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Introduction to Neural Networks 
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What are (Artificial) Neural Networks? 

  Models of the brain and nervous system 

  Highly parallel 
  Process information much more like the brain than a serial 

computer 

  Learning 
 

  Very simple principles 

  Very complex behaviours 

  Applications 
  As powerful problem solvers 
  As biological models 
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Basic Input-Output Transformation 

Input 
Spikes!

Output 
Spike!

(Excitatory Post-Synaptic Potential)!
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McCulloch–Pitts “neuron” (1943) 

  Attributes of neuron 
  m binary inputs and 1 binary output (simplified model) 
  Synaptic weights wij 
  Threshold µi 
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McCulloch–Pitts Neural Networks 

  Synchronous discrete time operation  
  Time quantized in units of synaptic delay 

  Output is 1 if and only if weighted 
sum of inputs is greater than threshold 
Θ(x) = 1 if x ≥ 0 and 0 if x < 0 
(Θ, the output function, is called activation function) 
 

  Remarks: 
  Behavior of network can be simulated by a finite automaton (FA) 
  Any FA can be simulated by a McCulloch-Pitts Network 
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Properties of Artificial Neural Networks 

  High level abstraction of neural input-output transformation 
  Inputs à weighted sum of inputs à nonlinear function à output 

  Often used where data or functions are uncertain 
  Goal is to learn from a set of training data 
  And to generalize from learned instances to new unseen data 

  Key attributes 
  Parallel computation 
  Distributed representation and storage of data 
  Learning (networks adapt themselves to solve a problem) 
  Fault tolerance (insensitive to component failures) 
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Topologies of Neural Networks 

completely 
connected feedforward 

(directed, a-cyclic) 
recurrent 

(feedback connections) 
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Networks Types 

  Feedforward versus recurrent networks 
  Feedforward: No loops, input à hidden layers à output 
  Recurrent: Use feedback (positive or negative) 

  Continuous versus spiking 
  Continuous networks model mean spike rate (firing rate) 

  Assume spikes are integrated over time 
   Consistent with rate-code model of neural coding  

  Supervised versus unsupervised learning 
  Supervised networks use a “teacher” 

  The desired output for each input is provided by user 
  Unsupervised networks find hidden statistical patterns in input data 

  Clustering, principal component analysis 
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History 

  1943: McCulloch–Pitts “neuron” 
  Started the field 

  1962: Rosenblatt’s perceptron 
  Learned its own weight values; convergence proof 

  1969: Minsky & Papert book on perceptrons 
  Proved limitations of single-layer perceptron networks 

  1982: Hopfield and convergence in symmetric networks 
  Introduced energy-function concept 

  1986: Backpropagation of errors 
  Method for training multilayer networks 

  Present: Probabilistic interpretations, Bayesian and spiking networks 



10 

Perceptrons 

  In machine learning, the perceptron is an algorithm for supervised 
learning of binary classifiers: functions that can decide whether an input 
(represented by a vector of numbers) belongs to one class or another. 

  Attributes 
  Layered feedforward networks 
  Supervised learning 

  Hebbian: Adjust weights to enforce correlations 
  Parameters: weights wij 
  Binary output = Θ(weighted sum of inputs) 

  Take wo to be the threshold with fixed input –1. 
Outputi =Θ wijξ j
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Training Perceptrons to Compute a Function 

  Given inputs ξj to neuron i and desired output Yi, find its weight values 
by iterative improvement: 
1.  Feed an input pattern 
2.  Is the binary output correct? 

⇒Yes: Go to the next pattern 
⇒ No: Modify the connection weights using error signal (Yi – Oi) 
⇒ Increase weight if neuron didn’t fire when it should have and vice versa 

  Learning rule is Hebbian (based on input/output correlation) 
  This update rule is in fact the stochastic gradient descent update for linear 

regression, converging to least square error. 
  converges in a finite number of steps if a solution exists 
  Used in ADALINE (adaptive linear neuron) networks 
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Computational Power of Perceptrons 

  Consider a single-layer perceptron 
  Assume threshold units 
  Assume binary inputs and outputs 
  Weighted sum forms a linear hyperplane 

  Consider a single output network with two inputs 
  Only functions that are linearly separable can be computed 
  Example: AND is linearly separable 
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Linear inseparability 

  Single-layer perceptron with threshold units fails if problem 
is not linearly separable 
  Example: XOR 

  Can use other tricks (e.g. 
complicated threshold 
functions) but complexity 
blows up 

  Minsky and Papert’s book 
showing these negative results 
was very influential 



14 

Solution in 1980s: Multilayer perceptrons 

  Removes many limitations of single-layer networks 
  Can solve XOR 

  Exercise: Draw a two-layer perceptron that computes the 
XOR function 
  2 binary inputs ξ1 and ξ2 
  1 binary output 
  One “hidden” layer 
  Find the appropriate 

 weights and threshold 
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Solution in 1980s: Multilayer perceptrons 

  Examples of two-layer perceptrons that compute XOR 

  E.g. Right side network  
  Output is 1 if and only if x + y – 2(x + y – 1.5 > 0) – 0.5 > 0 

x y 
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Multilayer Perceptron 

Input nodes 

Output neurons 

} One or more 
layers of 
hidden units 
(hidden layers) 
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The most common 
output function 
(Sigmoid): 

(non-linear 
squashing function) 

g(a) 
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Example: Perceptrons as Constraint Satisfaction Networks 
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Learning networks 

  We want networks that configure themselves 
  Learn from the input data or from training examples 
  Generalize from learned data 

Can this network configure itself 
to solve a problem? 
 
How do we train it? 
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Gradient-descent learning 

  Use a differentiable activation function  
  Try a continuous function f ( ) instead of Θ( ) 

  First guess: Use a linear unit (without activation function f ( ) ) 
  Define an error function (cost function or “energy” function) 

  Changes weights in the direction of smaller errors 
  Minimizes the mean-squared error over input patterns µ 
  Called Delta rule = adaline rule = Widrow-Hoff rule = LMS rule 
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Gradient-descent learning 

About learning rate     : 

In order for Gradient Descent to work we must set η to an  
appropriate value. This parameter determines how fast or  
slow we will move towards the optimal weights. If the η is  
very large we will skip the optimal solution. If it is too small  
we will need too many iterations to converge to the best values.  
So using a good η is crucial. 
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Backpropagation of errors 

  Use a nonlinear, differentiable activation function 
  Such as a sigmoid 

             [ f’ = ρ f (1-f) ] 

  Use a multilayer feedforward network 
  Outputs are differentiable functions of the inputs 

  Result: Can propagate credit/blame back to internal nodes 
  Chain rule (calculus) gives Δwij for internal “hidden” nodes 
  Based on gradient-descent learning  

f ≡ 1
1+ exp −ρh( )

          where  h ≡ wijξ j
j
∑
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Backpropagation 

. . .  

x1 x2 xn 

vjk 

hj 

wij 

yi 
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Backpropagation 

  When a learning pattern is clamped, the activation 
values are propagated to the output units, and the 
actual network output is compared with the desired 
output values, we usually end up with an error in each 
of the output units. Let's call this error eo for a particular 
output unit o. We have to bring eo to zero. 
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Backpropagation 

  Remark: 
 

Generally, there are two modes of learning/training to 
choose from: on-line and batch.  
 
In on-line training, each propagation is followed 
immediately by a weight update.  
 
In batch training, many propagations occur before 
updating the weights. 
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Backpropagation 

  The simplest method to do this is the greedy method: 
we strive to change the connections in the neural 
network in such a way that, next time around, the error 
eo will be zero for this particular pattern. We know from 
the delta rule that, in order to reduce an error, we have 
to adapt its incoming weights according to the 
equation: 

Δwij = -η ∂Ε / ∂wij  



30 

Backpropagation 

  In order to adapt the weights from input to hidden units, 
we again want to apply the delta rule. In this case, 
however, we do not have a value for the hidden units. 



31 

Backpropagation 

  Calculate the activation of the hidden units 
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Backpropagation 

  And the activation of the output units 

⎟⎟
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Backpropagation 

  If we have µ pattern to learn (µ is from 1 or more training 
patterns – batch training), the error is 
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Backpropagation 

Δwij = −η
∂E
∂wij
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where Ai is the activation (weighted 
sum of inputs) of output unit i, and  
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Backpropagation 
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∂E
∂vjk

= −η
∂E
∂hj

µ
µ

∑
∂hj

µ

∂vjk
=

=η ti
µ − yi

µ( ) f '
.

.

Ai
µ( )wij

i
∑

µ

∑ f ' Aj
µ( ) xkµ =

=η δi
µwij f ' Aj

µ( ) xkµ
i
∑

µ

∑
where Aj is the activation (weighted 
sum of inputs) of hidden unit j.  



36 

Backpropagation  

  The weight correction is given by : 

Δwmn =η δm
µxn

µ

µ

∑

δm
µ = tm

µ − ym
µ( ) f ' Amµ( )

δm
µ = f ' Am

µ( ) wsmδs
µ

s
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where  

if m is the output layer 

if m is a hidden layer   

or  

(where s runs through all output units) 
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Backpropagation  

  For  

δm
µ = tm

µ − ym
µ( ) f ' Amµ( ) = tm

µ − ym
µ( )ρymµ (1− ymµ )

δm
µ = f ' Am

µ( ) wsmδs
µ

s
∑ = ρhm

µ (1− hm
µ ) wsmδs

µ

s
∑

Therefore, if m is the output layer 
 

and if m is a hidden layer   

f (x) = 1
1+ exp −ρx( )

 ,   we have f’(x) = ρ f(x) (1-f(x))  

(where s runs through all output units) 
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Backpropagation  

  For example, if  (1) 

δm = tm − ym( ) ym (1− ym )

δm = hm (1− hm ) wsmδs
s
∑

Then, if m is the output layer 
 

and if m is an hidden layer   

f (x) = 1
1+ exp −x( )

 (that is, when ρ = 1) 

and (2) µ is from a training batch containing only one  
 training pattern (i.e. now like online training)  

Δwmn =η δm
µxn

µ

µ

∑ =ηδmxn
So, 

wmn = wmn +Δwmnand the new weight 
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Backpropagation Algorithm 

initialize network weights (often small random values) 
  do 
     for each batch of training patterns  //on-line if only 1 pattern/batch 
        compute error E at the output units 
        compute  Δwij  for all weights from hidden layer to output layer   

 // backward pass 
        compute  Δvjk  for all weights from input layer to hidden layer 

 // backward pass continued 
        wij = wij + Δwij  and  vjk = vjk + Δvjk 
         //update network weights 
  until  E is less than the target error 
return the network 
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Backpropagation 

  Can be extended to arbitrary number of layers but three is most 
commonly used 

  Can approximate arbitrary functions: crucial issues are  
  generalization to examples not in test data set 
  number of hidden units 
   number of samples 
  speed of convergence to a stable set of weights (sometimes a momentum 

term α Δwpq is added to the learning rule to speed up learning) 
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Hopfield networks 

  Act as “autoassociative” memories to store patterns 
  McCulloch-Pitts neurons with outputs -1 or 1, and threshold Θ	



  All neurons connected to each other 
  Symmetric weights (wij = wji) and wii = 0  

  Asynchronous updating of outputs  
  Let si be the state of unit i  
  At each time step, pick a random unit 
  Set si to 1 if Σj wij sj ≥ Θi; otherwise, set si to -1  

completely 
connected 
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Hopfield networks 

  Hopfield showed that asynchronous updating in symmetric 
networks minimizes an “energy” function and leads to a 
stable final state for a given initial state 

  Define an energy function (analogous to the gradient descent 
error function) 
  E = -1/2 Σi,j wij si sj + Σi si Θi  

  Suppose a random unit i was updated: E always decreases!  
  If si is initially –1 and Σj wij sj > Θi, then si becomes +1 

  Change in E = -1/2 Σj (wij sj + wji sj ) + Θi = - Σj wij sj + Θi < 0 !! 
  If si is initially +1 and Σj wij sj < Θi, then si becomes -1 

  Change in E = 1/2 Σj (wij sj + wji sj ) - Θ i = Σj wij sj - Θi < 0 !! 
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Hopfield networks 

  Note: Network converges to local minima which store 
different patterns.  

  Store p N-dimensional pattern vectors x1, …, xp using 
Hebbian learning rule: 
  wji = 1/N Σm=1,..,p  x m,j x m,i for all j ≠ i; 0 for j = i 
  W = 1/N Σm=1,..,p x m x mT (outer product of vectors; diagonal zero) 

  T denotes vector transpose 

x4 

x1 
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Pattern Completion in a Hopfield Network 

à 

Local minimum 
(“attractor”) 
of energy function 
stores pattern 
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Radial Basis Function Networks 

input nodes 

output neurons 

one layer of 
hidden neurons 
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Radial Basis Function Networks 

propagation function: 
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Radial Basis Function Networks 
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Radial Basis Function Networks 

output of network: 

∑=
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RBF networks 

  Radial basis functions 
  Hidden units store means and 

variances 
  Hidden units compute a 

Gaussian function of inputs 
x1,…xn that constitute the 
input vector x 

  Learn weights wi, means µi, 
and variances σi by 
minimizing squared error 
function (gradient descent 
learning) 
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RBF Networks and Multilayer Perceptrons 

RBF: MLP: 

input nodes 

output neurons 
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Recurrent networks 

  Employ feedback (positive, negative, or both) 
  Not necessarily stable 

  Symmetric connections can ensure stability 

  Why use recurrent networks? 
  Can learn temporal patterns (time series or oscillations) 
  Biologically realistic 

  Majority of connections to neurons in cerebral cortex are 
feedback connections from local or distant neurons 

  Examples 
  Hopfield network 
  Boltzmann machine (Hopfield-like net with input & output units) 
  Recurrent backpropagation networks: for small sequences, unfold 

network in time dimension and use backpropagation learning 
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Recurrent networks (con’t) 

  Example 
  Elman networks 

  Partially recurrent 
  Context units keep 

internal memory of part 
inputs 

  Fixed context weights 
  Backpropagation for 

learning 
  E.g. Can disambiguate 

AàBàC and CàBàA 

Elman network 
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Unsupervised Networks 

  No feedback to say how output differs from desired output 
(no error signal) or even whether output was right or wrong 

  Network must discover patterns in the input data by itself 
  Only works if there are redundancies in the input data 
  Network self-organizes to find these redundancies 

  Clustering: Decide which group an input belongs to 
  Synaptic weights of one neuron represents one group 

  Principal Component Analysis: Finds the principal eigenvector of 
data covariance matrix 

  Hebb rule performs PCA! (Oja, 1982) 
  Δwi = η ξiy 
  Output y = Σi wi ξi 
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Self-Organizing Maps (Kohonen Maps) 

  Feature maps 
  Competitive networks 
  Neurons have locations 
  For each input, winner is 

the unit with largest output 
  Weights of winner and 

nearby units modified to 
resemble input pattern  

  Nearby inputs are thus 
mapped topographically 

  Biological relevance 
  Retinotopic map 
  Somatosensory map 
  Tonotopic map 
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Summary: Biology and Neural Networks 

  So many similarities 
  Information is contained in synaptic connections 
  Network learns to perform specific functions 
  Network generalizes to new inputs 

  But NNs are woefully inadequate compared with biology 
  Simplistic model of neuron and synapse, implausible learning rules 
  Hard to train large networks 
  Network construction (structure, learning rate etc.) is a heuristic art 

  One obvious difference: Spike representation 
  Recent models explore spikes and spike-timing dependent plasticity 

  Other Recent Trends: Probabilistic approach 
  NNs as Bayesian networks (allows principled derivation of dynamics, 

learning rules, and even structure of network) 
  Not clear how neurons encode probabilities in spikes 
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References on ANN and Stock Prediction 

 

http://www.cs.berkeley.edu/~akar/IITK_website/
EE671/report_stock.pdf 

 

http://www.cs.ucsb.edu/~nanli/publications/
stock_pattern.pdf 

 

and the references in the papers above 


