
1

Introduction to Neural Networks

2

What are (Artificial) Neural Networks?

  Models of the brain and nervous system

  Highly parallel
  Process information much more like the brain than a serial

computer

  Learning

  Very simple principles

  Very complex behaviours

  Applications
  As powerful problem solvers
  As biological models

3

Basic Input-Output Transformation

Input
Spikes!

Output
Spike!

(Excitatory Post-Synaptic Potential)!

4

McCulloch–Pitts “neuron” (1943)

  Attributes of neuron
  m binary inputs and 1 binary output (simplified model)
  Synaptic weights wij
  Threshold µi

5

McCulloch–Pitts Neural Networks

  Synchronous discrete time operation
  Time quantized in units of synaptic delay

  Output is 1 if and only if weighted
sum of inputs is greater than threshold
Θ(x) = 1 if x ≥ 0 and 0 if x < 0
(Θ, the output function, is called activation function)

  Remarks:
  Behavior of network can be simulated by a finite automaton (FA)
  Any FA can be simulated by a McCulloch-Pitts Network

ni t +1() =Θ wijnj t()
j
∑ −µi

$

%
&
&

'

(
)
) n i

w i j

i

ij

i

≡
≡
=

=

output of unit
step function
weight from unit to
threshold

Θ

µ
j to i

6

Properties of Artificial Neural Networks

  High level abstraction of neural input-output transformation
  Inputs à weighted sum of inputs à nonlinear function à output

  Often used where data or functions are uncertain
  Goal is to learn from a set of training data
  And to generalize from learned instances to new unseen data

  Key attributes
  Parallel computation
  Distributed representation and storage of data
  Learning (networks adapt themselves to solve a problem)
  Fault tolerance (insensitive to component failures)

7

Topologies of Neural Networks

completely
connected feedforward

(directed, a-cyclic)
recurrent

(feedback connections)

8

Networks Types

  Feedforward versus recurrent networks
  Feedforward: No loops, input à hidden layers à output
  Recurrent: Use feedback (positive or negative)

  Continuous versus spiking
  Continuous networks model mean spike rate (firing rate)

  Assume spikes are integrated over time
  Consistent with rate-code model of neural coding

  Supervised versus unsupervised learning
  Supervised networks use a “teacher”

  The desired output for each input is provided by user
  Unsupervised networks find hidden statistical patterns in input data

  Clustering, principal component analysis

9

History

  1943: McCulloch–Pitts “neuron”
  Started the field

  1962: Rosenblatt’s perceptron
  Learned its own weight values; convergence proof

  1969: Minsky & Papert book on perceptrons
  Proved limitations of single-layer perceptron networks

  1982: Hopfield and convergence in symmetric networks
  Introduced energy-function concept

  1986: Backpropagation of errors
  Method for training multilayer networks

  Present: Probabilistic interpretations, Bayesian and spiking networks

10

Perceptrons

  In machine learning, the perceptron is an algorithm for supervised
learning of binary classifiers: functions that can decide whether an input
(represented by a vector of numbers) belongs to one class or another.

  Attributes
  Layered feedforward networks
  Supervised learning

  Hebbian: Adjust weights to enforce correlations
  Parameters: weights wij
  Binary output = Θ(weighted sum of inputs)

  Take wo to be the threshold with fixed input –1.
Outputi =Θ wijξ j

j
∑
#

$
%
%

&

'
(
(

Multilayer Single-layer

11

Training Perceptrons to Compute a Function

  Given inputs ξj to neuron i and desired output Yi, find its weight values
by iterative improvement:
1. Feed an input pattern
2. Is the binary output correct?

⇒Yes: Go to the next pattern
⇒ No: Modify the connection weights using error signal (Yi – Oi)
⇒ Increase weight if neuron didn’t fire when it should have and vice versa

  Learning rule is Hebbian (based on input/output correlation)
  This update rule is in fact the stochastic gradient descent update for linear

regression, converging to least square error.
  converges in a finite number of steps if a solution exists
  Used in ADALINE (adaptive linear neuron) networks

η

ξ

≡

≡

≡

≡

learning rate
input

desired output
actual output

j

i

i

Y
O

12

Computational Power of Perceptrons

  Consider a single-layer perceptron
  Assume threshold units
  Assume binary inputs and outputs
  Weighted sum forms a linear hyperplane

  Consider a single output network with two inputs
  Only functions that are linearly separable can be computed
  Example: AND is linearly separable

wij j
j

ξ∑ = 0

ξo = −1

13

Linear inseparability

  Single-layer perceptron with threshold units fails if problem
is not linearly separable
  Example: XOR

  Can use other tricks (e.g.
complicated threshold
functions) but complexity
blows up

  Minsky and Papert’s book
showing these negative results
was very influential

14

Solution in 1980s: Multilayer perceptrons

  Removes many limitations of single-layer networks
  Can solve XOR

  Exercise: Draw a two-layer perceptron that computes the
XOR function
  2 binary inputs ξ1 and ξ2
  1 binary output
  One “hidden” layer
  Find the appropriate

 weights and threshold

15

Solution in 1980s: Multilayer perceptrons

  Examples of two-layer perceptrons that compute XOR

  E.g. Right side network
  Output is 1 if and only if x + y – 2(x + y – 1.5 > 0) – 0.5 > 0

x y

16

Multilayer Perceptron

Input nodes

Output neurons

} One or more
layers of
hidden units
(hidden layers)

ae
ag β−+
=
1
1)(

a

Ψ(a)
1

The most common
output function
(Sigmoid):

(non-linear
squashing function)

g(a)

17

x y

out

x

y

1

1

2

1 2

2
1

1
1− 1−

2

1−

1−1

2
1

− ?

Example: Perceptrons as Constraint Satisfaction Networks

18

x y

out

x

y

1

1

2

1 2

0
2
11 >−+ yx

0
2
11 <−+ yx

=0

=1

2
1

1
1−

Example: Perceptrons as Constraint Satisfaction Networks

19

x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

=0

=0 =1

=1

1−

2

1−

Example: Perceptrons as Constraint Satisfaction Networks

20
x y

out

x

y

1

1

2

1 2

=0

=0 =1

=1
1−1

2
1

− -
2
1

− >0

Example: Perceptrons as Constraint Satisfaction Networks

21
x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

0
2
11 >−+ yx

0
2
11 <−+ yx

=0

=0 =1

=1

2
1

1
1− 1−

2

1−

1−1

2
1

−

Perceptrons as Constraint Satisfaction Networks

22

Learning networks

  We want networks that configure themselves
  Learn from the input data or from training examples
  Generalize from learned data

Can this network configure itself
to solve a problem?

How do we train it?

23

Gradient-descent learning

  Use a differentiable activation function
  Try a continuous function f () instead of Θ()

  First guess: Use a linear unit (without activation function f ())
  Define an error function (cost function or “energy” function)

  Changes weights in the direction of smaller errors
  Minimizes the mean-squared error over input patterns µ
  Called Delta rule = adaline rule = Widrow-Hoff rule = LMS rule

E =
1
2

Yi
u − wijξ j

j
∑

#

$
%
%

&

'
(
(u

∑
i
∑

2

Then Δwij =−η
∂E
∂wij

=η Yi
u − wijξ j

j
∑

%

&
'
'

(

)
*
*u

∑ ξ j

The idea is to make the
change of the weight
proportional to the negative
derivative of the error.

µ

µ µ , wij=wij+Δwij

24

Gradient-descent learning

About learning rate :

In order for Gradient Descent to work we must set η to an
appropriate value. This parameter determines how fast or
slow we will move towards the optimal weights. If the η is
very large we will skip the optimal solution. If it is too small
we will need too many iterations to converge to the best values.
So using a good η is crucial.

Then Δwij =−η
∂E
∂wij

=η Yi
u − wijξ j

j
∑

%

&
'
'

(

)
*
*u

∑ ξ j
µ µ

25

Backpropagation of errors

  Use a nonlinear, differentiable activation function
  Such as a sigmoid

 [f’ = ρ f (1-f)]

  Use a multilayer feedforward network
  Outputs are differentiable functions of the inputs

  Result: Can propagate credit/blame back to internal nodes
  Chain rule (calculus) gives Δwij for internal “hidden” nodes
  Based on gradient-descent learning

f ≡ 1
1+ exp −ρh()

 where h ≡ wijξ j
j
∑

26

Backpropagation

. . .

x1 x2 xn

vjk

hj

wij

yi

27

Backpropagation

  When a learning pattern is clamped, the activation
values are propagated to the output units, and the
actual network output is compared with the desired
output values, we usually end up with an error in each
of the output units. Let's call this error eo for a particular
output unit o. We have to bring eo to zero.

28

Backpropagation

  Remark:

Generally, there are two modes of learning/training to
choose from: on-line and batch.

In on-line training, each propagation is followed
immediately by a weight update.

In batch training, many propagations occur before
updating the weights.

29

Backpropagation

  The simplest method to do this is the greedy method:
we strive to change the connections in the neural
network in such a way that, next time around, the error
eo will be zero for this particular pattern. We know from
the delta rule that, in order to reduce an error, we have
to adapt its incoming weights according to the
equation:

Δwij = -η ∂Ε / ∂wij

30

Backpropagation

  In order to adapt the weights from input to hidden units,
we again want to apply the delta rule. In this case,
however, we do not have a value for the hidden units.

31

Backpropagation

  Calculate the activation of the hidden units

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

n

k
kjkj xvfh

0

32

Backpropagation

  And the activation of the output units

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=0j
jiji hwfy

33

Backpropagation

  If we have µ pattern to learn (µ is from 1 or more training
patterns – batch training), the error is

()

2

0
2
1

2

2
1

2
2
1

∑∑ ∑ ∑

∑∑ ∑

∑∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=−=

=µ

µµ

µ

µµ

µ

µµ

i j

n

k
jkiji

i j
iji

i
ii

k

j

xvfwft

hwft

ytE (ti is target output
for output unit i)

34

Backpropagation

Δwij = −η
∂E
∂wij

=

=η ti
µ − yi

µ()
µ

∑ f '
.
Ai
µ()h j

µ=

=η δi
µ

µ

∑ h j
µ

δi
µ = ti

µ − yi
µ() f '

.
Ai
µ()

where Ai is the activation (weighted
sum of inputs) of output unit i, and

35

Backpropagation

Δvjk = −η
∂E
∂vjk

= −η
∂E
∂hj

µ
µ

∑
∂hj

µ

∂vjk
=

=η ti
µ − yi

µ() f '
.

.

Ai
µ()wij

i
∑

µ

∑ f ' Aj
µ() xkµ =

=η δi
µwij f ' Aj

µ() xkµ
i
∑

µ

∑
where Aj is the activation (weighted
sum of inputs) of hidden unit j.

36

Backpropagation

  The weight correction is given by :

Δwmn =η δm
µxn

µ

µ

∑

δm
µ = tm

µ − ym
µ() f ' Amµ()

δm
µ = f ' Am

µ() wsmδs
µ

s
∑

where

if m is the output layer

if m is a hidden layer

or

(where s runs through all output units)

37

Backpropagation

  For

δm
µ = tm

µ − ym
µ() f ' Amµ() = tm

µ − ym
µ()ρymµ (1− ymµ)

δm
µ = f ' Am

µ() wsmδs
µ

s
∑ = ρhm

µ (1− hm
µ) wsmδs

µ

s
∑

Therefore, if m is the output layer

and if m is a hidden layer

f (x) = 1
1+ exp −ρx()

 , we have f’(x) = ρ f(x) (1-f(x))

(where s runs through all output units)

38

Backpropagation

  For example, if (1)

δm = tm − ym() ym (1− ym)

δm = hm (1− hm) wsmδs
s
∑

Then, if m is the output layer

and if m is an hidden layer

f (x) = 1
1+ exp −x()

 (that is, when ρ = 1)

and (2) µ is from a training batch containing only one
 training pattern (i.e. now like online training)

Δwmn =η δm
µxn

µ

µ

∑ =ηδmxn
So,

wmn = wmn +Δwmnand the new weight

39

Backpropagation Algorithm

initialize network weights (often small random values)
 do
 for each batch of training patterns //on-line if only 1 pattern/batch
 compute error E at the output units
 compute Δwij for all weights from hidden layer to output layer

 // backward pass
 compute Δvjk for all weights from input layer to hidden layer

 // backward pass continued
 wij = wij + Δwij and vjk = vjk + Δvjk
 //update network weights
 until E is less than the target error
return the network

42

Backpropagation

  Can be extended to arbitrary number of layers but three is most
commonly used

  Can approximate arbitrary functions: crucial issues are
  generalization to examples not in test data set
  number of hidden units
  number of samples
  speed of convergence to a stable set of weights (sometimes a momentum

term α Δwpq is added to the learning rule to speed up learning)

43

Hopfield networks

  Act as “autoassociative” memories to store patterns
  McCulloch-Pitts neurons with outputs -1 or 1, and threshold Θ	

  All neurons connected to each other
  Symmetric weights (wij = wji) and wii = 0

  Asynchronous updating of outputs
  Let si be the state of unit i
  At each time step, pick a random unit
  Set si to 1 if Σj wij sj ≥ Θi; otherwise, set si to -1

completely
connected

44

Hopfield networks

  Hopfield showed that asynchronous updating in symmetric
networks minimizes an “energy” function and leads to a
stable final state for a given initial state

  Define an energy function (analogous to the gradient descent
error function)
  E = -1/2 Σi,j wij si sj + Σi si Θi

  Suppose a random unit i was updated: E always decreases!
  If si is initially –1 and Σj wij sj > Θi, then si becomes +1

  Change in E = -1/2 Σj (wij sj + wji sj) + Θi = - Σj wij sj + Θi < 0 !!
  If si is initially +1 and Σj wij sj < Θi, then si becomes -1

  Change in E = 1/2 Σj (wij sj + wji sj) - Θ i = Σj wij sj - Θi < 0 !!

45

Hopfield networks

  Note: Network converges to local minima which store
different patterns.

  Store p N-dimensional pattern vectors x1, …, xp using
Hebbian learning rule:
  wji = 1/N Σm=1,..,p x m,j x m,i for all j ≠ i; 0 for j = i
  W = 1/N Σm=1,..,p x m x mT (outer product of vectors; diagonal zero)

  T denotes vector transpose

x4

x1

46

Pattern Completion in a Hopfield Network

à

Local minimum
(“attractor”)
of energy function
stores pattern

47

Radial Basis Function Networks

input nodes

output neurons

one layer of
hidden neurons

48

Radial Basis Function Networks

propagation function:

∑
=

−=
n

i
jiij xa

1

2
,)(µ

input nodes

output neurons

49

Radial Basis Function Networks

2

2

2)(σ

a

eah
−

=

output function:
(Gauss’ bell-shaped function)

a

Ψ(a)

input nodes

output neurons

h(a)

50

Radial Basis Function Networks

output of network:

∑=
i

ijij hw ,out

input nodes

output neurons

51

RBF networks

  Radial basis functions
  Hidden units store means and

variances
  Hidden units compute a

Gaussian function of inputs
x1,…xn that constitute the
input vector x

  Learn weights wi, means µi,
and variances σi by
minimizing squared error
function (gradient descent
learning)

52

RBF Networks and Multilayer Perceptrons

RBF: MLP:

input nodes

output neurons

53

Recurrent networks

  Employ feedback (positive, negative, or both)
  Not necessarily stable

  Symmetric connections can ensure stability

  Why use recurrent networks?
  Can learn temporal patterns (time series or oscillations)
  Biologically realistic

  Majority of connections to neurons in cerebral cortex are
feedback connections from local or distant neurons

  Examples
  Hopfield network
  Boltzmann machine (Hopfield-like net with input & output units)
  Recurrent backpropagation networks: for small sequences, unfold

network in time dimension and use backpropagation learning

54

Recurrent networks (con’t)

  Example
  Elman networks

  Partially recurrent
  Context units keep

internal memory of part
inputs

  Fixed context weights
  Backpropagation for

learning
  E.g. Can disambiguate

AàBàC and CàBàA

Elman network

55

Unsupervised Networks

  No feedback to say how output differs from desired output
(no error signal) or even whether output was right or wrong

  Network must discover patterns in the input data by itself
  Only works if there are redundancies in the input data
  Network self-organizes to find these redundancies

  Clustering: Decide which group an input belongs to
  Synaptic weights of one neuron represents one group

  Principal Component Analysis: Finds the principal eigenvector of
data covariance matrix

  Hebb rule performs PCA! (Oja, 1982)
  Δwi = η ξiy
  Output y = Σi wi ξi

56

Self-Organizing Maps (Kohonen Maps)

  Feature maps
  Competitive networks
  Neurons have locations
  For each input, winner is

the unit with largest output
  Weights of winner and

nearby units modified to
resemble input pattern

  Nearby inputs are thus
mapped topographically

  Biological relevance
  Retinotopic map
  Somatosensory map
  Tonotopic map

63

Summary: Biology and Neural Networks

  So many similarities
  Information is contained in synaptic connections
  Network learns to perform specific functions
  Network generalizes to new inputs

  But NNs are woefully inadequate compared with biology
  Simplistic model of neuron and synapse, implausible learning rules
  Hard to train large networks
  Network construction (structure, learning rate etc.) is a heuristic art

  One obvious difference: Spike representation
  Recent models explore spikes and spike-timing dependent plasticity

  Other Recent Trends: Probabilistic approach
  NNs as Bayesian networks (allows principled derivation of dynamics,

learning rules, and even structure of network)
  Not clear how neurons encode probabilities in spikes

64

References on ANN and Stock Prediction

http://www.cs.berkeley.edu/~akar/IITK_website/
EE671/report_stock.pdf

http://www.cs.ucsb.edu/~nanli/publications/
stock_pattern.pdf

and the references in the papers above

