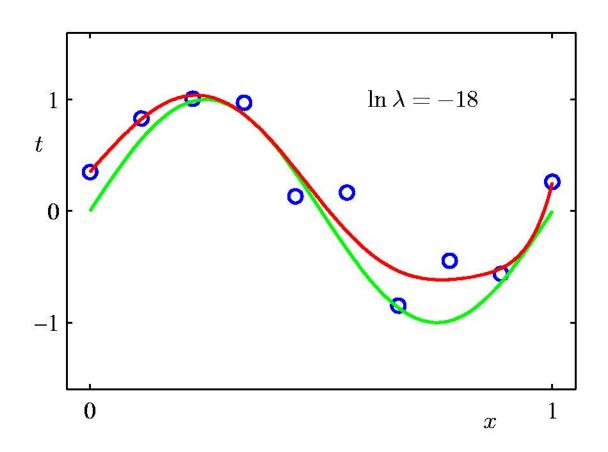
One rough heuristic that is sometimes advocated is that the number of data points should be no less than some multiple (say 5 or 10) of the number of adaptive parameters in the model. (However, the number of parameters is not necessarily the most appropriate measure of model complexity - a measure of how hard it is to learn from limited data.)

Regularization

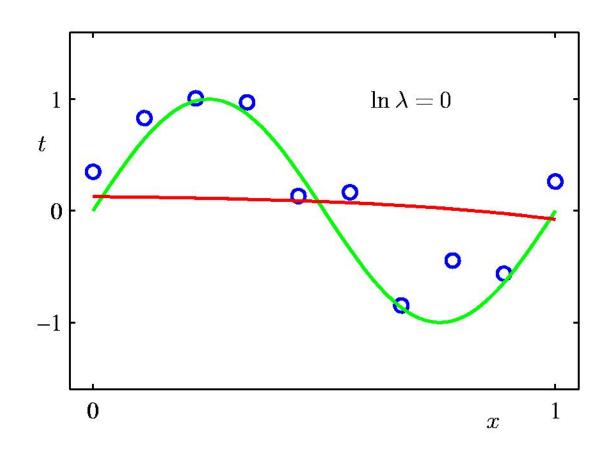
Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

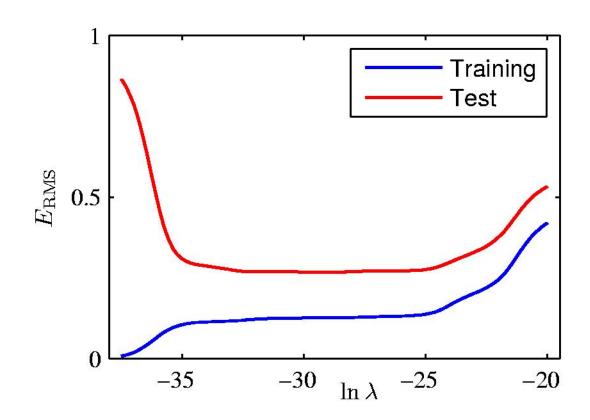
Regularization: $\ln \lambda = -18$



Regularization: $\ln \lambda = 0$



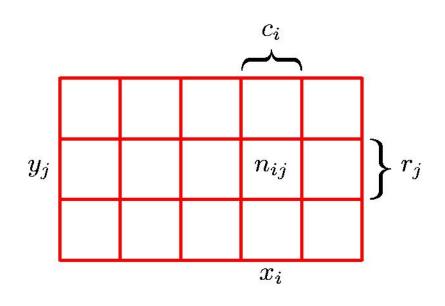
Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$



Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Probability Theory



Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}.$$

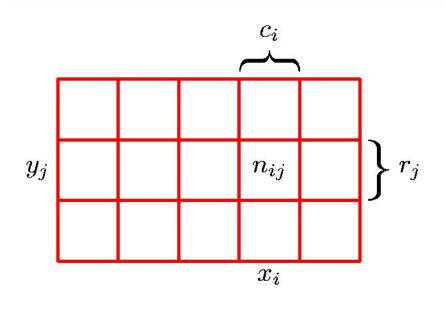
Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Probability Theory



Sum Rule

$$\begin{cases} r_j & p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij} \\ = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \end{cases}$$

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Also:

$$p(X, Y) = p(X | Y) p(Y)$$

Thus:

1.
$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

2.
$$p(Y | X) p(X) = p(X | Y) p(Y)$$

Bayes' Theorem

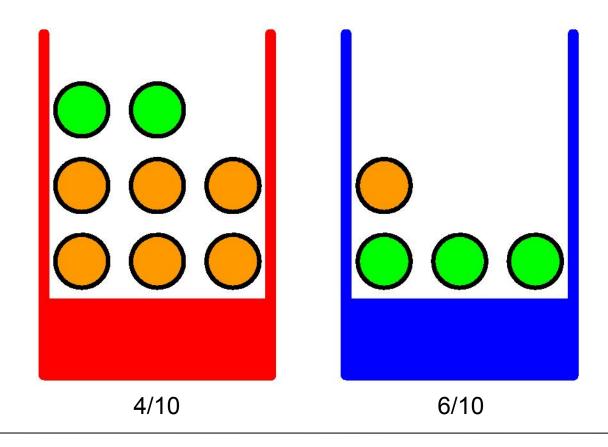
$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior ∝ likelihood × prior

Probability Theory

Apples and Oranges



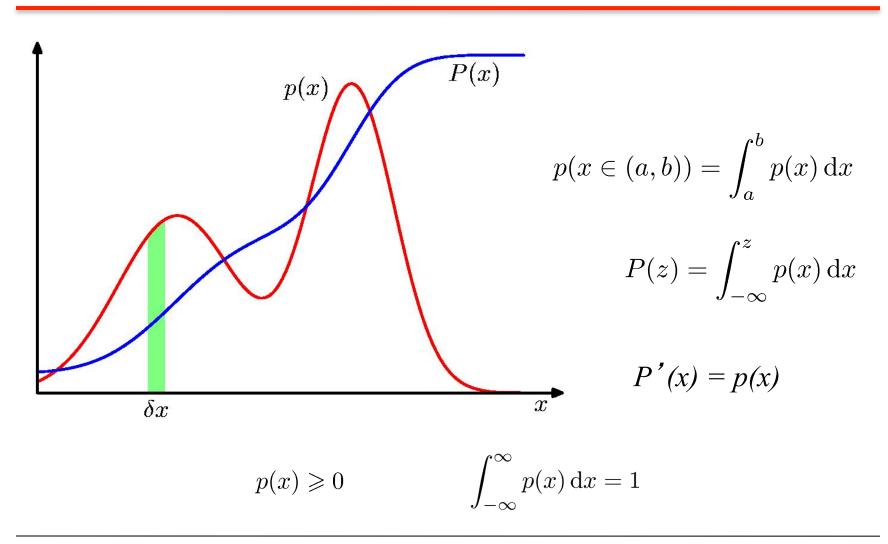
Bayes' Theorem Generalized

$$P(W|T) = p(T|W) p(W) / p(T)$$

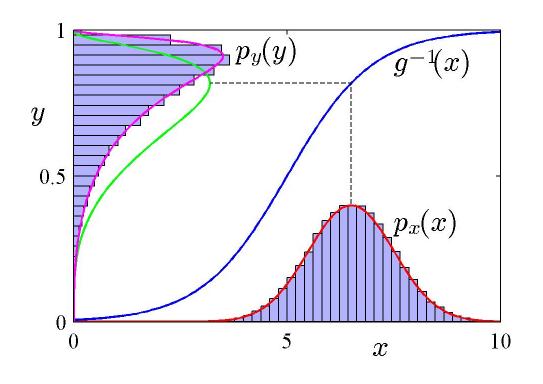
$$P(W|T, X) = p(T|X, W) p(W|X) / p(T|X)$$

$$P(T|X) = sum over W of p(T|X, W) p(W|X)$$

Probability Densities



Transformed Densities



Suppose x = g(y)

$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) |g'(y)|$$

Expectations

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

Variances and Covariances

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^{2}\right] = \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$

$$\operatorname{var}[x] = \mathbb{E}[x^{2}] - \mathbb{E}[x]^{2} = \sigma^{2} \quad \text{(standard deviation's square)}$$

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[\left\{x - \mathbb{E}[x]\right\} \left\{y - \mathbb{E}[y]\right\}\right]$$

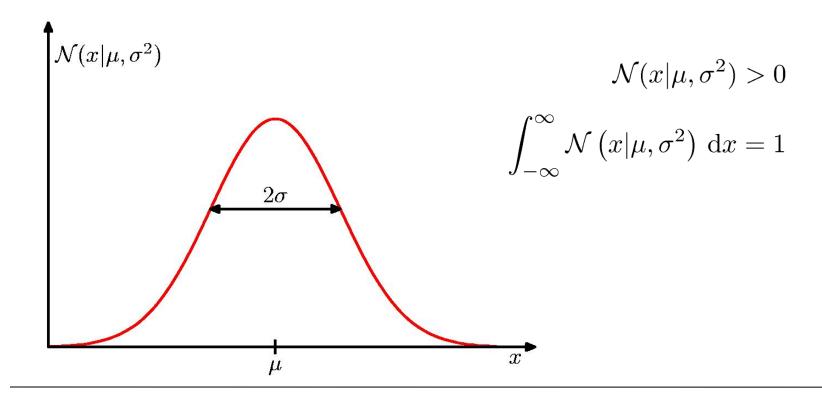
$$= \mathbb{E}_{x, y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\left\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\right\} \left\{\mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}]\right\}\right]$$

 $= \mathbb{E}_{\mathbf{x},\mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathrm{T}}]$ (a symmetric matrix)

The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$



Gaussian Mean and Variance

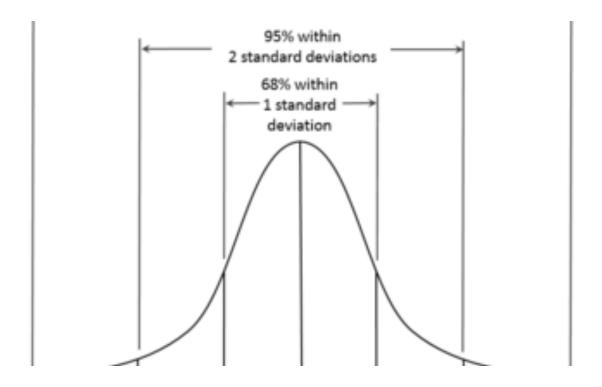
$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) x \, \mathrm{d}x = \mu$$
 (mean)

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$

$$\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$
 (variance)

 $eta=1/\sigma^2$ (precision – the bigger eta is, the smaller σ is, thus the more "precise" the distribution is.)

The Gaussian Distribution



For the normal distribution, the values less than one standard deviation away from the mean account for 68.27% of the set; while two standard deviations from the mean account for 95.45%; and three standard deviations account for 99.73%.

The Multivariate Gaussian

Gaussian distribution defined over a D-dimensional vector x of continuous variables:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

where the **D**-dimensional vector μ is called the mean, the **D** \mathbf{x} **D** symmetric matrix Σ is called the covariance, and $|\Sigma|$ denotes the determinant of Σ .

