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Introduction to Neural Networks 
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What are (Artificial) Neural Networks? 

  Models of the brain and nervous system 

  Highly parallel 
  Process information much more like the brain than a serial 

computer 

  Learning 
 

  Very simple principles 

  Very complex behaviours 

  Applications 
  As powerful problem solvers 
  As biological models 
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Basic Input-Output Transformation 

Input 
Spikes!

Output 
Spike!

(Excitatory Post-Synaptic Potential)!
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McCulloch–Pitts “neuron” (1943) 

  Attributes of neuron 
  m binary inputs and 1 binary output (simplified model) 
  Synaptic weights wij 
  Threshold µi 
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McCulloch–Pitts Neural Networks 

  Synchronous discrete time operation  
  Time quantized in units of synaptic delay 

  Output is 1 if and only if weighted 
sum of inputs is greater than threshold 
Θ(x) = 1 if x ≥ 0 and 0 if x < 0 
(Θ, the output function, is called activation function) 
 

  Remarks: 
  Behavior of network can be simulated by a finite automaton (FA) 
  Any FA can be simulated by a McCulloch-Pitts Network 
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Properties of Artificial Neural Networks 

  High level abstraction of neural input-output transformation 
  Inputs à weighted sum of inputs à nonlinear function à output 

  Often used where data or functions are uncertain 
  Goal is to learn from a set of training data 
  And to generalize from learned instances to new unseen data 

  Key attributes 
  Parallel computation 
  Distributed representation and storage of data 
  Learning (networks adapt themselves to solve a problem) 
  Fault tolerance (insensitive to component failures) 
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Topologies of Neural Networks 

completely 
connected feedforward 

(directed, a-cyclic) 
recurrent 

(feedback connections) 
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Networks Types 

  Feedforward versus recurrent networks 
  Feedforward: No loops, input à hidden layers à output 
  Recurrent: Use feedback (positive or negative) 

  Continuous versus spiking 
  Continuous networks model mean spike rate (firing rate) 

  Assume spikes are integrated over time 
   Consistent with rate-code model of neural coding  

  Supervised versus unsupervised learning 
  Supervised networks use a “teacher” 

  The desired output for each input is provided by user 
  Unsupervised networks find hidden statistical patterns in input data 

  Clustering, principal component analysis 
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History 

  1943: McCulloch–Pitts “neuron” 
  Started the field 

  1962: Rosenblatt’s perceptron 
  Learned its own weight values; convergence proof 

  1969: Minsky & Papert book on perceptrons 
  Proved limitations of single-layer perceptron networks 

  1982: Hopfield and convergence in symmetric networks 
  Introduced energy-function concept 

  1986: Backpropagation of errors 
  Method for training multilayer networks 

  Present: Probabilistic interpretations, Bayesian and spiking networks 



10 

Perceptrons 

  In machine learning, the perceptron is an algorithm for supervised 
learning of binary classifiers: functions that can decide whether an input 
(represented by a vector of numbers) belongs to one class or another. 

  Attributes 
  Layered feedforward networks 
  Supervised learning 

  Hebbian: Adjust weights to enforce correlations 
  Parameters: weights wij 
  Binary output = Θ(weighted sum of inputs) 

  Take wo to be the threshold with fixed input –1. 
Outputi =Θ wijξ j
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Training Perceptrons to Compute a Function 

  Given inputs ξj to neuron i and desired output Yi, find its weight values 
by iterative improvement: 
1.  Feed an input pattern 
2.  Is the binary output correct? 

⇒Yes: Go to the next pattern 
⇒ No: Modify the connection weights using error signal (Yi – Oi) 
⇒ Increase weight if neuron didn’t fire when it should have and vice versa 

  Learning rule is Hebbian (based on input/output correlation) 
  This update rule is in fact the stochastic gradient descent update for linear 

regression, converging to least square error. 
  converges in a finite number of steps if a solution exists 
  Used in ADALINE (adaptive linear neuron) networks 
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Computational Power of Perceptrons 

  Consider a single-layer perceptron 
  Assume threshold units 
  Assume binary inputs and outputs 
  Weighted sum forms a linear hyperplane 

  Consider a single output network with two inputs 
  Only functions that are linearly separable can be computed 
  Example: AND is linearly separable 
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Linear inseparability 

  Single-layer perceptron with threshold units fails if problem 
is not linearly separable 
  Example: XOR 

  Can use other tricks (e.g. 
complicated threshold 
functions) but complexity 
blows up 

  Minsky and Papert’s book 
showing these negative results 
was very influential 
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Solution in 1980s: Multilayer perceptrons 

  Removes many limitations of single-layer networks 
  Can solve XOR 

  Exercise: Draw a two-layer perceptron that computes the 
XOR function 
  2 binary inputs ξ1 and ξ2 
  1 binary output 
  One “hidden” layer 
  Find the appropriate 

 weights and threshold 
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Solution in 1980s: Multilayer perceptrons 

  Examples of two-layer perceptrons that compute XOR 

  E.g. Right side network  
  Output is 1 if and only if x + y – 2(x + y – 1.5 > 0) – 0.5 > 0 

x y 
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Multilayer Perceptron 

Input nodes 

Output neurons 

} One or more 
layers of 
hidden units 
(hidden layers) 
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Example: Perceptrons as Constraint Satisfaction Networks 
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Learning networks 

  We want networks that configure themselves 
  Learn from the input data or from training examples 
  Generalize from learned data 

Can this network configure itself 
to solve a problem? 
 
How do we train it? 
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Gradient-descent learning 

  Use a differentiable activation function  
  Try a continuous function f ( ) instead of Θ( ) 

  First guess: Use a linear unit (without activation function f ( ) ) 
  Define an error function (cost function or “energy” function) 

  Changes weights in the direction of smaller errors 
  Minimizes the mean-squared error over input patterns µ 
  Called Delta rule = adaline rule = Widrow-Hoff rule = LMS rule 
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Gradient-descent learning 

About learning rate     : 

In order for Gradient Descent to work we must set η to an  
appropriate value. This parameter determines how fast or  
slow we will move towards the optimal weights. If the η is  
very large we will skip the optimal solution. If it is too small  
we will need too many iterations to converge to the best values.  
So using a good η is crucial. 
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Backpropagation of errors 

  Use a nonlinear, differentiable activation function 
  Such as a sigmoid 

             [ f’ = ρ f (1-f) ] 

  Use a multilayer feedforward network 
  Outputs are differentiable functions of the inputs 

  Result: Can propagate credit/blame back to internal nodes 
  Chain rule (calculus) gives Δwij for internal “hidden” nodes 
  Based on gradient-descent learning  

f ≡ 1
1+ exp −ρh( )

          where  h ≡ wijξ j
j
∑
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Backpropagation 

. . .  

x1 x2 xn 

vjk 

hj 

wij 

yi 
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Backpropagation 

  When a learning pattern is clamped, the activation 
values are propagated to the output units, and the 
actual network output is compared with the desired 
output values, we usually end up with an error in each 
of the output units. Let's call this error eo for a particular 
output unit o. We have to bring eo to zero. 
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Backpropagation 

  Remark: 
 

Generally, there are two modes of learning/training to 
choose from: on-line and batch.  
 
In on-line training, each propagation is followed 
immediately by a weight update.  
 
In batch training, many propagations occur before 
updating the weights. 
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Backpropagation 

  The simplest method to do this is the greedy method: 
we strive to change the connections in the neural 
network in such a way that, next time around, the error 
eo will be zero for this particular pattern. We know from 
the delta rule that, in order to reduce an error, we have 
to adapt its incoming weights according to the 
equation: 

Δwij = -η ∂Ε / ∂wij  
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Backpropagation 

  In order to adapt the weights from input to hidden units, 
we again want to apply the delta rule. In this case, 
however, we do not have a value for the hidden units. 
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Backpropagation 

  Calculate the activation of the hidden units 
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Backpropagation 

  And the activation of the output units 
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Backpropagation 

  If we have µ pattern to learn (µ is from 1 or more training 
patterns – batch training), the error is 
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Backpropagation 
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Backpropagation 

Δvjk = −η
∂E
∂vjk

= −η
∂E
∂hj

µ
µ

∑
∂hj

µ

∂vjk
=

=η ti
µ − yi

µ( ) f '
.

.

Ai
µ( )wij

i
∑

µ

∑ f ' Aj
µ( ) xkµ =

=η δi
µwij f ' Aj

µ( ) xkµ
i
∑

µ

∑
where Aj is the activation (weighted 
sum of inputs) of hidden unit j.  
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Backpropagation  

  The weight correction is given by : 

Δwmn =η δm
µxn

µ

µ

∑
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µ = tm

µ − ym
µ( ) f ' Amµ( )

δm
µ = f ' Am

µ( ) wsmδs
µ

s
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where  

if m is the output layer 

if m is a hidden layer   

or  

(where s runs through all output units) 
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Backpropagation  

  For  

δm
µ = tm

µ − ym
µ( ) f ' Amµ( ) = tm

µ − ym
µ( )ρymµ (1− ymµ )

δm
µ = f ' Am

µ( ) wsmδs
µ
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µ (1− hm
µ ) wsmδs

µ
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Therefore, if m is the output layer 
 

and if m is a hidden layer   

f (x) = 1
1+ exp −ρx( )

 ,   we have f’(x) = ρ f(x) (1-f(x))  

(where s runs through all output units) 
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Backpropagation  

  For example, if  (1) 

δm = tm − ym( ) ym (1− ym )

δm = hm (1− hm ) wsmδs
s
∑

Then, if m is the output layer 
 

and if m is an hidden layer   

f (x) = 1
1+ exp −x( )

 (that is, when ρ = 1) 

and (2) µ is from a training batch containing only one  
 training pattern (i.e. now like online training)  

Δwmn =η δm
µxn

µ

µ

∑ =ηδmxn
So, 

wmn = wmn +Δwmnand the new weight 
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Backpropagation Algorithm 

initialize network weights (often small random values) 
  do 
     for each batch of training patterns  //on-line if only 1 pattern/batch 
        compute error E at the output units 
        compute  Δwij  for all weights from hidden layer to output layer   

 // backward pass 
        compute  Δvjk  for all weights from input layer to hidden layer 

 // backward pass continued 
        wij = wij + Δwij  and  vjk = vjk + Δvjk 
         //update network weights 
  until  E is less than the target error 
return the network 
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Backpropagation 

  Can be extended to arbitrary number of layers but three is most 
commonly used 

  Can approximate arbitrary functions: crucial issues are  
  generalization to examples not in test data set 
  number of hidden units 
   number of samples 
  speed of convergence to a stable set of weights (sometimes a momentum 

term α Δwpq is added to the learning rule to speed up learning) 
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Hopfield networks 

  Act as “autoassociative” memories to store patterns 
  McCulloch-Pitts neurons with outputs -1 or 1, and threshold Θ	


  All neurons connected to each other 
  Symmetric weights (wij = wji) and wii = 0  

  Asynchronous updating of outputs  
  Let si be the state of unit i  
  At each time step, pick a random unit 
  Set si to 1 if Σj wij sj ≥ Θi; otherwise, set si to -1  

completely 
connected 
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Hopfield networks 

  Hopfield showed that asynchronous updating in symmetric 
networks minimizes an “energy” function and leads to a 
stable final state for a given initial state 

  Define an energy function (analogous to the gradient descent 
error function) 
  E = -1/2 Σi,j wij si sj + Σi si Θi  

  Suppose a random unit i was updated: E always decreases!  
  If si is initially –1 and Σj wij sj > Θi, then si becomes +1 

  Change in E = -1/2 Σj (wij sj + wji sj ) + Θi = - Σj wij sj + Θi < 0 !! 
  If si is initially +1 and Σj wij sj < Θi, then si becomes -1 

  Change in E = 1/2 Σj (wij sj + wji sj ) - Θ i = Σj wij sj - Θi < 0 !! 
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Hopfield networks 

  Note: Network converges to local minima which store 
different patterns.  

  Store p N-dimensional pattern vectors x1, …, xp using 
Hebbian learning rule: 
  wji = 1/N Σm=1,..,p  x m,j x m,i for all j ≠ i; 0 for j = i 
  W = 1/N Σm=1,..,p x m x mT (outer product of vectors; diagonal zero) 

  T denotes vector transpose 

x4 

x1 
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Pattern Completion in a Hopfield Network 

à 

Local minimum 
(“attractor”) 
of energy function 
stores pattern 
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Radial Basis Function Networks 

input nodes 

output neurons 

one layer of 
hidden neurons 
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Radial Basis Function Networks 

propagation function: 
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Radial Basis Function Networks 
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Radial Basis Function Networks 

output of network: 
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RBF networks 

  Radial basis functions 
  Hidden units store means and 

variances 
  Hidden units compute a 

Gaussian function of inputs 
x1,…xn that constitute the 
input vector x 

  Learn weights wi, means µi, 
and variances σi by 
minimizing squared error 
function (gradient descent 
learning) 
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RBF Networks and Multilayer Perceptrons 

RBF: MLP: 

input nodes 

output neurons 
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Recurrent networks 

  Employ feedback (positive, negative, or both) 
  Not necessarily stable 

  Symmetric connections can ensure stability 

  Why use recurrent networks? 
  Can learn temporal patterns (time series or oscillations) 
  Biologically realistic 

  Majority of connections to neurons in cerebral cortex are 
feedback connections from local or distant neurons 

  Examples 
  Hopfield network 
  Boltzmann machine (Hopfield-like net with input & output units) 
  Recurrent backpropagation networks: for small sequences, unfold 

network in time dimension and use backpropagation learning 
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Recurrent networks (con’t) 

  Example 
  Elman networks 

  Partially recurrent 
  Context units keep 

internal memory of part 
inputs 

  Fixed context weights 
  Backpropagation for 

learning 
  E.g. Can disambiguate 

AàBàC and CàBàA 

Elman network 
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Unsupervised Networks 

  No feedback to say how output differs from desired output 
(no error signal) or even whether output was right or wrong 

  Network must discover patterns in the input data by itself 
  Only works if there are redundancies in the input data 
  Network self-organizes to find these redundancies 

  Clustering: Decide which group an input belongs to 
  Synaptic weights of one neuron represents one group 

  Principal Component Analysis: Finds the principal eigenvector of 
data covariance matrix 

  Hebb rule performs PCA! (Oja, 1982) 
  Δwi = η ξiy 
  Output y = Σi wi ξi 
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Self-Organizing Maps (Kohonen Maps) 

  Feature maps 
  Competitive networks 
  Neurons have locations 
  For each input, winner is 

the unit with largest output 
  Weights of winner and 

nearby units modified to 
resemble input pattern  

  Nearby inputs are thus 
mapped topographically 

  Biological relevance 
  Retinotopic map 
  Somatosensory map 
  Tonotopic map 
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Summary: Biology and Neural Networks 

  So many similarities 
  Information is contained in synaptic connections 
  Network learns to perform specific functions 
  Network generalizes to new inputs 

  But NNs are woefully inadequate compared with biology 
  Simplistic model of neuron and synapse, implausible learning rules 
  Hard to train large networks 
  Network construction (structure, learning rate etc.) is a heuristic art 

  One obvious difference: Spike representation 
  Recent models explore spikes and spike-timing dependent plasticity 

  Other Recent Trends: Probabilistic approach 
  NNs as Bayesian networks (allows principled derivation of dynamics, 

learning rules, and even structure of network) 
  Not clear how neurons encode probabilities in spikes 
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References on ANN and Stock Prediction 

 

http://www.cs.berkeley.edu/~akar/IITK_website/
EE671/report_stock.pdf 

 

http://www.cs.ucsb.edu/~nanli/publications/
stock_pattern.pdf 

 

and the references in the papers above 


