
1

Introduction to Neural Networks

2

What are (Artificial) Neural Networks?

  Models of the brain and nervous system

  Highly parallel
  Process information much more like the brain than a serial

computer

  Learning

  Very simple principles

  Very complex behaviours

  Applications
  As powerful problem solvers
  As biological models

3

Basic Input-Output Transformation

Input
Spikes!

Output
Spike!

(Excitatory Post-Synaptic Potential)!

4

McCulloch–Pitts “neuron” (1943)

  Attributes of neuron
  m binary inputs and 1 binary output (simplified model)
  Synaptic weights wij
  Threshold µi

5

McCulloch–Pitts Neural Networks

  Synchronous discrete time operation
  Time quantized in units of synaptic delay

  Output is 1 if and only if weighted
sum of inputs is greater than threshold
Θ(x) = 1 if x ≥ 0 and 0 if x < 0
(Θ, the output function, is called activation function)

  Remarks:
  Behavior of network can be simulated by a finite automaton (FA)
  Any FA can be simulated by a McCulloch-Pitts Network

ni t +1() =Θ wijnj t()
j
∑ −µi

$

%
&
&

'

(
)
) n i

w i j

i

ij

i

≡
≡
=

=

output of unit
step function
weight from unit to
threshold

Θ

µ
j to i

6

Properties of Artificial Neural Networks

  High level abstraction of neural input-output transformation
  Inputs à weighted sum of inputs à nonlinear function à output

  Often used where data or functions are uncertain
  Goal is to learn from a set of training data
  And to generalize from learned instances to new unseen data

  Key attributes
  Parallel computation
  Distributed representation and storage of data
  Learning (networks adapt themselves to solve a problem)
  Fault tolerance (insensitive to component failures)

7

Topologies of Neural Networks

completely
connected feedforward

(directed, a-cyclic)
recurrent

(feedback connections)

8

Networks Types

  Feedforward versus recurrent networks
  Feedforward: No loops, input à hidden layers à output
  Recurrent: Use feedback (positive or negative)

  Continuous versus spiking
  Continuous networks model mean spike rate (firing rate)

  Assume spikes are integrated over time
  Consistent with rate-code model of neural coding

  Supervised versus unsupervised learning
  Supervised networks use a “teacher”

  The desired output for each input is provided by user
  Unsupervised networks find hidden statistical patterns in input data

  Clustering, principal component analysis

9

History

  1943: McCulloch–Pitts “neuron”
  Started the field

  1962: Rosenblatt’s perceptron
  Learned its own weight values; convergence proof

  1969: Minsky & Papert book on perceptrons
  Proved limitations of single-layer perceptron networks

  1982: Hopfield and convergence in symmetric networks
  Introduced energy-function concept

  1986: Backpropagation of errors
  Method for training multilayer networks

  Present: Probabilistic interpretations, Bayesian and spiking networks

10

Perceptrons

  In machine learning, the perceptron is an algorithm for supervised
learning of binary classifiers: functions that can decide whether an input
(represented by a vector of numbers) belongs to one class or another.

  Attributes
  Layered feedforward networks
  Supervised learning

  Hebbian: Adjust weights to enforce correlations
  Parameters: weights wij
  Binary output = Θ(weighted sum of inputs)

  Take wo to be the threshold with fixed input –1.
Outputi =Θ wijξ j

j
∑
#

$
%
%

&

'
(
(

Multilayer Single-layer

11

Training Perceptrons to Compute a Function

  Given inputs ξj to neuron i and desired output Yi, find its weight values
by iterative improvement:
1. Feed an input pattern
2. Is the binary output correct?

⇒Yes: Go to the next pattern
⇒ No: Modify the connection weights using error signal (Yi – Oi)
⇒ Increase weight if neuron didn’t fire when it should have and vice versa

  Learning rule is Hebbian (based on input/output correlation)
  This update rule is in fact the stochastic gradient descent update for linear

regression, converging to least square error.
  converges in a finite number of steps if a solution exists
  Used in ADALINE (adaptive linear neuron) networks

η

ξ

≡

≡

≡

≡

learning rate
input

desired output
actual output

j

i

i

Y
O

12

Computational Power of Perceptrons

  Consider a single-layer perceptron
  Assume threshold units
  Assume binary inputs and outputs
  Weighted sum forms a linear hyperplane

  Consider a single output network with two inputs
  Only functions that are linearly separable can be computed
  Example: AND is linearly separable

wij j
j

ξ∑ = 0

ξo = −1

13

Linear inseparability

  Single-layer perceptron with threshold units fails if problem
is not linearly separable
  Example: XOR

  Can use other tricks (e.g.
complicated threshold
functions) but complexity
blows up

  Minsky and Papert’s book
showing these negative results
was very influential

14

Solution in 1980s: Multilayer perceptrons

  Removes many limitations of single-layer networks
  Can solve XOR

  Exercise: Draw a two-layer perceptron that computes the
XOR function
  2 binary inputs ξ1 and ξ2
  1 binary output
  One “hidden” layer
  Find the appropriate

 weights and threshold

15

Solution in 1980s: Multilayer perceptrons

  Examples of two-layer perceptrons that compute XOR

  E.g. Right side network
  Output is 1 if and only if x + y – 2(x + y – 1.5 > 0) – 0.5 > 0

x y

16

Multilayer Perceptron

Input nodes

Output neurons

} One or more
layers of
hidden units
(hidden layers)

ae
ag β−+
=
1
1)(

a

Ψ(a)
1

The most common
output function
(Sigmoid):

(non-linear
squashing function)

g(a)

17

x y

out

x

y

1

1

2

1 2

2
1

1
1− 1−

2

1−

1−1

2
1

− ?

Example: Perceptrons as Constraint Satisfaction Networks

18

x y

out

x

y

1

1

2

1 2

0
2
11 >−+ yx

0
2
11 <−+ yx

=0

=1

2
1

1
1−

Example: Perceptrons as Constraint Satisfaction Networks

19

x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

=0

=0 =1

=1

1−

2

1−

Example: Perceptrons as Constraint Satisfaction Networks

20
x y

out

x

y

1

1

2

1 2

=0

=0 =1

=1
1−1

2
1

− -
2
1

− >0

Example: Perceptrons as Constraint Satisfaction Networks

21
x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

0
2
11 >−+ yx

0
2
11 <−+ yx

=0

=0 =1

=1

2
1

1
1− 1−

2

1−

1−1

2
1

−

Perceptrons as Constraint Satisfaction Networks

22

Learning networks

  We want networks that configure themselves
  Learn from the input data or from training examples
  Generalize from learned data

Can this network configure itself
to solve a problem?

How do we train it?

23

Gradient-descent learning

  Use a differentiable activation function
  Try a continuous function f () instead of Θ()

  First guess: Use a linear unit (without activation function f ())
  Define an error function (cost function or “energy” function)

  Changes weights in the direction of smaller errors
  Minimizes the mean-squared error over input patterns µ
  Called Delta rule = adaline rule = Widrow-Hoff rule = LMS rule

E =
1
2

Yi
u − wijξ j

j
∑

#

$
%
%

&

'
(
(u

∑
i
∑

2

Then Δwij =−η
∂E
∂wij

=η Yi
u − wijξ j

j
∑

%

&
'
'

(

)
*
*u

∑ ξ j

The idea is to make the
change of the weight
proportional to the negative
derivative of the error.

µ

µ µ , wij=wij+Δwij

24

Gradient-descent learning

About learning rate :

In order for Gradient Descent to work we must set η to an
appropriate value. This parameter determines how fast or
slow we will move towards the optimal weights. If the η is
very large we will skip the optimal solution. If it is too small
we will need too many iterations to converge to the best values.
So using a good η is crucial.

Then Δwij =−η
∂E
∂wij

=η Yi
u − wijξ j

j
∑

%

&
'
'

(

)
*
*u

∑ ξ j
µ µ

25

Backpropagation of errors

  Use a nonlinear, differentiable activation function
  Such as a sigmoid

 [f’ = ρ f (1-f)]

  Use a multilayer feedforward network
  Outputs are differentiable functions of the inputs

  Result: Can propagate credit/blame back to internal nodes
  Chain rule (calculus) gives Δwij for internal “hidden” nodes
  Based on gradient-descent learning

f ≡ 1
1+ exp −ρh()

 where h ≡ wijξ j
j
∑

26

Backpropagation

. . .

x1 x2 xn

vjk

hj

wij

yi

27

Backpropagation

  When a learning pattern is clamped, the activation
values are propagated to the output units, and the
actual network output is compared with the desired
output values, we usually end up with an error in each
of the output units. Let's call this error eo for a particular
output unit o. We have to bring eo to zero.

28

Backpropagation

  Remark:

Generally, there are two modes of learning/training to
choose from: on-line and batch.

In on-line training, each propagation is followed
immediately by a weight update.

In batch training, many propagations occur before
updating the weights.

29

Backpropagation

  The simplest method to do this is the greedy method:
we strive to change the connections in the neural
network in such a way that, next time around, the error
eo will be zero for this particular pattern. We know from
the delta rule that, in order to reduce an error, we have
to adapt its incoming weights according to the
equation:

Δwij = -η ∂Ε / ∂wij

30

Backpropagation

  In order to adapt the weights from input to hidden units,
we again want to apply the delta rule. In this case,
however, we do not have a value for the hidden units.

31

Backpropagation

  Calculate the activation of the hidden units

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

n

k
kjkj xvfh

0

32

Backpropagation

  And the activation of the output units

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=0j
jiji hwfy

33

Backpropagation

  If we have µ pattern to learn (µ is from 1 or more training
patterns – batch training), the error is

()

2

0
2
1

2

2
1

2
2
1

∑∑ ∑ ∑

∑∑ ∑

∑∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=−=

=µ

µµ

µ

µµ

µ

µµ

i j

n

k
jkiji

i j
iji

i
ii

k

j

xvfwft

hwft

ytE (ti is target output
for output unit i)

34

Backpropagation

Δwij = −η
∂E
∂wij

=

=η ti
µ − yi

µ()
µ

∑ f '
.
Ai
µ()h j

µ=

=η δi
µ

µ

∑ h j
µ

δi
µ = ti

µ − yi
µ() f '

.
Ai
µ()

where Ai is the activation (weighted
sum of inputs) of output unit i, and

35

Backpropagation

Δvjk = −η
∂E
∂vjk

= −η
∂E
∂hj

µ
µ

∑
∂hj

µ

∂vjk
=

=η ti
µ − yi

µ() f '
.

.

Ai
µ()wij

i
∑

µ

∑ f ' Aj
µ() xkµ =

=η δi
µwij f ' Aj

µ() xkµ
i
∑

µ

∑
where Aj is the activation (weighted
sum of inputs) of hidden unit j.

36

Backpropagation

  The weight correction is given by :

Δwmn =η δm
µxn

µ

µ

∑

δm
µ = tm

µ − ym
µ() f ' Amµ()

δm
µ = f ' Am

µ() wsmδs
µ

s
∑

where

if m is the output layer

if m is a hidden layer

or

(where s runs through all output units)

37

Backpropagation

  For

δm
µ = tm

µ − ym
µ() f ' Amµ() = tm

µ − ym
µ()ρymµ (1− ymµ)

δm
µ = f ' Am

µ() wsmδs
µ

s
∑ = ρhm

µ (1− hm
µ) wsmδs

µ

s
∑

Therefore, if m is the output layer

and if m is a hidden layer

f (x) = 1
1+ exp −ρx()

 , we have f’(x) = ρ f(x) (1-f(x))

(where s runs through all output units)

38

Backpropagation

  For example, if (1)

δm = tm − ym() ym (1− ym)

δm = hm (1− hm) wsmδs
s
∑

Then, if m is the output layer

and if m is an hidden layer

f (x) = 1
1+ exp −x()

 (that is, when ρ = 1)

and (2) µ is from a training batch containing only one
 training pattern (i.e. now like online training)

Δwmn =η δm
µxn

µ

µ

∑ =ηδmxn
So,

wmn = wmn +Δwmnand the new weight

39

Backpropagation Algorithm

initialize network weights (often small random values)
 do
 for each batch of training patterns //on-line if only 1 pattern/batch
 compute error E at the output units
 compute Δwij for all weights from hidden layer to output layer

 // backward pass
 compute Δvjk for all weights from input layer to hidden layer

 // backward pass continued
 wij = wij + Δwij and vjk = vjk + Δvjk
 //update network weights
 until E is less than the target error
return the network

42

Backpropagation

  Can be extended to arbitrary number of layers but three is most
commonly used

  Can approximate arbitrary functions: crucial issues are
  generalization to examples not in test data set
  number of hidden units
  number of samples
  speed of convergence to a stable set of weights (sometimes a momentum

term α Δwpq is added to the learning rule to speed up learning)

43

Hopfield networks

  Act as “autoassociative” memories to store patterns
  McCulloch-Pitts neurons with outputs -1 or 1, and threshold Θ	

  All neurons connected to each other
  Symmetric weights (wij = wji) and wii = 0

  Asynchronous updating of outputs
  Let si be the state of unit i
  At each time step, pick a random unit
  Set si to 1 if Σj wij sj ≥ Θi; otherwise, set si to -1

completely
connected

44

Hopfield networks

  Hopfield showed that asynchronous updating in symmetric
networks minimizes an “energy” function and leads to a
stable final state for a given initial state

  Define an energy function (analogous to the gradient descent
error function)
  E = -1/2 Σi,j wij si sj + Σi si Θi

  Suppose a random unit i was updated: E always decreases!
  If si is initially –1 and Σj wij sj > Θi, then si becomes +1

  Change in E = -1/2 Σj (wij sj + wji sj) + Θi = - Σj wij sj + Θi < 0 !!
  If si is initially +1 and Σj wij sj < Θi, then si becomes -1

  Change in E = 1/2 Σj (wij sj + wji sj) - Θ i = Σj wij sj - Θi < 0 !!

45

Hopfield networks

  Note: Network converges to local minima which store
different patterns.

  Store p N-dimensional pattern vectors x1, …, xp using
Hebbian learning rule:
  wji = 1/N Σm=1,..,p x m,j x m,i for all j ≠ i; 0 for j = i
  W = 1/N Σm=1,..,p x m x mT (outer product of vectors; diagonal zero)

  T denotes vector transpose

x4

x1

46

Pattern Completion in a Hopfield Network

à

Local minimum
(“attractor”)
of energy function
stores pattern

47

Radial Basis Function Networks

input nodes

output neurons

one layer of
hidden neurons

48

Radial Basis Function Networks

propagation function:

∑
=

−=
n

i
jiij xa

1

2
,)(µ

input nodes

output neurons

49

Radial Basis Function Networks

2

2

2)(σ

a

eah
−

=

output function:
(Gauss’ bell-shaped function)

a

Ψ(a)

input nodes

output neurons

h(a)

50

Radial Basis Function Networks

output of network:

∑=
i

ijij hw ,out

input nodes

output neurons

51

RBF networks

  Radial basis functions
  Hidden units store means and

variances
  Hidden units compute a

Gaussian function of inputs
x1,…xn that constitute the
input vector x

  Learn weights wi, means µi,
and variances σi by
minimizing squared error
function (gradient descent
learning)

52

RBF Networks and Multilayer Perceptrons

RBF: MLP:

input nodes

output neurons

53

Recurrent networks

  Employ feedback (positive, negative, or both)
  Not necessarily stable

  Symmetric connections can ensure stability

  Why use recurrent networks?
  Can learn temporal patterns (time series or oscillations)
  Biologically realistic

  Majority of connections to neurons in cerebral cortex are
feedback connections from local or distant neurons

  Examples
  Hopfield network
  Boltzmann machine (Hopfield-like net with input & output units)
  Recurrent backpropagation networks: for small sequences, unfold

network in time dimension and use backpropagation learning

54

Recurrent networks (con’t)

  Example
  Elman networks

  Partially recurrent
  Context units keep

internal memory of part
inputs

  Fixed context weights
  Backpropagation for

learning
  E.g. Can disambiguate

AàBàC and CàBàA

Elman network

55

Unsupervised Networks

  No feedback to say how output differs from desired output
(no error signal) or even whether output was right or wrong

  Network must discover patterns in the input data by itself
  Only works if there are redundancies in the input data
  Network self-organizes to find these redundancies

  Clustering: Decide which group an input belongs to
  Synaptic weights of one neuron represents one group

  Principal Component Analysis: Finds the principal eigenvector of
data covariance matrix

  Hebb rule performs PCA! (Oja, 1982)
  Δwi = η ξiy
  Output y = Σi wi ξi

56

Self-Organizing Maps (Kohonen Maps)

  Feature maps
  Competitive networks
  Neurons have locations
  For each input, winner is

the unit with largest output
  Weights of winner and

nearby units modified to
resemble input pattern

  Nearby inputs are thus
mapped topographically

  Biological relevance
  Retinotopic map
  Somatosensory map
  Tonotopic map

63

Summary: Biology and Neural Networks

  So many similarities
  Information is contained in synaptic connections
  Network learns to perform specific functions
  Network generalizes to new inputs

  But NNs are woefully inadequate compared with biology
  Simplistic model of neuron and synapse, implausible learning rules
  Hard to train large networks
  Network construction (structure, learning rate etc.) is a heuristic art

  One obvious difference: Spike representation
  Recent models explore spikes and spike-timing dependent plasticity

  Other Recent Trends: Probabilistic approach
  NNs as Bayesian networks (allows principled derivation of dynamics,

learning rules, and even structure of network)
  Not clear how neurons encode probabilities in spikes

64

References on ANN and Stock Prediction

http://www.cs.berkeley.edu/~akar/IITK_website/
EE671/report_stock.pdf

http://www.cs.ucsb.edu/~nanli/publications/
stock_pattern.pdf

and the references in the papers above

