Introduction to Signal Processing - S. J. Orfanidis Errata List for Solutions Manual - February 15, 2005

Prob-1.05: The last terms of $x(t)$ and $x_{a}(t)$ should be $\sin (2 \pi t)$ instead of $-\sin (2 \pi t)$.
Prob-1.09: The final expression for $y_{a}(t)$ should read: $1.0016 \sin (10 \pi t)+0.9606 \sin (20 \pi t)$.
Prob-1.10: In the expression for $S(f)$ involving the sum over m and the integral, the $s(t)$ should be removed from the integrand.
Prob-1.24: Between the last two expressions for $H\left(f_{m}\right)$, read:

$$
\frac{1}{T} H\left(f_{m}\right)=\frac{\sin \left(\pi f_{m} T\right)}{\pi f_{m} T} e^{-j \pi f_{m} T}
$$

and because $\pi f_{m} T=\pi f_{0} T+m \pi$, we have:

$$
\frac{1}{T} H\left(f_{m}\right)=\frac{\sin \left(\pi f_{0} T\right)}{\pi f_{m} T} e^{-j \pi f_{0} T}
$$

Prob-2.14: In the two conversion tables for $x=1.2$, the final correct value of x_{Q} should be 1.0.
Prob-3.05: The last equation should read $y_{n}=0.5 y_{n-1}+4 x_{n}+x_{n-1}$.
Prob-5.11: In the last two displayed equations, the words "max" and "min" must be interchanged (the summation limits are correct.)
Prob-5.16: In Parts (c) and (d), there must always be seven zeros separating the non-zero entries of $x(n)$.
Prob-6.07: The figure of inadvertently shows the block diagram of Problem 6.6. It should depict $h(n)$ versus n.
Prob-6.22: The sample processing algorithm should read $w_{0}=x+a w_{16}, y=w_{0}-w_{16}$. Filled circles in the figure represent poles.
Prob-7.02: In the first 5 lines of the solution, the expression $(Y(z)-X(z))$ should be replaced by $(X(z)-Y(z))$.
Prob-7.03: The last line should read: $\mathbf{h}=[0,1,0,5,0,6,0,1,0,5,0,6, \ldots]$.
Prob-7.09: In line 4, instead of $1+z^{-4}, \operatorname{read} 1+z^{-3}$.
Prob-7.11: In line 5, instead of $z= \pm 0.9 m, \pm 0.9 j$, read $z= \pm 0.9, \pm 0.9 j$.
Prob-7.12: Instead of "Therefore, the zeros are be", read "The zeros are". Also, in the last equation for $h(n)$, the quantities $\pm c^{(n-4) / 4}$ must be multiplied by the factor $1-c^{2}$.
Prob-7.19: In the w_{0}-column of the last table, the last three 0 's should be 1's.
Prob-7.20: In the first line, instead of "direct for denominator", read "direct form denominator".
Prob-8.09: The zero patterns and corresponding magnitude responses of the last two filters must be interchanged.
Prob-9.04: In line before last, instead of $18 \bmod 16$, read $18 \bmod 8$.
Prob-9.10: The last rounded value of k_{A} should be 30 .
Prob-9.22: The term $\sin (10 \pi t)$ of $x(t)$ should read $\sin (20 \pi t)$. In the same problem, the answer for the DFT \mathbf{X} has an extra 0 at its end, which should be deleted. Finally, the third term of the expression for $x(n)$ in terms of complex exponentials should be $j e^{-j \pi n / 2}$ instead of $j e^{j \pi n / 2}$.
Prob-9.26: In third line, $\omega_{1} 2$ should read ω_{12}. Moreover, the phase of $W(\omega)$ should be $e^{-j 15 \omega / 2}$ instead of $e^{-j 8 \omega}$.
Prob-9.34: The term 1.5/ $\log _{2} N$ in the last equation should read $2.5 / \log _{2} N$.
Prob-9.42: The vectors $\mathbf{x}, \mathbf{X}, \mathbf{b}$ must be divided by a factor of 4 to make them compatible with the given definition of $x(t)$. Moreover, the aliased signal should be: $x_{a l}(t)=2 j b_{1} \sin (2 \pi t)+2 j b_{3} \sin (6 \pi t)$, where $2 j b_{1}=(2+\sqrt{2}) / 16$ and $2 j b_{3}=-(2-\sqrt{2}) / 16$.
Prob-11.11: The calculated value of f_{0} should be 10.003 , instead of 1.003 .
Prob-12.02: The expression for $d(k)$ in the higpass case, should have as numerator $\sin (\pi k)-\sin \left(\omega_{a} k\right)$.
Prob-12.04: The tenth entry of the vector \mathbf{d} should be 0.300 , instead of 0.200 .
Prob-12.08: The calculation of N_{1} should read: $N_{1}-1=\frac{D F_{1}}{F_{0}-1}=\frac{5.0174 \cdot 4}{2-1}=20.07$.
Prob-12.09: The vertical label of Fig. P12.16 should be $d B$ instead of degrees. In line 3, instead of $d(k)= \pm d(k)$, read $d(-k)= \pm d(k)$. In line 3 from the bottom, instead of $d^{\prime}(k)=w(k) w(k)$, read $d^{\prime}(k)=w(k) d(k)$.
Prob-12.10: In the third equation from the end, instead of 4.5, read 2.25.
Prob-12.24: And also in Prob-12.25, the extra right parenthesis should be removed from the denominator of $H_{1}(z)$ and $H_{2}(z)$, that is, it must read $1-z^{-1}$.
Prob-12.25: The denominator of $H_{x}(\zeta)$ should be identical to that of $H_{N S}(\zeta)$.

