

School of Engineering Department of Electrical and Computer Engineering

332:224 Principles of Electrical Engineering II Laboratory

Experiment 4

The R-C series circuit

1 Introduction

Objectives

- To study the behavior of the R-C Series Circuit under different conditions
 - To use different methods for the determination of the RC time constant from experimental results

Overview

The aim of this experiment is to study the R-C Series Circuit under different conditions by observing input and output waveforms and studying their interrelation.

In particular the following are explored:

(a) *Natural response of an R-C Circuit*: The capacitor is charged to a certain value and its decay is observed as a function of time. Such a decay is known as the *natural response* of the R-C Circuit as there are no forcing inputs applied to the circuit.

(b) *Response of an R-C Circuit to a periodic square wave input*: When the input to a circuit is a periodic signal (wave), the output voltage is a periodic wave as well but not necessarily of the same waveform as that at the input. The output voltage across the capacitance is studied for a square wave input.

(c) *Differentiation And Integration Properties*: Under certain appropriate conditions, an R-C Circuit can function approximately as an integrating circuit or as a differentiating circuit. These properties are also observed.

© Rutgers University Authored by P. Sannuti Latest revision: December 16, 2005, 2004 by P. Panavotatos

2 Theory

2.1 The Natural Response of an R-C Circuit¹

Consider the R-C circuit of <u>fig. 1</u> where the source voltage V_s is a DC voltage source. Assuming that the switch has been closed for a long period of time, the circuit has reached a steady state condition. In steady state, the capacitor has been charged to

$$V_g = V_s R/(R+R_i)$$

Therefore, when the switch opens, at t = 0, the initial voltage on the capacitor is V_g volts. With the capacitor so charged, it would be desirable to compute the natural response of the R-C Series Circuit shown in <u>fig. 2</u>.

Fig. 1

Fig. 2

Analysis of the circuit in fig. 2 yields the general solution

$$v_c(t) = v_c(0) e^{-t/RC}, \quad t \ge 0$$

With initial condition: $v_c(0) = v_c(0^+) = V_g = V_s R/(R+R_i)$ from which

$$v_c(t) = V_g e^{-t/\tau}, \qquad (1)$$

where $\tau = RC$ is the time constant. This means that the natural response of the R-C circuit is an exponential decay of the initial voltage. The rate of this decay is governed by the time constant *RC*. The graphical plot of Eq. 1 is given in <u>fig. 3</u> where the graphical interpretation of the time constant is also shown.

¹ A more detailed description can be found in section 7.2 of the text.

The time constant $\tau = RC$ can be measured in several ways. Assuming that *R* and *C* are not known, τ can be measured from the discharge data of the capacitor as will be seen in section 5 below.

Fig. 3 Exponential Decay Of An R-C Circuit

2.2 Square Wave Response²

Let the source voltage V_s be a square wave of frequency f and amplitude A, applied to the R-C circuit as shown in <u>fig. 4</u>.

Since the input is a periodic wave, the output voltage across the capacitor is also a periodic wave, albeit not a square wave. In each period, the output voltage across the capacitor consists of two parts:

• During the half period when the input is a positive constant, the capacitor gets charged exponentially. Hence the output voltage v(t) during this half period is an *exponentially increasing* signal. At the end of this half period, v(t) has attained a certain positive peak value.

 $^{^{2}}$ A detailed description of the step response can be found in section 7.3 of the text.

• During the half period when the input is a negative constant, the capacitor gets discharged exponentially. Hence the output voltage v(t) during this half period is an *exponentially decreasing* signal. By the end of this half period, v(t) has attained a certain negative peak value.

The difference between the positive and negative peaks is called the *peak-to-peak voltage of the capacitor*. It can be shown that

$$V_{CPP} = V_{PP} (1 - e^{-K}) / (1 + e^{-K})$$
 (2)

where V_{CPP} is the peak-to-peak voltage of the capacitor,

 $V_{\rm PP}$ is the peak-to-peak voltage of the input square wave, and

K is a number such that $K\tau$ is the input square wave half-period when $\tau = RC$.

2.3 Differentiation and Integration Properties

Consider the loop equation of the R-C series circuit,

$$v_R(t) + v_C(t) = v(t),$$

where v(t) is the source voltage v_s which could be any time varying signal.

If $v_{C}(t)$ is kept small with respect to $v_{R}(t)$, then $v(t) \approx v_{R}(t) = R i(t)$, and

$$v_c(t) = \frac{1}{C} \int i(t) dt = \frac{1}{RC} \int v_R(t) dt \approx \frac{1}{\tau} \int v(t) dt$$

i.e. the capacitor voltage is very closely proportional to the integral of the source voltage. If v(t) is a periodic function, $v_C(t)$ can be kept small by making the period $T \ll \tau$. In this way v_C never gets time to grow large.

On the other hand, when the period $T \gg \tau$, v_C tends to follow v(t) almost exactly. In such a case,

$$v_R(t) = Ri(t) = RC \frac{dv_C(t)}{dt} \approx \tau \frac{dv(t)}{dt}$$

i.e. the resistor voltage is very closely proportional to the derivative of the source voltage.

3 Prelab Exercises

3.1 Following the discussion in section 7.2 of the textbook, write down the differential equation of the series R-C circuit in the absence of any forcing input. Then, explain or derive equation (1) in your own way.

3.2 For $R = 10M\Omega$ and $C = 15\mu$ F, determine the expected time constant $\tau = RC$.

3.3 Equation (2) for V_{CPP} is rather difficult to prove at this time. Take it as a challenge to derive it as you learn increasingly more on the topic of differential equations.

3.4 Explain in your own words why an R-C series circuit can act approximately as an integrator as well as a differentiator and under what conditions.

4 **Experiments**

Suggested Equipment:

TEKTRONIX FG 501A 2MHz Function Generator HP 54600A or Agilent 54622A Oscilloscope Protek Model B-845 Digital Multimeter TEKTRONIX DC504A Counter-Timer TEKTRONIX P503A Dual Power Supply 100Ω, 10KΩ, 100KΩ, Resistors 0.001 μ F, 0.01 μ F, 1 μ F, 15 μ F Capacitors Breadboard One 3.5" diskette

NOTE: The oscillator is designed to work for a very wide range of frequencies but may not be stable at very low frequencies, say in the order of 100 Hz or 200Hz. To start with it is a good idea to have the circuit working at some mid-range frequency, say in the order of 1K Hz or 2K Hz, and then change the frequency slowly as needed.

4.1 Time Constant of an R-C Circuit

Construct the R-C circuit shown in fig. 5.

Let the source voltage V_s be a DC voltage of 10 V, $C = 15\mu$ F, and $R_V = 10M\Omega$ is the internal resistance of the DVM. Neglect the internal resistance R_i of the source. Then, when the switch is closed, the capacitor charges quickly to the source voltage V_s .

At t = 0, the switch opens, and the voltage source gets disconnected from the R-C circuit. The capacitor will now discharge through the internal resistance of the DVM. Using a timer or a stopwatch, record the DVM readings for an interval of 5 minutes taking data in 15 second intervals. Repeat the same procedure until you are assured that you have a representative set of data. Fill <u>Table 1</u> with the data and use the set of data that, in your opinion, corresponds to the run that is mostly representative of the capacitor discharge.

T (min)	v(t) V	f(t)=v(t)/v(0)	ln(f(t))				
0.0							(-(0))
0.15							
0.30							
1.00							
1.15							
1.15							
1.30							
1.50							
1.45							
1.75							
2.00							
2.15							
2.30							
2.45							
3.00							
2.15							
3.15							
3.30							
5.50							
3.45							
5.75							
4.00							
4.15							
4.30							
4.45							
5.00							

Table 1 Capacitor Discharge Data

4.2 Square Wave Response

a- Take $C = 0.01 \mu$ F and use a resistor *R* so that one-half period of a 1.00KHz square wave will be 5τ where the time constant $\tau = RC$. Arrange such an R-C circuit (fig. 4) with the function generator as the source. Observe the function generator output on Channel 1 and v_C on Channel 2. $R = \underline{\Omega}$.

b- Set the generator to square wave and set $f = 500 \text{Hz}^3$. Set the scope sensitivities to 1 volt/div (CAL), AC input. Set sweep to 0.5ms/div (CAL). Adjust the generator amplitude for 6 V peak-to-peak ($V_{\text{PP}} = 6 \text{ V}$, i.e. the square wave amplitude A=3 V) and center both images vertically on the screen.

c- Since f = 500Hz, a half period is 10τ . Notice that the capacitor has time to fully charge on each half-cycle (see eq. (2) and note that e^{-10} is negligible.)

Change the sweep to 0.1ms/div. Now a half period is 10 divisions wide.

Let us write a theoretical expression for the capacitor voltage v_c . Taking the origin of time, t =0, when the square wave jumps from -A to A, we can determine the capacitor voltage v_c during the half cycle that follows t =0 as

$$v_C(t) = A - 2A \ e^{-t/\tau}$$

Verify that the plot on the screen follows the above equation. This can be achieved by checking whether four or so representative points of $v_c(t)$ on the screen are as predicted by the equation. Download the waveform for your report.

d- Increase *R* and decrease *C* by a factor of 10, and verify that the circuit still behaves as in part c. Download the waveform for your report.

e- From their original values, decrease R and increase C by a factor of 100 and again verify that the circuit behavior is substantially the same as in <u>part c</u>. However you may notice that the 50-ohm internal impedance of the function generator causes some distortion at the beginning of each half-cycle when the current is large. Download the waveform for your report.

f- Return to the original values of *R* and *C* and adjust the amplitude for $V_{PP} = 6.0$ if necessary. Change the frequency to 2.00KHz (check frequency again). The half period is now 2.5 τ . Measure the peak to peak capacitor voltage V_{CPP} and keep this value for the Report.

 $V_{\rm CPP} =$ _____V.

³ Because of the inaccuracy of the oscillator frequency knobs of the function generator, it is essential to *actually measure* the exact frequency or period of the signal generated. Both the counter and the digital oscilloscope can be used for this purpose. Either should be used *in all experiments where a frequency or a period reading is required*, in order to obtain a correct and accurate result. In this case, use the counter.

4.3 Integration and Differentiation

4.3.1 Integration of a square wave:

Choose a frequency at which you are satisfied with the performance of the circuit as an integrator (adjust sensitivity and sweep rate as needed). Measure the peak to peak capacitor voltage V_{CPP} and the frequency of the waveform using the frequency counter. Study the relation of the function and its integral and download the scope image for your report.

4.3.2 Integration of a triangular wave:

With the circuit functioning well as an integrator, switch to triangular input. Adjust the generator output to 6 V peak-to peak. Study the relation of the function and its integral and copy the scope image for your report.

The image of the integral on the scope may look like a sine wave but in fact it is parabolic. To prove this, make adjustments with the sweep, sensitivities, and variables until the image spans 8 divisions peak-to-peak and the half period is 4 divisions wide. Notice that the amplitude at 1/8 period is 3/4 of peak instead of 0.707 of peak as it would be in a sine wave. Download the waveform.

4.3.3 Integration of a sine wave:

Change to sine wave input. Set the sensitivity variables and the sweep variable to CAL. Study the image and download as before.

4.3.4 Differentiation of a triangular wave:

Return to triangular wave. Interchange the capacitor and the resistor in the circuit. Channel 2 should now be receiving v_R . Adjust the sensitivity of the scope so v_R becomes visible. Reduce frequency gradually, making changes in scope sensitivity and sweep rate as you go, until you are satisfied with the performance of the circuit as a differentiator.

Measure the peak to peak resistance voltage V_{RPP} and the frequency of the wave using the frequency counter. Study the images and download them for your report.

4.3.5 Differentiation of a square wave:

Change to a square wave and decrease Channel 2 sensitivity until the derivative becomes visible. Study and copy the images. With 1 volt/div on Channel 1 and 2 volts/div on Channel 2, notice that the peak V_R is twice the peak input.

4.3.6 Differentiation of a sine wave:

Change to sine wave. Adjust input to $V_{PP} = 6.0$ and make the usual positioning adjustments. Tweak the frequency to make the phase difference stand out. Study the images and download them.

5 Report

5.1 Determine the time constant τ in the following two ways:

(a). Plot f(t) data from <u>table 1</u> on a graph paper with rectangular coordinates. The value of τ is the time at which

$$f(t) = f(0)e^{-1} = 0.368f(0)$$

- (b). $f(t) = A e^{-t/\tau} u(t)$
 - $\circ => ln(f(t)) = (-1/\tau)t + ln(A) \text{ for } t \ge 0 \text{ which is in the form:}$
 - $Y = A_1 t + A_0$ and ln(f(t)) vs t should plot as a straight line.
 - Plot ln(f(t)) vs t on a graph paper with rectangular coordinates and find the best straight line fit to the data.
 - The slope of the straight line must be $(-1/\tau)$, hence the value of τ can be computed from the slope.
- 5.2 Determine the time constant by integration using the following method:
 - (a) From the equation $f(t) = Ae^{-t/\tau}$, it is easy to show that the area under the complete f(t) curve is equal to A τ .
 - (b) The trapezoidal rule is used to find the area. For a set of observations $f_1...,f_N$ spaced at a common interval Δt , the area τ in the interval $t_1 \le t_i \le t_N$ is given approximately by:

Area =
$$\tau = \Delta t \left[\frac{f_1 + f_N}{2} + \sum_{i=2}^{N-1} f_i \right]$$

- **5.3** Determine the time constant by differentiation using the following method:
 - (a) At any point on the graph of f(t) vs t, the slope line (tangent) will always reach zero in a time $t = \tau$. Given

$$f(t) = f(t_o) e^{-\frac{t-t_o}{\tau}}$$

it can be shown that (do not prove)

$$\tau = f(t_o) \frac{\Delta t}{f(t_o) - f(t_o + \Delta t)}$$

- (b) Apply the above equation for τ to each of the data points to the first 3 minutes and average the values of τ to obtain the time constant.
- 5.4 From the value of V_{CPP} measured in Section <u>4.2f</u>, determine $V_{\text{PP}}/V_{\text{CPP}}$. Compare with the theoretical value obtained from Eq. 2.

5.5	Submit all images copied from the scope, using the appropriate scales and label
	with the appropriate descriptive labels.

- **5.6** From Section <u>4.3.1</u>, determine the minimum τ/T for good integration of a square wave. Determine the minimum V_{PP}/V_{CPP} . Compare with the theoretical value obtained from Eq. 2.
- 5.7 From Section 4.3.2, Show that the integration of the triangular wave is a parabolic wave, i.e, show that the amplitude of the wave at 1/8 period is 3/4 of peak.
- **5.8** From Section <u>4.3.4</u>, determine the minimum T/τ for good differentiation of the triangular wave. Determine the minimum $V_{\text{PP}}/V_{\text{RPP}}$. What does the output waveform look like?
- **5.9** Simulate in PSpice all parts of section <u>4.3</u>. Use the frequencies obtained in the Lab. Plot the output waveforms. Compare with the experimental ones.
- **5.10** Design a first order RC circuit that produces the following response:

$$v_c(t) = 10 - 5 e^{-3000t} V$$
 for t ≥ 0 .

5.11 Prepare a summary.