PATTERN RECOGNITION
anvo MACHINE LEARNING

CHAPTER 1: INTRODUCTION




Example

Handwritten Digit Recognition
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Polynomial Curve Fitting
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« The input data set x of 10 points was generated by choosing values of x,,,
forn=1,...,10, spaced uniformly in range [0, 1].

« The target data set t was obtained by first computing the corresponding values
of the function sin(21x) and then adding a small level of random noise having
a Gaussian distribution to each corresponding value t,




Sum-of-Squares Error Function
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Note: E(w) is a quadratic function w.r.t. each w,. Thus the partial derivative
of E(w) w.r.t. each w;is a linear function of w’s.

This method is also called Linear Least Squares



Ot" Order Polynomial




15t Order Polynomial




3" Order Polynomial




9th Order Polynomial




Over-fitting

—©— Training
—O— Test

0 3 M 6 9

Root-Mean-Square (RMS) Error: Erus = /2E(w*)/N

Test set: 100 data points generated using exactly the same procedure
used to generate the training set points but with new choices
for the random noise values included in the target values t,.




Polynomial Coefficients

M=0 M=1 M=3 M =9
wg | 019 082  0.31 0.35
wk 1.27  7.99 232.37
w -25.43 -5321.83
wk 17.37  48568.31
w -231639.30
wi 640042.26
wi -1061800.52
wk 1042400.18
wi -557682.99
wy 125201.43




Data Set Size: N =15

9t Order Polynomial




Data Set Size: N =100

9t Order Polynomial

0 1
One rough heuristic that is sometimes advocated is that the number of data
points should be no less than some multiple (say 5 or 10) of the number of
adaptive parameters in the model. (However, the number of parameters is not

necessarily the most appropriate measure of model complexity - a measure of
how hard it is to learn from limited data.)




Regularization

Penalize large coefficient values
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Regularization: In A = —18




Regularization: InA =0




Regularization: Erus VS. In A

Training
Test

y

=35 -30 Tk -25 -20




Polynomial Coefficients

InA\=-00 InA=-18 InA=0
wy 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
w) -231639.30 -3.89 -0.03
wE 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
ws | 1042400.18 -45.95 -0.00
w3 -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01




Probability Theory

Marginal Probability
Yi LZY }Tj NG
p(X =) = .
L
Joint Probability Conditional Probability
pX =2, Y =y;) = -2 p(Y = yj| X = ;) = 2

N .




Probability Theory

Sum Rule

Product Rule




The Rules of Probability

Sum Rule p(X)=> p(X,Y)
Y
Product Rule p(X,Y) = p(Y|X)p(X)
Also: p( X, Y) = p(X|Y)p(Y)
Thus: 1. p(X) =) p(X|Y)p(Y)
Y

2. p(Y| X) p(X) = p(X]Y) p(Y)




Bayes’ Theorem

posterior « likelihood x prior




Probability Theory

Apples and Oranges
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Bayes’ Theorem Generalized

P(WI|T) = p(T|W) p(W) / p(T)

P(W|T, X) = p(T[X, W) p(W[X) / p(T|X)

P(T|X) = sum over W of p(T|X, W) p(W|X)




Probability Densities
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Transformed Densities

Suppose x = g(y)

py(y) = pz(z)




Expectations

Conditional Expectation
(discrete)

Approximate Expectation
(discrete and continuous)




Variances and Covariances

coviz,y] = Eg;,[{z—Elz]}{y —Ely]}]
= ]Ex,y[xy] — E[z]E[y]

covlx,y] = Exy [{x-Ex]}{y' —Ely"']}]
— Ex,y[xyT] _ E[x]E[yT] (a symmetric matrix)




The Gaussian Distribution
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N (@l o?) = o e { ~5 (e — 02}

Nl Nzl 0%) > 0

/ N (z|p,0?) dz =1
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Gaussian Mean and Variance

Elx] = /OO N (z|p,0?) xdz = p (mean)
E[z?] = /OO N (z|p, %) 2° dz = p* + o*
var[z] = E[2?] — E[z]? = ¢® (variance)

[ = l/a2 (precision — the bigger [3 is, the smaller O is,
thus the more “precise” the distribution is.)




The Gaussian Distribution

95% within
2 standard deviations

68% within
«— 1 standard —*
deviation

For the normal distribution, the values less than one standard
deviation away from the mean account for 68.27% of the set; while

two standard deviations from the mean account for 95.45%: and
three standard deviations account for 99.73%.




The Multivariate Gaussian

Gaussian distribution defined over a D-dimensional vector x of continuous variables:

N, %) = i s e { =5 x-S - ) |

where the D-dimensional vector p is called the mean, the D x D symmetric matrix
2 is called the covariance, and || denotes the determinant of 2.
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