

Introduction to

Signal Processing

Second Edition

Introduction to

Signal Processing

Second Edition

Sophocles J. Orfanidis

Rutgers University

http://www.ece.rutgers.edu/~orfanidi/intro2sp/2e

To the memory of my dearest friend George Lazos

and to my family, Monica, John, Anna, and Owen

Copyright © 2010 by Sophocles J. Orfanidis, first edition

Copyright © 2023 by Sophocles J. Orfanidis, second edition

This book was previously published by Pearson Education, Inc.
Copyright © 1996–2009 by Prentice Hall, Inc. Previous ISBN 0-13-209172-0.

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopy-
ing, recording or otherwise, without the prior written permission of the author.

Software tools:

MATLAB©R is a registered trademark of The MathWorks, Inc.

I2SP Toolbox – © S. J. Orfanidis 2010 – www.ece.rutgers.edu/~orfanidi/intro2sp

EWA Toolbox – © S. J. Orfanidis 2016 – www.ece.rutgers.edu/~orfanidi/ewa

AOSP Toolbox – © S. J. Orfanidis 2018 – www.ece.rutgers.edu/~orfanidi/aosp

CVX software by Michael Grant and Stephen Boyd, CVX: Matlab software for disciplined
convex programming, version 2.0 beta, September 2013, http://cvxr.com/cvx.

Audio files:

Some example audio files were used from the following resources:

1. Robin N. Strickland, ECE 429/529, Digital Signal Processing course, Spring 2009.
https://uweb.engr.arizona.edu/~429rns/audiofiles/audiofiles.html
https://uweb.engr.arizona.edu/~429rns/index.htm

2. Udo Zölzer (ed.), DAFX - Digital Audio Effects, ISBN: 0-471-49078-4, Wiley, 2002.
https://dafx.de/DAFX_Book_Page/matlab.html

Contents

Preface xv

Part I Basics

1 Sampling and Reconstruction 1

1.1 Introduction, 1
1.2 Review of Analog Signals, 1
1.3 Sampling Theorem, 4

1.3.1 Sampling Theorem, 5
1.3.2 Antialiasing Prefilters, 7
1.3.3 Hardware Limits, 8

1.4 Sampling of Sinusoids, 9
1.4.1 Analog Reconstruction and Aliasing, 10
1.4.2 Rotational Motion, 26
1.4.3 DSP Frequency Units, 28

1.5 Spectra of Sampled Signals, 29
1.5.1 Discrete-Time Fourier Transform, 30
1.5.2 Spectrum Replication, 32
1.5.3 Practical Antialiasing Prefilters, 38

1.6 Analog Reconstructors, 42
1.6.1 Ideal Reconstructors, 43
1.6.2 Staircase Reconstructors, 44
1.6.3 Anti-Image Postfilters, 45

1.7 Basic Components of DSP Systems, 53
1.8 Theory of Bandlimited Functions, 55
1.9 Problems, 56

2 Quantization 62

2.1 Quantization Process, 62
2.2 Oversampling and Noise Shaping, 66
2.3 D/A Converters, 71
2.4 A/D Converters, 76
2.5 Analog and Digital Dither, 84
2.6 Problems, 90

v

vi CONTENTS

3 Discrete-Time Systems 95

3.1 Input/Output Rules, 96
3.2 Linearity and Time Invariance, 100
3.3 Impulse Response, 102
3.4 FIR and IIR Filters, 104
3.5 Causality and Stability, 111
3.6 Problems, 116

4 FIR Filtering and Convolution 120

4.1 Block Processing Methods, 121
4.1.1 Convolution, 121
4.1.2 Direct Form, 122
4.1.3 Convolution Table, 124
4.1.4 LTI Form, 126
4.1.5 Matrix Forms, 128
4.1.6 Flip-and-Slide Form, 130
4.1.7 Transient and Steady-State Behavior, 131
4.1.8 Convolution of Infinite Sequences, 133
4.1.9 Programming Considerations, 137
4.1.10 Overlap-Add Block Convolution Method, 141

4.2 Numerical Evaluation of Continuous-Time Convolution, 145
4.2.1 Computer Experiment – Numerical Approximation, 145
4.2.2 Computer Experiment – Transient and Steady-State Behavior, 149

4.3 Sample Processing Methods, 154
4.3.1 Pure Delays, 154
4.3.2 FIR Filtering in Direct Form, 159
4.3.3 Programming Considerations, 167
4.3.4 Hardware Realizations and Circular Buffers, 169

4.4 Problems, 185

5 z-Transforms 190

5.1 Basic Properties, 190
5.2 Region of Convergence, 193
5.3 Causality and Stability, 199
5.4 Frequency Spectrum, 202
5.5 Inverse z-Transforms, 208
5.6 Unilateral z-Transform, 215
5.7 Problems, 220

6 Transfer Functions 224

6.1 Equivalent Descriptions of Digital Filters, 224
6.2 Transfer Functions, 225
6.3 Sinusoidal Response, 239

6.3.1 Steady-State Response, 239
6.3.2 Transient Response, 242

6.4 Pole/Zero Designs, 252
6.4.1 First-Order Filters, 252

CONTENTS vii

6.4.2 Parametric Resonators and Equalizers, 254
6.4.3 Notch and Comb Filters, 259

6.5 Deconvolution, Inverse Filters, and Stability, 264
6.6 Problems, 269

7 Digital Filter Realizations 275

7.1 Direct Form, 275
7.2 Canonical Form, 281
7.3 Transposed Form, 287
7.4 State-Space Realizations, 290
7.5 Cascade Form, 294
7.6 Cascade to Canonical, 301
7.7 Hardware Realizations and Circular Buffers, 310
7.8 Problems, 322

8 Lattice Realizations 331

8.1 Overview, 331
8.2 Applications of Lattice Structures, 332
8.3 Standard, Rearranged, and Normalized Lattice, 333
8.4 Direct to/from Lattice Transformations, 343
8.5 Filtering in Lattice Realizations, 344
8.6 Frequency Response of Lattice Forms, 346
8.7 Schur-Cohn Stability Test, 346
8.8 Lattice Filter Examples, 347
8.9 Quantization Effects in Digital Filters, 353
8.10 Computer Experiments – Coefficient Quantization Effects, 355

9 DTFT and Spectral Analysis 360

9.1 Frequency Resolution and Windowing, 360
9.2 DTFT Computation, 372
9.3 Window Parameters, 374
9.4 Additional Details on Windows, 382

9.4.1 Rectangular Window, 382
9.4.2 Hamming Window, 386
9.4.3 Kaiser Window, 387
9.4.4 DPSS Window, 388
9.4.5 Chebyshev Window, 390

9.5 Fourier Optics, Apertures, Spatial Arrays, 393
9.6 Periodogram and Its Improvements, 395
9.7 Filtering of Random Signals, 401
9.8 Computer Experiment – Sunspot Time Series, 403
9.9 Problems, 407

10 DFT/FFT Algorithms 410

10.1 Discrete Fourier Transform, 410
10.2 Zero Padding, 413
10.3 Physical versus Computational Resolution, 414

viii CONTENTS

10.4 Matrix Form of DFT, 418
10.5 Modulo-N Reduction, 421
10.6 Inverse DFT, 429
10.7 Sampling of Periodic Signals and the DFT, 432
10.8 FFT, 436
10.9 Fast Convolution, 449
10.10 Circular Convolution, 449
10.11 Overlap-Add and Overlap-Save Methods, 453
10.12 Computer Experiment – Fast Convolution, 457
10.13 Computer Experiment – Matched Filtering, 460
10.14 Problems, 462

11 FIR Digital Filter Design 469

11.1 Window Method, 469
11.1.1 Ideal Filters, 469
11.1.2 Rectangular Window, 472
11.1.3 Hamming Window, 477

11.2 Gibbs Phenomenon, 477
11.3 Kaiser Window, 481

11.3.1 Kaiser Window for Filter Design, 481
11.3.2 Kaiser Window for Spectral Analysis, 495

11.4 Frequency Sampling Method, 498
11.5 Other FIR Design Methods, 499
11.6 Problems, 499

12 IIR Digital Filter Design 504

12.1 Bilinear Transformation, 504
12.2 First-Order Lowpass and Highpass Filters, 507
12.3 Second-Order Peaking and Notching Filters, 514
12.4 Parametric Equalizer Filters, 523

12.4.1 Shelving Equalizers, 530
12.4.2 Equalizers with Prescribed Nyquist-Frequency Gain, 532

12.5 Comb Filters, 534
12.6 Higher-Order Filters, 536
12.7 Analog Lowpass Butterworth Filters, 538
12.8 Digital Lowpass Filters, 543
12.9 Digital Highpass Filters, 547
12.10 Digital Bandpass Filters, 550
12.11 Digital Bandstop Filters, 555
12.12 Chebyshev Filter Design, 559
12.13 Problems, 572

13 Elliptic Filter Design 576

13.1 Introduction, 576
13.2 Jacobian Elliptic Functions, 580
13.3 Elliptic Rational Function and the Degree Equation, 587
13.4 Landen Transformations, 591
13.5 Analog Elliptic Filter Design, 593

CONTENTS ix

13.6 Design Example, 594
13.7 Butterworth and Chebyshev Designs, 597
13.8 Highpass, Bandpass, and Bandstop Analog Filters, 600
13.9 Digital Filter Design, 605
13.10 Pole and Zero Transformations, 605
13.11 Transformation of Frequency Specifications, 609
13.12 MATLAB Implementation and Examples, 611
13.13 Frequency-Shifted Realizations, 614

14 Interpolation, Decimation, and Oversampling 622

14.1 Interpolation and Oversampling, 622
14.2 Interpolation Filter Design, 628

14.2.1 Direct Form, 628
14.2.2 Polyphase Form, 630
14.2.3 Frequency Domain Characteristics, 635
14.2.4 Kaiser Window Designs, 638
14.2.5 Multistage Designs, 639

14.3 Linear and Hold Interpolators, 647
14.4 Design Examples, 651

14.4.1 4-fold Interpolators, 651
14.4.2 Multistage 4-fold Interpolators, 657
14.4.3 DAC Equalization, 661
14.4.4 Postfilter Design and Equalization, 664
14.4.5 Multistage Equalization, 668

14.5 Decimation and Oversampling, 676
14.6 Sampling Rate Converters, 681
14.7 Noise Shaping Quantizers, 688
14.8 Problems, 696

15 Noise Reduction and Signal Enhancement 704

15.1 Noise Reduction and Signal Extraction, 704
15.2 IIR Exponential Smoother, 708
15.3 IIR Highpass Signal Extraction, 712
15.4 Bandpass Signal Extraction, 713
15.5 FIR Averaging Filters, 714
15.6 FIR Highpass Signal Extraction, 720
15.7 Noise Reduction, Time Constant, Group Delay, 720
15.8 Computer Experiment – Noise-Reduction vs. Group-Delay, 724
15.9 Computer Experiment – Time–Bandwidth Tradeoffs, 729
15.10 Computer Experiment – SMA, EMA, PMA, DEMA filters, 733
15.11 Notch and Comb Filters for Periodic Signals, 738
15.12 Line and Frame Combs for Digital TV, 749
15.13 Problems, 761

x CONTENTS

Part II Applications

16 Digital Audio Effects 767

16.1 Digital Waveform Generators, 767
16.1.1 Sinusoidal Generators, 767
16.1.2 Periodic Waveform Generators, 772
16.1.3 Wavetable Generators, 781

16.2 Digital Audio Effects, 800
16.2.1 Delays, Echoes, and Comb Filters, 801
16.2.2 Flanging, Chorusing, and Phasing, 806
16.2.3 Digital Reverberation, 813
16.2.4 Multitap Delays, 825

16.3 Dynamic Range Control, 829
16.3.1 Compressors, Limiters, Expanders, and Noise Gates, 829
16.3.2 Level Detectors and Gain Processors, 830
16.3.3 Attack and Release Time Constants and Gain Smoothing, 833
16.3.4 Computer Experiments, 835
16.3.5 Example Graphs, 838

16.4 Problems, 838

17 High-Order Digital Parametric Equalizers 849

17.1 Overview, 849
17.2 General Considerations, 850
17.3 Poles and Zeros, 854
17.4 Butterworth, Chebyshev, and Elliptic Designs, 857
17.5 Order Determination, 863
17.6 Bandwidth, 864
17.7 Realizations, 867
17.8 Decoupled Realizations, 871
17.9 Design Examples, 873
17.10 Appendix-1 State-Space Realizations, 879
17.11 Appendix-2 High-Order Analog Equalizer Design, 879
17.12 Appendix-3 MATLAB Functions, 880

18 STFT and Phase Vocoder 882

18.1 Introduction, 882
18.2 Short-Time Fourier Transform, 882
18.3 Spectrograms, 884
18.4 Inverse STFT and OLA Reconstruction, 886
18.5 STFT-Based Signal Processing System, 887
18.6 STFT Computation, 888
18.7 Phase Vocoder, 891
18.8 Time-Scale Modification, 891
18.9 Phase Vocoder Model, 892
18.10 Pitch-Scale Modification, 896
18.11 Computer Experiments, 897

CONTENTS xi

19 DCT, MDCT, and Data Compression 905

19.1 DCT and MDCT Compression Systems, 905
19.2 Discrete Cosine Transform, 907
19.3 DCT Compression System, 910
19.4 MDCT and Time-Domain Aliasing Cancellation, 913
19.5 Princen-Bradley Windows, 916
19.6 Derivations and Computer Experiments, 918

20 Discrete Wavelet Transforms 928

20.1 Multiresolution Analysis, 928
20.2 Dilation Equations, 933
20.3 Wavelet Filter Properties, 939
20.4 Multiresolution and Filter Banks, 944
20.5 Discrete Wavelet Transform, 949
20.6 Multiresolution Decomposition, 962
20.7 Wavelet Denoising, 963
20.8 Undecimated Wavelet Transform, 966
20.9 MATLAB Functions, 975
20.10 Problems, 977

21 Discretization Methods 979

21.1 Continuous-Time Systems, 979
21.2 Mapping of Initial Conditions, 981
21.3 Forced Response, 983
21.4 Solution Procedures, 984
21.5 Steady-State Sinusoidal Response, 985
21.6 Continuous-Time Example, 986
21.7 Discretization Schemes – Summary, 994
21.8 Forward / Backward Euler, and Trapezoidal Rules, 996
21.9 Zero-Order and First-Order Holds, 997
21.10 Sample-by-Sample Processing, 999
21.11 Initialization Procedures, 1006
21.12 Forward / Backward Euler, and Trapezoidal Rules, 1014
21.13 Ideal Sampling, Starred Laplace Transform, z-Transform, 1015
21.14 Zero-Order Hold, 1018
21.15 Step Invariance and Impulse Invariance, 1023
21.16 First-Order Hold, 1025
21.17 Ramp Invariance, 1027
21.18 Appendix, 1027
21.19 MATLAB function – c2d2, 1029

22 Control Systems 1030

22.1 Feedback Control Systems, 1030
22.2 PID Control, 1032
22.3 Digital Control Systems, 1032
22.4 Examples, 1035

22.4.1 Cruise Control, 1035

xii CONTENTS

22.4.2 Radar Tracking Antenna, 1037
22.4.3 Inverted Pendulum, 1048
22.4.4 Thermostat Model, 1053

23 Local Polynomial Filters 1058

23.1 Introduction, 1058
23.2 Local Polynomial Fitting, 1059
23.3 Exact Design Equations, 1068
23.4 Geometric Interpretation, 1073
23.5 Orthogonal Polynomial Bases, 1074
23.6 Polynomial Predictive and Interpolation Filters, 1075
23.7 Farrow Realization Structures, 1078
23.8 Minimum Variance Filters, 1082
23.9 Predictive Differentiation Filters, 1088
23.10 Filtering Implementations, 1093
23.11 Minimum Roughness Weighted Polynomial Filters, 1102
23.12 Henderson Filters, 1108
23.13 Hahn Orthogonal Polynomials, 1118
23.14 Maximally-Flat Filters, 1126
23.15 Missing Data and Outliers, 1131
23.16 Weighted Local Polynomial Modeling, 1136
23.17 Bandwidth Selection with CV and GCV, 1143
23.18 Local Polynomial Interpolation, 1145
23.19 Variable and Adaptive Bandwidth, 1150
23.20 Repeated Observations, 1156
23.21 Loess Smoothing, 1157
23.22 Problems, 1159

24 Exponential Moving Average Filters 1160

24.1 Mean Tracking, 1160
24.2 Forecasting and State-Space Models, 1169
24.3 Higher-Order Polynomial Smoothing Filters, 1170
24.4 Linear Trend FIR Filters, 1172
24.5 Higher-Order Exponential Smoothing, 1174
24.6 Steady-State Exponential Smoothing, 1180
24.7 Smoothing Parameter Selection, 1186
24.8 Single, Double, Triple Exponential Smoothing, 1191
24.9 Tukey’s Twicing Operation, 1193
24.10 Zero-Lag Filters and Twicing, 1194
24.11 Local Level, Local Slope, Local Acceleration Filters, 1196
24.12 Basis Transformations and EMA Initialization, 1198
24.13 Holt’s Exponential Smoothing, 1203
24.14 Problems, 1205

CONTENTS xiii

25 Filtering Methods in Financial Markets 1209

25.1 Technical Analysis of Financial Markets, 1209
25.2 Moving Average Filters – SMA, WMA, TMA, EMA, 1209
25.3 Predictive Moving Average Filters, 1212
25.4 Single, Double, Triple EMA Indicators, 1215
25.5 Linear Regression and R-Square Indicators, 1217
25.6 Initialization Schemes, 1222
25.7 Butterworth Moving Average Filters, 1228
25.8 Moving Average Filters with Reduced Lag, 1231
25.9 Zigzag Indicator, 1237
25.10 L0 Trend Indicator, 1239
25.11 Envelopes, Bands, and Channels, 1242
25.12 Momentum, Oscillators, and Other Indicators, 1251
25.13 MATLAB Functions, 1257
25.14 Computer Project – Markowitz Portfolio Theory, 1259

26 Whittaker-Henderson Smoothing 1271

26.1 Smoothing Splines, 1271
26.2 Whittaker-Henderson Smoothing Methods, 1272
26.3 Regularization Filters, 1277
26.4 Hodrick-Prescott Filters, 1279
26.5 Poles and Impulse Response, 1282
26.6 Regularization and Kernel Machines, 1283
26.7 Sparse Whittaker-Henderson Methods, 1289
26.8 Computer Experiments, 1291

26.8.1 Total Variation Minimization, 1293
26.8.2 Local Linear Trends, 1294
26.8.3 Global Warming Trends, 1295
26.8.4 US GDP Macroeconomic Data, 1298

26.9 Sparse Modeling – LASSO and BPDN, 1302
26.9.1 Sparse Spike Deconvolution Example, 1309
26.9.2 Sparse Signal Recovery Example, 1314

26.10 Problems, 1318

27 Periodic Signal Extraction 1319

27.1 Introduction, 1319
27.2 Notch and Comb Filters for Periodic Signals, 1320
27.3 Notch and Comb Filters with Fractional Delay, 1326
27.4 Parallel and Cascade Realizations, 1331
27.5 Signal Averaging, 1336
27.6 Ideal Seasonal Decomposition Filters, 1342
27.7 Classical Seasonal Decomposition, 1344
27.8 Seasonal Moving-Average Filters, 1352
27.9 Census X-11 Decomposition Filters, 1358
27.10 Musgrave Asymmetric Filters, 1362
27.11 Seasonal Whittaker-Henderson Decomposition, 1368
27.12 Sparse Seasonal Whittaker-Henderson Decomposition, 1370
27.13 Problems, 1375

28 Neural Networks 1376

28.1 Introduction, 1376
28.2 Multilayer Feedforward Neural Networks, 1376
28.3 Backpropagation Algorithm, 1379
28.4 Computer Experiments, 1382

28.4.1 3:3:2 network for 3-bit parity problem, 1382
28.4.2 3:3:2:2 network for 3-bit parity problem, 1384
28.4.3 4:4:1 network for prediction of sunspot time series, 1384

29 Appendices 1389

A Random Number Generators, 1389
A.1 Uniform and Gaussian Generators, 1389
A.2 Low-Frequency Noise Generators, 1394
A.3 1/f Noise Generators, 1399
A.4 Problems, 1403

B Prolate Spheroidal Wave Functions, 1406
B.1 Definition, 1407
B.2 Fourier Transform, 1409
B.3 Orthogonality and Completeness Properties, 1411
B.4 Signal Restoration, 1413
B.5 Representation and Extrapolation of Bandlimited Functions, 1415
B.6 Energy Concentration Properties, 1417
B.7 Computation, 1419

C MATLAB Toolbox, 1432

References 1433

Index 1505

Preface

Preface to the First Edition

This book provides an applications-oriented introduction to digital signal processing
written primarily for electrical engineering undergraduates. Practicing engineers and
graduate students may also find it useful as a first text on the subject.

Digital signal processing is everywhere. Today’s college students hear “DSP” all the
time in their everyday life—from their CD players, to their electronic music synthesizers,
to the sound cards in their PCs. They hear all about “DSP chips”, “oversampling digital
filters”, “1-bit A/D and D/A converters”, “wavetable sound synthesis”, “audio effects
processors”, “all-digital audio studios”. By the time they reach their junior year, they
are already very eager to learn more about DSP.

Approach

The learning of DSP can be made into a rewarding, interesting, and fun experience for
the student by weaving into the material several applications, such as the above, that
serve as vehicles for teaching the basic DSP concepts, while generating and maintaining
student interest. This has been the guiding philosophy and objective in writing this text.
As a result, the book’s emphasis is more on signal processing than discrete-time system
theory, although the basic principles of the latter are adequately covered.

The book teaches by example and takes a hands-on practical approach that empha-
sizes the algorithmic, computational, and programming aspects of DSP. It contains a
large number of worked examples, computer simulations and applications, and several
C and MATLAB functions for implementing various DSP operations. The practical slant
of the book makes the concepts more concrete.

Use

The book may be used at the junior or senior level. It is based on a junior-level DSP
course that I have taught at Rutgers since 1988. The assumed background is only a first
course on linear systems. Sections marked with an asterisk (∗) are more appropriate for
a second or senior elective course on DSP. The rest can be covered at the junior level.
The included computer experiments can form the basis of an accompanying DSP lab
course, as is done at Rutgers.

xv

xvi PREFACE

A solutions manual, which also contains the results of the computer experiments,
is available from the publisher. The C and MATLAB functions may be obtained via
anonymous FTP from the Internet site ece.rutgers.edu in the directory /pub/sjo or
by pointing a Web browser to the book’s WWW home page at the URL:
http://www.ece.rutgers.edu/~orfanidi/intro2sp

Contents and Highlights

Chapters 1 and 2 contain a discussion of the two key DSP concepts of sampling and
quantization. The first part of Chapter 1 covers the basic issues of sampling, aliasing,
and analog reconstruction at a level appropriate for juniors. The second part is more
advanced and discusses the practical issues of choosing and defining specifications for
antialiasing prefilters and anti-image postfilters.

Chapter 2 discusses the quantization process and some practical implementations
of A/D and D/A converters, such as the conversion algorithm for bipolar two’s comple-
ment successive approximation converters. The standard model of quantization noise
is presented, as well as the techniques of oversampling, noise shaping, and dithering.
The tradeoff between oversampling ratio and savings in bits is derived. This material is
continued in Section 12.7 where the implementation and operation of delta-sigma noise
shaping quantizers is considered.

Chapter 3 serves as a review of basic discrete-time systems concepts, such as linear-
ity, time-invariance, impulse response, convolution, FIR and IIR filters, causality, and
stability. It can be covered quickly as most of this material is assumed known from a
prerequisite linear systems course.

Chapter 4 focuses on FIR filters and its purpose is to introduce two basic signal
processing methods: block-by-block processing and sample-by-sample processing. In
the block processing part, we discuss various approaches to convolution, transient and
steady-state behavior of filters, and real-time processing on a block-by-block basis using
the overlap-add method and its software implementation. This is further discussed in
Section 9.9 using the FFT.

In the sample processing part, we introduce the basic building blocks of filters:
adders, multipliers, and delays. We discuss block diagrams for FIR filters and their
time-domain operation on a sample-by-sample basis. We put a lot of emphasis on the
concept of sample processing algorithm, which is the repetitive series of computations
that must be carried out on each input sample.

We discuss the concept of circular buffers and their use in implementing delays
and FIR filters. We present a systematic treatment of the subject and carry it on to
the remainder of the book. The use of circular delay-line buffers is old, dating back at
least 25 years with its application to computer music. However, it has not been treated
systematically in DSP texts. It has acquired a new relevance because all modern DSP
chips use it to minimize the number of hardware instructions.

Chapter 5 covers the basics of z-transforms. We emphasize the z-domain view of
causality, stability, and frequency spectrum. Much of this material may be known from
an earlier linear system course.

Chapter 6 shows the equivalence of various ways of characterizing a linear filter
and illustrates their use by example. It also discusses topics such as sinusoidal and

PREFACE xvii

steady-state responses, time constants of filters, simple pole/zero designs of first- and
second-order filters as well as comb and notch filters. The issues of inverse filtering and
causality are also considered.

Chapter 7 develops the standard filter realizations of canonical, direct, and cascade
forms, and their implementation with linear and circular buffers. Quantization effects
are briefly discussed.

Chapter 8 presents three DSP application areas. The first is on digital waveform
generation, with particular emphasis on wavetable generators. The second is on digital
audio effects, such as flanging, chorusing, reverberation, multitap delays, and dynamics
processors, such as compressors, limiters, expanders, and gates. These areas were cho-
sen for their appeal to undergraduates and because they provide concrete illustrations
of the use of delays, circular buffers, and filtering concepts in the context of audio signal
processing.

The third area is on noise reduction/signal enhancement, which is one of the most
important applications of DSP and is of interest to practicing engineers and scientists
who remove noise from data on a routine basis. Here, we develop the basic principles for
designing noise reduction and signal enhancement filters both in the frequency and time
domains. We discuss the design and circular buffer implementation of notch and comb
filters for removing periodic interference, enhancing periodic signals, signal averaging,
and separating the luminance and chrominance components in digital color TV systems.
We also discuss Savitzky-Golay filters for data smoothing and differentiation.

Chapter 9 covers DFT/FFT algorithms. The first part emphasizes the issues of spec-
tral analysis, frequency resolution, windowing, and leakage. The second part discusses
the computational aspects of the DFT and some of its pitfalls, the difference between
physical and computational frequency resolution, the FFT, and fast convolution.

Chapter 10 covers FIR filter design using the window method, with particular em-
phasis on the Kaiser window. We also discuss the use of the Kaiser window in spectral
analysis.

Chapter 11 discusses IIR filter design using the bilinear transformation based on
Butterworth and Chebyshev filters. By way of introducing the bilinear transformation,
we show how to design practical second-order digital audio parametric equalizer filters
having prescribed widths, center frequencies, and gains. We also discuss the design of
periodic notch and comb filters with prescribed widths.

In the two filter design chapters, we have chosen to present only a few design meth-
ods that are simple enough for our intended level of presentation and effective enough
to be of practical use.

Chapter 12 discusses interpolation, decimation, oversampling DSP systems, sample
rate converters, and delta-sigma quantizers. We discuss the use of oversampling for
alleviating the need for high quality analog prefilters and postfilters. We present several
practical design examples of interpolation filters, including polyphase and multistage
designs. We consider the design of sample rate converters and study the operation of
oversampled delta-sigma quantizers by simulation. This material is too advanced for
juniors but not seniors. All undergraduates, however, have a strong interest in it because
of its use in digital audio systems such as CD and DAT players.

The Appendix has four parts: (a) a review section on random signals; (b) a discus-
sion of random number generators, including uniform, Gaussian, low frequency, and

xviii PREFACE

1/f noise generators; (c) C functions for performing the complex arithmetic in the DFT
routines; (d) listings of MATLAB functions.

Paths

Several course paths are possible through the text depending on the desired level of
presentation. For example, in the 14-week junior course at Rutgers we cover Sections
1.1–1.4, 2.1–2.4, Chapters 3–7, Sections 8.1–8.2, Chapter 9, and Sections 10.1–10.2 and
11.1–11.4. One may omit certain of these sections and/or add others depending on the
available time and student interest and background. In a second DSP course at the senior
year, one may add Sections 1.5–1.7, 2.5, 8.3, 11.5–11.6, and Chapter 12. In a graduate
course, the entire text can be covered comfortably in one semester.

Acknowledgments

I am indebted to the many generations of students who tried earlier versions of the book
and helped me refine it. In particular, I would like to thank Mr. Cem Saraydar for his
thorough proofreading of the manuscript. I would like to thank my colleagues Drs. Zoran
Gajic, Mark Kahrs, James Kaiser, Dino Lelic, Tom Marshall, Peter Meer, and Nader Moayeri
for their feedback and encouragement. I am especially indebted to Dr. James Kaiser for
enriching my classes over the past eight years with his inspiring yearly lectures on the
Kaiser window. I would like to thank the book’s reviewers Drs. A. V. Oppenheim, J. A.
Fleming, Y-C. Jenq, W. B. Mikhael, S. J. Reeves, A. Sekey, and J. Weitzen, whose comments
helped improve the book. And I would like to thank Rutgers for providing me with a
sabbatical leave to finish up the project. I welcome any feedback from readers—it may
be sent to orfanidi@ece.rutgers.edu.

Finally, I would like to thank my wife Monica and son John for their love, patience,
encouragement, and support.

Sophocles J. Orfanidis

PREFACE xix

Preface to the Second Edition

The contents of the first edition have been left essentially unchanged with some minor
changes. Several new topics have been added covering additional theory, as well as a
range of signal processing applications. New topics include:

• Lattice filters

• Elliptic filter design

• High-order digital parametric audio equalizers

• Short-time Fourier transform (STFT) and applications

• Phase vocoder, time-scale and pitch-scale modification

• DCT, modified DCT, and data compression

• Discrete wavelet transforms

• Discretization methods for continuous-time systems

• Brief introduction to analog and digital PID control systems

• Local polynomial filters

• Minimum-roughness Henderson filters

• Weighted local polynomial modeling and LOESS

• Local polynomial interpolation

• Exponential moving average filters

• Zero-lag filters

• Filtering methods in financial markets

• Moving Average Filters - SMA, WMA, TMA, EMA

• Predictive moving average filters

• Single, double, triple EMA indicators

• Linear regression and R-square indicators

• Moving average filters with reduced lag

• Envelopes, bands, and channels

• Momentum, oscillators, and other market indicators

• Whittaker-Henderson smoothing including sparse versions

• Hodrick-Prescott filters

• Sparse modeling – LASSO and BPDN

• Periodic signal extraction

• Fractional delay filters

• Signal averaging

• Ideal and classical seasonal decomposition

• Census X-11 decomposition filters

• Seasonal Whittaker-Henderson decomposition including sparse versions

• Brief introduction to neural networks

• Prolate spheroidal wave functions

Sophocles J. Orfanidis

xx PREFACE

Part I

Basics

1
Sampling and Reconstruction

1.1 Introduction

Digital processing of analog signals proceeds in three stages:

1. The analog signal is digitized, that is, it is sampled and each sample quantized to
a finite number of bits. This process is called A/D conversion.

2. The digitized samples are processed by a digital signal processor.

3. The resulting output samples may be converted back into analog form by an ana-
log reconstructor (D/A conversion).

A typical digital signal processing system is shown below.

The digital signal processor can be programmed to perform a variety of signal pro-
cessing operations, such as filtering, spectrum estimation, and other DSP algorithms.
Depending on the speed and computational requirements of the application, the digital
signal processor may be realized by a general purpose computer, minicomputer, special
purpose DSP chip, or other digital hardware dedicated to performing a particular signal
processing task.

The design and implementation of DSP algorithms will be considered in the rest of
this text. In the first two chapters we discuss the two key concepts of sampling and
quantization, which are prerequisites to every DSP operation.

1.2 Review of Analog Signals

We begin by reviewing some pertinent topics from analog system theory. An analog
signal is described by a function of time, say, x(t). The Fourier transform X(Ω) of x(t)

1

2 1. SAMPLING AND RECONSTRUCTION

is the frequency spectrum of the signal:

X(Ω)=
∫∞
−∞

x(t)e−jΩt dt (1.2.1)

where Ω is the radian frequency† in [radians/second]. The ordinary frequency f in
[Hertz] or [cycles/sec] is related to Ω by

Ω = 2πf (1.2.2)

The physical meaning ofX(Ω) is brought out by the inverse Fourier transform, which
expresses the arbitrary signal x(t) as a linear superposition of sinusoids of different
frequencies:

x(t)=
∫∞
−∞

X(Ω)ejΩt
dΩ
2π

(1.2.3)

The relative importance of each sinusoidal component is given by the quantityX(Ω).
The Laplace transform is defined by

X(s)=
∫∞
−∞

x(t)e−st dt

It reduces to the Fourier transform, Eq. (1.2.1), under the substitution s = jΩ. The
s-plane pole/zero properties of transforms provide additional insight into the nature of
signals. For example, a typical exponentially decaying sinusoid of the form

x(t)= e−α1tejΩ1tu(t)= es1tu(t) t

where s1 = −α1 + jΩ1, has Laplace transform

X(s)= 1

s− s1

Im s

Re s

s1 jΩ1

-α1 0

s - plane

with a pole at s = s1, which lies in the left-hand s-plane. Next, consider the response of
a linear system to an input signal x(t):

†We use the notation Ω to denote the physical frequency in units of [radians/sec], and reserve the
notation ω to denote digital frequency in [radians/sample].

1.2. REVIEW OF ANALOG SIGNALS 3

The system is characterized completely by the impulse response function h(t). The
output y(t) is obtained in the time domain by convolution:

y(t)=
∫∞
−∞

h(t − t′)x(t′)dt′

or, in the frequency domain by multiplication:

Y(Ω)= H(Ω)X(Ω) (1.2.4)

where H(Ω) is the frequency response of the system, defined as the Fourier transform
of the impulse response h(t):

H(Ω)=
∫∞
−∞

h(t)e−jΩt dt (1.2.5)

The steady-state sinusoidal response of the filter, defined as its response to sinu-
soidal inputs, is summarized below:

sinusoid in sinusoid out

linear
system
H(Ω)

x(t) = e
jΩt

y(t) = H(Ω)e
jΩt

This figure illustrates the filtering action of linear filters, that is, a given frequency
component Ω is attenuated (or, magnified) by an amount H(Ω) by the filter. More
precisely, an input sinusoid of frequency Ω will reappear at the output modified in
magnitude by a factor |H(Ω)| and shifted in phase by an amount argH(Ω):

x(t)= ejΩt ⇒ y(t)= H(Ω)ejΩt = |H(Ω)|ejΩt+ jargH(Ω)

By linear superposition, if the input consists of the sum of two sinusoids of frequen-
cies Ω1 and Ω2 and relative amplitudes A1 and A2,

x(t)= A1ejΩ1t +A2ejΩ2t

then, after filtering, the steady-state output will be

y(t)= A1H(Ω1)ejΩ1t +A2H(Ω2)ejΩ2t

Notice how the filter changes the relative amplitudes of the sinusoids, but not their
frequencies. The filtering effect may also be seen in the frequency domain using Eq. (1.2.4),
as shown below:

Ω ΩΩ1 Ω1Ω2 Ω2

A1 A2

H(Ω)

X(Ω) Y(Ω)

A1H(Ω1)

A2H(Ω2)

4 1. SAMPLING AND RECONSTRUCTION

The input spectrumX(Ω) consists of two sharp spectral lines at frequenciesΩ1 and
Ω2, as can be seen by taking the Fourier transform of x(t):

X(Ω)= 2πA1δ(Ω−Ω1)+2πA2δ(Ω−Ω2)

The corresponding output spectrum Y(Ω) is obtained from Eq. (1.2.4):

Y(Ω) = H(Ω)X(Ω)= H(Ω)
(
2πA1δ(Ω−Ω1)+2πA2δ(Ω−Ω2)

)
= 2πA1H(Ω1)δ(Ω−Ω1)+2πA2H(Ω2)δ(Ω−Ω2)

What makes the subject of linear filtering useful is that the designer has complete
control over the shape of the frequency response H(Ω) of the filter. For example, if the
sinusoidal component Ω1 represents a desired signal and Ω2 an unwanted interference,
then a filter may be designed that lets Ω1 pass through, while at the same time it filters
out the Ω2 component. Such a filter must have H(Ω1)= 1 and H(Ω2)= 0.

1.3 Sampling Theorem

Next, we study the sampling process, illustrated in Fig. 1.3.1, where the analog signal
x(t) is periodically measured every T seconds. Thus, time is discretized in units of the
sampling interval T:

t = nT, n = 0,1,2, . . .

Considering the resulting stream of samples as an analog signal, we observe that
the sampling process represents a very drastic chopping operation on the original signal
x(t), and therefore, it will introduce a lot of spurious high-frequency components into
the frequency spectrum. Thus, for system design purposes, two questions must be
answered:

1. What is the effect of sampling on the original frequency spectrum?

2. How should one choose the sampling interval T?

Fig. 1.3.1 Ideal sampler.

1.3. SAMPLING THEOREM 5

We will try to answer these questions intuitively, and then more formally using
Fourier transforms. We will see that although the sampling process generates high
frequency components, these components appear in a very regular fashion, that is, ev-
ery frequency component of the original signal is periodically replicated over the entire
frequency axis, with period given by the sampling rate:

fs = 1

T
(1.3.1)

This replication property will be justified first for simple sinusoidal signals and then
for arbitrary signals. Consider, for example, a single sinusoid x(t)= e2πjft of frequency
f . Before sampling, its spectrum consists of a single sharp spectral line at f . But after
sampling, the spectrum of the sampled sinusoid x(nT)= e2πjfnT will be the periodic
replication of the original spectral line at intervals of fs, as shown in Fig. 1.3.2.

f

f-3fs f-2fs f-fs f f+fs f+2fs f+3fs

.

frequency

Fig. 1.3.2 Spectrum replication caused by sampling.

Note also that starting with the replicated spectrum of the sampled signal, one can-
not tell uniquely what the original frequency was. It could be any one of the replicated
frequencies, namely, f ′ = f +mfs, m = 0,±1,±2, That is so because any one of
them has the same periodic replication when sampled. This potential confusion of the
original frequency with another is known as aliasing and can be avoided if one satisfies
the conditions of the sampling theorem.

The sampling theorem provides a quantitative answer to the question of how to
choose the sampling time interval T. Clearly, T must be small enough so that signal
variations that occur between samples are not lost. But how small is small enough? It
would be very impractical to choose T too small because then there would be too many
samples to be processed. This is illustrated in Fig. 1.3.3, where T is small enough to
resolve the details of signal 1, but is unnecessarily small for signal 2.

Another way to say the same thing is in terms of the sampling rate fs, which is
measured in units of [samples/sec] or [Hertz] and represents the “density” of samples
per unit time. Thus, a rapidly varying signal must be sampled at a high sampling rate
fs, whereas a slowly varying signal may be sampled at a lower rate.

1.3.1 Sampling Theorem

A more quantitative criterion is provided by the sampling theorem which states that for
accurate representation of a signal x(t) by its time samples x(nT), two conditions must
be met:

6 1. SAMPLING AND RECONSTRUCTION

t
T

signal 1

signal 2

Fig. 1.3.3 Signal 2 is oversampled.

1. The signal x(t) must be bandlimited, that is, its frequency spectrum must be
limited to contain frequencies up to some maximum frequency, say fmax, and no
frequencies beyond that. A typical bandlimited spectrum is shown in Fig. 1.3.4.

2. The sampling rate fs must be chosen to be at least twice the maximum frequency
fmax, that is,

fs ≥ 2fmax (1.3.2)

or, expressed in terms of the sampling time interval,

T ≤ 1

2fmax

fmax-fmax
0

f

X(f)

Fig. 1.3.4 Typical bandlimited spectrum.

The minimum sampling rate allowed by the sampling theorem, that is, fs = 2fmax, is
called the Nyquist rate. For arbitrary values of fs, the quantity fs/2 is called the Nyquist
frequency , or the folding frequency. It defines the endpoints of the Nyquist frequency
interval : (

fs
)

max = 2fmax = Nyquist rate

fs
2
= Nyquist frequency

[
− fs

2
,
fs
2

]
= Nyquist Interval

The Nyquist frequency fs/2 also defines the cutoff frequencies of the lowpass analog
prefilters and postfilters that are required in DSP operations. The values of fmax and fs

1.3. SAMPLING THEOREM 7

depend on the application. Typical sampling rates for some common DSP applications
are shown in the following table.

application fmax fs

geophysical 500 Hz 1 kHz
biomedical 1 kHz 2 kHz
mechanical 2 kHz 4 kHz
speech 4 kHz 8 kHz
audio 20 kHz 40 kHz
video 4 MHz 8 MHz

1.3.2 Antialiasing Prefilters

The practical implications of the sampling theorem are quite important. Since most
signals are not bandlimited, they must be made so by lowpass filtering before sampling.

In order to sample a signal at a desired rate fs and satisfy the conditions of the
sampling theorem, the signal must be prefiltered by a lowpass analog filter, known as
an antialiasing prefilter. The cutoff frequency of the prefilter, fmax, must be taken to
be at most equal to the Nyquist frequency fs/2, that is, fmax ≤ fs/2. This operation is
shown in Fig. 1.3.5.

The output of the analog prefilter will then be bandlimited to maximum frequency
fmax and may be sampled properly at the desired rate fs. The spectrum replication
caused by the sampling process can also be seen in Fig. 1.3.5. It will be discussed in
detail in Section 1.5.

Fig. 1.3.5 Antialiasing prefilter.

It should be emphasized that the rate fs must be chosen to be high enough so that,
after the prefiltering operation, the surviving signal spectrum within the Nyquist interval
[−fs/2, fs/2] contains all the significant frequency components for the application at
hand.

Example 1.3.1: In a hi-fi digital audio application, we wish to digitize a music piece using a
sampling rate of 40 kHz. Thus, the piece must be prefiltered to contain frequencies up
to 20 kHz. After the prefiltering operation, the resulting spectrum of frequencies is more
than adequate for this application because the human ear can hear frequencies only up to
20 kHz. 	

8 1. SAMPLING AND RECONSTRUCTION

Example 1.3.2: Similarly, the spectrum of speech prefiltered to about 4 kHz results in very
intelligible speech. Therefore, in digital speech applications it is adequate to use sampling
rates of about 8 kHz and prefilter the speech waveform to about 4 kHz. 	

What happens if we do not sample in accordance with the sampling theorem? If we
undersample, we may be missing important time variations between sampling instants
and may arrive at the erroneous conclusion that the samples represent a signal which
is smoother than it actually is. In other words, we will be confusing the true frequency
content of the signal with a lower frequency content. Such confusion of signals is called
aliasing and is depicted in Fig. 1.3.6.

true signal

t
T

T

2T 3T 4T 5T 6T 7T 8T 9T 10T

aliased signal

0

Fig. 1.3.6 Aliasing in the time domain.

1.3.3 Hardware Limits

Next, we consider the restrictions imposed on the choice of the sampling rate fs by the
hardware. The sampling theorem provides a lower bound on the allowed values of fs.
The hardware used in the application imposes an upper bound.

In real-time applications, each input sample must be acquired, quantized, and pro-
cessed by the DSP, and the output sample converted back into analog format. Many
of these operations can be pipelined to reduce the total processing time. For example,
as the DSP is processing the present sample, the D/A may be converting the previous
output sample, while the A/D may be acquiring the next input sample.

In any case, there is a total processing or computation time, say Tproc seconds, re-
quired for each sample. The time interval T between input samples must be greater
than Tproc; otherwise, the processor would not be able to keep up with the incoming
samples. Thus,

T ≥ Tproc

or, expressed in terms of the computation or processing rate, fproc = 1/Tproc, we obtain
the upper bound fs ≤ fproc, which combined with Eq. (1.3.2) restricts the choice of fs to
the range:

2fmax ≤ fs ≤ fproc

In succeeding sections we will discuss the phenomenon of aliasing in more detail,
provide a quantitative proof of the sampling theorem, discuss the spectrum replication
property, and consider the issues of practical sampling and reconstruction and their
effect on the overall quality of a digital signal processing system. Quantization will be
considered later on.

1.4. SAMPLING OF SINUSOIDS 9

1.4 Sampling of Sinusoids

The two conditions of the sampling theorem, namely, that x(t) be bandlimited and
the requirement fs ≥ 2fmax, can be derived intuitively by considering the sampling of
sinusoidal signals only. Figure 1.4.1 shows a sinusoid of frequency f ,

x(t)= cos(2πft)

that has been sampled at the three rates: fs = 8f , fs = 4f , and fs = 2f . These rates
correspond to taking 8, 4, and 2 samples in each cycle of the sinusoid.

fs = 4f fs = 2ffs = 8f

Fig. 1.4.1 Sinusoid sampled at rates fs = 8f ,4f ,2f .

Simple inspection of these figures leads to the conclusion that the minimum ac-
ceptable number of samples per cycle is two. The representation of a sinusoid by two
samples per cycle is hardly adequate,† but at least it does incorporate the basic up-down
nature of the sinusoid. The number of samples per cycle is given by the quantity fs/f :

fs
f
= samples/sec

cycles/sec
= samples

cycle

Thus, to sample a single sinusoid properly, we must require

fs
f
≥ 2 samples/cycle ⇒ fs ≥ 2f (1.4.1)

Next, consider the case of an arbitrary signal x(t). According to the inverse Fourier
transform of Eq. (1.2.3), x(t) can be expressed as a linear combination of sinusoids.
Proper sampling of x(t) will be achieved only if every sinusoidal component of x(t) is
properly sampled.

This requires that the signal x(t) be bandlimited. Otherwise, it would contain si-
nusoidal components of arbitrarily high frequency f , and to sample those accurately,
we would need, by Eq. (1.4.1), arbitrarily high rates fs. If the signal is bandlimited to
some maximum frequency fmax, then by choosing fs ≥ 2fmax, we are accurately sam-
pling the fastest-varying component of x(t), and thus a fortiori, all the slower ones. As
an example, consider the special case:

x(t)= A1 cos(2πf1t)+A2 cos(2πf2t)+· · · +Amax cos(2πfmaxt)

where fi are listed in increasing order. Then, the conditions

2f1 ≤ 2f2 ≤ · · · ≤ 2fmax ≤ fs

imply that every component of x(t), and hence x(t) itself, is properly sampled.

†It also depends on the phase of the sinusoid. For example, sampling at the zero crossings instead of at
the peaks, would result in zero values for the samples.

10 1. SAMPLING AND RECONSTRUCTION

1.4.1 Analog Reconstruction and Aliasing

Next, we discuss the aliasing effects that result if one violates the sampling theorem
conditions (1.3.2) or (1.4.1). Consider the complex version of a sinusoid:

x(t)= ejΩt = e2πjft

and its sampled version obtained by setting t = nT,

x(nT)= ejΩTn = e2πjfTn

Define also the following family of sinusoids, for m = 0,±1,±2, . . . ,

xm(t)= e2πj(f +mfs)t

and their sampled versions,

xm(nT)= e2πj(f +mfs)Tn

Using the property fsT = 1 and the trigonometric identity,

e2πjmfsTn = e2πjmn = 1

we find that, although the signals xm(t) are different from each other, their sampled
values are the same; indeed,

xm(nT)= e2πj(f +mfs)Tn = e2πjfTne2πjmfsTn = e2πjfTn = x(nT)

In terms of their sampled values, the signals xm(t) are indistinguishable, or aliased.
Knowledge of the sample values x(nT)= xm(nT) is not enough to determine which
among them was the original signal that was sampled. It could have been any one of the
xm(t). In other words, the set of frequencies,

f , f ± fs, f ± 2fs, . . . , f ±mfs, . . . (1.4.2)

are equivalent to each other. The effect of sampling was to replace the original fre-
quency f with the replicated set (1.4.2). This is the intuitive explanation of the spectrum
replication property depicted in Fig. 1.3.2. A more mathematical explanation will be
given later using Fourier transforms.

Given that the sample values x(nT) do not uniquely determine the analog signal
they came from, the question arises: What analog signal would result if these samples
were fed into an analog reconstructor, as shown in Fig. 1.4.2?

We will see later that an ideal analog reconstructor extracts from a sampled signal all
the frequency components that lie within the Nyquist interval [−fs/2, fs/2] and removes
all frequencies outside that interval. In other words, an ideal reconstructor acts as a
lowpass filter with cutoff frequency equal to the Nyquist frequency fs/2.

Among the frequencies in the replicated set (1.4.2), there is a unique one that lies
within the Nyquist interval.† It is obtained by reducing the original f modulo-fs, that is,

†The only exception is when it falls exactly on the left or right edge of the interval, f = ±fs/2.

1.4. SAMPLING OF SINUSOIDS 11

Fig. 1.4.2 Ideal reconstructor as a lowpass filter.

adding to or subtracting from f enough multiples of fs until it lies within the symmetric
Nyquist interval [−fs/2, fs/2]. We denote this operation by‡

fa = f mod(fs) (1.4.3)

This is the frequency, in the replicated set (1.4.2), that will be extracted by the analog
reconstructor. Therefore, the reconstructed sinusoid will be:

xa(t)= e2πjfat

It is easy to see that fa = f only if f lies within the Nyquist interval, that is, only if
|f| ≤ fs/2, which is equivalent to the sampling theorem requirement. If f lies outside
the Nyquist interval, that is, |f| > fs/2, violating the sampling theorem condition, then
the “aliased” frequency fa will be different from f and the reconstructed analog signal
xa(t) will be different from x(t), even though the two agree at the sampling times,
xa(nT)= x(nT).

It is instructive also to plot in Fig. 1.4.3 the aliased frequency fa = f mod(fs) versus
the true frequency f . Observe how the straight line ftrue = f is brought down in segments
by parallel translation of the Nyquist periods by multiples of fs.

In summary, potential aliasing effects that can arise at the reconstruction phase of
DSP operations can be avoided if one makes sure that all frequency components of the
signal to be sampled satisfy the sampling theorem condition, |f| ≤ fs/2, that is, all
frequency components lie within the Nyquist interval. This is ensured by the lowpass
antialiasing prefilter, which removes all frequencies beyond the Nyquist frequency fs/2,
as shown in Fig. 1.3.5.

Example 1.4.1: Consider a sinusoid of frequency f = 10 Hz sampled at a rate of fs = 12
Hz. The sampled signal will contain all the replicated frequencies fm = 10 + 12m Hz,
m = 0,±1,±2, . . . , or,

. . . ,−26, −14, −2, 10, 22, 34, 46, . . .

and among these only fa = 10 mod(12)= 10−12 = −2 Hz lies within the Nyquist interval
[−6,6] Hz. This sinusoid will appear at the output of a reconstructor as a −2 Hz sinusoid
instead of a 10 Hz one.

‡This differs slightly from a true modulo operation; the latter would bring f into the right-sided Nyquist
interval [0, fs].

12 1. SAMPLING AND RECONSTRUCTION

fs/2

fs/2

fs 2fs-fs/2

-fs/2

-fs
0

f

fa = f mod(fs)

f tru
e

= f

Fig. 1.4.3 f mod(fs) versus f .

On the other hand, had we sampled at a proper rate, that is, greater than 2f = 20 Hz, say
at fs = 22 Hz, then no aliasing would result because the given frequency of 10 Hz already
lies within the corresponding Nyquist interval of [−11,11] Hz. 	

Example 1.4.2: Suppose a music piece is sampled at rate of 40 kHz without using a prefilter with
cutoff of 20 kHz. Then, inaudible components having frequencies greater than 20 kHz can
be aliased into the Nyquist interval [−20,20] distorting the true frequency components in
that interval. For example, all components in the inaudible frequency range 20 ≤ f ≤ 60
kHz will be aliased with −20 = 20−40 ≤ f−fs ≤ 60−40 = 20 kHz, which are audible. 	

Example 1.4.3: The following five signals, where t is in seconds, are sampled at a rate of 4 Hz:

− sin(14πt), − sin(6πt), sin(2πt), sin(10πt), sin(18πt)

Show that they are all aliased with each other in the sense that their sampled values are
the same.

Solution: The frequencies of the five sinusoids are:

−7, −3, 1, 5, 9 Hz

They differ from each other by multiples of fs = 4 Hz. Their sampled spectra will be
indistinguishable from each other because each of these frequencies has the same periodic
replication in multiples of 4 Hz.

Writing the five frequencies compactly:

fm = 1+ 4m, m = −2,−1,0,1,2

we can express the five sinusoids as:

xm(t)= sin(2πfmt)= sin(2π(1+ 4m)t), m = −2,−1,0,1,2

1.4. SAMPLING OF SINUSOIDS 13

Replacing t = nT = n/fs = n/4 sec, we obtain the sampled signals:

xm(nT) = sin(2π(1+ 4m)nT)= sin(2π(1+ 4m)n/4)

= sin(2πn/4+ 2πmn)= sin(2πn/4)

which are the same, independently of m. The following figure shows the five sinusoids
over the interval 0 ≤ t ≤ 1 sec.

t

10

They all intersect at the sampling time instants t = nT = n/4 sec. We will reconsider this
example in terms of rotating wheels in Section 1.4.2. 	

Example 1.4.4: Let x(t) be the sum of sinusoidal signals

x(t)= 4+ 3 cos(πt)+2 cos(2πt)+ cos(3πt)

where t is in milliseconds. Determine the minimum sampling rate that will not cause any
aliasing effects, that is, the Nyquist rate. To observe such aliasing effects, suppose this
signal is sampled at half its Nyquist rate. Determine the signal xa(t) that would be aliased
with x(t).

Solution: The frequencies of the four terms are: f1 = 0, f2 = 0.5 kHz, f3 = 1 kHz, and f4 = 1.5
kHz (they are in kHz because t is in msec). Thus, fmax = f4 = 1.5 kHz and the Nyquist rate
will be 2fmax = 3 kHz. If x(t) is now sampled at half this rate, that is, at fs = 1.5 kHz, then
aliasing will occur.

The corresponding Nyquist interval is [−0.75,0.75] kHz. The frequencies f1 and f2 are
already in it, and hence they are not aliased, in the sense that f1a = f1 and f2a = f2. But f3

and f4 lie outside the Nyquist interval and they will be aliased with

f3a = f3 mod(fs)= 1 mod(1.5)= 1− 1.5 = −0.5 kHz

f4a = f4 mod(fs)= 1.5 mod(1.5)= 1.5− 1.5 = 0 kHz

The aliased signal xa(t) is obtained from x(t) by replacing f1, f2, f3, f4 by f1a, f2a, f3a, f4a.
Thus, the signal

x(t)= 4 cos(2πf1t)+3 cos(2πf2t)+2 cos(2πf3t)+ cos(2πf4t)

will be aliased with

xa(t) = 4 cos(2πf1at)+3 cos(2πf2at)+2 cos(2πf3at)+ cos(2πf4at)

= 4+ 3 cos(πt)+2 cos(−πt)+ cos(0)

= 5+ 5 cos(πt)

The signals x(t) and xa(t) are shown below. Note that they agree only at their sampled
values, that is, xa(nT)= x(nT). The aliased signal xa(t) is smoother, that is, it has lower

14 1. SAMPLING AND RECONSTRUCTION

frequency content than x(t) because its spectrum lies entirely within the Nyquist interval,
as shown below:

2T 3T 4T 5T 6T 7T 8T 9T
t

T0

x(t) xa(t)

The form of xa(t) can also be derived in the frequency domain by replicating the spectrum
of x(t) at intervals of fs = 1.5 kHz, and then extracting whatever part of the spectrum lies
within the Nyquist interval. The following figure shows this procedure.

0

1/2
1/2 1/2

1/2

2/2 2/22/2 2/2

3/2 3/2

4

0.5 1 1.5 kHz

f

-1.5 -1 -0.5-0.75 0.75

Nyquist Interval

ideal
reconstructor

Each spectral line of x(t) is replicated in the fashion of Fig. 1.3.2. The two spectral lines
of strength 1/2 at f4 = ±1.5 kHz replicate onto f = 0 and the amplitudes add up to give a
total amplitude of (4+ 1/2+ 1/2)= 5. Similarly, the two spectral lines of strength 2/2 at
f3 = ±1 kHz replicate onto f = ∓0.5 kHz and the amplitudes add to give (3/2+2/2)= 2.5
at f = ±0.5 kHz. Thus, the ideal reconstructor will extract f1 = 0 of strength 5 and
f2 = ±0.5 of equal strengths 2.5, which recombine to give:

5+ 2.5e2πj0.5t + 2.5e−2πj0.5t = 5+ 5 cos(πt)

This example shows how aliasing can distort irreversibly the amplitudes of the original
frequency components within the Nyquist interval. 	

Example 1.4.5: The signal
x(t)= sin(πt)+4 sin(3πt)cos(2πt)

where t is in msec, is sampled at a rate of 3 kHz. Determine the signal xa(t) aliased with
x(t). Then, determine two other signals x1(t) and x2(t) that are aliased with the same
xa(t), that is, such that x1(nT)= x2(nT)= xa(nT).

Solution: To determine the frequency content of x(t), we must express it as a sum of sinusoids.
Using the trigonometric identity 2 sina cosb = sin(a+ b)+ sin(a− b), we find:

x(t)= sin(πt)+2
[
sin(3πt + 2πt)+ sin(3πt − 2πt)

] = 3 sin(πt)+2 sin(5πt)

1.4. SAMPLING OF SINUSOIDS 15

Thus, the frequencies present in x(t) are f1 = 0.5 kHz and f2 = 2.5 kHz. The first already
lies in the Nyquist interval [−1.5,1,5] kHz so that f1a = f1. The second lies outside and
can be reduced mod fs to give f2a = f2 mod(fs)= 2.5 mod(3)= 2.5− 3 = −0.5. Thus, the
given signal will “appear” as:

xa(t) = 3 sin(2πf1at)+2 sin(2πf2at)

= 3 sin(πt)+2 sin(−πt)= 3 sin(πt)−2 sin(πt)

= sin(πt)

To find two other signals that are aliased with xa(t), we may shift the original frequencies
f1, f2 by multiples of fs. For example,

x1(t) = 3 sin(7πt)+2 sin(5πt)

x2(t) = 3 sin(13πt)+2 sin(11πt)

where we replaced {f1, f2} by {f1+fs, f2} = {3.5,2.5} for x1(t), and by {f1+2fs, f2+fs} =
{6.5,5.5} for x2(t). 	

Example 1.4.6: Consider a periodic square wave with periodT0 = 1 sec, defined within its basic
period 0 ≤ t ≤ 1 by

x(t)=
⎧⎪⎨⎪⎩

1, for 0 < t < 0.5
−1, for 0.5 < t < 1

0, for t = 0, 0.5, 1

1

-1

0 0.5 1
t

where t is in seconds. The square wave is sampled at rate fs and the resulting samples are
reconstructed by an ideal reconstructor as in Fig. 1.4.2. Determine the signal xa(t) that
will appear at the output of the reconstructor for the two cases fs = 4 Hz and fs = 8 Hz.
Verify that xa(t) and x(t) agree at the sampling times t = nT.

Solution: The Fourier series expansion of the square wave contains odd harmonics at frequen-
cies fm =m/T0 =m Hz, m = 1,3,5,7, It is given by

x(t) =
∑

m=1,3,5,...
bm sin(2πmt)=

= b1 sin(2πt)+b3 sin(6πt)+b5 sin(10πt)+· · ·
(1.4.4)

where bm = 4/(πm), m = 1,3,5, Because of the presence of an infinite number of
harmonics, the square wave is not bandlimited and, thus, cannot be sampled properly at
any rate. For the rate fs = 4 Hz, only the f1 = 1 harmonic lies within the Nyquist interval
[−2,2] Hz. For the rate fs = 8 Hz, only f1 = 1 and f3 = 3 Hz lie in [−4,4] Hz. The
following table shows the true frequencies and the corresponding aliased frequencies in
the two cases:

fs f 1 3 5 7 9 11 13 15 · · ·
4 Hz f mod(4) 1 −1 1 −1 1 −1 1 −1 · · ·
8 Hz f mod(8) 1 3 −3 −1 1 3 −3 −1 · · ·

16 1. SAMPLING AND RECONSTRUCTION

Note the repeated patterns of aliased frequencies in the two cases. If a harmonic is aliased
with ±f1 = ±1, then the corresponding term in Eq. (1.4.4) will appear (at the output of the
reconstructor) as sin(±2πf1t)= ± sin(2πt). And, if it is aliased with ±f3 = ±3, the term
will appear as sin(±2πf3t)= ± sin(6πt). Thus, for fs = 4, the aliased signal will be

xa(t) = b1 sin(2πt)−b3 sin(2πt)+b5 sin(2πt)−b7 sin(2πt)+· · ·
= (b1 − b3 + b5 − b7 + b9 − b11 + · · ·)sin(2πt)

= A sin(2πt)

where

A =
∞∑
k=0

(
b1+4k − b3+4k

) = 4

π

∞∑
k=0

[
1

1+ 4k
− 1

3+ 4k

]
(1.4.5)

Similarly, for fs = 8, grouping together the 1 and 3 Hz terms, we find the aliased signal

xa(t) = (b1 − b7 + b9 − b15 + · · ·)sin(2πt)+
+ (b3 − b5 + b11 − b13 + · · ·)sin(6πt)

= B sin(2πt)+C sin(6πt)

where

B =
∞∑
k=0

(
b1+8k − b7+8k

) = 4

π

∞∑
k=0

[
1

1+ 8k
− 1

7+ 8k

]

C =
∞∑
k=0

(
b3+8k − b5+8k

) = 4

π

∞∑
k=0

[
1

3+ 8k
− 1

5+ 8k

] (1.4.6)

There are two ways to determine the aliased coefficients A, B, C. One is to demand that
the sampled signals xa(nT) and x(nT) agree. For example, in the first case we have
T = 1/fs = 1/4, and therefore, xa(nT)= A sin(2πn/4)= A sin(πn/2). The condition
xa(nT)= x(nT) evaluated at n = 1 impliesA = 1. The following figure shows x(t), xa(t),
and their samples:

t

0 1/4 1/2 1

Similarly, in the second case we have T = 1/fs = 1/8, resulting in the sampled aliased
signal xa(nT)= B sin(πn/4)+C sin(3πn/4). Demanding the condition xa(nT)= x(nT)
at n = 1,2 gives the two equations

B sin(π/4)+C sin(3π/4)= 1

B sin(π/2)+C sin(3π/2)= 1
⇒

B+C = √2

B−C = 1

which can be solved to give B = (
√

2 + 1)/2 and C = (
√

2 − 1)/2. The following figure
shows x(t), xa(t), and their samples:

1.4. SAMPLING OF SINUSOIDS 17

t
0 1/8 11/2

The second way of determining A,B,C is by evaluating the infinite sums of Eqs. (1.4.5)
and (1.4.6). All three are special cases of the more general sum:

b(m,M)≡ 4

π

∞∑
k=0

[
1

m+Mk
− 1

M −m+Mk

]

with M >m > 0. It can be computed as follows. Write

1

m+Mk
− 1

M −m+Mk
=
∫ ∞

0

(
e−mx − e−(M−m)x)e−Mkx dx

then, interchange summation and integration and use the geometric series sum (for x > 0)

∞∑
k=0

e−Mkx = 1

1− e−Mx

to get

b(m,M)= 4

π

∫ ∞
0

e−mx − e−(M−m)x

1− e−Mx dx

Looking this integral up in a table of integrals [38], we find:

b(m,M)= 4

M
cot

(
mπ
M

)
The desired coefficients A,B,C are then:

A = b(1,4)= cot
(π

4

) = 1

B = b(1,8)= 1

2
cot

(π
8

) = √
2+ 1

2

C = b(3,8)= 1

2
cot

(3π
8

) = √
2− 1

2

The above results generalize to any sampling rate fs = M Hz, where M is a multiple of 4.
For example, if fs = 12, we obtain

xa(t)= b(1,12)sin(2πt)+b(3,12)sin(6πt)+b(5,12)sin(10πt)

and more generally
xa(t)=

∑
m=1,3,...,(M/2)−1

b(m,M)sin(2πmt)

The coefficientsb(m,M) tend to the original Fourier series coefficientsbm in the continuous-
time limit, M → ∞. Indeed, using the approximation cot(x)≈ 1/x, valid for small x, we
obtain the limit

lim
M→∞

b(m,M)= 4

M
· 1

πm/M
= 4

πm
= bm

18 1. SAMPLING AND RECONSTRUCTION

The table below shows the successive improvement of the values of the aliased harmonic
coefficients as the sampling rate increases:

coefficients 4 Hz 8 Hz 12 Hz 16 Hz ∞
b1 1 1.207 1.244 1.257 1.273

b3 – 0.207 0.333 0.374 0.424

b5 – – 0.089 0.167 0.255

b7 – – – 0.050 0.182

In this example, the sampling rates of 4 and 8 Hz, and any multiple of 4, were chosen so
that all the harmonics outside the Nyquist intervals got aliased onto harmonics within the
intervals. For other values of fs, such as fs = 13 Hz, it is possible for the aliased harmonics
to fall on non-harmonic frequencies within the Nyquist interval; thus, changing not only
the relative balance of the Nyquist interval harmonics, but also the frequency values. 	

When we develop DFT algorithms, we will see that the aliased Fourier series coef-
ficients for the above type of problem can be obtained by performing a DFT, provided
that the periodic analog signal remains a periodic discrete-time signal after sampling.

This requires that the sampling frequency fs be an integral multiple of the fundamen-
tal harmonic of the given signal, that is, fs = Nf1. In such a case, the aliased coefficients
can be obtained by anN-point DFT of the firstN time samples x(nT), n = 0,1, . . . ,N−1
of the analog signal. See Section 10.7.

Example 1.4.7: A sound wave has the form:

x(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C cos(50πt)+2D cos(60πt)+2E cos(90πt)+2F cos(125πt)

where t is in milliseconds. What is the frequency content of this signal? Which parts of it
are audible and why?

This signal is prefiltered by an analog prefilter H(f). Then, the output y(t) of the pre-
filter is sampled at a rate of 40 kHz and immediately reconstructed by an ideal analog
reconstructor, resulting into the final analog output ya(t), as shown below:

Determine the output signals y(t) and ya(t) in the following cases:

(a) When there is no prefilter, that is, H(f)= 1 for all f .

(b) When H(f) is the ideal prefilter with cutoff fs/2 = 20 kHz.

(c) When H(f) is a practical prefilter with specifications as shown below:

1.4. SAMPLING OF SINUSOIDS 19

20 40 60

60 dB/octave

(-60 dB)

(0 dB)

Analog Prefilter

80 kHz

f

H(f)

0

1

That is, it has a flat passband over the 20 kHz audio range and drops monotonically
at a rate of 60 dB per octave beyond 20 kHz. Thus, at 40 kHz, which is an octave
away, the filter’s response will be down by 60 dB.

For the purposes of this problem, the filter’s phase response may be ignored in deter-
mining the output y(t). Does this filter help in removing the aliased components?

What happens if the filter’s attenuation rate is reduced to 30 dB/octave?

Solution: The six terms of x(t) have frequencies:

fA = 5 kHz

fB = 15 kHz

fC = 25 kHz

fD = 30 kHz

fE = 45 kHz

fF = 62.5 kHz

Only fA and fB are audible; the rest are inaudible. Our ears filter out all frequencies beyond
20 kHz, and we hear x(t) as though it were the signal:

x1(t)= 2A cos(10πt)+2B cos(30πt)

Each term of x(t) is represented in the frequency domain by two peaks at positive and
negative frequencies, for example, the A-term has spectrum:

2A cos(2πfAt)= Ae2πjfAt +Ae−2πjfAt −→ Aδ(f − fA)+Aδ(f + fA)

Therefore, the spectrum of the input x(t) will be as shown below:

20-20 30 50 70-30 10-10 40-40 60-60-70 -50 kHz

Nyquist
interval

ideal prefilter

AA CC E FEF BB DD

f

0

The sampling process will replicate each of these peaks at multiples of fs = 40 kHz. The
four terms C, D, E, F lie outside the [−20,20] kHz Nyquist interval and therefore will be
aliased with the following frequencies inside the interval:

20 1. SAMPLING AND RECONSTRUCTION

fC = 25 ⇒ fC,a = fC mod (fs)= fC − fs = 25− 40 = −15

fD = 30 ⇒ fD,a = fD mod (fs)= fD − fs = 30− 40 = −10

fE = 45 ⇒ fE,a = fE mod (fs)= fE − fs = 45− 40 = 5

fF = 62.5 ⇒ fF,a = fF mod (fs)= fF − 2fs = 62.5− 2× 40 = −17.5

In case (a), if we do not use any prefilter at all, we will have y(t)= x(t) and the recon-
structed signal will be:

ya(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C cos(−2π15t)+2D cos(−2π10t)

+ 2E cos(2π5t)+2F cos(−2π17.5t)

= 2(A+ E)cos(10πt)+2(B+C)cos(30πt)

+ 2D cos(20πt)+2F cos(35πt)

where we replaced each out-of-band frequency with its aliased self, for example,

2C cos(2πfCt)→ 2C cos(2πfC,at)

The relative amplitudes of the 5 and 15 kHz audible components have changed and, in
addition, two new audible components at 10 and 17.5 kHz have been introduced. Thus,
ya(t) will sound very different from x(t).

In case (b), if an ideal prefilter with cutoff fs/2 = 20 kHz is used, then its output will be
the same as the audible part of x(t), that is, y(t)= x1(t). The filter’s effect on the input
spectrum is to remove completely all components beyond the 20 kHz Nyquist frequency,
as shown below:

20-20 30 50 70-30 10-10 40-40 60-60-70 -50 kHz

Nyquist
interval

ideal prefilter

AA

CC E FEF

BB

DD f

0

Because the prefilter’s output contains no frequencies beyond the Nyquist frequency, there
will be no aliasing and after reconstruction the output would sound the same as the input,
ya(t)= y(t)= x1(t).

In case (c), if the practical prefilter H(f) is used, then its output y(t) will be:

y(t) = 2A|H(fA)| cos(10πt)+2B|H(fB)| cos(30πt)

+ 2C|H(fC)| cos(50πt)+2D|H(fD)| cos(60πt)

+ 2E|H(fE)| cos(90πt)+2F|H(fF)| cos(125πt)

(1.4.7)

1.4. SAMPLING OF SINUSOIDS 21

This follows from the steady-state sinusoidal response of a filter applied to the individual
sinusoidal terms of x(t), for example, the effect of H(f) on A is:

2A cos(2πfAt)
H−→ 2A|H(fA)| cos

(
2πfAt + θ(fA)

)
where in Eq. (1.4.7) we ignored the phase response θ(fA)= argH(fA). The basic conclu-
sions of this example are not affected by this simplification.

Note that Eq. (1.4.7) applies also to cases (a) and (b). In case (a), we can replace:

|H(fA)| = |H(fB)| = |H(fC)| = |H(fD)| = |H(fE)| = |H(fF)| = 1

and in case (b):

|H(fA)| = |H(fB)| = 1, |H(fC)| = |H(fD)| = |H(fE)| = |H(fF)| = 0

In case (c), because fA and fB are in the filter’s passband, we still have

|H(fA)| = |H(fB)| = 1

To determine |H(fC)|, |H(fD)|, |H(fE)|, |H(fF)|, we must find how many octaves† away
the frequencies fC, fD, fE, fF are from the fs/2 = 20 kHz edge of the passband. These are
given by:

log2

(
fC
fs/2

)
= log2

(
25

20

)
= 0.322

log2

(
fD
fs/2

)
= log2

(
30

20

)
= 0.585

log2

(
fE
fs/2

)
= log2

(
45

20

)
= 1.170

log2

(
fF
fs/2

)
= log2

(
62.5
20

)
= 1.644

and therefore, the corresponding filter attenuations will be:

at fC: 60 dB/octave× 0.322 octaves = 19.3 dB

at fD: 60 dB/octave× 0.585 octaves = 35.1 dB

at fE : 60 dB/octave× 1.170 octaves = 70.1 dB

at fF : 60 dB/octave× 1.644 octaves = 98.6 dB

By definition, an amount of A dB attenuation corresponds to reducing |H(f)| by a factor
10−A/20. For example, the relative drop of |H(f)| with respect to the edge of the passband
|H(fs/2)| is A dB if:

|H(f)|
|H(fs/2)| = 10−A/20

Assuming that the passband has 0 dB normalization, |H(fs/2)| = 1, we find the following
values for the filter responses:

†The number of octaves is the number of powers of two, that is, if f2 = 2νf1 ⇒ ν = log2(f2/f1).

22 1. SAMPLING AND RECONSTRUCTION

|H(fC)| = 10−19.3/20 = 1

9

|H(fD)| = 10−35.1/20 = 1

57

|H(fE)| = 10−70.1/20 = 1

3234

|H(fF)| = 10−98.6/20 = 1

85114

It follows from Eq. (1.4.7) that the output y(t) of the prefilter will be:

y(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C
9

cos(50πt)+2D
57

cos(60πt)

+ 2E
3234

cos(90πt)+ 2F
85114

cos(125πt)

(1.4.8)

Its spectrum is shown below:

20-20 30 50 70-30 10-10 40-40 60-60-70 -50 kHz

Nyquist
interval

AA
CC

E

F

E

F

BB
DD

f

0

(-19 dB)
(-35 dB)

(-70 dB)

(-98 dB)

Notice how the inaudible out-of-band components have been attenuated by the prefilter,
so that when they get aliased back into the Nyquist interval because of sampling, their
distorting effect will be much less. The wrapping of frequencies into the Nyquist interval
is the same as in case (a). Therefore, after sampling and reconstruction we will get:

ya(t) = 2
(
A+ E

3234

)
cos(10πt)+2

(
B+ C

9

)
cos(30πt)

+ 2D
57

cos(20πt)+ 2F
85114

cos(35πt)

Now, all aliased components have been reduced in magnitude. The component closest
to the Nyquist frequency, namely fC, causes the most distortion because it does not get
attenuated much by the filter.

We will see in Section 1.5.3 that the prefilter’s rate of attenuation in dB/octave is related
to the filter’s order N by α = 6N so that α = 60 dB/octave corresponds to 60 = 6N or
N = 10. Therefore, the given filter is already a fairly complex analog filter. Decreasing the
filter’s complexity to α = 30 dB/octave, corresponding to filter order N = 5, would reduce
all the attenuations by half, that is,

1.4. SAMPLING OF SINUSOIDS 23

at fC: 30 dB/octave× 0.322 octaves = 9.7 dB

at fD: 30 dB/octave× 0.585 octaves = 17.6 dB

at fE : 30 dB/octave× 1.170 octaves = 35.1 dB

at fF : 30 dB/octave× 1.644 octaves = 49.3 dB

and, in absolute units:

|H(fC)| = 10−9.7/20 = 1

3

|H(fD)| = 10−17.6/20 = 1

7.5

|H(fE)| = 10−35.1/20 = 1

57

|H(fF)| = 10−49.3/20 = 1

292

Therefore, the resulting signal after reconstruction would be:

ya(t) = 2
(
A+ E

57

)
cos(10πt)+2

(
B+ C

3

)
cos(30πt)

+ 2D
7.5

cos(20πt)+ 2F
292

cos(35πt)
(1.4.9)

Now theC andD terms are not as small and aliasing would still be significant. The situation
can be remedied by oversampling, as discussed in the next example. 	

Example 1.4.8: Oversampling can be used to reduce the attenuation requirements of the pre-
filter, and thus its order. Oversampling increases the gap between spectral replicas reduc-
ing aliasing and allowing less sharp cutoffs for the prefilter.

For the previous example, if we oversample by a factor of 2, fs = 2 × 40 = 80 kHz, the
new Nyquist interval will be [−40,40] kHz. Only the fE = 45 kHz and fF = 62.5 kHz
components lie outside this interval, and they will be aliased with

fE,a = fE − fs = 45− 80 = −35 kHz

fF,a = fF − fs = 62.5− 80 = −17.5 kHz

Only fF,a lies in the audio band and will cause distortions, unless we attenuate fF using a
prefilter before it gets wrapped into the audio band. Without a prefilter, the reconstructed
signal will be:

ya(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C cos(50πt)+2D cos(60πt)

+ 2E cos(−2π35t)+2F cos(−2π17.5t)

= 2A cos(10πt)+2B cos(30πt)

+ 2C cos(50πt)+2D cos(60πt)+2E cos(70πt)+2F cos(35πt)

24 1. SAMPLING AND RECONSTRUCTION

The audible components in ya(t) are:

y1(t)= 2A cos(10πt)+2B cos(30πt)+2F cos(35πt)

Thus, oversampling eliminated almost all the aliasing from the desired audio band. Note
that two types of aliasing took place here, namely, the aliasing of the E component which
remained outside the relevant audio band, and the aliasing of the F component which does
represent distortion in the audio band.

Of course, one would not want to feed the signal ya(t) into an amplifier/speaker system
because the high frequencies beyond the audio band might damage the system or cause
nonlinearities. (But even if they were filtered out, the F component would still be there.)

	

Example 1.4.9: Oversampling and Decimation. Example 1.4.8 assumed that sampling at 80 kHz
could be maintained throughout the digital processing stages up to reconstruction. There
are applications however, where the sampling rate must eventually be dropped down to
its original value. This is the case, for example, in digital audio, where the rate must be
reduced eventually to the standardized value of 44.1 kHz (for CDs) or 48 kHz (for DATs).

When the sampling rate is dropped, one must make sure that aliasing will not be reintro-
duced. In our example, if the rate is reduced back to 40 kHz, the C and D components,
which were inside the [−40,40] kHz Nyquist interval with respect to the 80 kHz rate,
would find themselves outside the [−20,20] kHz Nyquist interval with respect to the 40
kHz rate, and therefore would be aliased inside that interval, as in Example 1.4.7.

To prevent C and D, as well as E, from getting aliased into the audio band, one must
remove them by a lowpass digital filter before the sampling rate is dropped to 40 kHz.
Such a filter is called a digital decimation filter. The overall system is shown below.

The downsampler in this diagram reduces the sampling rate from 80 down to 40 kHz by
throwing away every other sample, thus, keeping only half the samples. This is equivalent
to sampling at a 40 kHz rate.

The input to the digital filter is the sampled spectrum of y(t), which is replicated at mul-
tiples of 80 kHz as shown below.

20 30 50 70 9010 40 60 80 100 120 140 160 kHz

digital lowpass filter

prefilter
A AA AC CC C

E EE EF FFF

B BB B
D DD D

f

0

We have also assumed that the 30 dB/octave prefilter is present. The output of the digital
filter will have spectrum as shown below.

1.4. SAMPLING OF SINUSOIDS 25

20 30 50 70 9010 40 60 80 100 120 140 160 kHz

digital lowpass filter

A AA A

F FFF

B BB B

C CEED D C CEED D f

0

(-49 dB)

The digital filter operates at the oversampled rate of 80 kHz and acts as a lowpass filter
within the [−40,40] kHz Nyquist interval, with a cutoff of 20 kHz. Thus, it will remove the
C, D, and E components, as well as any other component that lies between 20 ≤ |f| ≤ 60
kHz.

However, because the digital filter is periodic in f with period fs = 80 kHz, it cannot remove
any components from the interval 60 ≤ f ≤ 100. Any components of the analog input y(t)
that lie in that interval would be aliased into the interval 60−80 ≤ f−fs ≤ 100−80, which
is the desired audio band −20 ≤ f − fs ≤ 20. This is what happened to the F component,
as can be seen in the above figure.

The frequency components of y(t) in 60 ≤ |f| ≤ 100 can be removed only by a pre-
filter, prior to sampling and replicating the spectrum. For example, our low-complexity
30 dB/octave prefilter would provide 47.6 dB attenuation at 60 kHz. Indeed, the number
of octaves from 20 to 60 kHz is log2(60/20)= 1.585 and the attenuation there will be
30 dB/octave× 1.584 octaves = 47.6 dB.

The prefilter, being monotonic beyond 60 kHz, would suppress all potential aliased compo-
nents beyond 60 kHz by more than 47.6 dB. At 100 kHz, it would provide 30×log2(100/20)=
69.7 dB attenuation. At fF = 62.5 kHz, it provides 49.3 dB suppression, as was calculated
in Example 1.4.7, that is, |H(fF)| = 10−49.3/20 = 1/292.

Therefore, assuming that the digital filter has already removed the C, D, and E compo-
nents, and that the aliased F component has been sufficiently attenuated by the prefilter,
we can now drop the sampling rate down to 40 kHz.

At the reduced 40 kHz rate, if we use an ideal reconstructor, it would extract only the
components within the [−20,20] kHz band and the reconstructed output will be:

ya(t)= 2A cos(10πt)+2B cos(30πt)+ 2F
292

cos(35πt)

which has a much attenuated aliased component F. This is to be compared with Eq. (1.4.9),
which used the same prefilter but no oversampling. Oversampling in conjunction with
digital decimation helped eliminate the most severe aliased components, C and D.

In summary, with oversampling, the complexity of the analog prefilter can be reduced and
traded off for the complexity of a digital filter which is much easier to design and cheaper
to implement with programmable DSPs. As we will see in Chapter 2, another benefit of
oversampling is to reduce the number of bits representing each quantized sample. The
connection between sampling rate and the savings in bits is discussed in Section 2.2. The
subject of oversampling, decimation, interpolation, and the design and implementation of
digital decimation and interpolation filters will be discussed in detail in Chapter 14. 	

26 1. SAMPLING AND RECONSTRUCTION

1.4.2 Rotational Motion

A more intuitive way to understand the sampling properties of sinusoids is to consider a
representation of the complex sinusoid x(t)= e2πjft as a wheel rotating with a frequency
of f revolutions per second. The wheel is seen in a dark room by means of a strobe light
flashing at a rate of fs flashes per second. The rotational frequency in [radians/sec] is
Ω = 2πf . During the time interval T between flashes, the wheel turns by an angle:

ω = ΩT = 2πfT = 2πf
fs

(1.4.10)

This quantity is called the digital frequency and is measured in units of [radians/sample].
It represents a convenient normalization of the physical frequency f . In terms of ω, the
sampled sinusoid reads simply

x(nT)= e2πjfTn = ejωn

In units of ω, the Nyquist frequency f = fs/2 becomes ω = π and the Nyquist interval
becomes [−π,π]. The replicated set f +mfs becomes

2π(f +mfs)
fs

= 2πf
fs

+ 2πm =ω+ 2πm

Because the frequency f = fs corresponds to ω = 2π, the aliased frequency given in
Eq. (1.4.3) becomes in units of ω:

ωa =ω mod(2π)

The quantity f/fs = fT is also called the digital frequency and is measured in units
of [cycles/sample]. It represents another convenient normalization of the physical fre-
quency axis, with the Nyquist interval corresponding to [−0.5,0.5].

In terms of the rotating wheel, fT represents the number of revolutions turned dur-
ing the flashing interval T. If the wheel were actually turning at the higher frequency
f +mfs, then during time T it would turn by (f +mfs)T = fT+mfsT = fT+m revo-
lutions, that is, it would cover m whole additional revolutions. An observer would miss
these extra m revolutions completely. The perceived rotational speed for an observer is
always given by fa = f mod(fs). The next two examples illustrate these remarks.

Example 1.4.10: Consider two wheels turning clockwise, one at f1 = 1 Hz and the other at
f2 = 5 Hz, as shown below. Both are sampled with a strobe light flashing at fs = 4 Hz.
Note that the second one is turning at f2 = f1 + fs.

n=0 n=0

n=1 n=1

n=2 n=2

n=3 n=3

f=1 f=5

ω=π/2

ω=5π/2

ωa=π/2

1.4. SAMPLING OF SINUSOIDS 27

The first wheel covers f1T = f1/fs = 1/4 of a revolution during T = 1/4 second. Its angle
of rotation during that time interval is ω1 = 2πf1/fs = 2π/4 = π/2 radians. During the
sampled motion, an observer would observe the sequence of points n = 0,1,2,3, . . . and
would conclude that the wheel is turning at a speed of 1/4 of a revolution in 1/4 second,
or,

1/4 cycles

1/4 sec
= 1 Hz

Thus, the observer would perceive the correct speed and sense of rotation. The second
wheel, on the other hand, is actually turning by f2T = f2/fs = 5/4 revolutions in 1/4
second, with an angle of rotation ω2 = 5π/2. Thus, it covers one whole extra revolution
compared to the first one. However, the observer would still observe the same sequence
of points n = 0,1,2,3, . . . , and would conclude again that the wheel is turning at 1/4
revolution in 1/4 second, or, 1 Hz. This result can be obtained quickly using Eq. (1.4.3):

f2a = f2 mod(fs)= 5 mod(4)= 5− 4 = 1

Thus, in this case the perceived speed is wrong, but the sense of rotation is still correct.

In the next figure, we see two more wheels, one turning clockwise at f3 = 9 Hz and the
other counterclockwise at f4 = −3 Hz.

n=0 n=0

n=1 n=1

n=2 n=2

n=3 n=3

f=9 f=−3

ω=9π/2 ω=−3π/ 2

ωa=π/2ωa= π/2

The negative sign signifies here the sense of rotation. During T = 1/4 sec, the third wheel
covers f3T = 9/4 revolutions, that is, two whole extra revolutions over the f1 wheel. An
observer would again see the sequence of points n = 0,1,2,3, . . . , and would conclude
that f3 is turning at 1 Hz. Again, we can quickly compute, f3a = f3 mod(fs)= 9 mod(4)=
9− 2 · 4 = 1 Hz.

The fourth wheel is more interesting. It covers f4T = −3/4 of a revolution in the coun-
terclockwise direction. An observer captures the motion every 3/4 of a counterclockwise
revolution. Thus, she will see the sequence of points n = 0,1,2,3, . . . , arriving at the
conclusion that the wheel is turning at 1 Hz in the clockwise direction. In this case, both
the perceived speed and sense of rotation are wrong. Again, the same conclusion can be
reached quickly using f4a = f4 mod(fs)= (−3)mod(4)= −3+ 4 = 1 Hz. Here, we added
one fs in order to bring f4 within the Nyquist interval [−2,2]. 	

Example 1.4.11: The following figure shows four wheels rotating clockwise at f = 1.5,2,2.5,4
Hz and sampled at fs = 4 Hz by a strobe light.

28 1. SAMPLING AND RECONSTRUCTION

n=0n=0 n=0 n= 0

55

5

5

11
1

1

22

2 2

33

3

3

44

4 4

f=2.5f=1.5 f=2 f=4

66

6

77
7

ω

ω ω
ω

ωaωa

This example is meant to show that if a wheel is turning by less than half of a revolution
between sampling instants, that is, fT < 1/2 or ω = 2πfT < π, then the motion is
perceived correctly and there is no aliasing. The conditions fT < 1/2 or ω < π are
equivalent to the sampling theorem condition fs > 2f . But if the wheel is turning by
more than half of a revolution, it will be perceived as turning in the opposite direction and
aliasing will occur.

The first wheel turns by fT = 3/8 of a revolution every T seconds. Thus, an observer
would see the sequence of points n = 0,1,2,3, . . . and perceive the right motion.

The second wheel is turning by exactly half of a revolution fT = 1/2 or angleω = 2πfT =
π radians. An observer would perceive an up-down motion and lose sense of direction,
not being able to tell which way the wheel is turning.

The third wheel turns by more than half of a revolution, fT = 5/8. An observer would
see the sequence of points n = 0,1,2,3, . . . , corresponding to successive rotations by
ω = 5π/4 radians. An observer always perceives the motion in terms of the lesser
angle of rotation, and therefore will think that the wheel is turning the other way by
an angle ωa = ωmod(2π)= (5π/4)mod(2π)= 5π/4 − 2π = −3π/4 or frequency
fa = −(3/8 cycle)/(1/4 sec)= −1.5 Hz.

The fourth wheel will appear to be stationary because f = fs = 4 and the motion is
sampled once every revolution, ω = 2π. The perceived frequency will be fa = f mod(fs)=
4 mod(4)= 4− 4 = 0. 	

1.4.3 DSP Frequency Units

Figure 1.4.4 compares the various frequency scales that are commonly used in DSP, and
the corresponding Nyquist intervals. A sampled sinusoid takes the form in these units:

e2πjfTn = e2πj(f/fs)n = ejΩTn = ejωn

being expressed more simply in terms of ω. Sometimes f is normalized with respect
to the Nyquist frequency fN = fs/2, that is, in units of f/fN. In this case, the Nyquist
interval becomes [−1,1]. In multirate applications, where successive digital processing
stages operate at different sampling rates, the most convenient set of units is simply in
terms of f . In fixed-rate applications, the units of ω or f/fs are the most convenient.

1.5. SPECTRA OF SAMPLED SIGNALS 29

fs/2-fs/2 0
f [Hz] = [cycles/sec]

1/2-1/2 0
f/fs [cycles/sample]

π-π 0
ω = 2π f/fs [radians/sample]

πfs-πfs 0
Ω = 2πf [radians/sec]

Nyquist
Interval

Fig. 1.4.4 Commonly used frequency units.

1.5 Spectra of Sampled Signals

Next, we discuss the effects of sampling using Fourier transforms. Figure 1.3.1 shows
an ideal sampler that instantaneously measures the analog signal x(t) at the sampling
instants t = nT. The output of the sampler can be considered to be an analog signal
consisting of the linear superposition of impulses occurring at the sampling times, with
each impulse weighted by the corresponding sample value. Thus, the sampled signal is

x̂(t)=
∞∑

n=−∞
x(nT)δ(t − nT) (1.5.1)

In practical sampling, each sample must be held constant for a short period of time,
say τ seconds, in order for the A/D converter to accurately convert the sample to digital
format. This holding operation may be achieved by a sample/hold circuit. In this case,
the sampled signal will be:

xflat(t)=
∞∑

n=−∞
x(nT)p(t − nT) (1.5.2)

where p(t) is a flat-top pulse of duration of τ seconds such that τ� T. Ideal sampling
corresponds to the limit τ→ 0. Figure 1.5.1 illustrates the ideal and practical cases.

τ

T T

xflat(t)

T T0 02T 2TnT nT

x(nT)δ(t-nT) x(nT)p(t−nT)

.t t

x(t)^

Fig. 1.5.1 Ideal and practical sampling.

We will consider only the ideal case, Eq. (1.5.1), because it captures all the essen-
tial features of the sampling process. Our objective is to determine the spectrum of

30 1. SAMPLING AND RECONSTRUCTION

the sampled signal x̂(t) and compare it with the spectrum of the original signal x(t).
Problem 1.21 explores practical sampling.

Our main result will be to express the spectrum of x̂(t) in two ways. The first relates
the sampled spectrum to the discrete-time samples x(nT) and leads to the discrete-
time Fourier transform. The second relates it to the original spectrum and implies the
spectrum replication property that was mentioned earlier.

1.5.1 Discrete-Time Fourier Transform

The spectrum of the sampled signal x̂(t) is the Fourier transform:

X̂(f)=
∫∞
−∞

x̂(t)e−2πjft dt (1.5.3)

Inserting Eq. (1.5.1) into Eq. (1.5.3) and interchanging integration and summation, we
obtain:

X̂(f) =
∫∞
−∞

∞∑
n=−∞

x(nT)δ(t − nT)e−2πjft dt

=
∞∑

n=−∞
x(nT)

∫∞
−∞

δ(t − nT)e−2πjft dt or,

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn (1.5.4)

This is the first way of expressing X̂(f). Several remarks are in order:

1. DTFT. Eq. (1.5.4) is known as the Discrete-Time Fourier Transform (DTFT)† of the
sequence of samples x(nT). X̂(f) is computable only from the knowledge of the
sample values x(nT).

2. Periodicity. X̂(f) is a periodic function of f with period fs, hence, X̂(f+fs)= X̂(f).
This follows from the fact that e−2πjfTn is periodic in f . Because of this periodicity,
one may restrict the frequency interval to just one period, namely, the Nyquist
interval, [−fs/2, fs/2].

The periodicity in f implies that X̂(f) will extend over the entire frequency axis,
in accordance with our expectation that the sampling process introduces high
frequencies into the original spectrum. Although not obvious yet, the periodicity
in f is related to the periodic replication of the original spectrum.

3. Fourier Series. Mathematically, Eq. (1.5.4) may be thought of as the Fourier series
expansion of the periodic function X̂(f), with the samples x(nT) being the cor-
responding Fourier series coefficients. Thus, x(nT) may be recovered from X̂(f)
by the inverse Fourier series:

x(nT)= 1

fs

∫ fs/2

−fs/2
X̂(f)e2πjfTn df =

∫ π

−π
X̂(ω)ejωn dω

2π
(1.5.5)

†Not to be confused with the Discrete Fourier Transform (DFT), which is a special case of the DTFT.

1.5. SPECTRA OF SAMPLED SIGNALS 31

where in the second equation we changed variables from f to ω = 2πf/fs.‡

Eq. (1.5.5) is the inverse DTFT and expresses the discrete-time signal x(nT) as
a superposition of discrete-time sinusoids ejωn.

4. Numerical Approximation. Eq. (1.5.4) may be thought of as a numerical approxi-
mation to the frequency spectrum of the original analog signal x(t). Indeed, using
the definition of integrals, we may write approximately,

X(f)=
∫∞
−∞

x(t)e−2πjft dt �
∞∑

n=−∞
x(nT)e−2πjfnT ·T or,

X(f)� TX̂(f) (1.5.6)

This approximation becomes exact in the continuous-time limit:

X(f)= lim
T→0

TX̂(f) (1.5.7)

It is precisely this limiting result and the approximation of Eq. (1.5.6) that justify
the use of discrete Fourier transforms to compute actual spectra of analog signals.

5. Practical Approximations. In an actual spectrum computation, two additional ap-
proximations must be made before anything can be computed:

(a) We must keep only a finite number of time samples x(nT), say L samples,
n = 0,1,2, . . . , L − 1, so that Eq. (1.5.4) is computed approximately by the
truncated sum:

X̂(f)� X̂L(f)=
L−1∑
n=0

x(nT)e−2πjfTn (1.5.8)

This approximation leads to the concept of a time window and the related
effects of smearing and leakage of the spectrum. These concepts are central
in the area of spectral analysis and will be discussed in Chapter 10.

(b) We must decide on a finite set of frequencies f at which to evaluate X̂(f).
Proper choice of this set allows the development of various efficient com-
putational algorithms for the DFT, such as the Fast Fourier Transform (FFT),
presented also in Chapter 10.

6. z-transform. Finally, we note that Eq. (1.5.4) leads to the concept of the z-transform,
much like the ordinary Fourier transform leads to the Laplace transform. Setting
z = ejω = e2πjfT, we may write Eq. (1.5.4) as the z-transform†

X̂(z)=
∞∑

n=−∞
x(nT)z−n (1.5.9)

‡Abusing the notation slightly, we wrote X̂(ω) for X̂(f).
†Again, abusing the notation, we wrote X̂(z) for X̂(f).

32 1. SAMPLING AND RECONSTRUCTION

7. Starred Laplace Transform. Often, especially in the control systems literature, the
ideally sample signal x̂(t), and its Laplace and Fourier transforms, and the result-
ing z-transform, are denoted by the following “star” notation, not to be confused
with complex conjugation,

x∗(t) =
∞∑

n=−∞
x(nT)δ(t − nT)

X∗(s) =
∫∞
−∞

x∗(t)e−st dt =
∞∑

n=−∞
x(nT)e−sTn

X∗(f) = X∗(s)
∣∣∣∣
s=2πjf

=
∞∑

n=−∞
x(nT)e−2πjfTn

X∗(z) = X∗(s)
∣∣∣∣
z=esT

=
∞∑

n=−∞
x(nT)z−n

(1.5.10)

and the following abused notation is used for this z-transform, X∗(z)= Z[X(s)],
referred to as the z-transform of a Laplace transform, that is,

X∗(z)= Z[X(s)] = X∗(s)
∣∣∣∣
z=esT

=
∞∑

n=−∞
x(nT)z−n (1.5.11)

which consists of the following series of steps going from X(s) to X∗(z), first
perform an inverse Laplace transform on X(s) to get the analog time signal x(t),
then, sample x(t) at the sampling instants tn = nT to obtain the sampled signal
x(nT), and finally, perform a z-transform,

X(s) L−1−→ x(t) sample−→ x(nT) Z−→ X∗(z)=
∞∑

n=−∞
x(nT)z−n (1.5.12)

and these can be combined into the more accurate but awkward notation,

X∗(z)= Z
[
L−1[X(s)]∣∣∣∣

sampled

]
(1.5.13)

We will use this notation in Chap. 22 in discussing digital control systems.

1.5.2 Spectrum Replication

Next, we show the spectrum replication property by deriving the precise relationship
between the spectrum X̂(f) of the sampled signal x̂(t) and the original spectrum X(f)
of the analog signal x(t).

The nth term x(nT)δ(t − nT) in Eq. (1.5.1) may be replaced by x(t)δ(t − nT)
because the term is nonzero only at t = nT. Then, x(t) can be factored out of the sum
in Eq. (1.5.1) as a common factor:

x̂(t)= x(t)
∞∑

n=−∞
δ(t − nT)≡ x(t)s(t) (1.5.14)

1.5. SPECTRA OF SAMPLED SIGNALS 33

Thinking of this as the modulation of the “carrier” s(t) by the “baseband” signal
x(t), we expect to get frequency translations of the original spectrum, much like the
AM modulation of a sinusoidal carrier. The frequency translation effect may be seen by
expanding the (periodic in time) sampling function s(t) into its Fourier series represen-
tation as a linear combination of harmonics. It is easily shown that

s(t)=
∞∑

n=−∞
δ(t − nT)= 1

T

∞∑
m=−∞

e2πjmfst (1.5.15)

which expresses the sampling function s(t) as a linear combination of sinusoidal carri-
ers, each causing its own frequency shift. Writing Eq. (1.5.14) as

x̂(t)= x(t)s(t)= 1

T

∞∑
m=−∞

x(t)e2πjmfst

and using the modulation property of Fourier transforms, which states that if X(f) is
the transform of x(t) then X(f−fc) is the transform of x(t)e2πjfct, we obtain by taking
Fourier transforms of both sides,

X̂(f)= 1

T

∞∑
m=−∞

X(f −mfs) (1.5.16)

This represents the periodic replication of the original spectrum X(f) at intervals
of the sampling rate fs. Fig. 1.5.2 shows TX̂(f) as the sum of the periodic replicas of
X(f).

Fig. 1.5.2 Spectrum replication caused by sampling.

Another way to prove Eq. (1.5.16) is as follows. Because x̂(t) is the product of x(t)
and s(t), its Fourier transform will be the convolution of the corresponding transforms,
that is,

X̂(f)=
∫∞
−∞

X(f − f ′)S(f ′)df ′ (1.5.17)

On the other hand, it follows from Eq. (1.5.15) that the Fourier transform of s(t) will be
the sum of the transforms of the individual harmonics:

S(f)= 1

T

∞∑
m=−∞

δ(f −mfs) (1.5.18)

34 1. SAMPLING AND RECONSTRUCTION

Inserting this into Eq. (1.5.17) and interchanging the summation over m with the
integration over f ′, we obtain

X̂(f)= 1

T

∞∑
m=−∞

∫∞
−∞

X(f − f ′)δ(f ′ −mfs)df ′ = 1

T

∞∑
m=−∞

X(f −mfs)

Combining Eqs. (1.5.4) and (1.5.16), we obtain the two alternative expressions for
the spectrum X̂(f)

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn = 1

T

∞∑
m=−∞

X(f −mfs) (1.5.19)

This is known as the Poisson summation formula. We also see from Fig. 1.5.2 that as
we let T → 0, or equivalently, fs → ∞, the replicas move out to infinity leaving behind
only the original spectrum X(f). Therefore, Eq. (1.5.7) follows.

We emphasize that Eq. (1.5.19) holds for arbitrary signals x(t), not necessarily ban-
dlimited ones. In the special case when x(t) is bandlimited to some maximum frequency
fmax, as suggested by Fig. 1.5.2, we immediately obtain the sampling theorem condition,
Eq. (1.3.2).

It is seen in Fig. 1.5.2 that the replicas are separated from each other by a distance
δ = fs − 2fmax, known as the guard band. It follows that the replicas will not overlap
if δ ≥ 0, or equivalently, fs ≥ 2fmax. But they will overlap if fs < 2fmax or δ < 0 and
aliasing of frequencies will take place as the tails of the replicas enter into the Nyquist
interval and add to the original spectrum, distorting it. This case is shown in Fig. 1.5.3.

Fig. 1.5.3 Aliasing caused by overlapping spectral replicas.

It is evident by inspecting Fig. 1.5.2 that if the signal is bandlimited and fs is large
enough so that the replicas do not overlap, then the portion of the sampled signal spec-
trum X̂(f) that lies within the Nyquist interval [−fs/2, fs/2] will be identical to the
original spectrum X(f), that is,

TX̂(f)= X(f), for − fs
2
≤ f ≤ fs

2
(1.5.20)

This is an important result for DSP. Not only does it make possible the analog re-
construction of the sampled signal, but it also guarantees that any subsequent digital
processing of the sampled signal will be applied to the original spectrum X(f) and not
to some aliased and distorted version thereof.

1.5. SPECTRA OF SAMPLED SIGNALS 35

For example, a subsequent digital filtering operation will transform the input sam-
ples x(nT) into a sequence of output samples y(nT). Just like analog filtering, digital
filtering is equivalent to spectral shaping in the frequency domain. If the digital filter has
frequency response HDSP(f), the spectrum X̂(f) of the input sequence will be reshaped
into the output spectrum:

Ŷ(f)= HDSP(f)X̂(f)

If Eq. (1.5.20) holds, then the digital filter will reshape the original spectrum X(f).
Note that because all digital filters have periodic frequency responses, the periodicity
of the sampled spectrum is preserved by the digital filtering operation. Therefore, the
output samples could be recovered from Eq. (1.5.5)

y(nT)=
∫ π

−π
Ŷ(ω)ejωn dω

2π
=
∫ π

−π
HDSP(ω)X̂(ω)ejωn dω

2π

If the spectrumX(f) is not bandlimited, or, if it is bandlimited but the sampling rate
fs is so low that the replicas overlap, then Eq. (1.5.20) does not hold. Any subsequent
filtering will reshape the wrong spectrum. Therefore, it is essential to use a lowpass
antialiasing prefilter, as shown in Fig. 1.3.5, to bandlimit the input spectrum to within
the Nyquist interval, so that the resulting replicas after sampling will not overlap.

Example 1.5.1: Consider a pure sinusoid of frequency f0, x(t)= e2πjf0t. Its Fourier transform
is the spectral line X(f)= δ(f−f0). It follows from Eq. (1.5.16) that the sampled sinusoid:

x̂(t)=
∞∑

n=−∞
x(nT)δ(t − nT)=

∞∑
n=−∞

e2πjf0Tnδ(t − nT)

will have Fourier spectrum

X̂(f)= 1

T

∞∑
m=−∞

δ(f − f0 −mfs)

Thus, the spectrum of the sampled sinusoid consists of all the frequencies in the replicated
set {f0+mfs,m = 0,±1,±2, . . . } in accordance with Fig. 1.3.2 and our remarks in Sections
1.4 and 1.3. 	

Example 1.5.2: This example illustrates the effect of sampling on a non-bandlimited signal
and the degree to which the portion of the spectrum X̂(f) within the Nyquist interval
approximates the original spectrum X(f). Consider the exponentially decaying signal and
its spectrum:

x(t) = e−atu(t)

X(f) = 1

a+ 2πjf
t

x(t)

x(nT)

nT

T

The frequency spectrum of the sampled signal x̂(t) may be obtained in two ways. Using
Eq. (1.5.4)

36 1. SAMPLING AND RECONSTRUCTION

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn =

∞∑
n=0

e−aTne−2πjfTn

and summing the geometric series, we get

X̂(f)= 1

1− e−aTe−2πjfT =
1

1− e−aTe−jω

Its magnitude square is

|X̂(f)|2 = 1

1− 2e−aT cos(2πfT)+e−2aT

The periodicity in f is evident because the dependence on f comes through the periodic
cosine function. Alternatively, we may use Eq. (1.5.16) and sum the replicas of the original
spectrum to get

X̂(f)= 1

T

∞∑
m=−∞

X(f −mfs)= 1

T

∞∑
m=−∞

1

a+ 2πj(f −mfs)

Combining the two expression for X̂(f), we obtain the not-so-obvious identity in the pa-
rameters a, f,T:†

1

T

∞∑
m=−∞

1

a+ 2πj(f −mfs)
= 1

1− e−aTe−2πjfT (∗)

The left graph in Fig. 1.5.4 compares the periodic spectrum |TX̂(f)|2 with the original
analog spectrum |X(f)|2 = 1/

(
a2 + (2πf)2

)
. The spectra are shown in decibels, that is,

20 log10 |X(f)|. The parameter a was a = 0.2 sec−1. Two values of the sampling rate fs =
1/T are shown, fs = 1 Hz and fs = 2 Hz. The two Nyquist intervals are [−0.5,0.5] Hz and
[−1,1] Hz, respectively. Outside these intervals, the sampled spectra repeat periodically.

Notice that even with the scale factor T taken into account, the two spectra X(f) and
TX̂(f) are very different from each other. However, within the central Nyquist interval
[−fs/2, fs/2], they agree approximately, especially at low frequencies. This approximation
gets better as fs increases.

The limit as T → 0 or fs →∞ can be seen explicitly in this example. Using the approxima-
tion e−x � 1− x, valid for small x, or L’Hospital’s rule, we obtain

lim
T→0

TX̂(f)= lim
T→0

T
1− e−aTe−2πjfT =

1

a+ 2πjf
= X(f)

In the right graph of Fig. 1.5.4, we show the effect of using a length-L time window and
approximating the spectrum by Eq. (1.5.8). The parameter values were a = 0.2, fs = 2, and
L = 10 samples.

That figure compares what we would like to compute, that is, |X(f)|2, with what we can
at best hope to compute based on our sampled signal, |TX̂(f)|2, and with what we can
actually compute based on a finite record of samples, |TX̂L(f)|2.

†Please see a corrected discussion at the end of this example.

1.5. SPECTRA OF SAMPLED SIGNALS 37

Fig. 1.5.4 Spectra of analog, sampled, and windowed signals.

The windowed spectrum |TX̂L(f)|2 can be improved by taking longer L and using a non-
rectangular window, such as a Hamming window. At best, however, it will approach the
sampled spectrum |TX̂(f)|2 and not |X(f)|2. The approximation of X(f) by TX̂(f) can
be improved only by increasing the sampling rate fs.

The quantity X̂L(f) can be computed by sending the L samples x(nT)= e−anT , n =
0,1, . . . , L − 1 into a general DFT routine. In this particular example, X̂L(f) can also be
computed in closed form. Using the finite geometric series:

L−1∑
n=0

xn = 1− xL

1− x

we obtain:

X̂L(f)=
L−1∑
n=0

e−aTne−2πjfTn = 1− e−aTLe−2πjfTL

1− e−aTe−2πjfT

It is evident that X̂L(f)→ X̂(f) as L→∞.

Correction. The Poisson sum identity in Eq. (*) should be corrected to read:

1

T

∞∑
m=−∞

1

a+ 2πj(f −mfs)
= 1

1− e−aTe−2πjfT −
1

2

This requires that the sampled signal x(nT) in this example be redefined such that x(0)=
1/2 instead of x(0)= 1, which gives,

X̂(f)=
∞∑
n=0

x(nT)e−2πjfTn =
∞∑
n=0

(
e−aTn − 1

2
δ(n)

)
e−2πjfTn = 1

1− e−aTe−2πjfT −
1

2

The Poisson summation formula requires that the signal x(t) be continuous for all t. The
present example has a discontinuity at t = 0 arising from the unit step u(t). Choosing
x(0) to be equal to

(
x(0 +)+x(0 −)

)
/2 = (1 + 0)/2 = 1/2, enables the use of the

38 1. SAMPLING AND RECONSTRUCTION

Poisson summation formula. The issue has been discussed in connection with the impulse-
invariance filter design method.† Except for a level shift, the basic conclusions of this
example remain the same. Similar redefinitions must be introduced also in Problem 1.13.

The above Poisson sum identity can be found in standard mathematical tables.‡ Indeed,
setting z = (2πfT− jaT)/2, it is not hard to verify that the identity takes on the standard
form:

cotz =
∞∑

m=−∞

1

z−πm
= 1

z
+ 2z

∞∑
m=1

1

z2 −π2m2

1.5.3 Practical Antialiasing Prefilters

An ideal analog prefilter is shown in Fig. 1.5.5. It acts as an ideal lowpass filter remov-
ing all frequency components of the analog input signal that lie beyond the Nyquist
frequency fs/2.

Fig. 1.5.5 Ideal antialiasing prefilter.

The antialiasing prefilters used in practice are not ideal and do not completely re-
move all the frequency components outside the Nyquist interval. Thus, some aliasing
will take place. However, by proper design the prefilters may be made as good as de-
sired and the amount of aliasing reduced to tolerable levels. A practical antialiasing
lowpass filter is shown in Fig. 1.5.6. Its passband [−fpass, fpass] is usually taken to be
the frequency range of interest for the application at hand and must lie entirely within
the Nyquist interval.

The prefilter must be essentially flat over this passband in order not to distort the
frequencies of interest. Even if it is not completely flat over the passband, it can be
“equalized” digitally at a subsequent processing stage by a digital filter, say HEQ(f),
whose frequency response is the inverse of the response of the prefilter over the pass-

†R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 3/e, Wiley, New York, 1987; L. B. Jackson,
“A Correction to Impulse Invariance,” IEEE Signal Process. Lett., 7, 273 (2000); W. F. G. Mecklenbräuker,
“Remarks on and Correction to the Impulse Invariant Method for the Design of IIR Digital Filters,” Signal
Processing, 80, 1687 (2000); E. Eitelberg, “Convolution invariance and corrected impulse invariance,”, ibid.,
86, 1116 (2006); S. R. Nelatury, “Additional correction to the impulse invariance method for the design of
IIR digital filters,” Digital Signal Processing, 17, 530 (2007).
‡M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Dover, New York, 1968,

p.75.

1.5. SPECTRA OF SAMPLED SIGNALS 39

Fig. 1.5.6 Practical antialiasing lowpass prefilter.

band range:

HEQ(f)= 1

H(f)
, for − fpass ≤ f ≤ fpass

The digital filter HEQ(f), being periodic with period fs, cannot be the inverse of the
prefilter over the entire frequency axis, but it can be the inverse over the passband.

The stopband frequency fstop of the prefilter and the minimum stopband attenuation
Astop in dB must be chosen appropriately to minimize aliasing effects. It will become
evident from the examples below that fstop must be chosen as

fstop = fs − fpass (1.5.21)

or, equivalently,
fs = fpass + fstop

This places the Nyquist frequency fs/2 exactly in the middle of the transition region
of the prefilter, as shown in Fig. 1.5.6. The attenuation of the filter in decibels is defined
in terms of its magnitude response by:

A(f)= −20 log10

∣∣∣∣∣ H(f)H(f0)

∣∣∣∣∣ (attenuation in dB)

where f0 is a convenient reference frequency, typically taken to be at DC for a lowpass
filter. Therefore, the stopband specification of the filter, depicted in this figure, isA(f)≥
Astop, for |f| ≥ fstop.

Transfer functions of analog filters typically drop like a power H(s)∼ 1/sN for large
s, where N is the filter order. Thus, their magnitude response drops like |H(f)| ∼ 1/fN

for large f , and their attenuation will be, up to an additive constant,

A(f)= −20 log10

∣∣∣1/fN
∣∣∣ = α10 log10 f , (for large f) (1.5.22)

where α10 is the attenuation in dB per decade defined by:

α10 = 20N (dB per decade)

40 1. SAMPLING AND RECONSTRUCTION

It represents the increase in attenuation when f is changed by a factor of ten, that is,
A(10f)−A(f)= α10. Engineers also like to measure attenuation in dB per octave, that
is, the amount of change per doubling of f . This is obtained by using logs in base two,
that is, writing Eq. (1.5.22) in the form:

A(f)= α2 log2 f = α10 log10 f

where α2 is in dB/octave and is related to α10 by:

α2 = α10 log10 2 = 6N (dB per octave)

Figure 1.5.5 shows the effect on the input spectrum Xin(f) of an ideal prefilter with
a sharp cutoff. For a practical prefilter, the output spectrum is given by:

X(f)= H(f)Xin(f)

or, in terms of attenuations in dB:

AX(f)= A(f)+AXin(f) (1.5.23)

where AX(f)= −20 log10 |X(f)/X(f0)| and similarly for AXin(f). Thus, attenuations
are additive. The spectrum X(f) will be replicated by the subsequent sampling oper-
ation and therefore, the amount of attenuation in AX(f) will determine the degree of
overlapping of the spectral replicas, that is, the degree of aliasing.

The specifications of the prefilter can be adjusted so that its attenuation A(f), in
combination with the attenuation AXin(f) of the input spectrum, will result in sufficient
attenuation ofX(f) to reduce the amount of aliasing within the desired frequency band.
The next few examples illustrate these remarks.

Example 1.5.3: The frequency range of interest of an analog signal extends to 4 kHz. Beyond 4
kHz, the spectrum attenuates at a rate of 15 dB per octave. Ideally, we would sample at a
rate of 8 kHz provided the sampling operation is preceded by a perfect lowpass antialiasing
prefilter with cutoff of 4 kHz. As a practical alternative to designing a perfect prefilter, we
decide to sample at the higher rate of 12 kHz.

(a) If we do not use any prefilter at all, determine the amount of aliasing that will be
introduced by the sampling process into the frequency range of interest, that is, into
the 4 kHz range.

(b) We wish to suppress the aliased components within the frequency range of inter-
est by more than 50 dB. Determine the least stringent specifications of the lowpass
antialiasing prefilter that must be used.

Solution: Both parts are answered with the help of the figure below, which shows the original
spectrum and its first replicas centered at ±fs = ±12 kHz.

4 8 12 16-16 -12 -8 -4 0 f (kHz)

X(f)

x y

0th replica

desired
range

1st replica-1st replica

1.5. SPECTRA OF SAMPLED SIGNALS 41

By the even symmetry of the spectra, it follows that the left tail of the 1st replica will be
the same as the right tail of the 0th replica. Thus, the indicated attenuations x and y at
frequencies 4 and 8 kHz will be equal, x = y.

If we do not use any prefilter, the attenuation at 8 kHz will be y = 15 dB because the 0th
replica attenuates by 15 dB per octave starting at 4 kHz. The aliased components within
the desired 4 kHz range correspond to the shaded portion of the left side of the 1st replica
that has entered into the 4 kHz interval. They are suppressed by more than x dB. Thus,
x = y = 15 dB. This probably represents too much aliasing to be tolerable.

If we use a prefilter, its passband must extend over the desired 4 kHz range. Therefore,
fpass = 4 kHz and fstop = fs − fpass = 12 − 4 = 8 kHz. Because attenuations are additive
in dB, the total attenuation y at 8 kHz will now be the sum of the attenuation due to the
signal, that is, 15 dB, and the attenuation due to the prefilter, say Astop dB. The equality
y = x and the requirement that x ≥ 50 dB lead to

y = 15+Astop = x ≥ 50 ⇒ Astop ≥ 50− 15 = 35 dB

Thus, the specifications of the prefilter are a fairly flat passband over the ±4 kHz range
and a stopband starting at 8 kHz with minimum attenuation of 35 dB. 	

Example 1.5.4: The significant frequency range of a signal extends to fmax. Beyond fmax, the
spectrum attenuates by α dB/octave. We have available an off-the-shelf antialiasing pre-
filter that has a flat passband up to fmax and attenuates by β dB/octave beyond that. It is
required that within the fmax range of interest, the aliased components due to sampling be
suppressed by more than A dB. Show that the minimum sampling rate that we should use
is given by

fs = fmax + 2A/γfmax

where γ = α+ β.

Solution: We refer to the following figure, which shows the 0th and ±1st replicas.

fmax fs-fs
fs - fmax

-fmax
0

f

X(f)

x A

0th replica

desired
range

1st replica-1st replica

γ dB/octave

The passband edge is at fpass = fmax and the stopband edge at fstop = fs− fmax. Beyond the
desired fmax range, the total attenuation (in dB) of the 0th replica will be the sum of the
attenuations of the signal and the prefilter. In the notation of Eq. (1.5.23), it will be given
as function of frequency by

AX(f)= α log2

(
f

fmax

)
+ β log2

(
f

fmax

)
= γ log2

(
f

fmax

)

where we have normalized the attenuation to 0 dB at f = fmax. This is the mathematical
expression of the statement that the total attenuation will be γ dB per octave.

42 1. SAMPLING AND RECONSTRUCTION

By the even symmetry of the spectra, we have x = AX(fstop)= AX(fs − fmax). Thus, the
requirement that x ≥ A gives the condition

AX(fs − fmax)≥ A ⇒ γ log2

(
fs − fmax

fmax

)
≥ A

Solving this as an equality gives the minimum acceptable rate fs. Ifα and β had been given
in dB/decade instead of dB/octave, the above condition would be valid with log10 instead
of log2 resulting in fs = fmax + 10A/γfmax. Note that the previous example corresponds to
the case A = γ giving fs = fmax + 2fmax = 3fmax. 	

The above examples show that to accommodate practical specifications for antialias-
ing prefilters, the sampling rates must be somewhat higher than the minimum Nyquist
rate. The higher the rate, the less complex the prefilter. This idea is carried further in
the method of oversampling, whereby the input is sampled at rates that are many times
higher than the Nyquist rate. The replicas become very far separated, allowing the use
of low quality, inexpensive analog prefilters. Oversampling methods will be discussed
in Chapter 14.

1.6 Analog Reconstructors

We saw in Section 1.4.1 that an ideal reconstructor is an ideal lowpass filter with cut-
off the Nyquist frequency fs/2. Here, we derive this result and also consider practical
reconstructors.

Analog reconstruction represents some sort of lowpass filtering of the sampled sig-
nal. This can be seen in Fig. 1.6.1, where practical reconstruction has been accomplished
by filling the gaps between samples by holding the current sample value constant till
the next sample. This is the staircase or sample/hold reconstructor.

Fig. 1.6.1 Staircase reconstructor.

It must be clear from this figure that any reasonable way of filling the gaps between
samples will result in some sort of reconstruction. Filling the gaps results in a smoother
signal than the sampled signal. In frequency-domain language, the higher frequencies
in the sampled signal are removed, that is, the sampled signal is lowpass filtered. Thus,
any reconstructor may be viewed as an analog lowpass filter, as shown in Fig. 1.6.2.

We will determine the form of the impulse response h(t) of the reconstructor both
for ideal and practical reconstruction. The relationship of the reconstructed output
ya(t) to the input samples y(nT) can be found by inserting the sampled input signal

ŷ(t)=
∞∑

n=−∞
y(nT)δ(t − nT)

1.6. ANALOG RECONSTRUCTORS 43

Fig. 1.6.2 Analog reconstructor as a lowpass filter.

into the convolutional equation of the reconstructor

ya(t)=
∫∞
−∞

h(t − t′)ŷ(t′)dt′

It then follows that:

ya(t)=
∞∑

n=−∞
y(nT)h(t − nT) (1.6.1)

It states that the way to fill the gaps between samples is to start at the current
sample y(nT) and interpolate from it following the shape of h(t) until the next sample.
More precisely, a copy of h(t) must be attached at each sample y(nT), and all such
contributions must be summed over—the resulting curve being the reconstructed analog
signal. In the frequency domain, Eq. (1.6.1) becomes

Ya(f)= H(f)Ŷ(f) (1.6.2)

where Ŷ(f) is the replicated spectrum given by Eq. (1.5.16)

Ŷ(f)= 1

T

∞∑
m=−∞

Y(f −mfs)

1.6.1 Ideal Reconstructors

For perfect or ideal reconstruction one must require that Ya(f) be identical to the orig-
inal analog spectrum Y(f). If the spectrum Y(f) is bandlimited and its replicas do not
overlap, then within the Nyquist interval, TŶ(f)will agree withY(f) in accordance with
Eq. (1.5.20), that is,

Ŷ(f)= 1

T
Y(f) , for − fs

2
≤ f ≤ fs

2
(1.6.3)

The ideal reconstruction filterH(f) is an ideal lowpass filter with cutoff fs/2, defined
as follows:

H(f)=
{

T, if |f| ≤ fs/2
0, otherwise f

fs/2−fs/2

H(f)
T

0

The value T for the passband gain is justified below. As shown in Fig. 1.6.3, such a
filter will extract the central replica and remove all other replicas. Using Eq. (1.6.3), we

44 1. SAMPLING AND RECONSTRUCTION

have within the Nyquist interval:

Ya(f)= H(f)Ŷ(f)= T · 1

T
Y(f)= Y(f)

where the filter’s gain factor T canceled the 1/T factor in the spectrum.

Fig. 1.6.3 Ideal reconstructor in frequency domain.

The same relationship also holds trivially (0 ≡ 0) outside the Nyquist interval. Thus,
we have Ya(f)= Y(f), for all f , which implies that the reconstructed analog signal
ya(t) will be identical to the original signal that was sampled, ya(t)= y(t). Combining
this with Eq. (1.6.1), we obtain the Shannon sampling theorem [47–55] expressing the
bandlimited signal y(t) in terms of its samples y(nT):

y(t)=
∞∑

n=−∞
y(nT)h(t − nT) (1.6.4)

The impulse response of the ideal reconstructor can be obtained from the inverse
Fourier transform of H(f):

h(t)=
∫∞
−∞

H(f)e2πjft df =
∫ fs/2

−fs/2
Te2πjft df, or,

h(t)= sin(πt/T)
πt/T

= sin(πfst)
πfst

(ideal reconstructor) (1.6.5)

It is shown in Fig. 1.6.4. Unfortunately, the ideal reconstructor is not realizable. Its
impulse response is not causal, having an infinite anticausal part. Therefore, alternative
reconstructors, such as the staircase one, are used in practice.

An approximation to the ideal reconstructor, obtained by truncating it to finite
length, is used in the design of digital FIR interpolation filters for oversampling and
sample-rate conversion applications. We will discuss it in Chapter 14.

1.6.2 Staircase Reconstructors

The staircase reconstructor shown in Fig. 1.6.1 is the simplest and most widely used
reconstructor in practice. It generates a staircase approximation to the original signal.

1.6. ANALOG RECONSTRUCTORS 45

t
T-T 2T-2T-3T 3T

h(t)
1

0

staircase
reconstructorideal

reconstructor

Fig. 1.6.4 Impulse response of ideal reconstructor.

Note the similarity of this operation to practical sampling, where h(t) is a sampling
pulse p(t) having a very narrow width τ� T. By contrast, the impulse response of the
staircase reconstructor must have duration of T seconds in order to fill the entire gap
between samples. Thus, h(t) is given by:

h(t)= u(t)−u(t −T)=
{

1, if 0 ≤ t ≤ T
0, otherwise

t
T

h(t)
1

0

where u(t) is the unit step. The staircase output, although smoother than the sampled
input, still contains spurious high-frequency components arising from the sudden jumps
in the staircase levels from sample to sample. This spurious frequency content may be
seen by computing the frequency response of the reconstructor. The Laplace transform
of h(t)= u(t)−u(t −T) is

H(s)= 1

s
− 1

s
e−sT

from which we obtain the Fourier transform by setting s = 2πjf :

H(f)= 1

2πjf
(
1− e−2πjfT) = T

sin(πfT)
πfT

e−πjfT (1.6.6)

It is shown in Fig. 1.6.5 in comparison to the ideal reconstructor. Notice that it
vanishes at integral multiples of fs — exactly where the replicas caused by sampling are
centered. The spurious high frequencies mentioned above are those beyond the Nyquist
frequency fs/2.

Thus, the reconstructor does not completely eliminate the replicated spectral images
as the ideal reconstructor does. Figure 1.6.6 compares the spectra before and after the
staircase reconstructor, that is, the effect of the multiplication Ya(f)= H(f)Ŷ(f).

1.6.3 Anti-Image Postfilters

The surviving spectral replicas may be removed by an additional lowpass postfilter, called
an anti-image postfilter, whose cutoff is the Nyquist frequency fs/2. This operation is
shown in Fig. 1.6.7.

46 1. SAMPLING AND RECONSTRUCTION

fs-fs-2fs 2fs

f

fs/2-fs/2

|H(f)|
T

0

ideal
reconstructor

4 dB

Fig. 1.6.5 Frequency response of staircase reconstructor.

Fig. 1.6.6 Frequency response of staircase reconstructor.

Fig. 1.6.7 Analog anti-image postfilter.

In the time domain, the postfilter has the effect of rounding off the corners of the
staircase output making it smoother. In the frequency domain, the combined effect
of the staircase reconstructor followed by the anti-image postfilter is to remove the
spectral replicas as much as possible, that is, to emulate the ideal reconstructor. The
final reconstructed spectrum at the output of the postfilter is shown in Fig. 1.6.8.

The reason for using this two-stage reconstruction procedure is the simplicity of
implementation of the staircase reconstruction part. A typical D/A converter will act
as such a reconstructor. The digital code for each sample is applied to the DAC for T
seconds generating an analog output that remains constant during T.

1.6. ANALOG RECONSTRUCTORS 47

Fig. 1.6.8 Spectrum after postfilter.

The specifications of the postfilter are similar to those of an antialiasing prefilter,
namely, a flat passband and cutoff frequency equal to the Nyquist frequency fs/2. High-
quality DSP applications, such as digital audio, require the use of postfilters (and pre-
filters) with very stringent specifications. In deciding the specifications of a postfilter,
one must take into account the effect of the staircase D/A which does part of the recon-
struction.

The main function of the postfilter is to remove the remnants of the spectral images
that survived the staircase D/A reconstructor. It can also be used to equalize the rolloff
of the staircase response within the Nyquist interval. As shown in Fig. 1.6.5, the staircase
reconstructor is not flat within the Nyquist interval, tending to attenuate more near the
Nyquist frequency fs/2. The maximum attenuation suffered at fs/2 is about 4 dB. This
can be seen as follows:

−20 log10

∣∣∣∣H(fs/2)
H(0)

∣∣∣∣ = −20 log10

∣∣∣∣sin(π/2)
π/2

∣∣∣∣ = 3.9 dB

This attenuation can be compensated by proper design of the passband of the anti-
image postfilter. But more conveniently, it can be compensated digitally before analog
reconstruction, by designing an equalizing digital filter whose response matches the
inverse of H(f) over the Nyquist interval.

Similar techniques were mentioned in Section 1.5.3 for equalizing the imperfect pass-
band of the antialiasing prefilter. The use of high-quality digital filters to perform these
equalizations improves the overall quality of the digital processing system. By contrast,
analog compensation techniques would be more cumbersome and expensive. The com-
bined equalizer, DAC, and postfilter are shown in Fig. 1.6.9. The frequency response of
the equalizer is defined as the inverse of the DAC, as given by Eq. (1.6.6):

HEQ(f)= T
H(f)

= πfT
sin(πfT)

eπjfT , for − fs
2
≤ f ≤ fs

2
(1.6.7)

It is shown in Fig. 1.6.10. As a digital filter, HEQ(f) is periodic outside the Nyquist
interval with period fs. We will design such inverse filters later using the frequency
sampling design method of Section 11.4. Some designs are presented in Chapter 14.

The equalizer filter transforms the sequence y(nT) into the “equalized” sequence
yEQ(nT), which is then fed into the DAC and postfilter. The frequency spectrum of
yEQ(nT) is ŶEQ(f)= HEQ(f)Ŷ(f). The spectrum of the staircase output of the DAC will
be Ya(f)= H(f)ŶEQ(f). Therefore, the final reconstructed spectrum at the output of

48 1. SAMPLING AND RECONSTRUCTION

staircase
reconstructor

H(f)

digital filter
equalizer
HEQ(f)

anti-image
postfilter
HPOST(f)analog

signal
analog
signal

digital
signal

digital
signal

y(nT) ya(t) yPOST(t)yEQ(nT)

Fig. 1.6.9 Digital equalization filter for D/A conversion.

fs-fs

f

fs/2-fs/2

|H(f)|

|HEQ(f)|

0

4 dB
1
T

Fig. 1.6.10 Frequency response of DAC equalizer.

the postfilter will be,

YPOST(f) = HPOST(f)Ya(f)

= HPOST(f)H(f) ŶEQ(f)

= HPOST(f)H(f)HEQ(f) Ŷ(f)

Within the Nyquist interval, using Eqs. (1.6.7) and (1.5.20) and assuming a flat post-
filter there, HPOST(f)� 1, we have,

YPOST(f)= HPOST(f)H(f)HEQ(f) Ŷ(f)= 1 ·T · 1

T
Y(f)= Y(f)

Outside the Nyquist interval, assuming HPOST(f)� 0, we have YPOST(f)= 0. Thus,
the combination of equalizer, DAC, and postfilter acts like an ideal reconstructor.

Example 1.6.1: The signal of Example 1.5.3 that was sampled at fs = 12 kHz is filtered by a
digital filter designed to act as an ideal lowpass filter with cutoff frequency of fc = 2 kHz.
The filtered digital signal is then fed into a staircase D/A and then into a lowpass anti-
image postfilter. The overall reconstructor is required to suppress the spectral images
caused by sampling by more than A = 80 dB. Determine the least stringent specifications
for the analog postfilter that will satisfy this requirement.

Solution: The digital lowpass filter is, by construction, periodic in f with period fs. Thus, the
spectrum of the signal after the digital filter will look as follows:

1.6. ANALOG RECONSTRUCTORS 49

ideal lowpass
digital filter

fs/2 fs 2fs-2fs -fs/2-fs 0
f

Y(f)^

fc fs-fc

The spectral images are separated now by a distance fs − 2fc = 12− 2 · 2 = 8 kHz. After
passing through the staircase reconstructor, the spectrum will be as shown below:

postfilter
passband transition

region

fs/2 fs 2fs-2fs -fs/2

ADAC

-fs 0

Ya(f)

fc = stopbandfs-fc

APOST

f

The postfilter must have a flat passband over [−fc, fc]. Its stopband must begin at fstop =
fs − fc = 12 − 2 = 10 kHz because the first replica is largest there. The wide transition
region between fc and fs − fc allows the use of a less stringent postfilter.

The required stopband attenuation of the postfilter can be determined as follows. The
total attenuation caused by the cascade of the DAC and postfilter is the sum of the corre-
sponding attenuations:

A(f)= ADAC(f)+APOST(f)

where

ADAC(f)= −20 log10

∣∣∣∣H(f)H(0)

∣∣∣∣ = −20 log10

∣∣∣∣∣ sin(πf/fs)
πf/fs

∣∣∣∣∣
At f = fstop = fs − fc, the total attenuation must be greater than A

ADAC +APOST ≥ A ⇒ APOST ≥ A−ADAC

Numerically, we find at fstop = 10 kHz

ADAC = −20 log10

∣∣∣∣ sin(π10/12)
π10/12

∣∣∣∣ = 14.4

resulting in APOST ≥ 80− 14.4 = 65.6 dB. 	

The key idea in this example was to use the separation between spectral replicas
as the transition region of the postfilter. The wider this separation, the less stringent
the postfilter. Oversampling and digital interpolation techniques exploit this idea to its
fullest and can be used to alleviate the need for expensive high-quality analog postfilters.
Such oversampling systems are routinely used in CD and DAT players. They will be
discussed in Chapter 14.

50 1. SAMPLING AND RECONSTRUCTION

Example 1.6.2: A sinusoid of frequency f0 is sampled at a rate fs, such that |f0| ≤ fs/2. The
resulting sampled sinusoid is then reconstructed by an arbitrary reconstructor H(f). De-
termine the analog signal at the output of the reconstructor when H(f) is: (a) the ideal
reconstructor, (b) the staircase reconstructor, (c) the staircase reconstructor followed by a
very good anti-image postfilter, and (d) a staircase reconstructor equalized by the digital
filter defined in Eq. (1.6.7).

Solution: Let y(t)= e2πjf0t. Its spectrum is Y(f)= δ(f − f0) and the spectrum of the sampled
sinusoid will be the replication of Y(f), as in Example 1.5.1:

Ŷ(f)= 1

T

∞∑
m=−∞

δ(f − f0 −mfs)

The spectrum of the reconstructed signal will be:

Ya(f)= H(f)Ŷ(f) = 1

T

∞∑
m=−∞

H(f)δ(f − f0 −mfs)

= 1

T

∞∑
m=−∞

H(f0 +mfs)δ(f − f0 −mfs)

Taking inverse Fourier transforms, we obtain:

ya(t)= 1

T

∞∑
m=−∞

H(fm)e2πjfmt (1.6.8)

where fm = f0 +mfs. If H(f) is the ideal reconstructor, then H(fm) will be zero if fm
does not lie in the Nyquist interval. Because f0 was assumed to lie in the interval, only the
m = 0 term will survive the sum giving:

ya(t)= 1

T
H(f0)e2πjf0t = 1

T
·Te2πjf0t = e2πjf0t

thus, the sinusoid is reconstructed perfectly. If f0 lies outside the interval, |f0| > fs/2,
then there exists a unique integer m0 such that |f0 +m0fs| < fs/2, where m0 is negative
if f0 > 0. In this case, only the m =m0 term will survive the sum giving:

ya(t)= 1

T
H(fm0)e

2πjfm0 t = e2πjfm0 t

where fm0 = f0 +m0fs = f0 mod(fs). The sinusoid f0 will be confused with the sinusoid
fm0 , as we discussed qualitatively in Section 1.4.1.

For the staircase reconstructor of Eq. (1.6.6), the reconstructed signal will be given by
Eq. (1.6.8), which should sum up to generate the staircase approximation to the sinusoid.
This is demonstrated in Example 1.6.3.

In case (c), a good postfilter will remove all frequencies outside the Nyquist interval, that
is, only the m = 0 term will survive in Eq. (1.6.8), giving:

ya(t)= 1

T
H(f0)e2πjf0t

1.6. ANALOG RECONSTRUCTORS 51

where we assumed that the postfilter has unity gain over the Nyquist interval. Using
Eq. (1.6.6) evaluated at f = f0, we get:

ya(t)= sin(πf0T)
πf0T

e−πjf0T e2πjf0t

Thus, there is amplitude attenuation and phase shift, which both become worse as f0

increases towards the Nyquist frequency fs/2. A digital filter that equalizes the staircase
response, would anticipate this attenuation and phase shift and undo them. Indeed, in
case (d), the effective reconstructor is HEQ(f)H(f). Therefore, Eq. (1.6.8) becomes:

ya(t)= 1

T

∞∑
m=−∞

HEQ(fm)H(fm)e2πjfmt

But because of the periodicity of HEQ(f), we can replace HEQ(fm)= HEQ(f0)= T/H(f0),
giving:

ya(t)=
∞∑

m=−∞

H(fm)
H(f0)

e2πjfmt (1.6.9)

A good postfilter, extracting them = 0 term, would result in the final reconstructed output

ypost(t)= H(f0)
H(f0)

e2πjf0t = e2πjf0t. 	

Example 1.6.3: The cosinusoid y(t)= cos(2πf0t) is sampled at a rate fs and the samples are
reconstructed by a staircase reconstructor H(f). The reconstructed signal will be:

ya(t)=
∞∑

m=−∞
G(fm)cos

(
2πfmt +φ(fm)

)
(1.6.10)

where G(f) and φ(f) are defined as

G(f)= sin(πfT)
πfT

, φ(f)= −πfT ⇒ H(f)= TG(f)ejφ(f)

Note that TG(f) and φ(f) are not quite the magnitude and phase responses of H(f);
those are |H(f)| = T|G(f)| and argH(f) = φ(f)+π(1 − signG(f))/2. Eq. (1.6.10)
is obtained by substituting H(f)= TG(f)ejφ(f) into Eq. (1.6.8) and taking real parts. A
computable approximation of Eq. (1.6.10) is obtained by truncating the sum to 2M + 1
terms, that is, keeping the terms −M ≤m ≤M:

ya(t)=
M∑

m=−M
w(m)G(fm)cos

(
2πfmt +φ(fm)

)
(1.6.11)

where we have also introduced appropriate weights w(m) to reduce the Gibbs ripples
resulting from the truncation of the sum. For example, the Hamming weights are:

w(m)= 0.54+ 0.46 cos
(πm
M

)
, −M ≤m ≤M

whereas the rectangular weights are w(m)= 1.

For the numerical values f0 = 0.125 kHz, fs = 1 kHz, M = 15, we have computed the orig-
inal analog signal y(t) and the reconstructed signal ya(t) as given by the approximation
of Eq. (1.6.11), over the time interval 0 ≤ t ≤ 16 msec, that is, over 16 sampling instants.

52 1. SAMPLING AND RECONSTRUCTION

If the signal ya(t)were postfiltered by a good postfilter, only them = 0 term would survive
the sum, and the resulting signal would be the original f0 sinusoid with some attenuation
and phase shift:

ypost(t)= G(f0)cos
(
2πf0t +φ(f0)

)
The following figure compares the three signals y(t), ya(t), and ypost(t) in the two cases
of using rectangular weights and Hamming weights w(m).

Notice how the postfilter output ypost(t) is essentially an averaged or smoothed version
of the staircase output ya(t). To see the dependence on the value of f0 of the attenuation
and phase shift of ypost(t), the next two graphs show the cases f0 = 0.25 and f0 = 0.5
kHz.

The case f0 = 0.5 kHz corresponds to the Nyquist frequency fs/2, having the maximum
amplitude and phase distortion. In all cases, however, ypost(t) is a smoothed version of
the staircase output.

If the staircase reconstructor is preceded by an equalizer filter, as shown in Fig. 1.6.9, then
the staircase output will be given by the real part of Eq. (1.6.9). We have:

H(fm)
H(f0)

= sin(πfmT)
πfmT

πf0T
sin(πf0T)

e−jπ(fm−f0)T

= sin(πf0T +πm)
sin(πf0T)

f0

fm
e−jπm

= (−1)msin(πf0T)
sin(πf0T)

f0

fm
(−1)m= f0

fm

1.7. BASIC COMPONENTS OF DSP SYSTEMS 53

where we used the property cos(x+πm)= (−1)mcosx. Thus,

ya(t)=
M∑

m=−M
w(m)

f0

fm
cos(2πfmt) (1.6.12)

This signal is shown below for the case f0 = 0.125 kHz.

It is superimposed on the original sinusoid, corresponding to the m = 0 term, which is
what would be extracted by a good postfilter. Notice again the smoothing effect of the
postfilter. In order to remove completely all the m �= 0 terms, the postfilter must be a
high-quality lowpass filter with sharp cutoff at the Nyquist frequency.

To illustrate the beneficial effect of oversampling on such a reconstructor, we have also
plotted the digitally equalized staircase output in the case of 4-times oversampling, as
given by Eq. (1.6.12) with fs = 4 kHz. Now there are four times as many staircase levels.
They follow the original sinusoid more closely and can be smoothed more easily. Therefore,
a lower quality, less expensive lowpass postfilter would be sufficient in this case. 	

1.7 Basic Components of DSP Systems

It follows from the discussion in Sections 1.5 and 1.6 that the minimum number of
necessary components in a typical digital signal processing system must be:

1. A lowpass analog antialiasing prefilter that bandlimits the signal to be sampled to
within the Nyquist interval.

2. An A/D converter (sampler and quantizer).

3. A digital signal processor.

4. A D/A converter (staircase reconstructor), possibly preceded by an equalizing dig-
ital filter.

5. A lowpass analog anti-image postfilter to complete the job of the staircase re-
constructor and further remove the spectral images introduced by the sampling
process.

54 1. SAMPLING AND RECONSTRUCTION

These are shown in Fig. 1.7.1. Here, we review briefly the function of each stage and
its impact on the quality of the overall digital processing system. With the exception
of the sampling stage, every stage in this system may be thought of as a filtering op-
eration by an appropriate transfer function. The sampling stage, through its spectrum
replication, is a spectrum expansion operation.

The function of the antialiasing prefilter HPRE(f) is to bandlimit the overall analog
input signal xa(t) to within the Nyquist interval [−fs/2, fs/2]. The output of the pre-
filter is now a bandlimited signal x(t) and may be sampled at a rate of fs samples per
second. By design, the spectral replicas generated by the sampling process will not over-
lap. The sampling rate must be high enough so that the surviving input spectrum after
the prefiltering operation, that is, the spectrum of x(t), contains all the frequencies of
interest for the application at hand.

The quality of the prefilter affects critically the quality of the overall system, that is,
the degree of overlap of the spectral replicas depends on the rolloff characteristics of
the prefilter.

The sampled (and quantized) signal x̂(t) or x(nT) is then processed by a digital
signal processor whose effect is to reshape the spectrum by means of a transfer function,
say HDSP(f), so that Ŷ(f)= HDSP(f)X̂(f).

The resulting output samples ŷ(t) or y(nT) are then reconstructed by the DAC into
the staircase analog signal y(t). Finally, the signal y(t) is smoothed further by the
postfilter, resulting in the overall analog output signal ya(t). Separating in Eq. (1.5.16)
the central replica from the other replicas, we write

X̂(f)= 1

T

∞∑
m=−∞

X(f −mfs)= 1

T
[
X(f)+replicas

]
and following backwards all the transfer function relationships, we find for the spectrum
of ya(t):

Ya(f) = HPOST(f)Y(f)= HPOST(f)HDAC(f) Ŷ(f)

= HPOST(f)HDAC(f)HDSP(f) X̂(f)

= HPOST(f)HDAC(f)HDSP(f)
1

T
[
X(f)+replicas

]
= HPOST(f)HDAC(f)HDSP(f)

1

T
[
HPRE(f)Xa(f)+replicas

]

Fig. 1.7.1 Components of typical DSP system.

1.8. THEORY OF BANDLIMITED FUNCTIONS 55

In a well-designed system, the product of the staircase DAC and the postfilter trans-
fer functions should be effectively equal to the ideal reconstructor. Therefore, for fre-
quencies outside the Nyquist interval the output spectrum will vanish, that is, the spec-
tral images will be removed. But for frequencies within the Nyquist interval, that product
should be equal to the gain T canceling the 1/T factor.

Furthermore, because the prefilter HPRE(f) ensures that the replicas do not overlap,
the terms labeled “replicas” will vanish for all frequencies within the Nyquist interval.
Finally, because the prefilter approximates an ideal lowpass filter, its passband gain will
be approximately one. The upshot of all this is that within the Nyquist interval one has
approximately

HPOST(f)HDAC(f) � T

replicas � 0

HPRE(f) � 1

To the extent that these approximations are good—and this determines the quality
of the overall system—we finally find

Ya(f)= T ·HDSP(f)
1

T
[
1 ·Xa(f)+0

]
, or,

Ya(f)= HDSP(f)Xa(f) , for |f| ≤ fs
2

(1.7.1)

Thus, the above arrangement works exactly as expected, that is, it is equivalent to
linear filtering of the analog input, with an effective transfer functionHDSP(f) defined by
the digital signal processor. This is, of course, the ultimate goal of the DSP system. The
primary reasons for using digital signal processing are the programmability, reliability,
accuracy, availability, and cost of the digital hardware.

1.8 Theory of Bandlimited Functions

The Shannon sampling theorem of Eq. (1.6.4) expresses a bandlimited signal y(t) in
terms of its time samples y(nT) using the ideal analog reconstructor’s sinc-function
impulse response,

y(t)=
∞∑

n=−∞
y(nT)h(t − nT) , h(t − nT)= sin

(
πfs(t − nT)

)
πfs(t − nT)

The shifted-sinc functions, fn(t)= h(n−nT), may be thought of as a basis of functions
for the representation of bandlimited functions.

There are other function bases for representing bandlimited signals, such as spher-
ical Bessel functions, and, most notably, prolate spheroidal wave functions, which are
discussed in some detail in Appendix B, with several references and applications. Addi-
tional references on sampling may be found in [47–55].

56 1. SAMPLING AND RECONSTRUCTION

1.9 Problems

1.1 A wheel, rotating at 6 Hz, is seen in a dark room by means of a strobe light flashing at a rate
of 8 Hz. Determine the apparent rotational speed and sense of rotation of the wheel. Repeat
the question if the flashes occur at 12 Hz, 16 Hz, or 24 Hz.

1.2 The analog signal x(t)= 10 sin(2πt)+10 sin(8πt)+5 sin(12πt), where t is in seconds, is
sampled at a rate of fs = 5 Hz. Determine the signal xa(t) aliased with x(t). Show that the
two signals have the same sample values, that is, show that x(nT)= xa(nT). Repeat the
above questions if the sampling rate is fs = 10 Hz.

1.3 The signal x(t)= cos(5πt)+4 sin(2πt)sin(3πt), where t is in milliseconds, is sampled at
a rate of 3 kHz. Determine the signal xa(t) aliased with x(t).
Determine two other signals x1(t) and x2(t) that are different from each other and from
x(t), yet they are aliased with the same xa(t) that you found.

1.4 Let x(t)= cos(8πt)+2 cos(4πt)cos(6πt), where t is in seconds. Determine the signal
xa(t) aliased with x(t), if the sampling rate is 5 Hz. Repeat for a sampling rate of 9 Hz.

1.5 The analog signal x(t)= sin(6πt)
[
1 + 2 cos(4πt)

]
, where t is in milliseconds, is sampled

at a rate of 4 kHz. The resulting samples are immediately reconstructed by an ideal recon-
structor. Determine the analog signal xa(t) at the output of the reconstructor.

1.6 The analog signal x(t)= 4 cos(2πt)cos(8πt)cos(12πt), where t is in seconds, is sampled
at a rate of fs = 10 Hz. Determine the signal xa(t) aliased with x(t). Show that the two
signals have the same sample values, that is, show that x(nT)= xa(nT). Repeat the above
questions if the sampling rate is fs = 12 Hz. [Hint: Express x(t) as a sum of sines and
cosines.]

1.7 Consider the periodic triangular waveform with period T0 = 1 sec shown in Fig. 1.9.1. The
waveform is sampled at rate fs = 8 Hz and the resulting samples are reconstructed by
an ideal reconstructor. Show that the signal xrec(t) that will appear at the output of the
reconstructor will have the form:

xrec(t)= A sin(2πf1t)+B sin(2πf2t)

and determine the numerical values of the frequencies f1, f2 and amplitudes A, B.

x(t)

t (sec)

1

0.50 1

Fig. 1.9.1 Triangular waveform of Problem 1.7.

1.8 Computer Experiment: Aliasing. Consider an analog signal x(t) consisting of three sinusoids
of frequencies f1 = 1 kHz, f2 = 4 kHz, and f3 = 6 kHz, where t is in milliseconds:

x(t)= 2 sin(2πf1t)+2 sin(2πf2t)+ sin(2πf3t)

a. The signal is sampled at a rate of 5 kHz. Determine the signal xa(t) that would be
aliased with x(t). On the same graph, plot the two signals x(t) and xa(t) versus t in
the range 0 ≤ t ≤ 2 msec. Show both analytically and graphically that the two signals
have the same sampled values, which occur at intervals of T = 1/fs = 0.2 msec.

1.9. PROBLEMS 57

b. Repeat with a sampling rate of fs = 10 kHz.

c. On the same graph, plot the signals x(t) and xa(t) of Problem 1.7, over the range
0 ≤ t ≤ 2 sec, and verify that they intersect at the sampling instants at multiples of
T = 1/fs = 0.125 sec. In plotting, x(t), you need to define it as a triangular function
of t.
Repeat this part, but with sampling rate fs = 4 Hz. What is xa(t) now?

1.9 Consider the following sound wave, where t is in milliseconds:

x(t)= sin(10πt)+ sin(20πt)+ sin(60πt)+ sin(90πt)

This signal is prefiltered by an analog antialiasing prefilter H(f) and then sampled at an
audio rate of 40 kHz. The resulting samples are immediately reconstructed using an ideal
reconstructor. Determine the output ya(t) of the reconstructor in the following cases and
compare it with the audible part of x(t):

a. When there is no prefilter, that is, H(f)≡ 1.

b. When H(f) is an ideal prefilter with cutoff of 20 kHz.

c. WhenH(f) is a practical prefilter that has a flat passband up to 20 kHz and attenuates
at a rate of 48 dB/octave beyond 20 kHz. (You may ignore the effects of the phase
response of the filter.)

1.10 Prove the Fourier series expansion of the ideal sampling function s(t) given in Eq. (1.5.15).
Then, prove its Fourier transform expression (1.5.18).

1.11 Given Eq. (1.5.4), prove the inverse DTFT property (1.5.5), that is,

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn ⇒ x(nT)= 1

fs

∫ fs/2

−fs/2
X̂(f)e2πjfTn df

1.12 Consider a pure sinusoid of frequency f0, x(t)= cos(2πf0t). Show that the spectrum of the
sampled sinusoid x(nT) is:

X̂(f)= 1

2T

∞∑
m=−∞

[
δ(f − f0 −mfs)+δ(f + f0 +mfs)

]
1.13 Computer Experiment: Sampling of Non-Bandlimited Signals. Consider the exponentially

decaying sinusoid x(t)= e−at cos(2πf0t) sampled at a rate fs = 1/T. For convenience,
replace it by its complex-valued version: x(t)= e−ate2πjf0t. Let x(nT)= e−aTne2πjf0Tn be
its samples, and let xL(nT)= x(nT), n = 0,1, . . . , L− 1 be its windowed version to length
L. Show that the magnitude spectra of the analog, sampled, and windowed signals are given
by:

|X(f)|2 = 1

a2 + (2π(f − f0)
)2

|X̂(f)|2 = 1

1− 2e−aT cos
(
2π(f − f0)T

)+ e−2aT

|X̂L(f)|2 = 1− 2e−aTL cos
(
2π(f − f0)LT

)+ e−2aTL

1− 2e−aT cos
(
2π(f − f0)T

)+ e−2aT

Show the limits:

58 1. SAMPLING AND RECONSTRUCTION

lim
L→∞

X̂L(f)= X̂(f), lim
fs→∞

TX̂(f)= X(f)

For the numerical values a = 0.2 sec−1, f0 = 0.5 Hz, and the two rates fs = 1 Hz and
fs = 2 Hz, plot on the same graph the analog spectrum |X(f)|2 and the sampled spectrum
|TX̂(f)|2, over the frequency range 0 ≤ f ≤ 3 Hz.

For fs = 2, plot on another graph, the three spectra |X(f)|2, |TX̂(f)|2, |TX̂L(f)|2, over the
range 0 ≤ f ≤ 3 Hz.

What conclusions do you draw from these graphs? What are the implications of the above
limits? What are the essential differences if we work with the real-valued signal?

1.14 The frequency range of interest of a signal extends to fmax. Beyond fmax, the spectrum
attenuates by α dB per decade. We have available an off-the-shelf antialiasing prefilter that
has a flat passband up to fmax and attenuates by β dB per decade beyond that. It is required
that within the fmax range of interest, the aliased components due to sampling be suppressed
by more than A dB. Show that the minimum sampling rate that we should use is given by

fs = fmax + 10A/γfmax , where γ = α+ β

1.15 An analog input signal to a DSP system has spectrum:

|Xin(f)| = 1√
1+ (0.1f)8

where f is in kHz. The highest frequency of interest is 20 kHz. The signal is to be sampled
at a rate fs. It is required that the aliased spectral components within the frequency range
of interest be suppressed by more than 60 dB relative to the signal components, that is, they
must be at least 60 dB below the value of the signal components throughout the 20 kHz
range of interest.

a. Determine the minimum sampling rate fs, if no antialiasing prefilter is used.

b. Suppose a simple third-order Butterworth antialiasing prefilter is used having magni-
tude response

|H(f)| = 1√
1+ (f/f0)6

It is required that the prefilter’s attenuation within the 20 kHz band of interest remain
less than 1 dB. What is the value of the normalization frequency f0 in this case? What
is the minimum value of fs that may be used? Compare your exact calculation of fs
with the approximate one using the method of Problem 1.14.

1.16 For the above example, suppose we are constrained to use a particular sampling rate, which
is less than the minimum we determined above (and greater than 2fmax), such as fs = 70 kHz.
In order to achieve the required 60 dB suppression of the aliased replicas, we must now use
a more complex prefilter—one that has a steeper transition width, such as a higher-order
Butterworth. An Nth order Butterworth filter has magnitude response

|H(f)|2 = 1

1+ (f/f0)2N

Given fs, determine the minimum filter order N in order for the filter to attenuate less than
Apass = 1 dB in the passband and the total suppression of the spectral images to be greater
than A = 60 dB.

1.9. PROBLEMS 59

1.17 Computer Experiment: Butterworth Prefilter Design. Using the methods of the previous prob-
lem, derive a “design curve” for the prefilter, that is, an expression for the Butterworth filter
orderN as a function of the sampling rate fs and stopband attenuationA. Assume fmax = 20
kHz and Apass = 1 dB for the passband attenuation.

For each of the attenuation values A = 40,50,60,70,80 dB, plot the filter order N versus fs
in the range 50 ≤ fs ≤ 120 kHz. Identify on these graphs the design points of the Problems
1.15 and 1.16.

1.18 The significant frequency range of an analog signal extends to 10 kHz. Beyond 10 kHz, the
signal spectrum attenuates at a rate of 80 dB per decade.

The signal is to be sampled at a rate of 30 kHz. The aliased frequency components introduced
into the 10 kHz range of interest must be kept below 60 dB, as compared to the signal
components.

Suppose we use an antialiasing prefilter whose passband is flat over the 10 kHz interval.
Beyond 10 kHz, it attenuates at a certain rate that must be steep enough to satisfy the
above sampling requirements. What is this attenuation rate in dB per decade? Explain your
reasoning. What is the minimum filter order that we must use?

What is the prefilter’s attenuation rate if we increase the sampling rate to 50 kHz? What is
the filter order in this case?

1.19 An analog input signal to a DSP system has spectrum:

|Xin(f)| = 1√
1+ (f/fa)2Na

where fa andNa are given. The highest frequency of interest is fmax = 2fa. The signal is to be
sampled at a rate fs. It is required that the aliased spectral components within the frequency
range of interest be suppressed by more than A dB relative to the signal components, that
is, they must be at least A dB below the value of the signal components throughout the
0 ≤ f ≤ fmax range of interest.

a. Assuming that no antialiasing prefilter is used, set up and solve an equation for the
minimum sampling rate fs, in terms of the quantities fa, Na, A.

b. Next, suppose that an Nth order Butterworth analog prefilter is to be used to aid the
sampling process. Let f0 be the filter’s 3-dB normalization frequency. It is required
that the prefilter’s attenuation within the 0 ≤ f ≤ fmax band of interest remain less
than B dB.

Set up an equation for f0 that would guarantee this condition.

Then, set up an equation for the minimum fs that would guarantee the desired A dB
suppression of the spectral images.

c. Show that fs is given approximately by

fs = fmax

[
1+ 10A/20(N+Na)

]
When is this approximation valid? Show that this expression also covers part (a) if you
set N = 0. Discuss the meaning of the limit N →∞ in terms of the sampling theorem.

1.20 In Problem 1.19, we implicitly assumed that the prefilter’s order N was given, and we deter-
mined f0 and fs. Here, we assume that fs is given and is equal to some value above 2fmax.
Show that the minimum prefilter order that must be used to guarantee A dB suppression of
the spectral images is approximately linearly related to A via an equation of the form:

60 1. SAMPLING AND RECONSTRUCTION

N = aA+ b

Determine expressions for a and b in terms of the given quantities.

1.21 The operation of flat-top practical sampling depicted in Fig. 1.5.1 may be thought of as filter-
ing the ideally sampled signal x̂(t) through an analog linear filter whose impulse response
is the sampling pulse p(t), as shown in Fig. 1.9.2. Show that Eq. (1.5.2) can be written as the
I/O convolutional equation of such a filter:

xflat(t)=
∫∞
−∞

p(t − t′)x̂(t′)dt′ =
∞∑

n=−∞
x(nT)p(t − nT)

where x̂(t) is given by Eq. (1.5.1). In the frequency domain, this translates to Xflat(f)=
P(f)X̂(f), where P(f) is the spectrum of sampling pulse p(t).

t
nT

x(nT) δ(t-nT)

t
nT

x(nT) p(t −nT)

ideally
sampled
signal

flat-top
sampled
signal

linear system

xflat(t)

τ t

x(t)^ p(t)

0

Fig. 1.9.2 Flat-top sampling as filtering.

Determine P(f) for a flat pulse p(t) of duration τ seconds. For the case τ = T/5, make a
sketch of Xflat(f) over the range −6fs ≤ f ≤ 6fs.

1.22 After having been properly prefiltered by an antialiasing filter, an analog signal is sampled
at a rate of 6 kHz. The digital signal is then filtered by a digital filter designed to act as an
ideal lowpass filter with cutoff frequency of 1 kHz. The filtered digital signal is then fed into
a staircase D/A reconstructor and then into a lowpass anti-image postfilter.

The overall reconstructor is required to suppress the spectral images caused by sampling by
more than A = 40 dB. Determine the least stringent specifications for the analog postfilter
that will satisfy this requirement.

1.23 Consider an arbitrary D/A reconstructing filter with impulse response h(t) and correspond-
ing frequency response H(f). The analog signal at the output of the reconstructor is related
to the incoming time samples x(nT) by

xa(t)=
∑
n
x(nT)h(t − nT)

Show this result in two ways:

a. Using convolution in the time domain.

b. Starting with Xa(f)= H(f)X̂(f) and taking inverse Fourier transforms.

1.24 The sinusoidal signal x(t)= sin(2πf0t) is sampled at a rate fs and the resulting samples are
then reconstructed by an arbitrary analog reconstructing filter H(f). Show that the analog
signal at the output of the reconstructor will have the form:

1.9. PROBLEMS 61

xrec(t)=
∞∑

m=−∞
Am sin(2πfmt + θm)

What are the frequencies fm? How are the quantities Am and θm related to the frequency
response H(f)? Determine the quantities Am and θm for the two cases of a staircase recon-
structor and an ideal reconstructor.

1.25 The sum of sinusoids

y(t)= A1e2πjf1t +A2e2πjf2t

is sampled at a rate fs such that fs > 2|f1| and fs > 2|f2|. The resulting samples are then
filtered digitally by a staircase-equalizing digital filter and then reconstructed by a staircase
reconstructor, as shown in Fig. 1.6.9. If a final postfilter is not used, show that the resulting
analog signal at the output of the reconstructor will be

ya(t)=
∞∑

m=−∞

[
A1me2πjf1mt +A2me2πjf2mt

]
where A1m = A1f1/f1m, A2m = A2f2/f2m, and f1m = f1 +mfs, f2m = f2 +mfs. What would
a final postfilter do to each of these terms?

2
Quantization

2.1 Quantization Process

Sampling and quantization are the necessary prerequisites for any digital signal pro-
cessing operation on analog signals. A sampler and quantizer are shown in Fig. 2.1.1
[56–61]. The hold capacitor in the sampler holds each measured sample x(nT) for at
most T seconds during which time the A/D converter must convert it to a quantized
sample, xQ(nT), which is representable by a finite number of bits, say B bits. The B-bit
word is then shipped over to the digital signal processor.

Fig. 2.1.1 Analog to digital conversion.

After digital processing, the resulting B-bit word is applied to a D/A converter which
converts it back to analog format generating a staircase output. In practice, the sam-
ple/hold and ADC may be separate modules or may reside on board the same chip.

The quantized sample xQ(nT), being represented by B bits, can take only one of
2B possible values. An A/D converter is characterized by a full-scale range R, which
is divided equally (for a uniform quantizer) into 2B quantization levels, as shown in
Fig. 2.1.2. The spacing between levels, called the quantization width or the quantizer
resolution, is given by:

Q = R
2B

(2.1.1)

This equation can also be written in the form:

R
Q
= 2B (2.1.2)

62

2.1. QUANTIZATION PROCESS 63

which gives the number of quantization levels.

R

3Q

-3Q

R/2

Q

2Q

-Q

-2Q

-R/2

Q

t
nT

x(nT)
x(t)

xQ(nT)

0

quantization
levels

Fig. 2.1.2 Signal quantization.

Typical values of R in practice are between 1–10 volts. Figure 2.1.2 shows the case
of B = 3 or 2B = 8 levels, and assumes a bipolar ADC for which the possible quantized
values lie within the symmetric range:

−R
2
≤ xQ(nT)<

R
2

For a unipolar ADC, we would have instead 0 ≤ xQ(nT)< R. In practice, the input
signal x(t) must be preconditioned by analog means to lie within the full-scale range of
the quantizer, that is,−R/2 ≤ x(t)< R/2, before it is sent to the sampler and quantizer.
The upper end, R/2, of the full-scale range is not realized as one of the levels; rather,
the maximum level is R/2−Q.

In Fig. 2.1.2, quantization of x(t) was done by rounding, that is, replacing each value
x(t) by the value of the nearest quantization level. Quantization can also be done by
truncation whereby each value is replaced by the value of the level below it. Rounding
is preferred in practice because it produces a less biased quantized representation of
the analog signal.

The quantization error is the error that results from using the quantized signal
xQ(nT) instead of the true signal x(nT), that is,†

e(nT)= xQ(nT)−x(nT) (2.1.3)

In general, the error in quantizing a number x that lies in [−R/2, R/2) is:

e = xQ − x

where xQ is the quantized value. If x lies between two levels, it will be rounded up or
down depending on which is the closest level. If x lies in the upper (lower) half between

†A more natural definition would have been e(nT)= x(nT)−xQ(nT). The choice (2.1.3) is more conve-
nient for making quantizer models.

64 2. QUANTIZATION

the two levels, it will be rounded up (down). Thus, the error e can only take the values†

− Q
2
≤ e ≤ Q

2
(2.1.4)

Therefore, the maximum error is emax = Q/2 in magnitude. This is an overestimate
for the typical error that occurs. To obtain a more representative value for the average
error, we consider the mean and mean-square values of e defined by:

e = 1

Q

∫ Q/2

−Q/2
ede = 0, and e2 = 1

Q

∫ Q/2

−Q/2
e2 de = Q2

12
(2.1.5)

The result e = 0 states that on the average half of the values are rounded up and
half down. Thus, e cannot be used as a representative error. A more typical value is the
root-mean-square (rms) error defined by:

erms =
√
e2 = Q√

12
= R√

12
2−B (2.1.6)

Equations (2.1.5) can be given a probabilistic interpretation by assuming that the
quantization error e is a random variable which is distributed uniformly over the range
(2.1.4), that is, having probability density:

p(e)=
⎧⎪⎨⎪⎩

1

Q
if −Q

2
≤ e ≤ Q

2
0 otherwise

e
Q/2−Q/2

p(e)
1/Q

0

The normalization 1/Q is needed to guarantee:∫ Q/2

−Q/2
p(e)de = 1

It follows that Eqs. (2.1.5) represent the statistical expectations:

E[e]=
∫ Q/2

−Q/2
ep(e)de and E[e2]=

∫ Q/2

−Q/2
e2p(e)de

Thinking of R and Q as the ranges of the signal and quantization noise, the ratio in
Eq. (2.1.2) is a signal-to-noise ratio (SNR). It can be expressed in dB:

20 log10

(
R
Q

)
= 20 log10

(
2B
) = B · 20 log10 2, or,

SNR = 20 log10

(
R
Q

)
= 6B dB (6-dB-per-bit-rule) (2.1.7)

which is referred to as the 6 dB per bit rule. Eq. (2.1.7) is called the dynamic range of
the quantizer. Equations (2.1.1) and (2.1.6) can be used to determine the wordlength B
if the full-scale range and desired rms error are given.

†If the midpoint between levels is rounded up, then we should have more strictly, −Q/2 < e ≤ Q/2.

2.1. QUANTIZATION PROCESS 65

Example 2.1.1: In a digital audio application, the signal is sampled at a rate of 44 kHz and each
sample quantized using an A/D converter having a full-scale range of 10 volts. Determine
the number of bits B if the rms quantization error must be kept below 50 microvolts. Then,
determine the actual rms error and the bit rate in bits per second.

Solution: Write Eq. (2.1.6) in terms of B, erms = Q/
√

12 = R2−B/
√

12 and solve for B:

B = log2

[
R

erms
√

12

]
= log2

[
10

50 · 10−6
√

12

]
= 15.82

which is rounded to B = 16 bits, corresponding to 2B = 65536 quantization levels. With
this value of B, we find erms = R2−B/

√
12 = 44 microvolts. The bit rate will be Bfs =

16 · 44 = 704 kbits/sec. This is a typical bit rate for CD players.

The dynamic range of the quantizer is 6B = 6·16 = 96 dB. Note that the dynamic range of
the human ear is about 100 dB. Therefore, the quantization noise from 16-bit quantizers
is about at the threshold of hearing. This is the reason why “CD quality” digital audio
requires at least 16-bit quantization. 	

Example 2.1.2: By comparison, in digital speech processing the typical sampling rate is 8 kHz
and the quantizer’s wordlength 8 bits, corresponding to 256 levels. An 8-bit ADC with full-
scale range of 10 volts, would generate an rms quantization noise erms = R2−B/

√
12 = 11

millivolts. The bit rate in this case is Bfs = 8 · 8 = 64 kbits/sec. 	

The probabilistic interpretation of the quantization noise is very useful for deter-
mining the effects of quantization as they propagate through the rest of the digital
processing system. Writing Eq. (2.1.3) in the form†

xQ(n)= x(n)+e(n) (2.1.8)

we may think of the quantized signal xQ(n) as a noisy version of the original unquan-
tized signal x(n) to which a noise component e(n) has been added. Such an additive
noise model of a quantizer is shown in Fig. 2.1.3.

Fig. 2.1.3 Additive noise model of a quantizer.

In general, the statistical properties of the noise sequence e(n) are very complicated
[62–67,70]. However, for so-called wide-amplitude wide-band signals, that is, signals that
vary through the entire full-scale range R crossing often all the quantization levels, the
sequence e(n) may be assumed to be a stationary zero-mean white noise sequence with
uniform probability density over the range [−Q/2,Q/2]. Moreover, e(n) is assumed

†For simplicity, we denoted x(nT) by x(n), etc.

66 2. QUANTIZATION

to be uncorrelated with the signal x(n). The average power or variance of e(n) has
already been computed above:

σ2
e = E[e2(n)]= Q2

12
(2.1.9)

The assumption that e(n) is white noise means that it has a delta-function autocorre-
lation:

Ree(k)= E[e(n+ k)e(n)]= σ2
eδ(k) (2.1.10)

for all lags k. Similarly, that it is uncorrelated with x(n) means that it has zero cross-
correlation:

Rex(k)= E[e(n+ k)x(n)]= 0 (2.1.11)

for all k. Later on we will illustrate this statistical model for e(n) with a simulation
example and verify equations (2.1.9)–(2.1.11), as well as the uniform distribution for the
density p(e).

The model is not accurate for low-amplitude slowly varying signals. For example, a
sinusoid that happens to lie exactly in the middle between two levels and has amplitude
less than Q/2 will be quantized to be a square wave, with all the upper humps of the si-
nusoid being rounded up and all the lower ones rounded down. The resulting error e(n)
will be highly periodic, that is, correlated from sample to sample, and not resembling
random white noise. It will also be highly correlated with input sinusoid x(n).

In digital audio, quantization distortions arising from low-level signals are referred
to as granulation noise and correspond to unpleasant sounds. They can be virtually
eliminated by the use of dither, which is low-level noise added to the signal before
quantization.

The beneficial effect of dithering is to make the overall quantization error behave as
a white noise signal, which is perceptually much more preferable and acceptable than
the gross granulation distortions of the undithered signal [68–85]. On the negative side,
dithering reduces the signal-to-noise ratio somewhat—between 3 to 6 dB depending on
the type of dither used. Dither will be discussed in Section 2.5.

2.2 Oversampling and Noise Shaping

In the frequency domain, the assumption that e(n) is a white noise sequence means that
it has a flat spectrum. More precisely, the total average power σ2

e of e(n) is distributed
equally over the Nyquist interval [−fs/2, fs/2], as shown in Fig. 2.2.1.

Thus, the power per unit frequency interval or power spectral density of e(n) will
be†

See(f)= σ2
e
fs

, for − fs
2
≤ f ≤ fs

2
(2.2.1)

†In units of digital frequency ω = 2πf/fs, it is See(ω)= σ2
e/2π.

2.2. OVERSAMPLING AND NOISE SHAPING 67

f
fs/2-fs/2

See(f)
σ2

e /fs

0

Fig. 2.2.1 Power spectrum of white quantization noise.

and it is periodic outside this interval with period fs. The noise power within any Nyquist
subinterval [fa, fb] of width Δf = fb − fa is given by

See(f)Δf = σ2
e
Δf
fs
= σ2

e
fb − fa
fs

As expected, the total power over the entire interval Δf = fs will be

σ2
e
fs

fs = σ2
e

Noise shaping quantizers reshape the spectrum of the quantization noise into a more
convenient shape. This is accomplished by filtering the white noise sequence e(n) by
a noise shaping filter HNS(f). The equivalent noise model for the quantization process
is shown in Fig. 2.2.2. The corresponding quantization equation, replacing Eq. (2.1.8),
becomes:

xQ(n)= x(n)+ε(n) (2.2.2)

x(n)

HNS(f)

xQ(n)

e(n)

ε(n)

Fig. 2.2.2 Model of noise shaping quantizer.

where ε(n) denotes the filtered noise. The sequence ε(n) is no longer white. Its power
spectral density is not flat, but acquires the shape of the filter HNS(f):

Sεε(f)= |HNS(f)|2 See(f)= σ2
e
fs
|HNS(f)|2 (2.2.3)

The noise power within a given subinterval [fa, fb] is obtained by integrating Sεε(f)
over that subinterval:

Power in [fa, fb] =
∫ fb

fa
Sεε(f)df = σ2

e
fs

∫ fb

fa
|HNS(f)|2 df (2.2.4)

68 2. QUANTIZATION

Noise shaping quantizers are implemented by the so-called delta-sigma A/D con-
verters [350], which are increasingly being used in commercial products such as digital
audio sampling systems for hard disk or digital tape recording. We will discuss imple-
mentation details in Chapter 14. Here, we give a broad overview of the advantages of
such quantizers.

The concepts of sampling and quantization are independent of each other. The first
corresponds to the quantization of the time axis and the second to the quantization
of the amplitude axis. Nevertheless, it is possible to trade off one for the other. Over-
sampling was mentioned earlier as a technique to alleviate the need for high quality
prefilters and postfilters. It can also be used to trade off bits for samples. In other
words, if we sample at a higher rate, we can use a coarser quantizer. Each sample will
be less accurate, but there will be many more of them and their effect will average out
to recover the lost accuracy.

The idea is similar to performing multiple measurements of a quantity, say x. Let σ2
x

be the mean-square error in a single measurement. If L independent measurements of
x are made, it follows from the law of large numbers that the measurement error will be
reduced to σ2

x/L, improving the accuracy of measurement. Similarly, if σ2
x is increased,

making each individual measurement worse, one can maintain the same level of quality
as long as the number of measurements L is also increased commensurately to keep the
ratio σ2

x/L constant.
Consider two cases, one with sampling rate fs and B bits per sample, and the other

with higher sampling rate f ′s and B′ bits per sample. The quantity:

L = f ′s
fs

is called the oversampling ratio and is usually an integer. We would like to show that
B′ can be less than B and still maintain the same level of quality. Assuming the same
full-scale range R for the two quantizers, we have the following quantization widths:

Q = R2−B, Q′ = R2−B
′

and quantization noise powers:

σ2
e =

Q2

12
, σ′2e =

Q′2

12

To maintain the same quality in the two cases, we require that the power spectral den-
sities remain the same, that is, using Eq. (2.2.1):

σ2
e
fs
= σ′2e

f ′s

which can be rewritten as,

σ2
e = fs

σ′2e
f ′s

= σ′2e
L

(2.2.5)

Thus, the total quantization power σ2
e is less than σ′2e by a factor of L, making B

greater than B′. The meaning of this result is shown pictorially in Fig. 2.2.3. If sampling

2.2. OVERSAMPLING AND NOISE SHAPING 69

f
fs/2 fs′/2-fs′/2 -fs/2

σ′2e /fs′

0

area = σ2
e

Fig. 2.2.3 Oversampled quantization noise power, without noise shaping.

is done at the higher rate f ′s , then the total power σ′2e of the quantization noise is spread
evenly over the f ′s Nyquist interval.

The shaded area in Fig. 2.2.3 gives the proportion of theσ′2e power that lies within the
smaller fs interval. Solving Eq. (2.2.5) for L and expressing it in terms of the difference
ΔB = B− B′, we find:

L = σ′2e
σ2
e
= 22(B−B′) = 22ΔB

or, equivalently,
ΔB = 0.5 log2 L (2.2.6)

that is, a saving of half a bit per doubling of L. This is too small to be useful. For
example, in order to reduce a 16-bit quantizer for digital audio to a 1-bit quantizer, that
is, ΔB = 15, one would need the unreasonable oversampling ratio of L = 230.

A noise shaping quantizer operating at the higher rate f ′s can reshape the flat noise
spectrum so that most of the power is squeezed out of the fs Nyquist interval and
moved into the outside of that interval. Fig. 2.2.4 shows the power spectrum of such a
quantizer.

f
0

|HNS(f)|
2

fs/2 fs′/2-fs′/2 -fs/2

σ′2e /fs′

σ′2e
fs′

Fig. 2.2.4 Spectrum of oversampling noise shaping quantizer.

The total quantization noise power that resides within the original fs Nyquist interval
is the shaded area in this figure. It can be calculated by integrating Eq. (2.2.4) over
[−fs/2, fs/2]:

σ2
e =

σ′2e
f ′s

∫ fs/2

−fs/2
|HNS(f)|2 df (2.2.7)

Note that it reduces to Eq. (2.2.5) if there is no noise shaping, that is, HNS(f)= 1.
We will see in Section 14.7 that a typical pth order noise shaping filter operating at the

70 2. QUANTIZATION

high rate f ′s has magnitude response:

|HNS(f)|2 =
∣∣∣∣∣2 sin

(
πf
f ′s

)∣∣∣∣∣
2p

, for − f ′s
2
≤ f ≤ f ′s

2
(2.2.8)

For small frequencies f , we may use the approximation, sinx � x, to obtain:

|HNS(f)|2 =
(

2πf
f ′s

)2p

, for |f| � f ′s/2 (2.2.9)

Assuming a large oversampling ratio L, we will have fs � f ′s , and therefore, we can
use the approximation (2.2.9) in the integrand of Eq. (2.2.7). This gives:

σ2
e =

σ′2e
f ′s

∫ fs/2

−fs/2

(
2πf
f ′s

)2p

df = σ′2e
π2p

2p+ 1

(
fs
f ′s

)2p+1

= σ′2e
π2p

2p+ 1

1

L2p+1

Using σ2
e/σ′2e = 2−2(B−B′) = 2−2ΔB, we obtain:

2−2ΔB = π2p

2p+ 1

1

L2p+1

Solving for ΔB, we find the gain in bits:

ΔB = (p+ 0.5)log2 L− 0.5 log2

(
π2p

2p+ 1

)
(2.2.10)

Now, the savings are (p+ 0.5) bits per doubling of L. Note that Eq. (2.2.10) reduces
to Eq. (2.2.6) if there is no noise shaping, that is, p = 0. Practical values for the order
p are at present p = 1,2,3, with p = 4,5 becoming available. Table 2.2.1 compares the
gain in bits ΔB versus oversampling ratio L for various quantizer orders.

p L 4 8 16 32 64 128

0 ΔB = 0.5 log2 L 1.0 1.5 2.0 2.5 3.0 3.5
1 ΔB = 1.5 log2 L− 0.86 2.1 3.6 5.1 6.6 8.1 9.6
2 ΔB = 2.5 log2 L− 2.14 2.9 5.4 7.9 10.4 12.9 15.4
3 ΔB = 3.5 log2 L− 3.55 3.5 7.0 10.5 14.0 17.5 21.0
4 ΔB = 4.5 log2 L− 5.02 4.0 8.5 13.0 17.5 22.0 26.5
5 ΔB = 5.5 log2 L− 6.53 4.5 10.0 15.5 21.0 26.5 32.0

Table 2.2.1 Performance of oversampling noise shaping quantizers.

The first CD player built by Philips used a first-order noise shaper with 4-times over-
sampling, that is, p = 1, L = 4, which according to the table, achieves a savings of
ΔB = 2.1 bits. Because of that, the Philips CD player used a 14-bit, instead of a 16-bit,
D/A converter at the analog reconstructing stage [353].

2.3. D/A CONVERTERS 71

We also see from the table that to achieve 16-bit CD-quality resolution using 1-
bit quantizers, that is, ΔB = 15, we may use a second-order 128-times oversampling
quantizer. For digital audio rates fs = 44.1 kHz, this would imply oversampling at
f ′s = Lfs = 5.6 MHz, which is feasible with the present state of the art. Alternatively, we
may use third-order noise shaping with 64-times oversampling.

An overall DSP system that uses oversampling quantizers with noise shaping is
shown in Fig. 2.2.5. Sampling and reconstruction are done at the fast rate f ′s and at
the reduced resolution of B′ bits. Intermediate processing by the DSP is done at the low
rate fs and increased resolution of B bits. The overall quality remains the same through
all the processing stages. Such a system replaces the traditional DSP system, shown in
Fig. 1.7.1.

Fig. 2.2.5 Oversampling DSP system.

The faster sampling rate f ′s also allows the use of a less expensive, lower quality,
antialiasing prefilter. The digital decimation filter converts the fast rate f ′s back to the
desired low rate fs at the higher resolution of B bits and removes the out-of-band quan-
tization noise that was introduced by the noise shaping quantizer into the outside of
the fs Nyquist interval.

After digital processing by the DSP, the interpolation filter increases the sampling
rate digitally back up to the fast rate f ′s . The noise shaping requantizer rounds the B-bit
samples to B′ bits, without reducing quality. Finally, an ordinary B′-bit staircase D/A
converter reconstructs the samples to analog format and the postfilter smooths out the
final output. Again, the fast rate f ′s allows the use of a low-quality postfilter.

Oversampling DSP systems are used in a variety of applications, such as digital
transmission and coding of speech, the playback systems of CD players, and the sam-
pling/playback systems of DATs. We will discuss the design of oversampling digital
interpolation and decimation filters and the structure of noise shaping quantizers and
ΔΣ converters in Chapter 14.

2.3 D/A Converters

Next, we discuss some coding details for standard A/D and D/A converters, such as
binary representations of quantized samples and the successive approximation method
of A/D conversion. We begin with D/A converters, because they are used as the building

72 2. QUANTIZATION

blocks of successive approximation ADCs. We take a functional view of such converters
without getting into the electrical details of their construction.

Consider a B-bit DAC with full-scale range R, as shown in Fig. 2.3.1. Given B input
bits of zeros and ones, b = [b1, b2, . . . , bB], the converter outputs an analog value xQ,
that lies on one of the 2B quantization levels within the range R. If the converter is
unipolar, the output xQ falls in the range [0, R). If it is bipolar, it falls in [−R/2, R/2).

DAC

b1

b2

b3

bB

xQ

.

.

.

.

.

.

R (reference)

analog output

MSB

LSB

B input bits

Fig. 2.3.1 B-bit D/A converter.

The manner in which the B bits [b1, b2, . . . , bB] are associated with the analog value
xQ depends on the type of converter and the coding convention used. We will discuss
the three widely used types: (a) unipolar natural binary, (b) bipolar offset binary, and (c)
bipolar two’s complement converters.

The unipolar natural binary converter is the simplest. Its output xQ is computed in
terms of the B bits by:

xQ = R(b12−1 + b22−2 + · · · + bB2−B) (2.3.1)

The minimum level is xQ = 0 and is reached when all the bits are zero, b = [0,0, . . . ,0].
The smallest nonzero level is xQ = Q = R2−B and corresponds to the least signif-
icant bit (LSB) pattern b = [0,0, . . . ,0,1]. The most significant bit (MSB) pattern is
b = [1,0,0, . . . ,0] and corresponds to the output value xQ = R/2. The maximum level
is reached when all bits are one, that is, b = [1,1, . . . ,1] and corresponds to the analog
output:

xQ = R(2−1 + 2−2 + · · · + 2−B)= R(1− 2−B)= R−Q

where we used the geometric series

2−1 + 2−2 + · · · + 2−B = 2−1(1+ 2−1 + 2−2 + · · · + 2−(B−1))
= 2−1

(
1− 2−B

1− 2−1

)
= 1− 2−B

Eq. (2.3.1) can be written also in terms of the quantization width Q, as follows:

xQ = R2−B(b12B−1 + b22B−2 + · · · + bB−121 + bB) or,

xQ = Qm (2.3.2)

2.3. D/A CONVERTERS 73

where m is the integer whose binary representation is (b1b2 · · ·bB), that is,

m = b12B−1 + b22B−2 + · · · + bB−121 + bB

As the integer m takes on the 2B consecutive values m = 0,1,2, . . . ,2B − 1, the
analog output xQ runs through the quantizer’s consecutive levels. The bipolar offset
binary converter is obtained by shifting Eq. (2.3.1) down by half-scale, R/2, giving the
rule:

xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5) (2.3.3)

The minimum and maximum attainable levels are obtained by shifting the corre-
sponding natural binary values by R/2:

xQ = 0− R
2
= −R

2
and xQ = (R−Q)−R

2
= R

2
−Q

The analog value xQ can also be expressed in terms of Q, as in Eq. (2.3.2). In this
case we have:

xQ = Qm′ (2.3.4)

where m′ is the integer m shifted by half the maximum scale, that is,

m′ =m− 1

2
2B =m− 2B−1

It takes on the sequence of 2B values

m′ = −2B−1, . . . ,−2,−1,0,1,2, . . . ,2B−1 − 1

One unnatural property of the offset binary code is that the level xQ = 0 is rep-
resented by the nonzero bit pattern b = [1,0, . . . ,0]. This is remedied by the two’s
complement code, which is the most commonly used code. It is obtained from the
offset binary code by complementing the most significant bit, that is, replacing b1 by
b1 = 1− b1, so that

xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5) (2.3.5)

Table 2.3.1 summarizes the three converter types and their input/output coding
conventions and Table 2.3.2 compares the three coding conventions for the case B = 4
and R = 10 volts. The level spacing is Q = R/2B = 10/24 = 0.625 volts. The codes [b1,
b2, b3, b4] in the first column, apply to both the natural and offset binary cases, but the
quantized analog values that they represent are different.

For the natural binary case, the values xQ are positive, spanning the range [0,10)
volts, with the maximum value being R − Q = 10 − 0.625 = 9.375. For offset binary,
the level values are offset by half scale, R/2 = 5 volts, and span the range [−5,5) volts,
with the maximum being R/2−Q = 5− 0.625 = 4.375 volts. Note that the upper ends
of the full-scale range, R = 10 and R/2 = 5 volts, are shown in the table for reference
and do not represent a level.

The last column shows the two’s complement codes. They are obtained from the
first column by complementing the MSB, b1. The quantized values xQ represented by

74 2. QUANTIZATION

Converter type I/O relationship

natural binary xQ = R(b12−1 + b22−2 + · · · + bB2−B)

offset binary xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5)

two’s complement xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5)

Table 2.3.1 Converter types.

natural binary offset binary 2’s C

b1b2b3b4 m xQ = Qm m′ xQ = Qm′ b1b2b3b4

— 16 10.000 8 5.000 —

1 1 1 1 15 9.375 7 4.375 0 1 1 1
1 1 1 0 14 8.750 6 3.750 0 1 1 0
1 1 0 1 13 8.125 5 3.125 0 1 0 1
1 1 0 0 12 7.500 4 2.500 0 1 0 0
1 0 1 1 11 6.875 3 1.875 0 0 1 1
1 0 1 0 10 6.250 2 1.250 0 0 1 0
1 0 0 1 9 5.625 1 0.625 0 0 0 1
1 0 0 0 8 5.000 0 0.000 0 0 0 0
0 1 1 1 7 4.375 −1 −0.625 1 1 1 1
0 1 1 0 6 3.750 −2 −1.250 1 1 1 0
0 1 0 1 5 3.125 −3 −1.875 1 1 0 1
0 1 0 0 4 2.500 −4 −2.500 1 1 0 0
0 0 1 1 3 1.875 −5 −3.125 1 0 1 1
0 0 1 0 2 1.250 −6 −3.750 1 0 1 0
0 0 0 1 1 0.625 −7 −4.375 1 0 0 1
0 0 0 0 0 0.000 −8 −5.000 1 0 0 0

Table 2.3.2 Converter codes for B = 4 bits, R = 10 volts.

these codes are the same as in the offset binary case, that is, given in the fifth column
of the table.

The two’s complement code can be understood by wrapping the linear natural binary
code around in a circle, as shown in Fig. 2.3.2. This figure shows the natural binary
integers m and their negative values in the lower half of the circle. The negative of any
positive m in the upper semicircle can be obtained by the usual rule of complementing
all its bits and adding one, that is, m2c =m+ 1.

Example 2.3.1: In Table 2.3.2 or Fig. 2.3.2, the level m = 3 corresponds to the natural binary
quantized value of xQ = 1.875 volts. The two’s complement of m is obtained by the rule

m2c =m+ 1 = (0011)+ (0001)= (1100)+(0001)= (1101)= −3

which, according to the fifth column of the table, corresponds to the two’s complement

2.3. D/A CONVERTERS 75

0000=0

0001=1

0010=2

0100
0011=35=0101

6=0110

7=0111

-8=1000

-7=1001

-6=1010

-5=1011
1100
-4

4

1101=-3
1110=-2

1111=-1

Fig. 2.3.2 Two’s complement code.

quantized value xQ = −1.875 volts. 	

The following C routine dac.c simulates the operation of the bipolar two’s comple-
ment converter. Its inputs are the B bits [b1, b2, . . . , bB], and the full-scale range R, and
its output is the analog value xQ computed by Eq. (2.3.5).

/* dac.c - bipolar two’s complement D/A converter */

double dac(b, B, R)
int *b, B; bits are dimensioned as b[0], b[1], . . . , b[B− 1]
double R;
{

int i;
double dac = 0;

b[0] = 1 - b[0]; complement MSB

for (i = B-1; i >= 0; i--) Hörner’s rule

dac = 0.5 * (dac + b[i]);

dac = R * (dac - 0.5); shift and scale

b[0] = 1 - b[0]; restore MSB

return dac;
}

Its usage is:

xQ = dac(b, B, R);

Because of the default indexing of arrays in C, the B-dimensional bit vector b[i] is
indexed for i = 0,1, . . . , B−1. The declaration and dimensioning of b[i] should be done
in the main program. For example, if B = 4, the main program must include a line:

int b[4];

The array b[i] can also be allocated dynamically for any desired value of B using
calloc. The main program must include the lines:

76 2. QUANTIZATION

int *b; b is a pointer to int

B = 4; B can also be read from stdin

b = (int *) calloc(B, sizeof(int)); allocates B int slots

The internal for-loop in dac.c implements a variant of Hörner’s rule for evaluating
a polynomial. The result is the binary sum b12−1 + b22−2 + · · · + bB2−B which is then
shifted by 0.5 and scaled by R. We leave the details of Hörner’s algorithm for Problems
2.10–2.13. This algorithm will be used again later for the evaluation of z-transforms and
DTFTs. (See the MATLAB function dtft.m in Appendix C.)

The routine dac may be modified easily to implement the natural binary and offset
binary converter types, given by Eqs. (2.3.1) and (2.3.3).

2.4 A/D Converters

A/D converters quantize an analog value x so that it is represented byB bits [b1, b2, . . . , bB],
as shown in Fig. 2.4.1. ADCs come in many varieties, depending on how the conversion
process is implemented. One of the most popular ones is the successive approximation
A/D converter whose main building block is a D/A converter in a feedback loop. It is
shown in Fig. 2.4.2.

ADC

b1

b2

b3

bB

x

.
.
.

.

.

.

R

analog input

MSB

LSB

B output bits

Fig. 2.4.1 B-bit A/D converter.

The conversion algorithm is as follows. Initially all B bits are cleared to zero, b =
[0,0, . . . ,0], in the successive approximation register (SAR). Then, starting with the MSB
b1, each bit is turned on in sequence and a test is performed to determine whether that
bit should be left on or turned off.

x x

xQ

xQ

.

.

.

...

...

.

.

.

analog input

comparator

C = 1/0

B output bitsDAC

ADC

SAR

MSB

LSB

+
- ...b1 b3 bBb2

b1 b3 bBb2

Fig. 2.4.2 Successive approximation A/D converter.

2.4. A/D CONVERTERS 77

The control logic puts the correct value of that bit in the right slot in the SAR register.
Then, leaving all the tested bits set at their correct values, the next bit is turned on in
the SAR and the process repeated. After B tests, the SAR will hold the correct bit vector
b = [b1, b2, . . . , bB], which can be sent to the output.

At each test, the SAR bit vector b is applied to the DAC which produces the analog
quantized value xQ. When a given bit is turned on, the output xQ of the DAC is compared
with the analog input x to the ADC. If x ≥ xQ, that bit is kept on; else, it is turned off. The
output C of the comparator is the correct value of the bit being tested. The algorithm
is summarized below:

for each x to be converted, do:
initialize b = [0,0, . . . ,0]
for i = 1,2, . . . , B do:

bi = 1
xQ = dac(b, B,R)
if (x ≥ xQ)

C = 1
else

C = 0
bi = C

Therefore, C becomes a serial representation of the bit vector b. The algorithm
imitates the operations shown in Fig. 2.4.2. It can be written more compactly as follows:

for each x to be converted, do:
initialize b = [0,0, . . . ,0]
for i = 1,2, . . . , B do:

bi = 1
xQ = dac(b, B,R)
bi = u(x− xQ)

where u(x) is the unit-step function, defined by:

u(x)=
{

1 if x ≥ 0
0 if x < 0

As stated above, the algorithm applies to the natural and offset binary cases (with
corresponding versions of dac). It implements truncation of x to the quantization level
just below, instead of rounding to the nearest level.

The algorithm converges to the right quantization level by performing a binary
search through the quantization levels. This can be seen with the help of the first col-
umn of Table 2.3.2. The test b1 = 1 or 0 determines whether x lies in the upper or lower
half of the levels. Then, the test b2 = 1/0 determines whether x lies in the upper/lower
half of the first half, and so on. Some examples will make this clear.

Example 2.4.1: Convert the analog values x = 3.5 and x = −1.5 volts to their offset binary
representation, assuming B = 4 bits and R = 10 volts, as in Table 2.3.2.

78 2. QUANTIZATION

Solution: The following table shows the successive tests of the bits, the corresponding DAC
output xQ at each test, and the comparator output C = u(x− xQ).

test b1b2b3b4 xQ C = u(x− xQ)

b1 1 0 0 0 0.000 1
b2 1 1 0 0 2.500 1
b3 1 1 1 0 3.750 0
b4 1 1 0 1 3.125 1

1 1 0 1 3.125

For each bit pattern, the DAC inputs/outputs were looked up in the first/fifth columns of
Table 2.3.2, instead of computing them via Eq. (2.3.3). When b1 is tested, the DAC output
is xQ = 0 which is less than x; therefore, b1 passes the test. Similarly, b2 passes the test
and stays on. On the other hand bit b3 fails the test because x < xQ = 3.75; thus, b3 is
turned off. Finally, b4 passes.

The last row gives the final content of the SAR register and the corresponding quantized
value xQ = 3.125. Even though x = 3.5 lies in the upper half between the two levels
xQ = 3.75 and xQ = 3.125, it gets truncated down to the lower level. The C column is a
serial representation of the final answer.

Note also the binary searching taking place: b1 = 1 selects the upper half of the levels,
b2 = 1 selects the upper half of the upper half, and of these, b3 = 0 selects the lower half,
and of those, b4 = 1 selects the upper half. For the case x = −1.5 we have the testing table

test b1b2b3b4 xQ C = u(x− xQ)

b1 1 0 0 0 0.000 0
b2 0 1 0 0 −2.500 1
b3 0 1 1 0 −1.250 0
b4 0 1 0 1 −1.875 1

0 1 0 1 −1.875

Bit b1 fails the test because x < xQ = 0, and therefore, b1 = 0, and so on. Again, the final
quantized value xQ = −1.875 is that obtained by truncating x = −1.5 to the level below it,
even though x lies nearer the level above it. 	

In order to quantize by rounding to the nearest level, we must shift x by half the
spacing between levels, that is, use:

y = x+ 1

2
Q

in place of x and perform truncation on y. If x is already in the upper half between two
levels, then y will be brought above the upper level and will be truncated down to that

2.4. A/D CONVERTERS 79

level. The conversion algorithm for rounding is:

for each x to be converted, do:
y = x+Q/2
initialize b = [0,0, . . . ,0]
for i = 1,2, . . . , B do:

bi = 1
xQ = dac(b, B,R)
bi = u(y − xQ)

Example 2.4.2: To quantize the value x = 3.5 by rounding, we shift it to y = x + Q/2 =
3.5+ 0.625/2 = 3.8125. The corresponding test table will be

test b1b2b3b4 xQ C = u(y − xQ)

b1 1 0 0 0 0.000 1
b2 1 1 0 0 2.500 1
b3 1 1 1 0 3.750 1
b4 1 1 1 1 4.375 0

1 1 1 0 3.750

Only b4 fails the test because with it on, the DAC output xQ = 4.375 exceeds y. The final
value xQ = 3.750 is the rounded up version of x = 3.5. For the case x = −1.5, we have
y = −1.5+ 0.625/2 = −1.1875. The corresponding test table is

test b1b2b3b4 xQ C = u(y − xQ)

b1 1 0 0 0 0.000 0
b2 0 1 0 0 −2.500 1
b3 0 1 1 0 −1.250 1
b4 0 1 1 1 −0.625 0

0 1 1 0 −1.250

The value xQ = −1.250 is the rounded up version of x = −1.5. 	

The successive approximation algorithm for the two’s complement case is slightly

different. Because the MSB is complemented, it must be treated separately from the
other bits. As seen in the last column of Table 2.3.2, the bit b1 determines whether the
number x is positive or negative. If x ≥ 0 then, we must have b1 = 0; else b1 = 1.
We can express this result by b1 = 1 − u(x), or, b1 = 1 − u(y) if we are quantizing
by rounding. The remaining bits, {b2, b3, . . . , bB}, are tested in the usual manner. This
leads to the following two’s complement conversion algorithm with rounding:

for each x to be converted, do:
y = x+Q/2
initialize b = [0,0, . . . ,0]
b1 = 1− u(y)
for i = 2,3, . . . , B do:

bi = 1
xQ = dac(b, B,R)
bi = u(y − xQ)

80 2. QUANTIZATION

Example 2.4.3: The two’s complement rounded 4-bit representations of x = 3.5 and x = −1.5
are:

x = 3.5 ⇒ xQ = 3.750 ⇒ b = [0,1,1,0]
x = −1.5 ⇒ xQ = −1.250 ⇒ b = [1,1,1,0]

They are obtained from the offset binary by complementing the MSB. The quantized values
xQ are the same as in the offset binary case — only the binary codes change. 	

Example 2.4.4: Consider the sampled sinusoid x(n)= A cos(2πfn), where A = 3 volts and
f = 0.04 cycles/sample. The sinusoid is evaluated at the ten sampling times n = 0,1, . . . ,9
and x(n) is quantized using a 4-bit successive approximation ADC with full-scale range
R = 10 volts. The following table shows the sampled and quantized values xQ(n) and the
offset binary and two’s complement binary codes representing them.

n x(n) xQ(n) 2’s C offset

0 3.000 3.125 0101 1101
1 2.906 3.125 0101 1101
2 2.629 2.500 0100 1100
3 2.187 1.875 0011 1011
4 1.607 1.875 0011 1011
5 0.927 0.625 0001 1001
6 0.188 0.000 0000 1000
7 −0.562 −0.625 1111 0111
8 −1.277 −1.250 1110 0110
9 −1.912 −1.875 1101 0101

The 2’s complement and offset binary codes differ only in their MSB. The quantized values
they represent are the same. 	

The following routine adc.c simulates the operation of a bipolar two’s complement
successive approximation ADC. It makes successive calls to dac.c to determine each
bit.

/* adc.c - successive approximation A/D converter */

#include <math.h>

double dac();
int u();

void adc(x, b, B, R)
double x, R;
int *b, B;
{

int i;
double y, xQ, Q;

Q = R / pow(2, B); quantization width Q = R/2B

y = x + Q/2; rounding

for (i = 0; i < B; i++) initialize bit vector

b[i] = 0;

b[0] = 1 - u(y); determine MSB

2.4. A/D CONVERTERS 81

for (i = 1; i < B; i++) { loop starts with i = 1

b[i] = 1; turn ith bit ON

xQ = dac(b, B, R); compute DAC output

b[i] = u(y-xQ); test and correct bit

}
}

The inputs to the routine are the analog value x to be converted and the full-scale rangeR.
The outputs are the B bits b = [b1, b2, . . . , bB] representing x in the two’s complement
representation. The unit-step function u(x) is implemented by the routine:

/* u.c - unit step function */

int u(x)
double x;
{

if (x >= 0)
return 1;

else
return 0;

}

Example 2.4.5: This example illustrates the usage of the routines adc and dac. Consider L = 50
samples of a sinusoid x(n)= A cos(2πfn) of digital frequency f = 0.02 cycles/sample
and amplitudeA = 4. The signal x(n) is quantized using a successive approximation two’s
complement converter with rounding, as implemented by the routine adc. The following
for-loop was used in the main program for calculating xQ(n):

for (n=0; n<L; n++) {
x[n] = A * cos(2 * pi * f * n);
adc(x[n], b, B, R);
xQ[n] = dac(b, B, R);
}

where each call to adc determines the bit vector b, which is then passed to dac to calculate
the quantized value.

The following figure shows the sampled and quantized signal xQ(n) plotted together with
the exact values x(n) for the two cases of a 3-bit and a 4-bit converter. The full-scale range
was R = 16.

82 2. QUANTIZATION

Example 2.4.6: This example illustrates the statistical properties of the quantization error.
Consider L samples of the noisy sinusoidal signal:

x(n)= A cos(2πf0n+φ)+v(n) , n = 0,1, . . . , L− 1 (2.4.1)

where φ is a random phase distributed uniformly in the interval [0,2π] and v(n) is white
noise of variance σ2

v . Using a B-bit two’s complement converter with full-scale range R,
these samples are quantized to give xQ(n) and the quantization error is computed:

e(n)= xQ(n)−x(n) , n = 0,1, . . . , L− 1

According to the standard statistical model discussed in Section 2.1, the quantization noise
samples e(n) should be distributed uniformly over the interval −Q/2 ≤ e ≤ Q/2. This
can be tested by computing the histogram of the L values of e(n).

The theoretical statistical quantities given in Eqs. (2.1.9–2.1.11) can be calculated experi-
mentally by the time-average approximations:

σ2
e =

1

L

L−1∑
n=0

e2(n) (2.4.2)

Ree(k) = 1

L

L−1−k∑
n=0

e(n+ k)e(n) (2.4.3)

Rex(k) = 1

L

L−1−k∑
n=0

e(n+ k)x(n) (2.4.4)

We can also compute the autocorrelation of x(n) itself:

Rxx(k)= 1

L

L−1−k∑
n=0

x(n+ k)x(n) (2.4.5)

where in the last three equations, k ranges over a few lags 0 ≤ k ≤M, withM typically being
much less than L − 1. Note also that σ2

e = Ree(0). All four of the above expressions are
special cases of the cross correlation, Eq. (2.4.4), which is implemented by the correlation
routine corr.c. For this experiment, we chose the following numerical values:

B = 10 bits
R = 1024 volts, so that Q = 1 volt
L = 1000 samples
M = 50 lags
f0 = 1/

√
131 � 0.08737 cycles/sample

A = R/4 = 256 volts and φ = 0

The white noise v(n) was distributed uniformly over the interval [−R/4, R/4]. Such num-
bers can be generated by:

v = 0.5R(u− 0.5) (2.4.6)

where u is a uniform random number in the standardized interval [0,1]. The quantity
(u− 0.5) is uniform over [−0.5,0.5], making v uniform over [−R/4, R/4]. We used the
routine ran of Appendix A.1 to generate the u’s, but any other uniform random number
generator could have been used. The samples v(n) were generated by a for-loop of the
form:

2.4. A/D CONVERTERS 83

for (n=0; n<L; n++)
v[n] = 0.5 * R * (ran(&iseed) - 0.5);

where the initial seed† was picked arbitrarily. With these choices, the sinusoidal and noise
terms in x(n) vary over half of the full-scale range, so that their sum varies over the full
range [−R/2, R/2], as is necessary for the model.

With Q = 1, the theoretical value of the noise variance is σe = Q/
√

12 = 1/
√

12 = 0.289.
The experimental value computed using Eq. (2.4.2) was σe = 0.287.

The histogram of the computed e(n) values was computed by dividing the interval [−Q/2,
Q/2]= [−0.5,0.5] into 10 bins. It is shown below. Theoretically, for a uniform distribu-
tion, 1000 samples would distribute themselves evenly over the 10 bins giving 1000/10 =
100 samples per bin.

The next two figures show the standard normalized correlation functions:

ρee(k)= Ree(k)
Ree(0)

, ρex(k)= Rex(k)√
Ree(0)Rxx(0)

, ρxx(k)= Rxx(k)
Rxx(0)

computed for lags k = 0,1, . . . ,M using Eqs. (2.4.3–2.4.5).

Theoretically, ρee(k) should be δ(k) and ρex(k) should be zero. Using the results of
Problem 2.20, the theoretical expression for ρxx(k) will be, for the particular numerical

†Note that iseed is passed by address in ran(&iseed).

84 2. QUANTIZATION

values of the parameters:

ρxx(k)= 0.6 cos(2πf0k)+0.4δ(k)

Thus, although x(n) itself is highly self-correlated, the quantization noise e(n) is not. The
above figures show the closeness of the experimental quantities to the theoretical ones,
confirming the reasonableness of the standard statistical model. 	

Successive approximation A/D converters are used routinely in applications with
sampling rates of 1 MHz or less. Slower converters also exist, the so-called counter or
integrating type. They convert by searching through the quantization levels in a linear
fashion, comparing each level with the value x to be converted. Therefore, they may
require up to 2B tests to perform a conversion. This is to be compared with the B binary
searching steps of the successive approximation type.

For higher rates, parallel or flash A/D converters must be used. They determine all
the bits simultaneously, in parallel, but they are electrically complex requiring 2B − 1
comparators internally. For this reason they are limited at present to B ≤ 12 bits,
achieving conversion rates of 500 MHz with 8 bits, or 50 MHz with 10 bits [57]. As
discussed in Problem 2.21, two or more flash A/D converters can be cascaded together,
in a so-called subranging configuration, to increase the effective quantization resolution.

2.5 Analog and Digital Dither

Dither is a low-level white noise signal added to the input before quantization for the
purpose of eliminating granulation or quantization distortions and making the total
quantization error behave like white noise [68–85].

Analog dither can be added to the analog input signal before the A/D converter,
but perhaps after the sample/hold operation. It is depicted in Fig. 2.5.1. In many ap-
plications, such as digital audio recordings, the inherent analog system noise of the
microphones or mixers may already provide some degree of dithering and therefore
artificial dithering may not be necessary.

Fig. 2.5.1 Analog dither.

Digital dither can be added to a digital signal prior to a requantization operation that
reduces the number of bits representing the signal.

This circumstance arises, for example, when an audio signal has been sampled and
quantized with 20 bits for the purpose of high-quality digital mixing and processing,
which then must be reduced to 16 bits for storing it on a CD. Another example is the noise

2.5. ANALOG AND DIGITAL DITHER 85

shaping requantization required in oversampling D/A converters used in the playback
systems of CD players and DAT decks.

Figure 2.5.2 shows a general model of the analog or digital dither process followed
by the quantization operation. It represents a type of dither known as nonsubtractive.

Fig. 2.5.2 Nonsubtractive dither process and quantization.

The input to the quantizer is the sum of the input signal x(n) to be quantized or
requantized and the dither noise v(n), that is,

y(n)= x(n)+v(n)

The output of the quantizer is yQ(n), the quantized version of y(n). The quantiza-
tion error is,

e(n)= yQ(n)−y(n)
Thus, the total error resulting from dithering and quantization will be:

ε(n)= yQ(n)−x(n) (2.5.1)

which can be written as

ε(n)= (y(n)+e(n))− x(n)= x(n)+v(n)+e(n)−x(n)

or,
ε(n)= yQ(n)−x(n)= e(n)+v(n) (2.5.2)

that is, the sum of the dither noise plus the quantization error. Proper choice of the
dither process v(n) can guarantee that e(n) and v(n) will be uncorrelated from each
other, and therefore the total error noise power will be

σ2
ε = σ2

e +σ2
v =

1

12
Q2 +σ2

v (2.5.3)

The statistical properties of the dither signal v(n), such as its probability density
function (pdf), can affect drastically the nature of the total error (2.5.2). In practice, there
are three commonly used types of dithers, namely, those with Gaussian, rectangular, or
triangular pdf’s. The pdf’s of the rectangular and triangular cases are shown in Fig. 2.5.3.

Note that the areas under the curves are equal to unity. In the Gaussian case, the
zero-mean pdf is:

p(v)= 1√
2πσ2

v

e−v
2/2σ2

v (2.5.4)

86 2. QUANTIZATION

0 0Q/2 Q

1/Q 1/Q

v v

p(v) p(v)

-Q/2 -Q

Fig. 2.5.3 Rectangular and triangular dither probability densities.

with the recommended value for the variance:

σ2
v =

1

4
Q2 (2.5.5)

which corresponds to the rms value vrms = Q/2, or half-LSB. It follows from Eq. (2.5.3)
that the total error variance will be:

σ2
ε =

1

12
Q2 + 1

4
Q2 = 4 · 1

12
Q2 = 1

3
Q2

In the rectangular case, the pdf is taken to have width Q, that is, 1-LSB. Therefore,
the dither signal can only take values in the interval:

−1

2
Q ≤ v ≤ 1

2
Q

The corresponding pdf and variance are in this case:

p(v)=
⎧⎪⎨⎪⎩

1

Q
, if −1

2
Q ≤ v ≤ 1

2
Q

0, otherwise
and σ2

v =
1

12
Q2 (2.5.6)

Therefore, the total error variance will be:

σ2
ε =

1

12
Q2 + 1

12
Q2 = 2 · 1

12
Q2 = 1

6
Q2

Similarly, the width of the triangular dither pdf is taken to be 2Q, that is, 2-LSB, and
therefore, the corresponding pdf and variance are:

p(v)=
⎧⎪⎨⎪⎩
Q − |v|
Q2

, if −Q ≤ v ≤ Q

0, otherwise
and σ2

v =
1

6
Q2 (2.5.7)

and, the total error variance will be:

σ2
ε =

1

12
Q2 + 1

6
Q2 = 3 · 1

12
Q2 = 1

4
Q2

In summary, the total error variance in the three cases and the undithered case (v = 0)
will be:

σ2
ε =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q2/12, undithered

2Q2/12, rectangular dither
3Q2/12, triangular dither
4Q2/12, Gaussian dither

(2.5.8)

2.5. ANALOG AND DIGITAL DITHER 87

Thus, the noise penalty in using dither is to double, triple, or quadruple the noise of
the undithered case. This corresponds to a decrease of the SNR by:

10 log10 2 = 3 dB

10 log10 3 = 4.8 dB

10 log10 4 = 6 dB

which is quite acceptable in digital audio systems that have total SNRs of the order of
95 dB.

It has been shown that the triangular dither is the best (of the nonsubtractive types)
in the sense that it accomplishes the main objective of the dithering process, namely,
to eliminate the quantization distortions of the undithered case and to render the total
error (2.5.2) equivalent to white noise [72].

Rectangular, uniformly distributed dither can be generated very simply by using a
uniform random number generator such as ran. For example,

v = Q(u− 0.5)

where u is the random number returned by ran, that is, uniformly distributed over the
interval [0,1). The shifting and scaling of u imply that v will be uniformly distributed
within −Q/2 ≤ v < Q/2.

Triangular dither can be generated just as simply by noting that the triangular pdf
is the convolution of two rectangular ones and therefore v can be obtained as the sum
of two independent rectangular random numbers, that is,

v = v1 + v2 (2.5.9)

where v1, v2 are generated from two independent uniform u1, u2, by

v1 = Q(u1 − 0.5) and v2 = Q(u2 − 0.5)

Example 2.5.1: This simulation example illustrates the impact of dither on the quantization
of a low-amplitude sinusoid and the removal of quantization distortions. Consider the
following dithered sinusoid:

y(n)= x(n)+v(n)= A cos(2πf0n)+v(n)

where A is taken to be below 1-LSB; for example, A = 0.75Q. The frequency f0 is taken
to be f0 = 0.025 cycles/sample, which corresponds to 1/f0 = 40 samples per cycle. At an
audio rate of fs = 40 kHz, this frequency would correspond to a 1 kHz sinusoid.

The signal y(n) is quantized using a 3-bit A/D converter, (B = 3), with full-scale range of
R = 8 volts. Therefore, Q = R/2B = 8/23 = 1, and A = 0.75Q = 0.75. Triangular dither
was used, generated by Eq. (2.5.9). The dithered signal y(n) and its quantized version
yQ(n) were generated by the following loop:

for (n=0; n<Ntot; n++) {
v1 = Q * (ran(&iseed) - 0.5);
v2 = Q * (ran(&iseed) - 0.5);
v = v1 + v2;

88 2. QUANTIZATION

y[n] = A * cos(2 * pi * f0 * n) + v;
adc(y[n], b, B, R);
yQ[n] = dac(b, B, R);
}

Note that v1 and v2 are independent of each other because each call to ran updates the
seed to a new value.

The following graphs show the undithered sinusoid x(n) and its quantized version xQ(n),
together with its Fourier spectrum |XQ(f)| plotted over the right half of the Nyquist in-
terval, that is, 0 ≤ f ≤ 0.5, in units of cycles/sample.

The spectrum of xQ(n) has peaks at f0 and the odd harmonics 3f0, 5f0, and so forth. These
harmonics were not present in x(n). They are the artifacts of the quantization process
which replaced the sinusoid by a square-wave-like signal.

The next two graphs show the dithered signal y(n) and its quantized version yQ(n), to-
gether with its spectrum |YQ(f)|.

The main peak at f0 is still there, but the odd harmonics have been eliminated by the
dithering process and replaced by a typical featureless background noise spectrum. For
digital audio, this noise is perceptually far more acceptable than the artificial harmonics
introduced by the quantizer.

The above spectra were computed in the following way: The sequences xQ(n) and yQ(n)
were generated for 0 ≤ n ≤ Ntot − 1, with Ntot = 1000. Then, they were windowed using

2.5. ANALOG AND DIGITAL DITHER 89

a length-Ntot Hamming window, that is,

y′Q(n)= w(n)yQ(n), n = 0,1, . . . ,Ntot − 1

where,

w(n)= 0.54− 0.46 cos
(2πn
Ntot − 1

)
, n = 0,1, . . . ,Ntot − 1

And, their DTFT

YQ(f)=
Ntot−1∑
n=0

y′Q(n)e−2πjfn

was evaluated at 200 equally spaced frequencies f over the interval 0 ≤ f ≤ 0.5 [cy-
cles/sample], that is, at fi = 0.5i/200, i = 0,1, . . . ,199.

This example is somewhat special in that the undithered spectrum XQ(f) contained only
odd harmonics of the fundamental frequency f0. This is what one would expect if the
quantized square-wave-like signal xQ(n) were an unsampled, analog, signal.

In general, the sampling process will cause all the odd harmonics that lie outside the
Nyquist interval to be aliased back into the interval, onto frequencies that may or may not
be odd harmonics. In the above example, because the sampling rate is an even multiple
of f0, that is, fs = 40f0, one can show that any odd harmonic of f0 that lies outside the
Nyquist interval will be wrapped onto one of the odd harmonics inside the interval.

But, for other values of f0, the out-of-band odd harmonics may be aliased onto in-band
non-harmonic frequencies. For example, the following graphs show the undithered and
dithered spectra in the case of f0 = 0.03 cycles/sample.

In addition to the odd harmonics at 3f0 = 0.09, 5f0 = 0.15, and so forth, one sees non-
harmonic peaks at:

f = 0.01, 0.05, 0.07, 0.13, 0.17, 0.19, 0.23, 0.25, . . .

which are the aliased versions of the following out-of-band odd harmonics:

33f0, 35f0, 31f0, 29f0, 39f0, 27f0, 41f0, 25f0, . . .

The beneficial effect of dithering works, of course, for any value of f0. 	

90 2. QUANTIZATION

Fig. 2.5.4 Subtractive dither.

An alternative dithering strategy is to use the so-called subtractive dither, as shown
in Fig. 2.5.4. Here, the dither noise v(n) that was added during the recording or trans-
mission phase prior to quantization is subtracted at the playback or receiving end.
The total error in this case can be determined as follows:

ε(n)= yout(n)−x(n)=
(
yQ(n)−v(n)

)− x(n)= yQ(n)−
(
x(n)+v(n))

or,
ε(n)= yQ(n)−y(n)= e(n)

that is, only the quantizer error. Therefore, its variance remains the same as the un-
dithered case, σ2

ε = Q2/12, and the SNR remains the same.
It can be shown [72] that the best type of dither is subtractive rectangularly dis-

tributed dither with 1-LSB width, in the sense that it not only removes the quantization
distortions but also renders the total error completely independent of the input signal.
However, its practical implementation in digital audio and other applications is difficult
because it requires a copy of the dither signal at the playback or receiving end.

By contrast, the triangular nonsubtractive dither that we considered earlier does not
make the total error independent of the input—it only makes the power spectrum of
the error independent of the input. In digital audio, this whitening of the total error
appears to be enough perceptually. Therefore, triangular nonsubtractive dither is the
best choice for practical use [72].

In summary, triangular nonsubtractive dither improves the quality of a digital pro-
cessing system by removing the artifacts of the quantization process with only a modest
decrease in the signal-to-noise ratio. It may be applied at any intermediate processing
stage that involves reduction in the number of bits and, therefore, potential quantization
distortions.

2.6 Problems

2.1 Consider a 3-bit successive approximation two’s complement bipolar A/D converter with full
scale range of R = 16 volts. Using the successive approximation algorithm, determine the
quantized value as well as the corresponding 3-bit representation of the following analog
input values: x = 2.9, 3.1, 3.7, 4, −2.9, −3.1, −3.7, −4.

Repeat using an offset binary converter.

2.6. PROBLEMS 91

2.2 Consider the signal x(n)= 5 sin(2πfn), where f = 0.04 [cycles/sample]. This signal is to
be quantized using a 4-bit successive approximation bipolar ADC whose full-scale range is
R = 16 volts. For n = 0,1, . . . ,19, compute the numerical value of x(n) and its quantized
version xQ(n) as well as the corresponding bit representation at the output of the converter.
Do this both for an offset binary converter and a two’s complement converter.

2.3 It is desired to pick an A/D converter for a DSP application that meets the following speci-
fications: The full-scale range of the converter should be 10 volts and the rms quantization
error should be kept below 1 millivolt. How many bits should the converter have? What is
the actual rms error of the converter? What is the dynamic range in dB of the converter?

2.4 Hard disk recording systems for digital audio are becoming widely available. It is often
quoted that to record 1 minute of “CD quality” digital audio in stereo, one needs about 10
Megabytes of hard disk space. Please, derive this result, explaining your reasoning.

2.5 A digital audio mixing system uses 16 separate recording channels, each sampling at a 48
kHz rate and quantizing each sample with 20 bits. The digitized samples are saved on a
hard disk for further processing.

a. How many megabytes of hard disk space are required to record a 3-minute song for a
16-channel recording?

b. Each channel requires about 35 multiplier/accumulation (MAC) instructions to per-
form the processing of each input sample. (This corresponds to about 7 second-order
parametric EQ filters covering the audio band.)

In how many nanoseconds should each MAC instruction be executed for: (i) each chan-
nel? (ii) all 16 channels, assuming they are handled by a single processor? Is this within
the capability of present day DSP chips?

2.6 If the quantized value xQ is obtained by truncation of x instead of rounding, show that the
truncation error e = xQ−x will be in the interval−Q < e ≤ 0. Assume a uniform probability
density p(e) over this interval, that is,

p(e)=
⎧⎪⎨⎪⎩

1

Q
if −Q < e ≤ 0

0 otherwise
e

−Q

p(e)
1/Q

0

Determine the mean me = E[e] and variance σ2
e = E[(e−me)2] in terms of Q.

2.7 Using Eq. (2.2.10), determine the value of the oversampling ratio L to achieve 16-bit reso-
lution using 1-bit quantizers for the cases of first-, second-, and third-order noise shaping
quantizers. What would be the corresponding oversampled rate Lfs for digital audio?

2.8 In a speech codec, it is desired to maintain quality of 8-bit resolution at 8 kHz sampling
rates using a 1-bit oversampled noise shaping quantizer. For quantizer orders p = 1,2,3,
determine the corresponding oversampling ratio L and oversampling rate Lfs in Hz.

2.9 Show that the two’s complement expression defined in Eq. (2.3.5) can be written in the alter-
native form:

xQ = R
(
−b12−1 + b22−2 + · · · + bB2−B

)
2.10 Hörner’s rule is an efficient algorithm for polynomial evaluation. Consider a polynomial of

degree M
B(z)= b0 + b1z+ b2z2 + · · · + bMzM

92 2. QUANTIZATION

Hörner’s algorithm for evaluating B(z) at some value of z, say z = a, can be stated as
follows:

initialize p = 0
for i =M,M−1, . . . ,0 do:

p = ap+ bi

Verify that upon exit, p will be the value of the polynomial at z = a, that is, p = B(a).

2.11 Computer Experiment: Hörner’s Rule. Write a polynomial evaluation C routine pol.c that
implements the algorithm of Problem 2.10. The routine should return the value B(a) of the
polynomial and should be dimensioned as follows:

double pol(M, b, a)
int M; order of polynomial

double *b, a; b is (M+1)-dimensional

2.12 Consider the following variation of Hörner’s algorithm:

initialize qM−1 = bM
for i =M−1,M−2, . . . ,1 do:

qi−1 = aqi + bi
p = aq0 + b0

where the final computation yields p = B(a). Show that it is equivalent to the algorithm of
Problem 2.10. This version is equivalent to “synthetic division” in the following sense.

The computed coefficients {q0, q1, . . . , qM−1} define a polynomial of degree (M−1), namely,
Q(z)= q0 + q1z+ · · · + qM−1zM−1.

Show that Q(z) is the quotient polynomial of the division of B(z) by the monomial z − a.
Moreover, the last computed p = B(a) is the remainder of that division. That is, show as
an identity in z

B(z)= (z− a)Q(z)+p
2.13 In the dac routines, the polynomial to be evaluated is of the form

B(z)= b1z+ b2z2 + · · · + bMzM

The dac routines evaluate it at the specific value z = 2−1. Show that the polynomial B(z)
can be evaluated at z = a by the following modified version of Hörner’s rule:

initialize p = 0
for i =M,M−1, . . . ,1 do:

p = a(p+ bi)

2.14 Consider a 4-bit successive approximation A/D converter with full-scale range of 8 volts.
Using the successive approximation algorithm (with rounding), determine the 4-bit codes of
the voltage values x = 1.2,5.2,−3.2 volts, for the following types of converters:

a. Natural binary.

a. Bipolar two’s complement.

In each case, show all the steps of the successive approximation algorithm. Explain what
happens if the analog voltage to be converted lies outside the full-scale range of the con-
verter. This happens for x = 5.2 in two’s complement, and x = −3.2 in natural binary
representations.

2.6. PROBLEMS 93

2.15 Carry out, by hand, the successive approximation conversion of all the signal values shown
in the table of Example 2.4.4, for both the offset binary and two’s complement cases.

2.16 Computer Experiment: DAC and ADC Routines. Write C versions of the routines dac and adc

for the natural binary, offset binary, and two’s complement cases that implement truncation.

For the natural and offset binary cases, write another set of such routines that implement
rounding.

2.17 Computer Experiment: Simulating DAC and ADC Operations. Generate L = 50 samples of
a sinusoidal signal x(n)= A cos(2πfn), n = 0,1, . . . , L − 1 of frequency f = 0.02 [cy-
cles/sample] and amplitude A = 8.

a. Using a 3-bit (B = 3) bipolar two’s complement successive approximation A/D con-
verter, as implemented by the routine adc, with full-scale range R = 32, quantize x(n)
and denote the quantized signal by xQ(n).
For n = 0,1, . . . , L− 1, print in three parallel columns the true analog value x(n), the
quantized value xQ(n), and the corresponding two’s complement bit vector b.

On the same graph, plot the two signals x(n) and xQ(n) versus n. Scale the vertical
scales from [−16,16] and use 8 y-grid lines to indicate the 8 quantization levels.

b. Repeat part (a) using a B = 4 bit A/D converter. In plotting x(n) and xQ(n), use the
same vertical scales as above, namely, from [−16,16], but use 16 y-grid lines to show
the 16 quantization levels.

c. What happens if the analog signal to be quantized has amplitude that exceeds the
full-scale range of the quantizer? Most D/A converters will saturate to their largest
(positive or negative) levels. To see this, repeat part (a) by taking the amplitude of the
sinusoid to be A = 20.

d. What happens if we use truncation instead of rounding? Repeat part (a) using the
two’s complement truncation routines adc and dac that you developed in the previous
problem.

2.18 Computer Experiment: Quantization Noise Model. Reproduce the results of Example 2.4.6.

2.19 Show that the mean and variance of the random variable v defined by Eq. (2.4.6) of Example
2.4.6 are mv = 0 and σ2

v = R2/48.

2.20 Show that the normalized autocorrelation functionρxx(k) of the signal x(n) given by Eq. (2.4.1)
in Example 2.4.6, is given by

ρxx(k)= Rxx(k)
Rxx(0)

= a cos(2πf0k)+(1− a)δ(k) , where a = SNR
SNR+ 1

where Rxx(k) defined as the statistical expectation value

Rxx(k)= E[x(n+ k)x(n)]

Assume that phase of the sinusoid φ is not correlated with v(n). The quantity SNR is the
signal-to-noise ratio SNR = A2/(2σ2

v). For the numerical values of Example 2.4.6, show
a = 0.6.

2.21 Computer Experiment: Subranging Converters. It was mentioned that parallel A/D convert-
ers are at present limited in their bits. However, it is possible to use two of them in cascade.
For example, using two identical 6-bit flash ADCs, one can achieve effective resolution of 12
bits at conversion rates of 10 MHz.

94 2. QUANTIZATION

Consider a B-bit ADC and write B as the sum of two integers B = B1 + B2. The conversion
of an analog value x to its B-bit representation can be done in two stages: First, convert x
into its B1-bit representation. This is equivalent to keeping the first B1 most significant bits
of its B-bit representation. Let x1 be the quantized B1-bit value. Then, form the difference
x2 = x− x1 and quantize it to B2 bits. These operations are shown in the following figure:

B1-bit
ADC

B1 bits
B1 bits

R2

R1

R1

B2 bits

B1-bit
DAC

B2-bit
ADC+

−

x

x
x2

x1

The B1-bit word from the first ADC is sent to the output and also to a B1-bit DAC whose
output is x1. The analog subtracter forms x2, which is sent to the B2-bit ADC producing the
remaining B2 bits.

a. What should be the full-scale ranges R1 and R2 of the two ADCs in order for this
arrangement to be equivalent to a single (B1 + B2)-bit ADC with full-scale range R?
What is the relationship of R1 and R2 in terms of R?

b. Using the routines adc and dac as building blocks, write a routine that implements
this block diagram. Test your routine on the signal:

x(n)= A cos(2πf0n) , n = 0,1, . . . , L− 1

where A = 4, f0 = 0.02, and L = 50. Take B1 = 5, B2 = 5, B = B1 + B2 = 10, and
R = 16. Compare the results of your routine with the results of an equivalent single
B-bit ADC with full-scale range R.

c. How does the block diagram generalize in the case of cascading three such converters,
such that B = B1 + B2 + B3?

2.22 Computer Experiment: Triangular Dither. Reproduce the results and graphs of Example
2.5.1.

3
Discrete-Time Systems

In this and the next chapter, we discuss discrete-time systems and, in particular, linear
time-invariant (LTI) systems. The input/output (I/O) relationship of LTI systems is given
by the discrete-time convolution of the system’s impulse response with the input signal.

LTI systems can be classified into finite impulse response (FIR) or infinite impulse
response (IIR) types depending on whether their impulse response has finite or infinite
duration. Our main objective in these two chapters is to develop practical computational
algorithms for the FIR case. The IIR case is considered in Chapter 7, although we do
present a few simple IIR examples here.

Depending on the application and hardware, an FIR digital filtering operation can be
organized to operate either on a block basis or a sample-by-sample basis.

In the block processing case, the input signal is considered to be a single block of
signal samples. The block is filtered by convolving it with the filter, generating the output
signal as another block of samples.

If the input signal is very long or infinite in duration, this method requires modification—
for example, breaking up the input into multiple blocks of manageable size, filtering the
blocks one at a time, and piecing together the resulting output blocks to form the over-
all output. The filtering of each block can be implemented in various ways, such as by
ordinary convolution, or fast convolution via the FFT.

In the sample processing case, the input samples are processed one at a time as
they arrive at the input. The filter operates as a state machine; that is, each input
sample is used in conjunction with the current internal state of the filter to compute the
current output sample and also to update the internal state of the filter in preparation
for processing the next input sample.

This approach is useful in real-time applications involving very long input signals.
It is also useful in adaptive filtering applications where the filter itself changes after
processing each sample. Moreover, it is efficiently implemented with present day DSP
chip families, such as the Texas Instruments TMS320, the Bell Labs AT&T DSP16/32, the
Motorola DSP56K/96K, and the Analog Devices ADSP2101 families. The architectures
and instruction sets of these chips are optimized for such sample-by-sample processing
operations.

95

96 3. DISCRETE-TIME SYSTEMS

3.1 Input/Output Rules

A discrete-time system, shown in Fig. 3.1.1, is a processor that transforms an input se-
quence of discrete-time samples x(n) into an output sequence of samples y(n), ac-
cording to some input/output rule that specifies how to compute the output sequence
y(n) from the knowledge of the input sequence x(n). In sample-by-sample processing
methods, we may think of the I/O rule as processing the input samples one at a time:†

{x0, x1, x2, . . . , xn, . . . } H−→ {y0, y1, y2, . . . , yn, . . . }

that is, x0
H−→ y0, x1

H−→ y1, x2
H−→ y2, and so on. In block processing methods, we think

of the input sequence as a block or vector of signal samples being processed as a whole
by the system, producing the corresponding output block:

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

x2

...

⎤⎥⎥⎥⎥⎥⎦ H−→

⎡⎢⎢⎢⎢⎢⎣
y0

y1

y2

...

⎤⎥⎥⎥⎥⎥⎦ = y

Thus, the I/O rule maps the input vector x into the output vector y according to
some functional mapping:

y = H[x] (3.1.1)

For linear systems, this mapping becomes a linear transformation by a matrix H,
y = Hx. For linear and time-invariant systems, the matrix H has a special structure
being built in terms of the impulse response of the system.

Some examples of discrete-time systems illustrating the wide variety of possible I/O
rules are given below.

x(n) y(n)
H

input sequence output sequence

Fig. 3.1.1 Discrete-time system.

Example 3.1.1: y(n)= 2x(n). It corresponds to simple scaling of the input:

{x0, x1, x2, x3, x4, . . . } H−→ {2x0,2x1,2x2,2x3,2x4, . . . }

Example 3.1.2: y(n)= 2x(n)+3x(n− 1)+4x(n− 2). A weighted average of three successive

input samples. At each time instant n, the system must remember the previous input

samples x(n− 1) and x(n− 2) in order to use them.

†For brevity, we denoted {x(0), x(1), x(2), . . . } by subscripts {x0, x1, x2, . . . }.

3.1. INPUT/OUTPUT RULES 97

Example 3.1.3: Here, the I/O rule is specified as a block processing operation by a linear trans-
formation, transforming a length-4 input block {x0, x1, x2, x3} into a length-6 output block:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0
3 2 0 0
4 3 2 0
0 4 3 2
0 0 4 3
0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ = Hx

It is equivalent to the convolutional form of Example 3.1.2. The output block is longer than
the input block by two samples because this filter has memory two — the last two outputs
being the input-off transients generated after the input is turned off. If we had to filter
length-5 input blocks {x0, x1, x2, x3, x4}, the linear transformation would have one more
column and row:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0
3 2 0 0 0
4 3 2 0 0
0 4 3 2 0
0 0 4 3 2
0 0 0 4 3
0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x0

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎦ = Hx

Example 3.1.4: Example 3.1.2 can also be cast in an equivalent sample-by-sample processing
form described by the following system of three equations:

y(n)= 2x(n)+3w1(n)+4w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

The auxiliary signals w1(n) and w2(n) can be thought of as the internal states of the
system. The present input sample x(n) together with the knowledge of the present internal
states {w1(n),w2(n)} is sufficient to compute the present output y(n). The next output
y(n+1) due to the next input x(n+1) requires knowledge of the updated states {w1(n+
1),w2(n+ 1)}, but these are already available from the nth time step; thus, at time n+ 1
we have:

y(n+ 1)= 2x(n+ 1)+3w1(n+ 1)+4w2(n+ 1)

w2(n+ 2)= w1(n+ 1)

w1(n+ 2)= x(n+ 1)

The computations are repetitive from one time instant to the next and can be summarized
by the following I/O sample-by-sample processing algorithm which tells how to process
each arriving input sample x producing the corresponding output sample y and updating
the internal states:†

for each new input sample x do:
y :=2x+ 3w1 + 4w2

w2 :=w1

w1 :=x
†The symbol := denotes assignment not equation, that is, a :=b means “a takes on the value b.”

98 3. DISCRETE-TIME SYSTEMS

Once the current values of the internal states {w1,w2} are used in the computation of the
output y, they may be updated by the last two assignment equations to the values they
must have for processing the next input sample. Therefore, {w1,w2} must be saved from
call to call of the algorithm. The order in which {w1,w2} are updated is important, that
is, w2 is updated first and w1 second, to prevent overwriting of the correct values.

This and the previous two examples represent equivalent formulations of the same discrete-
time system. Deciding which form to use depends on the nature of the application—that
is, whether the input signals are finite or infinite sequences and the samples must be pro-
cessed one at a time as they arrive.

This example is a special case of more general state-space representations of discrete-time
systems described by the following I/O sample processing algorithm:

y(n)= g
(
x(n), s(n)

)
(output equation)

s(n+ 1)= f
(
x(n), s(n)

)
(state updating equation)

where s(n) is an internal state vector of appropriate dimension, like s(n)=
[
w1(n)
w2(n)

]
of the previous example. The I/O algorithm calculates both the output y(n) and the next
state s(n+ 1) from the knowledge of the present input x(n) and the present state s(n).
It can be rephrased in the repetitive algorithmic form:

for each new input sample x do:
y :=g(x, s)
s := f(x, s)

State-space realizations of LTI systems are described by functions f and g that are linear
functions of their arguments, that is, f(x, s)= As+Bx, g(x, s)= Cs+Dx, where A,B,C,D
have appropriate dimensions. In particular, for the above example we have

y :=2x+ 3w1 + 4w2 = [3,4]
[
w1

w2

]
+ 2x = [3,4]s+ 2x ≡ g(x, s)

s =
[
w1

w2

]
:=
[

x
w1

]
=
[

0 0
1 0

][
w1

w2

]
+
[

1
0

]
x =

[
0 0
1 0

]
s +

[
1
0

]
x ≡ f(x, s)

Example 3.1.5: y(n)= 0.5y(n − 1)+2x(n)+3x(n − 1). The output is computed recursively

by a constant-coefficient difference equation. At each time instant n, the system must

remember the previous input and output samples x(n− 1), y(n− 1).

Example 3.1.6: Example 3.1.5 can also be described by stating its I/O rule as a sample-by-
sample processing algorithm:

for each new input sample x do:
y :=0.5w1 + 2x+ 3v1

w1 :=y
v1 :=x

It corresponds to the so-called direct form realization of the difference equation and re-
quires the computation and updating of the auxiliary quantities {w1, v1}. Its equivalence
to Example 3.1.5 will be seen later.

3.1. INPUT/OUTPUT RULES 99

An alternative I/O computational rule for Example 3.1.5, corresponding to the so-called
canonical realization of the system, is as follows:

for each new input sample x do:
w0 :=x+ 0.5w1

y :=2w0 + 3w1

w1 :=w0

It uses the auxiliary quantities {w0,w1}.

Example 3.1.7: y(n)= 1

5

[
x(n+2)+x(n+1)+x(n)+x(n−1)+x(n−2)

]
. Smoother or averager

of five successive samples. The operation is slightly non-causal, because at each time n,

the system must know the next samples x(n+ 1) and x(n+ 2). We will see later how to

handle such cases in real time.

Example 3.1.8: y(n)= 2x(n)+3. Scaling and shifting of the input.

Example 3.1.9: y(n)= x2(n). Squaring the input.

Example 3.1.10: y(n)= 2x(n)+3x(n−1)+x(n)x(n−1). It contains a nonlinear cross-product

term x(n)x(n− 1).

Example 3.1.11: y(n)= med[x(n + 1), x(n), x(n − 1)]. A simple median filter, where the

operation med[a, b, c] represents the median of the three numbers a,b, c obtained by

sorting the three numbers in increasing order and picking the middle one.

Example 3.1.12: y(n)= nx(n). It has a time-varying coefficient.

Example 3.1.13: y(n)= 1

n
[
x(0)+x(1)+· · · + x(n − 1)

]
. Cumulative average of n numbers.

It can also be expressed recursively as in the following example.

Example 3.1.14: y(n+1)= any(n)+bnx(n), where an = n/(n+1), bn = 1−an = 1/(n+1).
It corresponds to a first-order difference equation with time-varying coefficients an, bn.

Example 3.1.15: y(n)= x(2n). It acts as a rate compressor or downsampler, keeping every
other sample of x(n), thus, resulting in half of the input samples. That is, the input and
output sequences are:

{x0, x1, x2, x3, x4, x5, x6, . . . } H−→ {x0, x2, x4, x6, . . . }

Example 3.1.16: y(n)=
{

x(n/2), if n is even
0, if n is odd

. It acts as a rate expander or upsampler,

inserting a zero sample between the samples of x(n), thus, doubling the number of input
samples. That is, the input and output sequences are:

{x0, x1, x2, x3, x4, . . . } H−→ {x0,0, x1,0, x2,0, x3,0, x4, . . . }

Examples 3.1.1–3.1.7 represent LTI systems; Examples 3.1.8–3.1.11 are nonlinear but
time-invariant; and Examples 3.1.12–3.1.16 are linear but time-varying systems.

100 3. DISCRETE-TIME SYSTEMS

Although most applications of DSP use linear time-invariant systems, nonlinear and
time-varying systems are used increasingly in a variety of applications. For example,
median filters are used successfully in image processing because of their excellent edge-
preserving and noise removal properties; time-varying filters are used in adaptive filter-
ing applications, such as channel equalization and echo cancellation in digital data or
voice channels; downsamplers and upsamplers are part of multirate signal processing
systems, such as those used for interpolation, decimation, oversampling, and sample
rate conversion.

3.2 Linearity and Time Invariance

A linear system has the property that the output signal due to a linear combination of
two or more input signals can be obtained by forming the same linear combination of
the individual outputs. That is, if y1(n) and y2(n) are the outputs due to the inputs
x1(n) and x2(n), then the output due to the linear combination of inputs

x(n)= a1x1(n)+a2x2(n) (3.2.1)

is given by the linear combination of outputs

y(n)= a1y1(n)+a2y2(n) (3.2.2)

To test linearity one must determine separately the three outputs y(n), y1(n), and
y2(n) and then show that they satisfy Eq. (3.2.2). The required operations are shown in
Fig. 3.2.1.

H

x1(n) a1

a2x2(n)

x(n) y(n)

H

H

x1(n) y1(n) a1

a2x2(n) y2(n)

y1(n)a1 a2 y2(n)+

Fig. 3.2.1 Testing linearity.

Example 3.2.1: Test the linearity of the discrete-time systems defined in Examples 3.1.8 and
3.1.9, that is, defined by y(n)= 2x(n)+3 and y(n)= x2(n).

Solution: The I/O equation y(n)= 2x(n)+3 is a linear equation, but it does not represent a
linear system. Indeed, the output due to the linear combination of Eq. (3.2.1) will be

y(n)= 2x(n)+3 = 2[a1x1(n)+a2x2(n)]+3

and is not equal to the linear combination in the right-hand side of Eq. (3.2.2), namely,

a1y1(n)+a2y2(n)= a1(2x1(n)+3)+a2(2x2(n)+3)

3.2. LINEARITY AND TIME INVARIANCE 101

Similarly, for the quadratic system y(n)= x2(n) of Example 3.1.9, we have

a1x2
1(n)+a2x2

2(n)≠
(
a1x1(n)+a2x2(n)

)2

More simply, if a system is nonlinear, one can use a counterexample to show violation of
linearity. For example, if the above quadratic system were linear, doubling of the input
would cause doubling of the output. But in this case, doubling of the input quadruples the
output. 	

A time-invariant system is a system that remains unchanged over time. This implies
that if an input is applied to the system today causing a certain output to be produced,
then the same output will also be produced tomorrow if the same input is applied. The
operation of waiting or delaying a signal by a time delay of, say, D units of time is shown
in Fig. 3.2.2. It represents the right translation of x(n) as a whole by D samples. A time

delay
D

x(n) x(n) x(n-D) x(n-D)

0 0
n n

D

D

Fig. 3.2.2 Time delay by D samples.

advance would have negative D and correspond to the left translation of x(n).
The mathematical formulation of time invariance can be stated with the aid of Fig. 3.2.3.

The upper diagram in this figure shows an input x(n) being applied to the system pro-

H

D

D

H

x(n)

x(n) xD(n)

x(n-D)

y(n)

yD(n)

y(n-D)

Fig. 3.2.3 Testing time invariance.

ducing the output y(n). The lower diagram shows the same input delayed by D units
of time, that is, the signal:

xD(n)= x(n−D) (3.2.3)

which is then applied to the system producing an output, say, yD(n).
To test whether the system will produce the same output later as the one it is pro-

ducing now, we must take the output y(n) produced now and save it until later, that
is, delay it by D time units, as shown in the upper diagram of Fig. 3.2.3. Then, it can be
compared with the output yD(n) that will be produced later. Thus, if

yD(n)= y(n−D) (3.2.4)

the system will be time-invariant. In other words, delaying the input, Eq. (3.2.3), causes
the output to be delayed by the same amount, Eq. (3.2.4). Equivalently, in terms of the
samples, if

{x0, x1, x2, . . . } H−→ {y0, y1, y2, . . . }

102 3. DISCRETE-TIME SYSTEMS

then

{0,0, . . . ,0
D zeros

, x0, x1, x2, . . . } H−→ {0,0, . . . ,0
D zeros

, y0, y1, y2, . . . }

Example 3.2.2: Test the time invariance of the discrete-time systems defined in Examples (3.1.12)
and (3.1.15), that is, defined by y(n)= nx(n) and y(n)= x(2n).

Solution: Because the system y(n)= nx(n) has a time-varying coefficient, we expect it not
to be time-invariant. According to the given I/O rule, the signal xD(n) applied to the
system will cause the output yD(n)= nxD(n). But xD(n) is the delayed version of x(n),
xD(n)= x(n−D). Therefore,

yD(n)= nxD(n)= nx(n−D)

On the other hand, delaying the output signal y(n)= nx(n) by D units gives, replacing n
by n−D:

y(n−D)= (n−D)x(n−D)≠ nx(n−D)= yD(n)

Thus, the system is not time-invariant. Example 3.1.15 described by y(n)= x(2n) is a little
more subtle. According to the I/O rule, the signal xD(n) will cause the output yD(n)=
xD(2n). But, xD(n)= x(n − D) and therefore, replacing the argument n by 2n gives
xD(2n)= x(2n−D), or,

yD(n)= xD(2n)= x(2n−D)

On the other hand, replacing n by n−D in y(n)= x(2n) gives

y(n−D)= x
(
2(n−D)

) = x(2n− 2D)≠ x(2n−D)= yD(n)

Thus, the downsampler is not time-invariant. This can also be seen more intuitively by
considering the effect of the system on the original input sequence and its delay by one
time unit. Noting that the output sequence is obtained by dropping every other input
sample, we find:

{x0, x1, x2, x3, x4, x5, x6, . . . } H−→ {x0, x2, x4, x6, . . . }
{0, x0, x1, x2, x3, x4, x5, x6, . . . } H−→ {0, x1, x3, x5, . . . }

We see that the lower output is not the upper output delayed by one time unit. 	

3.3 Impulse Response

Linear time-invariant systems are characterized uniquely by their impulse response se-
quence h(n), which is defined as the response of the system to a unit impulse δ(n),
as shown in Fig. 3.3.1. The unit impulse is the discrete-time analog of the Dirac delta
function δ(t) and is defined as

δ(n)=
{

1 if n = 0
0 if n ≠ 0

Thus, we have by definition,

δ(n) H−→ h(n)

3.3. IMPULSE RESPONSE 103

H
δ(n)δ(n) h(n) h(n)

impulse in impulse response0

1

0n n

Fig. 3.3.1 Impulse response of an LTI system.

or, in terms of the sample values:†

{1,0,0,0, . . . } H−→ {h0, h1, h2, h3, . . . }

Time invariance implies that if the unit impulse is delayed or time shifted by a certain
amount, say D units of time, then it will cause the impulse response to be delayed by
the same amount, that is, h(n−D). Thus,

δ(n−D) H−→ h(n−D)

for any positive or negative delayD. Figure Fig. 3.3.2 shows this property forD = 0,1,2.
On the other hand, linearity implies that any linear combination of inputs causes the

H
δ(n)δ(n)

δ(n-1) δ(n-1)

δ(n-2) δ(n-2)

h(n) h(n)

0 1 20 1 2

0 1 20 1 2

0 1 20 1 2

nn

H

h(n-1)h(n-1)

nn

H

h(n-2)h(n-2)

nn

Fig. 3.3.2 Delayed impulse responses of an LTI system.

same linear combination of outputs, so that, for example, the sum of the three impulses
of Fig. 3.3.2 will cause the sum of the three outputs, that is,

δ(n)+δ(n− 1)+δ(n− 2) H−→ h(n)+h(n− 1)+h(n− 2)

or, more generally the weighted linear combination of the three inputs:

x(0)δ(n)+x(1)δ(n− 1)+x(2)δ(n− 2)

will cause the same weighted combination of the three outputs:

x(0)h(n)+x(1)h(n− 1)+x(2)h(n− 2)
†Again, we denote {h(0), h(1), h(2), . . . } by {h0, h1, h2, . . . }.

104 3. DISCRETE-TIME SYSTEMS

as shown in Fig. 3.3.3. In general, an arbitrary input sequence {x(0), x(1), x(2), . . . }
can be thought of as the linear combination of shifted and weighted unit impulses:

x(n)= x(0)δ(n)+x(1)δ(n− 1)+x(2)δ(n− 2)+x(3)δ(n− 3)+· · ·

This follows because each term of the right-hand side is nonzero only at the cor-
responding delay time, for example, at n = 0 only the first term is nonzero, at n = 1
only the second term is nonzero, and so on. Linearity and time invariance imply then
that the corresponding output sequence will be obtained by replacing each delayed unit
impulse by the corresponding delayed impulse response, that is,

y(n)= x(0)h(n)+x(1)h(n− 1)+x(2)h(n− 2)+x(3)h(n− 3)+· · · (3.3.1)

or written more compactly:

H

0 1 2
n

x(0)h(n)

x(1)h(n-1)

x(2)h(n-2)

0 1 2
n

x(0)δ(n)

x(1)δ(n-1)

x(2)δ(n-2)

Fig. 3.3.3 Response to linear combination of inputs.

y(n)=
∑
m
x(m)h(n−m) (LTI form) (3.3.2)

This is the discrete-time convolution of the input sequence x(n) with the filter se-
quence h(n). Thus, LTI systems are convolvers.

In general, the summation could extend also over negative values ofm, depending on
the input signal. Because it was derived using the LTI properties of the system, Eq. (3.3.2)
will be referred to as the LTI form of convolution. Changing the index of summation, it
can also be written in the alternative form:

y(n)=
∑
m
h(m)x(n−m) (direct form) (3.3.3)

For reasons that will become clear later, Eq. (3.3.3) will be referred to as the direct
form of convolution. The computational aspects of Eqs. (3.3.2) and (3.3.3) and their
realization in terms of block or sample processing methods will be discussed in detail
in the next chapter.

3.4 FIR and IIR Filters

Discrete-time LTI systems can be classified into FIR or IIR systems, that is, having finite
or infinite impulse response h(n), as depicted in Fig. 3.4.1.

3.4. FIR AND IIR FILTERS 105

An FIR filter has impulse response h(n) that extends only over a finite time interval,
say 0 ≤ n ≤M, and is identically zero beyond that:

{h0, h1, h2, . . . , hM,0,0,0, . . . }

M is referred to as the filter order. The length of the impulse response vector h =
[h0, h1, . . . , hM] is:

Lh =M + 1

FIR h(n) IIR h(n)

0 02 21 1M
n n.

. . .

Fig. 3.4.1 FIR and IIR impulse responses.

The impulse response coefficients {h0, h1, . . . , hM} are referred to by various names,
such as filter coefficients, filter weights, or filter taps, depending on the context. In the
direct form of convolution of Eq. (3.3.3), all the terms for m > M and m < 0 will
be absent because by definition h(m) vanishes for these values of m; only the terms
0 ≤m ≤M are present. Therefore, Eq. (3.3.3) is simplified to the finite-sum form:

y(n)=
M∑

m=0

h(m)x(n−m) (FIR filtering equation) (3.4.1)

or, explicitly

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)+· · · + hMx(n−M) (3.4.2)

Thus, the I/O equation is obtained as a weighted sum of the present input sample
x(n) and the past M samples x(n− 1), x(n− 2), . . . , x(n−M).

Example 3.4.1: Second-order FIR filters are characterized by three impulse response coeffi-
cients h = [h0, h1, h2] and have I/O equation:

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)

Such was the case of Example 3.1.2, which had h = [2,3,4].

Example 3.4.2: Similarly, third-order FIR filters are characterized by four weights h = [h0, h1, h2, h3]
and have I/O equation:

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)+h3x(n− 3)

Example 3.4.3: Determine the impulse response h of the following FIR filters:

(a) y(n)= 2x(n)+3x(n− 1)+5x(n− 2)+2x(n− 3)

(b) y(n)= x(n)−x(n− 4)

106 3. DISCRETE-TIME SYSTEMS

Solution: Comparing the given I/O equations with Eq. (3.4.2), we identify the impulse response
coefficients:

(a) h = [h0, h1, h2, h3]= [2,3,5,2]

(b) h = [h0, h1, h2, h3, h4]= [1,0,0,0,−1]

Alternatively, sending a unit impulse as input, x(n)= δ(n), will produce the impulse
response sequence as output, y(n)= h(n):

(a) h(n)= 2δ(n)+3δ(n− 1)+5δ(n− 2)+2δ(n− 3)

(b) h(n)= δ(n)−δ(n− 4)

The expressions for h(n) and h are equivalent. 	

An IIR filter, on the other hand, has an impulse response h(n) of infinite duration,
defined over the infinite interval 0 ≤ n < ∞. Eq. (3.3.3) now has an infinite number of
terms:

y(n)=
∞∑

m=0

h(m)x(n−m) (IIR filtering equation) (3.4.3)

This I/O equation is not computationally feasible because we cannot deal with an
infinite number of terms. Therefore, we must restrict our attention to a subclass of IIR
filters, namely, those for which the infinite number of filter coefficients {h0, h1, h2, . . . }
are not chosen arbitrarily, but rather they are coupled to each other through constant-
coefficient linear difference equations.

For this subclass of IIR filters, Eq. (3.4.3) can be rearranged as a difference equation
allowing the efficient recursive computation of the output y(n). Some examples will
make this point clear.

Example 3.4.4: Determine the I/O difference equation of an IIR filter whose impulse response
coefficients h(n) are coupled to each other by the difference equation:

h(n)= h(n− 1)+δ(n)

Solution: Setting n = 0, we have h(0)= h(−1)+δ(0)= h(−1)+1. Assuming causal initial
conditions, h(−1)= 0, we find h(0)= 1. For n > 0, the delta function vanishes, δ(n)= 0,
and therefore, the difference equation reads h(n)= h(n− 1). In particular h(1)= h(0)=
1, h(2)= h(1)= 1, and so on. Thus, all of the samples h(n) are equal to each other. In
summary, we have the (causal) solution:

h(n)= u(n)=
{

1 if n ≥ 0
0 if n ≤ −1

where u(n) is the discrete-time unit-step function. Now, putting this solution into the
convolutional I/O equation (3.4.3), we have

y(n)=
∞∑

m=0

h(m)x(n−m)=
∞∑

m=0

x(n−m)

3.4. FIR AND IIR FILTERS 107

where we set h(m)= 1. Writing it explicitly we have

y(n)= x(n)+x(n− 1)+x(n− 2)+x(n− 3)+· · ·

Replacing n by n− 1 gives the previous output

y(n− 1)= x(n− 1)+x(n− 2)+x(n− 3)+· · ·

Subtracting it from y(n), we have

y(n)−y(n− 1)= x(n)

Therefore, the I/O convolutional equation is equivalent to the recursive difference equation

y(n)= y(n− 1)+x(n)

It represents an accumulator, or discrete-time integrator. Note that this is the same differ-
ence equation as that of h(n), because by definition h(n) is the output when the input is
an impulse; that is, y(n)= h(n) if x(n)= δ(n). 	

Example 3.4.5: Suppose the filter coefficients h(n) satisfy the difference equation

h(n)= ah(n− 1)+δ(n)

where a is a constant. Determine the I/O difference equation relating a general input signal
x(n) to the corresponding output y(n).

Solution: Arguing as in the previous example, we have

h(0) = ah(−1)+δ(0)= a · 0+ 1 = 1

h(1) = ah(0)+δ(1)= a · 1+ 0 = a

h(2) = ah(1)+δ(2)= a · a+ 0 = a2

h(3) = ah(2)+δ(3)= a · a2 + 0 = a3

and so on. Therefore, we find the solution

h(n)= anu(n)=
{

an, if n ≥ 0
0, if n ≤ −1

Inserting this solution into Eq. (3.4.3), we have

y(n) = x(n)+ax(n− 1)+a2x(n− 2)+a3x(n− 3)+· · ·
= x(n)+a[x(n− 1)+ax(n− 2)+a2x(n− 3)+· · ·]

The sum in the brackets is recognized now as the previous output y(n − 1). Therefore,
we obtain the I/O difference equation:

y(n)= ay(n− 1)+x(n)

As expected, it is the same as the difference equation satisfied by h(n). 	

108 3. DISCRETE-TIME SYSTEMS

Example 3.4.6: Determine the convolutional form and the (causal) impulse response of the IIR
filter described by the following difference equation:

y(n)= −0.8y(n− 1)+x(n)

Solution: This is the same example as above, with a = −0.8. Setting x(n)= δ(n) and y(n)=
h(n), we obtain the difference equation for h(n):

h(n)= −0.8h(n− 1)+δ(n)

Assuming causal initial conditions, h(−1)= 0, and iterating a few values of n as we did in
the previous example, we find the solution:

h(n)= (−0.8)nu(n)=
{

(−0.8)n, if n ≥ 0
0, if n ≤ −1

Inserting the values for h(n) into the convolutional equation (3.4.3), we find

y(n)= x(n)+(−0.8)x(n− 1)+(−0.8)2x(n− 2)+(−0.8)3x(n− 3)+· · ·

which, in general, has an infinite number of terms. 	

Example 3.4.7: In this example, start with an expression forh(n) and work backwards to obtain
the I/O difference equation satisfied by y(n) in terms of x(n), and also determine the
difference equation satisfied by h(n). Assume the IIR filter has a causal h(n) defined by

h(n)=
{

2, for n = 0
4(0.5)n−1, for n ≥ 1

Solution: The first two values h(0) and h(1) are chosen arbitrarily, but for n ≥ 2 the values
are recursively related to one another; for example, starting with h(1)= 4, we have h(2)=
0.5h(1), h(3)= 0.5h(2), h(4)= 0.5h(3), and so on. Therefore, we expect that these
recursions can be used to reassemble the I/O convolutional equation into a difference
equation for y(n).

Inserting the numerical values of h(n) into Eq. (3.4.3), we find for the I/O equation

yn = h0xn + h1xn−1 + h2xn−2 + h3xn−3 + h4xn−4 + · · ·
= 2xn + 4xn−1 + 2

[
xn−2 + 0.5xn−3 + 0.52xn−4 + · · ·

]
and for the previous output

yn−1 = 2xn−1 + 4xn−2 + 2
[
xn−3 + 0.5xn−4 + · · ·

]
Multiplying by 0.5, we have

0.5yn−1 = xn−1 + 2
[
xn−2 + 0.5xn−3 + 0.52xn−4 + · · ·

]
Subtracting it from yn, we find the I/O difference equation

yn − 0.5yn−1 = 2xn + 3xn−1

3.4. FIR AND IIR FILTERS 109

and solving for y(n)
y(n)= 0.5y(n− 1)+2x(n)+3x(n− 1)

which is recognized as the difference equation of Example 3.1.5. Setting x(n)= δ(n) and
y(n)= h(n) gives the difference equation for h(n):

h(n)= 0.5h(n− 1)+2δ(n)+3δ(n− 1)

Starting with the initial value h(−1)= 0 and iterating for a few values of n, one can easily
verify that this difference equation generates the sequence h(n) we started out with. 	

Example 3.4.8: Determine the convolutional form and the (causal) impulse response of the IIR
filter described by the following difference equation:

y(n)= 0.25y(n− 2)+x(n)

Solution: The impulse response h(n) will satisfy the difference equation:

h(n)= 0.25h(n− 2)+δ(n)

to be iterated with zero initial conditions: h(−1)= h(−2)= 0. A few iterations give:

h(0) = 0.25h(−2)+δ(0)= 0.25 · 0+ 1 = 1

h(1) = 0.25h(−1)+δ(1)= 0.25 · 0+ 0 = 0

h(2) = 0.25h(0)+δ(2)= 0.25 · 1+ 0 = 0.25 = (0.5)2

h(3) = 0.25h(1)+δ(3)= 0.25 · 0+ 0 = 0

h(4) = 0.25h(2)+δ(4)= 0.25 · 0.25+ 0 = (0.25)2= (0.5)4

And, in general, for n ≥ 0

h(n)=
{

(0.5)n, if n = even
0, if n = odd

Equivalently, we can write:

h = [1, 0, (0.5)2, 0, (0.5)4, 0, (0.5)6, 0, (0.5)8, 0, . . .]

And, Eq. (3.4.3) becomes:

yn = xn + 0.52xn−2 + 0.54xn−4 + 0.56xn−6 + · · ·

which is the solution of the given difference equation in terms of x(n). 	

Example 3.4.9: Determine the I/O difference equation of the IIR filter that has the following
causal periodic impulse response:

h(n)= {2,3,4,5,2,3,4,5,2,3,4,5, . . . }

where the dots denote the periodic repetition of the four samples {2,3,4,5}.

110 3. DISCRETE-TIME SYSTEMS

Solution: If we delay the given response by one period, that is, 4 samples, we get

h(n− 4)= {0,0,0,0,2,3,4,5,2,3,4,5, . . . }

Subtracting it from h(n), we get

h(n)−h(n− 4)= {2,3,4,5,0,0,0,0,0,0,0,0, . . . }

with all samples beyond n = 4 canceling to zero. These operations are depicted below.

h(n) h(n-4) h(n) - h(n-4)

0 0 04 4 43 3 37 7 78 8 82 2 26 6 61 1 15 5 5n n n.

.

Thus, the right-hand side is nonzero only for n = 0,1,2,3, and we can rewrite it as the
difference equation

h(n)−h(n− 4)= 2δ(n)+3δ(n− 1)+4δ(n− 2)+5δ(n− 3)

or, solving for h(n)

h(n)= h(n− 4)+2δ(n)+3δ(n− 1)+4δ(n− 2)+5δ(n− 3)

Using the method of the previous example, we can show that y(n) satisfies the same
difference equation:

yn = yn−4 + 2xn + 3xn−1 + 4xn−2 + 5xn−3

This example shows how to construct a digital periodic waveform generator : Think of
the waveform to be generated as the impulse response of an LTI system, determine the
difference equation for that system, and then hit it with an impulse, and it will generate
its impulse response, that is, the desired waveform. See Section 16.1.2. 	

More generally, the IIR filters that we will be concerned with have impulse responses
h(n) that satisfy constant-coefficient difference equations of the general type:

h(n)=
M∑
i=1

aih(n− i)+
L∑
i=0

biδ(n− i)

or, written explicitly

hn = a1hn−1 + a2hn−2 + · · · + aMhn−M + b0δn + b1δn−1 + · · · + bLδn−L

Using the methods of Example 3.4.7, it can be shown that the corresponding convo-
lutional equation (3.4.3) can be reassembled into the same difference equation for y(n)
in terms of x(n), that is,

y(n)=
M∑
i=1

aiy(n− i)+
L∑
i=0

bix(n− i)

3.5. CAUSALITY AND STABILITY 111

or, explicitly

yn = a1yn−1 + a2yn−2 + · · · + aMyn−M + b0xn + b1xn−1 + · · · + bLxn−L

We will explore the properties of IIR filters after we discuss z-transforms. Note
also that FIR filters can be thought of as special cases of the IIR difference equations
when the recursive terms are absent, that is, when the recursive coefficients are zero,
a1 = a2 = · · · = aM = 0.

Eventually, we aim to develop several mathematically equivalent descriptions of FIR
and IIR filters, such as,

• I/O difference equation
• Convolutional equation
• Impulse response h(n)
• Transfer function H(z)
• Frequency response H(ω)
• Pole/zero pattern
• Block diagram realization and sample processing algorithm

The above examples show how to go back and forth between the first three of these
descriptions—from the difference equation to the corresponding impulse response to
the convolutional form of the filtering equation. We will see later that all of the tedious
time-domain manipulations of the above examples can be avoided by working with z-
transforms.

Each description serves a different purpose and provides a different insight into
the properties of the filter. For example, in a typical application, we would provide
desired frequency-domain specifications for the filter, that is, specify the desired shape
of H(ω). Using a filter design technique, we would design a filter whose frequency
response closely approximates the desired response. The output of the filter design
technique is typically the transfer function H(z) for IIR filters or the impulse response
h(n) for FIR filters. From H(z) or h(n), we would obtain an appropriate block diagram
realization that can be used to implement the filter in real time.

3.5 Causality and Stability

Like analog signals, discrete-time signals can be classified into causal, anticausal, or
mixed signals, as shown in Fig. 3.5.1.

A causal or right-sided signal x(n) exists only for n ≥ 0 and vanishes for all negative
times n ≤ −1. Causal signals are the most commonly encountered signals, because
they are the type that we generate in our labs — for example, when we turn on a signal
generator or signal source.

An anticausal or left-sided signal exists only for n ≤ −1 and vanishes for all n ≥ 0.
A mixed or double-sided signal has both a left-sided and a right-sided part.

The placement of the time origin, n = 0, along the time axis is entirely a matter of
convention. Typically, it is taken to be the time when we turn on our signal generators
or the time when we begin our processing operations. Therefore, a signal that is double-
sided with respect to a chosen time origin is simply a signal that has already been in
existence when we start our processing.

112 3. DISCRETE-TIME SYSTEMS

0 0 02 2 2-2 -2 -21 1 1-1 -1 -1n n

x(n) x(n) x(n)

causal anticausal mixed

n

Fig. 3.5.1 Causal, anticausal, and mixed signals.

LTI systems can also be classified in terms of their causality properties depending
on whether their impulse response h(n) is causal, anticausal, or mixed. For a general
double-sided h(n), which can extend over −∞ < n <∞, the I/O convolutional equation
becomes

y(n)=
∞∑

m=−∞
h(m)x(n−m) (3.5.1)

Such systems cannot be implemented in real time, as can be seen by writing a few
of the positive and negative m terms:

yn = · · · + h−2xn+2 + h−1xn+1 + h0xn + h1xn−1 + h2xn−2 + · · ·

which shows that to compute the output y(n) at the current time n, one needs to know
the future input samples x(n+1), x(n+2), . . . , which are not yet available for process-
ing.

Anticausal and double-sided systems are very counter-intuitive, violating our sense
of causality. For example, in response to a unit impulse δ(n), which is applied to the
system at n = 0, the system will generate its impulse response output h(n). But if
h(−1)≠ 0, this means that the system had already produced an output sample at time
n = −1, even before the input impulse was applied at n = 0 !

Should we, therefore, be concerned with non-causal filters? Are they relevant, useful,
or necessary in DSP? The answer to all of these questions is yes. Some typical applica-
tions where double-sided filters crop up are the design of FIR smoothing filters, the
design of FIR interpolation filters used in oversampling DSP systems, and the design of
inverse filters.

FIR smoothing and interpolation filters belong to a class of double-sided filters that
are only finitely anticausal, that is, their anticausal part has finite duration, say over the
period −D ≤ n ≤ −1. Such filters are shown in Fig. 3.5.2. In general, the causal part of
h(n) may be finite or infinite. The I/O equation (3.5.1) becomes for this class of filters:

hD(n)= h(n-D)DD h(n)

0 1 2-D
n. . .

. . . 0 1 2-D
n. . .

. . .

Fig. 3.5.2 Finitely anticausal filter and its causal version.

3.5. CAUSALITY AND STABILITY 113

y(n)=
∞∑

m=−D
h(m)x(n−m) (3.5.2)

A standard technique for dealing with such filters is to make them causal by replacing
h(n) with its delayed version by D time units, that is,

hD(n)= h(n−D)

As shown in Fig. 3.5.2, this operation translates h(n) to the right by D units, making
it causal. The I/O filtering equation for the causal filter hD(n) will be

yD(n)=
∞∑

m=0

hD(m)x(n−m) (3.5.3)

and will be implementable in real time. It is easily seen that the resulting sequence
yD(n) is simply the delayed version of y(n) as computed by Eq. (3.5.2):

yD(n)= y(n−D)

Thus, the output samples are computed correctly, but come out with a time delay.

Example 3.5.1: Consider the typical 5-tap smoothing filter of Example 3.1.7 having filter coef-
ficients h(n)= 1/5 for −2 ≤ n ≤ 2. The corresponding I/O convolutional equation (3.5.2)
becomes

y(n) =
2∑

m=−2

h(m)x(n−m)= 1

5

2∑
m=−2

x(n−m)

= 1

5

[
x(n+ 2)+x(n+ 1)+x(n)+x(n− 1)+x(n− 2)

]
It is called a smoother or averager because at each n it replaces the current sample x(n)
by its average with the two samples ahead and two samples behind it, and therefore, it
tends to average out rapid fluctuations from sample to sample.

Its anticausal part has duration D = 2 and can be made causal with a time delay of two
units, resulting in

y2(n)= y(n− 2)= 1

5

[
x(n)+x(n− 1)+x(n− 2)+x(n− 3)+x(n− 4)

]
This filtering equation must be thought of as smoothing the middle sample x(n− 2) and
not the current sample x(n). 	

When real-time processing is not an issue, as in block processing methods, and the
input data to be processed have already been collected and saved as a block of samples
on some medium such as memory or tape, one may use the non-causal form of Eq. (3.5.2)
directly. This is one of the advantages of DSP that does not have a parallel in analog
signal processing. An example of this may be the processing of a still picture, where all
the pixel information has been gathered into a block of samples.

In addition to their causality properties, LTI systems can be classified in terms of
their stability properties. A stable LTI system is one whose impulse response h(n)

114 3. DISCRETE-TIME SYSTEMS

goes to zero sufficiently fast as n → ±∞, so that the output of the system y(n) never
diverges, that is, it remains bounded by some bound |y(n)| ≤ B if its input is bounded,
say |x(n)| ≤ A. That is, a system is stable if bounded inputs always generate bounded
outputs.

It can be shown that a necessary and sufficient condition for an LTI system to be
stable in the above bounded-input/bounded-output sense is that its impulse response
h(n) be absolutely summable:

∞∑
n=−∞

|h(n)| <∞ (stability condition) (3.5.4)

Example 3.5.2: Consider the following four examples of h(n):

h(n) = (0.5)nu(n)

h(n) = −(0.5)nu(−n− 1)

h(n) = 2nu(n)

h(n) = −2nu(−n− 1)

(stable and causal)

(unstable and anticausal)

(unstable and causal)

(stable and anticausal)

In the two causal cases, the presence of the unit step u(n) causes h(n) to be nonzero only
for n ≥ 0, whereas in the anticausal cases, the presence of u(−n−1)makes h(n) nonzero
only for −n−1 ≥ 0 or n+1 ≤ 0 or n ≤ −1. The first example tends to zero exponentially
for n → ∞; the second diverges as n → −∞; indeed, because n is negative, one can write
n = −|n| and

h(n)= −(0.5)nu(−n− 1)= −(0.5)−|n|u(−n− 1)= −2|n|u(−n− 1)

and therefore it blows up exponentially for large negative n. The third example blows up
for n→∞ and the fourth tends to zero exponentially for n→ −∞, as can be seen from

h(n)= −2nu(−n− 1)= −2−|n|u(−n− 1)= −(0.5)|n|u(−n− 1)

Thus, cases one and four are stable and cases two and three unstable. The same conclusion
can also be reached by the stability criterion of Eq. (3.5.4). We have in the four cases:

∞∑
n=−∞

|h(n)| =
∞∑
n=0

(0.5)n= 1

1− 0.5
<∞

∞∑
n=−∞

|h(n)| =
−∞∑
n=−1

(0.5)n=
∞∑

m=1

2m = ∞

∞∑
n=−∞

|h(n)| =
∞∑
n=0

2n = ∞

∞∑
n=−∞

|h(n)| =
−∞∑
n=−1

2n =
∞∑

m=1

(0.5)m= 0.5
1− 0.5

<∞

where in the first and fourth cases, we used the infinite geometric series formulas:

∞∑
m=0

xm = 1

1− x
and

∞∑
m=1

xm = x
1− x

3.5. CAUSALITY AND STABILITY 115

valid for |x| < 1. For the second and third cases the geometric series have x > 1
and diverge. We will see later that cases one and two have the same transfer function,

namely, H(z)= 1

1− 0.5z−1
, and therefore, cannot be distinguished on the basis of just

the transfer function. Similarly, cases three and four have the common transfer function

H(z)= 1

1− 2z−1
. 	

Stability is absolutely essential in hardware or software implementations of LTI sys-
tems because it guarantees that the numerical operations required for computing the I/O
convolution sums or the equivalent difference equations remain well behaved and never
grow beyond bounds. In hardware implementations, such instabilities would quickly
saturate the hardware registers and in software implementations they would exceed the
numerical ranges of most computers resulting in numerical nonsense.

The concepts of stability and causality are logically independent, but are not always
compatible with each other, that is, it may not be possible to satisfy simultaneously the
conditions of stability and causality, as was the case of the last two systems of Example
3.5.2. However, because of the practical numerical considerations mentioned above, we
must always prefer stability over causality.

If the anticausal part of a stable system h(n) has finite duration, then it can be
handled as above, making it causal by a time delay. If, on the other hand, the anticausal
part is infinite, thenh(n) can only be handled approximately by the following procedure.
Because h(n) is stable, it will tend to zero for large negative n. Therefore, one may pick
a sufficiently large negative integer n = −D and clip the left tail of h(n) for n < −D.
That is, one can replace the true h(n) by its clipped approximation:

h̃(n)=
{

h(n), for n ≥ −D
0, for n < −D (3.5.5)

This clipped response will be of the finitely anticausal type shown in Fig. 3.5.2, and
therefore, it can be made causal by a delay of D units of time, that is, h̃D(n)= h̃(n−D).
The approximation error can be made as small as desired by increasing the value of D.
To see this, let ỹ(n) be the output of the approximate system h̃(n) for a bounded input,
|x(n)| ≤ A, and let y(n) be the output of the exact system h(n). It is easily shown that
the error in the output is bounded from above by

|y(n)−ỹ(n)| ≤ A
−D−1∑
m=−∞

|h(m)| (3.5.6)

for all n. The above sum, being a partial sum of Eq. (3.5.4), is finite and tends to zero as
D increases. For example, in case four of Example 3.5.2 we find

−D−1∑
m=−∞

|h(m)| =
∞∑

m=D+1

(0.5)m= (0.5)D+1 1

1− 0.5
= (0.5)D

which can be made as small as desired by increasing D.
This type of stable but non-causal filter can often arise in the design of inverse filters.

The inverse of a filter with transfer function H(z) has transfer function

Hinv(z)= 1

H(z)

116 3. DISCRETE-TIME SYSTEMS

Such inverse filters are used in various equalization applications, such as channel
equalization for digital data transmission whereH(z)may represent the channel’s trans-
fer function, or the equalizer filters that we discussed in Chapter 1.

The corresponding impulse response of the inverse filter hinv(n) must be chosen to
be stable. But, then it may be not be causal.† Therefore, in this case we must work with
the approximate clipped/delayed inverse filter response

h̃inv,D(n)= h̃inv(n−D)

We will consider examples of such designs later, after we discuss z-transforms.

3.6 Problems

3.1 Determine whether the discrete-time systems described by the following I/O equations are
linear and/or time-invariant:

a. y(n)= 3x(n)+5

b. y(n)= x2(n− 1)+x(2n),
c. y(n)= ex(n)

d. y(n)= nx(n− 3)+3x(n).

e. y(n)= n+ 3x(n)

3.2 Determine the causal impulse response h(n) for n ≥ 0 of the LTI systems described by the
following I/O difference equations:

a. y(n)= 3x(n)−2x(n− 1)+4x(n− 3)

b. y(n)= 4x(n)+x(n− 1)−3x(n− 3)

c. y(n)= x(n)−x(n− 3)

3.3 Determine the causal impulse response h(n) for n ≥ 0 of the LTI systems described by the
following I/O difference equations:

a. y(n)= −0.9y(n− 1)+x(n)
b. y(n)= 0.9y(n− 1)+x(n)
c. y(n)= 0.64y(n− 2)+x(n)
d. y(n)= −0.81y(n− 2)+x(n)
e. y(n)= 0.5y(n− 1)+4x(n)+x(n− 1)

3.4 Determine the I/O difference equations relating x(n) and y(n) for the LTI systems having
the following impulse responses:

a. h(n)= (0.9)nu(n)

b. h(n)= (−0.6)nu(n)

c. h(n)= (0.9)nu(n)+(−0.9)nu(n)

d. h(n)= (0.9j)nu(n)+(−0.9j)nu(n)

†We will see later that this circumstance can arise if some of the zeros of the transfer function H(z) lie
outside the unit circle in the z-plane.

3.6. PROBLEMS 117

3.5 A causal IIR filter has impulse response h(n)= 4δ(n)+3(0.5)n−1u(n−1). Working with the
convolutional equation y(n)= ∑

m h(m)x(n −m), derive the difference equation satisfied
by y(n).

3.6 A causal IIR filter has impulse response:

h(n)=
{

5, if n = 0
6(0.8)n−1, if n ≥ 1

Working with the convolutional filtering equation, derive the difference equation satisfied by
y(n).

3.7 To understand the role played the first two values h(0) and h(1), redo Problem 3.6 starting
with the more general expression for h(n):

h(n)=
{

c0 for n = 0
c1an−1 for n ≥ 1

which hash(0)= c0 andh(1)= c1. First, determine the difference equation satisfied byh(n)
for all n ≥ 0. Then, using the I/O convolutional equation (3.3.3), determine the difference
equation relating y(n) to x(n). How are {c0, c1} related to the coefficients of the difference
equation?

3.8 A causal linear time-invariant filter has impulse response:

hn = [C1pn1 +C2pn2 + · · · +CMpnM]u(n)

Without using any z-transforms and working entirely in the time domain, show that hn
satisfies the order-M difference equation:

hn + a1hn−1 + a2hn−2 + · · · + aMhn−M = 0, for n ≥M

where {1, a1, a2, . . . , aM} are the coefficients of the polynomial whose roots are the (complex)
numbers {p1, p2, . . . , pM}, that is,

1+ a1z−1 + a2z−2 + · · · + aMz−M = (1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

Note that Ci are arbitrary and the restriction n ≥M necessary.

3.9 A causal linear time-invariant filter has impulse response:

hn = C0δ(n)+C1pn1 +C2pn2 + · · · +CMpnM , n ≥ 0

Show that it satisfies the same difference equation as in the previous problem, but with the
restriction n ≥M + 1.

3.10 A causal linear time-invariant filter has impulse response:

hn = C1pn1 +C2pn2 , n ≥ 0

Working in the time domain, show that the difference equation satisfied by hn for all n ≥ 0
and the difference equation relating the input and output signals are of the form:

hn + a1hn−1 + a2hn−2 = b0δ(n)+b1δ(n− 1)

yn + a1yn−1 + a2yn−2 = b0xn + b1xn−1

Determine {a1, a2, b0, b1} in terms of {C1, C2, p1, p2}.

118 3. DISCRETE-TIME SYSTEMS

3.11 A causal linear time-invariant filter has impulse response:

hn = C0δ(n)+C1pn1 +C2pn2 , n ≥ 0

Show that the difference equation satisfied by hn for all n ≥ 0 and the difference equation
relating the input and output signals are of the form:

hn + a1hn−1 + a2hn−2 = b0δ(n)+b1δ(n− 1)+b2δ(n− 2)

yn + a1yn−1 + a2yn−2 = b0xn + b1xn−1 + b2xn−2

Determine {a1, a2, b0, b1, b2} in terms of {C0, C1, C2, p1, p2}.
3.12 A causal linear time-invariant filter has impulse response:

hn = C1pn1 +C2pn2 +C3pn3 , n ≥ 0

Working in the time domain, show that the difference equation satisfied by hn for all n ≥ 0
and the difference equation relating the input and output signals are of the form:

hn + a1hn−1 + a2hn−2 + a3hn−3 = b0δ(n)+b1δ(n− 1)+b2δ(n− 2)

yn + a1yn−1 + a2yn−2 + a3yn−3 = b0xn + b1xn−1 + b2xn−2

Determine {a1, a2, a3, b0, b1} in terms of {C1, C2, C3, p1, p2, p3}.
3.13 Using the results of the previous two problems, determine and verify the difference equations

satisfied by the impulse responses:

a. h(n)= 5(0.5)nu(n)+4(0.8)nu(n).

b. h(n)= (0.5j)nu(n)+(−0.5j)nu(n).

c. h(n)= [3(0.4)n+4(0.5)n−7(−0.5)n
]
u(n).

3.14 The condition of Eq. (3.5.4) is sufficient for bounded-input/bounded-output (BIBO) stability.
Assume A = ∑

m |h(m)| < ∞. Show that if the input is bounded, |x(n)| ≤ B, then the
output is bounded by |y(n)| ≤ AB.

3.15 The condition of Eq. (3.5.4) is also necessary for BIBO stability. Assume that every bounded
input results in a bounded output and consider the particular bounded input x(n)= sign

(
h(−n))

defined to be the algebraic sign of h(−n). Then, the corresponding output y(n) will be
bounded. By considering the particular output sample y(0), prove that Eq. (3.5.4) must
hold. What happens if when h(−n)= 0 for some n?

3.16 The standard method for making an anticausal (but stable) system into a causal system is
to clip off its anticausal tail at some large negative time n = −D and then delay the impulse
response by D time units to make it causal, that is, hD(n)= h(n − D). Let y(n) be the
output of h(n) with input x(n), and let yD(n) be the output of the delayed system hD(n)
also with input x(n). Working in the time domain, show that yD(n) is the delayed version
of y(n), that is, yD(n)= y(n−D).

3.17 In certain applications, such as data smoothing and FIR interpolation, the desired output
y(n) must be computed from a partly anticausal filter, that is, a filter h(n) with anticausal
duration of D time units. This filter can be made causal by a delay D, but this would cause
the output to be delayed as we saw in the previous problem.

3.6. PROBLEMS 119

In order to get the correct undelayed output from the delayed causal filter hD(n), the input
must be time-advanced by D time units, that is, xA(n)= x(n + D). Using time-domain
convolution, show that y(n) can be computed in the following two ways:

y(n)=
∑
m
h(m)x(n−m)=

∑
m
hD(m)xA(n−m)

In the z-domain, this is obvious:

Y(z)= H(z)X(z)= [z−DH(z)][zDX(z)]
3.18 Prove the inequality (3.5.6). Is the right-hand side finite? Does it get smaller asD gets larger?

4
FIR Filtering and Convolution

Practical DSP methods fall in two basic classes:

• Block processing methods.
• Sample processing methods.

In block processing methods, the data are collected and processed in blocks. Some
typical applications include, FIR filtering of finite-duration signals by convolution, fast
convolution of long signals which are broken up in short segments, DFT/FFT spectrum
computations, speech analysis and synthesis, and image processing.

In sample processing methods, the data are processed one at a time—with each input
sample being subjected to a DSP algorithm which transforms it into an output sample.
Sample processing methods are used primarily in real-time applications, such as real-
time filtering of long signals, digital audio effects processing, digital control systems,
and adaptive signal processing. Sample processing algorithms are essentially the state-
space realizations of LTI filters.

In this chapter, we consider block processing and sample processing methods for FIR
filtering applications. We discuss the computational aspects of the convolution equa-
tions (3.3.2) or (3.3.3) as they apply to FIR filters and finite-duration inputs and present
various equivalent forms of convolution, namely,

• Direct form
• Convolution table
• LTI form
• Matrix form
• Flip-and-slide form
• Overlap-add block convolution form.

Each form has its own distinct advantages. For example, the LTI form is of funda-
mental importance because it incorporates the consequences of linearity and time in-
variance; the direct form leads directly to block diagram realizations of the filter and the
corresponding sample-by-sample processing algorithms; the convolution table is conve-
nient for quick computations by hand; the flip-and-slide form shows clearly the input-on
and input-off transient and steady-state behavior of a filter; the matrix form provides a
compact vectorial representation of the filtering operation and is widely used in some

120

4.1. BLOCK PROCESSING METHODS 121

applications such as image processing; and the overlap-add form is used whenever the
input is extremely long or infinite in duration.

Then, we go on to discuss sample-by-sample processing methods for FIR filtering
and discuss block diagram realizations which provide a mechanization of the sample
processing algorithms. We develop the so-called direct form realizations of FIR filters
and discuss some hardware issues for DSP chips. We develop also the concept of circular
addressing, which is the “modern” way to implement delay lines, FIR, and IIR filters in
both hardware and software.

4.1 Block Processing Methods

4.1.1 Convolution

In many practical applications, we sample our analog input signal (in accordance with
the sampling theorem requirements) and collect a finite set of samples, say L samples,
representing a finite time record of the input signal. The duration of the data record in
seconds will be:†

TL = LT
0 2 ...1

n

L-1

x(n)
T

TL

(4.1.1)

where T is the sampling time interval, related to the sampling rate by fs = 1/T. Con-
versely, we can solve for the number of time samples L contained in a record of duration
TL seconds:

L = TLfs (4.1.2)

The L collected signal samples, say x(n), n = 0,1, . . . , L − 1, can be thought of as a
block:

x = [x0, x1, . . . , xL−1] (4.1.3)

which may then be processed further by a digital filter. The direct and LTI forms of
convolution given by Eqs. (3.3.3) and (3.3.2)

y(n)=
∑
m
h(m)x(n−m)=

∑
m
x(m)h(n−m) (4.1.4)

describe the filtering equation of an LTI system in general. An alternative way of writing
these equations, called the convolution table form, is obtained by noting that the sum
of the indices of h(m) and x(n−m) is m+ (n−m)= n. Therefore, Eqs. (4.1.4) can be
written in the form:

y(n)=
∑
i, j

i+j=n

h(i)x(j) (convolution table form) (4.1.5)

†More correctly, TL = (L− 1)T, but for large L Eq. (4.1.1) is simpler. See also Section 9.1.

122 4. FIR FILTERING AND CONVOLUTION

That is, the sum of all possible products h(i)x(j)with i+j = n. The precise range of
summation with respect tom in Eqs. (4.1.4) or i, j in Eq. (4.1.5) depends on the particular
nature of the filter and input sequences, h(n) and x(n).

4.1.2 Direct Form

Consider a causal FIR filter of order M with impulse response h(n), n = 0,1, . . . ,M. It
may be represented as a block:

h = [h0, h1, . . . , hM] (4.1.6)

Its length (i.e., the number of filter coefficients) is one more than its order:

Lh =M + 1 (4.1.7)

The convolution of the length-L input x of Eq. (4.1.3) with the order-M filter h will
result in an output sequence y(n). We must determine: (i) the range of values of the
output index n, and (ii) the precise range of summation in m. For the direct form, we
have

y(n)=
∑
m
h(m)x(n−m)

The index of h(m) must be within the range of indices in Eq. (4.1.6), that is, it must be
restricted to the interval:

0 ≤m ≤M (4.1.8)

Similarly, the index of x(n−m) must lie within the legal range of indices in Eq. (4.1.3),
that is,

0 ≤ n−m ≤ L− 1 (4.1.9)

To determine the range of values of the output index n, we rewrite (4.1.9) in the form:

m ≤ n ≤ L− 1+m

and use (4.1.8) to extend the limits to:

0 ≤m ≤ n ≤ L− 1+m ≤ L− 1+M, or,

0 ≤ n ≤ L− 1+M (4.1.10)

This is the index range of the output sequence y(n). Therefore, it is represented by a
block

y = [y0, y1, . . . , yL−1+M] (4.1.11)

with length
Ly = L+M (4.1.12)

Thus, y is longer than the input x by M samples. As we will see later, this property
follows from the fact that a filter of orderM has memory M and keeps each input sample

4.1. BLOCK PROCESSING METHODS 123

inside it for M time units. Setting Lx = L, and Lh =M+1, we can rewrite Eq. (4.1.12) in
the more familiar form:

Ly = Lx + Lh − 1 (4.1.13)

The relative block lengths are shown in Fig. 4.1.1. For any value of the output index n
in the range (4.1.10), we must determine the summation range overm in the convolution
equation. For fixedn, the inequalities (4.1.8) and (4.1.9) must be satisfied simultaneously
by m. Changing the sign of (4.1.9), we obtain

h =

x =

y = h * x =

M+1

L

L M

Fig. 4.1.1 Relative lengths of filter, input, and output blocks.

−(L− 1)≤m− n ≤ 0

and adding n to all sides
n− L+ 1 ≤m ≤ n (4.1.14)

Thus, m must satisfy simultaneously the inequalities:

0 ≤m ≤M

n− L+ 1 ≤m ≤ n

It follows that m must be greater than the maximum of the two left-hand sides and
less than the minimum of the two right-hand sides, that is,

max(0, n− L+ 1)≤m ≤ min(n,M) (4.1.15)

Therefore, in the case of an order-M FIR filter and a length-L input, the direct form
of convolution is given as follows:

y(n)=
min(n,M)∑

m=max(0,n−L+1)
h(m)x(n−m) (direct form) (4.1.16)

for n = 0,1, . . . , L+M− 1. Sometimes, we will indicate this convolutional operation by
the compact notation:

y = h∗ x

As an example, consider the case of an order-3 filter and a length-5 input signal. The
filter, input, and output blocks are

h = [h0, h1, h2, h3]

x = [x0, x1, x2, x3, x4]

y = h∗ x = [y0, y1, y2, y3, y4, y5, y6, y7]

124 4. FIR FILTERING AND CONVOLUTION

The output block has length Ly = L +M = 5 + 3 = 8 and is indexed as 0 ≤ n ≤ 7.
The convolutional equation (4.1.16) becomes:

yn =
min(n,3)∑

m=max(0,n−4)
hmxn−m, n = 0,1, . . . ,7

For n = 0,1,2, . . . ,7, the summation index m takes on the values:

max(0,0− 4)≤m ≤ min(0,3) ⇒ m = 0

max(0,1− 4)≤m ≤ min(1,3) ⇒ m = 0,1

max(0,2− 4)≤m ≤ min(2,3) ⇒ m = 0,1,2

max(0,3− 4)≤m ≤ min(3,3) ⇒ m = 0,1,2,3

max(0,4− 4)≤m ≤ min(4,3) ⇒ m = 0,1,2,3

max(0,5− 4)≤m ≤ min(5,3) ⇒ m = 1,2,3

max(0,6− 4)≤m ≤ min(6,3) ⇒ m = 2,3

max(0,7− 4)≤m ≤ min(7,3) ⇒ m = 3

(4.1.17)

So, for example, at n = 5 the output y5 will be given by

y5 =
∑

m=1,2,3
hmx5−m = h1x4 + h2x3 + h3x2

Using the values in Eq. (4.1.17), we find all the output samples:

y0 = h0x0

y1 = h0x1 + h1x0

y2 = h0x2 + h1x1 + h2x0

y3 = h0x3 + h1x2 + h2x1 + h3x0

y4 = h0x4 + h1x3 + h2x2 + h3x1

y5 = h1x4 + h2x3 + h3x2

y6 = h2x4 + h3x3

y7 = h3x4

(4.1.18)

4.1.3 Convolution Table

Note how each output yn in Eq. (4.1.18) is the sum of all possible products hixj with
i + j = n. This leads directly to the convolution table of Eq. (4.1.5). For example, y5 is
obtained as

y5 =
∑
i, j

i+j=5

hixj = h1x4 + h2x3 + h3x2

4.1. BLOCK PROCESSING METHODS 125

The required computations can be arranged in a table [24] as shown in Fig. 4.1.2 with
the filter h written vertically and the input block x horizontally.†

Fig. 4.1.2 Convolution table.

The nth row of the table is filled by multiplying the x samples by the corresponding
hn sample for that row. Then, the table is “folded” along its antidiagonal lines. In the ij-
plane, the condition i+j = n represents thenth antidiagonal straight line. Therefore, the
entries within each antidiagonal strip are summed together to form the corresponding
output value. There are as many antidiagonal strips as output samples yn. For example,
the n = 0 strip contains only h0x0, which is y0; the n = 1 strip contains h0x1 and h1x0,
whose sum is y1, and so on; finally the n = 7 strip contains only h3x4, which is y7.

The convolution table is convenient for quick calculation by hand because it displays
all required operations compactly.

Example 4.1.1: Calculate the convolution of the following filter and input signals:

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

Solution: The convolution table, with h arranged vertically and x horizontally, is

h\x 1 1 2 1 2 2 1 1

1 1 1 2 1 2 2 1 1
2 2 2 4 2 4 4 2 2

-1 -1 -1 -2 -1 -2 -2 -1 -1
1 1 1 2 1 2 2 1 1

Folding the table, we get
y = [1,3,3,5,3,7,4,3,3,0,1]

Note that there are Ly = L+M = 8+ 3 = 11 output samples. 	

†It can also be arranged the other way, with the filter horizontally and the input vertically.

126 4. FIR FILTERING AND CONVOLUTION

4.1.4 LTI Form

Next, we discuss the LTI form of convolution. A more intuitive way to understand it is
in terms of the linearity and time-invariance properties of the filter. Consider again the
filter h = [h0, h1, h2, h3] in the example of Eq. (4.1.18). The input signal

x = [x0, x1, x2, x3, x4]

can be written as a linear combination of delayed impulses:

x = x0[1,0,0,0,0]

+ x1[0,1,0,0,0]

+ x2[0,0,1,0,0]

+ x3[0,0,0,1,0]

+ x4[0,0,0,0,1]

It can also be written analytically for all n as a sum of delta functions:

x(n)= x0δ(n)+x1δ(n− 1)+x2δ(n− 2)+x3δ(n− 3)+x4δ(n− 4)

The effect of the filter is to replace each delayed impulse by the corresponding delayed
impulse response, that is,

y(n)= x0h(n)+x1h(n− 1)+x2h(n− 2)+x3h(n− 3)+x4h(n− 4)

We can represent the input and output signals as blocks:

x = x0[1,0,0,0,0]

+ x1[0,1,0,0,0]

+ x2[0,0,1,0,0]

+ x3[0,0,0,1,0]

+ x4[0,0,0,0,1]

H−→

y = x0[h0, h1, h2, h3,0,0,0,0]

+ x1[0, h0, h1, h2, h3,0,0,0]

+ x2[0,0, h0, h1, h2, h3,0,0]

+ x3[0,0,0, h0, h1, h2, h3,0]

+ x4[0,0,0,0, h0, h1, h2, h3]

The result is the same as Eq. (4.1.18). Indeed, the indicated linear combinations in the
right-hand side give:

y = [h0x0, x0h1 + x1h0, x0h2 + x1h1 + x2h0, . . . , x4h3]

= [y0, y1, y2, . . . , y7]

For computational purposes, the LTI form can be represented pictorially in a table
form, as shown in Fig. 4.1.3. The impulse response h is written horizontally, and the
input x vertically.

The rows of the table correspond to the successive delays (right shifts) of the h
sequence—the mth row corresponds to delay by m units. Each row is scaled by the

4.1. BLOCK PROCESSING METHODS 127

Fig. 4.1.3 LTI form of convolution.

corresponding input sample, that is, the mth row represents the term xmhn−m in the
LTI form. After the table is filled, the table entries are summed column-wise to obtain
the output samples y(n), which is equivalent to forming the sum:

y(n)=
∑
m
x(m)h(n−m)

Example 4.1.2: Calculate the convolution of Example 4.1.1 using the LTI form.

Solution: The corresponding LTI table is in this case:

n 0 1 2 3 4 5 6 7 8 9 10

x\h 1 2 -1 1 partial output

1 1 2 -1 1 x0hn
1 1 2 -1 1 x1hn−1

2 2 4 -2 2 x2hn−2

1 1 2 -1 1 x3hn−3

2 2 4 -2 2 x4hn−4

2 2 4 -2 2 x5hn−5

1 1 2 -1 1 x6hn−6

1 1 2 -1 1 x7hn−7

yn 1 3 3 5 3 7 4 3 3 0 1
∑
m
xmhn−m

The output samples are obtained by summing the entries in each column. The result agrees
with Example 4.1.1. 	

The LTI form can also be written in a form similar to Eq. (4.1.16) by determining the
proper limits of summation. Arguing as in the direct form, or interchanging the roles of
h(n) and x(n) and correspondingly, the length quantities M and L − 1, we obtain the
following form:

y(n)=
min(n,L−1)∑

m=max(0,n−M)
x(m)h(n−m) (LTI form) (4.1.19)

128 4. FIR FILTERING AND CONVOLUTION

for n = 0,1, . . . , L+M − 1.
In the direct form, which is equivalent to exchanging the roles of hn and xn in the LTI

form, we form a linear combination of delayed replicas of the input signal, with coeffi-
cients being the impulse response. We display the delayed/scaled replicas horizontally,
and add them vertically,

4.1.5 Matrix Forms

The convolutional equations (4.1.16) or (4.1.19) can also be written in the linear matrix
form:

y = Hx (4.1.20)

where H is built out of the filter’s impulse response h. Because the output vector y has
length L+M and the input vector x length L, the filter matrix H must be rectangular
with dimensions

Ly × Lx = (L+M)×L
To see this, consider again the example of Eq. (4.1.18). The output samples can be

arranged in the matrix form

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0
h1 h0 0 0 0
h2 h1 h0 0 0
h3 h2 h1 h0 0
0 h3 h2 h1 h0

0 0 h3 h2 h1

0 0 0 h3 h2

0 0 0 0 h3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x0

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎦ = Hx

Note that the columns of H are the successively delayed replicas of the impulse
response vector h. There are as many columns as input samples. Note also that H is
a so-called Toeplitz matrix, in the sense that it has the same entry along each diagonal.
The Toeplitz property is a direct consequence of the time invariance of the filter. Note
also that Eq. (4.1.20) is equivalent to the LTI table, transposed column-wise instead of
row-wise.

Example 4.1.3: Calculate the convolution of Example 4.1.1 using the matrix form.

4.1. BLOCK PROCESSING METHODS 129

Solution: Because Ly = 11 and Lx = 8, the filter matrix will be 11× 8 dimensional. We have,

Hx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0

−1 2 1 0 0 0 0 0
1 −1 2 1 0 0 0 0
0 1 −1 2 1 0 0 0
0 0 1 −1 2 1 0 0
0 0 0 1 −1 2 1 0
0 0 0 0 1 −1 2 1
0 0 0 0 0 1 −1 2
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
1
2
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
5
3
7
4
3
3
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which agrees with Example 4.1.1. 	

There is also an alternative matrix form written as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 0 0 0
x1 x0 0 0
x2 x1 x0 0
x3 x2 x1 x0

x4 x3 x2 x1

0 x4 x3 x2

0 0 x4 x3

0 0 0 x4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
h0

h1

h2

h3

⎤⎥⎥⎥⎦ (4.1.21)

Instead of a filter matrix H acting on the input data vector x, it has a data matrix acting
on the filter vector h. It can be written compactly in the form:

y = Xh (4.1.22)

where the data matrix X has dimension:

Ly × Lh = (L+M)×(M + 1)

The first column of X is the given input, padded with M zeros at the end to account
for the input-off transients. The remaining columns are the successively delayed (down-
shifted) versions of the first one. We will see in Section 4.3.2 that this form is essentially
equivalent to the sample-by-sample processing algorithm of the direct form realization
of the filter—with the nth row of X representing the filter’s internal states at time n.

Example 4.1.4: Calculate the convolution of Example 4.1.1 using the matrix form (4.1.22).

Solution: The X matrix will have dimension Ly×Lh = 11×4. Its first column is the input signal

130 4. FIR FILTERING AND CONVOLUTION

padded with 3 zeros at the end:

Xh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
2 1 1 0
1 2 1 1
2 1 2 1
2 2 1 2
1 2 2 1
1 1 2 2
0 1 1 2
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
1
2

−1
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
5
3
7
4
3
3
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which agrees with Example 4.1.1. 	

Matrix representations of convolution are very useful in some applications, such as
image processing, and in more advanced DSP methods such as parametric spectrum
estimation and adaptive filtering.

4.1.6 Flip-and-Slide Form

The LTI form is also closely related to the popular flip-and-slide form of convolution,
in which the filter h(n) is flipped around or reversed and then slid over the input data
sequence. At each time instant, the output sample is obtained by computing the dot
product of the flipped filter vector h with the M+1 input samples aligned below it, as
shown in Fig. 4.1.4.

Fig. 4.1.4 Flip-and-slide form of convolution.

The input sequence is assumed to have been extended by padding M zeros to its
left and to its right. At time n = 0, the only nonzero contribution to the dot product
comes from h0 and x0 which are time aligned. It takes the filter M time units before
it is completely over the nonzero portion of the input sequence. The first M outputs
correspond to the input-on transient behavior of the filter. Then, for a period of time
M ≤ n ≤ L−1, the filter remains completely over the nonzero portion of the input data,
and the outputs are given by the form

yn = h0xn + h1xn−1 + · · · + hMxn−M

4.1. BLOCK PROCESSING METHODS 131

This period corresponds to the steady-state behavior of the filter. Finally, the last M
outputs beyond the end of the input data are the input-off transients, that is, they are
the outputs after the input has been turned off. They correspond to the time period
L ≤ n ≤ L − 1 +M. During this period the filter slides over the last M zeros padded
at the end of the input. The very last output is obtained when hM is aligned over xL−1,
which gives yL−1+M = hMxL−1.

One can also think of the filter block h as being stationary and the input block x
sliding underneath it in the opposite direction. This view leads to the sample-by-sample
processing algorithms for FIR filtering.

4.1.7 Transient and Steady-State Behavior

The transient and steady-state behavior of an FIR filter can also be understood using
the direct form of convolution, Eq. (4.1.16). For a length-L input and order-M filter, the
output time index n will be in the range:

0 ≤ n ≤ L− 1+M

It can be divided into three subranges, depicted in Fig. 4.1.5, corresponding to the input-
on transients, steady state, and input-off transients:

0 ≤ n < M (input-on transients)

M ≤ n ≤ L− 1 (steady state)

L− 1 < n ≤ L− 1+M (input-off transients)

These subranges affect differently the limits of the convolution summation equation
(4.1.16). As implied in Fig. 4.1.5, we assumed that the filter length is much shorter than
the length of the input, that is, M+1 < L or M < L−1, otherwise the steady-state range
defined above does not exist—the input is too short to exhibit any steady behavior.

input-on
transients steady state

input ends here

input-off
transients

M L-1 L-1+M

n

0

output y(n)

Fig. 4.1.5 Transient and steady-state filter outputs.

For the input-on transients, the restriction 0 ≤ n < M < L− 1 implies the following
summation limits:

max(0, n− L+ 1)= 0, min(n,M)= n

132 4. FIR FILTERING AND CONVOLUTION

For the steady-state range, M ≤ n ≤ L− 1, we have:

max(0, n− L+ 1)= 0, min(n,M)=M

And, for the input-off transients, M < L− 1 < n ≤ L− 1+M, we have:

max(0, n− L+ 1)= n− L+ 1, min(n,M)=M

Therefore, Eq. (4.1.16) takes the following different forms depending on the value of
the output index n:

yn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
m=0

hmxn−m, if 0 ≤ n < M, (input-on)

M∑
m=0

hmxn−m, if M ≤ n ≤ L− 1, (steady state)

M∑
m=n−L+1

hmxn−m, if L− 1 < n ≤ L− 1+M, (input-off)

During the input-on transient period, the number of terms in the sum is n+1 and is
increasing. During the steady-state period, the number of terms is equal to the number
of filter weights, M+1, and remains fixed. And during the input-off period, the number
of terms in the sum keeps decreasing down to one because the lower summation limit
is increasing.

In Eq. (4.1.18), the first three outputs {y0, y1, y2} are the input-on transients and the
number of terms keeps increasing to 4. The next two outputs {y3, y4} are the steady-
state outputs, and the last three outputs {y5, y6, y7} are the input-off transients having
a decreasing number of terms.

The I/O equation in the steady state was also discussed earlier in Eq. (3.4.1). It has
a fixed number of terms:

y(n)=
M∑

m=0

h(m)x(n−m) (steady state) (4.1.23)

In a certain sense, it also incorporates the input-on and input-off transients and is
quoted often as the generic I/O equation for FIR filters. To understand why, consider
again the example of Eq. (4.1.18). In this case, we write

yn = h0xn + h1xn−1 + h2xn−2 + h3xn−3

If n is in the input-on range, that is, 0 ≤ n ≤ 2, not every term in the sum will contribute,
because xn is assumed causal. For example, if n = 1, we have

y1 = h0x1 + h1x1−1 + h2x1−2 + h3x1−3 = h0x1 + h1x0

When n is in the steady range, then all terms are contributing. And, when n is in the
input-off range, not all terms contribute. For example, if n = 6 we have

y6 = h0x6 + h1x6−1 + h2x6−2 + h3x6−3 = h2x4 + h3x3

4.1. BLOCK PROCESSING METHODS 133

because xn was assumed to have length 5, and therefore x6 = x5 = 0. With these caveats
in mind, it is correct to write Eq. (4.1.23) as the generic I/O filtering equation of an order-
M FIR filter. For programming purposes, one must of course work with Eq. (4.1.16) which
does not let the indices exceed the array bounds.

4.1.8 Convolution of Infinite Sequences

By taking appropriate limits of the direct form of convolution

yn =
min(n,M)∑

m=max(0,n−L+1)
hmxn−m

we can obtain the correct summation limits for the following three cases:

1. Infinite filter, finite input; i.e., M = ∞, L <∞.
2. Finite filter, infinite input; i.e., M <∞, L = ∞.
3. Infinite filter, infinite input; i.e., M = ∞, L = ∞.

In all three cases, the range of the output index Eq. (4.1.10) is infinite, 0 ≤ n < ∞,
that is, the output y(n) has infinite duration. When M → ∞, the upper limit in the
convolution sum becomes

min(n,M)= n

and when L→∞, the lower limit becomes

max(0, n− L+ 1)= 0

Therefore, we find in the three cases:

yn =
n∑

m=max(0,n−L+1)
hmxn−m, if M = ∞, L <∞

yn =
min(n,M)∑
m=0

hmxn−m, if M <∞, L = ∞

yn =
n∑

m=0

hmxn−m, if M = ∞, L = ∞

When the filter is infinite, we define steady state as the limit of y(n) for large n.

Example 4.1.5: An IIR filter has impulse response h(n)= (0.75)nu(n). Using convolution,
derive closed-form expressions for the output signal y(n) when the input is:

(a) A unit step, x(n)= u(n).

(b) An alternating step, x(n)= (−1)nu(n).

(c) A square pulse of duration L = 25 samples, x(n)= u(n)−u(n− 25).

In each case, determine the steady-state response of the filter.

134 4. FIR FILTERING AND CONVOLUTION

Solution: In case (a), because both the input and filter are causal and have infinite duration, we
use the formula:

y(n)=
n∑

m=0

h(m)x(n−m)=
n∑

m=0

(0.75)mu(m)u(n−m)

or, using the finite geometric series:

y(n)=
n∑

m=0

(0.75)m= 1− (0.75)n+1

1− 0.75
= 4− 3(0.75)n

The steady-state response is the large-n limit of this formula, that is, as n→∞

y(n)→ 1

1− 0.75
= 4

For case (b), we have

y(n) =
n∑

m=0

(0.75)m(−1)n−m= (−1)n
n∑

m=0

(−0.75)m

= (−1)n
1− (−0.75)n+1

1+ 0.75
= 4

7
(−1)n+3

7
(0.75)n

where in the second term, we wrote (−1)n(−0.75)n= (0.75)n. In the large-n limit, n→∞,
we have

y(n)→ (−1)n
1

1+ 0.75
= 4

7
(−1)n

We will see later that these steady-state responses correspond to special cases of the sinu-
soidal response of the filter (at frequencies ω = 0 and ω = π), and can be obtained very
simply in terms of the transfer function H(z) of the filter evaluated at z = 1 for part (a),
and z = −1 for part (b), that is,

y(n)→ H(1) and y(n)→ (−1)nH(−1)

where in this example,

H(z)= 1

1− 0.75z−1
⇒ H(1)= 1

1− 0.75
= 4, H(−1)= 1

1+ 0.75
= 4

7

In part (c), the input is finite with length L = 25. Therefore,

yn =
n∑

m=max(0,n−L+1)
hmxn−m =

n∑
m=max(0,n−24)

(0.75)m

We must distinguish two subranges in the output index: For 0 ≤ n ≤ 24, we have

yn =
n∑

m=0

(0.75)m= 1− (0.75)n+1

1− 0.75
= 4− 3(0.75)n

4.1. BLOCK PROCESSING METHODS 135

and for 25 ≤ n <∞,

yn =
n∑

m=n−24

(0.75)m = (0.75)n−24 1− (0.75)n−(n−24)+1

1− 0.75

= (0.75)n−24 1− (0.75)25

1− 0.75

which corresponds to the input-off transient behavior. Because of the exponentially de-
caying nature of the impulse response, this filter acts like an RC-type integrator. During
the input-on period 0 ≤ n ≤ 24, the output “charges” up and during the input-off period
n ≥ 25, it “discharges” down. See Example 4.1.8 for a similar, but not quite identical,
example.

The output signals y(n) of the three cases (a-c) are shown below:

Notice the steady-state behavior of the first two cases, and the input-off transients of the
third. 	

Example 4.1.6: We saw in Example 3.4.5 that a filter of the form hn = (0.75)nu(n) satisfies
the difference equation:

y(n)= 0.75y(n− 1)+x(n)

Verify that the expressions for y(n) obtained in the three cases (a-c) in Example 4.1.5 are
solutions of this difference equation, with causal initial conditions.

Solution: In case (a), we have x(n)= u(n) and the difference equation becomes, for n ≥ 0:

y(n)= 0.75y(n− 1)+1

136 4. FIR FILTERING AND CONVOLUTION

For n = 0, it gives y(0)= 0.75y(−1)+1 = 0.75·0+1 = 1, which agrees with the expression
y(n)= 4− 3(0.75)n evaluated at n = 0. For n ≥ 1, we have, starting with the right-hand
side:

0.75y(n− 1)+1 = 0.75
[
4− 3(0.75)n−1

]+ 1 = 4− 3(0.75)n= y(n)

In case (b), we have x(n)= (−1)nu(n) and the difference equation becomes for n ≥ 1:

0.75y(n− 1)+x(n)= 0.75
[

4

7
(−1)n−1+3

7
(0.75)n−1

]
+ (−1)n

= −0.75
4

7
(−1)n+3

7
(0.75)n+(−1)n= 4

7
(−1)n+3

7
(0.75)n= y(n)

In case (c), we have the difference equations

y(n)= 0.75y(n− 1)+1, for 0 ≤ n ≤ 24

and
y(n)= 0.75y(n− 1), for n ≥ 25

The first value at n = 25 will be y(25)= 0.75y(24), and therefore, it requires knowledge of
the “initial” value y(24). If that is known, then the solution of the homogeneous equation
will be

y(n)= (0.75)n−24y(24), for n ≥ 25

But, y(24) is

y(24)= 1− (0.75)25

1− 0.75
= 4− 3(0.75)24

as obtained from the solution of the first difference equation evaluated at the endpoint
n = 24. 	

The most general case that covers any type of filter and input signal— finite or
infinite, causal or non-causal—can be defined as follows. Assume the filter’s impulse
response h(n) is defined over the interval:

−M1 ≤ n ≤M2

0

n

M2-M1

h(n)

and the input signal x(n) over the interval:

−L1 ≤ n ≤ L2 − 1

0

n
L2-1-L1

x(n)

Any desired case can be obtained by taking appropriate limits in the quantities M1,
M2, L1, L2. We wish to determine the range of the output index n and the limits of
summation in the convolutional equation

y(n)=
∑
m
h(m)x(n−m)

4.1. BLOCK PROCESSING METHODS 137

The index m of h(m) and n −m of x(n −m) must lie within the given index ranges,
that is,

−M1 ≤m ≤M2 and − L1 ≤ n−m ≤ L2 − 1

From these it follows that the output index n must vary over the range:

−M1 − L1 ≤ n ≤ L2 +M2 − 1

Note that the endpoints of the output index are the sum of the corresponding end-
points for h(n) and x(n). For each n in this output range, the summation index must
be within the limits:

max(−M1, n− L2 + 1)≤m ≤ min(n+ L1,M2)

Therefore, the I/O equation is in this case:

y(n)=
min(n+L1,M2)∑

m=max(−M1,n−L2+1)
h(m)x(n−m)

The results of Eq. (4.1.16) can be recovered as the special case corresponding to M1 = 0,
M2 =M, L1 = 0, L2 = L.

4.1.9 Programming Considerations

The following C routine conv.c implements the direct form of convolution of Eq. (4.1.16):

/* conv.c - convolution of x[n] with h[n], resulting in y[n] */

#include <stdlib.h> defines max() and min()

void conv(M, h, L, x, y)
double *h, *x, *y; h, x, y = filter, input, output arrays

int M, L; M = filter order, L = input length

{
int n, m;

for (n = 0; n < L+M; n++)
for (y[n] = 0, m = max(0, n-L+1); m <= min(n, M); m++)

y[n] += h[m] * x[n-m];
}

The quantities h, x, y are arrays and must be declared or allocated to proper dimen-
sion in the main program; for example, using calloc:

double *h, *x, *y;
h = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

x = (double *) calloc(L, sizeof(double)); L–dimensional

y = (double *) calloc(L+M, sizeof(double)); (L+M)–dimensional

In some C implementations,† the include-file stdlib.h contains the definitions of
the two macros max and min; otherwise they must be added in the above routine:

†For example, Microsoft and Borland C.

138 4. FIR FILTERING AND CONVOLUTION

#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))

Next, we present a few simulation examples illustrating some of the ideas we dis-
cussed, such as input-on and input-off transients, steady state, linearity, and time invari-
ance. A quantity of interest in these examples will be the DC gain of a (stable) filter, that
is, the steady-state value of its output when the input remains constant for a long period
of time. For a unity input, it is given by the sum of the impulse response coefficients:

ydc =
∑
m
h(m) (4.1.24)

It will be derived later on.

Example 4.1.7: Consider an integrator-like FIR filter of order M = 14 defined by the following
I/O convolutional equation:

y(n)= G
[
x(n)+x(n− 1)+x(n− 2)+· · · + x(n− 14)

]
where G is a convenient scale factor, taken to be G = 0.1. Such a filter accumulates (inte-
grates) the present and past 14 samples of the input signal. Comparing with Eq. (4.1.23),
we identify the impulse response of this filter:

hn =
{

G, for 0 ≤ n ≤ 14
0, otherwise

The DC gain will be:

ydc =
14∑
m=0

h(m)=
14∑
m=0

G = 15G = 1.5

To observe the steady-state response of this filter, as well as the input-on and input-off
transients, we consider a square-wave input signal xn of length L = 200 and period of
K = 50 samples. Such a signal may be generated by the simple for-loop:

for (n=0; n<L; n++)
if (n%K < K/2) n % K is the MOD operation

x[n] = 1;
else

x[n] = 0;

The output signal yn will have length Ly = L +M = 200 + 14 = 214 samples. It can be
obtained by a single call to the routine conv:

conv(M, h, L, x, y);

The figure below shows the output signal yn plotted together with the periodic input.

4.1. BLOCK PROCESSING METHODS 139

As the square wave periodically goes on and off, we can observe the input-on transient,
steady-state, and input-off transient behavior of the filter.

During each on-period of the square wave lasting for 25 samples, the filter exhibits an
input-on transient behavior which lasts for 14 samples; then it reaches steady state (equal
to its DC gain) lasting only 25−14 = 11 samples, and then the square wave goes off causing
the filter to undergo its input-off transient behavior which lasts another 14 samples. The
filter’s output settles down to zero only after 25+14 = 39 samples and remains zero until
the onset of the next on-period of the square wave, and the whole process repeats. 	

Example 4.1.8: Consider the following two FIR filters, one defined in terms of its impulse re-
sponse and the other in terms of its transfer function:

(a) hn =
{

ban, for 0 ≤ n ≤M
0, otherwise

Take M = 14, a = 0.75, and b = 1− a = 0.25. Its DC gain is almost unity:

ydc =
M∑

m=0

h(m)= b
M∑

m=0

am = (1− a)·1− aM+1

1− a
= 1− aM+1

or, ydc = 1− (0.75)15= 0.987.

(b) H(z)= 1

5
(1− z−1)5= 0.2− z−1 + 2z−2 − 2z−3 + z−4 − 0.2z−5

This filter has M = 5 and acts as a 5-fold differentiator. Its impulse response can be
extracted from H(z):

h = [0.2, −1, 2, −2, 1, −0.2]= 1

5
[1, −5, 10, −10, 5, −1]

The factor 1/5 serves only as a convenient scale. Its DC gain is zero.

The square wave input of the previous example is fed into the two filters. The resulting
output signals, computed by two calls to conv, are shown in the figure below:

140 4. FIR FILTERING AND CONVOLUTION

Filter (a) acts more like an RC-type integrator than an accumulator. The exponentially
decaying nature of the impulse response causes the charging/discharging type of output
as the input goes on and off.

Filter (b) acts as a differentiator, differentiating the constant portions (i.e., the on portions)
of the input to zero. The input-on and off transients have duration of M = 5, but the rest
of the output is zero. 	

Example 4.1.9: To demonstrate the concepts of impulse response, linearity, and time invari-
ance, consider an FIR filter with impulse response

h(n)= (0.95)n, for 0 ≤ n ≤ 24

and an input signal

x(n)= δ(n)+2δ(n− 40)+2δ(n− 70)+δ(n− 80), n = 0,1, . . . ,120

consisting of four impulses of the indicated strengths occurring at the indicated time
instants. Note that the first two impulses are separated by more than the duration of the
filter, whereas the last two are separated by less.

Using the LTI form of convolution, we obtain the filter output by replacing each delayed
impulse by the delayed impulse response, that is,

y(n)= h(n)+2h(n− 40)+2h(n− 70)+h(n− 80) (4.1.25)

The input signal can be generated with the aid of the following C routine that implements
a delta function δ(n):

/* delta.c - delta function */

double delta(n)
int n;
{

if (n == 0)
return 1;

else
return 0;

}

The input signal can be generated by a for-loop of the form

4.1. BLOCK PROCESSING METHODS 141

for (n=0; n<=120; n++)
x[n] = delta(n) + 2*delta(n-40) + 2*delta(n-70) + delta(n-80);

The corresponding output signal will have length Ly = L+M = 121+ 24 = 145, and can
be generated by single call to conv:

conv(24, h, 121, x, y);

The output is shown below, together with the impulsive input.

Each impulse of the input generates a copy of the impulse response at the output. The
outputs due to the first and second terms of Eq. (4.1.25) do not overlap, but the outputs
of the last two terms do. 	

4.1.10 Overlap-Add Block Convolution Method

In the above examples, the entire input signal was passed to conv as a single block of
samples. This is not feasible in those applications where the input is infinite or extremely
long. A practical approach is to divide the long input into contiguous non-overlapping
blocks of manageable length, say L samples, then filter each block and piece the output
blocks together to obtain the overall output, as shown in Fig. 4.1.6. Thus, processing is
carried out block by block.

This is known as the overlap-add method of block convolution. Each of the input
sub-blocks x0, x1, x2, . . . , is convolved with the order-M filter h producing the outputs
blocks:

y0 = h∗ x0

y1 = h∗ x1

y2 = h∗ x2

(4.1.26)

and so on. The resulting blocks are pieced together according to their absolute timing.
Block y0 starts at absolute time n = 0; block y1 starts at n = L because the correspond-
ing input block x1 starts then; block y2 starts at n = 2L, and so forth.

Because each output block is longer than the corresponding input block by M sam-
ples, the last M samples of each output block will overlap with the first M outputs of
the next block. Note that only the next sub-block will be involved if we assume that
2L > L+M, or, L > M. To get the correct output points, the overlapped portions must
be added together (hence the name, overlap-add).

142 4. FIR FILTERING AND CONVOLUTION

Fig. 4.1.6 Overlap-add block convolution method.

Example 4.1.10: Compute the output of Example 4.1.1 using the overlap-add method of block
convolution. Use input blocks of length L = 3. Perform the required individual convolu-
tions of Eq. (4.1.26) using the convolution table.

Solution: The input is divided into the following three contiguous blocks

x = [1,1,2︸ ︷︷ ︸
x0

,1,2,2︸ ︷︷ ︸
x1

,1,1,0︸ ︷︷ ︸
x2

]

where we padded an extra zero at the end of x2 to get a length-3 block. Convolving each
block separately with h = [1,2,−1,1] gives:

y0 = h∗ x0 = [1,3,3,4,−1,2]

y1 = h∗ x1 = [1,4,5,3,0,2]

y2 = h∗ x2 = [1,3,1,0,1,0]

These convolutions can be done by separately folding the three convolution subtables:

block 0 block 1 block 2

h\x 1 1 2 1 2 2 1 1 0

1 1 1 2 1 2 2 1 1 0
2 2 2 4 2 4 4 2 2 0

-1 -1 -1 -2 -1 -2 -2 -1 -1 0
1 1 1 2 1 2 2 1 1 0

The three sub-blocks begin at the absolute times n = 0,3,6, respectively. It follows from
time invariance that the corresponding output blocks will also begin at the same absolute
times. Thus, aligning the output blocks according to their absolute timings and adding
them up gives the final result:

n 0 1 2 3 4 5 6 7 8 9 10

y0 1 3 3 4 -1 2
y1 1 4 5 3 0 2
y2 1 3 1 0 1

y 1 3 3 5 3 7 4 3 3 0 1

4.1. BLOCK PROCESSING METHODS 143

which agrees with Example 4.1.1. 	

The method can be implemented by the following algorithm, which reads the input
data in blocks x of length L and outputs the result also in blocks of length L:

for each length-L input block x do:
1. compute length-(L+M) output: y = h∗ x
2. for i = 0,1, . . . ,M−1:

y(i)= y(i)+ytemp(i) (overlap)
ytemp(i)= y(i+ L) (save tail)

3. for i = 0,1, . . . , L−1:
output y(i)

It uses a temporary M-dimensional vector ytemp to store the last M samples of each
previous block. Before processing the first block, ytemp must be initialized to zero.

After computing the length-(L+M) filter output y = h ∗ x, the first M samples of
y are added to the last M samples of the previous block held in ytemp. Then, the last
M samples of the currently computed block y are saved in ytemp for use in the next
iteration. Only the first L corrected output samples of y are sent to the output.

In practice this method is implemented efficiently by computing the individual block
convolutions using the FFT instead of time-domain convolution. For an FIR filter of
order M and an FFT of length N (which is a power of two), the length of each input
block x is chosen to be L = N − M. We will see later that the computational gain
of this fast convolution method versus the conventional time-domain “slow” method is
approximately

fast

slow
= log2 N

M
For example, for the values N = 1024 = 210 and M = 100, we have log2 N/M =

10/100 = 1/10, gaining a factor of 10 in computational speed. There is also an al-
ternative fast convolution method called the overlap-save method that has comparable
performance to the overlap-add method. We will also discuss it later.

The following routine blockcon.c is an implementation of the above algorithm. It
calls the routine conv to perform the convolution of each input block. In using this
routine, some care must be exercised in handling the very last input block, which in
general will have length less than L.

/* blockcon.c - block convolution by overlap-add method */

void conv();

void blockcon(M, h, L, x, y, ytemp)
double *h, *x, *y, *ytemp; ytemp is tail of previous block

int M, L; M = filter order, L = block size

{
int i;

conv(M, h, L, x, y); compute output block y

for (i=0; i<M; i++) {

144 4. FIR FILTERING AND CONVOLUTION

y[i] += ytemp[i]; add tail of previous block

ytemp[i] = y[i+L]; update tail for next call

}
}

The quantities h, x, y, ytemp are arrays and must be allocated in the main program,
for example, using calloc:

double *h, *x, *y, *ytemp;
h = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

x = (double *) calloc(L, sizeof(double)); L–dimensional

y = (double *) calloc(L+M, sizeof(double)); (L+M)–dimensional

ytemp = (double *) calloc(M, sizeof(double)); M–dimensional

To illustrate the usage of such a routine, suppose the input samples to be filtered
have been stored sequentially† in a data file x.dat. Suppose also that the computed
samples will be stored in the output file y.dat.

The following program segment keeps reading samples from the file x.dat in blocks
of length L. For each such input block, it calls the routine blockcon to compute and
save the output block in the file y.dat. When the end-of-file of x.dat is encountered,
it determines the length of the last input block and calls blockcon one more time to
process the last block.

for (;;) { keep reading input blocks

for (N=0; N<L; N++)
if (fscanf(fpx, "%lf", x+N) == EOF) goto last;

blockcon(M, h, L, x, y, ytemp); process input block

for (i=0; i<L; i++) write output block

fprintf(fpy, "%lf\n", y[i]);
}

last:
blockcon(M, h, N, x, y, ytemp); last block has N ≤ L

for (i=0; i<N+M; i++) last output block

fprintf(fpy, "%lf\n", y[i]);

Note that x+N stands for the address of x[N], that is, &x[N]. The function fscanf returns
EOF upon encountering the end of file x.dat. The last processed block has lengthN ≤ L.
The entire last output block of length (N+M) is written into the output file. The last M
output samples represent the input-off transients. The file pointers, fpx, fpy, must be
declared and defined in the main program by:

FILE *fpx, *fpy; file pointers

fpx = fopen("x.dat", "r"); open for read

fpy = fopen("y.dat", "w"); open for write

†Separated by white space, such as blanks, tabs, or newlines.

4.2. NUMERICAL EVALUATION OF CONTINUOUS-TIME CONVOLUTION 145

4.2 Numerical Evaluation of Continuous-Time Convolution

In continuous-time (CT), convolution integrals can be computed exactly only for simple
functions h(t) and x(t) that lead to closed-form expressions for those integrals,

y(t)=
∫∞
−∞

h(t′)x(t − t′)dt′ =
∫∞
−∞

h(t − t′)x(t′)dt′ (4.2.1)

For arbitrary signals, such integrals may be evaluated numerically. For example, a
numerical approximation to the integral of the LTI form is obtained by considering the
discrete time instants tn = nT, where T is a small time step, and writing the integral as
the limit of a sum:

y(t)=
∫
h(t − τ)x(τ)dτ = lim

T→0

[
T
∑
m
h(t − tm)x(tm)

]
(4.2.2)

where the extra factor T represents the dτ infinitesimal. Eq. (4.2.2) follows from the
definition of integrals as limits. For small enoughT, we may drop the limiting instruction
and use the approximation,

y(t)=
∫
h(t − τ)x(τ)dτ ≈ T

∑
m
h(t − tm)x(tm) (4.2.3)

Other, more refined, approximations are possible, such as using the trapezoidal rule,
however, Eq. (4.2.3) is adequate for our purposes. Replacing t by the sampled time
instant, tn = nT, we finally obtain,

y(tn)=
∫
h(tn − τ)x(τ)dτ ≈ T

∑
m
h(tn − tm)x(tm) (4.2.4)

This can be implemented by the MATLAB code:

y = T * conv(h,x); (4.2.5)

where hn, xn are the arrays h(tn), x(tn), and, of course, one must truncate x(tn), h(tn)
to finite-duration arrays for the purpose of computation.

The above numerical approximation method is equivalent to the so-called impulse
invariance discretization method, discussed in Chap. 21.

4.2.1 Computer Experiment – Numerical Approximation

This example demonstrates the linearity and time-invariance properties of LTI systems
and also looks at the issue of the numerical approximation of convolution, that is, (i)
truncating the signals and (ii) replacing CT convolution by finite discrete-time (DT) con-
volution as in Eq. (4.2.5). We will observe that such approximation gets better as the
sampling interval T gets smaller.

Consider a system described by the following differential equation, with correspond-
ing impulse response and transfer function:

dy(t)
dt

+ ay(t)= ax(t) ⇒ h(t)= ae−atu(t) , H(s)= a
s+ a

(4.2.6)

146 4. FIR FILTERING AND CONVOLUTION

Let the input signal x(t) be a square pulse of duration of td seconds, starting at t = 0,
that is,

x(t)= F(t)≡ u(t)−u(t − td) , td > 0 (4.2.7)

The exact convolutional output due to the input F(t) was found in Example 1 of this
set:

yexact(t)= G(t)≡ e−at
[
ea min(t,td) − 1

]
u(t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− e−at , 0 ≤ t ≤ td

e−a(t−td)
[
1− e−atd

]
, t ≥ td

0 , t < 0

(4.2.8)

These expressions define the functions F(t),G(t) that are used later. They can be
implemented in MATLAB as anonymous functions (assuming that td and a have already
been defined previously),

% define td,a here

F = @(t) (t>=0) - (t>=td);

G = @(t) exp(-a*t) .* (exp(a*min(t,td)) - 1) .* (t>=0);

From the linearity and time-invariance of the system, we know that if one takes as
input a linear combination of shifted copies of F(t), then, the output would be the same
linear combination of shifted copies of G(t), for example,

x(t) = c1F(t − t1)+c2F(t − t2)+c3F(t − t3)

y(t) = c1G(t − t1)+c2G(t − t2)+c3G(t − t3)
(4.2.9)

(a) Define the signals, h(t), x(t), of Eqs. (4.2.6) and (4.2.9), for the following choice
of parameters over a maximum time interval of Tmax = 25, and pulse duration,
td = 1,

a = 0.9 , T = 0.05 , [c1, c2, c3]= [1, 2, 1.5] , [t1, t2, t3]= [0, 10, 15]

with t defined to span the [0, Tmax] interval in steps of T, that is, t = 0:T :Tmax.
Using the approximation of Eq. (4.2.5), calculate the output y(t), as well as the
exact output using Eq. (4.2.9), and plot both of them on the same graph, together
with the input signal x(t).

For plotting purposes you may wish to keep only the first, N = length(t), con-
volutional outputs. This can be accomplished by redefining the computed output
vector by:

4.2. NUMERICAL EVALUATION OF CONTINUOUS-TIME CONVOLUTION 147

y = y(1:length(t));

(b) Observe in part (a) that because of the very short duration of the input pulses, the
outputs due to the individual pulses can be clearly discerned, each being scaled
and delayed by the proper amounts. If the pulse duration is increased, these
outputs will begin to overlap.

Repeat part (a) for the pulse duration value, td = 3. The input pulses do not
overlap, but the output ones overlap more strongly because the transient portions
are closer to each other.

Repeat part (a) for the pulse duration value, td = 5, corresponding to the case
when the last two pulses are just adjacent without overlap.

(c) To assess the nature of the approximation of Eq. (4.2.5), repeat parts (a,b) for the
smaller value of the time step T = 0.01, and for the larger value T = 0.1.

Solution

The typical MATLAB code for generating parts (a,b,c) is as follows, with some of the
graphs shown at the end.

a = 0.9; td = 1; % run also with td=3 and td=5

F = @(t) (t>=0) - (t>=td);

G = @(t) exp(-a*t) .* (exp(a*min(t,td)) - 1) .* (t>=0);

t1 = 0; c1 = 1; % input parameters

t2 = 10; c2 = 2;

t3 = 15; c3 = 1.5;

Tmax = 25; T = 0.05; % run also with T=0.01 and T=0.1

t = 0:T:Tmax;

h = a*exp(-a*t); % system

x = c1*F(t-t1) + c2*F(t-t2) + c3*F(t-t3); % input

y = T * conv(h,x); % conv output

y = y(1:length(t)); % truncate y

ye = c1*G(t-t1) + c2*G(t-t2) + c3*G(t-t3); % exact output

figure; plot(t,x,’k--’, t,y,’b-’, t,ye, ’r--’);

xlabel(’\itt’);

148 4. FIR FILTERING AND CONVOLUTION

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 1, T = 0.05

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 3, T = 0.05

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 5, T = 0.05

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 1, T = 0.1

 input
 conv
 exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 3, T = 0.1

 input
 conv
 exact

4.2. NUMERICAL EVALUATION OF CONTINUOUS-TIME CONVOLUTION 149

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

t

t
d
 = 5, T = 0.1

 input
 conv
 exact

The graphs for the case T = 0.01 are not shown since the approximate outputs com-
puted by Eq. (4.2.5) are virtually indistinguishable from the exact ones.

4.2.2 Computer Experiment – Transient and Steady-State Behavior

This example illustrates the transient and steady-state sinusoidal responses of linear
systems, as well as the analytical and numerical computation of convolution. Consider
a signal consisting of three consecutive sinusoidal bursts,

x(t)=

⎧⎪⎪⎨⎪⎪⎩
sin(ω1t), 0 ≤ t < 30

sin(ω0t), 30 ≤ t < 70

sin(ω1t), 70 ≤ t < 100

where ω0 = 2 and ω1 = 3. It can be generated over the time interval, 0 ≤ t ≤ 100, by
the following MATLAB code segment:

w0=2; w1=3; Tmax=100; T=Tmax/2000; % T = 0.05 can be changed

t = 0:T:Tmax;

x = sin(w1*t) .* F(t,30) + ...

sin(w0*t) .* F(t-30,40) + ...

sin(w1*t) .* F(t-70,30);

where the pulse function F(t, td) is defined as in the previous example, however, here
way may think of it as function of two variables, t, td,

F = @(t,td) (t>=0) - (t>=td);

It is desired to eliminate the middle burst by means of a notch filter:

H(s)= s2 +ω2
0

s2 +αs+ω2
0

(4.2.10)

where ω0 = 2 is the notch frequency coinciding with the frequency of the middle burst,
and α = 0.3 is a parameter that represents the 3-dB width of the notch, α = Δω, (see

150 4. FIR FILTERING AND CONVOLUTION

graph below), thus, the filter Q is, Q = ω0/Δω = ω0/α. It can be verified that the
impulse response of this filter is:

h(t)= δ(t)−g(t) , g(t)= αe−αt/2
[

cos(ωrt)− α
2ωr

sin(ωrt)
]
u(t)

ωr =
√
ω2

0 −
α2

4

where it is recognized as an “underdamped” case since ω0 > α/2.† It follows that the
output signal will be given by the convolution integral (starting from t = 0− so that the
δ(t) term will be included),

y(t)=
∫∞

0−
h(t′)x(t−t′)dt′ =

∫∞
0−

[
δ(t′)−g(t′)]x(t−t′)dt′ = x(t)−

∫∞
0−
g(t′)x(t−t′)dt′

which can be implemented approximately by the MATLAB code:

y = x - T * conv(g,x); (4.2.11)

(a) Compute the output signal y(t) using Eq. (4.2.11) and plot it versus t. On a sepa-
rate graph, but using the same vertical and horizontal scales, plot the input signal
x(t). Note the removal of the middle burst after the transients have decayed.

The first and third bursts have also been attenuated by a slight amount, with a
new amplitude equal approximately to |H(ω1)| — this is only an approximation
because steady-state is not yet reached for these bursts.

Calculate the numerical value of |H(ω1)| and, on the graph for y(t), add hori-
zontal lines at that level for the first and third bursts (see the blue line segments
in the example graphs below).

(b) Calculate the 40-dB time constant of this filter given in general by,

τ = − ln
(
10−40/20

)
|Re(p)| = ln(100)

|Re(p)| (4.2.12)

where p is the stable pole closest to the jω axis. Is the value of τ consistent with
the transients that you observe in the plot of y(t)?

(c) Calculate the output signal y(t) by the alternative method of using the function,
lsim, and make a plot of y(t) using the same scales as in part (a). Compare the
outputs from the lsim and conv methods by computing the percentage error as
the ratio,

Error = 100 · ‖yconv − ylsim‖
‖yconv‖

where the norm ‖y‖ can be computed with the built-in function norm.

†the filter poles are at, p = −α/2± jωr , in the left-hand s-plane

4.2. NUMERICAL EVALUATION OF CONTINUOUS-TIME CONVOLUTION 151

(d) The frequency and magnitude responses of the transfer functionH(s) of Eq. (4.2.10)
are,

H(ω)= ω2
0 −ω2

ω2
0 −ω2 +αjω

⇒ |H(ω)|2 = (ω2 −ω2
0)2

(ω2 −ω2
0)2+α2ω2

(4.2.13)

The (positive) left and right 3-dB frequencies ω±, that is, the solutions of the 3-dB
half-power condition, |H(ω)|2 = 1/2, are given by,

ω± = ±α
2
+
√
ω2

0 +
α2

4
(4.2.14)

Note that these frequencies satisfy the following useful relationships,†

ω+ −ω− = α
ω+ω− =ω2

0
(4.2.15)

where, Δω =ω+ −ω− = α, represents the 3-dB width of the notch. Make a plot
of the magnitude-square response |H(ω)|2 over the interval, 0 ≤ ω ≤ 5, and
add to it (with dots) the points at ω =ω0 (the notch), and at ω =ω1. Also, add
the horizontal line between the two 3-dB frequencies ω± in order to indicate the
width of the notch.

(e) Repeat parts (a–d) for the case α = 0.9. Now the time constant and the transients
will be shorter, but the notch width will be wider, and the first and last bursts at
ω1 will be more distorted in amplitude.

By combining Eqs. (4.2.12) and (4.2.15), show that the 40-dB time constant and the
3-dB width satisfy the following inverse relationship, which is a form of the uncer-
tainty principle and captures the tradeoff between time constant and narrowness
of the notch,

τ = 2 ln(100)
Δω

More generally, this tradeoff states that the more stringent the filter specifications
in the frequency domain, the longer the filter time constants in the time domain.

†First prove, ω2+ω2− =ω4
0, then, use the identity, (ω+ −ω−)2=ω2+ +ω2− − 2ω+ω−

152 4. FIR FILTERING AND CONVOLUTION

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

input signal, x(t)

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), conv method, a = 0.3

 y(t)
 |H(ω

1
)|

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), lsim method, a = 0.3

 y(t)
 |H(ω

1
)|

0 1 2 3 4 5
0

0.5

1

3−dB width

ω
1

notch filter, |H(ω)|2, a = 0.3

ω

The graphs for the case, a = 0.9, are shown below, where we again the basic tradeoff
between time constant and narrowness of the notch is observed.

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

input signal, x(t)

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), conv method, a = 0.9

 y(t)
 |H(ω

1
)|

4.2. NUMERICAL EVALUATION OF CONTINUOUS-TIME CONVOLUTION 153

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

t

output signal, y(t), lsim method, a = 0.9

 y(t)
 |H(ω

1
)|

0 1 2 3 4 5
0

0.5

1

3−dB width

ω
1

notch filter, |H(ω)|2, a = 0.9

ω

The typical MATLAB code for generating the above graphs is as follows:

F = @(t,td) (t>=0) - (t>=td); % pulse function

Tmax = 100; T = Tmax/2000; % try also, T=0.01

t = 0:T:Tmax; % sampled in steps of T

w0 = 2; w1 = 3; a = 0.3; wr = sqrt(w0^2 - a^2/4);

tau = 2*log(100)/a; % 40-dB time constant, tau=30.7

wa = -a/2 + sqrt(a^2/4 + w0^2); % left/right 3-dB frequencies
wb = +a/2 + sqrt(a^2/4 + w0^2);

x = sin(w1*t).*F(t,30) + sin(w0*t).*F(t-30,40) + sin(w1*t).*F(t-70,30);
g = a*exp(-a*t/2) .* (cos(wr*t) - a/2/wr * sin(wr*t));

yg = T*conv(g,x); yg = yg(1:length(t)); % truncate to length(t)
y = x - yg; % convolutional output

H1 = abs((w0^2 - w1^2)/(w0^2 - w1^2 + j*a*w1)); % |H(w1)| = 0.9686 when a=0.3
y1 = NaN(size(t)); y1(t<=30 | t>=70) = H1; % constant envelope

s = tf(’s’); % transfer function class
H = (s^2 + w0^2)/(s^2 + a*s + w0^2);
yf = lsim(H,x,t)’; % LSIM output

percent_error = 100 * norm(y-yf)/norm(y) % Error = 0.9725 for a = 0.3
% redo with T=0.01 for improvement

figure; plot(t,x,’b-’); % plot input
figure; plot(t,y,’r-’, t,y1,’b-’, t,-y1,’b-’); % plot convolutional output
figure; plot(t,yf,’r-’, t,y1,’b-’, t,-y1,’b-’); % plot LSIM output
xlabel(’\itt’);

w = linspace(0,5,501); s = j*w; % frequency axis
H = abs((s.^2+w0^2)./(s.^2+a*s+w0^2)).^2; % magnitude-response square |H(w)|^2

figure; plot(w,H,’b-’, w0,0,’r.’, w1,H1^2,’r.’);
hold on; plot([wa,wb], [1,1]/2, ’r-’) % add 3-dB width

154 4. FIR FILTERING AND CONVOLUTION

xlabel(’\omega’);

4.3 Sample Processing Methods

Convolution methods process the input signal on a block-by-block basis. Here, we dis-
cuss alternative formulations of FIR filters that operate on a sample-by-sample basis.
As we mentioned earlier, such methods are convenient for real-time applications that
require the continuous processing of the incoming input.

Sample processing algorithms are closely related to block diagram realizations of the
I/O filtering equations. A block diagram is a mechanization of the I/O equation in terms
of the three basic building blocks: adders, multipliers, and delays, shown in Fig. 4.3.1.

x(n) x(n-1)z-1

x1(n)

x2(n)

x1(n) + x2(n)

x(n)
a

x(n)a

Fig. 4.3.1 Basic building blocks of DSP systems.

In general, a filter may have several equivalent block diagram realizations depend-
ing on how its I/O equation is organized. Each realization gives rise to its own sample
processing algorithm. Some standard filter realizations are the direct, canonical, and
cascade forms and the corresponding transposed versions. We will discuss them sys-
tematically in a later chapter. In this chapter, we consider only the direct form for FIR
filters; its transpose is discussed in the Problems.

4.3.1 Pure Delays

As an introduction to the concept of a sample processing algorithm, consider the case
of a single delay, shown in Fig. 4.3.2. It is an LTI system with I/O relationship:

y(n)= x(n− 1)

It can be thought of as a register holding the previous input sample x(n − 1). At
each time instant n, two steps must be carried out: (a) the current content x(n − 1)
is clocked out to the output and (b) the current input x(n) gets stored in the register,
where it will be held for one sampling instant and become the output at the next time
n+1.

We can think of the content of the delay register at time n as the internal state of
the filter. Let us denote it by

4.3. SAMPLE PROCESSING METHODS 155

x(n)
w1(n)

y(n)z-1

Fig. 4.3.2 Single delay.

w1(n)= x(n− 1) (internal state at time n)

Thus, the output is y(n)= w1(n). Replacing n by n+1, we obtain the content of the
register at the next time instant,

w1(n+ 1)= x(n) (internal state at time n+1)

The two processing steps (a) and (b) can be expressed then as follows:

y(n)= w1(n)

w1(n+ 1)= x(n)
(4.3.1)

In words, at time n the content of the register w1(n) becomes the output and the
input x(n) is saved and becomes the new content. At time n+1, the two steps are
repeated:

y(n+ 1)= w1(n+ 1)

w1(n+ 2)= x(n+ 1)

The internal state w1(n + 1) is available from the previous time step when it was
saved; the current input x(n+1) is also available and gets saved for the next time step.
Before processing the first input sample, the delay register is typically initialized to zero,
that is, at time n = 0 it contains

w1(0)= 0

The following table shows the values of the input x(n), the internal state w1(n), and
the output y(n) at different time instants:

n x(n) w1(n) y(n)
0 x0 0 0
1 x1 x0 x0

2 x2 x1 x1

3 x3 x2 x2

4 x4 x3 x3

...
...

...
...

Thus, the input sequence gets delayed as a whole by one time unit:

[x0, x1, x2, x3, . . .]
H−→ [0, x0, x1, x2, x3, . . .]

156 4. FIR FILTERING AND CONVOLUTION

The two steps of Eq. (4.3.1), representing the output and the state updating, can be
expressed in the following algorithmic form, which applies repetitively to every input
sample:

for each input sample x do:
y :=w1

w1 :=x
This is the sample-by-sample processing algorithm implementing a single delay.

Consider next a double delay, depicted in Fig. 4.3.3. Its I/O equation is

y(n)= x(n− 2)

x(n)
w1(n) w2(n)

y(n)z-1 z-1

Fig. 4.3.3 Double delay.

Now, there are two registers holding the previous two input samples. Denoting the
contents of the two registers by w1(n) and w2(n), we note that w1(n) is the delayed
version of the input x(n), and w2(n) the delayed version of w1(n):

w2(n)= w1(n− 1)

w1(n)= x(n− 1)
(4.3.2)

Therefore, w2(n) is the doubly delayed version of x(n):

w2(n)= w1(n− 1)= x((n− 1)−1)= x(n− 2)

At time n, w2(n) becomes the output, y(n)= w2(n), and the contents of the two
registers are updated in preparation for the next time step, that is,

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

In words, the next contents of the two registers are obtained by shifting w1 into w2,
and x into w1. In summary, the I/O equations describing the double delay are:

y(n)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

The repetitive sample processing algorithm describing these equations is:

for each input sample x do:
y :=w2

w2 :=w1

w1 :=x

4.3. SAMPLE PROCESSING METHODS 157

Note, that the order of updating the internal states is important: the last delay must
always be updated first. Once the current value ofw1 has been shifted intow2, the value
of w1 may be overwritten by x.

The following table shows the values of x(n), the contents of the two registers
w1(n), w2(n), and the output y(n) at different times (with zero initial values w1(0)=
w2(0)= 0):

n x(n) w1(n) w2(n) y(n)
0 x0 0 0 0
1 x1 x0 0 0
2 x2 x1 x0 x0

3 x3 x2 x1 x1

4 x4 x3 x2 x2

5 x5 x4 x3 x3

...
...

...
...

...

A triple delay, shown in Fig. 4.3.4, can be described in a similar fashion. Let w1(n),
w2(n), and w3(n) denote the contents of the three registers at time n. They are suc-
cessive delays of each other, that is,

w3(n)= w2(n− 1)

w2(n)= w1(n− 1)

w1(n)= x(n− 1)

x(n)
w1(n) w2(n) w3(n)

y(n)z-1 z-1 z-1

Fig. 4.3.4 Triple delay.

Thus, w3(n)= w2(n− 1)= w1(n− 2)= x(n− 3). Their updates to time n+1 are:

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

(4.3.3)

Therefore, the I/O equations for a triple delay will be:

y(n)= w3(n)

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

158 4. FIR FILTERING AND CONVOLUTION

And the corresponding sample processing algorithm:

for each input sample x do:
y :=w3

w3 :=w2

w2 :=w1

w1 :=x

In general, for a delay by D units of time, shown in Fig. 4.3.5, the contents of the D
registers are denoted by wi(n), i = 1,2, . . . ,D. For convenience, the input is denoted
by w0(n). The output of each register is the delayed version of its input:

wi(n)= wi−1(n− 1), for i = 1,2, . . . ,D (4.3.4)

w0(n)w0(n) w1(n) w2(n) wD(n)wD-1(n)wD(n)
. . .z-D z-1 z-1z-1

Fig. 4.3.5 D-unit delay.

At time n, the content of the Dth register is output, y(n)= wD(n). Then, in prepa-
ration for the next time step, the content of the wD−1 register is shifted into wD, the
content of wD−2 is shifted into wD−1, and so on, and finally the current input w0 is
shifted into w1. These updates may be expressed by replacing n by n+1 in Eq. (4.3.4)
and reversing the order of the equations. The complete set of I/O equations describing
a D-delay becomes:

y(n)= wD(n)

w0(n)= x(n)

wi(n+ 1)= wi−1(n), i = D,D−1, . . . ,2,1

The corresponding sample processing algorithm will be:

for each input sample x do:
y :=wD
w0 :=x
for i = D,D−1, . . . ,1 do:

wi :=wi−1

or, more simply:

for each input sample w0 do:
for i = D,D−1, . . . ,1 do:

wi :=wi−1

The following C routine delay.c is an implementation of this algorithm:

4.3. SAMPLE PROCESSING METHODS 159

/* delay.c - delay by D time samples */

void delay(D, w) w[0] = input, w[D] = output

int D;
double *w;
{

int i;

for (i=D; i>=1; i--) reverse-order updating

w[i] = w[i-1];

}

The array w has dimension D+1 and must be allocated in the main program by a state-
ment of the form:

double *w;
w = (double *) calloc(D+1, sizeof(double)); (D+1)–dimensional

The array w serves both as input and output of the routine. Upon exit, w is the shifted
version of itself. Prior to the first call of this routine, the array w must be initialized to
zero. This is indirectly accomplished by calloc. The usage of the routine is illustrated
by the following program segment, which implements the I/O equation y(n)= x(n−D),
for n = 0,1, . . . ,Ntot − 1:

for (n = 0; n < Ntot; n++) {
y[n] = w[D]; write output

w[0] = x[n]; read input

delay(D, w); update delay line

}

We will use this routine to implement FIR and IIR filters and also, in cascaded and
feedback arrangements, to implement several digital audio effects, such as digital reverb,
and to implement periodic waveform generators.

When used in feedback configurations, we note that its output w[D] is available even
before the input w[0]. This is illustrated to some degree by the above program segment,
where the output is returned before the input is read into w[0]. However, the current
input w[0] must be known before the delay line can be updated by the call to delay.

4.3.2 FIR Filtering in Direct Form

We saw in Eq. (4.1.23) that the direct form I/O convolutional equation for an FIR filter
of order M is given by

y(n)= h0x(n)+h1x(n− 1)+· · · + hMx(n−M) (4.3.5)

with impulse response h = [h0, h1, . . . , hM]. For example, a third-order filter

h = [h0, h1, h2, h3]

will have I/O equation:

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)+h3x(n− 3) (4.3.6)

160 4. FIR FILTERING AND CONVOLUTION

In order to mechanize this equation, we need to use an adder to accumulate the sum
of products in the right-hand side; we need multipliers to implement the multiplications
by the filter weights; and, we need delays to implement the delayed terms x(n − 1),
x(n− 2), x(n− 3).

Fig. 4.3.6 shows a mechanization of Eq. (4.3.6). It is called a direct form realization
because it directly realizes all the terms in the right-hand side. The four inputs to the
adder are the four terms of the right-hand side of Eq. (4.3.6), and the output of the adder
is the left-hand side.

x(n) y(n)

x(n-1)

x(n-2)

x(n-3)

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.3.6 Direct form realization of third-order filter.

The three delays are equivalent to the triple delay of Fig. 4.3.4, and therefore, we can
introduce the same set of three internal states w1(n), w2(n), w3(n) to describe the
contents of the three registers. Thus, we define:

w0(n)= x(n)

w1(n)= x(n− 1)= w0(n− 1)

w2(n)= x(n− 2)= w1(n− 1)

w3(n)= x(n− 3)= w2(n− 1)

(4.3.7)

so that each is a delayed version of the previous one. With these definitions, we can
rewrite Eq. (4.3.6) in the form:

y(n)= h0w0(n)+h1w1(n)+h2w2(n)+h3w3(n) (4.3.8)

Fig. 4.3.7 shows the realization in this case. The advantage of this equation is that
all the terms in the right-hand side refer to the same time instant n. All are available for
processing at time n; that is, w0(n) is the current input x(n), and wi(n), i = 1,2,3 are
the current contents of the delay registers.

The set of delays is sometimes called a tapped delay line because the individual
outputs of each delay are tapped out and diverted into the filter multipliers.

Once the current output is computed, the delay registers may be updated to hold the
values that will be needed at the next time instant n+1. The updating is implemented

4.3. SAMPLE PROCESSING METHODS 161

x(n) y(n)
w0(n)

w1(n)

w2(n)

w3(n)

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.3.7 Direct form with internal states.

via Eq. (4.3.4), that is, by shifting from the bottom up, w2 into w3, w1 into w2, and w0

into w1. Thus, the I/O equation (4.3.6) is equivalent to the system:

w0(n)= x(n)

y(n)= h0w0(n)+h1w1(n)+h2w2(n)+h3w3(n)

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= w0(n)

(4.3.9)

It can be mechanized by the following sample-by-sample processing algorithm:†

for each input sample x do:
w0 = x
y = h0w0 + h1w1 + h2w2 + h3w3

w3 = w2

w2 = w1

w1 = w0

(4.3.10)

It is shown in Fig. 4.3.8. Thus, each input sample x is subjected to this algorithm
and transformed to the output sample y. Before processing the first input sample, the
internal states w1, w2, and w3 must be initialized to zero.

The input-off and input-on transient behavior of an FIR filter can be understood in
terms of the block diagram realization. Initially, the delay registers are cleared to zero.
During the input-on transients, the three delays gradually fill up with input samples. It
takes M = 3 time units for that to happen. Similarly when the input turns off, it takes
the last input sample M time units to propagate through the delays, that is, it takes M
time units for the delays to empty out their contents and be filled with zeros again.

†For notational simplicity, we used = instead of :=.

162 4. FIR FILTERING AND CONVOLUTION

x y
w0

w1

w2

w3

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.3.8 Block diagram form of sample processing algorithm.

The following table shows the contents of the delays at different times and the cor-
responding outputs for the length-5 input given in Eq. (4.1.18):

n x w0 w1 w2 w3 y = h0w0 + h1w1 + h2w2 + h3w3

0 x0 x0 0 0 0 h0x0

1 x1 x1 x0 0 0 h0x1 + h1x0

2 x2 x2 x1 x0 0 h0x2 + h1x1 + h2x0

3 x3 x3 x2 x1 x0 h0x3 + h1x2 + h2x1 + h3x0

4 x4 x4 x3 x2 x1 h0x4 + h1x3 + h2x2 + h3x1

5 0 0 x4 x3 x2 h1x4 + h2x3 + h3x2

6 0 0 0 x4 x3 h2x4 + h3x3

7 0 0 0 0 x4 h3x4

(4.3.11)

Each column of w’s is the delayed (down-shifted) version of the previous one. Each
row of w’s is the delayed (right-shifted) version of the previous row. The computed out-
puts agree with Eq. (4.1.18). The three zeros padded at the end of the input correspond
to the input-off transients. Note also that the four w columns are essentially the data
matrix X of Eq. (4.1.21).

More generally, for an Mth order filter, we may define w0(n)= x(n) and for i =
1,2, . . . ,M

wi(n)= x(n− i) (4.3.12)

They satisfy
wi(n)= wi−1(n− 1), i = 1,2, . . . ,M (4.3.13)

Indeed, wi−1(n − 1)= x
(
(n − 1)−(i − 1)

) = x(n − i)= wi(n). Therefore, at the next
time instant:

wi(n+ 1)= wi−1(n), i = 1,2, . . . ,M

It follows that Eq. (4.3.5) can be written as

y(n)= h0w0(n)+h1w1(n)+· · · + hMwM(n)

4.3. SAMPLE PROCESSING METHODS 163

Thus, the FIR filter Eq. (4.3.5) is described by the following system:

w0(n)= x(n)

y(n)= h0w0(n)+h1w1(n)+· · · + hMwM(n)

wi(n+ 1)= wi−1(n), for i =M,M−1, . . . ,1

(4.3.14)

with corresponding sample processing algorithm:

for each input sample x do:
w0 = x
y = h0w0 + h1w1 + · · · + hMwM
for i =M,M−1, . . . ,1 do:

wi = wi−1

(4.3.15)

Fig. 4.3.9 shows the corresponding direct form realization.

y(n)
w0(n)

x(n)

w1(n)

w2(n)

wM(n)

z
-1

z
-1

z
-1

h0

h1

h2

hM

...

......

Fig. 4.3.9 Direct form realization of Mth order filter.

Example 4.3.1: Determine the sample processing algorithm of Example 4.1.1, which had filter
and input

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

Then, using the algorithm compute the corresponding output, including the input-off tran-
sients.

Solution: The I/O equation of this filter is

y(n)= x(n)+2x(n− 1)−x(n− 2)+x(n− 3)

Introducing the internal states wi(n)= x(n− i), i = 1,2,3, and setting w0(n)= x(n), we

164 4. FIR FILTERING AND CONVOLUTION

obtain the following system describing the output equation and the state updating:

w0(n)= x(n)

y(n)= w0(n)+2w1(n)−w2(n)+w3(n)

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= w0(n)

The corresponding block diagram realization and sample processing algorithm are shown
below:

x y
w0

z-1

z-1

z-1

w1

w2

w3

2

-1

for each input sample x do:
w0 = x
y = w0 + 2w1 −w2 +w3

w3 = w2

w2 = w1

w1 = w0

The sample processing algorithm generates the following output samples:

n x w0 w1 w2 w3 y = w0 + 2w1 −w2 +w3

0 1 1 0 0 0 1
1 1 1 1 0 0 3
2 2 2 1 1 0 3
3 1 1 2 1 1 5
4 2 2 1 2 1 3
5 2 2 2 1 2 7
6 1 1 2 2 1 4
7 1 1 1 2 2 3
8 0 0 1 1 2 3
9 0 0 0 1 1 0

10 0 0 0 0 1 1

The first three outputs correspond to the input-on transients (the internal delay registers
are still filling up). The period 3 ≤ n ≤ 7 corresponds to steady state (all delays are filled).
The last three outputs—in general, the last M outputs for an Mth order FIR filter—are the
input-off (x = 0) transients (the delays gradually empty out their contents). 	

Example 4.3.2: To illustrate the repetitive nature of the sample processing algorithm, we present
a small C program that implements the previous example.

/* firexmpl.c - Example of FIR sample processing algorithm */

#include <stdio.h>
#include <stdlib.h> declares calloc

4.3. SAMPLE PROCESSING METHODS 165

double x[8] = {1,1,2,1,2,2,1,1}; input signal

double filter();

void main()
{

int n;
double y, *w;

w = (double *) calloc(4, sizeof(double)); allocate/initialize w

for (n=0; n<8; n++) { on-transients & steady state

y = filter(x[n], w); nth output sample

printf("%lf\n", y);
}

for (n=8; n<11; n++) { input-off transients

y = filter(0.0, w); called with x = 0

printf("%lf\n", y);
}

} end of main

double filter(x, w) Usage: y = filter(x, w);

double x, *w;
{

double y;

w[0] = x; read input sample

y = w[0] + 2 * w[1] - w[2] + w[3]; compute output sample

w[3] = w[2]; update internal states

w[2] = w[1];
w[1] = w[0];

return y;
}

The sample processing algorithm is implemented by the routine filter whose input is
the current input sample and the internal states w. At each call, it returns the computed
output sample and the updated state vector w. The routine filter is called 8 times (i.e.,
the length of the input) producing the first 8 outputs. Then, it is called 3 more times
(M = 3), to generate the input-off transients. The total number of output samples is
Ly = L+M = 11. 	

Example 4.3.3: Draw the direct form realization and write the corresponding sample process-
ing algorithm of the FIR filter defined by the I/O equation:

y(n)= x(n)−x(n− 4)

For the input x = [1,1,2,1,2,2,1,1], compute the output using the sample processing
algorithm.

166 4. FIR FILTERING AND CONVOLUTION

Solution: Because the filter has order M = 4, we define the following internal states:

w0(n) = x(n)

w1(n) = x(n− 1)= w0(n− 1)

w2(n) = x(n− 2)= w1(n− 1)

w3(n) = x(n− 3)= w2(n− 1)

w4(n) = x(n− 4)= w3(n− 1)

Then, the given I/O equation together with the state-updating equations will read:

w0(n)= x(n)

y(n)= w0(n)−w4(n)
and

w4(n+ 1) = w3(n)

w3(n+ 1) = w2(n)

w2(n+ 1) = w1(n)

w1(n+ 1) = w0(n)

This leads to the following sample processing algorithm and block diagram realization:

x y
w0

z-1

z-1

z-1

z-1

w1

w2

w3

w4
-1

for each input sample x do:
w0 = x
y = w0 −w4

w4 = w3

w3 = w2

w2 = w1

w1 = w0

The following table shows the computation of the output.

n x w0 w1 w2 w3 w4 y = w0 −w4

0 1 1 0 0 0 0 1

1 1 1 1 0 0 0 1

2 2 2 1 1 0 0 2

3 1 1 2 1 1 0 1

4 2 2 1 2 1 1 1

5 2 2 2 1 2 1 1

6 1 1 2 2 1 2 −1

7 1 1 1 2 2 1 0

8 0 0 1 1 2 2 −2

9 0 0 0 1 1 2 −2

10 0 0 0 0 1 1 −1

11 0 0 0 0 0 1 −1

4.3. SAMPLE PROCESSING METHODS 167

The 4 zeros padded at the end of the input correspond to the input-off transients, during
which the contents of the delays gradually become empty. A similar program as the above
firexmpl.c can be used to implement this example. The function filter will be in this
case:

double filter(x, w) Usage: y = filter(x, w);

double x, *w;
{

double y;

w[0] = x; read input sample

y = w[0] - w[4]; compute output sample

w[4] = w[3]; update internal states

w[3] = w[2];
w[2] = w[1];
w[1] = w[0];

return y;
}

where w must be allocated as a 5-dimensional array in the main program. 	

4.3.3 Programming Considerations

The following C routine fir.c is an implementation of the sample processing algorithm
Eq. (4.3.15):

/* fir.c - FIR filter in direct form */

double fir(M, h, w, x) Usage: y = fir(M, h, w, x);

double *h, *w, x; h = filter, w = state, x = input sample

int M; M = filter order

{
int i;
double y; output sample

w[0] = x; read current input sample x

for (y=0, i=0; i<=M; i++)
y += h[i] * w[i]; compute current output sample y

for (i=M; i>=1; i--) update states for next call

w[i] = w[i-1]; done in reverse order

return y;
}

It is the generalization of the example routine filter to the Mth order case. It is
patterned after the Fortran and C routines in [45]. The routine returns the computed
output sample into a double, so that its typical usage will be of the form:

y = fir(M, h, w, x);

168 4. FIR FILTERING AND CONVOLUTION

The filter vector h and internal state w are (M+1)-dimensional arrays, which must
be defined and allocated in the main program by the statements:

double *h, *w;
h = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

w = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

Note that calloc initializes w to zero. The following program segment illustrates the
usage of the routine. The input samples are read one at a time from an input file x.dat,
and the output samples are written one at a time into the output file y.dat, as they are
computed.

FILE *fpx, *fpy;
fpx = fopen("x.dat", "r"); input file

fpy = fopen("y.dat", "w"); output file

while(fscanf(fpx, "%lf", &x) != EOF) { read x from x.dat

y = fir(M, h, w, x); process x to get y
fprintf(fpy, "%lf\n", y); write y into y.dat

}

for (i=0; i<M; i++) { M input-off transients

y = fir(M, h, w, 0.0); with x = 0

fprintf(fpy, "%lf\n", y);
}

Filtering stops as soon as the end of file of x.dat is detected and then the input-off
transients are computed by making M additional calls to fir with zero input.

The fir routine performs three basic operations: (i) reading the current input sam-
ple, (ii) computing the current output by the dot product of the filter vector with the state
vector, and (iii) updating the delay line containing the states. The dot product operation
is defined by

y = h0w0 + h1w1 + · · · + hMwM = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
w0

w1

...
wM

⎤⎥⎥⎥⎥⎥⎦ = hTw

and can be implemented by the following routine dot.c:

/* dot.c - dot product of two length-(M+1) vectors */

double dot(M, h, w) Usage: y = dot(M, h, w);

double *h, *w; h = filter vector, w = state vector

int M; M = filter order

{
int i;
double y;

for (y=0, i=0; i<=M; i++) compute dot product

y += h[i] * w[i];

return y;
}

4.3. SAMPLE PROCESSING METHODS 169

The updating of the delay line can be implemented by the routine delay given earlier.
Therefore, a second version of fir, which separates these three conceptual parts, is as
follows:

/* fir2.c - FIR filter in direct form */

double dot();
void delay();

double fir2(M, h, w, x) Usage: y = fir2(M, h, w, x);

double *h, *w, x; h = filter, w = state, x = input

int M; M = filter order

{
double y;

w[0] = x; read input

y = dot(M, h, w); compute output

delay(M, w); update states

return y;
}

It has the same usage as fir. (See Appendix C for the MATLAB version fir.m.) The
sample processing algorithm Eq. (4.3.15) reads in this case:

for each input sample x do:
w0 = x
y = dot(M,h,w)
delay(M,w)

(4.3.16)

4.3.4 Hardware Realizations and Circular Buffers

The FIR filtering algorithms of Eqs. (4.3.15) or (4.3.16) can be realized in hardware using
DSP chips or special purpose dedicated hardware.

Modern programmable DSP chips, such as the Texas Instruments TMS320C25, C30,
or C50, the Motorola DSP56001, or DSP96002, the AT&T DSP16A or DSP32C, and the
Analog Devices ADSP-2101 or ADSP-21020, have architectures that are optimized for
the specialized repetitive nature of sample-by-sample processing algorithms. They ex-
cel at performing the multiplications and accumulations required in computing the dot
product y = hTw, and at performing the memory moves required in updating the con-
tents of the delay-line registers.

A generic DSP chip is shown in Fig. 4.3.10. The tapped delay-line registers wi are
sequential RAM locations on board the chip and the filter weights hi reside either in
RAM or ROM. In addition, there is program RAM or ROM on board (not shown in the
figure) to hold the instructions for the filtering algorithm. A typical DSP chip may have
data wordlengths of 16–32 bits, several double-precision accumulators, and on-board
RAM and ROM of 512 to 4k words.

The workhorse of the DSP chip is an on-board multiplier accumulator (MAC), which
implements the dot product multiplications/accumulations, that is, the operations:

170 4. FIR FILTERING AND CONVOLUTION

y :=y + hiwi

State-of-the-art DSP chips can perform this type of MAC operation in one instruction
cycle in about:

Tinstr = 30–80 nanoseconds (4.3.17)

Assuming a MAC operation counts for two floating point operations (one multipli-
cation and one addition), this corresponds to a numerical computation speed of 25–67
million floating point operations per second (MFLOPS).

For an order-M filter having M+1 taps, one would require about (M+1)Tinstr sec to
calculate the required dot product. To this time, one must add the overhead required
for shifting the input sample from the input port to the register w0, the time required
to update the delay-line registers, and the time it takes to send y to the output port.

The goal of modern DSP architectures has been to try to minimize this overhead as
much as possible. To see the type of computational efficiencies built into DSP chips, let
us rewrite the sample processing algorithm for a third-order filter given in Eq. (4.3.10)
in the following equivalent form:

for each input sample x do:
w0 :=x
y :=h3w3

w3 :=w2

y :=y + h2w2

w2 :=w1

y :=y + h1w1

w1 :=w0

y :=y + h0w0

This works because once the multiplication h3w3 is performed, the current content
of w3 is no longer needed and can be updated to the next time instant. Similarly, once
h2w2 has been accumulated into y, w2 may be updated, and so on. In general, for a
filter of order M, we can rewrite Eq. (4.3.15) in the form:

for each input sample x do:
w0 :=x
y :=hMwM
for i =M−1, . . . ,1,0 do:

wi+1 :=wi
y :=y + hiwi

(4.3.18)

In earlier generations of DSP chips, the two operations:

wi+1 :=wi

y :=y + hiwi

4.3. SAMPLE PROCESSING METHODS 171

h0 w0 y

y

y

x
h1 w1

h2 w2

h3

hi

w3

wi

hiwi

MAC

ROM or RAM RAM
OUTIN

BUS

Fig. 4.3.10 Typical DSP chip.

were carried out with two instructions, one for the data shifting and the other for the
MAC operation. In modern DSP chips, the two operations can be carried out with a single
instruction, such as MACD of the TMS320C25.

Therefore, the total processing time for each input sample is about Tinstr per filter
tap, or, for an Mth order filter:

Tproc = (M + 1)Tinstr (4.3.19)

As discussed in Chapter 1, this imposes a maximum limit on the allowed sampling
rate for the application:

T ≥ Tproc ⇒ fs ≤ 1

Tproc
(4.3.20)

Example 4.3.4: What is the longest FIR filter that can be implemented with a 50 nsec per in-
struction DSP chip for digital audio applications?

Solution: We have from Eq. (4.3.19)

T = (M + 1)Tinstr ⇒ M + 1 = T
Tinstr

= 1

fsTinstr
= finstr

fs

where the instruction rate is finstr = 1/Tinstr = 20 million instructions per second (MIPS).
For digital audio at fs = 44.1 kHz, we find

M + 1 = finstr

fs
= 20 · 106

44.1 · 103
= 453 taps

This filter length is quite sufficient to implement several digital audio algorithms. 	

The following C routine fir3.c is yet a third version of the sample-by-sample pro-
cessing algorithm implementing Eq. (4.3.18). Its usage is the same as fir’s:

172 4. FIR FILTERING AND CONVOLUTION

/* fir3.c - FIR filter emulating a DSP chip */

double fir3(M, h, w, x)
double *h, *w, x;
int M;
{

int i;
double y;

w[0] = x; read input

for (y=h[M]*w[M], i=M-1; i>=0; i--) {
w[i+1] = w[i]; data shift instruction

y += h[i] * w[i]; MAC instruction

}

return y;
}

The sample processing algorithm (4.3.18) and the routine fir3 assume a linear
delay-line memory buffer for holding the internal states {w0,w1, . . . ,wM}. At each
time instant, the data in the delay line are shifted one memory location ahead. This
arrangement is used in some DSP processors, such as the TMS32020.

An alternative way to update the internal states is to use a circular delay-line buffer.
This is used, for example, by the Motorola DSP56001/96002, the Texas Instruments
TMS320C30–C50, and the Analog Devices ADSP2101–21020 processors. Instead of shift-
ing the data forward while holding the buffer addresses fixed, the data are kept fixed
and the addresses are shifted backwards in the circular buffer. The relative movement
of data versus addresses remains the same.

To understand this, consider first the conventional linear delay-line buffer case, but
wrap it around in a circle, as shown in Fig. 4.3.11 for the case M = 3.

w1 w1

w2 w2

w3 w3

w0 w0

xn-1

xn-1

xn-3

xn+1xn-2

xn-2

xn

xn

next time

shifted
data

p p

Fig. 4.3.11 Wrapped linear delay-line buffer.

Going from time n to n+1 involves shifting the content of each register counter-
clockwise into the next register. The addresses of the four registers {w0,w1,w2,w3}
remain the same, but now they hold the shifted data values, and the first register w0

receives the next input sample xn+1.
By contrast, in the circular buffer arrangement shown in Fig. 4.3.12, instead of shift-

ing the data counterclockwise, the buffer addresses are decremented, or shifted clock-

4.3. SAMPLE PROCESSING METHODS 173

wise once, so that w3 becomes the new beginning of the circular buffer and will hold
the next input xn+1.

w1

w2

w3 w3

w0

w1

w2w0

xn-1 xn-1

xn-3 xn+1

xn-2 xn-2xn xn

next time
shifted
pointer

p
p

Fig. 4.3.12 Modulo-(M+1) circular delay-line buffer.

The internal state vectors at times n and n + 1 are the same in both the linear and
circular buffer implementations, namely,

s(n)=

⎡⎢⎢⎢⎣
xn
xn−1

xn−2

xn−3

⎤⎥⎥⎥⎦ , s(n+ 1)=

⎡⎢⎢⎢⎣
xn+1

xn
xn−1

xn−2

⎤⎥⎥⎥⎦ (4.3.21)

In both the linear and circular implementations, the starting address of the state
vector is the current input sample, and from there, the addresses pointing to the rest of
the state vector are incremented counterclockwise.

But, whereas in the linear case the starting address is always fixed and pointing to
w0, as shown in Fig. 4.3.11, the starting address in the circular case is back-shifted from
one time instant to the next. To keep track of this changing address, we introduce a
pointer variable p which always points to the current input, as shown in Fig. 4.3.12.

At each time instant, the w-register pointed to by p gets loaded with the current
input sample, that is, ∗p = x, or p[0]= x. After computing the current output, the
pointer p is decremented circularly. Figure 4.3.13 shows the position of the pointer p
at successive sampling instants.

p pp
p

w0 w0w0 w0

w1 w1w1 w1

w2 w2w2 w2

w3 w3w3 w3

n=0,4,8,... n=1,5,9,... n=2,6,10,... n=3,7,11,...

Fig. 4.3.13 Successive positions of address pointer p, repeating modulo-(M+1).

The pointer p is restricted to lie within the pointer range of the linear buffer w, that

174 4. FIR FILTERING AND CONVOLUTION

is, in C notation:
w ≤ p ≤ w+M (4.3.22)

and therefore, it will always point at some w-register, say w[q],

p = w+ q ⇒ ∗p = p[0]= w[q] (4.3.23)

where q is an integer that gives the offset of p with respect to the fixed beginning of the
w-buffer. The restriction of Eq. (4.3.22) translates to the restriction on the range of q:

0 ≤ q ≤M (4.3.24)

Inspecting the indices of the w’s pointed to by the successive p’s in Fig. 4.3.13, we
may identify the periodically repeating sequence of values of q:

q = 0,3,2,1,0,3,2,1,0,3,2,1, . . .

and in general, q cycles over the values: q = 0,M,M−1, . . . ,1.
At each time instant, the pointer p, or equivalently the offset q, defines the vector s

of internal states. The sequence of pointers p, p+1, . . . , p+M, point at the components
of the state vector, that is,

si = p[i]= ∗(p+ i)= ∗(w+ q+ i)= w[q+ i], i = 0,1, . . . ,M

This definition is correct as long as the shifted pointer p + i does not exceed the
array bounds of w, or equivalently, as long as q+ i ≤M. If q+ i > M, it must be reduced
modulo-(M+1). Therefore, the correct definition of the internal state vector defined by
the pointer p is, in C notation:

si = w[(q+ i)%(M + 1)]= w[(p−w+ i)%(M + 1)] (4.3.25)

for i = 0,1, . . . ,M, where we solved Eq. (4.3.23) for q = p−w.† In particular, note that
the first component of the state vector is:

s0 = w[q]= p[0]= ∗p = ∗(w+ q) (4.3.26)

and the last component, corresponding to i =M:

sM = w[(q+M)%(M + 1)]= w[(p−w+M)%(M + 1)] (4.3.27)

Note that sM = w[M]= p[M] if q = 0, and sM = w[q − 1]= p[−1] otherwise.
Therefore, sM is always in the w-register that circularly precedes w[q].

Assuming that the current input sample x has been read into s0 = w[q]= ∗p, that
is, ∗p = x, the corresponding output sample y will be computed by the dot product:

y =
M∑
i=0

hisi = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
s0

s1

...
sM

⎤⎥⎥⎥⎥⎥⎦ = hTs

†Some C compilers may require the cast: q = (int) (p-w).

4.3. SAMPLE PROCESSING METHODS 175

As an example illustrating Eq. (4.3.25), Fig. 4.3.14 shows p at the time when it points
to w2, so that p = w+2 and q = 2. We assume that w2 has been loaded with the current
input sample. In this case, the indices q+ i = 2+ i and their mod-4 reductions are, for
i = 0,1,2,3:

q+ i = 2+ i = 2,3,4,5 mod-4−→ 2,3,0,1

p+1

p+2

p-1=p+3

p=p+4

w3

s3

w2 s2

w1

s1

w0s0

increasing
address

starting
address

decreasing
address

Fig. 4.3.14 Internal states defined by circular pointers p+ i, i = 0,1, . . . ,M.

Therefore, the state vector defined by this value of p will be

s =

⎡⎢⎢⎢⎣
s0

s1

s2

s3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
w2

w3

w0

w1

⎤⎥⎥⎥⎦
The following table shows the succession of “rotating” state vectors of Fig. 4.3.13

and their contents, as they fill up with input samples xn at the successive time instants
n = 0,1, . . . ,7. An equivalent view is shown in Fig. 4.3.15. The wi columns show the
contents of the array w = [w0,w1,w2,w3] over which the pointer p circulates. At each
time instant, only one entry in each row changes as it receives the new input sample,
namely, the entry wq. By contrast, in the linear buffer case given in Eq. (4.3.11), all
entries of w shift. The first four si columns show the w-registers selected by p or q.
The last four si columns show the actual contents of these w-registers:

n q w0 w1 w2 w3 s0 s1 s2 s3 s0 s1 s2 s3

0 0 x0 0 0 0 w0 w1 w2 w3 x0 0 0 0
1 3 x0 0 0 x1 w3 w0 w1 w2 x1 x0 0 0
2 2 x0 0 x2 x1 w2 w3 w0 w1 x2 x1 x0 0
3 1 x0 x3 x2 x1 w1 w2 w3 w0 x3 x2 x1 x0

4 0 x4 x3 x2 x1 w0 w1 w2 w3 x4 x3 x2 x1

5 3 x4 x3 x2 x5 w3 w0 w1 w2 x5 x4 x3 x2

6 2 x4 x3 x6 x5 w2 w3 w0 w1 x6 x5 x4 x3

7 1 x4 x7 x6 x5 w1 w2 w3 w0 x7 x6 x5 x4

(4.3.28)

176 4. FIR FILTERING AND CONVOLUTION

It is evident that the contents of the columns s0, s1, s2, s3 are the successively delayed
signal samples xn, xn−1, xn−2, xn−3. Therefore, the state vector s(n) at each time instant
n is generated correctly according to Eq. (4.3.21).

p pp
p

x0

x1 x1 x1

x2 x2

x3

x0 x0 x0

0 0 0

0

0

0

n=0 n=1 n=2 n=3

p pp

p

n=4 n=5 n=6 n=7

x2 x2 x6 x6

x1 x5 x5 x5

x3 x3 x3 x7

x4 x4 x4 x4

Fig. 4.3.15 Contents of circular buffer at successive time instants.

To make sure that p and its shifts p + i always stay within the address space of w
given by Eq. (4.3.22), they must be wrapped modulo-(M+1). This is accomplished by
the following routine wrap.c, which adjusts the bounds of p, such that if p = w− 1, it
wraps it around to p = (w− 1)+(M+ 1)= w+M, and if p = w+M+ 1, it wraps it to
p = (w+M + 1)−(M + 1)= w.

/* wrap.c - circular wrap of pointer p, relative to array w */

void wrap(M, w, p)
double *w, **p;
int M;
{

if (*p > w + M)
*p -= M + 1; when ∗p = w+M + 1, it wraps around to ∗p = w

if (*p < w)
*p += M + 1; when ∗p = w− 1, it wraps around to ∗p = w+M

}

Note that p is modified at each call and serves both as an input and output of the
routine; therefore, it must be passed by reference, that is, as a pointer to pointer. If in
the main program w and p are declared as ordinary pointers:

double *w, *p;

then p must be passed into wrap by its address, that is,

wrap(M, w, &p);

With the help of the routine wrap, an FIR filter can be implemented using a circular
delay-line buffer by the following routine cfir.c, which replaces fir:

4.3. SAMPLE PROCESSING METHODS 177

/* cfir.c - FIR filter implemented with circular delay-line buffer */

void wrap();

double cfir(M, h, w, p, x)
double *h, *w, **p, x; p = circular pointer to w
int M; M = filter order

{
int i;
double y;

**p = x; read input sample x

for (y=0, i=0; i<=M; i++) { compute output sample y
y += (*h++) * (*(*p)++);
wrap(M, w, p);
}

(*p)--; update circular delay line

wrap(M, w, p);

return y;
}

The following three operations are carried out by the routine:

• The current input sample x is read into the w-register pointed to by the current
value of the pointer p.

• The for-loop computes the filter’s output sample y by accumulating the terms
hisi of products of the filter coefficients with the components of the internal state
vector defined by the pointer p.

Each pass through the loop post-increments the h and p pointers and wraps p,
if necessary. This loop could as well have been replaced by the following more
obscure loop, which uses Eq. (4.3.25) for the states:

for (y=0, i=0; i<=M; i++)
y += h[i] * w[(*p-w+i)%(M+1)]; that is, y = y + hisi

Upon exit from the loop, the pointer p has been circularly incrementedM+1 times
and therefore, it has wrapped around to its original value, that is, pointing again
at the current input sample.

The filter pointer h is also incremented M+1 times and, after the loop, it points
beyond its allowed range, but this does not matter because h will be reset at the
next call of cfir. In hardware, h is also stored in a circular buffer, and therefore
it wraps back to h[0].

• Finally, the circular delay line is updated by simply decrementing the pointer p
and wrapping it modulo M+1 if necessary. The pointer p is left pointing at the
w-register containing the last component sM of the state vector. This component
will be overwritten by the next input sample.

178 4. FIR FILTERING AND CONVOLUTION

In DSP chips that support circular or modulo addressing, each pass through the
above for-loop requires only one instruction—the calls to wrap are not necessary because
the incrementing pointer wraps around automatically. Therefore, the total number of
instructions per call is essentially M+1. The total processing time per sample will be
Tproc = (M + 1)Tinstr.

Each call of cfir changes the value of the pointer p, and therefore, pmust be passed
by reference, as in the routine wrap. The arrays h and w must be declared and allocated
in the main program in the usual way, and w must be initialized to zero. The pointer p
is initialized to point tow[0], that is, p = w. The following program segment illustrates
the proper initialization and usage of cfir.

double *h, *w, *p;
h = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); also, initializes w to zero

p = w; initialize p

for (n = 0; n < Ntot; n++)
y[n] = cfir(M, h, w, &p, x[n]); p passed by address

The routine cfir imitates the hardware implementation of FIR filtering on the Mo-
torola DSP56K chip, as illustrated in Example 4.3.5. A slightly different version of cfir,
which essentially emulates the TMS320C30, is given below:

/* cfir1.c - FIR filter implemented with circular delay-line buffer */

void wrap();

double cfir1(M, h, w, p, x)
double *h, *w, **p, x;
int M;
{

int i;
double y;

*(*p)-- = x;
wrap(M, w, p); p now points to sM

for (y=0, h+=M, i=M; i>=0; i--) { h starts at hM
y += (*h--) * (*(*p)--);
wrap(M, w, p);
}

return y;
}

After loading the current input sample into the w-register pointed to by p, it post-
decrements p circularly, so that p becomes the wrapped p +M and points to the last
component sM of the state vector.

The for-loop shifts the h pointer to point to hM and then runs backwards from i =M
down to i = 0, accumulating the terms hisi and post-decrementing h and p at each pass.

Upon exit from the loop, p has wrapped around to point back to p + M and is
left pointing there upon exit from cfir1, but, that is where it should be pointing for
processing the next input sample.

4.3. SAMPLE PROCESSING METHODS 179

Example 4.3.5: It is beyond the scope of this book to discuss architectures and instruction sets
for particular DSP chips. However, in order to illustrate the way fir3, cfir, and cfir1

emulate assembly code for DSP chips, we present some code examples for the TMS32020,
DSP32C, DSP56K, and TMS320C30; see Refs. [95–104] for details.

The following TMS32020 code segment implements the algorithm (4.3.18) for the case
M = 3:

NEWX IN W0, PA2 read new x into w0

ZAC zero accumulator, y = 0

LT W3 load w3

MPY H3 multiply by h3, y = h3w3

LTD W2 w3 = w2, load and shift

MPY H2 y = y + h2w2

LTD W1 w2 = w1

MPY H1 y = y + h1w1

LTD W0 w1 = w0

MPY H0 y = y + h0w0

APAC accumulate final sum

SACH Y, 1 store accumulator in register Y

OUT Y, PA2 output Y from output port

B NEWX branch back to NEWX to get next input sample

The shift/MAC pairs of instructions LTD/MPY can be replaced by single MACD instructions.

The same filter would be implemented on the AT&T DSP32C floating point processor by
the program segment:

a1 = *r4++ * *r2++ y = h3w3

a1 = a1 + (*r3++ = *r4++) * *r2++ y = y + h2w2, w3 = w2

a1 = a1 + (*r3++ = *r4++) * *r2++ y = y + h1w1, w2 = w1

a0 = a1 + (*r3 = *r5) * *r2++ y = y + h0w0, w1 = w0

*r6 = a0 = a0

The address pointer r4 points to the internal states wi and r2 to the filter weights hi. The
first line puts the product h3w3 into accumulator a1 and increments the pointers to point
to w2, h2. The second line accumulates the product h2w2 into a1 and simultaneously
shifts the value of w2 pointed to by r4 into w3 pointed to by r3, then post-increments the
pointers.

In the fourth line, r5 points to the input data, that is, w0 = x. The sum of the previous
value of a1 and product h0w0 are put into accumulator a0 and simultaneouslyw0 is moved
into w1 pointed to by r3. In the last line, r6 points to the computed output sample y.

The following code implements the same filter on the Motorola DSP56K using a circular
buffer. It is essentially equivalent to cfir.

clr a x0,x:(r0)+ y:(r4)+,y0
rep #M
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
macr x0,y0,a (r0)-

180 4. FIR FILTERING AND CONVOLUTION

Here, the circular buffer resides in the chip’s X-memory and is pointed to by the modulo
pointer r0. The filter coefficients reside in Y-memory and are pointed to by the modulo
pointer r4.

The clr instruction clears the accumulator register a, loads the temporary registers x0,
y0 with the values w0 and h0, and increments the pointers r0, r4.

The rep instruction repeats the mac instruction M times. During the ith repetition, the
registers x0, y0 hold the values of wi−1 and hi−1; these values get multiplied and accu-
mulated into the accumulator a, and then x0, y0 are loaded with wi, hi, and the modulo
pointers r0, r4 are incremented.

Upon exit from this loop, the pointer r0 has been incremented M+1 times, and therefore
it has wrapped around to point to w0 again. The last macr instruction performs the final
accumulation ofwMhM , and then it decrements the pointer r0, so that it now points tow−1

which is the same as wM . The value in this register will be overwritten by the next input
sample. The total number of instruction cycles for this example is (M + 1)+3, instead of
the nominal M + 1.

The floating point TMS320C30/C40 processor implements circular addressing in a similar
fashion, as illustrated by the following code:

NEWX LDF IN, R3 read new input sample x
STF R3, *AR1++% put x in w0 and increment AR1

LDF 0.0, R0 initialize accumulators

LDF 0.0, R2

RPTS M repeat for i=M down to i=0

MPYF3 *AR0++%, *AR1++%, R0 hiwi → R0, and in parallel

|| ADDF3 R0, R2, R2 accumulate previous R0 into R2

ADDF R0, R2 accumulate last product

STF R2, Y store R2 into output register Y

B NEWX branch to NEWX and repeat

Here, the filter coefficients hi and internal states wi are stored in reverse order, so that
hM , wM are in the lowest and h0, w0 at the highest address of the modulo-(M+1) circular
buffers. Therefore, pointers are incremented, instead of decremented as in cfir1.

Upon entry, the address pointer AR0 points to the beginning of the h-buffer, that is, to hM ,
and the pointer AR1 points to the bottom of the w-buffer, that is, to w0 which receives
the current input sample xn by the first STF instruction. The AR1 pointer is then post-
incremented and wraps around to point to the beginning of the w-buffer, that is, to wM .

The RPTS loop repeats the following instruction M+1 times. The multiply instruction
MPYF3 and accumulate instruction ADDF3 are done in parallel. The loop accumulates the
terms hiwi, for i =M, . . . ,1,0. Each repetition post-increments the pointers AR0 and AR1.
Therefore, afterM+1 repetitions, AR0 and AR1 will wrap around and point to the beginning
of the circular buffers.

Thus, AR1 is circularly incremented a total of (M+ 1)+1 times and will be left pointing to
wM , which will receive the next input sample xn+1, as shown in Fig. 4.3.12. 	

The final part of cfir, which updates the circular delay line by modulo decrementing
p, can be put by itself into a routine that implements the circular version of the delay
routine delay.c of Section 4.3.1. Denoting M by D in this definition, we have:

4.3. SAMPLE PROCESSING METHODS 181

/* cdelay.c - circular buffer implementation of D-fold delay */

void wrap();

void cdelay(D, w, p)
int D;
double *w, **p;
{

(*p)--; decrement pointer and wrap modulo-(D+ 1)
wrap(D, w, p); when ∗p = w− 1, it wraps around to ∗p = w+D

}

Note that because p is decreasing, only the second half of wrap that tests the lower
bound w ≤ p is effective.

As in the case of the routine delay, the output of the delay line is available even
before its input. This output is the last component of the internal state vector and is
obtained from Eq. (4.3.27) with M = D:

sD = w[(q+D)%(D+ 1)]= w[(p−w+D)%(D+ 1)]

Again, p must be passed by address into cdelay. The usage of the routine is
illustrated by the following program segment, which implements the delay equation
y(n)= x(n−D):

p = w; initialize p

for (n = 0; n < Ntot; n++) {
y[n] = w[(p-w+D)%(D+1)]; write output

*p = x[n]; read input; equivalently, p[0]= x[n]
cdelay(D, w, &p); update delay line

}

The table in Eq. (4.3.28) illustrates this delay operation, with D = 3.
In the linear buffer implementations of fir and delay, the state vector is w itself,

that is, s = w, and its components are directly accessible as si = w[i], for i = 0,1, . . . ,D.
In the circular buffer case, the state vector components are given by Eq. (4.3.25). To
avoid having to write the complicated expressions of Eq. (4.3.25), we find it convenient
to define a routine that returns the ith component si, or ith tap, of the circular tapped
delay-line state vector:

/* tap.c - i-th tap of circular delay-line buffer */

double tap(D, w, p, i) usage: si = tap(D, w, p, i);

double *w, *p; p passed by value

int D, i; i = 0,1, . . . , D
{

return w[(p - w + i) % (D + 1)];
}

Note that p is not changed by this routine, and therefore, it is passed by value. With
the help of this routine, the above example of the D-fold delay would read as follows:

182 4. FIR FILTERING AND CONVOLUTION

p = w; initialize p

for (n = 0; n < Ntot; n++) {
y[n] = tap(D, w, p, D); Dth component of state vector

*p = x[n]; read input; equivalently, p[0]= x[n]
cdelay(D, w, &p); update delay line

}

The circular buffer implementation of a delay line is very efficient, consisting of just
decrementing an address pointer without shifting any data (except for the input read
into p[0]). It is especially useful in implementing digital audio effects, such as reverb,
because D can be fairly large in these applications. For example, a 100 msec delay at
44.1 kHz sampling rate corresponds to D = 100× 44.1 = 4410 samples. It is also used
in wavetable sound synthesis, where a stored waveform can be generated periodically by
cycling over the circular buffer.

Because p is determined uniquely by the offset index q, via p = w+q, it is possible
to rewrite all of the above routines so that they manipulate the index q instead of the
pointer p. These versions can be translated easily into other languages, such as Fortran
or MATLAB, that do not support pointer manipulation (see Appendix C).

The following routine wrap2.c replaces wrap. It simply keeps q within its allowed
range, 0 ≤ q ≤M, by wrapping it modulo-(M+1).

/* wrap2.c - circular wrap of pointer offset q, relative to array w */

void wrap2(M, q)
int M, *q;
{

if (*q > M)
*q -= M + 1; when ∗q =M + 1, it wraps around to ∗q = 0

if (*q < 0)
*q += M + 1; when ∗q = −1, it wraps around to ∗q =M

}

Because q is modified by wrap2, it must be passed by reference, that is, as a pointer
to integer. The following routine cfir2.c replaces cfir. Note that the current input
sample is placed in p[0]= w[q], that is, w[q]= x.

/* cfir2.c - FIR filter implemented with circular delay-line buffer */

void wrap2();

double cfir2(M, h, w, q, x)
double *h, *w, x; q = circular offset index

int M, *q; M = filter order

{
int i;
double y;

w[*q] = x; read input sample x

for (y=0, i=0; i<=M; i++) { compute output sample y
y += (*h++) * w[(*q)++];
wrap2(M, q);

4.3. SAMPLE PROCESSING METHODS 183

}

(*q)--; update circular delay line

wrap2(M, q);

return y;
}

If so desired, the for-loop in this routine can be replaced by the following version,
which accesses the ith state via Eq. (4.3.25):

for (y=0, i=0; i<=M; i++)
y += h[i] * w[(*q+i)%(M+1)]; used by cfir2.m of Appendix C

The index q must be initialized to q = 0, which is equivalent to p = w. The usage
of cfir2 is illustrated by the following program segment:

double *h, *w;
int q;
h = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); also, initializes w to zero

q = 0; initialize q

for (n = 0; n < Ntot; n++)
y[n] = cfir2(M, h, w, &q, x[n]); q passed by address

The implementation of the circular delay line is completely trivial. The following
routine cdelay2.c replaces cdelay, and consists simply of decrementing q modulo
D+1, assuming that the current input has been read into w[q], namely, w[q]= x.

/* cdelay2.c - circular buffer implementation of D-fold delay */

void wrap2();

void cdelay2(D, q)
int D, *q;
{

(*q)--; decrement offset and wrap modulo-(D+ 1)
wrap2(D, q); when ∗q = −1, it wraps around to ∗q = D

}

Its usage is illustrated by the following program segment. Note, again, that its output,
namely, the Dth component of the internal state, is available even before its input:

q = 0; initialize q

for (n = 0; n < Ntot; n++) {
y[n] = w[(q+D)%(D+1)]; alternatively, y[n] = tap2(D, w, q, D);
w[q] = x[n]; read input

cdelay2(D, &q); update delay line

}

Finally, the components of the internal state vector given by Eq. (4.3.25) are returned
by the following routine tap2.c which replaces tap:

184 4. FIR FILTERING AND CONVOLUTION

/* tap2.c - i-th tap of circular delay-line buffer */

double tap2(D, w, q, i) usage: si = tap2(D, w, q, i);

double *w;
int D, q, i; i = 0,1, . . . ,D
{

return w[(q + i) % (D + 1)];
}

In summary, the circular buffer implementation of the FIR sample processing algo-
rithm can be stated in the following form (initialized to p = w):

for each input sample x do:
s0 = ∗p = x
for i = 1,2, . . . ,M determine states:

si = tap(M,w, p, i)
y = h0s0 + h1s1 + · · · + hMsM
cdelay(M,w,&p)

where for convenience, we used the routine tap to get the current states. In terms of
the offset index q (initialized to q = 0):

for each input sample x do:
s0 = w[q]= x
for i = 1,2, . . . ,M determine states:

si = tap2(M,w, q, i)
y = h0s0 + h1s1 + · · · + hMsM
cdelay2(M,&q)

Example 4.3.6: The circular buffer implementation of Example 4.3.1 is as follows:

for each input sample x do:
s0 = ∗p = x
s1 = tap(3,w, p,1)
s2 = tap(3,w, p,2)
s3 = tap(3,w, p,3)
y = s0 + 2s1 − s2 + s3

cdelay(3,w,&p)

where w is to be declared as a 4-dimensional array and initialized to zero. In terms of the
variable q, we have

for each input sample x do:
s0 = w[q]= x
s1 = tap2(3,w, q,1)
s2 = tap2(3,w, q,2)
s3 = tap2(3,w, q,3)
y = s0 + 2s1 − s2 + s3

cdelay2(3,&q)

4.4. PROBLEMS 185

For the same input, the output signal samples and internal states computed by either of
the above algorithms are exactly those given in the table of Example 4.3.1.

The linear buffer version discussed in Example 4.3.1 can be obtained from the above by
freezing the pointer p to always point to w, that is, p = w. Then, we have for i = 0,1,2,3:

si = tap(3,w, p, i)= w[(p−w+ i)%4]= w[i%4]= wi

and the algorithm becomes the conventional one:

for each input sample x do:
w0 = x
y = w0 + 2w1 −w2 +w3

delay(3,w)

where cdelay was replaced by delay. 	

4.4 Problems

4.1 Compute the convolution, y = h∗ x, of the filter and input,

h = [1,1,2,1], x = [1,2,1,1,2,1,1,1]

using the following three methods: (a) The convolution table. (b) The LTI form of convolution,
arranging the computations in a table form. (c) The overlap-add method of block convolution
with length-3 input blocks. Repeat using length-5 input blocks.

4.2 Repeat Problem 4.1 for the filter and input:

h = [2, −2, −1, 1], x = [2, 2, 0, 1, −1, 0, 1, 2],

4.3 The impulse response h(n) of a filter is nonzero over the index range 3 ≤ n ≤ 6. The input
signal x(n) to this filter is nonzero over the index range 10 ≤ n ≤ 20. Consider the direct
and LTI forms of convolution:

y(n)=
∑
m
h(m)x(n−m)=

∑
m
x(m)h(n−m)

a. Determine the overall index range n for the output y(n). For each n, determine the
corresponding summation range over m, for both the direct and LTI forms.

b. Assumeh(n)= 1 and x(n)= 1 over their respective index ranges. Calculate and sketch
the output y(n). Identify (with an explanation) the input on/off transient and steady
state parts of y(n).

4.4 An LTI filter has infinite impulse response h(n)= anu(n), where |a| < 1. Using the convo-
lution summation formula y(n)= ∑

m h(m)x(n −m), derive closed-form expressions for
the output signal y(n) when the input is:

a. A unit step, x(n)= u(n)

b. An alternating step, x(n)= (−1)nu(n).

In each case, determine the steady state and transient response of the filter.

186 4. FIR FILTERING AND CONVOLUTION

4.5 Consider the IIR filterh(n)= anu(n), where 0 < a < 1. The square pulse x(n)= u(n)−u(n−
L) of duration L is applied as input.

Using the time-domain convolution formula, determine a closed-form expression for the
output signal y(n) for the two time ranges: 0 ≤ n ≤ L− 1 and n ≥ L.

4.6 The filter of Problem 4.5 satisfies the difference equation: y(n)= ay(n − 1)+x(n). Verify
that the solution y(n) that you obtained above satisfies this difference equation for all n.

4.7 Computer Experiment: Convolution Routines. Write C or MATLAB routines that implement
convolution in: (a) the convolution table form and (b) the LTI form; that is,

yn =
∑
i, j

i+j=n

hixj =
∑
m
xmhn−m

The routines must have the same input/output variables as conv.c of the text. Write a small
main program that tests your routines.

4.8 Computer Experiment: Filtering by Convolution. Write small C or MATLAB routines to re-
produce all the results and graphs of Examples 4.1.7, 4.1.8, and 4.1.9. The inputs must be
treated as single blocks and passed into the routine conv.

4.9 Computer Experiment: Block-by-Block Processing. Write a stand-alone C program, say blk-

filt.c, that implements the overlap-add block convolution method. The program must
have usage:

blkfilt h.dat L < x.dat > y.dat

It must have as command-line inputs a file of impulse response coefficients h.dat (stored
one coefficient per line) and the desired input block length L. It must read the input signal
samples from stdin or a file x.dat and write the computed output samples to stdout

or a file y.dat. It must have the following features built-in: (a) it must allocate storage
dynamically for the impulse h(n) read from h.dat (the program should abort with an error
message if L < M); (b) it must read the input signal in length-L blocks, and call the routine
blockcon.c of the text to process each block; (c) it must write the output also in blocks; (d)
it must compute correctly both the input-on and input-off transients.

Note that the essence of such a program was already given in Section 4.1.10. Test your
program on Example 4.1.10, with blocksizes L = 3,4,5,6.

4.10 Computer Experiment: Sample-by-Sample Processing. Write a stand-alone C program, say
firfilt.c, that implements the FIR sample processing algorithm of Eq. (4.3.15). The pro-
gram must have usage:

firfilt h.dat < x.dat > y.dat

It must read and dynamically allocate the impulse response vector h from an input file, say
h.dat, and must allocate the internal state vector w. Using the routine fir.c, it must keep
processing input samples, reading them one at a time from stdin or from a file x.dat, and
writing the computed output samples to stdout or a file y.dat.

It must correctly account for the input-on and input-off transients. Thus, it must produce
identical results with convolution or block convolution if applied to a finite input block of
samples.

The essence of such a program was given in Section 4.3.3. Test your program on Examples
4.1.7–4.1.10.

Such filters can be cascaded together by piping the output of one into the input to another.
For example, the filtering operation by the combined filter h = h1 ∗ h2 can be implemented
by:

4.4. PROBLEMS 187

firfilt h1.dat | firfilt h2.dat < x.dat > y.dat

Alternatively or additionally, write a MATLAB version, say firfilt.m, with usage:

y = firfilt(h, x);

It must read the filter and input vectors h, x, and compute the output vector y. The input-
off transients must also be part of the output vector. You may use the MATLAB functions
delay.m and fir.m of Appendix C.

4.11 Computer Experiment: Sample Processing with Circular Buffers. Rewrite the above program,
say cfirfilt.c, such that the basic sample-by-sample filtering operation is implemented
by the circular buffer routine cfir.c instead of fir.c. The usage of the program will be
the same as above:

cfirfilt h.dat < x.dat > y.dat

Test your program on Examples 4.1.7–4.1.10. It must produce identical results as the fir-

filt program. Rewrite versions of this program that use the alternative circular FIR routines
cfir1.c and cfir2.c. You may also write a MATLAB version using cfir2.m.

4.12 Computer Experiment: Delay Using Circular Buffers. Write a stand-alone C program, say
cdelfilt.c, that implements a plain delay by up to D samples, that is, y(n)= x(n − i),
i = 0,1, . . . ,D, and has usage:

cdelfilt i D < x.dat > y.dat

It must read the input samples one at a time from stdin and write the delayed samples
into stdout. It must make use of the circular buffer routines cdelay.c and tap.c. The
delay-line buffer must have length D+ 1.

Test your program on a length-20 input using the values D = 5, and i = 0,1, . . . ,5. Then,
write another version of this program that uses the routines cdelay2 and tap2 and test it.

4.13 Computer Experiment: Alternative Sample Processing Algorithms. The FIR sample processing
algorithm of Eq. (4.3.15) proceeds by (a) reading the current input, (b) processing it, and (c)
updating the delay line.

In some texts, the algorithm is structured in a slightly different way, such that the update
of the delay line is done before the current input is read. Derive the difference equations
describing this version of the algorithm. [Hint: Use Eq. (4.3.13).]

Translate the difference equations into a sample processing algorithm like Eq. (4.3.15) and
then, write a C routine that implements it. Discuss the proper initialization of the internal
states in this case. Test your routine to make sure it produces identical results with fir.c.

4.14 Consider the filter and input of Problem 4.1. Draw a block diagram realization of the filter,
introduce internal states, write the corresponding sample processing algorithm, and convert
it into a C routine.

Then, using the sample processing algorithm, compute the full output signal, including the
input-off transients (for these, apply x = 0 to the algorithm). Display your computations in
a table form. Identify on the table which outputs correspond to the input-on transients, to
the steady state, and to the input-off transients. [Note: The computed output signal should
agree exactly with that computed by the convolution method of Problem 4.1.]

4.15 Consider the filter with I/O equation: y(n)= x(n)−x(n− 3).

a. Determine the impulse response sequence h(n), for all n ≥ 0.

188 4. FIR FILTERING AND CONVOLUTION

b. Draw a block diagram realization, introduce appropriate internal states, and write the
corresponding sample processing algorithm. Moreover, implement the algorithm by a
C routine. Test your routine on the results of parts (c) and (d).

c. Send as input the sequence x = [1,1,2,2,4, . . .]. Using convolution, compute the first
five output samples, y(n), n = 0,1, . . . ,4.

d. Compute the same outputs using the sample processing algorithm. Display your com-
putations in a table that, at each sampling instant n, shows the corresponding input
sample x(n), the values of the internal states, and the computed output sample y(n).

4.16 Repeat Problem 4.15 for the filter: y(n)= 0.8y(n− 1)+x(n).
4.17 Repeat Problem 4.15 for the filter: y(n)= 0.25y(n− 2)+x(n).
4.18 Let x = [1,1,2,2,2,2,1,1] be an input to the filter described by the I/O equation:

y(n)= x(n)−x(n− 2)+2x(n− 3)

a. Determine the impulse response h(n) of this filter.

b. Compute the corresponding output signal y(n) using the LTI form of convolution.
Show your computations in table form.

c. Compute the same output using the overlap-add method of block convolution by par-
titioning the input signal into length-4 blocks.

d. Draw a block diagram realization of this filter. Then, introduce appropriate internal
states and write the corresponding sample processing algorithm.

4.19 The length-8 input signal x(n)= {8, 7, 6, 5, 4, 3, 2, 1} is applied to the input of a 2-fold
delay described by the I/O equation y(n)= x(n− 2).
The circular buffer version of the sample processing implementation of the delay operation
requires the use of a 3-dimensional linear buffer array of internal states w = [w0, w1, w2]
and a pointer p circulating over w.

Make a table of the numerical values of the contents of the array w for the successive time
instants 0 ≤ n ≤ 10. In each row, indicate that array element, wi, which represents the
current output y(n) of the delay line. Explain your reasoning in filling this table. Compare
with the linear buffer case.

4.20 Figure 4.4.1 shows the transposed realization of the third-order filter with impulse response
h = [h0, h1, h2, h3]. Write the difference equations describing the I/O operation of this
realization. Show that the combined effect of these difference equations is equivalent to the
standard direct form operation of Eq. (4.3.6).

Write the transposed difference equations as a sample processing algorithm and apply it to
the filter and input of Example 4.3.1. Make a table of the values of x, y, and all the variables
vi, for each time instant 0 ≤ n ≤ 10.

4.21 Computer Experiment: Transposed FIR Realization. Generalize the block diagram of Fig. 4.4.1
to an arbitrary Mth order filter with impulse response h = [h0, h1, . . . , hM]. Write the
corresponding sample processing algorithm and translate it into a C routine firtr.c that
has usage:

y = firtr(M, h, v, x);

where h and v are (M+1)-dimensional vectors, and x, y are the current input and output
samples.

To test your routine, write a version of the program firfilt.c of Problem 4.10 that uses
the routine firtr.c instead of fir.c. Test your program on Example 4.3.1.

4.4. PROBLEMS 189

x(n) y(n)
v1(n)

v0(n)

v2(n)

v3(n)

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.4.1 Transposed realization of third-order filter.

5
z-Transforms

5.1 Basic Properties

Here, we review briefly z-transforms and their properties. We assume that the reader
already has a basic familiarity with the subject. Our usage of z-transforms in this book
is basically as a tool for the analysis, design, and implementation of digital filters.

Given a discrete-time signal x(n), its z-transform is defined as the following series:

X(z)=
∞∑

n=−∞
x(n)z−n (z-transform) (5.1.1)

or, writing explicitly a few of the terms:

X(z)= · · · + x(−2)z2 + x(−1)z+ x(0)+x(1)z−1 + x(2)z−2 + · · ·

There are as many terms as nonzero signal values x(n). The terms z−n can be
thought of as place holders for the values x(n). If the signal x(n) is causal, only negative
powers z−n, n ≥ 0 appear in the expansion. If x(n) is strictly anticausal, being nonzero
for n ≤ −1, only positive powers will appear in the expansion, that is, z−n = z|n|, for
n ≤ −1. And if x(n) is mixed with both causal and anticausal parts, then both negative
and positive powers of z will appear.

The definition (5.1.1) can also be applied to the impulse response sequence h(n) of
a digital filter. The z-transform of h(n) is called the transfer function of the filter and
is defined by:

H(z)=
∞∑

n=−∞
h(n)z−n (transfer function) (5.1.2)

Example 5.1.1: Determine the transfer functionH(z) of the two causal filters of Example 3.4.3,
namely,

(a) h = [h0, h1, h2, h3]= [2,3,5,2]

(b) h = [h0, h1, h2, h3, h4]= [1,0,0,0,−1]

190

5.1. BASIC PROPERTIES 191

Solution: Using the definition (5.1.2), we find:

H(z)= h0 + h1z−1 + h2z−2 + h3z−3 = 2+ 3z−1 + 5z−2 + 2z−3

for case (a), and

H(z)= h0 + h1z−1 + h2z−2 + h3z−3 + h4z−4 = 1− z−4

for case (b). 	

The three most important properties of z-transforms that facilitate the analysis and
synthesis of linear systems are:

• linearity property
• delay property
• convolution property

The linearity property simply states that the z-transform of a linear combination of
signals is equal to the linear combination of z-transforms, that is, if X1(z) and X2(z)
are the z transforms of the signals x1(n) and x2(n), then the z-transform of the linear
combination a1x1(n)+a2x2(n) is

a1x1(n)+a2x2(n)
Z−→ a1X1(z)+a2X2(z) (linearity) (5.1.3)

The delay property states that the effect of delaying a signal by D sampling units is
equivalent to multiplying its z-transform by a factor z−D, namely,

x(n) Z−→ X(z) ⇒ x(n−D) Z−→ z−DX(z) (delay) (5.1.4)

Note that D can also be negative, representing a time advance. Finally, the convolu-
tion property states that convolution in the time domain becomes multiplication in the
z-domain:

y(n)= h(n)∗x(n) ⇒ Y(z)= H(z)X(z) (convolution) (5.1.5)

that is, the z-transform of the convolution of two sequences is equal to the product of
the z-transforms of the sequences.

Example 5.1.2: The two filters of the above example and of Example 3.4.3 can also be written
in the following “closed” forms, valid for all n:

(a) h(n)= 2δ(n)+3δ(n− 1)+5δ(n− 2)+2δ(n− 3), (b) h(n)= δ(n)−δ(n− 4)

Their transfer functions can be obtained using the linearity and delay properties as follows.
First, note that the z-transform of δ(n) is unity:

δ(n) Z−→
∞∑

n=−∞
δ(n)z−n = δ(0)z−0 = 1

192 5. Z-TRANSFORMS

Then, from the delay property, we have

δ(n− 1) Z−→ z−1 · 1 = z−1, δ(n− 2) Z−→ z−2, δ(n− 3) Z−→ z−3, etc.

Using linearity, we obtain

2δ(n)+3δ(n− 1)+5δ(n− 2)+2δ(n− 3) Z−→ 2+ 3z−1 + 5z−2 + 2z−3

for case (a), and

h(n)= δ(n)−δ(n− 4) Z−→ H(z)= 1− z−4

for case (b). 	

Example 5.1.3: Using the unit-step identity u(n)−u(n − 1)= δ(n), valid for all n, and the
z-transform properties, determine the z-transforms of the two signals:

(a) x(n)= u(n), (b) x(n)= −u(−n− 1)

Solution: For case (a), we have the difference equation:

x(n)−x(n− 1)= u(n)−u(n− 1)= δ(n)

Taking z-transforms of both sides and using the linearity and delay properties, we obtain

x(n)−x(n− 1)= δ(n) Z−→ X(z)−z−1X(z)= 1 ⇒ X(z)= 1

1− z−1

Similarly, for case (b) we have the difference equation:

x(n)−x(n− 1)= −u(−n− 1)+u(−(n− 1)−1
) = u(−n)−u(−n− 1)= δ(−n)

where in the last equation we used the given identity with n replaced by −n. Noting that
δ(−n)= δ(n), and taking z-transforms of both sides, we find

x(n)−x(n− 1)= δ(−n) Z−→ X(z)−z−1X(z)= 1 ⇒ X(z)= 1

1− z−1

Thus, even though the two signals u(n) and −u(−n − 1) are completely different in
the time domain (one is causal, the other anticausal), their z-transforms are the same.
We will see in the next section that they can be distinguished in terms of their region of
convergence. 	

Example 5.1.4: Compute the output of Example 4.1.1 by carrying out the convolution operation
as multiplication in the z-domain.

Solution: The two sequences

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

have z-transforms:

H(z) = 1+ 2z−1 − z−2 + z−3

X(z) = 1+ z−1 + 2z−2 + z−3 + 2z−4 + 2z−5 + z−6 + z−7

5.2. REGION OF CONVERGENCE 193

Multiplying these polynomials, we find for the product Y(z)= H(z)X(z):

Y(z)= 1+ 3z−1 + 3z−2 + 5z−3 + 3z−4 + 7z−5 + 4z−6 + 3z−7 + 3z−8 + z−10

The coefficients of the powers of z are the convolution output samples:

y = h∗ x = [1,3,3,5,3,7,4,3,3,0,1]

Note that the term z−9 is absent, which means that its coefficient is zero. 	

5.2 Region of Convergence

If x(n) has infinite duration, Eq. (5.1.1) becomes an infinite series, and it is possible that
certain values of the complex variable z might render it divergent.

The region of convergence (ROC) of the z-transformX(z) is defined to be that subset
of the complex z-plane C for which the series (5.1.1) converges, that is,

Region of Convergence = {z ∈ C ∣∣ X(z)= ∞∑
n=−∞

x(n)z−n ≠∞} (5.2.1)

The ROC is an important concept in many respects: It allows the unique inversion of
the z-transform and provides convenient characterizations of the causality and stability
properties of a signal or system.

The ROC depends on the signal x(n) being transformed. As an example, consider
the following causal signal:

x(n)= (0.5)nu(n)= {1, 0.5, 0.52, 0.53, . . . }

Its z-transform will be:

X(z)=
∞∑

n=−∞
(0.5)nu(n)z−n =

∞∑
n=0

(0.5)nz−n =
∞∑
n=0

(
0.5z−1)n

where the summation was restricted over n ≥ 0 because of the causality of x(n). This
infinite sum can be done with the help of the infinite geometric series formula:

1+ x+ x2 + x3 + · · · =
∞∑
n=0

xn = 1

1− x
(5.2.2)

which is valid only for |x| < 1 and diverges otherwise. Setting x = 0.5z−1 we find the
sum:

X(z)=
∞∑
n=0

(
0.5z−1)n = ∞∑

n=0

xn = 1

1− x
, or,

X(z)= 1

1− 0.5z−1
= z
z− 0.5

194 5. Z-TRANSFORMS

where the convergence of the geometric series requires

|x| = |0.5z−1| < 1 ⇒ |z| > 0.5

Thus, the ROC is the set of z’s in the z-plane that lie strictly outside the circle of
radius 0.5, as shown below:

ROC = {z ∈ C ∣∣ |z| > 0.5} 0.5 |z|

z-planeROC

pole

z

0.5

Note, that the z-transform has a pole at z = 0.5. In summary, we have

(0.5)nu(n) Z−→ 1

1− 0.5z−1
, with |z| > 0.5

A z-transform and its ROC are uniquely determined by the time signal x(n). How-
ever, it is possible for two different time signals x(n) to have the same z-transform, as
was the case in Example 5.1.3. Such signals can only be distinguished in the z-domain
by their region of convergence. Consider, for example, the anticausal signal

x(n)= −(0.5)nu(−n− 1)

The presence of the anti-unit step u(−n−1) restricts n to be−n−1 ≥ 0 or, n ≤ −1.
Its z-transform will be:

X(z)= −
−1∑

n=−∞
(0.5)nz−n = −

−1∑
n=−∞

(
(0.5)−1z

)−n = − ∞∑
m=1

(
(0.5)−1z

)m
where we changed summation variables from n to m = −n. To sum it, we use the
following variant of the infinite geometric series:

x+ x2 + x3 + · · · =
∞∑

m=1

xm = x
1− x

which is valid only for |x| < 1 and diverges otherwise. Setting x = (0.5)−1z, we have

X(z)= −
∞∑

m=1

(
(0.5)−1z

)m = − ∞∑
m=1

xm = − x
1− x

= − 0.5−1z
1− 0.5−1z

, or,

X(z)= z
z− 0.5

= 1

1− 0.5z−1

5.2. REGION OF CONVERGENCE 195

which is the same as the causal example above. However, the ROC in this case is differ-
ent. It is determined by the geometric series convergence condition

|x| = |0.5−1z| < 1 ⇒ |z| < 0.5

which is the set of z’s that lie strictly inside the circle of radius 0.5, as shown below:

ROC = {z ∈ C ∣∣ |z| < 0.5} 0.5

z-plane

0.5

pole

z

ROC

To summarize, we have determined the z-transforms:

(0.5)nu(n) Z−→ 1

1− 0.5z−1
, with |z| > 0.5

−(0.5)nu(−n− 1) Z−→ 1

1− 0.5z−1
, with |z| < 0.5

The two signals have the same z-transform but completely disjoint ROCs. More
generally, we have the result:

anu(n) Z−→ 1

1− az−1
, with |z| > |a|

−anu(−n− 1) Z−→ 1

1− az−1
, with |z| < |a|

(5.2.3)

where a is any complex number. Their ROCs are shown below.

a|a|

z-plane

a

pole

anticausal case

ROC

z
|z|

z-plane

pole

causal case

z
|a|

ROC

The z-transforms (5.2.3), together with the linearity and delay properties, can be
used to construct more complicated transforms.

Example 5.2.1: Setting a = ±1 in Eq. (5.2.3), we obtain the z-transforms of the causal and
anticausal unit-steps and alternating unit-steps:

u(n) Z−→ 1

1− z−1
, with |z| > 1

−u(−n− 1) Z−→ 1

1− z−1
, with |z| < 1

196 5. Z-TRANSFORMS

(−1)nu(n) Z−→ 1

1+ z−1
, with |z| > 1

−(−1)nu(−n− 1) Z−→ 1

1+ z−1
, with |z| < 1

which agree with Example 5.1.3. 	

Example 5.2.2: Determine the z-transform and corresponding region of convergence of the
following signals:

1. x(n)= u(n− 10)

2. x(n)= (−0.8)nu(n)

3. x(n)= (−0.8)n[u(n)−u(n− 10)]

4. x(n)= 1

2
[u(n)+(−1)nu(n)]= {1,0,1,0,1,0,1,0, . . . }

5. x(n)= 1

2
[(0.8)nu(n)+(−0.8)nu(n)]

6. x(n)= cos(
πn
2
)u(n)= {1,0,−1,0,1,0,−1,0,1,0,−1,0, . . . }

7. x(n)= (0.8)ncos(
πn
2
)u(n)

8. x(n)= 1

2
[(0.8j)nu(n)+(−0.8j)nu(n)]

9. x(n)= cos(ω0n)u(n) and x(n)= sin(ω0n)u(n)

10. x(n)= {1,2,3,1,2,3,1,2,3, . . . }, periodically repeating {1,2,3}

Solution: Using the delay property, we have in case (1):

X(z)= z−10U(z)= z−10

1− z−1

with ROC |z| > 1. In case (2), we apply Eq. (5.2.3) with a = −0.8 to get

X(z)= 1

1+ 0.8z−1
, with ROC: |z| > | − 0.8| = 0.8

For case (3), we write

x(n)= (−0.8)nu(n)−(−0.8)10(−0.8)n−10u(n− 10)

where in the second term we multiplied and divided by the factor (−0.8)10 in order to
reproduce the delayed (by 10 units) version of the first term. Thus, using the linearity and
delay properties and the results of case (2), we get

X(z)= 1

1+ 0.8z−1
− (−0.8)10 z−10

1+ 0.8z−1
= 1− (−0.8)10z−10

1+ 0.8z−1

Here, the ROC is not |z| > 0.8 as might appear at first glance. Rather it is the set of all
nonzero z’s, z �= 0. This follows by recognizing x(n) to be a length-10 finite sequence.
Indeed, setting a = −0.8, we have

x(n)= an[u(n)−u(n− 10)]= {1, a, a2, a3, a4, a5, a6, a7, a8, a9,0,0,0, . . . }

5.2. REGION OF CONVERGENCE 197

and therefore, its z-transform can be computed by the finite sum

X(z)= 1+ az−1 + a2z−2 + · · · + a9z−9

which exists for any z �= 0. Using the finite geometric series

1+ x+ x2 + · · · + xN−1 = 1− xN

1− x

we may sum the above series to

X(z)= 1+ az−1 + a2z−2 + · · · + a9z−9 = 1− a10z−10

1− az−1
= 1− (−0.8)10z−10

1+ 0.8z−1

For case (4), we have, using linearity and Eq. (5.2.3) with a = 1 and a = −1:

X(z)= 1

2

[
1

1− z−1
+ 1

1+ z−1

]
= 1

1− z−2

with ROC |z| > 1. The same result can be obtained using the definition (5.1.1) and summing
the series:

X(z)= 1+ 0z−1 + z−2 + 0z−3 + z−4 + · · · = 1+ z−2 + z−4 + z−6 + · · ·

which is an infinite geometric series of the type of Eq. (5.2.2) with x = z−2. Therefore,

X(z)= 1

1− x

∣∣∣∣
x=z−2

= 1

1− z−2

The convergence of the series requires |x| = |z−2| < 1 or equivalently, |z| > 1. In case (5),
we find again using linearity and Eq. (5.2.3):

X(z)= 1

2

[
1

1− 0.8z−1
+ 1

1+ 0.8z−1

]
= 1

1− 0.64z−2

with ROC |z| > 0.8. Case (6) can be handled directly by the definition (5.1.1):

X(z)= 1− z−2 + z−4 − z−6 + z−8 + · · · = 1+ x+ x2 + x3 + x4 + · · ·

where x = −z−2. The series will converge to

X(z)= 1

1− x
= 1

1+ z−2

provided |x| = |−z−2| < 1, or equivalently, |z| > 1. The same result can be obtained using
Euler’s formula to split the cosine into exponential signals of the type (5.2.3):

x(n)= cos(
πn
2
)u(n)= 1

2

[
ejπn/2u(n)+e−jπn/2u(n)

] = 1

2

[
anu(n)+a∗nu(n)]

where a = ejπ/2 = j and a∗ = e−jπ/2 = −j. Thus, we find

X(z)= 1

2

[
1

1− jz−1
+ 1

1+ jz−1

]
= 1

1+ z−2

198 5. Z-TRANSFORMS

In case (7), using Euler’s formula as above, we find

x(n)= (0.8)ncos(
πn
2
)u(n)= 1

2

[
(0.8)nejπn/2u(n)+(0.8)ne−jπn/2u(n)

]
which can be written as the signal of case (8):

x(n)= 1

2

[
(0.8j)nu(n)+(−0.8j)nu(n)

]
Thus, cases (7) and (8) are the same. Their z-transform is obtained using a = ±0.8j in
Eq. (5.2.3):

X(z)= 1

2

[
1

1− 0.8jz−1
+ 1

1+ 0.8jz−1

]
= 1

1+ 0.64z−2

with ROC |z| > |0.8j| = 0.8. The cosinewave in case (9) can be handled in a similar fashion.
We write

cos(ω0n)u(n)= 1

2

[
ejω0n + e−jω0n

]
u(n) Z−→ 1

2

[
1

1− ejω0z−1
+ 1

1− e−jω0z−1

]
which combines to give:

X(z)= 1− cos(ω0)z−1

1− 2 cos(ω0)z−1 + z−2

Setting ω0 = π/2, we recover case (6). Similarly, for a sinewave we have

sin(ω0n)u(n)= 1

2j
[
ejω0n − e−jω0n

]
u(n) Z−→ 1

2j

[
1

1− ejω0z−1
− 1

1− e−jω0z−1

]
which combines to give:

X(z)= sin(ω0)z−1

1− 2 cos(ω0)z−1 + z−2

Finally, we consider case (10). Using the definition (5.1.1) and grouping the terms in groups
of 3, we obtain:

X(z) = (1+ 2z−1 + 3z−2)+(1+ 2z−1 + 3z−2)z−3 +
+ (1+ 2z−1 + 3z−2)z−6 + (1+ 2z−1 + 3z−2)z−9 + · · ·

= (1+ 2z−1 + 3z−2)(1+ z−3 + z−6 + z−9 + · · ·)

= 1+ 2z−1 + 3z−2

1− z−3

The infinite geometric series converges for |z−3| < 1 or |z| > 1. An alternative method is
to delay x(n) by one period, that is, 3 time units

x(n− 3)= {0,0,0,1,2,3,1,2,3, . . . }

and subtract it from x(n) to get the difference equation

x(n)−x(n− 3)= {1,2,3,0,0,0,0,0,0, . . . } = δ(n)+2δ(n− 1)+3δ(n− 2)

Then, taking z-transforms of both sides, we get

X(z)−z−3X(z)= 1+ 2z−1 + 3z−2 ⇒ X(z)= 1+ 2z−1 + 3z−2

1− z−3

This technique can be generalized to any periodic sequence. It will be used later to imple-
ment digital periodic waveform generators. 	

5.3. CAUSALITY AND STABILITY 199

Example 5.2.3: Determine the z-transform and corresponding region of convergence of the
following signals:

1. x(n)= (0.8)nu(n)+(1.25)nu(n)
2. x(n)= (0.8)nu(n)−(1.25)nu(−n− 1)
3. x(n)= −(0.8)nu(−n− 1)−(1.25)nu(−n− 1)
4. x(n)= −(0.8)nu(−n− 1)+(1.25)nu(n)

Solution: Using Eq. (5.2.3) with a = 0.8 and a = 1.25, we note that the first three cases have
exactly the same z-transform, namely,

X(z)= 1

1− 0.8z−1
+ 1

1− 1.25z−1
= 2− 2.05z−1

1− 2.05z−1 + z−2

The three cases differ only in their ROCs. In case (1), both terms are causal, and therefore,
we must have simultaneously |z| > 0.8 and |z| > 1.25. Thus, the ROC is |z| > 1.25.
In case (2), the second term is anticausal and therefore we must have the simultaneous
inequalities: |z| > 0.8 and |z| < 1.25. Thus, the ROC is 0.8 < |z| < 1.25. In case (3), both
terms are anticausal requiring |z| < 0.8 and |z| < 1.25. Therefore, the ROC is |z| < 0.8.
The three ROCs are shown below:

z-plane

0.8 1.25

I

III
II

z-plane

0.8 1.25

I

III
II

1

z-plane

0.8 1.25

I

III
II

unit circle

The two poles of X(z) at z = 0.8 and z = 1.25 divide the z-plane into three non-
overlapping regions which are the three possible ROCs.

Note that case (1) is causal but unstable because the term (1.25)n diverges for large positive
n. Case (2) is stable, because the term (0.8)n converges to zero exponentially for large
positive n, and the term (1.25)n converges to zero exponentially for large negative n. And,
case (3) is anticausal and unstable because the term (0.8)n diverges for large negative n.

The unit circle is contained entirely within the ROC of case (2), in accordance with the
general criterion of stability of Section 5.3.

The fourth case, which is unstable both for n → ∞ and n → −∞, does not have a z-
transform because convergence requires |z| < 0.8 for the anticausal term and |z| > 1.25
for the causal term. Thus, there is no z for which X(z) is converges. The ROC is the empty
set. 	

5.3 Causality and Stability

The z-domain characterizations of causality and stability can be obtained with the help
of the basic result (5.2.3). A causal signal of the form

x(n)= A1pn1u(n)+A2pn2u(n)+· · · (5.3.1)

200 5. Z-TRANSFORMS

will have z-transform

X(z)= A1

1− p1z−1
+ A2

1− p2z−1
+ · · · (5.3.2)

with the restrictions |z| > |p1|, |z| > |p2|, and so forth. Therefore, the common ROC
of all the terms will be

|z| > max
i
|pi| (5.3.3)

that is, the outside of the circle defined by the pole of maximum magnitude. Similarly,
if the signal is completely anticausal

x(n)= −A1pn1u(−n− 1)−A2pn2u(−n− 1)−· · · (5.3.4)

its z-transform will be the same as Eq. (5.3.2), but the ROC restrictions on z will be
|z| < |p1|, |z| < |p2|, and so forth. Thus, the ROC is in this case:

|z| < min
i
|pi| (5.3.5)

that is, the inside of the circle defined by the pole of minimum magnitude. The ROCs of
these two cases are shown in Fig. 5.3.1.

anticausal ROC

p1

p2

p3

p4

causal ROC

z-plane

p1

p2

p3

p4

z-plane

Fig. 5.3.1 Causal and anticausal ROCs.

In summary, causal signals are characterized by ROCs that are outside the maximum
pole circle. Anticausal signals have ROCs that are inside the minimum pole circle. Mixed
signals have ROCs that are the annular region between two circles—with the poles that
lie inside the inner circle contributing causally and the poles that lie outside the outer
circle contributing anticausally.

Stability can also be characterized in the z-domain in terms of the choice of the ROC.
It can be shown that a necessary and sufficient condition for the stability of a signal x(n)
is that the ROC of the corresponding z-transform contain the unit circle. For a system
h(n), it can be shown that this condition is equivalent to the condition (3.5.4) discussed
in Chapter 3.

Stability is not necessarily compatible with causality. For a signal or system to be
simultaneously stable and causal, it is necessary that all its poles lie strictly inside the

5.3. CAUSALITY AND STABILITY 201

unit circle in the z-plane. This follows from Eq. (5.3.3) which is required for a causal
ROC. If this ROC is to also correspond to a stable signal, then it must contain the unit
circle. In other words, we may set |z| = 1 in Eq. (5.3.3):

1 > max
i
|pi|

which implies that all poles must have magnitude less than one. A signal or system
can also be simultaneously stable and anticausal, but in this case all its poles must lie
strictly outside the unit circle. Indeed, the anticausality condition Eq. (5.3.5), together
with the stability condition that the ROC contain the points |z| = 1, imply

1 < min
i
|pi|

which means that all poles must have magnitude greater than one. If some of the poles
have magnitude less than one and some greater than one, then it is possible to have a
stable signal but it will be of the mixed kind. Those poles that lie inside the unit circle
will contribute causally and those that lie outside will contribute anticausally.

Figure 5.3.2 illustrates three such possible stable cases. In all cases, the z-transform
has the same form, namely,

X(z)= A1

1− p1z−1
+ A2

1− p2z−1
+ A3

1− p3z−1
+ A4

1− p4z−1

p4

p3

p2

p1

stable/causal ROC

unit
circle

1

stable/anticausal ROC

p4

p3

p2

p1

unit
circle

stable/mixed ROC

unit
circle

p1

p4

p2
p3

1

Fig. 5.3.2 Stable ROCs.

In the stable and causal case, all poles must have magnitude less than one, that is,
|pi| < 1, i = 1,2,3,4 and the signal x(n) will be

x(n)= [A1pn1 +A2pn2 +A3pn3 +A4pn4
]
u(n)

with all terms converging to zero exponentially for large positiven. In the stable/anticausal
case, all poles have magnitude greater than one, |pi| > 1, i = 1,2,3,4, and x(n) will be:

x(n)= −[A1pn1 +A2pn2 +A3pn3 +A4pn4
]
u(−n− 1)

where because n is negative, each term will tend to zero exponentially for large negative
n. This can be seen more clearly by writing a typical term as

−A1pn1u(−n− 1)= −A1p
−|n|
1 u(−n− 1)= −A1

(
1

p1

)|n|
u(−n− 1)

202 5. Z-TRANSFORMS

where we set n = −|n| for negative n. Because |p1| > 1 it follows that |1/p1| < 1
and its successive powers will tend to zero exponentially. In the mixed case, we have
|p1| < |p2| < 1 and |p4| > |p3| > 1. Therefore, the stable signal will be

x(n)= [A1pn1 +A2pn2
]
u(n)−[A3pn3 +A4pn4

]
u(−n− 1)

with p1, p2 contributing causally, and p3, p4 anticausally. An example of such a stable
but mixed signal was given in the second case of Example 5.2.3, namely,

x(n)= (0.8)nu(n)−(1.25)nu(−n− 1)

As we emphasized in Chapter 3, stability is more important in DSP than causality in
order to avoid numerically divergent computations. Causality can be reconciled exactly
if all the poles are inside the unit circle, but only approximately if some of the poles are
outside. We will discuss this issue later.

An important class of signals are the so-called marginally stable signals, which nei-
ther diverge nor converge to zero for large n. Rather, they remain bounded. The unit-
step, alternating unit-step, and more general sinusoidal signals fall in this class. Such
signals have poles that lie on the unit circle.

Some examples were cases (1,4,6,9,10) of Example 5.2.2. A simpler example is the
case of a complex sinusoid of frequency ω0

(causal) x(n)= ejω0nu(n)

(anticausal) x(n)= −ejω0nu(−n− 1)

which is a special case of Eq. (5.2.3) with a = ejω0 . Note that the plain unit-step u(n)
and alternating step (−1)nu(n) are special cases of this with ω0 = 0 and ω0 = π. The
corresponding z-transform follows from Eq. (5.2.3):

X(z)= 1

1− ejω0z−1

z-plane e jω0

1
0

ω0

unit
circle

pole

with ROC being either |z| > 1 for the causal case, or |z| < 1 for the anticausal one.

5.4 Frequency Spectrum

The frequency spectrum, frequency content, or discrete-time Fourier transform (DTFT)
of a signal x(n) is defined by

X(ω)=
∞∑

n=−∞
x(n)e−jωn (DTFT) (5.4.1)

It is recognized as the evaluation of the z-transform on the unit circle, that is, at the
z points:

z = ejω (5.4.2)

5.4. FREQUENCY SPECTRUM 203

Indeed, we have:†

X(z)
∣∣
z=ejω =

∞∑
n=−∞

x(n)z−n
∣∣∣∣
z=ejω

=
∞∑

n=−∞
x(n)e−jωn = X(ω)

The frequency response H(ω) of a linear system h(n) with transfer function H(z)
is defined in the same way, namely,

H(ω)=
∞∑

n=−∞
h(n)e−jωn (frequency response) (5.4.3)

and it is also the evaluation of H(z) on the unit circle:

H(ω)= H(z)
∣∣
z=ejω

As discussed in Chapter 1, the digital frequency ω is in units of [radians/sample]
and is related to the physical frequency f in Hz by

ω = 2πf
fs

(digital frequency) (5.4.4)

The Nyquist interval [−fs/2, fs/2] is the following interval in units of ω:

−π ≤ω ≤ π (Nyquist interval) (5.4.5)

In Chapter 1, the quantity X(ω) was denoted by

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfn/fs

It was the Fourier spectrum of the sampled signal x(nT) and was given by the peri-
odic replication of the original analog spectrum at multiples of fs.

In units of ω, periodicity in f with period fs becomes periodicity in ω with period
2π. Therefore, X(ω) may be considered only over one period, such as the Nyquist
interval (5.4.5).

The inverse DTFT recovers the time sequence x(n) from its spectrum X(ω) over
the Nyquist interval:

x(n)= 1

2π

∫ π

−π
X(ω)ejωn dω (inverse DTFT) (5.4.6)

It expresses x(n) as a linear combination of discrete-time sinusoids ejωn of different
frequencies. The relative amplitudes and phases of these sinusoidal components are
given by the DTFT X(ω). One quick way to prove Eq. (5.4.6) is to think of Eq. (5.4.1)
as the Fourier series expansion of the periodic function X(ω). Then, Eq. (5.4.6) gives

†Here, we abuse the notation and write X(ω) instead of X(ejω).

204 5. Z-TRANSFORMS

simply the Fourier series expansion coefficients. In terms of the physical frequency f in
Hertz, the inverse DTFT reads as

x(n)= 1

fs

∫ fs/2

−fs/2
X(f)e2πjfn/fs df

As an example, consider a (double-sided) complex sinusoid of frequency ω0:

x(n)= ejω0n, −∞ < n <∞

Then, its DTFT will be given by

X(ω)= 2πδ(ω−ω0)+(Nyquist replicas)

where the term “Nyquist replicas” refers to the periodic replication of the first term at
intervals of 2π. This is needed in order to make X(ω) periodic with period 2π. More
precisely, the full expression will be

X(ω)= 2π
∞∑

m=−∞
δ(ω−ω0 − 2πm)

To verify it, we insert it into the inverse DTFT equation (5.4.6) and recover the given
sinusoid. It was also discussed in Chapter 1, Example 1.5.1. Assuming that ω0 lies in
the Nyquist interval [−π,π], then the restriction of X(ω) within it will be given only
by the m = 0 term, that is:

X(ω)= 2πδ(ω−ω0), −π ≤ω ≤ π

Therefore, Eq. (5.4.6) gives

x(n)= 1

2π

∫ π

−π
X(ω)ejωn dω = 1

2π

∫ π

−π
2πδ(ω−ω0)ejωn dω = ejω0n

Similarly, for a linear combination of two sinusoids we have:

x(n)= A1ejω1n +A2ejω2n −→ X(ω)= 2πA1δ(ω−ω1)+2πA2δ(ω−ω2)

This can be verified in the same way, if we assume that both ω1 and ω2 lie in the
Nyquist interval. In particular, for real-valued cosine and sine signals, we have:

cos(ω0n) −→ πδ(ω−ω0)+πδ(ω+ω0)

sin(ω0n) −→ −jπδ(ω−ω0)+jπδ(ω+ω0)

Another useful relationship is Parseval’s equation, which relates the total energy of
a sequence to its spectrum:

∞∑
n=−∞

|x(n)|2 = 1

2π

∫ π

−π
|X(ω)|2 dω (Parseval) (5.4.7)

5.4. FREQUENCY SPECTRUM 205

unit
circle

e jω

1

ω ω=0ω=π
0

Fig. 5.4.1 Evaluation of z-transform on the unit circle.

The DTFT can be given a geometric interpretation by recognizing that the points
z = ejω lie on the unit circle on the z-plane. As ω varies over the Nyquist interval
[−π,π], the complex point z = ejω moves around the unit circle, as shown in Fig. 5.4.1.
The phase angle of z is ω.

In order for the spectrum X(ω) to exist,† the ROC of the z-transform X(z) must
contain the unit circle; otherwise the z-transform will diverge at the unit circle points
z = ejω. But if the ROC contains the unit circle, the signal x(n) must be stable. Thus,
the Fourier transform X(ω) exists only for stable signals.

Marginally stable signals, such as sinusoids, strictly speaking do not have a spectrum
because their poles lie on the unit circle and therefore the evaluation of X(z) on the
unit circle will cause X(z) to diverge at certain z’s. However, it is intuitively useful to
consider their spectra. For example, for the causal complex sinusoid of the previous
section we have:

x(n)= ejω0nu(n) Z−→ X(z)= 1

1− ejω0z−1

and therefore the formal replacement of z by ejω will yield

X(ω)= 1

1− ejω0e−jω
= 1

1− ej(ω0−ω)

ω
ω0

∞

0 π

|X(ω)|

which diverges at ω = ω0. However, this is to be expected because if the signal were
a pure sinusoid x(n)= ejω0n, its spectrum would be a single spectral line concentrated
at ω = ω0, that is, X(ω)= 2πδ(ω −ω0) (plus its Nyquist replicas). Here, the signal
is not a pure sinusoid; it is a causal, truncated version of a pure sinusoid and therefore
additional frequencies are present. However, the dominant frequency is still ω0.

The shape of the spectrum X(ω) or H(ω) is affected by the pole/zero pattern of
the z-transform X(z) or H(z), that is, by the relative geometric locations of the poles

†That is, to be finite X(ω)≠∞ for all ω.

206 5. Z-TRANSFORMS

and zeros on the z-plane. To see this, consider a simple z-transform having a single
pole at z = p1 and a single zero at z = z1.

X(z)= 1− z1z−1

1− p1z−1
= z− z1

z− p1

The corresponding spectrum and its magnitude are obtained by replacing z by ejω:

X(ω)= ejω − z1

ejω − p1
⇒ |X(ω)| = |ejω − z1|

|ejω − p1|
Figure 5.4.2 shows the relative locations of the fixed points z1, p1 and the moving

point z = ejω. A rough plot of |X(ω)| based on this pole/zero pattern is also shown.
The magnitude spectrum |X(ω)| is the ratio of the distance of the point ejω to the zero
z1, namely, |ejω − z1| divided by the distance of ejω to the pole p1, namely, |ejω −p1|.

unit
circle

zero
dip

pole
peakp1

z1

e jω

1

|z-p1|

|z-z1|

ω1 ϕ1

ω

0

ω
ω1

0 πϕ1

|X(ω)|

Fig. 5.4.2 Geometric interpretation of frequency spectrum.

As ejω moves around the unit circle, these distances will vary. As ejω passes near
the pole, the denominator distance will become small causing the value of |X(ω)| to
increase. If ω1 is the phase angle of the pole p1, then the point of closest approach
to p1 will occur at ω = ω1 causing a peak in |X(ω)| there. The closer the pole is to
the unit circle, the smaller the denominator distance will become at ω = ω1, and the
sharper the peak of |X(ω)|.

Similarly, as ejω passes near the zero z1, the numerator distance will become small,
causing |X(ω)| to decrease. At the zero’s phase angle, say ω = φ1, this distance will
be smallest, causing a dip in |X(ω)| there. The closer the zero to the unit circle, the
sharper the dip. The zero z1 can also lie on the unit circle, in which case |X(ω)| will
vanish exactly at ω = φ1.

In summary, we can draw a rough sketch of the spectrum |X(ω)| by letting ejω

trace the unit circle and draw peaks as ejω passes near poles, and dips as it passes near
zeros. By proper location of the zeros and poles of X(z) or H(z), one can design any
desired shape for X(ω) or H(ω).

It is convenient to divide the unit circle into low-, medium-, and high-frequency
wedge regions, as shown in Fig. 5.4.3. This subdivision is somewhat arbitrary because

5.4. FREQUENCY SPECTRUM 207

what is “low” or “high” frequency depends on the application. It aids, however, in the
placement of poles and zeros. For example, to make a lowpass filter that emphasizes low
frequencies and attenuates high ones, one would place poles inside the circle somewhere
within the low-frequency wedge and/or zeros within the high-frequency wedge.

1

j

-j

-1

ω=-π/2

low

medium

medium

high ω=π ω=0

ω=π/2

0

Fig. 5.4.3 Low-, medium-, and high-frequency parts of the unit circle.

Such filter design methods are somewhat crude and are used in practice only for
the design of simple and/or specialized filters, such as resonator or notch filters or
biquadratic filter sections for digital audio graphic and parametric equalizers. Such
design examples will be considered later on.

The DTFT X(ω) of a signal x(n) is a complex-valued quantity and therefore, it can
be characterized also by its real and imaginary parts ReX(ω), ImX(ω) or, in its polar
form, by its magnitude and phase responses |X(ω)|, argX(ω). Thus,

X(ω)= ReX(ω)+j ImX(ω)= |X(ω)|ej argX(ω)

For real-valued signals x(n), the quantity X(ω) satisfies the following so-called
hermitian property:

X(ω)∗= X(−ω) (5.4.8)

which translates to the following relationships for the magnitude and phase responses:

|X(ω)| = |X(−ω)|
argX(ω) = − argX(−ω)

(5.4.9)

that is, the magnitude response is even in ω and the phase response odd. Similar defini-
tions and results apply to the frequency response H(ω) of a real-valued system h(n).

We note finally that the multiplicative filtering propertyY(z)= H(z)X(z) evaluated
on the unit circle takes the following frequency-domain form:

Y(ω)= H(ω)X(ω) (filtering in frequency domain) (5.4.10)

Its consequences will be explored later on.

208 5. Z-TRANSFORMS

5.5 Inverse z-Transforms

The problem of inverting a given z-transformX(z) is to find the time signal x(n) whose
z-transform is X(z). As we saw already, the answer for x(n) is not necessarily unique.
But it can be made unique by specifying the corresponding ROC.

In inverting a z-transform, it is convenient to break it into its partial fraction (PF)
expansion form, that is, into a sum of individual pole terms of the type (5.3.2).

Once X(z) is written in the form (5.3.2), one still needs to know how to invert each
term, that is, causally or anticausally. This depends on the choice of the ROC.

In general, the circles through the poles at z = p1, z = p2, and so on, divide the
z-plane into non-overlapping regions, which are all possible candidates for ROCs. Any
one of these ROC regions will result into a different x(n). Among all possible x(n),
there will be a unique one that is stable, because the unit circle lies in exactly one of the
possible ROCs.

Example 5.5.1: In Example (5.2.3), the first three signals had a common z-transform:

X(z)= 1

1− 0.8z−1
+ 1

1− 1.25z−1

The two circles through the poles at z = 0.8 and z = 1.25 divide the z-plane into the
three regions I, II, III, shown in Example 5.2.3. There are therefore three possible inverse
z-transforms, that is, three different signals x(n) corresponding to the three ROC choices.
But, only II is stable. 	

The partial fraction expansion method can be applied to z-transforms that are ratios
of two polynomials in z−1 of the form:

X(z)= N(z)
D(z)

The zeros of the denominator polynomial D(z) are the poles of X(z). Assuming
D(z) has degree M, there will be M denominator zeros, say at p1, p2, . . . , pM, and D(z)
may be assumed to be in the factored form

D(z)= (1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

The partial fraction expansion of X(z) is given by†

X(z) = N(z)
D(z)

= N(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

= A1

1− p1z−1
+ A2

1− p2z−1
+ · · · + AM

1− pMz−1

(5.5.1)

For this expansion to be possible as an identity in z−1, the degree of the numerator
polynomialN(z)must be strictly less than the degreeM of the denominator polynomial.
The PF expansion coefficients Ai can be computed by the formulas:

Ai =
[
(1− piz−1)X(z)

]
z=pi =

⎡⎢⎢⎢⎣ N(z)∏
j �=i
(1− pjz−1)

⎤⎥⎥⎥⎦
z=pi

(5.5.2)

†We have assumed that all the poles are single poles.

5.5. INVERSE Z-TRANSFORMS 209

for i = 1,2, . . . ,M. In words, the factor (1 − piz−1) is deleted from the denominator
and the remaining expression is evaluated at the pole z = pi.

Example 5.5.2: In Example 5.2.3 the z-transform was written in the form

X(z)= 2− 2.05z−1

1− 2.05z−1 + z−2
= 2− 2.05z−1

(1− 0.8z−1)(1− 1.25z−1)

Because the numerator polynomial has degree one in the variable z−1, there is a PF expan-
sion of the form:

X(z)= 2− 2.05z−1

(1− 0.8z−1)(1− 1.25z−1)
= A1

1− 0.8z−1
+ A2

1− 1.25z−1

The two coefficients are obtained by Eq. (5.5.2) as follows:

A1 =
[
(1− 0.8z−1)X(z)

]
z=0.8 =

[
2− 2.05z−1

1− 1.25z−1

]
z=0.8

= 2− 2.05/0.8
1− 1.25/0.8

= 1

A2 =
[
(1− 1.25z−1)X(z)

]
z=1.25 =

[
2− 2.05z−1

1− 0.8z−1

]
z=1.25

= 1

which are as expected. 	

If the degree of the numerator polynomial N(z) is exactly equal to the degree M
of the denominator D(z), then the PF expansion (5.5.1) must be modified by adding an
extra term of the form:

X(z) = N(z)
D(z)

= N(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

= A0 + A1

1− p1z−1
+ A2

1− p2z−1
+ · · · + AM

1− pMz−1

(5.5.3)

The coefficientsAi, i = 1,2, . . . ,M are computed in exactly the same way by Eq. (5.5.2).
The extra coefficient A0 is computed by evaluating the z-transform at z = 0, that is,

A0 = X(z)
∣∣
z=0 (5.5.4)

If the degree ofN(z) is strictly greater thanM, one may divide the polynomialD(z)
into N(z), finding the quotient and remainder polynomials, so that

N(z)= Q(z)D(z)+R(z)

and then writing

X(z)= N(z)
D(z)

= Q(z)D(z)+R(z)
D(z)

= Q(z)+R(z)
D(z)

where now the second term will admit an ordinary PF expansion of the form (5.5.1) be-
cause the degree of the remainder polynomialR(z) is strictly less thanM. Alternatively,
one may simply remove the numerator polynomial N(z) altogether, then carry out an
ordinary PF expansion of the quantity

210 5. Z-TRANSFORMS

W(z)= 1

D(z)

and finally restore the numerator by writing

X(z)= N(z)W(z)

We may refer to this method as the “remove/restore” method. Some examples will
illustrate these techniques.

Example 5.5.3: We emphasize that a PF expansion may exist in one independent variable, say
z−1, but not in another, say z. For example, the z-transform

X(z)= 2− 2.05z−1

(1− 0.8z−1)(1− 1.25z−1)
= z(2z− 2.05)
(z− 0.8)(z− 1.25)

has numerator of degree one with respect to the variable z−1, but degree two with respect
to z. Thus, it admits an expansion of the form (5.5.1) with respect to z−1, but not with
respect to z.

Many texts prefer to work with z and therefore to make the PF expansion possible, a factor
z is divided out to lower the degree of the numerator and then restored at the end, that is,

X(z)
z

= (2z− 2.05)
(z− 0.8)(z− 1.25)

= A1

z− 0.8
+ A2

z− 1.25

When z is restored, one gets

X(z)= zA1

z− 0.8
+ zA2

z− 1.25
= A1

1− 0.8z−1
+ A2

1− 1.25z−1

It is easily verified that the PF expansion coefficients will be the same in the two approaches.
In this book, we prefer to work directly with z−1 and avoid the extra algebraic steps required
to write everything in terms of z, divide by z, restore z, and rewrite the final answer in
terms of z−1. 	

Example 5.5.4: Compute all possible inverse z-transforms of

X(z)= 6+ z−1

1− 0.25z−2
0.5-0.5

0

z-plane I

II

Solution: Because the numerator has degree one in z−1, we have the PF expansion:

X(z)= 6+ z−1

1− 0.25z−2
= 6+ z−1

(1− 0.5z−1)(1+ 0.5z−1)
= A1

1− 0.5z−1
+ A2

1+ 0.5z−1

where

A1 =
[

6+ z−1

1+ 0.5z−1

]
z=0.5

= 4, A2 =
[

6+ z−1

1− 0.5z−1

]
z=−0.5

= 2

5.5. INVERSE Z-TRANSFORMS 211

The two poles at ±0.5 have the same magnitude and therefore divide the z-plane into two
ROC regions I and II: |z| > 0.5 and |z| < 0.5. For the first ROC, both terms in the PF
expansion are inverted causally giving:

x(n)= A1(0.5)nu(n)+A2(−0.5)nu(n)

Because this ROC also contains the unit circle the signal x(n) will be stable. For the second
ROC, both PF expansion terms are inverted anticausally giving:

x(n)= −A1(0.5)nu(−n− 1)−A2(−0.5)nu(−n− 1)

This answer is unstable, because the ROC does not contain the unit circle. 	

Example 5.5.5: Determine all inverse z-transforms of

X(z)= 10+ z−1 − z−2

1− 0.25z−2
0.5-0.5

0

z-plane I

II

Solution: Ordinary partial fraction expansion is not valid in this case because the degree of the
numerator is the same as the degree of the denominator. However, we may still have an
expansion of the form (5.5.3)

X(z) = 10+ z−1 − z−2

1− 0.25z−2
= 10+ z−1 − z−2

(1− 0.5z−1)(1+ 0.5z−1)

= A0 + A1

1− 0.5z−1
+ A2

1+ 0.5z−1

where A1 and A2 are determined in the usual manner and A0 is determined by evaluating
X(z) at z = 0:

A0 =
[

10+ z−1 − z−2

1− 0.25z−2

]
z=0

=
[

10z2 + z− 1

z2 − 0.25

]
z=0

= −1

−0.25
= 4

A1 =
[

10+ z−1 − z−2

1+ 0.5z−1

]
z=0.5

= 4, A2 =
[

10+ z−1 − z−2

1− 0.5z−1

]
z=−0.5

= 2

Again, there are only two ROCs I and II: |z| > 0.5 and |z| < 0.5. For the first ROC, the A1

and A2 terms are inverted causally, and the A0 term inverts into a simple δ(n):

x(n)= A0δ(n)+A1(0.5)nu(n)+A2(−0.5)nu(n)

For the second ROC, we have:

x(n)= A0δ(n)−A1(0.5)nu(−n− 1)−A2(−0.5)nu(−n− 1)

Only the first inverse is stable because its ROC contains the unit circle. 	

212 5. Z-TRANSFORMS

Example 5.5.6: Determine the causal inverse z-transform of

X(z)= 6+ z−5

1− 0.25z−2
0.5-0.5

0

z-plane I

II

Solution: Here, the degree of the numerator is strictly greater than that of the denominator.
The first technique is to divide the denominator into the numerator, giving

(6+ z−5)= (1− 0.25z−2)(−16z−1 − 4z−3)+(6+ 16z−1)

where (6+ 16z−1) is the remainder polynomial and (−16z−1 − 4z−3) the quotient. Then,

X(z)= 6+ z−5

1− 0.25z−2
= −16z−1 − 4z−3 + 6+ 16z−1

1− 0.25z−2

and expanding the last term in PF expansion:

X(z)= −16z−1 − 4z−3 + 19

1− 0.5z−1
− 13

1+ 0.5z−1

The causal inverse, having ROC |z| > 0.5, will be:

x(n)= −16δ(n− 1)−4δ(n− 3)+19(0.5)nu(n)−13(−0.5)nu(n)

The second technique is the “remove/restore” method. Ignoring the numerator we have

W(z)= 1

1− 0.25z−2
= 0.5

1− 0.5z−1
+ 0.5

1+ 0.5z−1

which has the causal inverse

w(n)= 0.5(0.5)nu(n)+0.5(−0.5)nu(n)

Once w(n) is known, one can obtain x(n) by restoring the numerator:

X(z)= (6+ z−5)W(z)= 6W(z)+z−5W(z)

Taking inverse z-transforms of both sides and using the delay property, we find

x(n) = 6w(n)+w(n− 5)= 3(0.5)nu(n)+3(−0.5)nu(n)

+ 0.5(0.5)n−5u(n− 5)+0.5(−0.5)n−5u(n− 5)

The two expressions for x(n) from the two techniques are equivalent. 	

Example 5.5.7: Determine all possible inverse z-transforms of

X(z)= 7− 9.5z−1 − 3.5z−2 + 5.5z−3

(1− z−2)(1− 0.5z−1)(1− 1.5z−1) 0.5

1.51-1 I
II

IV
III

z-plane

5.5. INVERSE Z-TRANSFORMS 213

Solution: X(z) admits the PF expansion:

X(z)= 1

1− z−1
+ 1

1+ z−1
+ 3

1− 0.5z−1
+ 2

1− 1.5z−1

where the PF expansion coefficients are easily found. The four poles at z = 0.5,1,−1,
1.5 divide the z-plane into the four ROC regions I, II, III, IV. Region I corresponds to the
completely anticausal inverse and region IV to the completely causal one. For region II, the
pole at z = 0.5 will be inverted causally and the rest anticausally. For region III, z = 0.5
and z = ±1 will be inverted causally and z = 1.5 anticausally. Thus, the four possible
inverse z-transforms are:

x1(n) = −
[
1+ (−1)n+3(0.5)n+2(1.5)n

]
u(−n− 1)

x2(n) = 3(0.5)nu(n)−[1+ (−1)n+2(1.5)n
]
u(−n− 1)

x3(n) =
[
1+ (−1)n+3(0.5)n

]
u(n)−2(1.5)nu(−n− 1)

x4(n) =
[
1+ (−1)n+3(0.5)n+2(1.5)n

]
u(n)

Strictly speaking there is no stable answer because two of the poles, z = ±1, lie on the
unit circle. However, x2(n) and x3(n) are marginally stable, that is, neither diverging nor
converging to zero for large n. In both cases, the anticausal term (1.5)n tends to zero for
large negative n. Indeed, because n is negative, we write n = −|n| and

(1.5)n= (1.5)−|n|→ 0 as n→ −∞

The terms due to the poles z = ±1 are causal or anticausal in cases III and II, but they
remain bounded. The other two signals x1(n) and x4(n) are unstable because the unit
circle does not lie in their ROCs. 	

The assumption that the numerator and denominator polynomials N(z) and D(z)
have real-valued coefficients implies that the complex-valued poles of X(z) come in
complex-conjugate pairs. In that case, the PF expansion takes the form

X(z)= A1

1− p1z−1
+ A∗1

1− p∗1 z−1
+ A2

1− p2z−1
+ · · · 0 ω1

p1

p1*

p2

p3

z-plane

R1

where the PF expansion coefficients also come in conjugate pairs. Thus, it is necessary
to determine only one of them, not both. The corresponding inverse z-transform will
be real-valued; indeed, considering the causal case we have

x(n)= A1pn1u(n)+A∗1 p∗n1 u(n)+A2pn2u(n)+· · ·

Because the first two terms are complex conjugates of each other, we may use the
result that C+C∗ = 2Re(C), for any complex number C, to write the first term as

A1pn1 +A∗1 p∗n1 = 2Re
[
A1pn1

]

214 5. Z-TRANSFORMS

Writing A1 and p1 in their polar form, say, A1 = B1ejα1 and p1 = R1ejω1 , with
B1 > 0 and R1 > 0, we have

Re
[
A1pn1

] = Re
[
B1ejα1Rn

1ejω1n
] = B1Rn

1 Re
[
ejω1n+jα1

]
and taking the real part of the exponential, we find

A1pn1 +A∗1 p∗n1 = 2Re
[
A1pn1

] = 2B1Rn
1 cos(ω1n+α1)

and for x(n)

x(n)= 2B1Rn
1 cos(ω1n+α1)u(n)+A2pn2u(n)+· · ·

Thus, complex-valued poles correspond to exponentially decaying sinusoids (if R1 <
1). The decay envelope Rn

1 and the frequency ω1 depend on the complex pole by p1 =
R1ejω1 .

The first-order terms in the partial fraction expansion corresponding to complex con-
jugate poles can be reassembled into second-order terms with real-valued coefficients,
as follows:

A1

1− p1z−1
+ A∗1

1− p∗1 z−1
= (A1 +A∗1)−(A1p∗1 +A∗1 p1)z−1

(1− p1z−1)(1− p∗1 z−1)

Using the identities

(1− p1z−1)(1− p∗1 z−1)= 1− 2Re(p1)z−1 + |p1|2z−2

or,

(1−R1ejω1z−1)(1−R1e−jω1z−1)= 1− 2R1 cos(ω1)z−1 +R2
1z−2

and writing
A1 +A∗1 = 2Re(A1)= 2B1 cos(α1)

A1p∗1 +A∗1 p1 = 2Re(A1p∗1)= 2B1R1 cos(α1 −ω1)

we find

A1

1− p1z−1
+ A∗1

1− p∗1 z−1
= 2B1 cos(α1)−2B1R1 cos(α1 −ω1)z−1

1− 2R1 cos(ω1)z−1 +R2
1z−2

having real-valued coefficients.

Example 5.5.8: Determine all possible inverse z-transforms of

X(z)= 4− 3z−1 + z−2

1+ 0.25z−2

0.5j

-0.5j

0

z-plane
I

II

5.6. UNILATERAL Z-TRANSFORM 215

Solution: We write

X(z) = 4− 3z−1 + z−2

1+ 0.25z−2
= 4− 3z−1 + z−2

(1− 0.5jz−1)(1+ 0.5jz−1)

= A0 + A1

1− 0.5jz−1
+ A∗1

1+ 0.5jz−1

with the numerical values:

A0 =
[

4− 3z−1 + z−2

1+ 0.25z−2

]
z=0

= 4 , A1 =
[

4− 3z−1 + z−2

1+ 0.5jz−1

]
z=0.5j

= 3j

Therefore,

X(z)= 4+ 3j
1− 0.5jz−1

− 3j
1+ 0.5jz−1

= 4− 3z−1

1+ 0.25z−2

The causal ROC is |z| > |0.5j| = 0.5, resulting in

x(n)= 4δ(n)+3j(0.5j)nu(n)−3j(−0.5j)nu(n)

Because the last two terms are complex conjugates of each other, we may write them as

x(n)= 4δ(n)+2Re
[
3j(0.5j)nu(n)

] = 4δ(n)+6(0.5)nu(n)Re
[
jn+1

]
Writing jn+1 = ejπ(n+1)/2 and taking real parts we find

Re
[
jn+1

] = cos
(π(n+ 1)

2

) = − sin
(πn

2

)
and

x(n)= 4δ(n)−6(0.5)nsin
(πn

2

)
u(n)

Similarly, we find

x(n)= 4δ(n)+6(0.5)nsin
(πn

2

)
u(−n− 1)

for the anticausal version with ROC |z| < 0.5. Some additional examples with complex
conjugate poles were cases (6-9) of Example 5.2.2. 	

5.6 Unilateral z-Transform

Given a possibly double-sided sequence, xn, its causal part, x+n , is defined as the causal
signal corresponding to n ≥ 0, that is,

n = [· · · −2 −1 0 1 2 3 · · ·]
xn = [· · · x−2 x−1 x0 x1 x2 x3 · · ·]
x+n = [· · · 0 0 x0 x1 x2 x3 · · ·]

(5.6.1)

216 5. Z-TRANSFORMS

Similarly, the causal parts of the left-shifted time-advanced versions, x+n+1, x+n+2, will be,

n = [· · · −2 −1 0 1 2 3 · · ·]
xn+1 = [· · · x−1 x0 x1 x2 x3 x4 · · ·]
x+n+1 = [· · · 0 0 x1 x2 x3 x4 · · ·]
xn+2 = [· · · x0 x1 x2 x3 x4 x5 · · ·]
x+n+2 = [· · · 0 0 x2 x3 x4 x5 · · ·]

(5.6.2)

And, the causal parts of the right-shifted time-delayed versions, x+n−1, x+n−2, will be,

n = [· · · −2 −1 0 1 2 3 · · ·]
xn−1 = [· · · x−3 x−2 x−1 x0 x1 x2 · · ·]
x+n−1 = [· · · 0 0 x−1 x0 x1 x2 · · ·]
xn−2 = [· · · x−4 x−3 x−2 x−1 x0 x1 · · ·]
x+n−2 = [· · · 0 0 x−2 x−1 x0 x1 · · ·]

(5.6.3)

Denoting by X+(z), the z-transform of x+n ,

X+(z)=
∞∑
n=0

xnz−n = x0 + x1z−1 + z2z−2 + · · · (unilateral z-transform) (5.6.4)

which is referred to as the unilateral z-transform of original signal xn. It then follows
from Eqs. (5.6.1)–(5.6.3) that the z-transforms of the time-advanced and time-delayed
causal parts, x+n±1, x+n±2, will be related to X+(z) via,

x+n
Z−→ X+(z)

x+n+1
Z−→ z

[
X+(z)−x0

]
x+n+2

Z−→ z2[X+(z)−x0 − z−1x1
]

x+n−1
Z−→ z−1[X+(z)+zx−1

]
x+n−2

Z−→ z−2[X+(z)+z2x−2 + zx−1
]

(5.6.5)

for example, we see from Eq. (5.6.2) that,

x+n+1
Z−→ x1 + z−1x2 + z−2x3 + · · · = z

[
z−1x1 + z−2x2 + z−3x3 + · · ·

]
z
[
x0 + z−1x1 + z−2x2 + z−3x3 + · · ·

]− zx0 = zX+(z)−zx0

Such relationships are useful in solving difference equations with given initial condi-

5.6. UNILATERAL Z-TRANSFORM 217

tions. They are akin to the Laplace transform differentiation properties,

x(t) L−→ X(s)

ẋ(t) L−→ sX(s)−x(0−)

ẍ(t) L−→ s2X(s)−sx(0−)−ẋ(0−)

(5.6.6)

with the usual definition of the unilateral Laplace transform [597,598],

x(t) L−→ X(s)=
∫∞

0−
x(t)e−st dt (5.6.7)

Example 5.6.1: Loan / Mortgage Amortization. In obtaining a loan or mortgage payable at a
fixed rate in a fixed number of years, the payment amount (per payment period) can be
calculated from the formula:

P = ry0(1+ r)N

(1+ r)N−1
(5.6.8)

where y0 is the initial loan amount and, assuming monthly payments, r = R/12, where R
is the annual interest rate, and N is the total number of months.

For example, for a 5-year loan at a 6% annual rate, we have,R = 0.06 and r = R/12 = 0.005,
and N is the total number of payment periods, e.g., N = 12× 5 = 60 months.

Let yn denote the loan balance at the end of the n-th payment period. At the next period,
n+1, the payment of P dollars is subtracted from the present balance of yn, but before this
is done, the bank charges an interest, in = ryn, therefore, only the amount, bn = P− ryn,
is used to reduce the balance, so that the next balance will be:

yn+1 = yn − bn = yn − (P− ryn)= (1+ r)yn − P

or, defining the quantity, a = 1+ r, for convenience,

yn+1 = ayn − P , n = 0,1,2, . . . (5.6.9)

This recursion can be solved analytically, with solution,

yn =
[
y0 − P

r

]
an + P

r
, n = 0,1,2, . . . (5.6.10)

Requiring that yn = 0 at n = N, and solving for P, we obtain, Eq. (5.6.8). Then, after using
Eq. (5.6.8), we can rewrite the solution as,

yn = aN − an

aN − 1
y0 , n = 0,1,2, . . . ,N (5.6.11)

The solution correctly gives yn = y0 at n = 0, and yn = 0 at n = N.

a. Derive the solution Eq. (5.6.10), and then, prove Eqs. (5.6.8) and (5.6.11).

b. Consider the numerical values y0 = 10000, R = 0.06,N = 60. Compute the payment
amount P and the values of the balance yn for n = 0,1, . . . ,N, as well as the interest
in paid at the n-th period, and the amount bn used to reduce the balance, and make
a table exactly like the one shown below (but with all 61 entries printed.)

218 5. Z-TRANSFORMS

n y(n) i(n) b(n)

0 10000.00 50.00 143.33

1 9856.67 49.28 144.04

2 9712.63 48.56 144.76

3 9567.86 47.84 145.49

4 9422.37 47.11 146.22

----------- etc ------------

57 574.23 2.87 190.46

58 383.78 1.92 191.41

59 192.37 0.96 192.37

60 0.00 - -

Note that initially the interest payment is high but it gets smaller with time, while
the amount that goes to repay the loan increases. Banks usually provide a payment
schedule just like this table.

c. Compute the total amount that went to re-pay the loan, and the total amount of
interest paid. Make a plot of yn versus n and observe how it is driven to zero at
n = N. Make also a plot of the cumulative interest.

1 12 24 36 48 60
0

2000

4000

6000

8000

10000

ba
la

n
ce

n, months

remaining balance

1 12 24 36 48 60
0

200

400

600

800

1000

1200

1400

1600

in
te

re
st

n, months

cumulative interest

Fig. 5.6.1 Balance and interest versus time.

Solution: Derivation of Eq. (5.6.10). We may work with unilateral z-transforms and apply the
time-advance identity of Eq. (5.6.2)

y+n
Z−→ Y+(z)

y+n+1
Z−→ z

[
Y+(z)−y0

]
Then, Eq. (5.6.9) reads, in the time and z domains, where u(n) is the unit-step,

y+n+1 = ay+n − Pu(n)

z
[
Y+(z)−y0

] = aY+(z)− P
1− z−1

5.6. UNILATERAL Z-TRANSFORM 219

which can be solved for Y+(z), followed by partial fraction expansion:

Y+(z)= y0

1− az−1
− Pz−1(

1− az−1
)
(1− z−1)

= y0

1− az−1
− P
r

[
1

1− az−1
− 1

1− z−1

]
whose causal inverse z-transform is Eq. (5.6.10):

y+n = y0anu(n)−Pr
[
anu(n)−u(n)] = [y0 − P

r

]
an + P

r
, n = 0,1,2, . . .

Derivation of Eq. (5.6.10) by iteration. A few iterations of Eq. (5.6.9) for, n = 0,1,2,3, are
listed below,

y1 = ay0 − P

y2 = ay1 − P = a[ay0 − P]−P = a2y0 − P(1+ a)

y3 = ay2 − P = a
[
a2y0 − (1+ a)P

]− P = a3y0 − P(1+ a+ a2)

y4 = ay3 − P = a
[
a3y0 − (1+ a+ a2)P

]− P = a4y0 − P(1+ a+ a2 + a3)

thus, by induction, we conclude that,

yn = any0 − P(1+ a+ a2 + · · ·an−1)= any0 − P
an − 1

a− 1
=
[
y0 − P

a− 1

]
an + P

a− 1

which is the same as Eq. (5.6.10), since, a− 1 = r, and we used the finite geometric series,

1+ a+ a2 + · · ·an−1 = an − 1

a− 1

Another derivation of Eq. (5.6.10). From the theory of linear difference equations with
constant coefficients, it follows that the solution of,

y+n+1 = ay+n − Pu(n) (5.6.12)

can be expressed as the sum a particular solution and a homogeneous solution, the latter
being the solution of the homogeneous equation,

y+n+1 = ay+n ⇒ yhomog(n)= can

with an arbitrary constant c to be fixed by the initial conditions. Since the input, Pu(n), is
a constant for n ≥ 0, a particular solution of the full equation (5.6.12) could also be chosen
to be a constant, say, ypart(n)= yc, thus, we require,

yc = ayc − P ⇒ yc = − P
1− a

= P
r

It follows that the complete solution will be, for n ≥ 0,

yn = yhomog(n)+ypart(n)= can + P
r

The constant c is fixed by requiring the initial condition, yn = y0 at n = 0, which gives,

y0 = c+ P
r

⇒ c = y0 − P
r

⇒ yn =
[
y0 − P

r

]
an + P

r
, n ≥ 0

220 5. Z-TRANSFORMS

Note also that the total interest paid can be calculated by summing up the individual
interests,

Itot =
N−1∑
n=0

ryn

Using Eq. (5.6.11), we find

Itot = r
N−1∑
n=0

y0an − r
N−1∑
n=0

P
r
[
an − 1

] = NP−
[
P
r
− y0

]
r
N−1∑
n=0

an

which, after using the finite geometric series, simplifies into,

Itot = NP−
[
P
r
− y0

](
aN − 1

)
and using Eq. (5.6.8) for P, it simplifies further into,

Itot =
N−1∑
n=0

ryn = NP− y0

which is as expected since, over N payment periods, the total amount paid is NP, part
of which goes into paying up the initial loan of y0, and the rest is the interest, that is,
NP = y0 + Itot .

For the given values of, y0 = 10000 loan amount, R = 0.06 annual rate, N = 60 months,
we find, r = R/12 = 0.005, a = 1 + r = 1.005. The monthly payment amount is found
from Eq. (5.6.8) to be, P = 193.33 and the total interest, Itot = NP− y0 = 1599.68.

We note finally, that even though the solution Eq. (5.6.10) is unstable, since a > 1, the
solution is only used for a finite time period until it becomes zero, yn = 0. 	

5.7 Problems

5.1 Prove the linearity, delay, and convolution properties of z-transforms given by Eqs. (5.1.3)–
(5.1.5).

5.2 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= δ(n− 5)

b. x(n)= δ(n+ 5)

c. x(n)= u(n− 5)

d. x(n)= u(−n+ 5)

5.3 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= (−0.5)nu(n)

b. x(n)= (−0.5)n
[
u(n)−u(n− 10)

]
c. x(n)= (0.5)nu(n)+(−0.5)nu(n)

5.7. PROBLEMS 221

5.4 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= 2(0.8)n cos(πn/2)u(n)

b. x(n)= (0.8j)nu(n)+(−0.8j)nu(n)

5.5 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= (0.25)nu(n)+4nu(n)

b. x(n)= (0.25)nu(n)−4nu(−n− 1)

c. x(n)= −(0.25)nu(−n− 1)−4nu(−n− 1)

d. Explain why x(n)= −(0.25)nu(−n− 1)+4nu(n) does not have a z-transform.

5.6 Using the power series definition of z-transforms, derive the z-transform and its ROC of the
signal x(n)= cos(πn/2)u(n).

5.7 Using partial fractions or power series expansions, compute the inverse z-transform of the
following z-transforms and determine whether the answer is causal and/or stable:

a. X(z)= (1− 4z−2)(1+ 3z−1)

b. X(z)= 5+ 3z3 + 2z−2

5.8 Using partial fractions or power series expansions, determine all possible inverse z-transforms
of the following z-transforms, sketch their ROCs, and discuss their stability and causality
properties:

a. X(z)= 3(1+ 0.3z−1)
1− 0.81z−2

b. X(z)= 6− 3z−1 − 2z−2

1− 0.25z−2

c. X(z)= 6+ z−5

1− 0.64z−2

d. X(z)= 10+ z−2

1+ 0.25z−2

e. X(z)= 6− 2z−1 − z−2

(1− z−1)(1− 0.25z−2)
, ROC |z| > 1

f. X(z)= −4+ 1

1+ 4z−2

g. X(z)= 4− 0.6z−1 + 0.2z−2

(1− 0.5z−1)(1+ 0.4z−1)

5.9 Consider the z-transform pair:

xa(n)= anu(n) � Xa(z)= 1

1− az−1

Applying the derivative operator ∂/∂a to the pair, derive the z-transform of the sequence
x(n)= nanu(n).

5.10 Consider the differential operator D = a
∂
∂a

. First, show that its k-fold application gives

Dkan = nkan. Then, use this result to obtain the z-transform of x(n)= nkanu(n). Derive
the explicit transforms for the cases k = 1,2,3,4.

222 5. Z-TRANSFORMS

5.11 Show the z-transform of a triangular signal:

L∑
n=−L

(
1− |n|

L
)
z−n = 1

L

[
1− z−L

1− z−1

]2

zL−1

5.12 Using Euler’s formula and the z-transform pair of Problem 5.9, derive the z-transforms of
the signals x(n)= Rn cos(ω0n)u(n) and x(n)= Rn sin(ω0n)u(n).

5.13 Consider the causal sequence x(n)= {a0, a1, a2, a3, a0, a1, a2, a3, · · · }, where the dots indi-
cate the periodic repetition of the four samples {a0, a1, a2, a3}. Determine the z-transform
of x(n) and the corresponding ROC.

5.14 Using partial fraction expansions, determine the inverse z-transform of the z-transform of
Problem 5.13. Verify that the sum of the PFE terms generate the periodic sequence x(n) of
that problem.

5.15 Consider the z-transform for |z| > 1:

X(z)= 1− z−2 + z−4 − z−6 + z−8 − · · ·
Derive a rational expression for X(z) in two ways: (a) by summing the above series, and (b)
by showing that it satisfies the equation X(z)= 1− z−2X(z).
Derive also the inverse z-transform x(n) for all n.

5.16 Without using partial fractions, determine the causal inverse z-transforms of:

a. X(z)= 1

1+ z−4

b. X(z)= 1

1− z−4

c. X(z)= 1

1+ z−8

d. X(z)= 1

1− z−8

5.17 Using partial fraction expansions, determine the inverse z-transforms of Problem 5.16. Ver-
ify that you get the same answers as in that problem.

5.18 Consider a transfer function H(z)= N(z)/D(z), where the numerator and denominator
polynomials have real-valued coefficients and degrees L and M in z−1, and assume L > M.
Show that H(z) can be written in the form:

H(z)= Q(z)+
K∑
i=1

bi0 + z−1bi1
1+ ai1z−1 + ai2z−2

where Q(z) is a polynomial of degree L − M in z−1 and the second-order sections have
real coefficients. The number of sections K is related to M by K = M/2 if M is even and
K = (M − 1)/2 if M is odd. This result forms the basis of the parallel realization form of
H(z).

5.19 Determine the factorization into first-order zeros of:

1− z−D =
D−1∏
k=0

(1− zkz−1)

1+ z−D =
D−1∏
k=0

(1− zkz−1)

where D is an integer. What are the zeros zk in the two cases? For D = 4 and D = 8, place
these zeros on the z-plane with respect to the unit circle.

5.7. PROBLEMS 223

5.20 Given a > 0 and integer D, repeat the previous problem for:

1− az−D =
D−1∏
k=0

(1− zkz−1)

1+ az−D =
D−1∏
k=0

(1− zkz−1)

5.21 Prove the “modulation” property of z-transforms:

x(n) Z−→ X(z) ⇒ anx(n) Z−→ X(z/a)

For a = ejω0 , show that in the frequency domain this property becomes:

x(n)−→ X(ω) ⇒ ejω0nx(n)−→ X(ω−ω0)

5.22 Given the DTFT equation (5.4.1), prove the inverse DTFT, Eq. (5.4.6).

5.23 Prove the Parseval equation (5.4.7).

5.24 For real-valued signals, prove the hermitian properties (5.4.8) and (5.4.9). What are the her-
mitian properties satisfied by the real and imaginary parts of the DTFT spectrum?

6
Transfer Functions

6.1 Equivalent Descriptions of Digital Filters

In this chapter, with the aid of z-transforms, we develop several mathematically equiv-
alent ways to describe and characterize FIR and IIR filters, namely, in terms of their:

• Transfer function H(z)
• Frequency response H(ω)
• Block diagram realization and sample processing algorithm
• I/O difference equation
• Pole/zero pattern
• Impulse response h(n)
• I/O convolutional equation

The most important one is the transfer function description because from it we can
easily obtain all the others. Figure 6.1.1 shows the relationships among these descrip-
tions. The need for such multiple descriptions is that each provides a different insight
into the nature of the filter and each serves a different purpose.

Fig. 6.1.1 Equivalent descriptions of digital filters.

224

6.2. TRANSFER FUNCTIONS 225

In practice, a typical usage of these descriptions is to start by specifying a set of
desired frequency response specifications, that is, the desired shape of H(ω) (lower left
corner in Fig. 6.1.1). Then, through a filter design method, obtain a transfer function
H(z) that satisfies the given specifications. From H(z) one can then derive a block
diagram realization and the corresponding sample-by-sample processing algorithm that
tells how to operate the designed filter in real time (lower right corner of Fig. 6.1.1). For
an FIR filter, one can alternatively obtain the impulse response h(n) and then use one
of the convolution-based block processing methods to implement the operation of the
filter (upper right corner of Fig. 6.1.1).

6.2 Transfer Functions

Here, we illustrate the central role played by the transfer function H(z) of a filter by
showing how to pass back and forth from one description to another.

Given a transfer function H(z) one can obtain: (a) the impulse response h(n), (b)
the difference equation satisfied by the impulse response, (c) the I/O difference equation
relating the output y(n) to the input x(n), (d) the block diagram realization of the
filter, (e) the sample-by-sample processing algorithm, (f) the pole/zero pattern, (g) the
frequency response H(ω). Conversely, given any of (a)–(g) as the starting point, one
can obtain H(z) and from it the rest of (a)–(g).

As an example, consider the transfer function:

H(z)= 5+ 2z−1

1− 0.8z−1
(6.2.1)

To obtain the impulse response, we use partial fraction expansion to write it in the
form:

H(z)= 5+ 2z−1

1− 0.8z−1
= A0 + A1

1− 0.8z−1
= −2.5+ 7.5

1− 0.8z−1

where A0 and A1 are obtained by:

A0 = H(z)
∣∣
z=0 =

5+ 2z−1

1− 0.8z−1

∣∣∣∣∣
z=0

= 5z+ 2

z− 0.8

∣∣∣∣
z=0

= 2

−0.8
= −2.5

A1 = (1− 0.8z−1)H(z)
∣∣
z=0.8 = (5+ 2z−1)

∣∣
z=0.8 = 5+ 2/0.8 = 7.5

Assuming the filter is causal, we find:

h(n)= −2.5δ(n)+7.5(0.8)nu(n) (6.2.2)

The difference equation satisfied by h(n) can be obtained from H(z). The standard
approach is to eliminate the denominator polynomial of H(z) and then transfer back to
the time domain. Starting with Eq. (6.2.1) and multiplying both sides by the denominator,
we find

(1− 0.8z−1)H(z)= 5+ 2z−1 ⇒ H(z)= 0.8z−1H(z)+5+ 2z−1

226 6. TRANSFER FUNCTIONS

Taking inverse z-transforms of both sides and using the linearity and delay proper-
ties, we obtain the difference equation for h(n):

h(n)= 0.8h(n− 1)+5δ(n)+2δ(n− 1) (6.2.3)

It is easily verified that Eq. (6.2.2) is the causal solution, that is, the solution with the
causal initial condition h(−1)= 0. Given the impulse response h(n), we can obtain the
general I/O convolutional equation for the filter, that is,

yn = h0xn + h1xn−1 + h2xn−2 + h3xn−3 + · · ·
= 5xn + 7.5

[
(0.8)xn−1 + (0.8)2xn−2 + (0.8)3xn−3 + · · ·

]
It can be rearranged into a difference equation for y(n) using the time-domain tech-

niques of Chapter 3, as in Example 3.4.7. This difference equation can be determined
very quickly using z-transforms with the aid of the z-domain equivalent of convolution:

Y(z)= H(z)X(z)

Again, the standard procedure is to eliminate denominators and go back to the time
domain. For this example, we have:

Y(z)= H(z)X(z)= 5+ 2z−1

1− 0.8z−1
X(z) ⇒ (1− 0.8z−1)Y(z)= (5+ 2z−1)X(z)

which can be written as

Y(z)−0.8z−1Y(z)= 5X(z)+2z−1X(z)

Taking inverse z-transforms of both sides, we have

y(n)−0.8y(n− 1)= 5x(n)+2x(n− 1)

Therefore, the I/O difference equation is:

y(n)= 0.8y(n− 1)+5x(n)+2x(n− 1) (6.2.4)

Note that Eq. (6.2.3) is a special case of this, with x(n)= δ(n) and y(n)= h(n). If
the difference equation (6.2.4) was the starting point, we could obtainH(z) by reversing
all of the above steps, that is, taking z-transforms of both sides

Y(z)= 0.8z−1Y(z)+5X(z)+2z−1X(z) ⇒
(1− 0.8z−1)Y(z)= (5+ 2z−1)X(z)

and solving for the ratio

H(z)= Y(z)
X(z)

= 5+ 2z−1

1− 0.8z−1

Once the I/O difference equation is determined, one can mechanize it by a block
diagram. For example, Eq. (6.2.4) can be implemented as shown in Fig. 6.2.1. This is

6.2. TRANSFER FUNCTIONS 227

Fig. 6.2.1 Direct form realization of H(z).

referred to as the direct form realization because it realizes directly the various terms
in the right-hand side of Eq. (6.2.4).

As in the FIR case, the sample processing algorithm can be obtained by assigning
internal state variables to all the delays that are present in the block diagram. That is,
we may define

v1(n)= x(n− 1) ⇒ v1(n+ 1)= x(n)

where v1(n) is the content of the x-delay at time n. Similarly, we define:

w1(n)= y(n− 1) ⇒ w1(n+ 1)= y(n)

so that w1(n) is the content of the y-delay at time n. In terms of these definitions, we
can replace Eq. (6.2.4) by the system of equations:

(compute output) y(n)= 0.8w1(n)+5x(n)+2v1(n)

(update states) v1(n+ 1)= x(n)

w1(n+ 1)= y(n)

It may be written as the repetitive sample processing algorithm:

for each input sample x do:
y = 0.8w1 + 5x+ 2v1

v1 = x
w1 = y

(direct form) (6.2.5)

The frequency response of this particular filter can be obtained by replacing z by ejω

into H(z). This substitution is valid here because the filter is stable and therefore its
ROC, |z| > 0.8, contains the unit circle. We find:

H(z)= 5(1+ 0.4z−1)
1− 0.8z−1

⇒ H(ω)= 5(1+ 0.4e−jω)
1− 0.8e−jω

Using the identity

|1− ae−jω| =
√

1− 2a cosω+ a2

which is valid for any real-valued a, we obtain an expression for the magnitude response:

228 6. TRANSFER FUNCTIONS

|H(ω)| = 5
√

1+ 0.8 cosω+ 0.16√
1− 1.6 cosω+ 0.64

This quantity may be plotted with the help of the pole/zero geometric pattern. The
filter has a zero at z = −0.4 and a pole at z = 0.8. Fig. 6.2.2 shows the pole/zero
locations relative to the unit circle.

z-plane

unit
circle

0.8

-0.4

= poles
= zeros

π ω0

35

35/21

|H(ω)|e jω

ω

Fig. 6.2.2 Pole/zero pattern and magnitude response.

A quick sketch of the magnitude response |H(ω)| can be obtained by letting the
point ejω trace the unit circle and drawing peaks when passing near poles and dips
when passing near zeros.

The moving point ejω is nearest to the pole z = 0.8 when ω = 0 and therefore there
must be a peak there. Similarly, at ω = π there must be a dip because ejω is closest to
the zero z = −0.4. In particular, setting z = 1 or ω = 0, and z = −1 or ω = π, we can
calculate the actual frequency response values at the endpoints of the Nyquist interval:

H(ω)
∣∣
ω=0 = H(z)

∣∣
z=1 =

5+ 2

1− 0.8
= 35

H(ω)
∣∣
ω=π = H(z)

∣∣
z=−1 =

5− 2

1+ 0.8
= 5

3
= 35

21

This filter acts like a lowpass filter because it emphasizes low frequencies and atten-
uates high frequencies. The highest frequency is attenuated by a factor of 21 relative to
the lowest one:

|H(π)|
|H(0)| =

1

21

or, in decibels:

20 log10

∣∣∣∣H(π)H(0)

∣∣∣∣ = 20 log10

(1

21

) = −26.4 dB

The block diagram realization of a transfer function is not unique. Different but
mathematically equivalent forms of the transfer function may lead to a different set of
I/O difference equations which are implemented by a different block diagram and corre-
sponding sample processing algorithm. For our example, the partial fraction expansion
form of Eq. (6.2.1)

6.2. TRANSFER FUNCTIONS 229

H(z)= 5+ 2z−1

1− 0.8z−1
= −2.5+ 7.5

1− 0.8z−1

may be thought of as a parallel implementation, that is, the sum of two transfer func-
tions

H(z)= H1(z)+H2(z)

where H1(z)= −2.5 and H2(z)= 7.5/(1 − 0.8z−1). Fig. 6.2.3 shows a block diagram
implementation of this form. At first glance, it may not be obvious that the transfer
function of this block diagram is the above H(z).

Fig. 6.2.3 Parallel form realization of H(z).

To verify it, we follow the standard procedure of assigning labels, that is, names to
all the signal lines that do not already have a label. The output adder has two inputs,
one due to the direct connection of the input to the output through the multiplier −2.5,
that is, the term −2.5x(n). The other input is assigned a temporary name w(n). Thus,
the output adder equation becomes

y(n)= w(n)−2.5x(n) (6.2.6)

The quantity w(n) is recognized as the output of the filter H2(z) with input x(n).
The I/O difference equation of H2(z) is

w(n)= 0.8w(n− 1)+7.5x(n) (6.2.7)

The two equations (6.2.6) and (6.2.7) together describe the operation of the block
diagram in the time domain. Transforming both equations to the z-domain, we obtain

Y(z) =W(z)−2.5X(z)

W(z) = 0.8z−1W(z)+7.5X(z) ⇒ W(z)= 7.5X(z)
1− 0.8z−1

and therefore,

Y(z)=W(z)−2.5X(z)= 7.5X(z)
1− 0.8z−1

− 2.5X(z)

230 6. TRANSFER FUNCTIONS

Solving for the ratio Y(z)/X(z) gives the corresponding transfer function:

H(z)= Y(z)
X(z)

= 7.5
1− 0.8z−1

− 2.5

The sample processing algorithm corresponding to this block diagram is obtained
by introducing an internal state holding the content of the delay. That is, we define

w0(n) = w(n)

w1(n) = w(n− 1)
⇒ w1(n+ 1)= w0(n)

Then, Eqs. (6.2.6) and (6.2.7) can be replaced by the system:

w0(n)= 0.8w1(n)+7.5x(n)

y(n)= w0(n)−2.5x(n)

w1(n+ 1)= w0(n)

which can be written in the algorithmic form:

for each input sample x do:
w0 = 0.8w1 + 7.5x
y = w0 − 2.5x
w1 = w0

(parallel form) (6.2.8)

Other block diagram realizations can be derived by rearranging the I/O computations
differently. A third realization is the so-called canonical form realization and is depicted
in Fig. 6.2.4. It can be justified as follows. Starting with the z-domain filtering equation

Fig. 6.2.4 Canonical form realization of H(z).

Y(z)= H(z)X(z)= 5+ 2z−1

1− 0.8z−1
X(z)

we separate out the effect of the filter’s denominator by defining the temporary quantity

W(z)= 1

1− 0.8z−1
X(z)

then, the output z-transform can be computed by

6.2. TRANSFER FUNCTIONS 231

Y(z)= (5+ 2z−1)W(z)

Writing these equations in the time domain, we obtain

W(z)= 1

1− 0.8z−1
X(z) ⇒ W(z)= 0.8z−1W(z)+X(z)

or,

w(n)= 0.8w(n− 1)+x(n)

Similarly,

Y(z)= 5W(z)+2z−1W(z) ⇒ y(n)= 5w(n)+2w(n− 1)

Thus, we obtain the system of I/O equations

w(n) = 0.8w(n− 1)+x(n)
y(n) = 5w(n)+2w(n− 1)

which are mechanized in the block diagram of Fig. 6.2.4. Introducing internal states

w0(n) = w(n)

w1(n) = w(n− 1)
⇒ w1(n+ 1)= w0(n)

we rewrite the above system as:

w0(n)= 0.8w1(n)+x(n)
y(n)= 5w0(n)+2w1(n)

w1(n+ 1)= w0(n)

which can be written in the algorithmic form:

for each input sample x do:
w0 = 0.8w1 + x
y = 5w0 + 2w1

w1 = w0

(canonical form) (6.2.9)

A fourth block diagram realization can be obtained by transposing the canonical
realization following the transposition rules of replacing adders by nodes, nodes by
adders, reversing all flows, and exchanging input with output. The resulting transposed
realization is depicted in Fig. 6.2.5.

Again, we have assigned an internal state variable w1(n) to hold the contents of the
delay register. The input to the delay is the sum 2x(n)+0.8y(n) which gets delayed
and becomes w1(n). Thus,

232 6. TRANSFER FUNCTIONS

Fig. 6.2.5 Transposed realization of H(z).

w1(n)= 2x(n− 1)+0.8y(n− 1)

The complete I/O description of this realization is then given by the system:

y(n)= w1(n)+5x(n)

w1(n+ 1)= 2x(n)+0.8y(n)

which translates to the following sample processing algorithm:

for each input sample x do:
y = w1 + 5x
w1 = 2x+ 0.8y

(transposed form) (6.2.10)

To verify that this realization describes the same transfer function, we transform
the I/O equations to the z-domain:

Y(z)=W1(z)+5X(z)

zW1(z)= 2X(z)+0.8Y(z)

Then, solve the second for W1(z), insert it in the first, and solve for the ratio
Y(z)/X(z). We have:

W1(z)= 0.8z−1Y(z)+2z−1X(z)

and

Y(z)=W1(z)+5X(z)= 0.8z−1Y(z)+2z−1X(z)+5X(z)

which gives

H(z)= Y(z)
X(z)

= 5+ 2z−1

1− 0.8z−1

Given a particular block diagram implementation, one can easily translate the cor-
responding sample processing algorithm into a software or hardware routine. For ex-
ample, the canonical form of Eq. (6.2.9) can be implemented by the following C routine
filter.c:

6.2. TRANSFER FUNCTIONS 233

/* filter.c - IIR example routine */

double filter(x, w) usage: y = filter(x, w);

double x, *w;
{

double y;

w[0] = 0.8 * w[1] + x;

y = 5 * w[0] + 2 * w[1]; compute output

w[1] = w[0]; update internal state

return y;
}

The array w must be declared to be a two-dimensional array in the main program.
The following program segment illustrates the usage of this routine for processing N
input samples:

w = (double *) calloc(2, sizeof(double));

for (n=0; n<N; n++)
y[n] = filter(x[n], w);

The internal state array w must be initialized to zero prior to the first call of filter.
This is indirectly accomplished by calloc during the allocation of w.

Our aim in this example was to show not only how to pass from one filter descrip-
tion to another using z-transforms, but also to illustrate how different block diagram
realizations correspond to different but equivalent ways of arranging the required I/O
filtering equations. A more systematic discussion of filter realizations will be presented
in the next chapter.

In general, the transfer function of an IIR filter is given as the ratio of two polynomials
of degrees, say L and M:

H(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2 + · · · + bLz−L

1+ a1z−1 + a2z−2 + · · · + aMz−M
(IIR) (6.2.11)

Note that by convention, the 0th coefficient of the denominator polynomial has been
set to unity a0 = 1. The filter H(z) will have L zeros and M poles. Assuming that the
numerator and denominator coefficients are real-valued, then if any of the zeros or poles
are complex, they must come in conjugate pairs.

To determine the impulse response h(n) of such a filter, we may use the inverse
z-transform techniques of Chapter 5, such as partial fraction expansions. The relative
locations of the poles on the z-plane will divide the plane into non-overlapping regions
which may be taken as the possible ROCs for h(n).

In particular, to get a stable impulse response, we must pick the ROC that contains
the unit circle. Recall that in order for the stable h(n) to also be causal, all poles of
H(z), that is, the zeros of D(z), must lie strictly inside the unit circle. Then, the ROC
for inverting H(z) will be the outside of the unit circle.

234 6. TRANSFER FUNCTIONS

As the above example showed, there are many different, but mathematically equiv-
alent, I/O difference equations describing such a filter—each leading to a particular
block diagram implementation and sample processing algorithm. The simplest one is
the direct form obtained by writing

Y(z)= H(z)X(z)= b0 + b1z−1 + b2z−2 + · · · + bLz−L

1+ a1z−1 + a2z−2 + · · · + aMz−M
X(z)

then, multiplying by the denominator:

(1+ a1z−1 + · · · + aMz−M)Y(z)= (b0 + b1z−1 + · · · + bLz−L)X(z)

and finally, transforming back to the time domain:

yn + a1yn−1 + · · · + aMyn−M = b0xn + b1xn−1 + · · · + bLxn−L (6.2.12)

It can also be written as:

yn = −a1yn−1 − · · · − aMyn−M + b0xn + b1xn−1 + · · · + bLxn−L

Note also that if the denominator coefficients are zero, that is, ai = 0, i = 1,2, . . . ,M,
the denominator polynomial is trivial D(z)= 1 and H(z) becomes equal to the numer-
ator polynomial H(z)= N(z), that is, an FIR filter:

H(z)= N(z)= b0 + b1z−1 + b2z−2 + · · · + bLz−L (FIR) (6.2.13)

In this case, the difference equation (6.2.12) becomes the usual I/O convolutional
equation for an FIR filter:

yn = b0xn + b1xn−1 + · · · + bLxn−L (FIR I/O equation) (6.2.14)

Various implementations of the FIR case were discussed in Chapter 4. The imple-
mentations of the IIR case will be discussed in detail in Chapter 7.

Next, we present some further examples. In each case, we determine the transfer
function, impulse response, frequency response, pole/zero pattern, block diagram real-
ization and sample processing algorithm.

Example 6.2.1: Determine the transfer function of the following third-order FIR filter with im-
pulse response:

h = [1,6,11,6]

Solution: The filter’s I/O equation is

y(n)= x(n)+6x(n− 1)+11x(n− 2)+6x(n− 3)

The z-transform of the finite impulse response sequence is:

H(z)= h0 + h1z−1 + h2z−2 + h3z−3 = 1+ 6z−1 + 11z−2 + 6z−3

6.2. TRANSFER FUNCTIONS 235

Noting that H(z) has a zero at z = −1, we may factor it in the form

H(z)= (1+ z−1)(1+ 5z−1 + 6z−2)= (1+ z−1)(1+ 2z−1)(1+ 3z−1)

The corresponding frequency response is obtained by the substitution z = ejω:

H(ω)= 1+ 6e−jω + 11e−2jω + 6e−3jω = (1+ e−jω)(1+ 2e−jω)(1+ 3e−jω)

The filter has zeros at z = −1,−2,−3. The pole/zero pattern is shown below together
with a sketch of the magnitude response |H(ω)|. (The multiple pole at the origin z = 0
is not shown.)

= zeros

0

unit circle

-3 -2 -1

z-plane

exact zero

π ω0

24
|H(ω)|

The filter tends to attenuate high frequencies, that is, it will act as a lowpass filter. The filter
vanishes exactly at z = −1 or ω = π. At ω = 0 or z = 1, it is equal to 1+6+11+6 = 24.
The block diagram realization and the sample-by-sample processing algorithm are:

x y

z-1

z-1

z-1

w1

w0

w2

w3

11

6

1

6

for each input sample x do:
w0 = x
y = w0 + 6w1 + 11w2 + 6w3

w3 = w2

w2 = w1

w1 = w0

The block diagram and sample processing algorithm correspond to the FIR direct form
discussed in Chapter 4. 	

Example 6.2.2: An FIR filter is described by the I/O equation:

y(n)= x(n)−x(n− 4)

Determine its transfer function H(z) and impulse response h(n).

Solution: The I/O equation becomes in the z-domain:

Y(z)= X(z)−z−4X(z) ⇒ H(z)= Y(z)
X(z)

= 1− z−4

It follows that h = [1,0,0,0,−1]. The frequency response is obtained by setting z = ejω:

236 6. TRANSFER FUNCTIONS

H(ω)= 1− e−4jω = (e2jω − e−2jω)e−2jω = 2j sin(2ω)e−2jω

Thus, its magnitude response will be |H(ω)| = 2| sin(2ω)|. The zeros of H(z) are the
fourth roots of unity, obtained by solving 1− z−4 = 0 or,

z4 = 1 ⇒ z = e2πjk/4, k = 0,1,2,3 ⇒ z = 1, j,−1,−j

Thus, the magnitude response |H(ω)| will vanish at ω = 2πk/4 = 0,π/2,π,3π/2, for
k = 0,1,2,3, as shown below:

= zeros

0

unit circle

z-plane

-1 1

-j

j

ππ/2

ω

0

|H(ω)|

The magnitude response |H(ω)| is plotted only over the right half of the Nyquist interval,
0 ≤ ω ≤ π, and therefore the zero at ω = 3π/2 is not shown—it gets aliased to the
negative side: 3π/2− 2π = −π/2.

The block diagram realization of the direct form and the corresponding sample processing
algorithm are as shown:

x y

z-1

z-1

z-1

z-1

w1

w0

w2

w3

w4

-1

for each input sample x do:
w0 = x
y = w0 −w4

w4 = w3

w3 = w2

w2 = w1

w1 = w0

This is a special case of a comb filter with notches at the four frequencies ω = 2πk/4,
k = 0,1,2,3. Comb filters and their applications will be discussed in Chapter 16. 	

Example 6.2.3: Determine the transfer function and causal impulse response of the two filters
described by the difference equations:

(a) y(n)= 0.25y(n− 2)+x(n)
(b) y(n)= −0.25y(n− 2)+x(n)

6.2. TRANSFER FUNCTIONS 237

Solution: For case (a), we take z-transforms of both sides of the difference equation to get:

Y(z)= 0.25z−2Y(z)+X(z)

Solving for Y(z)/X(z) we find the transfer function:

H(z)= 1

1− 0.25z−2
= A1

1− 0.5z−1
+ A2

1+ 0.5z−1

with A1 = A2 = 0.5. Thus, the causal impulse response will be:

h(n)= A1(0.5)nu(n)+A2(−0.5)nu(n)

The pole at z = 0.5 is in the low-frequency part of the unit circle, and the pole z = −0.5
is in the high-frequency part. Thus, the filter will tend to enhance both the low and high
frequencies, that is, it will behave as a 2-band bandpass filter, or as a bandstop filter—
attenuating the intermediate frequencies between low and high.

Indeed, the value of H(z) at ω = 0,π or z = ±1 is

H(0)= H(π)= H(z)
∣∣
z=±1 =

1

1− 0.25
= 4

3

which is larger than the value of H(z) at the intermediate frequency ω = π/2 or z = j or
z2 = −1, that is, the value

H(π/2)= H(z)
∣∣
z=j =

1

1− 0.25(−1)
= 4

5

The pole/zero pattern and magnitude spectra are shown below. The peaks at the high-
/low-frequency ends are not too high because the poles are not too close to the unit circle.

= polesz-plane

-0.5 0.5 1

ππ/2
ω

0

4/3 4/3
4/5

|H(ω)|

The block diagram implementation of the given difference equation and corresponding
sample processing algorithm are:

x

0.25

y
y

z-1

z-1

w2

w1

for each input sample x do:
y = 0.25w2 + x
w2 = w1

w1 = y

238 6. TRANSFER FUNCTIONS

For case (b), the difference equation becomes in the z-domain:

Y(z)= −0.25z−2Y(z)+X(z)

which can be solved for Y(z)/X(z) to give:

H(z)= 1

1+ 0.25z−2
= A1

1− 0.5jz−1
+ A∗1

1+ 0.5jz−1

with A1 = 0.5. Notice the poles are conjugate pairs as are the PF expansion coefficients.
The causal impulse response will be:

h(n)= A1(0.5j)nu(n)+A∗1 (−0.5j)nu(n)

which can be written in the exponentially decaying form:

h(n) = 2Re[A1(0.5)njn]u(n)= 2Re[0.5(0.5)nejπn/2]u(n)

= (0.5)ncos(πn/2)u(n)

The two conjugate poles are in the “midfrequency” range, z = ±0.5j = 0.5e±jπ/2. Thus,
the filter will emphasize the middle frequencies, that is, it will act as a bandpass filter.

Again, the value of the magnitude response at ω = π/2 or z = j or z2 = −1 is 1/(1 +
0.25(−1))= 4/3, whereas the value at ω = 0,π or z = ±1 or z2 = 1 is 1/(1+0.25)= 4/5.

= polesz-plane

-0.5j

0.5j

1

ππ/2 ω
0

4/5 4/5

4/3|H(ω)|

The block diagram and corresponding sample processing algorithm are:

x

-0.25

y
y

z-1

z-1

w2

w1

for each input sample x do:
y = −0.25w2 + x
w2 = w1

w1 = y

The two cases differ by a simple change of sign in the difference equation coefficient 0.25
which leads to drastically different pole locations and frequency responses. 	

6.3. SINUSOIDAL RESPONSE 239

6.3 Sinusoidal Response

6.3.1 Steady-State Response

The response of a filter to an input sinusoidal signal is referred to as the sinusoidal
response. Knowing what happens to sinusoids under filtering is important because they
are the elementary building blocks of more complicated signals.

Consider an infinitely long, double-sided, complex sinusoid of frequency ω0 which
is applied to the input of a stable filter h(n):

x(n)= ejω0n, −∞ < n <∞

The resulting output can be determined in two ways: (1) using convolution in the
time domain, or (2) using multiplication in the frequency domain. Using the first method,
we have

y(n)=
∑
m
h(m)x(n−m)=

∑
m
h(m)ej(n−m)ω0 = ejω0n

∑
m
h(m)e−jω0m, or,

y(n)= H(ω0)ejω0n (6.3.1)

where H(ω0) is the frequency response of the filter evaluated at ω =ω0:

H(ω0)=
∑
m
h(m)e−jω0m

Using the frequency-domain method, we start with the spectrum of the input signal,
namely,

X(ω)= 2πδ(ω−ω0)+(replicas)

Then, using the frequency-domain multiplication formula (5.4.10), we obtain (the
first replica of) the spectrum of the output:

Y(ω)= H(ω)X(ω)= H(ω)2πδ(ω−ω0)= 2πH(ω0)δ(ω−ω0)

where ω was replaced by ω0 in the argument of H(ω), because the delta function
δ(ω −ω0) forces ω = ω0. Putting Y(ω) into the inverse DTFT formula (5.4.6), we
find:

y(n)= 1

2π

∫ π

−π
Y(ω)ejωn dω = 1

2π

∫ π

−π
2πH(ω0)δ(ω−ω0)ejωn dω

The presence of δ(ω −ω0) causes the integrand to be evaluated at ω0 resulting
in Eq. (6.3.1). To summarize, an infinite double-sided input sinusoid of frequency ω0

reappears at the output unchanged in frequency but modified by the frequency response
factor H(ω0):

ejω0n H−→ H(ω0)ejω0n (6.3.2)

240 6. TRANSFER FUNCTIONS

BecauseH(ω) is a complex-valued quantity, we can write it in terms of its magnitude
and phase as:

H(ω)= |H(ω)|ej argH(ω)

Therefore, Eq. (6.3.2) can be written in the form:

ejω0n H−→ |H(ω0)|ejω0n+j argH(ω0) (6.3.3)

which shows that the filter introduces both a magnitude modification by an amount
|H(ω0)|, as well as a relative phase shift by an amount argH(ω0). Taking real or
imaginary parts of both sides of this result, we obtain the cosine and sine versions:

cos(ω0n)
H−→ |H(ω0)| cos

(
ω0n+ argH(ω0)

)
sin(ω0n)

H−→ |H(ω0)| sin
(
ω0n+ argH(ω0)

) (6.3.4)

Figure 6.3.1 illustrates this result. Note that the phase shift corresponds to the
translation of the sinewave as a whole by an amount argH(ω0) relative to the input
sinewave. Typically, argH(ω0) is negative and therefore it represents a time delay, that
is, translation to the right.

0 n

cos(ω0n)

0

1

n

|H(ω0)| cos(ω0n+arg H(ω0))
argH(ω0)

|H(ω0)|

Fig. 6.3.1 Magnitude and phase-shift modification introduced by filtering.

The filtering result (6.3.2) is one of the most fundamental results in signal processing.
It essentially justifies the use of LTI filters and explains their widespread application. By
proper design of the frequency response shape H(ω), it allows complete control over
the frequency content of the input signal.

Using the linearity property of the filter, we can apply Eq. (6.3.2) to a linear combi-
nation of two input sinusoids of frequencies ω1 and ω2, resulting in the same linear
combination of the corresponding outputs, that is,

A1ejω1n +A2ejω2n H−→ A1H(ω1)ejω1n +A2H(ω2)ejω2n

which shows that the effect of filtering is to change the relative amplitudes and phases
of the two sinusoids from the values {A1,A2} to the values {A1H(ω1),A2H(ω2)}. In
the frequency domain, we have for the spectra of the input and output signals:

6.3. SINUSOIDAL RESPONSE 241

A1δ(ω−ω1)+A2δ(ω−ω2)
H−→ A1H(ω1)δ(ω−ω1)+A2H(ω2)δ(ω−ω2)

where for simplicity, we dropped a common factor of 2π. Figure 6.3.2 shows the input
and output spectra and illustrates how the filter alters the relative balance by multipli-
cation by the appropriate frequency response factors.

ω 00 ωω1 ω1ω2 ω2

A1 A2

H(ω)

X(ω) Y(ω)

A1H(ω1)

A2H(ω2)

Fig. 6.3.2 Relative amplitudes before and after filtering.

If one of the sinusoids, say ω1, were a desired signal and the other an unwanted
interference, one could design a filter to remove the interference. For example, the
choice:

H(ω1)= 1, H(ω2)= 0

would leave the desired signal unaffected and remove the interference. The resulting
output signal would be in this case:

y(n)= A1H(ω1)ejω1n +A2H(ω2)ejω2n = A1ejω1n

A more general input x(n)with a more complicated spectrumX(ω) can be resolved
into its sinusoidal components by the inverse DTFT formula:

x(n)= 1

2π

∫ π

−π
X(ω)ejωn dω

The filter H(ω) reshapes the input spectrum X(ω) into the output spectrum by
Y(ω)= H(ω)X(ω). It changes, in a controlled manner, the relative amplitudes and
phases of the various frequency components of the input signal. The resulting output
signal can be reconstructed from the inverse DTFT formula:

y(n)= 1

2π

∫ π

−π
Y(ω)ejωn dω = 1

2π

∫ π

−π
H(ω)X(ω)ejωn dω (6.3.5)

Another useful filtering concept is that of the phase delay defined in terms of the
phase response argH(ω) as follows:

d(ω)= −argH(ω)
ω

⇒ argH(ω)= −ωd(ω) (6.3.6)

Similarly, the group delay of a filter is defined as:

242 6. TRANSFER FUNCTIONS

dg(ω)= − d
dω

argH(ω) (6.3.7)

The sinusoidal response of Eqs. (6.3.2) or (6.3.3) can be expressed in terms of the
phase delay as follows:

ejωn H−→ |H(ω)|ejω(n−d(ω)) (6.3.8)

which shows that different frequency components get delayed by different amounts,
depending on the filter’s phase delay.

Linear phase filters have the property that their phase delay d(ω) is independent of
frequency, say d(ω)= D, so that the phase response is linear in ω, argH(ω)= −ωD.
Such filters cause every frequency component to be delayed by the same amountD, thus
corresponding to an overall delay in the output:

ejωn H−→ |H(ω)|ejω(n−D) (6.3.9)

This overall delay can also be seen by the inverse DTFT formulas:

x(n)=
∫ π

−π
X(ω)ejωn dω

2π
H−→ y(n)=

∫ π

−π
|H(ω)|X(ω)ejω(n−D) dω

2π

The design of FIR linear phase filters will be discussed in Chapter 11. IIR filters that
have linear phase over the entire Nyquist interval cannot be designed. However, they
can be designed to have approximately linear phase over their passband (for example,
Bessel filters).

6.3.2 Transient Response

In obtaining the result (6.3.2), we assumed that the input sinusoid had been on for a very
long time (since n = −∞), and therefore, Eq. (6.3.2) represents the steady-state output
resulting after all the filter transients have died out.

In practice, we typically begin processing an input signal at some instant of time, say
n = 0, and therefore, we must deal with the input-on transients, as well as the input-off
transients taking place after the input is turned off. Figure 6.3.3 shows the difference
between a double-sided sinewave and a causal one that is turned on at n = 0.

If we start generating and filtering an input sinewave at n = 0, the filter will not
“know” immediately that its input is sinusoidal. It takes the filter a certain period of
time to settle into its sinusoidal behavior given by Eq. (6.3.2). The analysis of the fil-
ter’s response in this case can be carried out using z-transforms. Consider the causal
sinusoidal input and its z-transform:

x(n)= ejω0nu(n) Z−→ X(z)= 1

1− ejω0z−1

having ROC |z| > |ejω0| = 1. Assume a filter of the form:

H(z)= N(z)
D(z)

= N(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

6.3. SINUSOIDAL RESPONSE 243

0 n

cos(ω0n)

0 n

cos(ω0n)u(n)

Fig. 6.3.3 Double-sided and one-sided sinewaves.

with M poles that lie strictly within the unit circle, so that the filter is stable and causal.
The output z-transform will be:

Y(z)= H(z)X(z)= N(z)
(1− ejω0z−1)(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

Assuming that the degree of the numerator polynomial N(z) is strictly less than the
degree M+1 of the denominator,† we can write the PF expansion:

Y(z)= C
1− ejω0z−1

+ B1

1− p1z−1
+ B2

1− p2z−1
+ · · · + BM

1− pMz−1

The PF expansion coefficients are obtained in the usual fashion, via Eq. (5.5.2). In
particular, the coefficient of the first term will be:

C = (1− ejω0z−1)Y(z)
∣∣
z=ejω0 =

[
(1− ejω0z−1)

H(z)
1− ejω0z−1

]
z=ejω0

Canceling the (1−ejω0z−1) factors, we find that C is none other than the frequency
response H(ω) evaluated at ω =ω0, that is,

C = H(z)
∣∣
z=ejω0 = H(ω0) (6.3.10)

Therefore, the PF expansion will read:

Y(z)= H(ω0)
1− ejω0z−1

+ B1

1− p1z−1
+ B2

1− p2z−1
+ · · · + BM

1− pMz−1

Taking the causal inverse z-transform (with ROC |z| > 1), we find for n ≥ 0:

y(n)= H(ω0)ejω0n + B1pn1 + B2pn2 + · · · + BMpnM (6.3.11)

Because the filter was assumed to have all its poles inside the unit circle, namely,
|pi| < 1, it follows that in the limit of largen, thepni terms will drop to zero exponentially
giving the steady-state output:

†This assumption is not critical. The same conclusions can be drawn otherwise.

244 6. TRANSFER FUNCTIONS

y(n)→ H(ω0)ejω0n as n→∞

For smaller values of n, Eq. (6.3.11) gives the transient response of the filter.

Example 6.3.1: Determine the full transient response of the filter

H(z)= 5+ 2z−1

1− 0.8z−1

for a causal complex sinusoidal input of frequency ω0.

Solution: We have the partial fraction expansion for the output z-transform Y(z)= H(z)X(z):

Y(z)= 5+ 2z−1

(1− ejω0z−1)(1− 0.8z−1)
= H(ω0)

1− ejω0z−1
+ B1

1− 0.8z−1

where the coefficient B1 is found by

B1 = (1− 0.8z−1)Y(z)
∣∣
z=0.8 =

[
5+ 2z−1

1− ejω0z−1

]
z=0.8

= 7.5
1− 1.25ejω0

The causal inverse z-transform will be:

y(n)= H(ω0)ejω0n + B1(0.8)n, n ≥ 0

For large n, the term (0.8)n drops to zero and the output settles into its steady-state
sinusoidal response

y(n)→ H(ω0)ejω0n

where H(ω0)= 5+ 2e−jω0

1− 0.8e−jω0
. 	

There are four straightforward conclusions that can be drawn from Eq. (6.3.11). First,
it shows clearly the requirement of stability for the filter. If any of the filter poles, say p1,
were outside the unit circle, such that |p1| > 1, the term pn1 would be unstable, diverging
as n → ∞. This term would dominate completely the rest of terms of Eq. (6.3.11) and
there would be no steady-state response. (Of course, we know that in this case the series
definition, Eq. (5.4.3), of the frequency response H(ω) does not converge because the
unit circle does not lie in the causal region of convergence |z| > |p1| > 1.)

Second, assuming the filter is strictly stable, all the transient terms pni will drop to
zero exponentially. But some of them will drop to zero faster than others. The effective
time constant to reach the sinusoidal steady state is dictated by the slowest converging
pole term, that is, the term with the largest magnitude, namely, max |pi|. Equivalently,
this is the pole that lies closest to the unit circle (from the inside). Denoting the maximum
pole magnitude by

ρ = max
i
|pi|

6.3. SINUSOIDAL RESPONSE 245

we may define the effective time constant to be the time neff at which the quantity ρn

has dropped below a certain small value, for example, when it drops below 1% its initial
value. We can make this definition more quantitative by defining neff such that:

ρneff = ε

where ε is the desired level of smallness, for example, ε = 1% = 0.01. It follows that:

neff = ln ε
lnρ

= ln(1/ε)
ln(1/ρ)

(time constant) (6.3.12)

Because both ε and ρ are less than one, their logs are negative, but the ratio is
positive. In the last expression, we have the ratio of two positive numbers. The effective
time constant neff becomes larger if the slowest pole is pushed closer to the unit circle,
that is, increasing ρ toward one, and also if we require a smaller threshold ε.

The value ε = 1% corresponds to the amplitude of the filter’s output falling by a
factor of 10−2 or 40 dB. The time constant in seconds, τ = neffT, is referred to as the
40-dB time constant. In the study of reverberation properties of concert halls, the 60-dB
time constants are used, which correspond to ε = 0.1% = 10−3.

In conclusion, the speed of response of a stable and causal IIR filter is controlled by
the poles nearest to the unit circle. The filter is slow reaching steady state if its poles
are near the unit circle, and fast if they are further away (toward the center).

Example 6.3.2: A sinusoid of frequencyω0 = 0.1π and duration of 300 samples, that is, x(n)=
sin(ω0n), 0 ≤ n < 300, is input to a (causal) filter with transfer function

H(z)= b
1− az−1

where a = 0.97. Determine the 1% time constant of this filter. Adjust the scale factor b
such that the filter’s gain at ω0 is unity. Determine and plot the output of the filter y(n)
over the interval 0 ≤ n < 450, by iterating the difference equation of the filter.

Solution: The 1% time constant of this filter is computed from Eq. (6.3.12),

neff = ln ε
lna

= ln(0.01)
ln(0.97)

= 151.2 samples

The frequency and magnitude responses are

H(ω)= b
1− ae−jω

⇒ |H(ω)| = b√
1− 2a cosω+ a2

The requirement that |H(ω0)| = 1 leads to the condition on b:

|H(ω0)| = b√
1− 2a cosω0 + a2

= 1 ⇒ b =
√

1− 2a cosω0 + a2 = 0.3096

The value of the frequency response at ω0 becomes then,

H(ω0)= b
1− ae−jω0

= 0.2502− 0.9682j = 1 · e−j1.3179

246 6. TRANSFER FUNCTIONS

so that its phase response will be argH(ω0)= −1.3179 radians. The resulting output
y(n), shown in Fig. 6.3.4, was computed by the following program segment, which imple-
ments the difference equation y(n)= ay(n−1)+bx(n) and sample processing algorithm
of this filter:

for (y1=0, n=0; n<450; n++) {
if (n < 300)

x = sin(w0 * n);
else

x = 0;
y[n] = a * y1 + b * x; /* y1 = y[n-1] */
y1 = y[n];
}

Fig. 6.3.4 Input and output of Example 6.3.2.

Notice the input-on and input-off transients, each lasting approximately neff = 151 time
samples. The time interval 150 ≤ n ≤ 300 corresponds to the steady-state period, during
which the output settles to its sinusoidal behavior according to Eq. (6.3.4). The amplitude
of the steady-state output is unity because |H(ω0)| = 1. There is a slight phase delay
relative to the input, due to the negative value of the phase response argH(ω0)= −1.3179
radians. 	

Example 6.3.3: Derive closed-form expressions for the output y(n) of the previous example
in two ways: (a) working with convolution in the time domain, and (b) working with z-
transforms.

Solution: It proves convenient to work with the complex-valued version of the sinusoid, x(n)=
ejω0n, 0 ≤ n ≤ 299, and take imaginary parts of the answer at the end. Using convolution,
we obtain

y(n)=
n∑

m=max(0,n−299)
h(m)x(n−m) =

n∑
m=max(0,n−299)

bamejω0(n−m)

where we used the impulse response h(m)= bamu(m). The summation limits were ob-
tained by the requirements that the indices of h(m) and x(n−m) do not exceed the array
bounds, that is,

6.3. SINUSOIDAL RESPONSE 247

0 ≤m <∞, 0 ≤ n−m ≤ 299

which are equivalent to max(0, n− 299)≤m ≤ n. It follows that if 0 ≤ n ≤ 299, then

y(n)= ejω0n
n∑

m=0

bame−jω0m = ejω0nb
1− an+1e−jω0(n+1)

1− ae−jω0

Setting H0 = H(ω0)= b/(1 − ae−jω0) and noting that (1 − ae−jω0)H0 = b which gives
b−H0 = −H0ae−jω0 , we obtain

y(n)= H0ejω0n + (b−H0)an, for 0 ≤ n ≤ 299

On the other hand, if 300 ≤ n ≤ 449, then the limits of summation become:

y(n)= ejω0n
n∑

m=n−299

bame−jω0m

and we must use the finite geometric series formula

m2∑
m=m1

xm = xm1 − xm2+1

1− x
(6.3.13)

with x = ae−jω0 , to obtain:

y(n)= H0ejω0n
[
an−299e−jω0(n−299) − an+1e−jω0(n+1)]

Noting that the factor ejω0n cancels, we obtain

y(n)= H0
[
an−299ej299ω0 − an+1e−jω0

] = H0ae−jω0(ej300ω0 − a300)an−300

At n = 300, we have y(300)= H0ae−jω0(ej300ω0 − a300), Therefore, we can write

y(n)= y(300)an−300, for 300 ≤ n <∞

Thus, the input-off transients are exponentially decaying as seen in Fig. 6.3.4. Note that
the two expressions of y(n) for n ≤ 299 and n ≥ 300 join smoothly, in the following
sense. The difference equation for y(n) gives at n = 300, y(300)= ay(299)+bx(300).
But x(300)= 0 and thus y(300)= ay(299). This condition can be verified for the above
expressions. We have, using b−H0 = −aH0e−jω0 :

ay(299) = a
[
H0ej299ω0 + (b−H0)a299

]
= aH0ej300ω0e−jω0 − a2H0e−jω0a299

= aH0e−jω0(ej300ω0 − a300)= y(300)

248 6. TRANSFER FUNCTIONS

The real-valued versions can be obtained by taking imaginary parts of these answers. Writ-
ing H0 = |H0|ejφ0 , with |H0| = 1 and φ0 = argH0 = −1.3179 radians, we have for
n ≤ 299

y(n)= H0ejω0n + (b−H0)an = ej(ω0n+φ0) + (b− ejφ0)an

Taking imaginary parts, we find

y(n)= sin(ω0n+φ0)−an sinφ0, for 0 ≤ n ≤ 299

and

y(n)= y(300)an−300, for n ≥ 300

where we calculate y(300)= ay(299). The numerical values of y(n) agree, of course, with
the iterated values of Example 6.3.2.

All of the above expressions can be obtained much faster using z-transforms. First, we
write the length-300 complex sinusoid in a form which is valid for all n:

x(n)= ejω0n
(
u(n)−u(n− 300)

) = ejω0nu(n)−ej300ω0ejω0(n−300)u(n− 300)

where, in the second term we have the delayed version of the first. Taking z-transforms
and using the delay property, we find:

X(z)= 1− ej300ω0z−300

1− ejω0z−1

The output z-transform will be then

Y(z)= H(z)X(z)= b(1− ej300ω0z−300)
(1− az−1)(1− ejω0z−1)

The (causal) inverse z-transform can be found using the “remove/restore” method. Ignor-
ing the numerator temporarily, we have

W(z)= b
(1− az−1)(1− ejω0z−1)

= C
1− ejω0z−1

+ B
1− az−1

where, as we have seen C = H0. Similarly, one can verify that B = b−H0. Therefore, the
causal inverse z-transform of W(z) will be:

w(n)= H0ejω0nu(n)+(b−H0)anu(n)

Restoring the numerator of Y(z), that is, Y(z)= (1− ej300ω0z−300)W(z), we find

y(n)= w(n)−ej300ω0w(n− 300)

which gives rise to the following expression for y(n):

y(n) = H0ejω0nu(n)+(b−H0)anu(n)−
− ej300ω0

[
H0ejω0(n−300)u(n− 300)+(b−H0)an−300u(n− 300)

]
We leave it up to the reader to verify that this expression agrees with the separate expres-
sions given above for n ≤ 299 and n ≥ 300. 	

6.3. SINUSOIDAL RESPONSE 249

A third consequence of Eq. (6.3.11) is its application to two important special cases,
namely, the unit-step and the alternating unit-step responses. The unit-step response is
the output y(n) due to a unit-step input:

x(n)= u(n)

It is a special case of a sinusoid ejω0nu(n) with ω0 = 0. The value ω0 = 0 corre-
sponds to the complex point z = ejω0 = 1 on the z-plane. Equation (6.3.11) becomes in
this case:

y(n)= H(0)+B1pn1 + B2pn2 + · · · + BMpnM, n ≥ 0

Thus, in the limit of large n, the output will settle into a constant value given by

y(n)→ H(0)= H(z)
∣∣
z=1 as n→∞

We may also refer to it as the DC response of the filter, that is, its response to a
constant input. Setting ω = 0 into the definition of H(ω), Eq. (5.4.3), or z = 1 into the
definition of H(z), Eq. (5.1.2), we can express H(0) in the alternative form:

H(0)= H(z)
∣∣
z=1 =

∞∑
n=0

h(n) (DC gain) (6.3.14)

In Chapter 4, we referred to it as the DC gain of the filter and used it in Eq. (4.1.24)
and in the simulation examples. In a similar fashion, we can discuss the alternating step
response, namely, the output due to the alternating input:

x(n)= (−1)nu(n)

Writing −1 = ejπ, we have (−1)nu(n)= ejπnu(n), and therefore, we recognize
this as a special case of Eq. (6.3.11) with ω0 = π, which corresponds to the z-point
z = ejω0 = −1. Eq. (6.3.11) becomes:

y(n)= H(π)ejπn + B1pn1 + B2pn2 + · · · + BMpnM, n ≥ 0

And, in the limit of large n, the output tends to

y(n)→ H(π)(−1)n as n→∞

The quantityH(π)may be called the AC gain and can be expressed in terms of h(n)
by setting z = −1 into the definition for H(z):

H(π)= H(z)
∣∣
z=−1 =

∞∑
n=0

(−1)nh(n) (AC gain)

Example 6.3.4: Determine the DC and alternating-step responses of the filter of Example 6.3.1.
Determine also the effective time constant neff to reach steady state to within one percent.

250 6. TRANSFER FUNCTIONS

Solution: Setting n = 0 in the expression for y(n) in Example 6.3.1 gives the relationship y(0)=
H(ω0)+B1. Inspecting the expression for Y(z), the value of y(0) is found to be y(0)= 5.
More systematically, y(0) can be found by evaluating Y(z) at z = ∞. We have therefore,
H(ω0)+B1 = 5, which can be solved for B1 = 5−H(ω0). Thus, for a general ω0 we may
write:

y(n)= H(ω0)ejω0n + (5−H(ω0)
)
(0.8)n, n ≥ 0

For the DC unit-step response, we have setting ω0 = 0:

H(0)=
[

5+ 2e−jω0

1− 0.8e−jω0

]
ω0=0

= 5+ 2

1− 0.8
= 35

Therefore, B1 = 5−H(0)= 5− 35 = −30, and the response to a unit-step is:

y(n)= 35− 30(0.8)n, n ≥ 0

Similarly, we find H(π)= 5/3, and B1 = 5 − 5/3 = 10/3. Thus, the alternating unit-step
response will be:

y(n)= 5

3
(−1)n+10

3
(0.8)n, n ≥ 0

The output signals of the two cases are shown below:

This filter has only one pole; therefore the effective time constant is determined by the
quantity a = 0.8. At the 1% level, we have ε = 1% = 0.01, and we find

neff = ln ε
lna

= ln(0.01)
ln(0.8)

= 20.6

Thus, the effective duration of the transient behavior is about 20 time steps, after which
the transient term (0.8)n drops by more than 1% its initial value. 	

The fourth consequence of Eq. (6.3.11) is its application to marginally stable filters.
Many filters of practical interest are not strictly stable, but only marginally so, with
poles on the unit circle. This includes for example, accumulators (integrators), periodic

6.3. SINUSOIDAL RESPONSE 251

function generators, and others. It is therefore useful to know what happens to the
sinusoidal response in such cases.

Suppose the filter H(z) has a pole p1 on the unit circle at some phase angle θ1, that
is, p1 = ejθ1 . Of course, the conjugate pole p∗1 = e−jθ1 is also present. For example, the
filters:

H(z)= 1

1− z−1
, H(z)= 1

1+ z−1
, H(z)= 1

1+ z−2

have poles at p1 = 1 = ej0, p1 = −1 = ejπ, and ±j = e±jπ/2, respectively.
Suppose also that all other poles lie inside the unit circle. Then the transient response

Eq. (6.3.11) will be:

y(n)= H(ω0)ejω0n + B1pn1 + B∗1 p∗n1 + B2pn2 + · · · , or,

y(n)= H(ω0)ejω0n + B1ejθ1n + B∗1 e−jθ1n + B2pn2 + · · ·

In the limit of large n, the terms pn2 , pn3 , etc., will drop to zero exponentially, but the pn1
being sinusoidal will not. Thus, the filter output tends to

y(n)→ H(ω0)ejω0n + B1ejθ1n + B∗1 e−jθ1n

for large n. There is no true sinusoidal response even though the output is a sum of
sinusoids. Once the sinusoidal pole terms ejθ1n are excited, they will remain in the
output forever.

This analysis of Eq. (6.3.11) applies only to the case when ω0 ≠ ±θ1. If ω0 = ±θ1,
one hits a “resonance” of the system and the output y(n) becomes unstable diverging to
infinity. In this case, the output z-transform Y(z) has a double pole and the discussion
must be modified. For example, if ω0 = θ1, then ejω0 = ejθ1 = p1 and Y(z) becomes:

Y(z)= H(z)X(z) = N(z)
(1− ejω0z−1)(1− p1z−1)· · · (1− pMz−1)

= N(z)
(1− p1z−1)2(1− p2z−1)· · · (1− pMz−1)

The partial fraction expansion takes the form in this case:

Y(z)= B1

1− p1z−1
+ B′1
(1− p1z−1)2

+ B2

1− p2z−1
+ · · · + BM

1− pMz−1

Using the causal inverse z-transform (with ROC |z| > |a|):
1

(1− az−1)2

Z−1−→ (n+ 1)anu(n)

we find for the output signal:

y(n)= B1pn1 + B′1(n+ 1)pn1 + B2pn2 + · · · + BMpnM , or,

252 6. TRANSFER FUNCTIONS

y(n)= B1ejθ1n + B′1(n+ 1)ejθ1n + B2pn2 + · · · + BMpnM

which diverges linearly in n.
Until now, the entire discussion of transient response was geared to IIR filters that

have nontrivial poles. FIR filters do not have any poles (except at z = 0), and therefore,
the analysis of their steady versus transient sinusoidal response must be carried out
differently.

Consider an FIR filter of order M with impulse response h = [h0, h1, · · · , hM]. For
a causal sinusoidal input x(n)= ejω0nu(n), the output will be, as discussed in Chapter
4:

y(n)=
min(n,M)∑
m=0

h(m)x(n−m)=
min(n,M)∑
m=0

h(m)ejω0(n−m)

or, for any n ≥ 0:

y(n)= ejω0n
min(n,M)∑
m=0

h(m)e−jω0m

When n ≥M, the upper summation limit becomes M, giving

y(n)= ejω0n
M∑

m=0

h(m)e−jω0m = H(ω0)ejω0n, n ≥M

Therefore, as we have already seen in Chapter 4, the input-on transients last only for
the time period 0 ≤ n ≤M. After that period, steady state sets in.

6.4 Pole/Zero Designs

6.4.1 First-Order Filters

Pole/zero placement can be used to design simple filters, such as first-order smoothers,
notch filters, and resonators. To illustrate the technique, we design the transfer function

H(z)= 5+ 2z−1

1− 0.8z−1
= 5(1+ 0.4z−1)

1− 0.8z−1

discussed in Section 6.2. We begin with the more general transfer function

H(z)= G(1+ bz−1)
1− az−1

(6.4.1)

where both a and b are positive and less than one. The gain factor G is arbitrary. The
pole/zero pattern is shown in Fig. 6.4.1.

The filter zero at z = −b lies in the left half (the high-frequency part) of the unit
circle, and the filter pole at z = a lies in the right half (the low-frequency part). Therefore,

6.4. POLE/ZERO DESIGNS 253

z-plane

unit
circle

a-b

= poles
= zeros

π ω0

|H(ω)|

|H(π)|

|H(0)|
ejω

ω

Fig. 6.4.1 Pole/zero pattern and frequency response.

the pole emphasizes low frequencies and the zero attenuates high frequencies; in other
words, the filter acts as a lowpass filter.

The frequency response values at the lowest and highest frequencies ω = 0,π are
found by setting z = ±1 in Eq. (6.4.1):

H(0)= G(1+ b)
1− a

, H(π)= G(1− b)
1+ a

Therefore, the attenuation of the highest frequency relative to the lowest one is:

H(π)
H(0)

= (1− b)(1− a)
(1+ b)(1+ a)

(6.4.2)

To determine the two unknown parameters a and b in Eq. (6.4.1), we need two design
equations. One such equation can be Eq. (6.4.2). If a is known, then for a desired level
of attenuation H(π)/H(0), we can solve for b.

To determine a, we may impose a constraint on the speed of response of the filter,
that is, we may specify the effective time constant neff, which is controlled by the value
of a. For example, requiring that neff = 20 time samples and taking ε = 0.01, we can
solve Eq. (6.3.12) for a:

a = ε1/neff = (0.01)1/20� 0.8

With this value of a, requiring that H(π)/H(0)= 1/21, Eq. (6.4.2) would give:

(1− b)(1− 0.8)
(1+ b)(1+ 0.8)

= 1

21
⇒ b = 0.4

which gives the desired designed filter, up to the gain G:

H(z)= G(1+ 0.4z−1)
1− 0.8z−1

Because the parameter b is restricted to the interval 0 ≤ b ≤ 1, we may look at the
two extreme designs, namely, for b = 0 and b = 1. Setting b = 0 in Eqs. (6.4.1) and
(6.4.2), gives:

H(z)= G
1− 0.8z−1

,
H(π)
H(0)

= 1

9

and setting b = 1,

254 6. TRANSFER FUNCTIONS

H(z)= G(1+ z−1)
1− 0.8z−1

,
H(π)
H(0)

= 0

corresponding to H(π)= 0. The two design criteria that we used are not the only pos-
sible ones. In Section 15.1, we will replace the design equation (6.4.2) by an alternative
criterion, which is better suited for the design of noise reduction filters.

6.4.2 Parametric Resonators and Equalizers

As another example, consider the design of a simple second-order “resonator” filter
whose frequency response is dominated by a single narrow pole peak at some frequency
ω0. Such frequency response is shown in Fig. 6.4.2.

1

z-plane = poles

= 3-dB width

ππ/2 ω

Δω

ω0

ω0
−ω0

0

1

1/2

|H(ω)|2

R
p

p*

Fig. 6.4.2 Pole/zero pattern and frequency response of resonator filter.

To make a peak at ω =ω0, we place a pole inside the unit circle along the ray with
phase angle ω0, that is, at the complex location:

p = Rejω0

where the pole magnitude is 0 < R < 1. Together with the conjugate pole p∗ = Re−jω0 ,
we obtain the transfer function:

H(z)= G
(1−Rejω0z−1)(1−Re−jω0z−1)

= G
1+ a1z−1 + a2z−2

(6.4.3)

where a1 and a2 are related to R and ω0 by

a1 = −2R cosω0, a2 = R2

The gainGmay be fixed so as to normalize the filter to unity atω0, that is, |H(ω0)| =
1. The frequency response of the filter is obtained by the substitution z = ejω:

H(ω)= G
(1−Rejω0e−jω)(1−Re−jω0e−jω)

= G
1+ a1e−jω + a2e−2jω

The normalization requirement |H(ω0)| = 1 gives the condition:

6.4. POLE/ZERO DESIGNS 255

|H(ω0)| = G
|(1−Rejω0e−jω0)(1−Re−jω0e−jω0)| = 1

which can be solved for G:

G = (1−R)
√

1− 2R cos(2ω0)+R2

The magnitude response squared can also be expressed in the form:

|H(ω)|2 = G2

(1− 2R cos(ω−ω0)+R2)(1− 2R cos(ω+ω0)+R2)

The 3-dB width Δω of the peak is defined as the full width at half maximum of the
magnitude squared response. It can be found by solving the equation

|H(ω)|2 = 1

2
|H(ω0)|2 = 1

2

In dB, this condition reads

20 log10

∣∣∣∣ H(ω)
H(ω0)

∣∣∣∣ = 10 log10

(1

2

) = −3 dB

This equation has two solutions, say ω1 and ω2, the first to the left of ω0 and the
second to the right. The full width is defined as Δω =ω2−ω1. These two frequencies
are called the 3-dB frequencies. It can be shown that when p is near the unit circle, that
is, R � 1, the full width is given approximately by

Δω � 2(1−R) (6.4.4)

Thus, the closer R is to one, the sharper the peak, but also the slower the filter will
be in reaching its steady-state response, as we discussed in the previous section.

Equation (6.4.4) can be shown geometrically, as follows [15]. In Fig. 6.4.3, the pole p
is indicated by the point P whose distance from the origin is |OP| = R. Therefore, the
distance |PQ| to the unit circle will be |PQ| = 1−R.

Assuming the pole P is very near the unit circle, the small 3-dB angle Δω subtended
about the direction OQ will intersect the circle at two points which may be taken to be
approximately the points A and B that lie along the tangent to the circle at Q. Denoting
by zA and zQ the complex numbers represented by the points A and Q, we have the
values for the transfer function:

|H(zA)| = G
|zA − p||zA − p∗| , |H(zQ)| = G

|zQ − p||zQ − p∗|
Assuming P is very near the circle, all four points P, Q, A, and B will be very closely

clustered to each other. Therefore, their distances to the conjugate pole p∗ will be
approximately equal, that is, |zA − p∗| � |zQ − p∗|. Thus, we have for the ratio:

|H(zA)|
|H(zQ)| =

|zQ − p|
|zA − p| =

|PQ|
|PA|

256 6. TRANSFER FUNCTIONS

z-plane

45°P

A

B

Q

O

Δω

Fig. 6.4.3 Geometric interpretation of 3-dB width.

Then, the 3-dB condition that |H(zA)|/|H(zQ)| = 1/
√

2, implies |PQ|/|PA| = 1/
√

2,
or, |PA| = √

2|PQ|, which means that the orthogonal triangle PQA will be equilateral,
with a 45◦ angle ∠QPA. A similar argument shows that the triangle PQB is also a 45◦

orthogonal triangle. It follows that |AB| = 2|QA| = 2|PQ| = 2(1 − R). But the arc
subtended by the angle Δω is equal to the radius of the circle (i.e., 1) times the angle
Δω. This arc is approximately equal to |AB| and therefore, Δω = |AB| = 2(1−R).

Eq. (6.4.4) can be used as the design criterion that determines the value of R for
a given bandwidth Δω. The filter’s causal impulse response can be obtained from
Eq. (6.4.3) using partial fractions. We find, for n ≥ 0:

h(n)= G
sinω0

Rn sin(ω0n+ω0)

The difference equation for the filter follows from Eq. (6.4.3). We have:

Y(z)= H(z)X(z)= G
1+ a1z−1 + a2z−2

X(z)

which gives

(1+ a1z−1 + a2z−2)Y(z)= GX(z)

and in the time domain:

y(n)+a1y(n− 1)+a2y(n− 2)= Gx(n)

or,

y(n)= −a1y(n− 1)−a2y(n− 2)+Gx(n) (6.4.5)

A block diagram realization is shown in Fig. 6.4.4. The corresponding sample pro-
cessing algorithm is obtained by introducing the internal states

w1(n) = y(n− 1)

w2(n) = y(n− 2)= w1(n− 1)

6.4. POLE/ZERO DESIGNS 257

y(n)

z-1

z-1

x(n)
G

-a1

w1(n)

w2(n)
-a2

Fig. 6.4.4 Direct form realization of resonator filter.

The difference equation may be replaced by the system:

y(n)= −a1w1(n)−a2w2(n)+Gx(n)
w2(n+ 1)= w1(n)

w1(n+ 1)= y(n)

which gives rise to the following sample processing algorithm:

for each input sample x do:
y = −a1w1 − a2w2 +Gx
w2 = w1

w1 = y

Example 6.4.1: Design a 2-pole resonator filter with peak at f0 = 500 Hz and width Δf = 32
Hz, operating at the sampling rate of fs = 10 kHz.

Solution: The normalized resonator frequency will be

ω0 = 2πf0

fs
= 0.1π [radians/sample]

and the corresponding width:

Δω = 2πΔf
fs

= 0.02

Eq. (6.4.4) gives then

2(1−R)= 0.02 ⇒ R = 0.99

With this value of R, we find the filter parameters:

G = 0.0062, a1 = −1.8831, a2 = 0.9801

and the filter transfer function

258 6. TRANSFER FUNCTIONS

H(z)= 0.0062

1− 1.8831z−1 + 0.9801z−2

The magnitude response and impulse response h(n) are shown below:

The effective time constant of this filter is about neff = ln ε/ lnR = 458 time samples. The
graph only plots until n = 300. 	

A slight generalization of the resonator filter is to place a pair of zeros near the poles
along the same directions as the poles, that is, at locations:

z1 = rejω0 , z∗1 = re−jω0

where r is restricted to the range 0 ≤ r ≤ 1. The transfer function becomes:

H(z)= (1− rejω0z−1)(1− re−jω0z−1)
(1−Rejω0z−1)(1−Re−jω0z−1)

= 1+ b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(6.4.6)

where the filter coefficients are given in terms of the parameters r, R, and ω0:

b1 = −2r cosω0

a1 = −2R cosω0

b2 = r2

a2 = R2
(6.4.7)

The corresponding magnitude squared response is:

|H(ω)|2 =
(
1− 2r cos(ω−ω0)+r2

)(
1− 2r cos(ω+ω0)+r2

)(
1− 2R cos(ω−ω0)+R2

)(
1− 2R cos(ω+ω0)+R2

)
Figure 6.4.5 shows the pole/zero pattern. When r < R, the pole “wins” over the zero,

in the sense that it is closer to the unit circle than the zero, giving rise to a peak in the
frequency response at ω =ω0. The resonator case may be thought of as a special case
with r = 0. When r > R, the zero wins over the pole, giving rise to a dip in the frequency
response. In particular, if r = 1, one gets an exact zero, a notch, at ω =ω0.

When the pole and zero are very near each other, that is, r � R or r � R, the
frequency response remains essentially flat for frequencies far from ω = ±ω0, because
the distances of the moving point ejω to the pole/zero pairs are almost equal, giving

6.4. POLE/ZERO DESIGNS 259

= poles
= zeros

ω0
−ω0

e jω

unit
circle π

ωω00

1

|H(ω)|2
r < R, (boost)

r > R, (cut)

Fig. 6.4.5 Parametric equalizer filter.

|H(ω)| � 1. Only near the vicinity of ±ω0 does |H(ω)| vary dramatically, developing
a peak or a dip.

Such a filter can be thought of as a simple parametric equalizer filter, providing a
“boost” if r < R, or a “cut” if r > R. The height of the boost or cut relative to 1 is
controlled by the closeness of r to R. The width of the peaks or dips is controlled by
the closeness of R to the unit circle.

Later on, we will reconsider such pole/zero designs of equalization filters for digital
audio systems based on analog designs and the bilinear transformation method, and will
derive more precise design criteria that are based on the desired values of the bandwidth
and gain of the peak or dip. Such second-order filters can be cascaded together to
provide boosting or cutting at multiple frequencies.

Example 6.4.2: Using the numerical values R = 0.98, ω0 = 0.4π for the pole, determine the
parametric equalizer transfer functions of Eq. (6.4.6) for a boost corresponding to r =
0.965, a cut with r = 0.995, and an exact notch with r = 1.

Solution: The transfer function coefficients are computed by Eq. (6.4.7). The resulting transfer
functions are in the three cases of r = 0.965, r = 0.995, r = 1:

H(z) = 1− 0.5964z−1 + 0.9312z−2

1− 0.6057z−1 + 0.9604z−2

H(z) = 1− 0.6149z−1 + 0.9900z−2

1− 0.6057z−1 + 0.9604z−2

H(z) = 1− 0.6180z−1 + z−2

1− 0.6057z−1 + 0.9604z−2

The corresponding magnitude responses |H(ω)| are shown in Fig. 6.4.6. The case r = 1
provides an exact notch at ω =ω0. 	

6.4.3 Notch and Comb Filters

The case r = 1 for a notch filter deserves some further discussion. In this case, the filter
coefficients given by Eq. (6.4.7) can be written as

a1 = Rb1 = −2R cosω0, a2 = R2b2 = R2

260 6. TRANSFER FUNCTIONS

Fig. 6.4.6 Parametric equalizers of Example 6.4.2.

And, the transfer function takes the form:

H(z)= 1+ b1z−1 + b2z−2

1+Rb1z−1 +R2b2z−2
= N(z)
N(R−1z)

where N(z) is the numerator polynomial having zeros at the two notch locations z =
e±jω0 :

N(z)= 1+ b1z−1 + b2z−2 = 1− 2z−1 cosω0 + z−2 = (1− ejω0z−1)(1− e−jω0z−1)

This method can be generalized to construct a notch filter with notches at an ar-
bitrary (finite) set of frequencies. The numerator polynomial N(z) is defined as the
polynomial whose zeros are on the unit circle at the desired notch locations. For exam-
ple, if there are M desired notch frequencies ωi, i = 1,2, . . . ,M, then N(z) is defined
as the Mth degree polynomial with zeros at zi = ejωi , i = 1,2, . . . ,M:

N(z)=
M∏
i=1

(
1− ejωiz−1) (notch polynomial) (6.4.8)

The denominator polynomial is chosen as D(z)= N(ρ−1z), for some parameter 0 <
ρ < 1, that is,

D(z)= N(ρ−1z)=
M∏
i=1

(
1− ejωiρz−1)

The zeros of D(z) lie at the same directions as the notch zeros, but they are all
pushed inside the unit circle at radius ρ. Therefore, for each desired zero zi = ejωi ,
there is a corresponding pole pi = ρejωi . Writing Eq. (6.4.8) in expanded form:

N(z)= 1+ b1z−1 + b2z−2 + · · · + bMz−M

we obtain the following transfer function for the notch filter:

6.4. POLE/ZERO DESIGNS 261

H(z)= N(z)
N(ρ−1z)

= 1+ b1z−1 + b2z−2 + · · · + bMz−M

1+ ρb1z−1 + ρ2b2z−2 + · · · + ρMbMz−M
(6.4.9)

that is, the denominator coefficients are chosen as the scaled versions of the numerator
coefficients,

ai = ρibi, i = 1,2, · · · ,M

If ρ is near one, ρ � 1, the distances of the movable point ejω to the pole/zero pairs
{zi, pi} = {zi, ρzi} are almost equal to each other except in the near vicinity of the pair,
that is, except near ω =ωi. Thus, H(ω) remains essentially flat except in the vicinity
of the desired notch frequencies.

Example 6.4.3: A DSP system operating at a sampling rate of 600 Hz, is plagued by 60 Hz power
frequency interference noise and its harmonics. Design a notch filter that removes all of
these harmonics, but remains flat at other frequencies.

Solution: The fundamental harmonic is

ω1 = 2πf1

fs
= 2π · 60

600
= 0.2π [radians/sample]

The other harmonics at fi = if1 correspond to ωi = iω1. There are 10 harmonics that lie
within the Nyquist interval [0, fs]; namely, fi, for i = 0,1, · · · ,9. Because fs = 10f1, all
the harmonics that lie outside the Nyquist interval (if they have not been filtered out by
the antialiasing prefilter) will be aliased onto harmonics inside that interval. For example,
the harmonic f11 = 11fs gets aliased with f11−fs = 11f1−10f1 = f1, and so on. Therefore,
our digital notch filter must be designed to have notches at the 10 frequencies within the
Nyquist interval:

ωi = iω1 = 2πi
10

, i = 0,1, . . . ,9

These 10 frequencies are none other than the tenth roots of unity, that is, the 10 roots of
the polynomial:

N(z)= 1− z−10 =
9∏
i=0

(
1− ejωiz−1

)

Our notch filter is then obtained by

H(z)= N(z)
N(ρ−1z)

= 1− z−10

1− ρ10z−10
= 1− z−10

1−Rz−10

where we set R = ρ10. The following figure shows the resulting pole/zero pattern for this
transfer function, and the corresponding magnitude response (computed only between
0 ≤ω ≤ π):

262 6. TRANSFER FUNCTIONS

= poles
= zeros

unit
circle

36°

ρ

where we chose R = 0.98, or ρ = R1/10 = (0.98)1/10= 0.9980. The radius ρ of the poles is
very close to the unit circle resulting in very sharp notches at the desired harmonics. At
other frequencies the magnitude response is essentially flat. 	

Example 6.4.4: Repeat the previous example when the sampling rate is fs = 1200 Hz. Then,
design another notch filter that excludes the DC and AC harmonics at f = 0 and f = fs/2.

Solution: Now the fundamental harmonic is ω1 = 2π · 60/1200 = 0.1π, and the 20 harmonics
in the Nyquist interval will be

ωi = iω1 = 2πi
20

, i = 0,1, . . . ,19

They correspond to the 20th roots of unity, that is, the roots of:

N(z)= 1− z−20 =
19∏
i=0

(
1− ejωiz−1

)

The notch filter will be:

H(z)= N(z)
N(ρ−1z)

= 1− z−20

1− ρ20z−20
= 1− z−20

1−Rz−20

where we set R = ρ20. The following figure shows the resulting pole/zero pattern and
magnitude response, with the values R = 0.98 or ρ = R1/20 = (0.98)1/20= 0.9990:

= poles
= zeros

unit
circle

6.4. POLE/ZERO DESIGNS 263

If we want to exclude the ω =ω0 = 0 and ω =ω10 = π harmonics from the notch filter,
we must divide them out of N(z). They contribute a factor

(1− z−1)(1+ z−1)= 1− z−2

Therefore, the new N(z) that has notches at all the harmonics but at z = ±1 will be:

N(z)= 1− z−20

1− z−2
= 1− z−10

1− z−2
(1+ z−10)= (1+ z−2 + z−4 + z−6 + z−8)(1+ z−10)

Therefore, we find for the notch transfer function:

H(z)= N(z)
N(ρ−1z)

= (1+ z−2 + z−4 + z−6 + z−8)(1+ z−10)
(1+ ρ2z−2 + ρ4z−4 + ρ6z−6 + ρ8z−8)(1+ ρ10z−10)

The resulting pole/zero pattern and magnitude response are shown below:

= poles
= zeros

unit
circle

The value of ρ was the same as above, such that ρ20 = R = 0.98. 	

A variant of the above method of constructing notch filters is the generalization of
the parametric equalizer filter. It corresponds to moving the notch zeros into the unit
circle and behind the poles, that is, replacing each notch zero by:

zi = ejωi −→ zi = rejωi

where r � ρ. This makes the poles win over the zeros, changing all the notch dips into
sharp peaks at frequencies ω = ωi. The corresponding transfer function is obtained
from Eq. (6.4.9) by scaling z in the numerator:

H(z)= N(r−1z)
N(ρ−1z)

= 1+ rb1z−1 + r2b2z−2 + · · · + rMbMz−M

1+ ρb1z−1 + ρ2b2z−2 + · · · + ρMbMz−M
(6.4.10)

Example 6.4.5: Starting with the notch polynomial N(z)= 1−z−20 of Example 6.4.4, we obtain
the following filter, which will exhibit sharp peaks instead of dips if r � ρ:

H(z)= N(r−1z)
N(ρ−1z)

= 1− r20z−20

1− ρ20z−20

264 6. TRANSFER FUNCTIONS

The pole/zero pattern and magnitude response are shown below:

= poles
= zeros

unit
circle

The values of the parameters were r20 = 0.96 and ρ20 = 0.98, which correspond to r =
0.9980 and ρ = 0.9990. 	

The notching and peaking filters of Eqs. (6.4.9) and (6.4.10) are referred to generically
as comb filters. Notching comb filters are typically used to cancel periodic interference,
such as the power frequency pickup and its harmonics. Peaking comb filters are used to
enhance periodic signals in noise. The noise/interference reduction and signal enhance-
ment capabilities of comb filters and their design will be discussed further in Chapters
16 and 12.

Comb filters arise also in the construction of digital reverb processors, where they
represent the effects of multiple reflections of a sound wave off the walls of a listening
space. They also arise in the design of digital periodic waveform generators. These
topics will be discussed in Chapter 16.

6.5 Deconvolution, Inverse Filters, and Stability

In many applications, it is necessary to undo a filtering operation and recover the input
signal from the available output signal. The output signal y(n) is related to the input
by the convolutional equation:

y(n)= h(n)∗x(n) (6.5.1)

The objective of such “deconvolution” methods is to recover x(n) from the knowl-
edge of y(n) and the filter h(n). In theory, this can be accomplished by inverse filtering,
that is, filtering y(n) through the inverse filter

Hinv(z)= 1

H(z)
(6.5.2)

Indeed, working in the z-domain we have from Eq. (6.5.1):

Y(z)= H(z)X(z) ⇒ X(z)= 1

H(z)
Y(z)= Hinv(z)Y(z)

which becomes in the time domain:

6.5. DECONVOLUTION, INVERSE FILTERS, AND STABILITY 265

x(n)= hinv(n)∗y(n) (6.5.3)

where hinv(n) is the impulse response of the inverse filter Hinv(z). This operation is
illustrated in Fig. 6.5.1.

H(z)
y(n) x(n)x(n) inverse

filter
Hinv(z)

H(z)Hinv(z)=1

Fig. 6.5.1 Inverse filtering recovers original input.

Two typical applications of inverse filtering are channel equalization in digital voice
or data transmission and the equalization of room or car acoustics in audio systems.

In channel equalization, the effect of a channel can be modeled as a linear filter-
ing operation of the type of Eq. (6.5.1), where the transfer function H(z) incorporates
the effects of amplitude and phase distortions introduced by the channel. The signals
x(n) and y(n) represent the transmitted and received signals, respectively. The in-
verse filter—called a channel equalizer in this context—is placed at the receiving end
and its purpose is to undo the effects of the channel and recover the signal x(n) that
was transmitted. The overall processing system is shown in Fig. 6.5.2.

Often the channel itself is not known in advance, as for example in making a phone
connection when the channel is established dynamically depending on how the call is
routed to its destination. In such cases, the channel’s transfer function must be deter-
mined (usually using adaptive signal processing techniques) before it can be inverted.

Hch(z)
y(n) x(n)x(n)

equalizerchannel received
signal

transmitted
signal

Heq(z)

Hch(z)Heq(z)=1

Fig. 6.5.2 Channel equalizer.

The sound generated by an audio system in a listening room is changed by the rever-
beration and absorption characteristics of the room’s wall geometry and objects. The
effect of the room can be modeled by a reverberation impulse response hroom(n), so
that the actual sound wave impinging on a listener’s ears is a distorted version of the
original sound wave x(n) produced by the audio system:

yroom(n)= hroom(n)∗x(n) (6.5.4)

The impulse response hroom(n) depends on where one sits in the room, but it can
be measured and then deconvolved away by an inverse filtering operation:

Yroom(z)= Hroom(z)X(z) ⇒ X(z)= 1

Hroom(z)
Yroom(z)

266 6. TRANSFER FUNCTIONS

In addition to removing the local reverberation effects of a room, one may want to
add the reverberation ambience of a concert hall that increases the warmth and richness
of the sound. If the same audio signal x(n) were listened to in a concert hall with
reverberation impulse response hhall(n), the actual sound wave would be

yhall(n)= hhall(n)∗x(n) (6.5.5)

Available DSP audio effects processors can simulate the reverberation characteristics
of typical concert halls and can implement the above filtering operation. An idealized
audio effects processor is shown in Fig. 6.5.3.

1
Hroom(z)

Hhall(z) Hroom(z)
yhall(n)x(n)

audio in

DSP processor

audio out

Fig. 6.5.3 An ideal audio effects processor.

First, it deconvolves the room acoustics by prefiltering the audio signal x(n) by the
inverse filter of the room’s transfer function, anticipating the room’s effect, and then
it convolves it with the reverberation response of a desired concert hall. The effective
transfer function of the arrangement is:

Heff(z)= Hroom(z)·Hhall(z)· 1

Hroom(z)
= Hhall(z)

Thus, with the DSP effects processor, the sound wave produced in a room sounds
as it does in a concert hall, Eq. (6.5.5). We will discuss audio effects processors in more
detail in Chapter 16.

There are many other applications of inverse filtering in such diverse fields as identi-
fication and control systems, communication systems, image enhancement and restora-
tion, digital magnetic recording, oil exploration, geophysics, ocean engineering, electro-
magnetic theory, scattering theory, radio astronomy, medical tomography, and spec-
troscopic analysis, as well as in many areas of applied mathematics, such as numerical
analysis and statistics.

There are two major issues that arise in the practical application of inverse filtering.
One is the requirement of stability of the inverse filterhinv(n). Without this requirement,
the inverse filtering equation (6.5.3) would be unstable, resulting in numerical nonsense.

The other issue is the presence of noise in the data, that is, the available signal y(n)
may be (and almost invariably is) contaminated with noise, so that Eq. (6.5.1) is replaced
by:

y(n)= h(n)∗x(n)+v(n) (6.5.6)

where v(n) is the noise. Even if there is an exact and stable inverse filter hinv(n), the
deconvolution of the noisy data y(n) will give rise to the signal:

6.5. DECONVOLUTION, INVERSE FILTERS, AND STABILITY 267

x̂(n)= hinv(n)∗y(n)= x(n)+v̂(n) (6.5.7)

where v̂(n) is the filtered noise:

v̂(n)= hinv(n)∗v(n)

Depending on the nature of the inverse filter hinv(n), even if the measurement noise
v(n) is very weak, it is quite possible for the filtered noise v̂(n) to be a much amplified
version of v(n), rendering x̂(n) a very poor and almost useless estimate of the desired
signal x(n). There exist signal processing techniques that try to address this noise
problem to some extent. But they are beyond the scope of this book. See [45] for some
discussion and references.

The impulse response h(n) of the system H(z) is assumed to be both stable and
causal. This implies that the poles of H(z) must lie strictly inside the unit circle. But
the zeros of H(z) do not have to lie inside the unit circle—they can be anywhere on the
z-plane. Writing H(z) in the ratio of two polynomials,

H(z)= N(z)
D(z)

we conclude that the zeros of N(z) may be anywhere on the z-plane. Therefore, the
inverse filter

Hinv(z)= 1

H(z)
= D(z)
N(z)

can have poles outside the unit circle. In this case, the stable inverse z-transform hinv(n)
will necessarily be anticausal. As an example, consider the case of a filter H(z) to be
inverted:

H(z)= 1− 1.25z−1

1− 0.5z−1
= 2.5− 1.5

1− 0.5z−1

It has a causal and stable impulse response given by:

h(n)= 2.5δ(n)−1.5(0.5)nu(n)

The corresponding inverse filter Hinv(z) will be

Hinv(z)= 1

H(z)
= 1− 0.5z−1

1− 1.25z−1
= 0.4+ 0.6

1− 1.25z−1

and because it has a pole outside the unit circle, its stable impulse response will be
anticausal:

hinv(n)= 0.4δ(n)−0.6(1.25)nu(−n− 1)=

⎧⎪⎪⎨⎪⎪⎩
0 if n ≥ 1

0.4 if n = 0

−0.6(1.25)n if n ≤ −1

268 6. TRANSFER FUNCTIONS

Such a stable and anticausal impulse response can be handled using the approxi-
mation technique discussed in Section 3.5. That is, the infinitely long anticausal tail
is clipped off at some large negative time n = −D, replacing the exact hinv(n) by its
clipped approximation:

h̃inv(n)=
⎧⎨⎩hinv(n) if n ≥ −D

0 if n < −D (6.5.8)

The approximate impulse response h̃inv(n) has only a finitely anticausal part and
can be made causal by delaying it by D time units, as discussed in Section 3.5. The
deconvolution error arising from using the approximate response can be determined as
follows. Let x̃(n) be the deconvolved output using h̃inv(n), that is,

x̃(n)= h̃inv(n)∗y(n)
Subtracting it from the exact output x(n) of Eq. (6.5.3), we have

x(n)−x̃(n) = hinv(n)∗y(n)−h̃inv(n)∗y(n)=
(
hinv(n)−h̃inv(n)

)∗ y(n)

=
∞∑

m=−∞

(
hinv(m)−h̃inv(m)

)
y(n−m)

=
−D−1∑
m=−∞

hinv(m)y(n−m)

where all the terms for m ≥ −D were dropped because h̃inv(m) agrees with hinv(m)
there, and h̃inv(m)= 0 for m < −D. Assuming the signal y(n) is bounded by some
maximum value |y(n)| ≤ A, we find

|x(n)−x̃(n)| ≤ A
−D−1∑
m=−∞

|hinv(m)| (6.5.9)

This is a general result for the deconvolution error. The upper bound gets smaller
as D is increased. In particular, for the above example, we have:

|x(n)−x̃(n)| ≤ A
−D−1∑
m=−∞

|0.6(1.25)m| = 2.4A(1.25)−D

which can be made as small as desired by choosing D larger.
For a more general inverse filter Hinv(z) having more than one pole outside the unit

circle, the pole nearest the circle controls the decay time constant of the negative-time
tail of hinv(n), because it converges to zero the slowest. Therefore, it controls the choice
of the delay D. If we denote the minimum magnitude of these poles by

a = min |poutside| > 1

then for large D, the upper bound in Eq. (6.5.9) will behave essentially like the term a−D,
which gives the approximation error bound, for some constant B:

6.6. PROBLEMS 269

|x(n)−x̃(n)| ≤ Ba−D

In summary, when the inverse filter transfer functionHinv(z) has some poles outside
the unit circle, one must choose the anticausal but stable impulse response hinv(n) and
clip it at some large negative time D (and delay it by D to make it causal). The choice of
D is dictated by the outside pole closest to the unit circle. The resulting deconvolution
error arising from using the clipped filter can be made as small as desired by choosing
the clipping delay D larger.

6.6 Problems

6.1 Using z-transforms, determine the transfer function H(z) and from it the causal impulse
response h(n) of the linear systems described by the following I/O difference equations:

a. y(n)= −0.8y(n− 1)+x(n)
b. y(n)= 0.8y(n− 1)+x(n)
c. y(n)= 0.8y(n− 1)+x(n)+x(n− 1)

d. y(n)= 0.8y(n− 1)+x(n)−0.5x(n− 1)

e. y(n)= 0.8y(n− 1)+x(n)+0.25x(n− 2)

f. y(n)= 0.9y(n− 1)−0.2y(n− 2)+x(n)+x(n− 1)−6x(n− 2)

In each case, determine also the frequency response H(ω), the pole/zero pattern of the
transfer function on the z-plane, draw a rough sketch of the magnitude response |H(ω)|
over the right half of the Nyquist interval 0 ≤ ω ≤ π, and finally, draw the direct and
canonical block diagram realizations of the difference equation and state the corresponding
sample-by-sample filtering algorithms.

6.2 A unit-step signal x(n)= u(n) is applied at the input of the linear systems:

a. y(n)= x(n)+6x(n− 1)+11x(n− 2)+6x(n− 3)

b. y(n)= x(n)−x(n− 4)

Using z-transforms, determine the corresponding output signals y(n), for all n ≥ 0.

Repeat for the alternating-step input x(n)= (−1)nu(n).

6.3 Repeat Problem 6.2 for the following systems:

a. y(n)= 0.25y(n− 2)+x(n) b. y(n)= −0.25y(n− 2)+x(n)
6.4 A unit-step signal x(n)= u(n) is applied at the inputs of the systems of Problem 6.1.

a. Using z-transforms, derive expressions for the corresponding output signals y(n) for
all n ≥ 0, and determine which part of y(n) is the steady-state part and which the
transient part.

b. Repeat for the input x(n)= (−1)nu(n).

c. Repeat for the input x(n)= (0.5)nu(n) applied only to Problem 6.1(d).

d. Repeat for the input x(n)= (0.5)ncos(πn/2)u(n) applied to Problem 6.1(e) only.

270 6. TRANSFER FUNCTIONS

e. Repeat for the unstable input x(n)= 2nu(n) applied only to the system 6.1(f). Why is
the output stable in this case?

6.5 Determine the transfer function H(z) and the corresponding I/O difference equation relat-
ing x(n) and y(n) of the linear filters having the following impulse responses:

a. h(n)= δ(n− 5)

b. h(n)= u(n− 5)

c. h(n)= (0.8)nu(n)

d. h(n)= (−0.8)nu(n)

e. h(n)= (−0.8)n
[
u(n)−u(n− 8)

]
f. h(n)= (0.8)nu(n)+(−0.8)nu(n)

g. h(n)= 2(0.8)ncos(πn/2)u(n)

h. h(n)= (0.8j)nu(n)+(−0.8j)nu(n)

In each case, determine also the frequency response H(ω), the pole/zero pattern of the
transfer function on the z-plane, draw a rough sketch of the magnitude response |H(ω)|
over the right half of the Nyquist interval 0 ≤ ω ≤ π, and finally, draw the direct and
canonical realizations implementing the I/O difference equation and state the corresponding
sample-by-sample processing algorithms.

6.6 Find the transfer function H(z) and express it as the ratio of two polynomials of the system
having impulse response:

h(n)=
∞∑

m=0

(0.5)mδ(n− 8m)= δ(n)+(0.5)δ(n− 8)+(0.5)2δ(n− 16)+· · ·

Then, draw a block diagram realization and write its sample processing algorithm.

6.7 A digital reverberation processor has frequency response:

H(ω)= −0.5+ e−jω8

1− 0.5e−jω8

whereω is the digital frequency in [radians/sample]. Determine the causal impulse response
h(n), for all n ≥ 0, and sketch it versus n. [Hint: Do not use partial fractions.]

6.8 The first few Fibonacci numbers are:

h = [0,1,1,2,3,5,8,13,21, . . .]

where each is obtained by summing the previous two.

a. Determine the linear system H(z) whose causal impulse response is h, and express it
as a rational function in z−1.

b. Using partial fractions, derive an expression for the nth Fibonacci number in terms of
the poles of the above filter.

c. Show that the ratio of two successive Fibonacci numbers converges to the Golden Sec-
tion, that is, the positive solution of the quadratic equation φ2 = φ + 1, namely,
φ = (1+√5)/2.

d. Show that the filter’s poles are the two numbers {φ,−φ−1}. Show that the geometric
sequence:

y = [0,1,φ,φ2,φ3, . . .]

satisfies the same recursion as the Fibonacci sequence (for n ≥ 3). Show that y may be
considered to be the output of the filter h for a particular input. What is that input?

6.6. PROBLEMS 271

See [35,36] for some remarkable applications and properties of Fibonacci numbers.

6.9 Pell’s series [35,36] is obtained by summing twice the previous number and the number
before (i.e., hn = 2hn−1 + hn−2):

h = [0,1,2,5,12,29, . . .]

Determine the linear system H(z) whose causal impulse response is h, and express it as
a rational function in z−1. Using partial fractions, derive an expression for the nth Pell
number in terms of the poles of the above filter. Show that the ratio of two successive Pell
numbers converges to the positive solution of the quadratic equation θ2 = 2θ + 1, that is,
θ = 1 + √2. Show that the filter’s poles are the two numbers {θ,−θ−1}. Show that the
geometric sequence:

y = [0,1, θ,θ2, θ3, . . .]

satisfies the same recursion as the Pell sequence (for n ≥ 3). Show that y may be considered
to be the output of the filter h for a particular input. What is that input?

6.10 For a particular causal filter, it is observed that the input signal (0.5)nu(n) produces the out-
put signal (0.5)nu(n)+(0.4)nu(n). What input signal produces the output signal (0.4)nu(n)?

6.11 For a particular filter, it is observed that the input signal anu(n) causes the output signal
anu(n)+bnu(n) to be produced. What output signal is produced by the input cnu(n),
where c = (a+ b)/2?

6.12 The signal (0.7)nu(n) is applied to the input of an unknown causal LTI filter, and the signal
(0.7)nu(n)+(0.5)nu(n) is observed at the output. What is the causal input signal that will
cause the output (0.5)nu(n)? What is the transfer function H(z) of the system? Determine
its causal impulse response h(n), for all n ≥ 0.

6.13 Design a resonator filter of the form H(z)= 1

1+ a1z−1 + a2z−2
, which has a peak at f0 =

250 Hz and a 3-dB width of Δf = 20 Hz and is operating at a rate of fs = 5 kHz. What are the
values of a1 and a2? Show that the time constant of the resonator is given approximately by

neff = −2 ln ε
Δω

which is valid for small Δω. For the designed filter, calculate the 40-dB value of neff, that is,
corresponding to ε = 10−2. Compare the approximate and exact values of neff.

6.14 For any stable and causal filter, let τ40 and τ60 denote its 40-dB and 60-dB time constants,
expressed in seconds. Show that they are related by: τ60 = 1.5τ40.

6.15 Show that the 60-dB time constant of a resonator filter is given approximately by:

τ60 = 2.2
Δf

where τ60 is in seconds and Δf is the 3-dB width in Hz. When is the approximation valid?

6.16 It is desired to generate the following periodic waveform:

h(n)= [1,2,3,4,0,0,0,0,1,2,3,4,0,0,0,0, · · ·]

where the dots indicate the periodic repetition of the 8 samples [1,2,3,4,0,0,0,0].

272 6. TRANSFER FUNCTIONS

a. Determine the filter H(z) whose impulse response is the above periodic sequence.
Express H(z) as a ratio of two polynomials of degree less than 8.

b. Draw the canonical and direct realization forms of H(z). Write the corresponding
sample processing algorithms.

6.17 A digital sawtooth generator filter has a periodic impulse response:

h = [0,1,2,3,0,1,2,3,0,1,2,3, · · ·]

where the dots indicate the periodic repetition of the length-4 sequence {0,1,2,3}.

a. Determine the transfer function H(z).

b. Draw the direct and canonical realization forms. Factor H(z) into second-order sec-
tions with real coefficients. Draw the corresponding cascade realization.

c. For each of the above three realizations, write the corresponding I/O time-domain
difference equations and sample-by-sample processing algorithms.

d. Using partial fractions, do an inverse z-transform of H(z) and determine a closed
form expression for the above impulse response h(n) in the form

h(n)= A+ B(−1)n+2C cos
(πn

2

)+ 2D sin
(πn

2

)
, n ≥ 0

What are the values of A,B,C,D ?

6.18 Consider the system: H(z)= 1+ z−1 + z−2 + z−3

1− z−7
.

a. Without using partial fractions, determine the causal impulse response of the system.
Explain your reasoning.

b. Draw the canonical realization form of the system. Write the I/O difference equations
and the sample processing algorithm describing this realization.

c. The length-3 input signal x = [3,2,1] is applied as input to the system. Using any
method, determine the output signal y(n) for all n ≥ 0. Explain your method.

6.19 A causal filter has transfer function: H(z)= 1+ z−1 + z−2 + z−3

1− z−2
.

a. Determine the numerical values of the causal impulse response h(n), for all n ≥ 0.

b. Draw the canonical realization form of this filter and write the sample processing
algorithm describing it.

6.20 A filter is described by the following sample processing algorithm:

for each input x do:
w0 = x+w1

y = w0 +w2

w2 = w1

w1 = w0

a. Determine the transfer function H(z) of this filter.

b. Show that it is identically equal to that of Problem 6.19.

6.6. PROBLEMS 273

6.21 A biomedical signal, sampled at a rate of 240 Hz, is plagued by 60 Hz power frequency
interference and its harmonics.

Design a digital notch filter H(z) that removes all these harmonics, but remains essentially
flat at other frequencies.

[Hint : You may assume, although it is not necessary, that the signal has been prefiltered
by a perfect antialiasing prefilter matched to the above sampling rate. Therefore, only the
harmonics that lie in the 0 ≤ f < 240 Hz Nyquist interval are relevant.]

6.22 A digital filter has transfer function, where 0 < a < 1:

H(z)= 1− z−16

1− az−16

a. What are the poles and zeros of this filter? Show them on the z-plane.

b. Draw a rough sketch of its magnitude response |H(ω)| over the frequency interval
0 ≤ω ≤ 2π.

c. Determine the causal/stable impulse response h(n) for all n ≥ 0. Sketch it as a
function of n. [Hint : Do not use PF expansions.]

d. Draw the canonical realization form and write the corresponding sample processing
algorithm. (You may make use of the delay routine to simplify the algorithm.)

6.23 Find the causal impulse response h(n), for all n ≥ 0, of H(z)= 0.3+ 0.15z−1

1− 0.5z−1
.

6.24 LetH(z)= 1− a
1− az−1

be a first-order lowpass filter (also called a first-order smoother), where

0 < a < 1. Draw the canonical realization. Draw another realization that uses only one
multiplier, (that is, a), one delay, and one adder and one subtractor. For both realizations,
write the sample-by-sample processing algorithms. What would you say is the purpose of
the chosen gain factor 1− a?

6.25 Let H(z)= 3− 3z−1 − z−2

1− 1.5z−1 − z−2
. Determine all possible impulse responses h(n), for all n, and

the corresponding ROCs.

6.26 A discrete system is described by the difference equation

y(n)= 2.5y(n− 1)−y(n− 2)+3x(n)+3x(n− 2)

Using z-transforms, find all possible impulse responses h(n) and indicate their causality
and stability properties.

For the causal filter, determine the output y(n) if the input is x(n)= g(n)−2g(n−1), where
g(n)= cos(πn/2)u(n).

6.27 A signal x(n) has frequency bandwidth 0 ≤ |ω| ≤ ωc, where ωc < π. The signal is
applied to a lowpass filter H(ω) resulting in the output y(n). Assuming that the filter
has an approximately flat passband over 0 ≤ |ω| ≤ ωc and is zero outside that band,
and assuming that the filter has linear phase with a phase delay d(ω)= D, show that the
resulting output will be approximately equal to the delayed input y(n)= Gx(n−D), where
G is the filter’s passband gain.

6.28 Consider a causal/stable filter H(z)= N(z)
(1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

, where the

M poles are inside the unit circle |pi| < 1, and the numerator N(z) is a polynomial in z−1 of
degree strictly less than M. Show that the impulse response can be expressed in the form:

274 6. TRANSFER FUNCTIONS

h(n)=
M∑
i=1

Aipni u(n), where Ai = N(pi)∏
j �=i
(1− pjp−1

i)

6.29 The input-on behavior of the above filter may be studied by applying to it a one-sided sinusoid
that starts at n = 0 and continues till n = ∞. The input-off behavior may be studied
by applying a sinusoid that has been on since n = −∞ and turns off at n = 0. Using
z-transforms, show that the corresponding outputs are in the two cases:

ejω0nu(n) H−→ y(n)= H(ω0)ejω0nu(n)+
M∑
i=1

Bipni u(n)

ejω0nu(−n− 1) H−→ y(n)= H(ω0)ejω0nu(−n− 1)−
M∑
i=1

Bipni u(n)

Thus, the transient behavior for n ≥ 0 is the same in both cases except for a sign. Show that
the coefficients Bi are related to Ai of the previous problem by:

Bi = piAi

pi − ejω0
, i = 1,2, . . . ,M

Using these results and linear superposition, derive the steady-state result of Eq. (6.3.2),
which is valid for double-sided sinusoids.

6.30 Let H(z)= 3− 5z−1 + z−2

(1− 0.5z−1)(1− 2z−1)
. Determine the stable but anticausal impulse response

h(n) of this system. Let h̃(n) denote the causal approximation to h(n) obtained by clipping
off the anticausal tail of h(n) at some large negative time n = −D. What is H̃(z)?
Suppose the signal x(n)= δ(n)−2δ(n− 1) is applied at the input of the true and approx-
imate systems resulting in the outputs y(n) and ỹ(n), respectively. Using z-transforms,
determine an expression for the output error e(n)= y(n)−ỹ(n).

7
Digital Filter Realizations

7.1 Direct Form

In this section, we discuss in detail the direct form realizations of digital filters, otherwise
known as direct form I (DF-I) realizations. We begin by considering a simple second-
order filter with transfer function

H(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(7.1.1)

having I/O difference equation:

yn = −a1yn−1 − a2yn−2 + b0xn + b1xn−1 + b2xn−2 (7.1.2)

The direct form realization is the block diagram representation of this difference
equation. It is depicted in Fig. 7.1.1.

Fig. 7.1.1 Direct form realization of second-order IIR filter.

The main feature of this realization is a single adder that accumulates all the terms
in the right-hand side of Eq. (7.1.2) and whose output is y(n).

275

276 7. DIGITAL FILTER REALIZATIONS

All the b-multiplier terms are feeding forward. They correspond to the numera-
tor polynomial of H(z) and to the x-dependent, non-recursive terms of the difference
equation (7.1.2).

The a-multiplier terms are feeding back. They correspond to the denominator poly-
nomial ofH(z) and to the y-dependent, recursive terms of Eq. (7.1.2). Notice the change
in sign: The a-multipliers in the block diagram and in the difference equation are the
negatives of the denominator polynomial coefficients.

The FIR direct form of Chapter 4 is obtained as a special case of this by setting the
feedback coefficients to zero a1 = a2 = 0.

The sample-by-sample processing algorithm can be derived by defining the internal
states of the filter to be:

v0(n) = x(n)

v1(n) = x(n− 1)= v0(n− 1)

v2(n) = x(n− 2)= v1(n− 1)

and

w0(n) = y(n)

w1(n) = y(n− 1)= w0(n− 1)

w2(n) = y(n− 2)= w1(n− 1)

The quantities v1(n), v2(n), w1(n), and w2(n) are the internal states of the filter,
representing the contents of the delay registers of the block diagram at timen. Replacing
n by n+1 in the above definitions, we find the time updates:

v1(n+ 1) = v0(n)

v2(n+ 1) = v1(n)
and

w1(n+ 1) = w0(n)

w2(n+ 1) = w1(n)

Therefore, we may replace Eq. (7.1.2) by the system:

v0(n)= x(n)

w0(n)= −a1w1(n)−a2w2(n)+b0v0(n)+b1v1(n)+b2v2(n)

y(n)= w0(n)

v2(n+ 1)= v1(n), w2(n+ 1)= w1(n)

v1(n+ 1)= v0(n), w1(n+ 1)= w0(n)

It can be replaced by the following repetitive sample processing algorithm:

for each input sample x do:
v0 = x
w0 = −a1w1 − a2w2 + b0v0 + b1v1 + b2v2

y = w0

v2 = v1, w2 = w1

v1 = v0, w1 = w0

(7.1.3)

Note that the state updating must be done in reverse order (from the bottom up in the
block diagram).

The direct form realization can be generalized easily to the case of arbitrary nu-
merator and denominator polynomials. One simply extends the structure downward

7.1. DIRECT FORM 277

by adding more delays and corresponding multipliers. In the general case, the transfer
function is:

H(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2 + · · · + bLz−L

1+ a1z−1 + a2z−2 + · · · + aMz−M
(7.1.4)

having an Lth degree numerator and Mth degree denominator. The corresponding I/O
difference equation is:

yn = −a1yn−1 − a2yn−2 − · · · − aMyn−M + b0xn + b1xn−1 + · · · + bLxn−L (7.1.5)

Figure 7.1.2 shows the case L = M. To derive the sample processing algorithm in
the general case, we define the internal state signals:

vi(n) = x(n− i), i = 0,1, . . . , L

wi(n) = y(n− i), i = 0,1, . . . ,M
(7.1.6)

Fig. 7.1.2 Direct form realization of Mth order IIR filter.

They are updated in time by

vi(n+ 1) = vi−1(n), i = 1,2, . . . , L

wi(n+ 1) = wi−1(n), i = 1,2, . . . ,M
(7.1.7)

These can be shown easily, for example:

wi(n+ 1)= y
(
(n+ 1)−i) = y

(
n− (i− 1)

) = wi−1(n)

Then, the difference equation (7.1.5) is be written as follows:

w0(n)= −a1w1(n)−· · · − aMwM(n)+b0v0(n)+b1v1(n)+· · · + bLvL(n)

278 7. DIGITAL FILTER REALIZATIONS

Together with the time updates (7.1.7), it leads to the following sample processing
algorithm for the direct form realization:

for each input sample x do:
v0 = x
w0 = −a1w1 − · · · − aMwM + b0v0 + b1v1 + · · · + bLvL
y = w0

vi = vi−1, i = L,L−1, . . . ,1
wi = wi−1, i =M,M−1, . . . ,1

(7.1.8)

Again, the state updating must be done in reverse order to avoid overwriting vi and
wi. Before filtering the first input sample, the internal states must be initialized to zero,
that is, at time n = 0 set:

[v1, v2, . . . , vL]= [0,0, . . . ,0], [w1,w2, . . . ,wM]= [0,0, . . . ,0]

The following C routine dir.c is an implementation of this algorithm:

/* dir.c - IIR filtering in direct form */

double dir(M, a, L, b, w, v, x) usage: y = dir(M, a, L, b, w, v, x);

double *a, *b, *w, *v, x; v,w are internal states

int M, L; denominator and numerator orders

{
int i;

v[0] = x; current input sample

w[0] = 0; current output to be computed

for (i=0; i<=L; i++) numerator part

w[0] += b[i] * v[i];

for (i=1; i<=M; i++) denominator part

w[0] -= a[i] * w[i];

for (i=L; i>=1; i--) reverse-order updating of v
v[i] = v[i-1];

for (i=M; i>=1; i--) reverse-order updating of w
w[i] = w[i-1];

return w[0]; current output sample

}

Note that b, a are the numerator and denominator coefficient vectors:

b = [b0, b1, b2, . . . , bL], a = [1, a1, a2, . . . , aM] (7.1.9)

They, and the internal state vectors w, v, must be declared and allocated in the main
program by

7.1. DIRECT FORM 279

double *a, *b, *w, *v;
a = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

b = (double *) calloc(L+1, sizeof(double)); (L+1)–dimensional

a[0] = 1; always so

w = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

v = (double *) calloc(L+1, sizeof(double)); (L+1)–dimensional

Note that calloc initializes the internal states w,v to zero. The following program
segment illustrates the usage of dir:

for (n = 0; n < Ntot; n++)
y[n] = dir(M, a, L, b, w, v, x[n]);

Example 7.1.1: Draw the direct form realization of the following filter:

H(z)= 2− 3z−1 + 4z−3

1+ 0.2z−1 − 0.3z−2 + 0.5z−4

and determine the corresponding difference equation and sample processing algorithm.

Solution: The difference equation is:

yn = −0.2yn−1 + 0.3yn−2 − 0.5yn−4 + 2xn − 3xn−1 + 4xn−3

The direct form realization is shown in Fig. 7.1.3. The sample processing algorithm is:

for each input sample x do:
v0 = x
w0 = −0.2w1 + 0.3w2 − 0.5w4 + 2v0 − 3v1 + 4v3

y = w0

w4 = w3

w3 = w2, v3 = v2

w2 = w1, v2 = v1

w1 = w0, v1 = v0

The filter coefficient and state vectors are in this example:

a = [a0, a1, a2, a3, a4]= [1,0.2,−0.3,0.0,0.5]

b = [b0, b1, b2, b3]= [2,−3,0,4]

w = [w0,w1,w2,w3,w4], v = [v0, v1, v2, v3]

There are four delays for the feedback coefficients and three for the feed forward ones,
because the denominator and numerator polynomials have orders 4 and 3. Note also that
some coefficients are zero and therefore their connections to the adder are not shown. 	

The direct form algorithm (7.1.8) can be written more simply in terms of the dot
product routine dot and delay routine delay in much the same way as was done in
Chapter 4 for the FIR filtering routine fir. The output y in Eq. (7.1.8) involves essentially
the dot products of the filter coefficient vectors with the internal state vectors. These
dot products are:

280 7. DIGITAL FILTER REALIZATIONS

x(n)

z-1

z-1

z-1

z-1

v1

v0

v2

y(n)

w1

w0

w2

w3

w4

z-1 z-1

v3

z-1

2

4

-3 -0.2

-0.5

0.3

Fig. 7.1.3 Direct form realization of Example 7.1.1.

dot(L,b,v)= bTv = b0v0 + b1v1 + · · · + bLvL

dot(M, a,w)= aTw = a0w0 + a1w1 + · · · + aMwM

where a0 = 1. If we setw0 = 0, then the second dot product is precisely the contribution
of the feedback (denominator) coefficients to the filter output, that is,

w0 = 0 ⇒ dot(M, a,w)= a1w1 + · · · + aMwM

Therefore, we may replace Eq. (7.1.8) by the more compact version:

for each input sample x do:
v0 = x
w0 = 0
w0 = dot(L,b,v)−dot(M, a,w)
y = w0

delay(L,v)
delay(M,w)

(7.1.10)

The following routine dir2.c is an implementation of this algorithm. It is the IIR
version of the routine fir2 of Chapter 4.

/* dir2.c - IIR filtering in direct form */

double dot();
void delay();

double dir2(M, a, L, b, w, v, x) usage: y = dir2(M, a, L, b, w, v, x);

double *a, *b, *w, *v, x;
int M, L;
{

v[0] = x; current input sample

7.2. CANONICAL FORM 281

w[0] = 0; needed for dot(M,a,w)

w[0] = dot(L, b, v) - dot(M, a, w); current output

delay(L, v); update input delay line

delay(M, w); update output delay line

return w[0];
}

7.2 Canonical Form

The canonical realization form, otherwise known as direct form II (DF-II), can be ob-
tained from the direct form in the following way. Starting with the second-order filter
of Eq. (7.1.1) we may group the five terms in the right-hand side of Eq. (7.1.2) into two
subgroups: the recursive terms and the non-recursive ones, that is,

yn = (b0xn + b1xn−1 + b2xn−2)+(−a1yn−1 − a2yn−2)

This regrouping corresponds to splitting the big adder of the direct form realization
of Fig. 7.1.1 into two parts, as shown in Fig. 7.2.1.

Fig. 7.2.1 Regrouping of direct form terms.

We can think of the resulting realization as the cascade of two filters: one consist-
ing only of the feed-forward terms and the other of the feedback terms. It is easy to
verify that these two filters are the numerator N(z) and the inverse of the denominator
1/D(z), so that their cascade will be

H(z)= N(z)· 1

D(z)

which is the original transfer function given in Eq. (7.1.1). Mathematically, the order of
the cascade factors can be changed so that

282 7. DIGITAL FILTER REALIZATIONS

H(z)= 1

D(z)
·N(z)

which corresponds to changing the order of the block diagrams representing the factors
N(z) and 1/D(z), as shown in Fig. 7.2.2.

Fig. 7.2.2 Interchanging N(z) and 1/D(z).

The output signal of the first filter 1/D(z) becomes the input to the second filter
N(z). If we denote that signal by w(n), we observe that it gets delayed in the same way
by the two sets of delays of the two filters, that is, the two sets of delays have the same
contents, namely, the numbers w(n− 1), w(n− 2).

Therefore, there is no need to use two separate sets of delays. The two sets can be
merged into one, shared by both the first and second filters 1/D(z) and N(z). This
leads to the canonical realization form depicted in Fig. 7.2.3.

Fig. 7.2.3 Canonical realization form of second-order IIR filter.

The I/O difference equations describing the time-domain operation of this realiza-
tion can be obtained by writing the conservation equations at each adder, with the input
adder written first:

7.2. CANONICAL FORM 283

w(n) = x(n)−a1w(n− 1)−a2w(n− 2)

y(n) = b0w(n)+b1w(n− 1)+b2w(n− 2)
(7.2.1)

The computed value of w(n) from the first equation is passed into the second to
compute the final output y(n). It is instructive also to look at this system in the z-
domain. Taking z-transforms of both sides, we find

W(z) = X(z)−a1z−1W(z)−a2z−2W(z)

Y(z) = b0W(z)+b1z−1W(z)+b2z−2W(z)

which can be solved for W(z) and Y(z):

W(z) = 1

1+ a1z−1 + a2z−2
X(z)= 1

D(z)
X(z)

Y(z) = (b0 + b1z−1 + b2z−2)W(z)= N(z)W(z)

Eliminating W(z), we find that the transfer function from X(z) to Y(z) is the original
one, namely, N(z)/D(z):

Y(z)= N(z)W(z)= N(z)
1

D(z)
X(z)= N(z)

D(z)
X(z)

At each time n, the quantities w(n− 1) and w(n− 2) in Eq. (7.2.1) are the contents
of the two shared delay registers. Therefore, they are the internal states of the filter. To
determine the corresponding sample processing algorithm, we redefine these internal
states by:

w0(n) = w(n)

w1(n) = w(n− 1)= w0(n− 1)

w2(n) = w(n− 2)= w1(n− 1)

⇒
w1(n+ 1) = w0(n)

w2(n+ 1) = w1(n)

Therefore, the system (7.2.1) can be rewritten as:

w0(n)= x(n)−a1w1(n)−a2w2(n)

y(n)= b0w0(n)+b1w1(n)+b2w2(n)

w2(n+ 1)= w1(n)

w1(n+ 2)= w0(n)

which translates to the following sample processing algorithm:

for each input sample x do:
w0 = x− a1w1 − a2w2

y = b0w0 + b1w1 + b2w2

w2 = w1

w1 = w0

(7.2.2)

284 7. DIGITAL FILTER REALIZATIONS

where, again, the states w2 and w1 must be updated in reverse order. The canonical
form for the more general case of Eq. (7.1.4) is obtained following similar steps. That is,
we define

Y(z)= N(z)W(z) and W(z)= 1

D(z)
X(z)

and rewrite them in the form:

(1+ a1z−1 + a2z−2 + · · · + aMz−M)W(z)= X(z)

Y(z)= (b0 + b1z−1 + · · · + bLz−L)W(z)

or, equivalently

W(z)= X(z)−(a1z−1 + a2z−2 + · · · + aMz−M)W(z)

Y(z)= (b0 + b1z−1 + · · · + bLz−L)W(z)

which become in the time domain:

w(n) = x(n)−a1w(n− 1)−· · · − aMw(n−M)

y(n) = b0w(n)+b1w(n− 1)+· · · + bLw(n− L)
(7.2.3)

The block diagram realization of this system is shown in Fig. 7.2.4 for the case M =
L. If M ≠ L one must draw the maximum number of common delays, that is, K =
max(M,L). Defining the internal states by

Fig. 7.2.4 Canonical realization form of Mth order IIR filter.

wi(n)= w(n− i)= wi−1(n− 1), i = 0,1, . . . , K

we may rewrite the system (7.2.3) in the form:

7.2. CANONICAL FORM 285

w0(n)= x(n)−a1w1(n)−· · · − aMwM(n)

y(n)= b0w0(n)+b1w1(n)+· · · + bLwL(n)

wi(n+ 1)= wi−1(n), i = K,K−1, . . . ,1

(7.2.4)

This leads to the following sample-by-sample filtering algorithm:

for each input sample x do:
w0 = x− a1w1 − a2w2 − · · · − aMwM
y = b0w0 + b1w1 + · · · + bLwL
wi = wi−1, i = K,K−1, . . . ,1

(7.2.5)

Again, the state updating must be done in reverse order. Before the first input sam-
ple, the internal states must be initialized to zero, that is, [w1,w2, . . . ,wK]= [0,0, . . . ,0].
The following C routine can.c is an implementation of this algorithm:

/* can.c - IIR filtering in canonical form */

double can(M, a, L, b, w, x) usage: y = can(M, a, L, b, w, x);

double *a, *b, *w, x; w = internal state vector

int M, L; denominator and numerator orders

{
int K, i;
double y = 0;

K = (L <= M) ? M : L; K = max(M,L)

w[0] = x; current input sample

for (i=1; i<=M; i++) input adder

w[0] -= a[i] * w[i];

for (i=0; i<=L; i++) output adder

y += b[i] * w[i];

for (i=K; i>=1; i--) reverse updating of w
w[i] = w[i-1];

return y; current output sample

}

The vectors a,b must be allocated just as for the direct form routine dir. The state
vector w must be allocated to dimension K+1, that is,

w = (double *) calloc(K+1, sizeof(double)); w = [w0,w1, . . . ,wK]

The same program segment illustrating the usage of dir also illustrates the usage
of can. The only difference is that now there is only one state vector w instead of w,v:

for (n = 0; n < Ntot; n++)
y[n] = can(M, a, L, b, w, x[n]);

286 7. DIGITAL FILTER REALIZATIONS

Comparing Figs. 7.1.2 and 7.2.4, we note that: (a) The direct form requires twice as
many delays; (b) both have exactly the same multiplier coefficients; (c) the direct form
has only one adder whose output is the system output; and (d) the canonical form has
two adders, one at the input and one at the output. Between the two, the canonical form
is usually preferred in practice.

Note also that for FIR filters the denominator polynomial is trivialD(z)= 1 and thus,
the direct and canonical forms are identical to the direct form of Chapter 4.

Example 7.2.1: Draw the canonical realization form of Example 7.1.1 and write the correspond-
ing difference equations and sample processing algorithm.

Solution: Interchanging the feedback and feed-forward parts of Fig. 7.1.3 and merging the com-
mon delays, we obtain the canonical realization shown in Fig. 7.2.5. The difference equa-
tions describing this block diagram in the time domain are obtained from the two adder
equations:

w(n) = x(n)−0.2w(n− 1)+0.3w(n− 2)−0.5w(n− 4)

y(n) = 2w(n)−3w(n− 1)+4w(n− 3)

The corresponding sample processing algorithm is:

for each input sample x do:
w0 = x− 0.2w1 + 0.3w2 − 0.5w4

y = 2w0 − 3w1 + 4w3

w4 = w3

w3 = w2

w2 = w1

w1 = w0

Here, the maximum number of delays is K = max(M,L)= max(4,3)= 4. 	

2

4

-3

y(n)

z-1

z-1

w1

w0

w2

w3

w4

z-1

z-1

x(n)
w(n)

-0.2

-0.5

0.3

Fig. 7.2.5 Canonical realization form of Example 7.1.1.

7.3. TRANSPOSED FORM 287

Following the discussion of Eq. (7.1.10), we can derive an alternative version of the
canonical form algorithm (7.2.5) that uses the dot product and delay routines, as follows:

for each input sample x do:
w0 = 0
w0 = x− dot(M, a,w)
y = dot(L,b,w)
delay(K,w)

(7.2.6)

The C routine can2.c is an implementation.

/* can2.c - IIR filtering in canonical form */

double dot();
void delay();

double can2(M, a, L, b, w, x) usage: y = can2(M, a, L, b, w, x);

double *a, *b, *w, x;
int M, L;
{

int K;
double y;

K = (L <= M) ? M : L; K = max(M,L)

w[0] = 0; needed for dot(M,a,w)

w[0] = x - dot(M, a, w); input adder

y = dot(L, b, w); output adder

delay(K, w); update delay line

return y; current output sample

}

7.3 Transposed Form

The transposed realization (also known as the observer-canonical form) is shown in
Fig. 7.3.1 for a 2nd order transfer function.
Its sample processing algorithm is as follows,

initialize v1, v2

for each input sample x, do,

y = b0x+ v1

v1 = b1x− a1y + v2

v2 = b2x− a2y

(7.3.1)

The contents of the two delay registers, v1(n), v2(n), are the internal state variables.
Since the corresponding inputs to the delays must be the next values, v1(n+1), v2(n+

288 7. DIGITAL FILTER REALIZATIONS

Fig. 7.3.1 Transposed realization.

2), it follows that this realization is described by the following system of first-order
difference equations,

y(n) = b0x(n)+v1(n)

v1(n+ 1) = b1x(n)−a1y(n)+v2(n)

v2(n+ 1) = b2x(n)−a2y(n)

(transposed realization) (7.3.2)

Every realization has a transposed version obtained by the following transposition rules:

• replace adders by nodes

• replace nodes by adders

• reverse all flows

• exchange input with output

In this sense, the above transposed realization is recognized to be the transposed
version of the canonical form. The canonical realization is perhaps the most widely used
realization, however, it can often suffer from overflows and coefficient quantization
effects. It has the advantage that it can be implemented in DSP hardware using circular
delay-line buffers which reduce the number of operations per time update.

The transposed realization is fairly robust in terms of overflows and coefficient quan-
tization, and is used by MATLAB’s built-in function, filter.

Lattice/ladder realizations, discussed in Chap. 8, are the best realizations in terms of
overflows and coefficient quantization [337–341], but at the price of effectively doubling
the number of multiplier coefficients.

Each block diagram realization represents a particular way of arranging the required
computations (the sample processing algorithm) of going from the input sample x(n)
to the output sample y(n), and generally, the contents of the delay registers that appear
in the block diagram are chosen as the temporary internal state variables that facilitate
the output computation at successive time instants.

The reason for the existence of several realizations is that such output computations
can be rearranged in different but mathematically equivalent ways. To make this point

7.3. TRANSPOSED FORM 289

clearer, consider the case of a 2nd order transfer function

H(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
= N(z)
D(z)

and demonstrate the algebraic equivalence of the direct, canonical, and transposed re-
alizations working in the z-domain. For the direct form, we have,

Y(z)= H(z)X(z)=
[
b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

]
X(z)

[
1+ a1z−1 + a2z−2]Y(z)= [b0 + b1z−1 + b2z−2]X(z)
Y(z)+a1z−1Y(z)+a2z−2Y(z)= b0X(z)+b1z−1X(z)+b2z−2X(z)

which leads to the time-domain difference equation,

y(n)+a1y(n− 1)+a2y(n− 2)= b0x(n)+b1x(n− 1)+b2x(n− 2) , or,

y(n)= −a1y(n− 1)−a2y(n− 2)+b0x(n)+b1x(n− 1)+b2x(n− 2)

For the canonical realization, we have already seen how this is done,

W(z) = 1

D(z)
X(z)

Y(z) = N(z)W(z)= N(z)· 1

D(z)
·X(z)= H(z)X(z)

which become,

D(z)W(z)= X(z) ⇒ [
1+ a1z−1 + a2z−2]W(z)= X(z)

Y(z)= N(z)W(z)= [b0 + b1z−1 + b2z−2]W(z)

and in the time domain,

w(n) = −a1w(n− 1)−a2w(n− 2)+x(n)
y(n) = b0w(n)+b1w(n− 1)+b2w(n− 2)

For the transposed realization, we rearrange the terms by regrouping like powers of z−1,

Y(z)= H(z)X(z)=
[
b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

]
X(z)

[
1+ a1z−1 + a2z−2]Y(z)= [b0 + b1z−1 + b2z−2]X(z)
Y(z)= −a1z−1Y(z)−a2z−2Y(z)+b0X(z)+b1z−1X(z)+b2z−2X(z)

Y(z)= b0X(z)+z−1
[
b1X(z)−a1Y(z)+z−1(b2X(z)−a2Y(z)

)]

Y(z)= b0X(z)+z−1
[
b1X(z)−a1Y(z)+z−1(b2X(z)−a2Y(z)

)]
︸ ︷︷ ︸

V2(z)︸ ︷︷ ︸
V1(z)

290 7. DIGITAL FILTER REALIZATIONS

so that the transposed block diagram realizes the last equation, or, in the time domain,

zV2(z)= b2X(z)−a2Y(z)

zV1(z)= b1X(z)−a1Y(z)+V2(z)
⇒

v2(n+ 1) = b2x(n)−a2y(n)

v1(n+ 1) = b1x(n)−a1y(n)+v2(n)

7.4 State-Space Realizations

Block diagram realizations can also be cast in state-space form with the contents of the
delays that appear in the block diagram chosen to represent the internal states of the
realization.

A so-called ABCD state-space realization is depicted in Fig. 7.4.1 and has the follow-
ing standard form, written as a system of first-order difference equations,

s(n+ 1) = As(n)+Bx(n)
y(n) = Cs(n)+Dx(n)

(ABCD state-space realization) (7.4.1)

where the state vector s(n) and the matrices A,B,C,D have appropriate dimensions.
The corresponding sample processing algorithm for computing the output sample and
updating the state vector can be stated as follows, where the operations must be done
in the indicated order,

initialize s, then,
for each input sample x, do,

y = Cs+Dx , output
s = As+ Bx , next state

(ABCD sample processing algorithm) (7.4.2)

Fig. 7.4.1 ABCD state-space realization.

For example, the state vectors for the canonical and transposed realizations of our
2nd order example are the two-dimensional vectors chosen as the contents of the two
delay registers that appear in their respective block diagrams, that is,

s(n)=
[
w1(n)
w2(n)

]
= canonical , s(n)=

[
v1(n)
v2(n)

]
= transposed (7.4.3)

7.4. STATE-SPACE REALIZATIONS 291

The corresponding A,B,C,D matrices have dimensions, 2×2, 2×1, 1×2, and 1×1,
respectively, and are given as follows in the two cases,

(canonical): A =
[
−a1 −a2

1 0

]
, B =

[
1
0

]
, C = [c1, c2] , D = b0

(transposed): A =
[
−a1 1
−a2 0

]
, B =

[
c1

c2

]
, C = [1, 0] , D = b0

(7.4.4)
where we defined the parameters,

c1 = b1 − b0a1

c2 = b2 − b0a2

Using the state-vector definition in Eq. (7.4.3), we may derive the state-space form of
the transposed realization by rewriting Eq. (7.3.2) in the following way,

y(n) = b0x(n)+v1(n)

v1(n+ 1) = b1x(n)−a1y(n)+v2(n)= b1x(n)−a1
[
b0x(n)+v1(n)

]+ v2(n)

v2(n+ 1) = b2x(n)−a2y(n)= b2x(n)−a2
[
b0x(n)+v1(n)

]
or,

v1(n+ 1) = −a1v1(n)+v2(n)+(b1 − b0a1)x(n)= −a1v1(n)+v2(n)+c1 x(n)

v2(n+ 1) = −a2v1(n)+(b2 − b0a2)x(n)= −a2v1(n)+c2x(n)

y(n) = v1(n)+b0x(n)

or, reassembled in ABCD form,[
v1(n+ 1)
v2(n+ 1)

]
=
[
−a1 1
−a2 0

][
v1(n)
v2(n)

]
+
[
c1

c2

]
x(n)

y(n) = [1 , 0
][v1(n)

v2(n)

]
+ b0x(n)

Similarly, we have for the canonical form,

w1(n+ 1) = w0(n)= −a1w1(n)−a2w2(n)+x(n)
w2(n+ 1) = w1(n)

y(n) = b0w0(n)+b1w1(n)+b2w2(n)

= b0
[−a1w1(n)−a2w2(n)+x(n)

]+ b1w1(n)+b2w2(n)

= (b1 − b0a1)w1(n)+(b2 − b0a2)w2(n)+b0x(n)

= c1w1(n)+c2w2(n)+b0x(n)

292 7. DIGITAL FILTER REALIZATIONS

or, reassembled in ABCD form,[
w1(n+ 1)
w2(n+ 1)

]
=
[
−a1 −a2

1 0

][
w1(n)
w2(n)

]
+
[

1
0

]
x(n)

y(n) = [c1, c2
][w1(n)

w2(n)

]
+ b0x(n)

Note that the ABCD parameters of the canonical and transposed cases are related
to each other by the following mappings, which actually apply more generally to all
transposed realizations and are effectively equivalent to the four transposition rules
mentioned above,

A −→ AT

B −→ CT

C −→ BT

D −→ D

(transposition mapping) (7.4.5)

In terms of the ABCD state-space parameters, the transfer function can be obtained
by taking z-transforms of both sides of Eqs. (7.4.1) and eliminating the state variable,

zS(z) = AS(z)+BX(z)
Y(z) = CS(z)+DX(z)

⇒
S(z) = (zI −A)−1BX(z)

Y(z) = C(zI −A)−1BX(z)+DX(z) , or,

H(z)= Y(z)
X(z)

= C(zI −A)−1B+D (7.4.6)

where I denotes the identity matrix. We note that the transposition mapping (7.4.5)
leaves (7.4.6) invariant. The corresponding impulse response is obtained by inverting
Eq. (7.4.6) causally,

h(n)= CAn−1Bu(n− 1)+Dδ(n) (7.4.7)

We demonstrate Eq. (7.4.6) explicitly for the canonical realization with parameters given
by Eq. (7.4.4),

zI −A =
[
z 0
0 z

]
−
[
−a1 −a2

1 0

]
=
[
z+ a1 −a2

−1 z

]

det(zI −A) = z2 + a1z+ a2

(zI −A)−1 = 1

det(zI −A)

[
z a2

1 z+ a1

]
= 1

z2 + a1z+ a2

[
z a2

1 z+ a1

]

C(zI −A)−1B = 1

z2 + a1z+ a2

[
c1, c2

][z a2

1 z+ a1

][
1
0

]
= c1z+ c2

z2 + a1z+ a2

so that the complete transfer function is,

7.4. STATE-SPACE REALIZATIONS 293

H(z) = C(zI −A)−1B+D = c1z+ c2

z2 + a1z+ a2
+ b0

= (b1 − b0a1)z+ (b2 − b0a2)
z2 + a1z+ a2

+ b0 = b0z2 + b1z+ b2

z2 + a1z+ a2

= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

MATLAB’s built-in function, tf2ss, maps a transfer function defined by numerator
and denominator coefficients, num,den, to an ABCD state space form that is by default
the canonical realization,

[A,B,C,D] = tf2ss(num,den); % canonical state-space form

For example, for our 2nd order H(z), it generates the parameters of the canonical form
in Eq. (7.4.4),

num = [b0,b1,b2];

den = [1,a1,a2];

[A,B,C,D] = tf2ss(num,den); % canonical state-space form

State-space realizations can also be optimized to minimize roundoff noise [342–
346]. For example, in the case of a 2nd order section with complex-conjugate poles,
the optimum state-space form is constructed by the following steps [345], assuming a
transfer function of the form,

H(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
= b0 + b1z−1 + b2z−2

(1− pz−1)(1− p∗z−1)

and setting,

p = σ + jω

σ = −a1

2
, ω =

√
a2 − a2

1

4
,
(

must have of course , a2 >
a2

1

4

)

q1 = b1 − b0a1 , q2 = b2 − b0a2

αr = q1

2
, αi = −q1σ + q2

2ω

α = αr + jαi

P = |α|
1− |p|2 , Q = Im

[
α

1− p2

]
, k =

√
P+Q
P−Q

B1 =
√
|α| −αi

P−Q
, B2 = −sign(αr)

√
|α| +αi

P+Q

C1 = αr

B1
, C2 = αr

B2

(7.4.8)

294 7. DIGITAL FILTER REALIZATIONS

which define the ABCD state-space parameters:

A =
[

σ ωk
−ω/k σ

]
, B =

[
B1

B2

]
, C = [C1, C2] , D = b0 (7.4.9)

In the special case when αr = 0 and αi > 0, we have:

B1 = 0 , B2 = −
√

2|α|
P+Q

, C1 =
√

2|α|(P−Q) , C2 = 0 (7.4.10)

and in the case, αr = 0 and αi < 0 :

B1 =
√

2|α|
P−Q

, B2 = 0 , C1 = 0 , C2 = −
√

2|α|(P+Q) (7.4.11)

7.5 Cascade Form

A second-order section (SOS) is a second-order transfer function of the form (7.1.1). Its
canonical realization is depicted in Fig. 7.2.3. In the time domain it operates according
to the I/O system of difference equations given by Eq. (7.2.1) and the corresponding
sample processing algorithm of Eq. (7.2.2).

It can be implemented by the routine can with M = L = 2 and three-dimensional
coefficient and state arrays a,b,w. However, it proves convenient to write a special ver-
sion of can as it applies to this specific case. The following C routine sos.c implements
a second-order section:

/* sos.c - IIR filtering by single second order section */

double sos(a, b, w, x) a, b, w are 3-dimensional

double *a, *b, *w, x; a[0]= 1 always

{
double y;

w[0] = x - a[1] * w[1] - a[2] * w[2];
y = b[0] * w[0] + b[1] * w[1] + b[2] * w[2];

w[2] = w[1];
w[1] = w[0];

return y;
}

where a, b, w must be declared to be three-dimensional arrays in the main program, for
example by

a = (double *) calloc(3, sizeof(double)); a = [1, a1, a2]
b = (double *) calloc(3, sizeof(double)); b = [b0, b1, b2]
w = (double *) calloc(3, sizeof(double)); w = [w0, w1, w2]

The cascade realization form of a general transfer function assumes that the transfer
function is the product of such second-order sections:

7.5. CASCADE FORM 295

H(z)=
K−1∏
i=0

Hi(z)=
K−1∏
i=0

bi0 + bi1z−1 + bi2z−2

1+ ai1z−1 + ai2z−2
(7.5.1)

Any transfer function of the form (7.1.4) can be factored into second-order factors
with real-valued coefficients, provided Eq. (7.1.4) has real coefficients.

The maximum order of the numerator and denominator polynomials in Eq. (7.5.1)
is 2K, that is, twice the number of second-order sections. By “second order” we really
mean “up to second order”, and therefore, if some of the z−2 coefficients bi2 or ai2 are
zero, the actual numerator and denominator orders will be L ≤ 2K and M ≤ 2K.

A block diagram realization of Eq. (7.5.1) can be obtained by cascading together the
block diagram realizations of the SOS filters Hi(z). Each SOS may be realized in its
canonical, direct, or transposed realizations. However, the convention is to realize all
of them in their canonical form, as shown in Fig. 7.5.1.

x(n)

w0(n) w1(n)

w2(n) w3(n)

x1=y0 x2=y1

x2=y1 x3=y2

x0=x b00

b01-a01

z-1

z-1 z-1

z-1

w01

w00

b02-a02
w02

b10

b11-a11 w11

w10

b12-a12
w12

H0(z) H1(z)

y(n)

y=y3b20

b21-a21

z-1

z-1 z-1

z-1

w21

w20

b22-a22
w22

b30

b31-a31 w31

w30

b32-a32
w32

H2(z) H3(z)

Fig. 7.5.1 Cascade of second-order sections.

Let us denote by xi(n), yi(n) the input and output signals of the ith section Hi(z).
Then, the overall input is the input to H0(z), namely, x(n)= x0(n), and the overall
output is the output from the last SOS HK−1(z), namely, y(n)= yK−1(n). For the

296 7. DIGITAL FILTER REALIZATIONS

intermediate stages, the output yi(n) of the ith section becomes the input to the (i+1)th
section Hi+1(z), that is,

xi+1(n)= yi(n), i = 0,1, . . . , K − 1

Each section has its own internal state vector wi(n)= [wi0(n),wi1(n),wi2(n)],
i = 0,1, . . . , K − 1, where the numbers wi1(n), wi2(n) are the contents of the section’s
delay registers at the nth time instant.

The I/O difference equations describing the time-domain operation of the realization
are obtained by writing the difference equations (7.2.1) for each SOS and passing the
output of each to the input of the next:

x0(n)= x(n)

for i = 0,1, . . . , K − 1 do:

wi(n)= xi(n)−ai1wi(n− 1)−ai2wi(n− 2)

yi(n)= bi0wi(n)+bi1wi(n− 1)+bi2wi(n− 2)

xi+1(n)= yi(n)

y(n)= yK−1(n)

(7.5.2)

It can be translated to the following sample processing algorithm:

for each input sample x do:
x0 = x
for i = 0,1, . . . , K − 1 do:

wi0 = xi − ai1wi1 − ai2wi2
yi = bi0wi0 + bi1wi1 + bi2wi2
wi2 = wi1
wi1 = wi0
xi+1 = yi

y = yK−1

(7.5.3)

where, the internal state vector wi of the ith section is defined at time n by:

wi0(n) = wi(n)

wi1(n) = wi(n− 1)

wi2(n) = wi(n− 2)

, for i = 0,1, . . . , K − 1

To keep track of the coefficients of the sections and the internal states, we arrange
them into K×3 matrices whose ith rows hold the corresponding parameters of the ith
section. For example, if K = 4 as in Fig. 7.5.1, we define

A =

⎡⎢⎢⎢⎣
1 a01 a02

1 a11 a12

1 a21 a22

1 a31 a32

⎤⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎣
b00 b01 b02

b10 b11 b12

b20 b21 b22

b30 b31 b32

⎤⎥⎥⎥⎦ , W =

⎡⎢⎢⎢⎣
w00 w01 w02

w10 w11 w12

w20 w21 w22

w30 w31 w32

⎤⎥⎥⎥⎦

7.5. CASCADE FORM 297

The ith rows of these matrices are the three-dimensional coefficient vectors and
states of the ith section, that is,

ai = [1, ai1, ai2]

bi = [bi0, bi1, bi2],

wi = [wi0,wi1,wi2]

for i = 0,1, . . . , K − 1 (7.5.4)

In this notation, we may rewrite the sample processing algorithm (7.5.3) as K suc-
cessive calls to the basic SOS routine sos:

for each input sample x do:
y = x
for i = 0,1, . . . , K − 1 do:

y = sos(ai,bi,wi, y)

(7.5.5)

where y denotes both the input and output of each section. The last computed y is the
final output. The C implementation of this algorithm is given by the following routine
cas.c:

/* cas.c - IIR filtering in cascade of second-order sections */

double sos(); single second-order section

double cas(K, A, B, W, x)
int K;
double **A, **B, **W, x; A,B,W are K×3 matrices

{
int i;
double y;

y = x; initial input to first SOS

for (i=0; i<K; i++)
y = sos(A[i], B[i], W[i], y); output of ith section

return y; final output from last SOS

}

The coefficient and state matrices A, B, W must be dimensioned to size K×3 and
allocated in the main program, for example, by

double **A, **B, **W;

A = (double **) calloc(K, sizeof(double *)); allocate K rows

B = (double **) calloc(K, sizeof(double *));
W = (double **) calloc(K, sizeof(double *));
for (i=0; i<K; i++) {

A[i] = (double *) calloc(3, sizeof(double)); allocate each row

B[i] = (double *) calloc(3, sizeof(double));
W[i] = (double *) calloc(3, sizeof(double));
}

Alternatively, if the value of K is known in advance, we may declare:

298 7. DIGITAL FILTER REALIZATIONS

double A[K][3], B[K][3], W[K][3];

In that case, the declarations inside cas must also be modified to read:

double A[][3], B[][3], W[][3];

The quantities A[i], B[i], W[i] are the ith rows of A, B, W, as given by Eq. (7.5.4).
The states W must be initialized to zero before the first call to cas; this is accomplished
indirectly by calloc. The usage of cas is the same as can; that is,

for (n = 0; n < Ntot; n++)
y[n] = cas(K, A, B, W, x[n]);

Example 7.5.1: Draw the cascade and canonical realizations of the following filter:

H(z) =
[

3− 4z−1 + 2z−2

1− 0.4z−1 + 0.5z−2

][
3+ 4z−1 + 2z−2

1+ 0.4z−1 + 0.5z−2

]
= H0(z)H1(z)

= 9− 4z−2 + 4z−4

1+ 0.84z−2 + 0.25z−4

Write the corresponding I/O difference equations and sample processing algorithms.

Solution: The cascade realization is shown in Fig. 7.5.2 and the canonical one in Fig. 7.5.3. The
I/O difference equations describing the cascade realization in the time domain are:

w0(n)= x(n)+0.4w0(n− 1)−0.5w0(n− 2)

x1(n)= 3w0(n)−4w0(n− 1)+2w0(n− 2)

w1(n)= x1(n)−0.4w1(n− 1)−0.5w1(n− 2)

y(n)= 3w1(n)+4w1(n− 1)+2w1(n− 2)

where x1(n) is the output of H0(z) and the input to H1(z). The corresponding sample
processing algorithm is:

for each input sample x do:
w00 = x+ 0.4w01 − 0.5w02

x1 = 3w00 − 4w01 + 2w02

w02 = w01

w01 = w00

w10 = x1 − 0.4w11 − 0.5w12

y = 3w10 + 4w11 + 2w12

w12 = w11

w11 = w10

The coefficient and state matrices in the routine cas are in this case:

A =
[

1 −0.4 0.5
1 0.4 0.5

]
, B =

[
3 −4 2
3 4 2

]
, W =

[
w00 w01 w02

w10 w11 w12

]

7.5. CASCADE FORM 299

For the canonical case, we have the coefficient vectors for the numerator and denominator
polynomials:

b = [9, 0, −4, 0, 4], a = [1.00, 0.00, 0.84, 0.00, 0.25]

The difference equation at the input and output adders of Fig. 7.5.3 are:

w(n)= x(n)−0.84w(n− 2)−0.25w(n− 4)

y(n)= 9w(n)−4w(n− 2)+4w(n− 4)

Defining the internal states as wi(n)= w(n − i), i = 0,1,2,3,4, we find the sample pro-
cessing algorithm:

for each input sample x do:
w0 = x− 0.84w2 − 0.25w4

y = 9w0 − 4w2 + 4w4

w4 = w3

w3 = w2

w2 = w1

w1 = w0

The total number of internal states in the cascade and the canonical realizations is the
same, namely, four. 	

x(n) y(n)

z-1

z-1 z-1

z-1

w01

w00

w0(n) w1(n)x1(n)

w02

w11

w10

w12

3 3

-4 40.4 -0.4

-0.5 -0.52 2

Fig. 7.5.2 Cascade realization of Example 7.5.1.

Example 7.5.2: Consider the filter

H(z) =
[

1+ z−1 + z−2

1− 0.7z−2

][
1− z−2

1− 0.6z−1 + 0.4z−2

][
1− z−1 + z−2

1+ 0.5z−1 + 0.3z−2

]

= 1− z−6

1− 0.1z−1 − 0.3z−2 + 0.09z−3 − 0.16z−4 − 0.014z−5 − 0.084z−6

To illustrate the usage of the routines cas and can, we generated and filtered the following
“step” input signal of length 100:

300 7. DIGITAL FILTER REALIZATIONS

9

-4

4

y(n)
w(n)

z-1

z-1

w1

w0

w2

w3

w4

z-1

z-1

x(n)

-0.25

-0.84

Fig. 7.5.3 Canonical realization of Example 7.5.1.

x(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, if 0 ≤ n ≤ 24
0, if 25 ≤ n ≤ 49
−1, if 50 ≤ n ≤ 74

1, if 75 ≤ n ≤ 99

The resulting output signal y(n) can be computed either by the routine cas or by can.
The cascade realization coefficient matrices are:

A =
⎡⎢⎣ 1 0 −0.7

1 −0.6 0.4
1 0.5 0.3

⎤⎥⎦ , B =
⎡⎢⎣ 1 1 1

1 0 −1
1 −1 1

⎤⎥⎦
Similarly, the canonical form coefficients of the sixth degree numerator and denominator
polynomials of H(z) are:

b = [1,0,0,0,0,0,−1]

a = [1,−0.1,−0.3,0.09,−0.16,−0.014,−0.084]

These quantities, as well as the cascade state matrix W and canonical internal state vector
w, must be declared, allocated, and initialized in the main program as discussed above
(with K = 3, L =M = 6). The output signal can be generated by the for-loop:

for (n=0; n<100; n++) {
ycas[n] = cas(3, A, B, W, x[n]);
ycan[n] = can(6, a, 6, b, w, x[n]);
}

The two output signals ycas(n) and ycan(n) generated by the two routines cas and cas

are, of course, the same. This output signal is shown in Fig. 7.5.4.

Notice also that for this particular example, the pole closest to the unit circle is that of the
first section, that is, p = ±√0.7 = ±0.8367. Therefore, the ε = 1% = 0.01 time constant

7.6. CASCADE TO CANONICAL 301

Fig. 7.5.4 Output of Example 7.5.2.

will be neff = ln ε/ ln(0.8367)� 26. Because the filter has a zero at z = 1, its unit-step
response will be H(0)= H(z)

∣∣
z=1 = 0. As the step input changes level every 25 samples,

the output tries to settle to its zero steady-state value with a time constant of about neff.
	

7.6 Cascade to Canonical

To pass from the direct or canonical realization, Eq. (7.1.4), to the cascade realization,
Eq. (7.5.1), requires factoring the numerator and denominator polynomials into their
second-order factors.

This can be done by finding the roots of these polynomials and then pairing them
in complex conjugate pairs. The procedure is outlined below. Given the M zeros pi,
i = 1,2, . . . ,M of the denominator polynomial of Eq. (7.1.4), we can factor it into its root
factors:

D(z) = 1+ a1z−1 + a2z−2 + · · · + aMz−M

= (1− p1z−1)(1− p2z−1)· · · (1− pMz−1)

The root factors of any real-valued roots can be left as they are or combined in pairs.
For example, if both p1 and p2 are real, we may combine them into the SOS with real
coefficients:

(1− p1z−1)(1− p2z−1)= (1− (p1 + p2)z−1 + p1p2z−2)
If any roots are complex, they must appear in complex-conjugate pairs, for example,

if p1 is a complex root, then p2 = p∗1 must also be a root. Combining the root factors
of conjugate pairs results into an SOS with real coefficients, for example

(1− p1z−1)(1− p∗1 z−1) = 1− (p1 + p∗1)z−1 + p1p∗1 z−2

= 1− 2Re(p1)z−1 + |p1|2z−2

302 7. DIGITAL FILTER REALIZATIONS

This identity was also used in Chapter 5. Using the polar representation of the
complex number p1 = R1ejθ1 , we have Re(p1)= R1 cosθ1 and |p1|2 = R2

1, and we can
write the above identity in the alternative form:

(1− p1z−1)(1− p∗1 z−1) = 1− 2Re(p1)z−1 + |p1|2z−2

= 1− 2R1 cos(θ1)z−1 +R2
1z−2

Once the denominator and numerator polynomials have been factored into their
quadratic factors, each quadratic factor from the numerator may be paired with a quadratic
factor from the denominator to form a second-order section.

This pairing of numerator and denominator factors and the ordering of the result-
ing SOSs is not unique, but the overall transfer function will be the same. In practice,
however, the particular pairing/ordering may make a difference.

In a hardware realization, the internal multiplications in each SOS will generate a
certain amount of roundoff error which is then propagated into the next SOS. The net
roundoff error at the overall output will depend on the particular pairing/ordering of
the quadratic factors. The optimal ordering is the one that generates the minimum net
roundoff error. Finding this optimal ordering is a difficult problem and is beyond the
scope of this book.

Some examples will illustrate the above factoring technique. The most tedious part is
finding the actual roots of the numerator and denominator polynomials. For high-order
polynomials, one must use a root-finding routine from a numerical software package
such as MATLAB or Mathematica. Some special cases of high-order polynomials can be
handled by hand, as seen below.

Example 7.6.1: Determine the cascade realization form of the filter:

H(z)= 1− 1.5z−1 + 0.48z−2 − 0.33z−3 + 0.9376z−4 − 0.5328z−5

1+ 2.2z−1 + 1.77z−2 + 0.52z−3

Solution: Using MATLAB, we find the five roots of the numerator polynomial:

z = 0.9, −0.5± 0.7j, 0.8± 0.4j

They lead to the following root factors, already paired in conjugate pairs:

(1− 0.9z−1)(
1− (−0.5+ 0.7j)z−1

)(
1− (−0.5− 0.7j)z−1

) = (1+ z−1 + 0.74z−2)(
1− (0.8+ 0.4j)z−1

)(
1− (0.8− 0.4j)z−1

) = (1− 1.6z−1 + 0.8z−2)

Similarly, we find the roots of the denominator:

p = −0.8, −0.7± 0.4j

giving the root factors:

7.6. CASCADE TO CANONICAL 303

(1+ 0.8z−1)(
1− (−0.7+ 0.4j)z−1

)(
1− (−0.7− 0.4j)z−1

) = (1+ 1.4z−1 + 0.65z−2)

Therefore, a possible pairing/ordering of SOS factors for H(z) will be:

H(z)= 1− 0.9z−1

1+ 0.8z−1
· 1+ z−1 + 0.74z−2

1+ 1.4z−1 + 0.65z−2
· (1− 1.6z−1 + 0.8z−2)

The coefficient matrices A and B needed for programming this filter by the routine cas

will be:

A =
⎡⎢⎣ 1 0.8 0

1 1.4 0.65
1 0 0

⎤⎥⎦ , B =
⎡⎢⎣ 1 −0.9 0

1 1 0.74
1 −1.6 0.8

⎤⎥⎦
The first-order section may be considered as special case of an SOS of the form (7.1.1) with
zero z−2 coefficients, that is, b2 = a2 = 0. Similarly, the last quadratic factor is a special
case of an FIR SOS, that is, with a1 = a2 = 0 (but a0 = 1). 	

Example 7.6.2: Determine the cascade form of the filter:

H(z)= 1− 0.48z−2 + 0.5476z−4

1+ 0.96z−2 + 0.64z−4

Solution: Even though the polynomials have degree 4, the z−1 and z−3 terms are missing, and
we may think of the polynomials as quadratic in the variable z−2. That is, we can find the
roots of the denominator by solving the quadratic equation

1+ 0.96z−2 + 0.64z−4 = 0 ⇒ (z2)2+0.96(z2)+0.64 = 0

which has two solutions:

z2 = −0.96±√0.962 − 4×0.64

2
= −0.48± 0.64j

Taking square roots, we obtain the four roots of the denominator:

p = ±
√
−0.48± 0.64j = ±(0.4± 0.8j)

Pairing them in conjugate pairs gives the quadratic factors:

(
1− (0.4+ 0.8j)z−1

)(
1− (0.4− 0.8j)z−1

) = 1− 0.8z−1 + 0.8z−2(
1+ (0.4+ 0.8j)z−1

)(
1+ (0.4− 0.8j)z−1

) = 1+ 0.8z−1 + 0.8z−2

Similarly, we find for the numerator polynomial:

1− 0.48z−2 + 0.5476z−4 = 0 ⇒ z2 = 0.24± 0.7j

304 7. DIGITAL FILTER REALIZATIONS

and taking square roots:

z = ±
√

0.24± 0.7j = ±(0.7± 0.5j)

The quadratic factors are:

(
1− (0.7+ 0.5j)z−1

)(
1− (0.7− 0.5j)z−1

) = 1− 1.4z−1 + 0.74z−2(
1+ (0.7+ 0.5j)z−1

)(
1+ (0.7− 0.5j)z−1

) = 1+ 1.4z−1 + 0.74z−2

Thus, we find for H(z):

H(z)= 1− 1.4z−1 + 0.74z−2

1− 0.8z−1 + 0.8z−2
· 1+ 1.4z−1 + 0.74z−2

1+ 0.8z−1 + 0.8z−2

which is one possible ordering of the quadratic factors. 	

Example 7.6.3: As another special case, determine the cascade form of the filter:

H(z)= 1+ z−8

1− 0.0625z−8

Solution: The roots of the numerator are the 8 solutions of:

1+ z−8 = 0 ⇒ z8 = −1 = ejπ = ejπe2πjk = ej(2k+1)π

where we multiplied by e2πjk = 1 for integer k. Taking eighth roots of both sides we find:

zk = ej(2k+1)π/8, k = 0,1, . . . ,7

We have the following conjugate pairs, as shown in Fig. 7.6.1: {z0, z7}, {z1, z6}, {z2, z5},
and {z3, z4}, which lead to the quadratic factors:

(1− z0z−1)(1− z7z−1)= 1− 2 cos
(π

8

)
z−1 + z−2 = 1− 1.8478z−1 + z−2

(1− z1z−1)(1− z6z−1)= 1− 2 cos
(3π

8

)
z−1 + z−2 = 1− 0.7654z−1 + z−2

(1− z2z−1)(1− z5z−1)= 1− 2 cos
(5π

8

)
z−1 + z−2 = 1+ 0.7654z−1 + z−2

(1− z3z−1)(1− z4z−1)= 1− 2 cos
(7π

8

)
z−1 + z−2 = 1+ 1.8478z−1 + z−2

Similarly, the filter poles are the roots of the denominator:

1− 0.0625z−8 = 0 ⇒ z8 = 0.0625 = 0.0625e2πjk = (0.5)4e2πjk

which has the eight solutions:

pk =
√

0.5e2πjk/8, k = 0,1, . . . ,7

7.6. CASCADE TO CANONICAL 305

Of these, p0 =
√

0.5 and p4 =
√

0.5e2πj4/8 = −√0.5 are real and may be paired together
into one SOS. The rest are complex and can be paired in conjugate pairs: {p1, p7}, {p2, p6},
{p3, p5}, resulting into the quadratic factors:

(1− p0z−1)(1− p4z−1)= (1−√0.5z−1)(1+√0.5z−1)= 1− 0.5z−2

(1− p1z−1)(1− p7z−1)= 1−√2 cos
(2π

8

)
z−1 + 0.5z−2 = 1− z−1 + 0.5z−2

(1− p2z−1)(1− p6z−1)= 1−√2 cos
(4π

8

)
z−1 + 0.5z−2 = 1+ 0.5z−2

(1− p3z−1)(1− p5z−1)= 1−√2 cos
(6π

8

)
z−1 + 0.5z−2 = 1+ z−1 + 0.5z−2

Finally, we obtain the factorization of H(z):

H(z) =
[

1− 1.8478z−1 + z−2

1− 0.5z−2

]
·
[

1− 0.7654z−1 + z−2

1− z−1 + 0.5z−2

]
·

·
[

1+ 0.7654z−1 + z−2

1+ 0.5z−2

]
·
[

1+ 1.8478z−1 + z−2

1+ z−1 + 0.5z−2

]

The coefficient matrices A and B will be in this case:

A =

⎡⎢⎢⎢⎣
1 0 −0.5
1 −1 0.5
1 0 0.5
1 1 0.5

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
1 −1.8478 1
1 −0.7654 1
1 0.7654 1
1 1.8478 1

⎤⎥⎥⎥⎦
This filter acts as a notch/comb filter, where the zero dips are shifted by π/8 compared
to the pole peaks. The pole zero pattern and magnitude response |H(ω)| are shown in
Fig. 7.6.1.

This example was only meant to illustrate the factorization procedure. Its canonical form
realization is much more efficient than the cascade one, since it involves only one multiplier
and an 8-fold delay. The canonical realization and the corresponding sample processing
algorithm are shown in Fig. 7.6.2. Here, w = [w0,w1, . . . ,w8] is the 9-dimensional internal
state vector. 	

Example 7.6.4: Sharpen the poles and zeros of the previous filter and determine the cascade
form of the resulting filter.

Solution: To sharpen the zeros of the filter, we must place poles “behind” the zeros, that is,
replace the numerator polynomial N(z)= 1+ z−8 by

H1(z)= N(z)
N(ρ−1z)

= 1+ z−8

1+ ρ8z−8

For example, we may choose ρ8 = 0.94, or ρ = 0.9923. The factorization of N(ρ−1z) into
SOSs is obtained from that of N(z) by replacing z by z/ρ or z−1 by ρz−1 in each factor.
This gives:

306 7. DIGITAL FILTER REALIZATIONS

= poles
= zeros

unit
circle

π/8 p0

p1

z0

z1z2

z3

z4

z5 z6

z7

p2

p3

p4

p6

p7p5

Fig. 7.6.1 Pole/zero pattern and magnitude response of Example 7.6.3.

x

0.0625

y

z-8

w8

w0 for each input x do:
w0 = x+ 0.0625w8

y = w0 +w8

delay(8,w)

Fig. 7.6.2 Canonical realization of Example 7.6.3.

H1(z)= N(z)
N(ρ−1z)

=
[

1− 1.8478z−1 + z−2

1− 1.8478ρz−1 + ρ2z−2

]
·
[

1− 0.7654z−1 + z−2

1− 0.7654ρz−1 + ρ2z−2

]
·

·
[

1+ 0.7654z−1 + z−2

1+ 0.7654ρz−1 + ρ2z−2

]
·
[

1+ 1.8478z−1 + z−2

1+ 1.8478ρz−1 + ρ2z−2

]

To sharpen the poles, we must do two things: first push the existing poles closer to the unit
circle, and second, place zeros “behind” the poles. This can be done by the substitution of
the denominator polynomial by

1

1− 0.0625z−8
−→ H2(z)= 1− r8z−8

1−R8z−8

where r � R. For example, we may choose r8 = 0.96 or r = 0.9949, and R8 = 0.98 or
R = 0.9975. The SOS factors of the numerator and denominator can be found in the same
fashion as for the polynomial (1− 0.0625z−8). The factorization of H2(z) is then:

H2(z)= 1− r8z−8

1−R8z−8
=
[

1− r2z−2

1−R2z−2

]
·
[

1−√2rz−1 + r2z−2

1−√2Rz−1 +R2z−2

]
·

·
[

1+ r2z−2

1+R2z−2

]
·
[

1+√2rz−1 + r2z−2

1+√2Rz−1 +R2z−2

]

Thus, the new transfer function will be

7.6. CASCADE TO CANONICAL 307

H(z)= H1(z)H2(z)=
[

1+ z−8

1+ 0.94z−8

]
·
[

1− 0.96z−8

1− 0.98z−8

]

Again, the simplest realization is to realizeH1(z) andH2(z) in cascade, with each realized
in its canonical form. This realization and its sample processing algorithm are shown
below; the magnitude response |H(ω)| is shown in Fig. 7.6.3. 	

yx

-0.94 -0.96

z-8

w8

H1(z) H2(z)

w0

x1

0.98

z-8

v8

v0

for each input x do:
w0 = x− 0.94w8

x1 = w0 +w8

delay(8,w)
v0 = x1 + 0.98v8

y = v0 − 0.96v8

delay(8,v)

Fig. 7.6.3 Pole/zero sharpening in Example 7.6.4.

The reverse process of going from the cascade realization, Eq. (7.5.1), to the canon-
ical one, Eq. (7.1.4), is much easier. It amounts to multiplying out the second-order
numerator and denominator factors to get the full degree polynomials:

N(z) =
K−1∏
i=0

(bi0 + bi1z−1 + bi2z−2)= b0 + b1z−1 + b2z−2 + · · · + bLz−L

D(z) =
K−1∏
i=0

(1+ ai1z−1 + ai2z−2)= 1+ a1z−1 + a2z−2 + · · · + aMz−M

where L and M will be at most 2K, depending on how many sections are full second-
order or first-order sections.

The polynomial multiplications may be done in the time domain using convolution.
For example, using the definitions (7.1.9) and (7.5.4) for the coefficient vectors, we may
write these convolutions in the form:

308 7. DIGITAL FILTER REALIZATIONS

b = b0 ∗ b1 ∗ · · · ∗ bK−1

a = a0 ∗ a1 ∗ · · · ∗ aK−1

(7.6.1)

These convolutions may be implemented recursively by defining:

di = a0 ∗ a1 ∗ · · · ∗ ai−1

and noting that di satisfies the recursion:

di+1 = di ∗ ai (7.6.2)

where it must be initialized to d0 = δ, that is, a delta function, d0(n)= δ(n). We may
take d0 to be the one-dimensional vector: d0 = δ = [1]. A few of the recursion steps
will be:

d1 = d0 ∗ a0 = δ ∗ a0 = a0

d2 = d1 ∗ a1 = a0 ∗ a1

d3 = d2 ∗ a2 = (a0 ∗ a1)∗a2

d4 = d3 ∗ a3 = (a0 ∗ a1 ∗ a2)∗a3, etc.

The recursion ends at i = K−1 with the desired answer a = dK. Note that the
intermediate vector di has order 2i and length 2i+1; similarly, the resulting vector di+1

has length 2(i+ 1)+1 = 2i+ 3.
During the recursion (7.6.2), there is no need to save the intermediate vectors di.

Therefore, the recursion can be stated in the following algorithmic form:

d = δ
for i = 0,1, . . . , K−1 do:

d = ai ∗ d
a = d

A variation, which helps the implementation in terms of the routine conv of Chapter
4, is to keep updating a during each step:

a = δ
for i = 0,1, . . . , K−1 do:

d = ai ∗ a
a = d

(7.6.3)

and similarly for the numerator vector b. The following C routine cas2can.c is an
implementation of this algorithm:

/* cas2can.c - cascade to canonical */

#include <stdlib.h> declares calloc

void conv();

7.6. CASCADE TO CANONICAL 309

void cas2can(K, A, a) a is (2K + 1)-dimensional

double **A, *a; A is Kx3 matrix

int K; K = no. of sections

{
int i,j;
double *d;

d = (double *) calloc(2*K+1, sizeof(double));

a[0] = 1; initialize

for(i=0; i<K; i++) {
conv(2, A[i], 2*i+1, a, d); d = a[i] ∗ a
for(j=0; j<2*i+3; j++) a = d

a[j] = d[j];
}

}

Its inputs are the number of sectionsK and the coefficient matrixA, whose rows hold
the coefficients of the successive sections, as in the routine cas. Its output is the (2K)-
dimensional vector a. It must be called separately on the numerator and denominator
coefficient matrices.

Example 7.6.5: To illustrate the usage of cas2can, we apply it to the cascade realization of
Example 7.6.1:

H(z)=
[

1− 0.9z−1

1+ 0.8z−1

]
·
[

1+ z−1 + 0.74z−2

1+ 1.4z−1 + 0.65z−2

]
· [1− 1.6z−1 + 0.8z−2

]
The routine cas2can must be called twice with inputs the coefficient matrices A and B:

A =
⎡⎢⎣ 1 0.8 0

1 1.4 0.65
1 0 0

⎤⎥⎦ , B =
⎡⎢⎣ 1 −0.9 0

1 1 0.74
1 −1.6 0.8

⎤⎥⎦
The quantities A, B, a, b must be dimensioned in the main program as in Section 7.5 or
Example 7.5.2. Then, the two calls:

cas2can(K, A, a); denominator coefficients

cas2can(K, B, b); numerator coefficients

will return the vectors:

a = [1, 2.2, 1.77, 0.52, 0, 0]

b = [1, −1.5, 0.48, −0.33, 0.9376, −0.5328]

which define the canonical realization of Example 7.6.1. 	

310 7. DIGITAL FILTER REALIZATIONS

7.7 Hardware Realizations and Circular Buffers

Hardware realizations of FIR filters with DSP chips were discussed in Section 4.3.4. IIR
filters can be realized in a similar fashion.

Consider, for example, a second-order section (7.1.1) realized in its canonical form
shown in Fig. 7.2.3. A hardware realization by a typical DSP chip is shown in Fig. 7.7.1.
The filter coefficients {b0, b1, b2, a1, a2} are stored in RAM or ROM on board the chip;
the internal states {w0,w1,w2} are stored in RAM.

y

y

y

x

bi

-ai

wi

biwi

-aiwi

b0

b1

b2

-a1

-a2

MAC

ROM or RAM

w0

w1

w2

RAM OUTIN

BUS

Fig. 7.7.1 Typical DSP chip realization of a second-order section.

As in Section 4.3.4, the sample processing algorithm (7.2.2) can be rewritten in a
form that imitates individual instructions of the DSP chip, such as MAC and data shifting
instructions:

for each input sample x do:
w0 :=x− a1w1

w0 :=w0 − a2w2

y :=b2w2

w2 :=w1, y :=y + b1w1

w1 :=w0, y :=y + b0w0

(7.7.1)

In a modern DSP chip, each line in the above algorithm can be implemented with
a single MAC-type instruction; therefore, a single SOS can be implemented with five
instructions per input sample.

Note that the states w1 and w2 cannot be updated until after w0 has been com-
puted. The MAC instructions for computing w0 proceed forward, that is, from the low-
est ai coefficient to the highest. This is convenient because once w0 is computed, the
combined data shift/MAC instructions for computing y can be started, but proceeding
backwards from the highest bi coefficient to the lowest. In the general case, we can
rewrite Eq. (7.2.5), where for simplicity we assumed L =M:

7.7. HARDWARE REALIZATIONS AND CIRCULAR BUFFERS 311

for each input sample x do:
w0 :=x
for i = 1,2, . . . ,M do:

w0 :=w0 − aiwi
y :=bMwM
for i =M−1, . . . ,1,0 do:

wi+1 :=wi
y :=y + biwi

(7.7.2)

The following C routine can3.c is an implementation.

/* can3.c - IIR filtering in canonical form, emulating a DSP chip */

double can3(M, a, b, w, x) usage: y = can3(M, a, b, w, x);

double *a, *b, *w, x; w = internal state vector

int M; a,b have order M
{

int i;
double y;

w[0] = x; read input sample

for (i=1; i<=M; i++) forward order

w[0] -= a[i] * w[i]; MAC instruction

y = b[M] * w[M];

for (i=M-1; i>=0; i--) { backward order

w[i+1] = w[i]; data shift instruction

y += b[i] * w[i]; MAC instruction

}

return y; output sample

}

Assuming that each MAC operation in Eq. (7.7.2) can be done with one instruction,
and in particular that the combined data move/MAC instructions in the second for-loop
can be also done with a single instruction, we count the total number of instructions for
the filtering of each input sample by an Mth order IIR filter to be:

Ninstr = 2(M + 1)+C (order-M IIR filter) (7.7.3)

where we have added a constant C to account for any additional overhead (such as loop
overhead) in instructions. Its value is typically of the order of 10 or less, depending on
the particular DSP chip. In Section 4.3.4, we had arrived at a similar result for an FIR
filter, which we rewrite now in the form:

Ninstr = (M + 1)+C (order-M FIR filter) (7.7.4)

The total time for processing each input sample will be then

Tproc = NinstrTinstr (7.7.5)

312 7. DIGITAL FILTER REALIZATIONS

where Tinstr is the time for a basic instruction, such as MAC or MACD. Recall from
Section 4.3.4 that Tinstr is of the order of 30–80 nanoseconds, which corresponds to an
instruction rate of finstr = 1/Tinstr = 12.5–33.3 MIPS (million instructions per second).
The processing time per sample imposes an upper limit on the sampling rate fs at which
the filter may be operated, that is,

fs = 1

Tproc
= 1

NinstrTinstr
= finstr

Ninstr
(7.7.6)

where the quantity 1/Tproc is the chip’s computational rate, that is, the number of sam-
ples that can be processed per second.

It is impossible to give a processor-independent count of the number of instructions
for a particular filter. The precise count, as well as the total processing time Tproc per
sample, depend on the DSP chip’s architecture, instruction set, how memory accessing is
used, processor wait states introduced for slow memory, and the way a filter realization
is programmed in the chip’s assembly language, for example, using in-line code or not.

The above results must be used only as rough guidelines in evaluating the perfor-
mance of a DSP chip. Our discussion was based on counting the number of MACs in the
sample processing algorithm for the particular filter.

The transposed realizations for both IIR and FIR filters can be implemented also
by the same number of instructions given by Eqs. (7.7.3) and (7.7.4). The transposed
sample processing algorithm uses only plain MAC instructions—not requiring combined
data shift/MAC instructions. Therefore, in the early generations of DSP chips, it had a
computational advantage in the number of instructions over the canonical realizations.

For a cascade of second-order sections, to find the total processing time we must
calculate the time it takes to process a single SOS and then multiply it by the number of
sections. We saw in Eq. (7.7.1) that it takes about five instructions per SOS; therefore, the
processing time for a single SOS will be approximately (ignoring any other overhead):

TSOS � 5Tinstr (7.7.7)

For K second-order sections that are either cascaded or arranged in parallel, but
which are implemented by the same DSP, the total number of instructions will be:

Ninstr = 5K +C (K-section IIR filter) (7.7.8)

where C is any additional overhead for the K-section filter. Therefore, the total process-
ing time will be:

Tproc = (5K +C)Tinstr = KTSOS +CTinstr (7.7.9)

Ignoring the possible small overhead term, we find the maximum sampling rate fs
for implementing K second-order sections:

fs = 1

Tproc
= 1

KTSOS
= finstr

5K
(7.7.10)

For parallel implementations (see Problem 5.18), we may speed up the throughput
rate by using K different DSP chips operating in parallel, each being dedicated to per-
forming a single SOS filtering operation inTSOS seconds. In this case, the total processing

7.7. HARDWARE REALIZATIONS AND CIRCULAR BUFFERS 313

time isTSOS because all of the DSPs finish simultaneously, and therefore, the throughput
rate is K times faster than in the case of a single DSP:

Tproc = TSOS ⇒ fs = 1

Tproc
= 1

TSOS
(7.7.11)

For a cascade implementation, one may also use K DSP chips—one for each SOS—to
speed up processing. However, because the output of each section becomes the input
of the next section, it is not possible to run all K DSP chips simultaneously. Each DSP
must wait TSOS seconds for the DSP before it to finish.

One solution is to pipeline the filtering operations of the successive sections, so
that all DSPs are working together, but each is processing the input from the previous
sampling instant. This can be accomplished by inserting unit delays between the DSPs,
as shown in Fig. 7.7.2.

y(n)x(n) y1(n) y2(n)y1(n-)1 y2(n-1)
DSP

1
DSP

2
DSP

3z-1 z-1

Fig. 7.7.2 Pipelining the operation of multiple DSP processors.

At the nth time instant, while DSP-1 is working on the current input sample x(n),
DSP-2 is working on the sample y1(n−1) which was produced by DSP-1 at the previous
time instant and was saved in the delay register until now, and DSP-3 is working on the
sample y2(n− 1) which was produced by DSP-2 earlier, and so on. The effect of intro-
ducing these delays is only an overall delay in the output. For example, in the case shown
in Fig. 7.7.2, the overall transfer function changes from H(z)= H1(z)H2(z)H3(z) to:

H(z)= H1(z)z−1 H2(z)z−1 H3(z)= z−2H1(z)H2(z)H3(z)

which corresponds to delaying the overall output by two sampling units. ForK sections,
the overall delay will be z−(K−1).

Example 7.7.1: The AT&T DSP32C floating point DSP chip [103,104] can execute a basic MAC-
type instruction in four clock cycles, that is, Tinstr = 4Tclock. Therefore, its instruction
rate is finstr = fclock/4. A typical MAC instruction represents two floating point operations:
one addition and one multiplication. Therefore, the chip achieves a computational rate of
fFLOPS = 2finstr = fclock/2 FLOPS.

At a clock rate of fclock = 50 MHz, it achieves an instruction rate of finstr = 50/4 = 12.5
MIPS, and a computational rate of fFLOPS = 50/2 = 25 MFLOPS (megaflops). The time per
instruction is Tinstr = 1/finstr = 1/12.5 = 80 nanoseconds.

An order-M FIR filter can be implemented (with in-line code) with

Ninstr = (M + 1)+11 =M + 12 (instructions per sample)

Therefore, the processing time per sample will be

Tproc = (M + 12)Tinstr

314 7. DIGITAL FILTER REALIZATIONS

For a 100-tap FIR filter (M = 99) with the DSP32C running at 50 MHz, we haveTproc = (99+
12)80 nsec = 8.9 μsec, achieving a maximum throughput rate of fs = 1/Tproc = 112.4
kHz.

A K-section IIR filter can be implemented (with in-line code) with

Ninstr = 5K + 10 (instructions per sample)

It also requires a number of machine-cycle wait states:

Nwait = 2K + 1 (wait states per sample)

Therefore, the total processing time for K sections will be:

Tproc = NinstrTinstr +NwaitTclock

Writing Tinstr = 4Tclock = 4/fclock, we have

Tproc = 4Ninstr +Nwait

fclock
= 4(5K + 10)+2K + 1

fclock

For one SOS, K = 1, and a 50 MHz clock, we find Tproc = 1.26 μsec, which translates to
maximum sampling rate of fs = 1/Tproc = 793.6 kHz. For a 5-section filter K = 5, we
find Tproc = 3.02 μsec and fs = 331.1 kHz. And, for a 10-section filter, K = 10, we have
Tproc = 5.22 μsec and fs = 191.6 kHz. 	

We saw in Section 4.3.4 that circular addressing was an efficient way to implement
FIR filters and delay lines, and was supported by most of the current DSP chip families.
All of the IIR filtering routines—direct, canonical, and cascade—can also be implemented
using circular addressing.

The following routine ccan.c implements the canonical realization of Fig. 7.2.4 using
circular buffers, and replaces can. For simplicity, we assume that the numerator and
denominator polynomials have the same order M.

/* ccan.c - circular buffer implementation of canonical realization */

void wrap(); defined in Section 4.3.4

double ccan(M, a, b, w, p, x) usage: y = ccan(M, a, b, w, &p, x);

double *a, *b, *w, **p, x; p = circular pointer to buffer w
int M; a,b have common order M
{

int i;
double y = 0, s0;

**p = x; read input sample x

s0 = *(*p)++; s0 = x
wrap(M, w, p); p now points to s1

for (a++, i=1; i<=M; i++) { start with a incremented to a1

s0 -= (*a++) * (*(*p)++);

7.7. HARDWARE REALIZATIONS AND CIRCULAR BUFFERS 315

wrap(M, w, p);
}

**p = s0; p has wrapped around once

for (i=0; i<=M; i++) { numerator part

y += (*b++) * (*(*p)++);
wrap(M, w, p); upon exit, p has wrapped

} around once again

(*p)--; update circular delay line

wrap(M, w, p);

return y; output sample

}

Like the FIR routine cfir, it uses a circular pointer p that always points at the effec-
tive starting address of the circular buffer. Here the internal state vector is defined at
time n by

s(n)=

⎡⎢⎢⎢⎢⎢⎣
s0(n)
s1(n)

...
sM(n)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

w(n)
w(n− 1)

...
w(n−M)

⎤⎥⎥⎥⎥⎥⎦ (7.7.12)

Upon entry, the circular pointer p points at the w-register holding s0(n)= w(n).
The value of s0(n) is not known—only its address. The first for-loop computes the
numerical value of s0(n) and puts it in the correct w-register. This is so because after
the loop, p has been post-incremented a total ofM+1 times and has wrapped completely
around.

The second for-loop then computes the contribution of the numerator part. The
pointer p is incremented M+1 times and cycles around once more. Finally, in prepara-
tion for the next time step, p is circularly decremented and points at the w-register that
will hold the next value w(n+ 1).

As we mentioned in Section 4.3.4, in DSP chips that support circular addressing, the
incrementing or decrementing pointer wraps around automatically and there is no need
to use the routine wrap.

The following program segment illustrates the proper initialization and usage of the
routine. Note that p must be passed by address because it is changed after each call:

double *a, *b, *w, *p;
a = (double *) calloc(M+1, sizeof(double));
b = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); initializes w to zero

a[0] = 1; not used in the routine

p = w; initialize p

for (n = 0; n < Ntot; n++)
y[n] = ccan(M, a, b, w, &p, x[n]); p is passed by address

The operations carried out by the routine ccan can be restated in a slightly different
form by the following sample processing algorithm:

316 7. DIGITAL FILTER REALIZATIONS

for each input sample x do:
for i = 1,2, . . . ,M determine states:

si = tap(M,w, p, i)
s0 = x− a1s1 − · · · − aMsM
y = b0s0 + b1s1 + · · · + bMsM
∗p = s0

cdelay(M,w,&p)

where for convenience, we used the routine tap to compute the current states.

Example 7.7.2: Write the circular-buffer version of the sample processing algorithm of Example
7.2.1 or 7.1.1, whose canonical realization is depicted in the block diagram of Fig. 7.2.5.

Solution: Here, the buffer w is a five-dimensional array, initialized to zero. The circular pointer
p is initialized by p = w. We have:

for each input sample x do:
s1 = tap(4,w, p,1)
s2 = tap(4,w, p,2)
s3 = tap(4,w, p,3)
s4 = tap(4,w, p,4)
s0 = x− 0.2s1 + 0.3s2 − 0.5s4

y = 2s0 − 3s1 + 4s3

∗p = s0

cdelay(4,w,&p)

The statement ∗p = s0 puts the computed value of the 0th component s0 into the w-
register pointed to by p. Then, cdelay decrements p circularly. 	

Example 7.7.3: Determine the circular-buffer version of the sample processing algorithm of
Example 7.6.3, whose realization is depicted in Fig. 7.6.2.

Solution: Here, the buffer w is nine-dimensional. The algorithm is stated below, where only the
output s8 of the 8-fold delay line is needed:

x

0.0625

y

z-8

s8

s0
for each input sample x do:

s8 = tap(8,w, p,8)
s0 = x+ 0.0625s8

y = s0 + s8

∗p = s0

cdelay(8,w,&p)

Note that the output s8 was available before the input s0 could be computed. 	

Example 7.7.4: The input signal x = [1,3,2,5,4,6] is applied to the filter:

H(z)= 1+ z−1 + 2z−2

1− z−3

7.7. HARDWARE REALIZATIONS AND CIRCULAR BUFFERS 317

Draw the canonical realization and write its circular buffer sample processing algorithm.
Iterate the algorithm nine times for n = 0,1, . . . ,8 and compute the corresponding output
y(n). Make a table of the circular buffer entries w and the filter’s internal states s.

Solution: The block diagram realization and its circular sample processing algorithm are:

x y

z-1

z-1

z-1

s0

s1

s2

s3

2

for each input sample x do:
s1 = tap(3,w, p,1)
s2 = tap(3,w, p,2)
s3 = tap(3,w, p,3)
s0 = x+ s3

y = s0 + s1 + 2s2

∗p = s0

cdelay(3,w,&p)

The entries of the linear buffer w = [w0,w1,w2,w3] over which the circular pointer cir-
culates are shown in the following table.

n x w0 w1 w2 w3 s0 s1 s2 s3 y = s0 + s1 + 2s2

0 1 1↑ 0 0 0 1 0 0 0 1
1 3 1 0 0 3↑ 3 1 0 0 4
2 2 1 0 2↑ 3 2 3 1 0 7
3 5 1 6↑ 2 3 6 2 3 1 14
4 4 7↑ 6 2 3 7 6 2 3 17
5 6 7 6 2 8↑ 8 7 6 2 27
6 0 7 6 6↑ 8 6 8 7 6 28
7 0 7 7↑ 6 8 7 6 8 7 29
8 0 8↑ 7 6 8 8 7 6 8 27

In each row, only one wi changes, that is, the one pointed to by p. These entries, indicated
by an up-arrow, can be filled only after the value of s0 has been calculated from s0 = x+s3.
The internal states si are pointed to by p + i, i = 0,1,2,3 and wrap around if necessary.
For example, at time n = 3, p is pointing to w1; therefore, p + 1, p + 2, point to w2, w3,
but p+ 3 wraps around and points to w0, so that s3 = w0 = 1.

According to Eq. (7.7.12), the states si are the delayed replicas of the signal w(n) running
through the intermediate delays. In the z-domain, this signal is

W(z)= 1

D(z)
X(z)= 1+ 3z−1 + 2z−2 + 5z−3 + 4z−4 + 6z−5

1− z−3

Its inverse z-transform is the period-3 replication of the numerator:

1 3 2 5 4 6 = x(n)
1 3 2 5 4 6 = x(n− 3)

1 3 2 5 · · · = x(n− 6)
1 · · ·

1 3 2 6 7 8 6 7 8 6 · · · = w(n)

Thus, the s0 column holds w(n), s1 holds w(n−1), and so on. Similarly, the output signal
y(n) can be constructed from w(n) by

318 7. DIGITAL FILTER REALIZATIONS

Y(z)= N(z)W(z)= (1+ z−1 + 2z−2)W(z) ⇒ y(n)= w(n)+w(n− 1)+2w(n− 2)

Adding up the delayed/scaled replicas of w(n), we have:

1 3 2 6 7 8 6 7 8 · · · = w(n)
1 3 2 6 7 8 6 7 · · · = w(n− 1)

2 6 4 12 14 16 12 · · · = 2w(n− 2)
1 4 7 14 17 27 28 29 27 · · · = y(n)

which agrees with the values computed in the above table. 	

A second-order section can be implemented by ccan by settingM = 2. Alternatively,
we can use the following specialized version csos.c, which replaces sos:

/* csos.c - circular buffer implementation of a single SOS */

void wrap();

double csos(a, b, w, p, x) a,b,w are 3-dimensional

double *a, *b, *w, **p, x; p is circular pointer to w
{

double y, s0;

*(*p) = x; read input sample x

s0 = *(*p)++; wrap(2, w, p);
s0 -= a[1] * (*(*p)++); wrap(2, w, p);
s0 -= a[2] * (*(*p)++); wrap(2, w, p);

*(*p) = s0; p has wrapped around once

y = b[0] * (*(*p)++); wrap(2, w, p);
y += b[1] * (*(*p)++); wrap(2, w, p);
y += b[2] * (*(*p)); p now points to s2

return y;
}

As required, the pointer p points at the w-register containing w(n) and cycles
around modulo-3, because the state vector is three-dimensional:

s(n)=
⎡⎢⎣ w(n)
w(n− 1)
w(n− 2)

⎤⎥⎦
After the first three post-increments, p cycles around completely. The last two post-

increments leave p pointing at the register containing s2(n)= w(n−2), which is where
it should be pointing at the beginning of the next call.

The sample processing algorithm implemented by csos can be restated in the fol-
lowing form:

7.7. HARDWARE REALIZATIONS AND CIRCULAR BUFFERS 319

for each input sample x do:
s1 = tap(2,w, p,1)
s2 = tap(2,w, p,2)
s0 = x− a1s1 − a2s2

y = b0s0 + b1s1 + b2s2

∗p = s0

cdelay(2,w,&p)

As in Eq. (7.5.5), the cascade of K second-order sections can be realized by K succes-
sive calls to the routine csos:

for each input sample x do:
y = x
for i = 0,1, . . . , K − 1 do:

y = csos(ai,bi,wi,&pi, y)

where each of theK sections has its own three-dimensional buffer wi and corresponding
circular pointer pi. The following routine ccas.c is an implementation, replacing cas:

/* ccas.c - circular buffer implementation of cascade realization */

double csos(); circular-buffer version of single SOS

double ccas(K, A, B, W, P, x)
int K;
double **A, **B, **W, **P, x; P = array of circular pointers

{
int i;
double y;

y = x;

for (i=0; i<K; i++)
y = csos(A[i], B[i], W[i], P+i, y); note, P+ i = &P[i]

return y;
}

As in the case of cas, we save the individual buffers wi as the rows of the matrix W.
Similarly, we save the individual pointers pi in an array of pointers P. The declaration
and allocation of A, B, and W are the same as in Section 7.5. The declaration of P and
initialization and usage of ccas is illustrated below:

double **P;

P = (double **) calloc(K, sizeof(double *)); array of K pointers

for (i=0; i<K; i++)
P[i] = W[i]; P[i] = ith row of W

for (n = 0; n < Ntot; n++)
y[n] = ccas(K, A, B, W, P, x[n]);

320 7. DIGITAL FILTER REALIZATIONS

Example 7.7.5: Write the circular version of the cascade realization of Example 7.5.1, depicted
in Fig. 7.5.2.

Solution: Let p0 and p1 denote the circular pointers of the two sections. Initially they point at
the first elements of the three-dimensional buffers w0 and w1 of the two sections, that is,
p0 = w0 and p1 = w1. The sample processing algorithm is:

for each input sample x do:
s1 = tap(2,w0, p0,1)
s2 = tap(2,w0, p0,2)
s0 = x+ 0.4s1 − 0.5s2

x1 = 3s0 − 4s1 + 2s2

∗p0 = s0

cdelay(2,w0,&p0)
s1 = tap(2,w1, p1,1)
s2 = tap(2,w1, p1,2)
s0 = x1 − 0.4s1 − 0.5s2

y = 3s0 + 4s1 + 2s2

∗p1 = s0

cdelay(2,w1,&p1)

where the output x1 of the first section becomes the input to the second. 	

We can also write versions of the routines that manipulate the offset index q instead
of the circular pointer p, in the same fashion as the FIR routine cfir2 of Section 4.3.4.
The following routine ccan2.c replaces ccan:

/* ccan2.c - circular buffer implementation of canonical realization */

void wrap2(); defined in Section 4.3.4

double ccan2(M, a, b, w, q, x)
double *a, *b, *w, x; q = circular pointer offset index

int M, *q; a,b have common order M
{

int i;
double y = 0;

w[*q] = x; read input sample x

for (i=1; i<=M; i++)
w[*q] -= a[i] * w[(*q+i)%(M+1)];

for (i=0; i<=M; i++)
y += b[i] * w[(*q+i)%(M+1)];

(*q)--; update circular delay line

wrap2(M, q);

return y; output sample

}

Its usage is illustrated by the following program segment. Note thatqmust be passed
by address:

7.7. HARDWARE REALIZATIONS AND CIRCULAR BUFFERS 321

int q;
double *a, *b, *w;
a = (double *) calloc(M+1, sizeof(double));
b = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); initializes w to zero

a[0] = 1; not used in the routine

q = 0; initialize q

for (n = 0; n < Ntot; n++)
y[n] = ccan2(M, a, b, w, &q, x[n]); p is passed by address

Similarly, the following routines csos2.c and ccas2.c replace csos and ccas:

/* csos2.c - circular buffer implementation of a single SOS */

void wrap2();

double csos2(a, b, w, q, x)
double *a, *b, *w, x; a,b,w are 3-dimensional arrays

int *q; q is circular offset relative to w
{

double y;

w[*q] = x - a[1] * w[(*q+1)%3] - a[2] * w[(*q+2)%3];

y = b[0] * w[*q] + b[1] * w[(*q+1)%3] + b[2] * w[(*q+2)%3];

(*q)--;
wrap2(2, q);

return y;
}

and

/* ccas2.c - circular buffer implementation of cascade realization */

double csos2(); circular-buffer version of single SOS

double ccas2(K, A, B, W, Q, x)
int K, *Q; Q = array of circular pointer offsets

double **A, **B, **W, x;
{

int i;
double y;

y = x;

for (i=0; i<K; i++)
y = csos2(A[i], B[i], W[i], Q+i, y); note, Q + i = &Q[i]

return y;
}

The ith SOS has its own offset index qi. Therefore, the quantity Q is defined as
an array of K integers. The usage and initialization of ccas2 is illustrated below. The
quantities A, B, W are declared and allocated as usual, Q must be declared as:

322 7. DIGITAL FILTER REALIZATIONS

int *Q;

Q = (double *) calloc(K, sizeof(double)); array of K integers

for (i=0; i<K; i++)
Q[i] = 0; initialize Q[i]

for (n = 0; n < Ntot; n++)
y[n] = ccas2(K, A, B, W, Q, x[n]);

7.8 Problems

7.1 A system has transfer function:

H(z)= z−1 + 2z−2 + 3z−3 + 4z−4

1− z−5

a. Without using partial fractions, determine the causal impulse response h(n) of this
system, for all n ≥ 0, and sketch it versus n.

b. Draw the direct and canonical realization forms. Write the difference equations de-
scribing these realizations. Then, write the corresponding sample processing algo-
rithms.

c. Factor this transfer function in the formH(z)= H1(z)H2(z), whereH1(z) is the ratio
of two first-order polynomials, andH2(z) has numerator of degree 3 and denominator
of degree 4. Draw the corresponding cascade realization, with each factor realized in
its canonical form. Write the difference equations describing this realization, and the
corresponding sample processing algorithm.

7.2 A discrete-time model for a second-order delta-sigma A/D converter is shown below:

H1(z) H2(z)+ + ++
− −

e(n) = quantization noise

y(n)x(n)

a. Show that the output z-transform Y(z) is related to X(z) and E(z) by a transfer
function relationship of the form:

Y(z)= Hx(z)X(z)+He(z)E(z)

Express the transfer functionsHx(z) andHe(z) in terms of the loop filtersH1(z) and
H2(z).

b. Determine H1(z) and H2(z) in order for Hx(z) to act as a single delay and He(z) as
a second-order noise shaper, that is,

Hx(z)= z−1 and He(z)= (1− z−1)2

7.3 A digital filter has transfer function:

H(z)= z−1(1+ 2z−2)(1+ 3z−2)
1− z−6

7.8. PROBLEMS 323

a. Draw the direct form realization (direct form I). Write the I/O difference equation and
corresponding sample processing algorithm for this realization.

b. Draw the canonical form realization (direct form II). Write the I/O difference equations
and corresponding sample processing algorithm for this realization.

c. Factor H(z) into second-order sections with real-valued coefficients, and draw the cor-
responding cascade realization. Write the I/O difference equations and corresponding
sample processing algorithm for this realization.

d. Without using partial fractions, determine the causal impulse response h(n) of this
filter for all n. Explain your reasoning.

7.4 A linear system is described by the system of difference equations:

v(n) = x(n)+v(n− 1)

y(n) = v(n)+v(n− 2)+v(n− 4)

Determine the transfer function from x(n) to y(n). Draw the direct, the canonical, and the
cascade of SOS realizations (with real coefficients). In each case, state the sample-by-sample
processing algorithm.

7.5 Draw the three realizations: (1) direct, (2) canonical, and (3) cascade of second-order sections
for the following filter:

H(z)= (2− 3z−1)(1+ z−2)
1− 0.25z−4

For each realization write the corresponding: (a) I/O difference equations and (b) sample
processing algorithm.

7.6 A filter has transfer function:

H(z)= 5

1+ 0.25z−2
− 4

1− 0.25z−2
= 1− 2.25z−2

(1+ 0.25z−2)(1− 0.25z−2)

a. Determine all possible impulse responses h(n) and their ROCs.

b. Draw the direct realization form of H(z).

c. Draw the canonical realization form.

d. Draw the cascade form.

In all cases, write all the I/O difference equations describing the realization in the time do-
main, and the sample processing algorithm implementing it.

7.7 Draw the direct and the canonical realizations of the system:

H(z)= 1− 2z−2 + z−4

1− 0.4096z−4

a. Write the I/O difference equations and state the sample processing algorithms of these
two realizations. [Hint: 0.4096 = (0.8)4.]

b. Factor the above transfer function into second-order sections (with real coefficients).
Draw the cascade realization (with each SOS realized in its canonical form). Write all
the I/O difference equations and state the sample processing algorithm describing this
realization.

324 7. DIGITAL FILTER REALIZATIONS

7.8 An allpass digital reverberator with delay of 10 time units and having input x(n) and overall
output y(n), is described by the system of difference equations:

w(n) = 0.75w(n− 10)+x(n)
y(n) = −0.75w(n)+w(n− 10)

a. Draw a block diagram realization of this filter. The realization must use only one
10-fold delay.

b. Write the sample processing algorithm for this filter. Then, convert this algorithm into
a C routine that implements it.

c. Show that the magnitude response of the filter is identically equal to one, that is,
|H(ω)| = 1 for all ω.

7.9 A filter is described by the following sample processing algorithm relating the input and
output samples x and y:

for each input sample x do:
w0 = x+ 0.64w4

y = w0 +w3

w4 = w3

w3 = w2

w2 = w1

w1 = w0

Determine the transfer function H(z) of this filter. Factor H(z) into factors of order up
to two (with real-valued coefficients) and draw the corresponding cascade realization. State
the sample processing algorithm for that realization.

7.10 For the following three filters,

H(z)= (1+ z−2)3 , H(z)= 1

1+ 0.81z−2
, H(z)= 1− z−4

1− 0.9z−1

a. Determine all possible impulse responses h(n), corresponding ROCs, stability, and
causality properties.

b. Draw the direct, canonical, and cascade of SOS realization forms. Write the I/O differ-
ence equations for each realization. State the sample-by-sample processing algorithm
for each realization.

c. Determine the corresponding pole/zero plots and then make a rough sketch of the
magnitude responses |H(ω)| versus ω.

7.11 Consider a system with transfer function:

H(z)= (1−√2z−1 + z−2)(1+√2z−1 + z−2)
(1+ 0.81z−2)(1− 0.81z−2)

a. Determine the poles and zeros of this filter and place them on the z-plane. Then, draw
a rough sketch of the magnitude response of the filter versus frequency.

b. Draw the cascade of second-order sections realization. Write the I/O difference equa-
tions for this realization. State the corresponding sample-by-sample processing algo-
rithm.

Repeat for the canonical and direct form realizations.

7.8. PROBLEMS 325

7.12 Consider a stable system with transfer function H(z)=
1

16
+ z−4

1+ 1

16
z−4

.

a. Determine the poles and zeros of H(z) and place them on the complex z-plane. Pair
them in conjugate pairs to write H(z) as a cascade of second-order sections with real
coefficients.

b. Draw the direct, canonical, and cascade realization forms. In each case, write the
corresponding sample processing algorithm.

c. Determine the impulse response h(n) for all n. And, finally show that |H(ω)| = 1
for all ω, that is, it is an allpass filter.

7.13 Computer Experiment: IIR Filtering. A digital filter has transfer function:

H(z)= H0(z)H1(z)H2(z)H3(z)

where

H0(z) = 0.313(1+ z−1)
1− 0.373z−1

,

H2(z) = 0.117(1+ 2z−1 + z−2)
1− 0.891z−1 + 0.360z−2

,

H1(z) = 0.147(1+ 2z−1 + z−2)
1− 1.122z−1 + 0.712z−2

H3(z) = 0.103(1+ 2z−1 + z−2)
1− 0.780z−1 + 0.190z−2

a. Draw the cascade realization of H(z) and write all the difference equations required
for the time operation of this filter. Write the sample-by-sample processing algorithm
implementing the cascade realization.

b. Using the routine cas2can, determine the canonical and direct realizations of H(z)
and draw them. Write the corresponding sample processing algorithms and difference
equations for the two realizations.

c. Generate a length-100 input signal defined as

x(n)=
⎧⎨⎩1 if 0 ≤ n < 50

0 if 50 ≤ n < 100

Using the cascade routine cas compute the filter output yn for 0 ≤ n ≤ 99. Repeat
using the routines dir and can. In three parallel columns, print the signal samples yn
computed by the three routines cas, dir, can.

d. On the same graph, plot the two signals xn and yn versus n. You will be observing the
input-on transients, steady-state response to a constant input, and input-off transients.
What is the theoretical value of the steady-state response to a constant input?

e. Send a unit impulse as input. For the cascade realization, using the routine cas, com-
pute the corresponding output impulse response for 0 ≤ n < 50, and plot it versus
n. Repeat for the canonical realization using the routine can. Do you get identical
results?

7.14 Computer Experiment: IIR Filtering in Canonical Form. Write a stand-alone C program, say
canfilt.c, that implements the canonical form of the IIR sample processing algorithm,
Eq. (7.2.5). The program must have usage:

canfilt a.dat b.dat < x.dat > y.dat

326 7. DIGITAL FILTER REALIZATIONS

It must read and dynamically allocate the denominator and numerator coefficient vectors a,
b from two input files, say a.dat and b.dat, and must allocate the internal state vector w.
Using the routine can.c, it must keep processing input samples, reading them one at a time
from stdin or from a file x.dat, and writing the computed output samples to stdout or a
file y.dat. Filtering must stop when the end-of-file of the input file is encountered.

Using this program, calculate the filter outputs required in Problem 7.13.

7.15 Computer Experiment: IIR Filtering in Cascade Form. Write a stand-alone C program, say cas-
filt.c, that implements the cascade form of the IIR sample processing algorithm, Eq. (7.5.3).
The program must have usage:

casfilt A.dat B.dat < x.dat > y.dat

It must read and dynamically allocate the K×3 denominator and numerator coefficient ma-
trices A and B from two input files, say A.dat and B.dat (stored in row-wise fashion). and
must allocate the internal K×3 state matrix W. Using the routine cas.c, it must keep pro-
cessing input samples, reading them one at a time from stdin or from a file x.dat, and
writing the computed output samples to stdout or a file y.dat. Filtering must stop when
the end-of-file of the input file is encountered.

Alternatively or additionally, write a MATLAB version, say casfilt.m, that reads the input
vector x and the matricesA and B and computes the output vector y. It may use the MATLAB
functions sos.m and cas.m of Appendix C. Its usage must be:

y = casfilt(B, A, x);

Using these programs, calculate the filter outputs required in Problem 7.13.

7.16 Computer Experiment: Comb Filtering. Consider the two comb filters discussed in Examples
7.6.3 and 7.6.4. To understand the difference in their time-domain operation, consider as
input to both filters the “noisy” signal:

x(n)= s(n)+v(n), where
s(n) = A0 cos(w0n)+A2 cos(w1n)

v(n) = A2 cos(w2n)+A3 cos(w3n)

where n = 0,1, . . . ,499, andA0 = 1, A1 = A2 = A3 = 0.5. The frequency components of the
“desired” signal s(n) are chosen to lie in the flat part, between the zeros, of the frequency
response of the sharpened filter shown in Fig. 7.6.3: w0 = 0.50π/8, w1 = 0.75π/8. The
frequency components of the “noise” part v(n) are chosen to be two of the comb’s zeros:
w2 = π/8, w3 = 3π/8.

Plot the desired and noisy signals s(n) and x(n). Compute the corresponding output signals
y1(n), y2(n) for n = 0,1, . . . ,499 of the two filters, plot them, and compare them with the
desired signal s(n).
To implement the filtering operations for the first filter, use the sample processing algorithm
of the canonical form given in Example 7.6.3, and for the second filter use the cascade of the
two combs given in Example 7.6.4. Moreover, to make a fair comparison normalize the two
magnitude responses to unity gain at one of the desired frequencies, say at w0.

7.17 Computer Experiment: Comb Impulse Response. First, derive closed-form analytical expres-
sions for the impulse responses of the two comb filters of Examples 7.6.3 and 7.6.4. [Hint:
You may do partial fractions in the variable z−8.]

Then, using their sample processing algorithms, compute the impulse responses by sending
in a unit impulse input. Compare the computed values and the analytical expressions. For
each filter, compute the impulse responses h(n) for 0 ≤ n < 200.

7.8. PROBLEMS 327

7.18 Computer Experiment: IIR Filtering Using Circular Buffers. For the canonical and cascade
realizations, repeat all the questions of Problem 7.13, using the circular buffer routines
ccan.c, ccas.c, and csos.c, instead of the standard linear buffer routines can, cas, and
sos.

Repeat this problem using the alternative circular buffer routines ccan2.c, ccas2.c, and
csos2.c.

7.19 Consider a filter with transfer function: H(z)= 6− 2z−3

1− 0.5z−3
.

a. Draw the canonical realization form of H(z) and write the corresponding sample pro-
cessing algorithm both in its linear and circular buffer versions.

b. Determine the causal impulse response h(n) in two ways: (i) by doing and inverse
z-transform on H(z), and (ii) by sending in a unit impulse and iterating the circular
buffer sample processing algorithm. Perform seven iterations for n = 0,1, . . . ,6 filling
the entries of the following table:

n x w0 w1 w2 w3 s0 s1 s2 s3 y
0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...
...

6 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

where [w0,w1,w2,w3] is the linear buffer over which the circular pointer circulates
and si are the internal states (i.e., the tap outputs) of the triple delay z−3.

c. Suppose the length-3 input signal x = [1,2,3] is applied. Compute the corresponding
output for n = 0,1, . . . ,6 by iterating the circular version of the sample processing
algorithm and filling the wi and si entries of the above table.

7.20 Consider a second-order denominator polynomial for an IIR filter with conjugate poles:

1+ a1z−1 + a2z−2 = (1− pz−1)(1− p∗z−1)

Taking differentials of both sides of this identity, show that small changes {da1, da2} in the
polynomial coefficients induce the small change in the pole location:

dp = −pda1 + da2

p− p∗

7.21 Consider a fourth-order denominator polynomial for an IIR filter with conjugate poles:

1+ a1z−1 + a2z−2 + a3z−3 + a4z−4 = (1− p0z−1)(1− p∗0 z−1)(1− p1z−1)(1− p∗1 z−1)

Show that small changes {da1, da2, da3, da4} in the coefficients induce the following changes
in the pole locations, which may not be too small if p0 is close to p1:

dp0 = −p
3
0da1 + p2

0da2 + p0da3 + da4

(p0 − p∗0)(p0 − p1)(p0 − p∗1)

dp1 = −p
3
1da1 + p2

1da2 + p1da3 + da4

(p1 − p∗0)(p1 − p0)(p1 − p∗1)

Such pole sensitivity formulas can be generalized to polynomials of arbitrary degree; see
[2,3,266].

328 7. DIGITAL FILTER REALIZATIONS

7.22 Consider the transposed realization of a third-order IIR filter shown in Fig. 7.8.1. First, de-
termine the transfer function H(z). Then, using the indicated variables vi(n), i = 0,1,2,3,
write the difference equations describing the time-domain operation of this realization.
Then, rewrite them as a sample-by-sample processing algorithm that transforms each in-
put x into an output sample y.

v1(n)

v0(n)

v2(n)

v3(n)

z-1

z-1

z-1

x(n)
b0

b1

b2

b3

y(n)

-a1

-a2

-a3

Fig. 7.8.1 Transpose of canonical realization.

7.23 Computer Experiment: Transposed Realization Form. Generalize the transposed structure of
Fig. 7.8.1 to an arbitrary transfer function with numerator and denominator polynomials of
degree M. State the corresponding sample processing algorithm in this case. Then, convert
it into a C routine, say transp.c, that has usage:

y = transp(M, a, b, v, x);

where a, b, and v are (M+1)-dimensional vectors.

7.24 Computer Experiment: Filtering in Transposed Form. Repeat the filtering questions of Prob-
lem 7.13. Use the transpose of the canonical form implemented by the routine transp.c

of Problem 7.23. For the cascade form, realize each second-order section in its transposed
form. The output signals must agree exactly with those of Problem 7.13.

7.25 For the filter of Example 7.5.1, draw the transpose realizations of the canonical form. Also
draw a cascade realization in which every second-order section is realized in its transposed
form. In all cases, write the corresponding I/O difference equations and sample processing
algorithms.

7.26 A general feedback system is shown in Fig. 7.8.2, where the output of filterH1(z) is fed back
into filter H2(z) and then back to the input, and where the delay z−1 can be positioned at
the four points A, B, C, or D.

For each case, determine the transfer function of the overall closed-loop system, that is, from
x(n) to y(n). Assuming that the I/O equations of the filters H1(z) and H2(z) are known,
state the corresponding sample processing algorithms in the four cases. How does moving
the position of the delay change the order of computations? Finally, if the same input x(n)
is fed into the four filters, determine the relationships among the four output signals yA(n),
yB(n), yC(n), and yD(n).

7.8. PROBLEMS 329

x(n) y(n)z-1 H1(z)

H2(z)

A B

CD

Fig. 7.8.2 General feedback system.

7.27 Consider the block diagram of Fig. 7.8.3, where the feedback delay z−1 can be positioned at
points A or B. For the two cases, introduce appropriate internal state variables and write the
difference equations describing the time-domain operations of the overall feedback system.
Then, translate these difference equations into sample processing algorithms. What is the
effect of moving the delay from A to B on the order of computations? What happens if that
delay is removed altogether?

x(n) y(n)

0.5

z-1

z-1

0.4

z-1

-0.4

0.4

A B

Fig. 7.8.3 Feedback system of Problem 7.27.

7.28 The three block diagrams (a,b,c) shown below are equivalent descriptions of the same low-
pass reverberator filter of the form:

H(z)= 1

1−G(z)z−4
where G(z)= 0.2

1− 0.8z−1

a. Draw a realization of the lowpass feedback filter G(z). Replace the block G(z) by its
realization.

b. Write the sample processing algorithms describing the time-domain operation of each
of the three block diagrams (a), (b), and (c).

c. In block diagram (a), replace the 4-fold delay z−4 by its reverberating version:

z−4 → z−4

1− 0.8z−4

Draw the block diagram realization of the new overall filter. Your diagram must be
obtained from diagram (a) by replacing the 4-fold delay z−4 by the block diagram
realization of the given reverberating version. Write the sample processing algorithm
for the new filter.

330 7. DIGITAL FILTER REALIZATIONS

z-4

G(z)

z-4

G(z)
z-2 z-2

G(z)

(a) (b) (c)

8
Lattice Realizations

8.1 Overview

Lattice realizations, originally proposed by Gray and Markel [337–339], can realize an
arbitrary rational transfer function H(z)= B(z)/A(z) as a cascade of simpler first-
order sections—albeit these sections have two inputs and two outputs each, as shown
below in Fig. 8.1.1 for a third-order example,

Fig. 8.1.1 Typical lattice/ladder filter structure.

In its simpler, standard, form, each section contains one delay element z−1 and
one multiplier γ referred to as a “reflection coefficient”, whereas the normalized form
contains two multipliers, the reflection coefficient γ and its associated “transmission”
coefficient, τ = √1− γ2.†

Starting with input signal x(n), the upper inputs f(n) to each section are referred
to as “forward” signals and the lower outputs r(n) as “reverse” or “backward” signals.
The lower outputs are linearly combined with the “ladder” coefficients d to generate the
overall output signal y(n). This structure is often referred as a lattice/ladder realization
to indicate the fact that it contains both lattice sections and ladder coefficients

The normalized lattice realization is one of the best, if not the best, realization with
regard to robustness and stability under coefficient quantization, roundoff noise accu-
mulation, and protection against internal overflows [337–339]. These nice properties

†stability and causality of H(z) requires that all γs have magnitude less than one, |γ| < 1.

331

332 8. LATTICE REALIZATIONS

can be traced to the fact that all internal branches are scaled by multipliers (the γs and
τs) that have magnitude less than one.

8.2 Applications of Lattice Structures

Lattice filter structures have a long history and arise in diverse fields of science, engi-
neering, and mathematics.

They arise naturally in the description of wave propagation in multilayer structures,
such as dielectric structures used in the design of thin-film anti-reflection coatings, di-
electric mirrors, and optical interference filters, such as narrow-band transmission fil-
ters for wavelength-division multiplexing (WDM), as well as in the design of broadband
terminations of multi-segment transmission lines.

The terminology of referring to the γ-coefficients as reflection coefficients arises
from this wave propagation context, where the γs do indeed represent the elementary
reflection coefficients at the multilayer interfaces. The multilayers themselves are the
lattice sections, and the wave propagation equations, referred to as the layer recursions,
relating the incident and reflected fields (i.e., the forward and backward signals) at each
interface are the exactly the same as those used in the digital filter transfer function
context.

Other wave propagation applications include the making acoustic tube models for
the analysis and synthesis of speech, with the layer recursions having exactly the same
structure as in the electromagnetic context. The layer recursions are also used in speech
recognition, disguised as the so-called Schur algorithm.

Wave propagation in multilayer structures also find application in geophysical decon-
volution and inverse scattering problems for oil exploration, in structures for acoustic
noise control, and in vibration control for dampening vibrations of long structures.

Lattice filter structures arise in time-series analysis in the theory of linear prediction
and the realization of optimum Wiener filters, including adaptive filtering versions which
are perhaps the fastest and most stable of all known adaptive filtering algorithms. The
layer recursions are related to the Levinson-Durbin algorithm for linear prediction, and
the γ-coefficients are also known in this context as “partial-correlation” coefficients
(PARCOR).

The layer recursions—known as the Schur recursions in linear prediction—are in-
timately connected to the mathematical theory of lossless bounded real functions in
the z-plane, and positive real functions in the s-plane, and find application in analysis,
synthesis, and stability of linear networks. The so-called Schur-Cohn stability test states
that a transfer function H(z) is stable and causal (i.e. all its poles are inside the unit
circle on the z-plane) if and only if all the γ-coefficients extracted fromH(z) by applying
the layer recursions have magnitude less than one, |γ| < 1.

Most of the above applications are discussed extensively in the author’s books on
Electromagnetic Waves and Antennas [46] and Applied Optimum Signal Processing [45],
both of which are available online.

8.3. STANDARD, REARRANGED, AND NORMALIZED LATTICE 333

8.3 Standard, Rearranged, and Normalized Lattice

Standard Lattice Realization

An example of a standard lattice realization is depicted in Figs. 8.3.1 for an order-3
transfer function,

H(z)= B(z)
A(z)

= b0 + b1z−1 + b2z−2 + b3z−3

1+ a1z−1 + a2z−2 + a3z−3
(8.3.1)

We discuss below how to map the direct-form numerator and denominator coef-
ficients, b0, b1, b2, b3, and, a1, a2, a3, to the reflection coefficients, γ1, γ2, γ2, and the
ladder coefficients, d0, d1, d2, d3.

Fig. 8.3.1 Standard lattice realization.

To derive the lattice realization for the filter, H(z)= B(z)/A(z), it proves con-
venient to consider first the “analysis” lattice part that only realizes the denominator
polynomial, A(z). It is obtained by reversing the directions of the f(n) signals, as de-
picted in the upper part of Fig. 8.3.2, so that the overall input to this structure is f0(n)
and both the f(n) and r(n) signals run to the right, feeding forward with no feedback
connections.

For the pth section, we have the following input/output equations relating the two
inputs, fp−1(n), rp−1(n), to the two outputs, fp(n), rp(n), where for a general order M
filter there will be M sections, starting with a common overall input, f0(n)= r0(n),

fp(n) = fp−1(n)−γprp−1(n− 1)

rp(n) = rp−1(n− 1)−γpfp−1(n)
(8.3.2)

for, p = 1,2, . . . ,M. These are known as “forward” layer recursions. For the purpose of
later developing a sample processing algorithm, we may also express these equations in
terms of the content of the delay z−1, denoted by wp(n) for the pth section,

334 8. LATTICE REALIZATIONS

Fig. 8.3.2 Analysis and synthesis lattice structures.

wp(n)= rp−1(n− 1)

fp(n)= fp−1(n)−γpwp(n)

rp(n)= wp(n)−γpfp−1(n)

wp(n+ 1)= rp−1(n)

p = 1,2, . . . ,M (8.3.3)

In the z-domain, Eqs. (8.3.2) are expressed in terms of the z-transforms, Fp(z),Rp(z),
of the signals, fp(n), rp(n),

Fp(z)= Fp−1(z)−γpz−1Rp−1(z)

Rp(z)= z−1Rp−1(z)−γpFp−1(z)
p = 1,2, . . . ,M (8.3.4)

which can be written in the 2×2 matrix form,[
Fp(z)
Rp(z)

]
=
[

1 −γpz−1

−γp z−1

][
Fp−1(z)
Rp−1(z)

]
, p = 1,2, . . . ,M (8.3.5)

The iteration of the forward recursions allows one to express the overall output sig-
nals in terms of the overall input signals, by multiplying out the 2×2 transition matrices,
for example, we have for M = 3,[

F3(z)
R3(z)

]
=
[

1 −γ3z−1

−γ3 z−1

][
1 −γ2z−1

−γ2 z−1

][
1 −γ1z−1

−γ1 z−1

][
F0(z)
R0(z)

]

or, since we assumed a common input, F0(z)= R0(z),[
F3(z)
R3(z)

]
=
[

1 −γ3z−1

−γ3 z−1

][
1 −γ2z−1

−γ2 z−1

][
1 −γ1z−1

−γ1 z−1

][
1
1

]
F0(z)

8.3. STANDARD, REARRANGED, AND NORMALIZED LATTICE 335

We may define the overall transfer functions from the common input F0(z)= R0(z)
to the two outputs, F3(z),R3(z), by the relationship,

A3(z)= F3(z)
F0(z)

, AR
3 (z)=

R3(z)
R0(z)

= R3(z)
F0(z)

where, A3(z),AR
3 (z), will be the two order-3 polynomials resulting from the matrix

operation,[
A3(z)
AR

3 (z)

]
=
[

1 −γ3z−1

−γ3 z−1

][
1 −γ2z−1

−γ2 z−1

][
1 −γ1z−1

−γ1 z−1

][
1
1

]
(8.3.6)

It can be verified that AR
3 (z) will be the reverse of A3(z). We note that the reverse

of a polynomial is obtained by reversing its coefficients, for example,

A(z)= a0 + a1z−1 + a2z−2 + a3z−3 , a = [a0, a1, a2, a3]

AR(z)= a3 + a2z−1 + a1z−2 + a0z−3, aR = [a3, a2, a1, a0]

Denoting resulting polynomial by, A3(z)= 1 + a1z−1 + a2z−2 + a3z−3, we would
like to associate it with the denominator polynomial A(z) of our transfer function
Eq. (8.3.1). Although Eq. (8.3.6) establishes a relationship between the polynomial coef-
ficients, {a1, a2, a3}, and the reflection coefficients {γ1, γ2, γ3}, it is much more conve-
nient to express this relationship recursively with the help of the lower-order polynomi-
als of order 2 and order 1, defined by,[

A2(z)
AR

2 (z)

]
=
[

1 −γ2z−1

−γ2 z−1

][
1 −γ1z−1

−γ1 z−1

][
1
1

]
[
A1(z)
AR

1 (z)

]
=
[

1 −γ1z−1

−γ1 z−1

][
1
1

] (8.3.7)

With these definitions, we obtain the following recursions that start with the order-0
polynomials, A0(z)= AR

0 (z)= 1, and proceed to order-3,[
A0(z)
AR

1 (z)

]
=
[

1
1

]
[
A1(z)
AR

1 (z)

]
=
[

1 −γ1z−1

−γ1 z−1

][
A0(z)
AR

0 (z)

]
[
A2(z)
AR

2 (z)

]
=
[

1 −γ2z−1

−γ2 z−1

][
A1(z)
AR

1 (z)

]
[
A3(z)
AR

3 (z)

]
=
[

1 −γ3z−1

−γ3 z−1

][
A2(z)
AR

2 (z)

]
(8.3.8)

More generally, for an order-M denominator, we have the forward recursions, also
known as the forward Levinson recursions because of their connection to linear predic-
tion, for p = 1,2, . . . ,M, starting with, A0(z)= AR

0 (z)= 1,[
Ap(z)
AR
p(z)

]
=
[

1 −γpz−1

−γp z−1

][
Ap−1(z)
AR
p−1(z)

]
(forward Levinson) (8.3.9)

336 8. LATTICE REALIZATIONS

The polynomial Ap(z), to be referred to as a linear prediction polynomial, is the
transfer function from the overall input F0(z) to the Fp(z) output of the pth lattice
section, while AR

p(z) is the transfer function to the Rp(z) output, for p = 1,2, . . . ,M,

Fp(z)= Ap(z)F0(z)

Rp(z)= AR
p(z)F0(z)

(8.3.10)

In the time-domain, the forward Levinson recursion (8.3.9) reads as follows, building
an order-p filter from and order-(p−1) one,

ap =
[

ap−1

0

]
− γp

[
0

aRp−1

]
, p = 1,2, . . . ,M (forward Levinson) (8.3.11)

where ap =
[
1, ap1, ap2, . . . , app

]T
is the column vector of the coefficients of Ap(z),

starting with a0 = aR0 = [1]. Explicitly, we have,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap,1
ap,2
...
ap,p−1

ap,p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap−1,1
ap−1,2
...
ap−1,p−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ap−1,p−1

ap−1,p−2

...
ap−1,1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

ap,1 = ap−1,1 − γpap−1,p−1

ap,2 = ap−1,2 − γpap−1,p−2

...

ap,p−1 = ap−1,p−1 − γpap−1,1

ap,p = −γp
The inverse of this recursion is the backward Levinson recursion, which starts with

the final order-M filter, aM = [
1, aM1, aM2, . . . , aMM

]T
, and proceeds downwards to

order-0, extracting the reflection coefficients γp in the process, for, p =M,M−1, . . . ,1,

γp = −ap,p

ap−1 =
ap + γpaRp

1− γ2
p

, p =M,M−1, . . . ,1
(backward Levinson) (8.3.12)

or, explicitly, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap−1,1
ap−1,2
...
ap−1,p−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

1− γ2
p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ap,1
ap,2
...
ap,p−1

ap,p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ γp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap,p
ap,p−1

...
ap,2
ap,1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where by construction, the bottom entry of ap−1 is zero, thus, the polynomial order is
successively reduced to order 0. To summarize, we use the forward recursion (8.3.11) to
generate the denominator polynomial coefficients from the reflection coefficients, and
use the backward recursion, to generate the reflection coefficients from the polynomial
coefficients,[

γ1, γ2, . . . , γM
] −→ Eq. (8.3.11) −→ [

a1, a2, . . . , aM
][

a1, a2, . . . , aM
] −→ Eq. (8.3.12) −→ [

γ1, γ2, . . . , γM
] (8.3.13)

8.3. STANDARD, REARRANGED, AND NORMALIZED LATTICE 337

Next, we consider the synthesis structure shown at the bottom of Fig. 8.3.2 in which
the directions of the fp(n) signals are reversed and are order-decreasing. The in-
put/output equations are obtained by simply rearranging the terms of Eq. (8.3.2),

fp(n)= fp−1(n)−γprp−1(n− 1) ⇒ fp−1(n)= fp(n)+γprp−1(n− 1)

so that now the incoming signals are, fp(n) and rp−1(n), and the outgoing ones, fp−1(n)
and rp(n), for p = 0,1, . . . ,M,

fp−1(n) = fp(n)+γprp−1(n− 1)

rp(n) = rp−1(n− 1)−γpfp−1(n)
(8.3.14)

Starting with the rightmost input, X(z)= FM(z)= AM(z)F0(z), the transfer function
fromX(z) to the backward outputRp(z) of thepth lattice section is, for p = 0,1, . . . ,M,

Rp(z)= AR
p(z)F0(z)=

AR
p(z)

AM(z)
AM(z)F0(z)=

AR
p(z)

AM(z)
FM(z)=

AR
p(z)

AM(z)
X(z) (8.3.15)

The backward signals rp(n) can be linearly combined with the ladder coefficients
dp to generate the overall output y(n) as shown in Fig. 8.1.1, from which the overall
transfer function can be obtained,

Y(z)=
M∑
p=0

dpRp(z)=

M∑
p=0

dpAR
p(z)

AM(z)
X(z) (8.3.16)

thus, resulting in the overall transfer function from X(z) to Y(z),

H(z)= Y(z)
X(z)

=

M∑
p=0

dpAR
p(z)

AM(z)
= BM(z)
AM(z)

(8.3.17)

where the numerator polynomial BM(z) is expressible as a linear combination of the
reversed polynomials, AR

p(z),

BM(z)=
M∑
p=0

dpAR
p(z) (8.3.18)

This can be written in the time domain in the matrix form,

bM =
M∑
p=0

dpaRp =
[
aR0 , aR1 , · · · , aRM

]
⎡⎢⎢⎢⎢⎢⎣
d0

d1

...
dM

⎤⎥⎥⎥⎥⎥⎦ = Ad (8.3.19)

338 8. LATTICE REALIZATIONS

where A is a unit upper-tridiagonal matrix consisting of the reversed prediction poly-
nomials. For example, for M = 3, we have,

A = [aR0 , aR1 , aR2 , aR3
] =

⎡⎢⎢⎢⎣
1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤⎥⎥⎥⎦
and Eq. (8.3.19) becomes,

b =

⎡⎢⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
d0

d1

d2

d3

⎤⎥⎥⎥⎦ = Ad (8.3.20)

Solving for the ladder weights in terms of the numerator coefficients b can be done
efficiently with MATLAB’s backslash operator,

d = A−1b = A\b (8.3.21)

To summarize, given the numerator and denominator coefficients, b, a, of a transfer
function, one subjects a to the backward Levinson recursions generating the reflection
coefficients γp and all the reversed prediction polynomials, gathered in the matrix A,
and then, solves for the ladder coefficients dp using Eq. (8.3.21).

Conversely, if the γp and dp coefficients are given, one subjects the γps to the for-
ward Levinson recursion generating all the prediction polynomials, gathered in the ma-
trix A, and then constructs the numerator coefficients b from Eq. (8.3.19).

The overall time-domain filtering equations for an order-M filter, generalizing the
block diagram in Fig. 8.3.1, are obtained by doing the backward recursion Eq. (8.3.14)
starting the with last section and proceeding to the first one.

The resulting difference equations can be converted into a sample-by-sample pro-
cessing algorithm using the delay contents, wp(n)= rp−1(n − 1), as auxiliary internal
state variables. However, since, wp(n+1)= rp−1(n) and we are going downwards in or-
der, the signal rp−1(n) is not yet available until the next lower section, in other words,
what can be updated at the pth pass is the quantity, wp+1(n + 1)= rp(n). Thus, in
structuring the order-decreasing recursions, we must carry out the operations in the
order,

for p =M−1,M−2, . . . ,1, do,

fp−1(n)= fp(n)+γpwp(n)

rp(n)= wp(n)−γpfp−1(n)

wp+1(n+ 1)= rp(n)

end

Putting all the steps together that include the proper initialization at stage M for a
given input sample x(n), and the successive computation of the output sample y(n)
using the ladder weights, we arrive at the following implementation for the difference
equations and sample processing algorithm,

8.3. STANDARD, REARRANGED, AND NORMALIZED LATTICE 339

for each time instant n, do,

fM(n)= x(n)

fM−1(n)= fM(n)+γMwM(n)

rM(n)= wM(n)−γMfM−1(n)

y(n)= dMrM(n)

for p =M−1,M−2, . . . ,1, do,

fp−1(n)= fp(n)+γpwp(n)

rp(n)= wp(n)−γpfp−1(n)

wp+1(n+ 1)= rp(n)

y(n)= y(n)+dprp(n)
end

r0(n)= f0(n)

w1(n+ 1)= r0(n)

y(n)= y(n)+d0r0(n)

end

for each input sample x, do,

f = x

f = f + γMwM

r = wM − γMf

y = dMr

for p =M−1,M−2, . . . ,1, do,

f = f + γpwp

r = wp − γpf

wp+1 = r

y = y + dpr

end

r = f

w1 = r

y = y + d0r

end

(8.3.22)

so that upon exit from the nth time pass, we have accumulated all of the output terms,

y(n)= d0r0(n)+d1r1(n)+· · · + dMrM(n)

Rearranged Lattice Realization

A rearranged version of the standard lattice realization is shown in Figs. 8.3.3 in which
the intermediate signals fp(n), rp(n) running between the lattice sections are the same
as those of the standard lattice, as are the coefficients, except that each section has one
more multiplier denoted by, τ2

p = 1− γ2
p .

Fig. 8.3.3 Rearranged lattice realization.

The difference equations and sample processing algorithm are in this case,

340 8. LATTICE REALIZATIONS

for each time instant n, do,

fM(n)= x(n)

rM(n)= τ2
MwM(n)−γMfM(n)

fM−1(n)= fM(n)+γMwM(n)

y(n)= dMrM(n)

for p =M−1,M−2, . . . ,1, do,

rp(n)= τ2
pwp(n)−γpfp(n)

fp−1(n)= fp(n)+γpwp(n)

wp+1(n+ 1)= rp(n)

y(n)= y(n)+dprp(n)
end

r0(n)= f0(n)

w1(n+ 1)= r0(n)

y(n)= y(n)+d0r0(n)

end

for each input sample x, do,

f = x

r = τ2
MwM − γMf

f = f + γMwM

y = dMr

for p =M−1,M−2, . . . ,1, do,

r = τ2
pwp − γpf

f = f + γpwp

wp+1 = r

y = y + dpr

end

r = f

w1 = r

y = y + d0r

end

(8.3.23)
In the sample processing algorithms, the variables f , r are recycled from one lattice

section to the next, and in the rearranged case, r must be updated before f to avoid
overwriting the correct value of f . The sample processing algorithms can easily be
converted into MATLAB functions.

The rearranged lattice is derived simply by substituting the fp−1(n) equation of the
standard lattice into the rp(n) equation,

fp−1(n) = fp(n)+γpwp(n)

rp(n) = wp(n)−γpfp−1(n)

that is,

fp−1(n) = fp(n)+γpwp(n)

rp(n) = wp(n)−γpfp−1(n)

= wp(n)−γp
[
fp(n)+γpwp(n)

]
= (1− γ2

p)wp(n)−γpfp(n)

= τ2
pwp(n)−γpfp(n) , where τp =

√
1− γ2

p , τ2
p = 1− γ2

p

8.3. STANDARD, REARRANGED, AND NORMALIZED LATTICE 341

Thus, the pth section is now described as follows, for, p =M,M − 1, . . . ,1,

fp−1(n) = fp(n)+γpwp(n)

rp(n) = τ2
pwp(n)−γpfp(n)

(8.3.24)

Normalized Lattice Realization

The signals, fp(n), rp(n), are the same in the standard and rearranged cases. By ap-
propriate rescaling of these signals, we may obtain the so-called normalized lattice re-
alization in which the coefficient, τ2

p = 1 − γ2
p, multiplying the wp(n) signal is shared

equally between the right-going signalwp(n) and the upper left-going signal fp(n). The
resulting pth section with the rescaled signals, f̄p(n), r̄p(n), w̄p(n), becomes then,

w̄p(n) = r̄p−1(n− 1)

f̄p−1(n) = τp f̄p(n)+γpw̄p(n)

r̄p(n) = τpw̄p(n)−γp f̄p(n)
(8.3.25)

Figs. 8.3.3 shows a third-order example, with three such normalized sections. Be-
cause the rescaling of the signals also requires the rescaling of the ladder coefficients,
which are denoted now by cp.

Fig. 8.3.4 Normalized lattice realization.

In order to maintain the equivalence of the normalized and the standard/rearranged
forms, the rescaled signals, f̄p(n), r̄p(n), and ladder coefficients cp must be defined as
follows in terms of the unscaled signals, fp(n), rp(n), and ladder coefficients dp. For
the general order-M case, we have the relationships,

342 8. LATTICE REALIZATIONS

fp(n) = σp f̄p(n)

rp(n) = σp r̄p(n)

dp = σM

σp
cp

p = 0,1, . . . ,M (8.3.26)

where,
τp = (1− γ2

p)1/2 , p = 1,2, . . . ,M

σ0 = 1

σp = τ1τ2 · · ·τp = τpσp−1 , p = 1,2, . . . ,M

(8.3.27)

In the normalized form, the overall input and output signals, x(n), y(n), will have
z-transforms, noting that, Rp(z)= AR

p(z)F0(z),

X(z) = F̄M(z)= σ−1
M FM(z)= σ−1

M AM(z)F0(z)

Y(z) =
M∑
p=0

cp R̄p(z)=
M∑
p=0

cpσ−1
p Rp(z)=

M∑
p=0

cpσ−1
p AR

p(z)F0(z)

so that the resulting transfer function will be,

H(z)= Y(z)
X(z)

=

M∑
p=0

cpσ−1
p AR

p(z)F0(z)

σ−1
M AM(z)F0(z)

or,

H(z)=

M∑
p=0

cpσ−1
p σMAR

p(z)

AM(z)
= BM(z)
AM(z)

(8.3.28)

which becomes identical to the transfer function of the standard lattice provided that
the dp and cp coefficients are related as in Eq. (8.3.26),

dp = cpσ−1
p σM , p = 0,1, . . . ,M (8.3.29)

which imply that the numerator polynomial is the same in the two realization forms,

BM(z)=
M∑
p=0

cpσ−1
p σMAR

p(z)=
M∑
p=0

dpAR
p(z)

The difference equations and sample processing algorithm of the normalized lattice
are derived from minor changes to the rearranged case,

8.4. DIRECT TO/FROM LATTICE TRANSFORMATIONS 343

for each time instant n, do,

f̄M(n)= x̄(n)

r̄M(n)= τM w̄M(n)−γM f̄M(n)
f̄M−1(n)= τM f̄M(n)+γMw̄M(n)

y(n)= cM r̄M(n)

for p =M−1,M−2, . . . ,1, do,

r̄p(n)= τpw̄p(n)−γp f̄p(n)
f̄p−1(n)= τp f̄p(n)+γpw̄p(n)

w̄p+1(n+ 1)= r̄p(n)

y(n)= y(n)+cp r̄p(n)
end

r̄0(n)= f̄0(n)

w̄1(n+ 1)= r̄0(n)

y(n)= y(n)+c0 r̄0(n)

end

for each input sample x, do,

f = x

r = τMwM − γMf

f = τMf + γMwM

y = cMr

for p =M−1,M−2, . . . ,1, do,

r = τpwp − γpf

f = τpf + γpwp

wp+1 = r

y = y + cpr

end

r = f

w1 = r

y = y + c0r

end

(8.3.30)

8.4 Direct to/from Lattice Transformations

Going back and forth from the direct-form coefficients to the lattice coefficients of the
normalized or standard forms can be done with the following MATLAB functions, dir2nl
and nl2dir, which use the recursions (8.3.11) and (8.3.12), also successively building the
matrix A that is needed to generate the ladder coefficients,

[g,d] = dir2nl(b,a,type); % type = ’n’, ’s’
% for normalized or standard forms
% default type = ’n’
% when type=’n’, d represents the c ladder coefficients

[b,a] = nl2dir(g,d,type); % default type = ’n’
% when type=’n’, d represents the c ladder coefficients

The essential code in these functions is given below. We note also that the built-
in MATLAB functions, tf2latc and latc2tf, perform similar operations, but only for the
standard lattice. By their convention, their reflection coefficients kp are the negatives
of ours, that is, kp = −γp. The ladder coefficients dp are the same.

344 8. LATTICE REALIZATIONS

nl2dir.m gamma,d --> b,a

M = length(g);

d = d(:); g = g(:);

a = 1; A = eye(M+1);

for p = 1:M,

a = [a; 0] - g(p)*[0; flip(a)];

A(1:p+1,p+1) = flip(a);

end

if type == ’n’

t = sqrt(1-g.^2);

s = [1; cumprod(t)] / prod(t);

d = d./s;

end

b = A*d;

dir2nl.m b,a --> gamma,d

g = zeros(M,1);

A(1:M+1,M+1) = flip(a);

for p = M:-1:1

g(p) = -a(end);

a = (a + g(p)*flip(a))/(1-g(p)^2);

a(end) = [];

A(1:p,p) = flip(a);

end

d = A\b;

if type == ’n’

t = sqrt(1-g.^2);

s = [1; cumprod(t)] / prod(t);

d = s.*d;

end

8.5 Filtering in Lattice Realizations

The filtering operations in the lattice realization are implemented by the following MAT-
LAB function, nlfilt, either in the normalized or the standard forms. Its inputs and
outputs are described below.

8.5. FILTERING IN LATTICE REALIZATIONS 345

% nlfilt.m - filtering in the normalized lattice form
%
% Usage: y = nlfilt(g,d,x,type)
% y = nlfilt(g,d,x) (default type = ’n’)
%
% g = gamma reflection coefficients = [g_1, ..., g_M]
% d = ladder weights = [d_0, d_1, ..., d_M]
% x = input signal vector (row or column)
% type = ’n’, ’s’, for normalized or standard/rearranged lattice, default ’n’
%
% y = output signal (same size as x)
%
% notes: implements the sample processing algorithm of the normalized lattice
%
% normalization factors / transmission coefficients, tau = sqrt(1-g.^2)
%
% type ’s’ standard lattice is implemented in its rearranged form

function y = nlfilt(g,d,x,type)

if nargin==0, help nlfilt; return; end
if nargin==3, type = ’n’; end

M = length(g);

if length(d) ~= M+1, disp(’d must have length M+1’); return; end

t = 1-g.^2; % transmission coefficients squared

if type == ’n’
tf = sqrt(t); % normalization gain factors
tr = tf;

else
tf = ones(M,1);
tr = t;

end

y = zeros(size(x)); % initialize y to same size as x
w = zeros(M,1); % internal states

for n = 1:length(x), % lattice/ladder sample processing algorithm
f = x(n); % f is f_M

for p = M:-1:1, % run over lattice sections
r = tr(p)*w(p) - g(p)*f;
f = tf(p)*f + g(p)*w(p);
if p<M, w(p+1) = r; end % next w_{p+1}(n+1) = r_p(n), skips p=M case
y(n) = y(n) + d(p+1)*r; % accumulate ladder output

end

y(n) = y(n) + d(1)*f; % d(1) stands for d_0, last f is f_0 = r_0
w(1) = f; % next w_1(n+1) = r_0(n) = f_0(n)

end

346 8. LATTICE REALIZATIONS

8.6 Frequency Response of Lattice Forms

The frequency response H(ω) of a lattice filter can be computed by mapping the coef-
ficients, {γp, cp}, to the direct form ones, {ai, bi} and using, for example, the built-in
MATLAB function freqz,

[b,a] = lat2dir(g,d,type);

omega = ... % define desired vector of digital frequencies [rads/sample]

H = freqz(b,a,omega);

Alternatively, the lat2dir function can be modified in order to compute the frequency
response of the lattice. The essential code implemented into the function, lat2freq, is
given below.

lat2freq.m gamma,d --> frequency response

M = length(g); % g,d assumed columns

if type == ’n’

t = sqrt(1-g.^2);

s = [1; cumprod(t)] / prod(t);

d = d./s;

end

a = 1;

B = d(1); % numerator DTFT

for p = 1:M,

a = [a; 0] - g(p)*[0; flip(a)];

B = B + d(p+1) * freqz(flip(a),1,w);

end

A = freqz(a,1,w); % denominator DTFT

H = B./A; % frequency response H(w)

8.7 Schur-Cohn Stability Test

A necessary and sufficient condition for the denominator polynomial AM(z) to have
all its zeros inside the unit circle on the z-plane is that all the reflection coefficients
extracted from AM(z) by the backward Levinson recursion have magnitude less that
one, that is, |γp| < 1, for p = 1,2, . . . ,M. For a proof, see Ref. [45].

Thus, the causality/stability of the IIR filter, H(z)= BM(z)/AM(z), can be deter-
mined by subjecting AM(z) to the backward Levinson recursion and extracting the re-
flection coefficients. This is known as the Schur-Cohn stability test.

8.8. LATTICE FILTER EXAMPLES 347

8.8 Lattice Filter Examples

Next, we discuss a number of examples that illustrate explicitly the operations of go-
ing from the direct to/from the lattice forms, as well as the filtering operations in the
standard or normalized forms.

Example 1

Consider the following order-3 transfer function,

H(z)= B3(z)
A3(z)

= 7+ 1.14z−1 − 3.9z−2 + z−3

1+ 0.1z−1 − 0.26z−2 + 0.6z−3

with filter coefficient vectors,

a3 =

⎡⎢⎢⎢⎣
1

0.1
−0.26

0.6

⎤⎥⎥⎥⎦ , b3 =

⎡⎢⎢⎢⎣
7

1.14
−3.9

1

⎤⎥⎥⎥⎦
We will construct the lower order polynomials A2(z),A1(z),A0(z) from the back-

ward Levinson recursion, and extract the reflection coefficients γ1, γ2, γ3 in the process,
and also express B3(z) as a linear combination of the reversed polynomials in the form,

B3(z)= d0AR
0 (z)+d1AR

1 (z)+d2AR
2 (z)+d3AR

3 (z) (8.8.1)

The steps are as follows. First we extract γ3 and calculate a2,

γ3 = −a33 = −0.6 ⇒ a2 = a3 + γ3aR3
1− γ2

3
=

⎡⎢⎢⎢⎣
1

0.1
−0.26

0.6

⎤⎥⎥⎥⎦+ (−0.6)

⎡⎢⎢⎢⎣
0.6
−0.26

0.1
1

⎤⎥⎥⎥⎦
1− (−0.6)2

=

⎡⎢⎢⎢⎣
1

0.4
−0.5

0

⎤⎥⎥⎥⎦
and after deleting the bottom zero in a2, we repeat the recursion to get γ2 and a1,

γ2 = −a22 = 0.5 ⇒ a1 = a2 + γ2aR2
1− γ2

2
=

⎡⎢⎣ 1
0.4
−0.5

⎤⎥⎦+ 0.5

⎡⎢⎣−0.5
0.4
1

⎤⎥⎦
1− 0.52

=
⎡⎢⎣ 1

0.8
0

⎤⎥⎦
and after deleting the bottom zero of a1, we have,

a1 =
[

1
0.8

]
⇒ γ1 = −a11 = −0.8

348 8. LATTICE REALIZATIONS

thus, [γ1, γ2, γ3]= [−0.8, 0.5, −0.6]. The feed-forward numerator coefficients dp are
calculated by solving the equation (8.3.20), which reads here,⎡⎢⎢⎢⎣

1 0.8 −0.5 0.6
0 1 0.4 −0.26
0 0 1 0.1
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
d0

d1

d2

d3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

7
1.14
−3.9

1

⎤⎥⎥⎥⎦ ⇒

⎡⎢⎢⎢⎣
d0

d1

d2

d3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

2
3
−4

1

⎤⎥⎥⎥⎦
with the solution obtained easily with the backward substitution. Finally, we verify
Eq. (8.8.1)

B3(z) = d0AR
0 (z)+d1AR

1 (z)+d2AR
2 (z)+d3AR

3 (z)

= 2+ 3
(
0.8+ z−1)+ (−4)

(−0.5+ 0.4z−1 + z−2)+ (0.6− 0.26z−1 + 0.1z−2 + z−3)
= 7+ 1.14z−1 − 3.9z−2 + z−3

Finally, we note that the normalized lattice feed-forward coefficients cp are related
to the dp coefficients as follows in the order-3 case,

σ0 = 1

σ1 = τ1

σ2 = τ1τ2

σ3 = τ1τ2τ3

⇒ dp = σ3

σp
cp ⇒

d0 = τ1τ2τ3 c0

d1 = τ2τ3 c1

d2 = τ3 c2

d3 = c3

where

τ1 =
√

1− γ2
1 =

√
1− (−0.8)2 = 0.6

τ2 =
√

1− γ2
2 =

√
1− (0.5)2 =

√
3

2
= 0.8660

τ3 =
√

1− γ2
3 =

√
1− (−0.6)2 = 0.8

Example 2

A third-order normalized lattice filter has reflection coefficients and ladder coefficients:[
γ1, γ2, γ3

] = [0.5, −0.6, −0.5
]

[
c0, c1, c2, c3

] = 1

6

[
40 , 15

√
3 , 8

√
3 , 6

] ≈ [6.6667 , 4.3301 , 2.3094 , 1
]

Determine the transfer function, H(z)= B3(z)/A3(z), of this filter, as well as the
lower order linear prediction polynomials, A1(z),A2(z), and the ladder coefficients
d0, d1, d2, d3 in the standard lattice form. Moreover, state the sample processing algo-
rithm in its standard lattice form and implement it in MATLAB applied to the particular
input,

x = [1, 2, 3, 4, 5, 6, 7, 8]

8.8. LATTICE FILTER EXAMPLES 349

We start by building the polynomials A1(z),A2(z),A3(z) using the forward Levin-
son recursion expressed in vectorial form. Starting with the 0th order polynomial,
a0 = aR0 = [1], we construct the order-1 polynomial A1(z),

a1 =
[

1
0

]
− γ1

[
0
1

]
=
[

1
0

]
− 0.5

[
0
1

]
=
[

1
−0.5

]

A1(z)= 1− 0.5z−1

Then, we construct the order-2 polynomial,

a2 =
[

a1

0

]
− γ2

[
0

aR1

]
=
⎡⎢⎣ 1
−0.5

0

⎤⎥⎦− (−0.6)

⎡⎢⎣ 0
−0.5

1

⎤⎥⎦ =
⎡⎢⎣ 1
−0.8
0.6

⎤⎥⎦
A2(z)= 1− 0.8z−1 + 0.6z−2

and finally the order-3 polynomial, which is the denominator of H(z),

a3 =
[

a2

0

]
− γ3

[
0

aR2

]
=

⎡⎢⎢⎢⎣
1

−0.8
0.6
0

⎤⎥⎥⎥⎦− (−0.5)

⎡⎢⎢⎢⎣
0

0.6
−0.8

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
−0.5
0.2
0.5

⎤⎥⎥⎥⎦
A3(z)= 1− 0.5z−1 + 0.2z−2 + 0.5z−3

Next, we transform the ladder coefficients cp into standard un-normalized ones dp,

τ1 =
√

1− γ2
1 =

√
3

2
, τ2 =

√
1− γ2

2 = 0.8 , τ3 =
√

1− γ2
3 =

√
3

2

d0 = τ1τ2τ3c0 =
√

3

2
· 0.8 ·

√
3

2
· 40

6
= 4

d1 = τ2τ3c1 = 0.8 ·
√

3

2
· 15

√
3

6
= 3

d2 = τ3c2 =
√

3

2
· 8
√

3

6
= 2

d3 = c3 = 1

and calculate the numerator polynomial coefficients from Eq. (8.3.20),⎡⎢⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 a11 a22 a33

0 1 a21 a32

0 0 1 a31

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
d0

d1

d2

d3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 −0.5 0.6 −0.5
0 1 −0.8 0.2
0 0 1 −0.5
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

4
3
2
1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

4.2
1.6
1.5
1

⎤⎥⎥⎥⎦
Thus, the overall transfer function will be,

H(z)= B3(z)
A3(z)

= 4.2+ 1.6z−1 + 1.5z−2 + z−3

1− 0.5z−1 + 0.2z−2 + 0.5z−3

350 8. LATTICE REALIZATIONS

The sample processing algorithm using the intermediate signals, f3, f2, f1, f0, and
r3, r2, r1, r0, and the delayed ones w3,w2,w1 will be as follows,

for each input sample x, do,

f3 = x

f2 = f3 + γ3w3

r3 = w3 − γ3 f2

y = d3r3

f1 = f2 + γ2w2

r2 = w2 − γ2 f1

w3 = r2

y = y + d2r2 = d2r2 + d3r3

f0 = f1 + γ1w1

r1 = w1 − γ1 f0

w2 = r1

y = y + d1r1 = d1r1 + d2r2 + d3r3

r0 = f0

w1 = r0

y = y + d0r0 = d0r0 + d1r1 + d2r2 + d3r3

The MATLAB implementation for this example is as follows,

g1 = 0.5; g2 = -0.6; g3 = -0.5; % reflection coefficients

d0 = 4; d1 = 3; d2 = 2; d3 = 1; % ladder coefficients

b = [4.2, 1.6, 1.5, 1]; % numerator coefficients

a = [1, -0.5, 0.2, 0.5]; % denominator coefficients

x = [1 2 3 4 5 6 7 8]’; % input signal

w1 = 0; w2 = 0; w3 = 0; % initial states

y = zeros(size(x));

for n = 1:length(x)

f = x(n); % section 3

f = f + g3*w3;

r = w3 - g3*f;

y(n) = y(n) + d3*r;

f = f + g2*w2; % section 2

r = w2 - g2*f;

w3 = r;

8.8. LATTICE FILTER EXAMPLES 351

y(n) = y(n) + d2*r;

f = f + g1*w1; % section 1

r = w1 - g1*f;

w2 = r;

y(n) = y(n) + d1*r;

r = f;

w1 = r;

y(n) = y(n) + d0*r; % final output sample

end

yf = filter(b,a,x); % compare with output from FILTER

[x,y,yf]

% 1 4.2000 4.2000

% 2 12.1000 12.1000

% 3 22.5100 22.5100

% 4 32.3350 32.3350

% 5 39.5155 39.5155

% 6 44.2357 44.2358

% 7 48.5473 48.5473

% 8 54.4687 54.4687

Example 3

Here, we consider a concrete MATLAB implementation of another third-order example
realized in its normalized lattice form. The sample processing algorithm implementing
the bottom block diagram on page-7 using the intermediate signals f̄3, f̄2, f̄1, f̄0, and
r̄3, r̄2, r̄1, r̄0, and the delayed ones w̄3, w̄2, w̄1 will be as follows,

352 8. LATTICE REALIZATIONS

for each input sample x, do,

f̄3 = x

r̄3 = τ3 w̄3 − γ3 f̄3

f̄2 = τ3 f̄3 + γ3 w̄3

y = c3 r̄3

r̄2 = τ2 w̄2 − γ2 f̄2

f̄1 = τ2 f̄2 + γ2 w̄2

w̄3 = r̄2

y = y + c2 r̄2 , or, y = c3 r̄3 + c2 r̄2

r̄1 = τ1 w̄1 − γ1 f̄1

f̄0 = τ1 f̄1 + γ1 w̄1

w̄2 = r̄1

y = y + c1 r̄1 , or, y = c3 r̄3 + c2 r̄2 + c1 r̄1

r̄0 = f̄0

y = y + c0 r̄0 , or, y = c3 r̄3 + c2 r̄2 + c1 r̄1 + c0 r̄0

w̄1 = r̄0

The following MATLAB program is a concrete implementation.

c = [1 2 -4 5]; % ladder coefficients
ga = [0.6, -0.8, -0.6]; % reflection coefficients
tau = sqrt(1-ga.^2); % tau = [0.8, 0.6, 0.8]

g1 = ga(1); t1 = tau(1); % simplified notation
g2 = ga(2); t2 = tau(2);
g3 = ga(3); t3 = tau(3);
c0 = c(1);
c1 = c(2);
c2 = c(3);
c3 = c(4);

[b,a] = lat2dir(ga,c,’n’); % direct-form coefficients

% [b,a]
% 0.2480 1.0000
% 5.1760 -0.6000
% -6.2000 0.1520
% 5.0000 0.6000

x = [1 2 3 4 5]’; % input signal

y = zeros(size(x)); % output has same size as x

8.9. QUANTIZATION EFFECTS IN DIGITAL FILTERS 353

w1=0; w2=0; w3=0; % initialize states

for n=1:length(x)
f3 = x(n); % section 3
r3 = t3*w3 - g3*f3;
f2 = t3*f3 + g3*w3;
y(n) = c3*r3;

r2 = t2*w2 - g2*f2; % section 2
f1 = t2*f2 + g2*w2;
w3 = r2;
y(n) = y(n) + c2*r2;

r1 = t1*w1 - g1*f1; % section 1
f0 = t1*f1 + g1*w1;
w2 = r1;
y(n) = y(n) + c1*r1;

r0 = f0; % wrap up
y(n) = y(n) + c0*r0;
w1 = r0;

end

[x,y] % print x,y
% x y
% ------------
% 1 0.2480
% 2 5.8208
% 3 8.3508
% 4 13.0969
% 5 16.4403

Err = norm(y - nlfilt(ga,c,x)) % compare with nlfilt()
% Err =
% 0

Err = norm(y - filter(b,a,x)) % compare with filter()
% Err =
% 4.4440e-15

8.9 Quantization Effects in Digital Filters

There are two types of quantization effects in digital filters besides the quantization of
the input and output signals: roundoff errors in the internal computations of the filter
and coefficient quantization.

Coefficient quantization takes place whenever the filter coefficients are rounded
from their exact values to a finite number of digits (or, bits for hardware implemen-
tations). The direct and canonical realizations tend to be extremely sensitive to such
roundings, whereas the cascade realization remains very robust.

For higher-order filters whose poles are closely clustered in the z-plane, small changes
in the denominator coefficients can cause large shifts in the location of the poles. If any
of the poles moves outside the unit circle, the filter will become unstable, rendering

354 8. LATTICE REALIZATIONS

it completely unusable. But even if the poles do not move outside, their large shifts
may distort the frequency response of the filter so that it no longer satisfies the design
specifications.

The sensitivity of the poles to the quantization of the filter coefficients can be quan-
tified as follows. Consider an order-M monic denominator polynomial A(z) with M
poles pj, j = 1,2, . . . ,M, that are assumed to be distinct for simplicity, that is, with
a0 = 1,

A(z)=
M∑

m=0

amz−m =
M∏
j=1

(1− pjz−1)

Separating out the ith pole, we may write,

A(z)=
M∑

m=0

amz−m = (1− piz−1)F(z) , F(z)=
M∏
j=1
j �=i

(1− pjz−1)

and taking differentials of both sides, we obtain the identity in z,

dA(z)=
M∑

m=0

(dam)z−m = −(dpi)z−1F(z)+(1− piz−1)dF(z)

then, setting z = pi, will isolate the dpi term,

M∑
m=0

(dam)p−mi = −(dpi)p−1
i F(pi)= −(dpi)p−1

i

M∏
j=1
j �=i

(1−pj p−1
i)= −(dpi)p−Mi

M∏
j=1
j �=i

(pi−pj)

from which we obtain the partial derivatives,

∂pi
∂am

= − pM−mi
M∏
j=1
j �=i

(pi − pj)

, for i,m = 1,2, . . . ,M (8.9.1)

Thus, if the poles pj are closely clustered with each other, as they tend to be when
one designs filters with very sharp specifications, then, the partial derivatives will be
very large, implying that tiny shifts in the coefficients am can cause large shifts in the
poles and could shift them outside the unit circle, rendering the filter unstable.

In practice, one must always check that the stability and specifications of the filter
are preserved by the rounded coefficients. In using a software package to design a filter,
one must always copy the designed coefficients with enough digits to guarantee these
requirements. The computer experiments in Sec. 8.10 explore such quantization effects
and some common pitfalls.

We do not mean to imply that the direct and canonical forms are always to be avoided;
in fact, we saw in Examples 7.6.3 and 7.6.4 that the canonical forms were much simpler
to implement than the cascade ones, and were also very robust under coefficient quan-
tization.

8.10. COMPUTER EXPERIMENTS – COEFFICIENT QUANTIZATION EFFECTS 355

In summary, the cascade form is recommended for the implementation of high-order
narrowband lowpass, bandpass, or highpass IIR filters that have closely clustered poles.
In this regard, it is convenient that many IIR filter design techniques, such as the bilinear
transformation method, give the results of the design already in cascaded form.

There are other realization forms, such as cascaded second-order sections in trans-
posed form, parallel forms, and normalized lattice forms that are also very robust under
coefficient quantization [2].

Roundoff errors occur in the internal multiplication and accumulation operations,
for example, y :=y+ aw. The product aw requires twice as many bits as the factors to
be represented correctly. A roundoff error will occur if this product is rounded to the
original wordlength of the two factors. Such roundoff errors can be trapped into the
feedback loops of recursive filters and can get amplified, causing too much distortion
in the desired output.

Special state-space realizations and the technique of quantization noise shaping (also
called in this context error spectrum shaping) can be used to minimize the accumula-
tion of roundoff error [14,86–92]. To prevent overflow of intermediate results in filter
computations, appropriate scaling factors must be introduced at various points within
the filter stages [19,93,94].

Modern DSP chips address the issues of quantization effects in two ways: by using
long wordlengths, such as 32 bits, for coefficient storage, and by using double-precision
accumulators that can perform several MAC operations without roundoff error before
the final result is rounded out of the accumulator.

8.10 Computer Experiments – Coefficient Quantization Effects

Experiment 1

Consider the double resonator filter given in cascade and direct forms:

H(z) = 1

1− 1.8955z−1 + 0.9930z−2
· 1

1− 1.6065z−1 + 0.9859z−2

= 1

1− 3.5020z−1 + 5.0240z−2 − 3.4640z−3 + 0.9790z−4

(8.10.1)

using four-digit precision to represent the coefficients.

a. Calculate the zeros of the denominators in polar form and place them on the z-
plane with respect to the unit circle. Are they inside the unit circle? Plot the
magnitude response of the filter in dB for 0 ≤ω ≤ π/2. Then, using the function
filter calculate the filter’s impulse response h(n) for n = 0,1, . . . ,599, and plot it
versus n.

b. Consider the cascade form and round the coefficients of the individual second-
order sections to two-digit accuracy. Then, repeat all questions of part (a). Discuss
the stability of the resulting filter and compare its magnitude response with that
of part (a).

356 8. LATTICE REALIZATIONS

c. Consider the fourth-order direct-form denominator polynomial and round its coef-
ficients to two-digit accuracy. Then, again, repeat all questions of part (a). Discuss
the stability of the resulting filter and compare its magnitude response with that
of part (a), if such comparison makes sense (why or why not?).

Experiment 2

It is desired to design and implement a digital lowpass Chebyshev type-1 filter having
the following specifications: sampling rate of 20 kHz, passband frequency of 1 kHz,
stopband frequency of 2 kHz, passband attenuation of 1 dB, and stopband attenuation
of 50 dB. The design method described in Sec. 12.12, generates a sixth-order transfer
function in cascade and direct forms:

H(z) = G · (1+ z−1)2

1+ a11z−1 + a12z−2
· (1+ z−1)2

1+ a21z−1 + a22z−2
· (1+ z−1)2

1+ a31z−1 + a32z−2

= G · (1+ z−1)6

1+ a1z−1 + a2z−2 + a3z−3 + a4z−4 + a5z−5 + a6z−6

where the normalization gain factor is G = 8.07322364×10−7 and is to remain fixed in
the remainder of this problem. The full precision coefficients are given below:

a1 = [1, a11, a12]= [1 , −1.86711351 , 0.96228613]

a2 = [1, a21, a22]= [1 , −1.84679822 , 0.89920764]

a3 = [1, a31, a32]= [1 , −1.85182222 , 0.86344488]

(8.10.2)

where “full precision” means eight-digit precision.

a. Carry out the filter design procedure, and verify that the above 8-digit coefficients,
and the gainG, are correct. Then, calculate the direct-form denominator coefficient
vector:

a = a1 ∗ a2 ∗ a3 = [1, a1, a2, a3, a4, a5, a6]

as well as the normalized lattice coefficients, γp, cp, using your function dir2lat.
Replace all these coefficients by their 8-digit approximations, and verify that the
resulting values are given correctly by the following table,

p ap γp Gcp
0 1.00000000 0.25668361
1 −5.56573395 0.98144049 0.15971532
2 13.05062482 −0.98561779 0.03518539
3 −16.49540451 0.98529921 0.00411257
4 11.84993647 −0.98329869 0.00028542
5 −4.58649943 0.96911938 0.00001405
6 0.74713457 −0.74713457 0.00000081

8.10. COMPUTER EXPERIMENTS – COEFFICIENT QUANTIZATION EFFECTS 357

b. Calculate the six zeros of a and their magnitudes, and display them on the z-plane.

Calculate and plot in dB the magnitude response of this filter over the interval 0 ≤
f ≤ 1.2 kHz, and verify that it meets the prescribed 1 dB passband specification.

Using the normalized lattice form implemented by your function, nlfilt, calculate
and plot the impulse response of this filter, h(n), for n = 0,1, . . . ,200. Moreover,
calculate it also using the function filter, and compare the two methods.

c. Determine the quantized version of a, say â, rounded to five-digit fractional accu-
racy and calculate its 6 zeros and their magnitudes. Are all the zeros inside the
unit circle? Compare the zeros with the full precision zeros. Using â as the filter
denominator vector, calculate in dB the magnitude response.

Then, round the normalized lattice coefficientsγp, cp to 5-digit fractional precision
and calculate the corresponding magnitude response of the normalized lattice us-
ing your function lat2freq, and plot it together with the above 5-digit direct form,
and with the exact response of part (b).

d. Determine the quantized version of a, say â, rounded to four-digit fractional accu-
racy and calculate its 6 zeros and their magnitudes. Are all the zeros inside the
unit circle? You should find that the direct form is now unstable and therefore the
calculation of its magnitude response is meaningless (why is that?).

However, the normalized lattice and cascaded forms remain stable. To see this,
round the normalized lattice coefficients γp, cp to 4-digit precision, and verify that
the resulting γp’s have magnitude less than one, which guarantees stability by the
Schur-Cohn stability criterion. Then, calculate the magnitude response of the 4-
digit normalized lattice using your function lat2freq.

In addition, round to four-digit fractional precision the individual second-order
coefficient vectors ai, i = 1,2,3, of the cascade form of Eq. (8.10.2), and compute
their zeros displaying them on the z-plane, and also compute the corresponding
magnitude response.

On the same graph, plot the 4-digit normalized lattice and cascade magnitude
responses, and the exact response.

e. Repeat all the questions of part (d) using 3-digit fractional precision. In addition,
compute and plot the corresponding impulse responses,h(n), forn = 0,1, . . . ,200,
of the 3-digit normalized lattice and cascade forms, and the exact response.

358 8. LATTICE REALIZATIONS

Example Graphs for Experiments 1 & 2

0 100 200 300 400 500 600
−15

−10

−5

0

5

10

15

time samples, n

impulse response, exact

0 0.1 0.2 0.3 0.4 0.5
−20

0

20

40

60

80

ω/π

dB

magnitude response

 exact
 2−digit cascade

0 100 200 300 400 500 600
−15

−10

−5

0

5

10

15

time samples, n

impulse response, 2−digit cascade

0 100 200 300 400 500 600
−150

−100

−50

0

50

100

150

time samples, n

impulse response, 2−digit direct

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

z−plane poles, 2−digit cascade

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

z−plane poles, 2−digit direct

8.10. COMPUTER EXPERIMENTS – COEFFICIENT QUANTIZATION EFFECTS 359

0 0.2 0.4 0.6 0.8 1 1.2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

f (kHz)

dB

magnitude response, 5−digit

 5−digit direct
 5−digit lattice
 exact

0 0.2 0.4 0.6 0.8 1 1.2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

f (kHz)

dB

magnitude response, 4−digit

 4−digit lattice
 4−digit cascade
 exact

0 0.2 0.4 0.6 0.8 1 1.2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

f (kHz)

dB

magnitude response, 3−digit

 3−digit lattice
 3−digit cascade
 exact

0 50 100 150 200
−0.05

0

0.05

0.1

time samples, n

impulse response, 3−digit

 3−digit lattice
 3−digit cascade
 exact

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

z−plane poles, 3−digit direct

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

z−plane poles, 3−digit cascade

9
DTFT and Spectral Analysis

The discrete Fourier transform (DFT) and its fast implementation, the fast Fourier trans-
form (FFT), have three major uses in DSP: (a) the numerical computation of the frequency
spectrum of a signal; (b) the efficient implementation of convolution by the FFT; and (c)
the coding of waveforms, such as speech or pictures, for efficient transmission and
storage [222–227,242–263,642]. The discrete cosine transform, which is a variant of the
DFT, is especially useful for coding applications [257–259]. In this chapter, we discuss
spectrum estimation methods for both deterministic and stationary random signals.

9.1 Frequency Resolution and Windowing

To compute the spectrum of an analog signal digitally, a finite-duration record of the
signal is sampled and the resulting samples are transformed to the frequency domain
by a DFT or FFT algorithm. The sampling rate fs must be fast enough to minimize
aliasing effects. If necessary, an analog antialiasing prefilter may precede the sampling
operation.

The spectrum of the sampled signal X̂(f) is the replication of the desired analog
spectrum X(f) at multiples of the sampling rate fs, as given by the Poisson summation
formula, Eq. (1.5.19) of Chapter 1. We saw there that with the proper choice of sampling
rate and prefilter, it can be guaranteed that X̂(f) agree with the desired X(f) over the
Nyquist interval, that is, by Eq. (1.5.20):

TX̂(f)= X(f), − fs
2
≤ f ≤ fs

2
(9.1.1)

This property is a direct consequence of the sampling theorem, following from the
non-overlapping of the spectral replicas in X̂(f). However, if the replicas overlap, they
will contribute to the right-hand side of Eq. (9.1.1), making the sampled spectrum dif-
ferent from the desired one:

TX̂(f)= X(f)+X(f − fs)+X(f + fs)+· · ·︸ ︷︷ ︸
replicas

, − fs
2
≤ f ≤ fs

2
(9.1.2)

360

9.1. FREQUENCY RESOLUTION AND WINDOWING 361

Because digitally we can only compute X̂(f), it is essential that Eq. (9.1.1) be satis-
fied, or that the extra terms in Eq. (9.1.2) remain small over the Nyquist interval, which
happens whenX(f) falls off sufficiently fast with f . Example 1.5.2 illustrates the nature
of the approximation of Eq. (9.1.2) for a non-bandlimited signal.

Even though X̂(f) is the closest approximation to X(f) that we can achieve by DSP,
it is still not computable because generally it requires an infinite number of samples
x(nT), −∞ < n < ∞. To make it computable, we must make a second approximation
to X(f), keeping only a finite number of samples, say, x(nT), 0 ≤ n ≤ L − 1. This
time-windowing process is illustrated in Fig. 9.1.1.

In terms of the time samples x(nT), the original sampled spectrum X̂(f) and its
time-windowed version X̂L(f) are given by:

X̂(f) =
∞∑

n=−∞
x(nT)e−2πjfnT

X̂L(f) =
L−1∑
n=0

x(nT)e−2πjfnT

(9.1.3)

Fig. 9.1.1 Time windowing.

As seen in Fig. 9.1.1, the duration of the windowed data record from the time sample
at n = 0 to the sample at n = L− 1 is (L− 1)T seconds, where T is the sampling time
interval T = 1/fs. Because each sample lasts for T seconds, the last sample will last
until time LT. Therefore, we may take the duration of the data record to be:

TL = LT (9.1.4)

The windowed signal may be thought of as an infinite signal which is zero outside
the range of the window and agrees with the original one within the window. To express
this mathematically, we define the rectangular window of length L:

w(n)=
{

1, if 0 ≤ n ≤ L− 1

0, otherwise
(9.1.5)

Then, define the windowed signal as follows:

362 9. DTFT AND SPECTRAL ANALYSIS

xL(n)= x(n)w(n)=
{

x(n), if 0 ≤ n ≤ L− 1

0, otherwise
(9.1.6)

The multiplication by w(n) ensures that xL(n) vanish outside the window. Equations
(9.1.3) can now be expressed more simply in the form:

X(ω) =
∞∑

n=−∞
x(n)e−jωn

XL(ω) =
L−1∑
n=0

x(n)e−jωn =
∞∑

n=−∞
xL(n)e−jωn

(9.1.7)

where ω = 2πf/fs. Thus, XL(ω) is the DTFT of the windowed signal xL(n) and is
computable for any desired value of ω.

As the length L of the data window increases, the windowed signal xL(n) becomes
a better approximation of x(n), and thus, XL(ω) a better approximation of X(ω).
Example 1.5.2 illustrates this approximation as L increases.

In general, the windowing process has two major effects: First, it reduces the fre-
quency resolution of the computed spectrum, in the sense that the smallest resolvable
frequency difference is limited by the length of the data record, that is, Δf = 1/TL.
This is the well-known “uncertainty principle.” Second, it introduces spurious high-
frequency components into the spectrum, which are caused by the sharp clipping of the
signal x(n) at the left and right ends of the rectangular window. This effect is referred
to as “frequency leakage.”

Both effects can be understood by deriving the precise connection of the windowed
spectrum XL(ω) to the unwindowed one X(ω) of Eq. (9.1.7). Using the property that
the Fourier transform of the product of two time functions is the convolution of their
Fourier transforms, we obtain the frequency-domain version of xL(n)= x(n)w(n):

XL(ω)=
∫ π

−π
X(ω′)W(ω−ω′)

dω′

2π
(9.1.8)

where W(ω) is the DTFT of the rectangular window w(n), that is,

W(ω)=
L−1∑
n=0

w(n)e−jωn

It can be thought of as the evaluation of the z-transform on the unit circle at z = ejω.
Setting w(n)= 1 in the sum, we find:

W(z)=
L−1∑
n=0

w(n)z−n =
L−1∑
n=0

z−n = 1− z−L

1− z−1

Setting z = ejω, we find for W(ω):

W(ω)= 1− e−jLω

1− e−jω
= sin(ωL/2)

sin(ω/2)
e−jω(L−1)/2 (9.1.9)

9.1. FREQUENCY RESOLUTION AND WINDOWING 363

The magnitude spectrum |W(ω)| = | sin(ωL/2)/ sin(ω/2)| is depicted in Fig. 9.1.2.
It consists of a mainlobe of height L and base width 4π/L centered atω = 0, and several
smaller sidelobes.

Fig. 9.1.2 Magnitude spectrum of rectangular window.

The sidelobes are between the zeros of W(ω), which are the zeros of the numerator
sin(ωL/2)= 0, that is, ω = 2πk/L, for k = ±1,±2, . . . (with k = 0 excluded).

The mainlobe peak at DC dominates the spectrum, because w(n) is essentially a DC
signal, except when it cuts off at its endpoints. The higher frequency components that
have “leaked” away from DC and lie under the sidelobes represent the sharp transitions
of w(n) at the endpoints.

The width of the mainlobe can be defined in different ways. For example, we may
take it to be the width of the base, 4π/L, or, take it to be the 3-dB width, that is, where
|W(ω)|2 drops by 1/2. For simplicity, we will define it to be half the base width, that
is, in units of radians per sample:

Δωw = 2π
L

(rectangular window width) (9.1.10)

In units of Hz, it is defined through Δωw = 2πΔfw/fs. Using Eq. (9.1.4), we have:

Δfw = fs
L
= 1

LT
= 1

TL
(9.1.11)

We will see shortly that the mainlobe width Δfw determines the frequency resolution
limits of the windowed spectrum. As L increases, the height of the mainlobe increases
and its width becomes narrower, getting more concentrated around DC. However, the
height of the sidelobes also increases, but relative to the mainlobe height, it remains
approximately the same and about 13 dB down.

For example, the peak of the first sidelobe occurs approximately halfway between
the two zeros 2π/L and 4π/L, that is, at ω = 3π/L. Using W(0)= L, we find that the
relative heights are essentially independent of L:∣∣∣∣W(ω)

W(0)

∣∣∣∣
ω=3π/L

=
∣∣∣∣ sin(ωL/2)
L sin(ω/2)

∣∣∣∣ = ∣∣∣∣ sin(3π/2)
L sin(3π/2L)

∣∣∣∣ � 1

L · (3π/2L)
= 2

3π

364 9. DTFT AND SPECTRAL ANALYSIS

We assumed that L was fairly large (typically, L ≥ 10), and used the small-x approx-
imation sinx � x with x = 3π/2L. In decibels, the relative sidelobe level is

R = 20 log10

∣∣∣∣W(ω)
W(0)

∣∣∣∣
ω=3π/L

� 20 log10

(
2

3π

)
= −13.46 dB

More precisely, the local maximum of the first sidelobe occurs at ω = 2.8606π/L,
corresponding to an attenuation of 13.26 dB.

To illustrate the effect of the convolutional equation (9.1.8), we consider the case of
a single analog complex sinusoid of frequency f1 and its sampled version:

x(t)= e2πjf1t, −∞ < t <∞ ⇒ x(n)= e2πjf1nT = ejω1n, −∞ < n <∞

where ω1 = 2πTf1 = 2πf1/fs. The spectrum of the analog signal x(t) is the Fourier
transform:

X(f)=
∫∞
−∞

x(t)e−2πjft dt =
∫∞
−∞

e−2πj(f−f1)t dt = δ(f − f1)

Therefore, X(f) consists of a single sharp spectral line at f = f1. For a real sinusoid
x(t)= cos(2πf1t), we would get two half-height lines at f = ±f1. Indeed, the Fourier
transform of the cosine is:

cos(2πf1t)= 1

2
e2πjf1t + 1

2
e−2πjf1t −→ 1

2
δ(f − f1)+1

2
δ(f + f1)

Assuming that f1 lies within the Nyquist interval, that is, |f1| ≤ fs/2, we may use
Eq. (9.1.1) to determine the spectrum of the signal x(n) for −fs/2 ≤ f ≤ fs/2:

X(ω)= X̂(f)= 1

T
X(f)= 1

T
δ(f − f1)

Using the delta function property, |a|δ(ax)= δ(x), we can express the spectrum in
terms of the digital frequency ω = 2πf/fs = 2πTf , as follows:

2πδ(ω−ω1)= 1

T
2πTδ(2πTf − 2πTf1)= 1

T
δ(f − f1)

Therefore, the spectrum of the sampled signal will be, over the Nyquist interval:

X(ω)= 2πδ(ω−ω1), −π ≤ω ≤ π (9.1.12)

Outside the Nyquist interval, the spectral line is replicated at multiples of 2π, that
is, 2πδ(ω−ω1 − 2πm). This was also discussed in Section 5.4. It can be verified that
Eq. (9.1.12) generates the sampled sinusoid from the inverse DTFT formula, Eq. (1.5.5):

x(n)=
∫ π

−π
X(ω)ejωn dω

2π
=
∫ π

−π
2πδ(ω−ω1)ejωn dω

2π
= ejω1n

The windowed sinusoid consists of the L samples:

xL(n)= ejω1n, n = 0,1, . . . , L− 1

9.1. FREQUENCY RESOLUTION AND WINDOWING 365

Its spectrum is obtained by inserting Eq. (9.1.12) into (9.1.8):

XL(ω)=
∫ π

−π
X(ω′)W(ω−ω′)

dω′

2π
=
∫ π

−π
2πδ(ω′ −ω1)W(ω−ω′)

dω′

2π

Because of the delta function δ(ω′ −ω1) in the integrand, we obtain:

XL(ω)=W(ω−ω1) (9.1.13)

This is the translation of W(ω) centered about ω1, as shown in Fig. 9.1.3. Thus, the
windowing process has the effect of smearing the sharp spectral line δ(ω−ω1) at ω1

and replacing it by W(ω−ω1).

ωω1 ω1 ω2 ω

W(ω−ω1)

δ(ω−ω1)

A1W(ω−ω1) A2W(ω−ω2)

A2δ(ω−ω2)A1δ(ω−ω1)

ΔωwΔωw
frequency
leakage

Δω

Fig. 9.1.3 Spectra of windowed single and double sinusoids.

A similar analysis can be made in the case when x(t) is a linear combination of two
complex sinusoids with frequencies f1 and f2 and (complex) amplitudes A1 and A2. We
have for the analog, sampled, and windowed signals and their spectra:

x(t) = A1e2πjf1t +A2e2πjf2t, −∞ < t <∞
X(f) = A1δ(f − f1)+A2δ(f − f2)

x(n) = A1ejω1n +A2ejω2n, −∞ < n <∞
X(ω) = 2πA1δ(ω−ω1)+2πA2δ(ω−ω2), −π ≤ω ≤ π

xL(n) = A1ejω1n +A2ejω2n, 0 ≤ n ≤ L− 1

XL(ω) = A1W(ω−ω1)+A2W(ω−ω2)

Again, the two sharp spectral lines are replaced by their smeared versions, as shown
in Fig. 9.1.3. In this figure, we have taken the frequency separation, Δf = |f2 − f1|,
or Δω = |ω2 −ω1|, of the two sinusoids to be large enough so that the mainlobes
are distinct and do not overlap. However, if Δf is decreased, the mainlobes will begin
merging with each other and will not appear as distinct. This will start to happen when
Δf is approximately equal to the mainlobe width Δfw.

366 9. DTFT AND SPECTRAL ANALYSIS

The resolvability condition that the two sinusoids appear as two distinct ones is that
their frequency separation Δf be greater than the mainlobe width:

Δf ≥ Δfw = fs
L

(frequency resolution) (9.1.14)

or, in radians per sample:

Δω ≥ Δωw = 2π
L

(9.1.15)

These equations can be rewritten to give the minimum number of samples required
to achieve a desired frequency resolution Δf . The smaller the desired separation, the
longer the data record:

L ≥ fs
Δf

= 2π
Δω

(9.1.16)

The mainlobe width of W(ω) determines the amount of achievable frequency res-
olution. The sidelobes, on the other hand, determine the amount of frequency leakage
and are undesirable artifacts of the windowing process. They must be suppressed as
much as possible because they may be confused with the mainlobes of weaker sinusoids
that might be present.

The standard technique for suppressing the sidelobes is to use a non-rectangular
window—a window that cuts off to zero less sharply and more gradually than the rect-
angular one. There are literally dozens of possible shapes for such windows, such as
trapezoidal, triangular, Gaussian, raised cosine, and many others [222–227].

One of the simplest and most widely used window is the Hamming window. It pro-
vides a suppression of the sidelobes by at least 40 dB (more accurately, 42.67 dB). An-
other one that allows the user to control the desired amount of sidelobe suppression is
the Kaiser window [224], which we will discuss later in Sec. 9.3. The Hamming window,
depicted in Fig. 9.1.4, is a raised-cosine type of window defined as follows:

w(n)=
⎧⎨⎩ 0.54− 0.46 cos

(
2πn
L− 1

)
, if 0 ≤ n ≤ L− 1

0, otherwise
(9.1.17)

At its center, n = (L − 1)/2, the value of w(n) is 0.54 + 0.46 = 1, and at its
endpoints, n = 0 and n = L− 1, its value is 0.54− 0.46 = 0.08. Because of the gradual
transition to zero, the high frequencies that are introduced by the windowing process are
de-emphasized. Fig. 9.1.4 shows the magnitude spectrum |W(ω)|. The sidelobes are
still present, but are barely visible because they are suppressed relative to the mainlobe
by R = 40 dB.

The main tradeoff in using any type of non-rectangular window is that its mainlobe
becomes wider and shorter, thus, reducing the frequency resolution capability of the
windowed spectrum. For any type of window, the effective width of the mainlobe is still
inversely proportional to the window length:

9.1. FREQUENCY RESOLUTION AND WINDOWING 367

ω

|W(ω)|

Δωw

0 π−π

rectangular
rectangular
window

Hamming

Hamming
window

1

0 21

0.08

L-1

L

n...

w(n)

R= 40 dB

4π
L

−4π
L

Fig. 9.1.4 Hamming window in the time and frequency domains.

Δfw = c
fs
L
= c

1

TL
(9.1.18)

or, in radians per sample:

Δωw = c
2π
L

(9.1.19)

where the constant c depends on the window used and is always c ≥ 1.
The rectangular window has the narrowest width, corresponding to c = 1. As seen

in Fig. 9.1.4, the Hamming window has approximately c = 2, that is, its mainlobe is twice
as wide as the rectangular one. The Kaiser window has variable c that depends on the
prescribed amount of relative sidelobe level R; see Eq. (11.3.25).

Given a finite data record of L samples, x(n), n = 0,1, . . . , L − 1, the windowed
signal is defined by Eq. (9.1.6); for example, for the Hamming window:

xL(n)= w(n)x(n)=
[

0.54− 0.46 cos
(

2πn
L− 1

)]
x(n) (9.1.20)

for n = 0,1, . . . , L− 1.
The corresponding spectrumXL(ω) will still be given by Eq. (9.1.8). If x(n) consists

of a linear combination of sinusoids, then each sharp spectral lineδ(ω−ωi) of x(n)will
be replaced by the Hamming window spectrum W(ω−ωi). The frequency resolution
depends now on the width of the Hamming window Δfw. It follows that the minimum
resolvable frequency difference will be:

Δf ≥ Δfw = c
fs
L
= c

1

TL
(9.1.21)

This implies that the minimum data record required to achieve a given value of Δf
is c-times longer than that of a rectangular window:

L ≥ c
fs
Δf

= c
2π
Δω

(9.1.22)

368 9. DTFT AND SPECTRAL ANALYSIS

In summary, the windowing process introduces artificial high-frequency compo-
nents, which can be suppressed by using a non-rectangular window, but at the expense
of reducing the frequency resolution. The lost frequency resolution can be recovered
only by increasing the length L of the data record.

For random signals, such as sinusoids in noise, one must also deal with the statistical
reliability of the computed spectra. In Sec. 9.6, we discuss the periodogram averaging
and periodogram smoothing methods which may be used to reduce the statistical vari-
ability of the spectrum estimate.

The periodogram averaging method consists of dividing the total length-L data record
into K contiguous segments of length N, such that L = KN. In order to reduce fre-
quency leakage, a length-N non-rectangular window, such as a Hamming window, may
be applied to each signal segment before its DTFT is computed.

The resulting reduction in resolution must be compensated for by increasing the
length N. For a fixed total length L, this will reduce the number of segments K, thus
worsening the spectrum estimate. Therefore, N must be chosen to be large enough to
achieve a desired frequency resolution, but not larger. The Welch method is a variation
of the averaging method in which the data record is divided into segments that are
50-percent overlapping—we discuss this further in Sec. 9.6.

The relationships L = KN andN = cfs/Δf capture these tradeoffs: We want K to be
large enough to get a reliable spectrum estimate, and we want N to be large enough to
give us the desired resolutionΔf for the particular window that we chose. Thus, together
the two conditions require the total length L to be large. In some applications, this may
be impossible to achieve, either because we cannot collect more data, or because beyond
a certain length L, the signal will no longer remain stationary.

Parametric spectrum estimation methods, such as those based on linear prediction,
maximum likelihood, and eigenvector techniques, offer the possibility of obtaining high-
resolution spectrum estimates based on short data records [25,26,45].

Example 9.1.1: A signal consisting of four sinusoids of frequencies of 1, 1.5, 2.5, and 2.75 kHz
is sampled at a rate of 10 kHz. What is the minimum number of samples that should be
collected for the frequency spectrum to exhibit four distinct peaks at these frequencies?
How many samples should be collected if they are going to be preprocessed by a Hamming
window and then Fourier transformed?

Solution: The smallest frequency separation that must be resolved by the DFT is Δf = 2.75 −
2.5 = 0.25 kHz. Using Eq. (9.1.16) for a rectangular window, we get

L ≥ fs
Δf

= 10

0.25
= 40 samples

Because the mainlobe width of the Hamming window is twice as wide as that of the rect-
angular window, it follows that twice as many samples must be collected, that is, L = 80.
This value can also be calculated from Eq. (9.1.22) with c = 2. 	

Example 9.1.2: A 10-millisecond portion of a signal is sampled at a rate of 10 kHz. It is known
that the signal consists of two sinusoids of frequencies f1 = 1 kHz and f2 = 2 kHz. It is
also known that the signal contains a third component of frequency f3 that lies somewhere
between f1 and f2. (a) How close to f1 could f3 be in order for the spectrum of the collected
samples to exhibit three distinct peaks? How close to f2 could f3 be? (b) What are the
answers if the collected samples are windowed by a Hamming window?

9.1. FREQUENCY RESOLUTION AND WINDOWING 369

Solution: The total number of samples collected is L = fsTL = 10×10 = 100. The frequency
resolution of the rectangular window is Δf = fs/L = 10/100 = 0.1 kHz. Thus, the closest
f3 to f1 and f2 will be:

f3 = f1 +Δf = 1.1 kHz, and f3 = f2 −Δf = 1.9 kHz

In the Hamming case, the minimum resolvable frequency separation doubles, that is, Δf =
cfs/L = 2 · 10/100 = 0.2 kHz, which gives f3 = 1.2 kHz or f3 = 1.8 kHz. 	

Example 9.1.3: The sinusoid x(t)= cos(2πf0t), where f0 = 50 Hz is sampled at a rate of fs = 1
kHz. The sampled signal is x(n)= cos(ω0n), whereω0 = 2πf0/fs = 2π·50/1000 = 0.1π
rads/sample. A length-L portion of x(n) is windowed by a rectangular and a Hamming
window, that is, for n = 0,1, . . . , L− 1:

xL(n) = wrec(n)x(n)= cos(ω0n)

xL(n) = wham(n)x(n)=
[

0.54− 0.46 cos
(

2πn
L− 1

)]
cos(ω0n)

Figure 9.1.5 shows the rectangularly windowed signals, for L = 100 and L = 200. Figure
9.1.6 shows the Hamming windowed signals. Figure 9.1.7 shows the corresponding spectra,
|XL(ω)|, plotted over the Nyquist subinterval, 0 ≤ω ≤ 0.2π. The spectra were computed
by successive calls to the routine dtft of the next section, for 200 equally spaced values
of ω in the interval 0 ≤ω ≤ 0.2π.

0 50 100 150 200
−2

−1

0

1

2
rectangular window, L = 100

time samples, n
0 50 100 150 200

−2

−1

0

1

2
rectangular window, L = 200

time samples, n

Fig. 9.1.5 Rectangularly windowed sinusoids of lengths L = 100 and L = 200.

As L doubles, both the rectangular and the Hamming mainlobe widths become narrower,
with the Hamming one always lagging behind the rectangular one. Note also that as L
doubles, the sidelobes of the rectangular window get more compressed, but also higher so
that their relative depth compared to the mainlobe remains the same.

The reason why the peak height of the rectangular mainlobe is L/2 instead of L is that
we are working with a real-valued sinusoid and looking only at its positive-frequency half-
height peak. 	

Example 9.1.4: The following analog signal consisting of three equal-strength sinusoids of fre-
quencies f1 = 2 kHz, f2 = 2.5 kHz, and f3 = 3 kHz:

370 9. DTFT AND SPECTRAL ANALYSIS

0 50 100 150 200
−2

−1

0

1

2
Hamming window, L = 100

time samples, n
0 50 100 150 200

−2

−1

0

1

2
Hamming window, L = 200

time samples, n

Fig. 9.1.6 Hamming windowed sinusoids of lengths L = 100 and L = 200.

0 0.05 0.1 0.15 0.2
0

25

50

75

100

ω/π

|X
(ω

)|

magnitude spectra, L = 100

 Hamming
 rectangular

0 0.05 0.1 0.15 0.2
0

25

50

75

100

ω/π

|X
(ω

)|

magnitude spectra, L = 200

 Hamming
 rectangular

Fig. 9.1.7 Rectangular and Hamming spectra for L = 100 and L = 200.

x(t)= cos(2πf1t)+ cos(2πf2t)+ cos(2πf3t)

where t is in milliseconds, is sampled at a rate of 10 kHz. We consider four data records
of lengths L = 10, 20, 40, and 100 samples. They correspond to the time durations of 1,
2, 4, and 10 msec. To facilitate comparison, the same vertical scale has been used in all
figures.

Figures 9.1.8 and 9.1.9 show the magnitude spectra of the rectangularly and Hamming
windowed signals for the above four values of L. The spectra were computed by calling a
256-point FFT routine and plotted over an entire Nyquist interval, 0 ≤ f ≤ fs. For each L,
the 256-point input to the FFT routine was obtained by padding (256−L) zeros at the end
of the L-point signal x to make it of length 256. (The padding operation does not affect
the DTFT.)

As we will see in the next section, the three peaks in the right half of the Nyquist interval
correspond to the negative-frequency peaks of the sinusoids, but they have been shifted
to the right by one fs, using the periodicity property of the spectra with respect to fs.

9.1. FREQUENCY RESOLUTION AND WINDOWING 371

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Rectangular window, L = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Hamming window, L = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Rectangular window, L = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Hamming window, L = 20

Fig. 9.1.8 Rectangular and Hamming spectra for L = 10 and 20.

The minimum frequency separation is Δf = 2.5 − 2 = 0.5 kHz. According to (9.1.16),
the minimum length L to resolve all three sinusoids should be L = fs/Δf = 10/0.5 = 20
samples for the rectangular window, and L = 40 samples for the Hamming case.

In the case L = 10, the signal does not have enough length to separate the sinusoids, which
appear merged into one wide peak.

For L = 20, corresponding to the minimum acceptable length, the sinusoids begin to be
separated for the rectangular window, but not yet for the Hamming window. Note also in
the Hamming case, the destructive interference taking place exactly at the position of the
middle sinusoid, f2/fs = 0.25.

For L = 40, the Hamming windowed spectra are beginning to show the separate peaks.
Finally, when L = 100, both windows have clearly separated peaks.

The Hamming window spectra lag behind the rectangular ones in resolution, but improve
with increasing L, while they provide higher sidelobe suppression. 	

372 9. DTFT AND SPECTRAL ANALYSIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Rectangular window, L = 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Hamming window, L = 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Rectangular window, L = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

f/f
s

m
ag

n
it

u
de

 s
pe

ct
ru

m

Hamming window, L = 100

Fig. 9.1.9 Rectangular and Hamming spectra for L = 40 and 100.

9.2 DTFT Computation

In this section, we turn our attention to the computational aspects of the DTFT. We
consider a length-L signal x(n), n = 0,1, . . . , L− 1, which may have been prewindowed
by a length-L non-rectangular window. Its DTFT, defined by Eq. (9.1.7), can be written
in the simplified notation:

X(ω)=
L−1∑
n=0

x(n)e−jωn (DTFT of length-L signal) (9.2.1)

This expression may be computed at any desired value of ω in the Nyquist interval
−π ≤ω ≤ π. It is customary in the context of developing computational algorithms to
take advantage of the periodicity ofX(ω) and map the conventional symmetric Nyquist
interval −π ≤ ω ≤ π onto the right-sided one 0 ≤ ω ≤ 2π. We will refer to the latter
as the DFT Nyquist interval. This mapping is shown in Fig. 9.2.1.

The positive-frequency subinterval 0 ≤ω ≤ π remains unchanged, but the negative-
frequency one, −π ≤ ω ≤ 0, gets mapped onto the second half of the DFT Nyquist
interval, π ≤ω ≤ 2π.

9.2. DTFT COMPUTATION 373

Fig. 9.2.1 Equivalent Nyquist intervals.

For example, a cosinusoidal signal cos(ω1n) with two spectral peaks at ±ω1 will
be represented by the two shifted peaks:

{ω1, −ω1}� {ω1, 2π−ω1}

or, in Hz
{f1, −f1}� {f1, fs − f1}

As we saw in Section 5.4, the DTFT (9.2.1) can be thought of as the evaluation of the
z-transform of the sequence x(n) on the unit circle:

X(ω)=
L−1∑
n=0

x(n)e−jωn =
L−1∑
n=0

x(n)z−n
∣∣∣∣∣∣
z=ejω

= X(z)
∣∣
z=ejω (9.2.2)

Thus, X(ω) can be computed by evaluating the polynomial X(z) at z = ejω.
Hörner’s rule of synthetic division that was discussed in the problems of Chapter 2
is an efficient polynomial evaluator. It can be adapted in the following form for the
evaluation of the z-transform X(z):

for each complex z do:
X = 0
for n = L−1 down to n = 0 do:

X = xn + z−1X

(Hörner’s rule) (9.2.3)

Upon exit, X is the desired value of X(z). To see how the iterations build up the
z-transform, we iterate them for the case L = 4. Starting with X = 0 at n = L− 1 = 3,
we have:

X = x3 + z−1X = x3

X = x2 + z−1X = x2 + z−1x3

X = x1 + z−1X = x1 + z−1x2 + z−2x3

X = x0 + z−1X = x0 + z−1x1 + z−2x2 + z−3x3 = X(z)

374 9. DTFT AND SPECTRAL ANALYSIS

This algorithm can then be applied to any point on the unit circle z = ejω to evaluate
X(ω). The C-functions, dtft.c and dtftr.c,† implement the computation of the DTFT at
a single frequency and and at a range of frequencies., respectively.

Alternatively, one may use the built-in MATLAB function freqz to evaluate X(ω) at
any vector of frequencies ω, with usage:

% --

% x = ... % define length-L time samples
% om = ... % define vector of digital frequencies (rads/sample)

% om must have dimension of at least 2

X = freqz(x,1,om); % has the same size as the vector om

% --

Example 9.2.1: In Example 16.1.1, we discussed the generation of dual sinusoidal tones for
DTMF touch-tone phones. Each keypress generates two frequencies ωH and ωL, one from
the high and one from the low group of frequencies. A total of 4×4 = 16 pairs of frequen-
cies can be generated.

Such a signal can be detected by computing its DTFT at the 4 high and 4 low group fre-
quencies and then deciding with the help of a threshold which pair {X(ωH),X(ωL)} of
DTFT values has the largest magnitudes. The corresponding pair of frequencies {ωH,ωL}
can then be decoded into the appropriate key.

Because the DTFT is needed only at 8 positive frequencies, the use of the routine dtft

or Goertzel’s algorithm is more efficient than using an FFT. Such DTMF detectors can be
implemented easily on present-day DSP chips [107–109].

The minimum duration L of the received dual tone may be estimated by requiring that the
high and low groups of frequencies remain distinct, so that the DTFT will consist of one
peak lying in the high group and one in the low group.

The resolvability condition depends on the minimum frequency difference between the
groups, that is, from Fig. 16.1.3 we have

Δf = fH,min − fL,max = 1209− 941 = 268 Hz

which at sampling rate of fs = 8 kHz and rectangular windowing gives the minimum length
L = fs/Δf = 8000/268 � 30 samples. 	

9.3 Window Parameters

We saw above that the effect of windowing a signal consisting of a sum of sinusoidal
components is to broaden the (ideally infinitely narrow) spectral peaks at the sinusoid
frequencies, as well as to introduce sidelobes, referred to as leakage because the energy
of each peak spreads or leaks into its neighboring sidelobes.

If the broadened peaks are too close to each other, they will appear merged, resulting
in loss of resolution. Similarly, if the amplitudes of the sinusoids are too weak, they will

†included in the C-function collection of this book

9.3. WINDOW PARAMETERS 375

be lost under the sea of sidelobes of the stronger nearby sinusoids and their presence
may not be detectable.

The choice of window determines the width Δω of the mainlobe and the depth R of
the sidelobes. We mentioned that the mainlobe width of a length-Lwindow is broadened
relative to the rectangular window by a factor c, such that

Δωw = c
2π
L

But, we were a bit vague as to the precise definition of the parameter c. In fact, different
books define the mainlobe width differently: some choose it to be the width of the base
of the main lobe (i.e., the null-to-null width), some choose it to be half of that, and some
choose it to be the 3-dB width. In general, the mainlobe width depends on the sidelobe
level—the deeper the sidelobes, the wider the mainlobe.

Here we look at the properties of several useful windows and, in order to put their
discussion on a common footing, we will choose the mainlobe width to be the 3-dB
width, developing approximate formulas for it in terms of the sidelobe level R. The
figure below illustrates these parameters for a typical window.

For example, consider a signal consisting of two sinusoids of frequencies ω1,ω2

and amplitudes A1,A2. If the signal is windowed by a length L window w(n) with DTFT
W(ω), then, the two spectral lines at ω1,ω2 get smeared and replaced by the shifted
versions of W(ω),

x(n) = A1ejω1nw(n)+A2ejω2nw(n) , n = 0,1, . . . , L− 1

X(ω) = A1W(ω−ω1)+A2W(ω−ω2)
(9.3.1)

The mainlobe width could be defined to be the null-to-null width, Δω = 2ω0, as is
done in some texts, or, alternatively, Δω can be chosen to be the 3-dB width.

The so-called Rayleigh resolvability criterion states that the two peaks will be resolv-
able if they are separated by more than the frequency ω0 of the first null, that is, if,
ω2 −ω1 ≥ω0. Since the value of ω0 is roughly equal to the 3-dB width, an alternative
resolvability criterion is to require that,

ω2 −ω1 ≥ Δω3dB (frequency resolution condition) (9.3.2)

376 9. DTFT AND SPECTRAL ANALYSIS

But resolvability is only half of the story. Even if condition (9.3.2) is satisfied, it may
not be possible to detect the presence of both sinusoids if one of them is too weak to
stand above the sidelobe levels of the stronger one.

Moreover, because of the interaction between mainlobes, the frequencies estimated
from the maxima of the computed spectrum will be slightly different from the true
frequencies of the sinusoids—an effect referred to as biasing. For example, it is evident
from Eq. (9.3.1) that the local maximum of |X(ω)| = |A1W(ω−ω1)+A2W(ω−ω2)|
near ω1 will not necessarily be at precisely ω1, i.e., coinciding with the maximum of
|W(ω−ω1)|, but it will be close to it provided the mainlobes are very narrow and their
separation large enough.

There are literally dozens of windows—see Doerry’s recent review [227] of 50+
windows— but among them there are some, such as the Kaiser, DPSS (prolate of Slepian),
and Chebyshev windows, that have a user-defined sidelobe levelR (specified as an atten-
uation in dB relative to the mainlobe peak) that can be adjusted to bring out the presence
of weak sinusoids.

The price one pays for makingΔω3dB narrower and/or makingR deeper is to require
an increased length L of the data record. The tradeoff between window length and
3-dB width (defined as the full width at half-power) is captured by the approximate
relationship,

Δω3dB = 0.886
2πb
L

⇒ Δf3dB = 0.886
fsb
L

(9.3.3)

where b is referred to as a “broadening factor” which depends on the window and, in the
Kaiser, DPSS, and Chebyshev cases, on the sidelobe levelR. For example, the rectangular
window has the narrowest mainlobe with b = 1 and fixed R = 13.26 dB, the Hamming
window has approximately b = 1.47+ 0.97/L and fixed R = 42.67 dB, while the Kaiser
window has a variable R and b,

b = 0.0124R+ 1.0221 (9.3.4)

which works well over the range, 20 ≤ R ≤ 120 dB, with a 2-percent error. An even
better approximation with a 0.4-percent error is,

b = −0.000051R2 + 0.019549R+ 0.813943 , 20 ≤ R ≤ 120 dB (9.3.5)

The simpler expression (9.3.4) is usually adequate, and it can also be used for the DPSS
prolate window. For an odd window length, L = 2M + 1, the Hamming and Kaiser
windows are given by,

w(n) = 0.54− 0.46 cos
(
πn
M

)
, n = 0,1, . . . ,2M , M = L− 1

2

w(n) =
I0

(
α
√

1− (n−M)2/M2

)
I0(α)

, n = 0,1, . . . ,2M

(9.3.6)

The Kaiser window shape parameter α (denoted by β in MATLAB), can be calculated
in terms of R by the Kaiser-Schafer approximation [224], where R is in dB,†

†A different approximation is used in the FIR filter design problem, discussed in Chap. 11.

9.3. WINDOW PARAMETERS 377

α =

⎧⎪⎪⎨⎪⎪⎩
0, R ≤ 13.26

0.76609(R− 13.26)0.4+0.09834(R− 13.26), 13.26<R≤ 60

0.12438(R+ 6.3), 60<R≤ 120

(9.3.7)

Thus, in the Kaiser case, given a desired 3-dB width Δω3dB and sidelobe level R,
equations (9.3.3)–(9.3.7) can be used to determine the length L of the window and the
parameter α required for the calculation of the window samples w(n). The window
samples w(n) can be computed with the built-in MATLAB function kaiser,

w = kaiser(L,alpha); % Lx1 column vector

We note also that Kaiser & Schafer [224] have also derived the following approxima-
tion for the width of the mainlobe base, i.e., the null-to-null width, with R in dB,

Δωnull = 2πc
L− 1

⇒ Δfnull = fs c
L− 1

, c = 12(R+ 12)
155

(9.3.8)

The DPSS prolate or Slepian window is very similar to the Kaiser one, but is slightly
better in that it provides a slightly narrower mainlobe for the same sidelobe level, which
can be calculated by finding L,α from the same Eqs. (9.3.3), (9.3.4), and (9.3.7), and
then, the window samples are obtained by invoking MATLAB’s built-in “discrete-prolate-
spheroidal-sequences” function, dpss, in the form,

B = alpha/pi; % time-bandwidth product
w = dpss(L, B, 1); % window samples w(n), Lx1 vector
w = w/max(w); % normalize to unity at its middle

and a slightly better approximation is,

B = 0.95*alpha/pi + 0.14; % time-bandwidth product
w = dpss(L, B, 1); % window samples w(n), Lx1 vector
w = w/max(w); % normalize to unity at its middle

This window maximizes the power contained in the mainlobe. More specifically, for a
length-L window, w(n), n = 0,1, . . . , L−1, the time-bandwidth parameter B defines the
mainlobe band, [−ωc,ωc], via the relationship,

B = L · ωc

2π
⇒ ωc = 2πB

L
(9.3.9)

The window w(n) is chosen to maximize the power within the mainlobe band, that is,

J =
1

2π

∫ωc

−ωc

|W(ω)|2dω
1

2π

∫ π

−π
|W(ω)|2dω

= max (9.3.10)

where W(ω) is the DTFT of the window,

W(ω)=
L−1∑
n=0

w(n)e−jωn

378 9. DTFT AND SPECTRAL ANALYSIS

See also EWA/Ch.23 [46] for an alternative calculation of w(n) that implements this
maximization procedure using an inverse-power iteration.

The Chebyshev window also has an adjustable sidelobe level R. It was originally
proposed by Dolph for the design of narrow-beam arrays, and sometimes is called the
Dolph-Chebyshev window. It is optimal in the sense that it provides the narrowest
mainlobe for the given sidelobe level R, and as a consequence, its sidelobes are all
equal to R. Its design is fully explained in EWA/Ch.22 [46]. Alternatively, one may use
MATLAB’s built in function chebwin to calculate its time samples, given its length L,
and sidelobe level R in dB:

wc = chebwin(L,R); % built-in function, Lx1 vector
wc = wc/max(wc); % normalize to unity at its middle

Its broadening factor can be computed by the following approximation, which is accurate
over the range, 13 ≤ R ≤ 180 dB:

b = 0.65+ 0.0195R− 0.00005R2 (9.3.11)

In summary, we list the 3-dB broadening factors for the above windows, as well as
their sidelobe attenuations R in dB:

window 3-dB broadening factor sidelobe attenuation

Rectangular b = 1 13.26

Hamming b = 1.47+ 0.97/L 42.67

Kaiser b = 0.0124R+ 1.0221 variable R
DPSS b = 0.0124R+ 1.0221 variable R
Chebyshev b = 0.65+ 0.0195R− 0.00005R2 variable R

Example 9.3.1: The following graphs compare these windows applied to a single complex si-
nusoid of frequency f1 = 1.5 kHz and sampled at fs = 10 kHz,

x(n)= ejω1n , ω1 = 2πf1

fs
, n = 0,1, . . . , L− 1

The length L was chosen to meet the design requirements of the Kaiser window that
achieves a 3-dB width of Δf = 0.1 kHz and sidelobe attenuation of R = 60 dB. The follow-
ing MATLAB code segment illustrates the calculation of the length L from the equations,

Δf = 0.886
fs b
L

, b = 0.0124R+ 1.0221

fs = 10; f1 = 1.5; w1=2*pi*f1/fs;

R = 60; Df = 0.1; % sidelobe attenuation and 3-dB width

b = 0.0124 * R + 1.0221; % broadening factor
L = 0.886*b*fs/Df; % solve Df = 0.886 * 2*pi*b/L for L
M = ceil((L-1)/2); % round up to the next odd integer
L = 2*M+1; % resulting value, L = 157

n=0:L-1; % construct sinusoid
x = exp(j*w1*n);

9.3. WINDOW PARAMETERS 379

For each window, the graphs plot the spectrum of the windowed sinusoid in dB with all
spectra normalized to unity gain at f = f1, that is,

X(f)=
L−1∑
n=0

w(n)x(n)e−2πjfn/fs = DTFT of windowed signal

Xnorm(f)= X(f)
|X(f1)| = normalized spectrum

20 log10 |Xnorm(f)| = spectrum in dB

In addition, the window time functions, w(n), n = 0,1, . . . , L− 1, are also compared. We

note the similarity of the Kaiser and DPSS windows, with the DPSS being slightly wider in

the time domain (having slightly narrower mainlobe in the frequency domain and slightly

higher outer sidelobes). Visible also is the typical “wiggly” behavior of the Chebyshev

window at its end points where the ending pedestals turn slightly upwards.

In the Chebyshev case for real-valued sinusoids, or for multiple sinusoids at frequen-
cies ωi, the interaction between the shifted windowed spectra W(ω ±ωi) will cause
some distortion of the equiripple nature of the sidelobes and they may no longer be
equal at the designed value of R. In such cases, increasing R slightly would move the
sidelobes to the desired level.

As an example illustrating such distortion, the following two graphs show the spec-
tra of the real-valued version of the above windowed complex sinusoid, that is, x(n)=
cos(ω1n), n = 0,1, . . . , L−1. Here, the interaction is between the positive and negative
frequency terms, plotted over the positive frequency side, as well as over the positive
and negative sides. Increasing the sidelobe design level toR = 65 brings all the sidelobes
to the desired 60-dB level.

x(n)= w(n)cos(ω1n) ⇒ X(ω)= 1

2

[
W(ω−ω1)+W(ω+ω1)

]

Example 9.3.2: Consider the following analog signal consisting of three sinusoids:

x(t)= cos(2πf1t)+10−3 cos(2πf2t)+ cos(2πf3t)

where f1 = 1.5, f2 = 2.5, and f3 = 3.5 kHz, and t is in msec. The middle term represents
a weak sinusoid whose presence we wish to detect by sampling x(t) and computing its
DTFT spectrum. The sampling rate is fs = 10 kHz.

We will compare the use of the rectangular, Hamming, and Kaiser, DPSS, and Chebyshev
windows for this problem. Because the middle sinusoid is 60 dB below the other two, in
order to detect its presence, we must use a window that has sidelobes that are suppressed
by at least 60 dB.

To get some extra margin, we take the relative sidelobe level to be 10 dB deeper than
required, that is, R = 60 + 10 = 70 dB and choose the Kaiser 3-dB width to be Δf = 0.1
kHz (i.e., one-tenth the minimum frequency separation of f2 − f1 = 2.5 − 1.5 = 1 kHz.)
The length L of a Kaiser window with the above values of R and Δf is determined to be
L = 169, from the MATLAB code segment,

380 9. DTFT AND SPECTRAL ANALYSIS

1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

−13.26 dB

 f (kHz)

dB

Rectangular Window

 dB
 Δf

3dB

1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

−42.67 dB

 f (kHz)

dB

Hamming Window

 dB
 Δf

3dB

1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Kaiser Window

 dB
 Δf

3dB

1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

DPSS Window

 dB
 Δf

3dB

1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev Window

 dB
 Δf

3dB

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time samples, n

w(n) window functions, L = 157

 rectangular
 Hamming
 Kaiser
 DPSS
 Chebyshev

Fig. 9.3.1 Rectangular, Hamming, Kaiser, DPSS, and Chebyshev windows for L = 157.

fs = 10;
f1 = 1.5; w1=2*pi*f1/fs;
f2 = 2.5; w2=2*pi*f2/fs;
f3 = 3.5; w3=2*pi*f3/fs;

A2 = 10^(-3); % relative amplitude of middle sinusoid

9.3. WINDOW PARAMETERS 381

1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev window for x(n) = w(n)cos(ω
1
n)

 R = 60 dB
 Δf

3dB

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev window for x(n) = w(n)cos(ω
1
n)

 R = 60 dB
 Δf

3dB

1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev window for x(n) = w(n)cos(ω
1
n)

 R = 75 dB
 Δf

3dB

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB
Chebyshev window for x(n) = w(n)cos(ω

1
n)

 R = 75 dB
 Δf

3dB

Fig. 9.3.2 Real-valued sinusoid case, designed with L = 157 and R = 60 and R = 75 dB.

R = 70; Df = 0.1; % sidelobe attenuation and 3-dB width

b = 0.0124 * R + 1.0221; % broadening factor
L = 0.886*b*fs/Df; % solve Df = 0.886 * 2*pi*b/L for L
M = ceil((L-1)/2); % round up to the next odd integer
L = 2*M+1: % resulting value, L = 169

n=0:L-1; % construct signal x(n)

x = cos(w1*n) + A2*cos(w2*n) + cos(w3*n);

The graphs in Fig. 9.3.3, compare the spectra of the windowed signal for the five window
cases. The graphs also show the calculated 3-dB widths of one of the mainlobes.

We observe how the Kaiser, DPSS, and Chebyshev windows allow the weak sinusoid to rise
above the sidelobes, whereas in the rectangular and Hamming window cases the weak si-
nusoid is buried under the sidelobes of the two larger mainlobes, even though all mainlobe
widths are much narrower.

The DPSS mainlobes are slightly narrower than those of the Kaiser case, but they also have
slightly higher far-sidelobes, i.e., the sidelobes of the DPSS window decay more slowly.

382 9. DTFT AND SPECTRAL ANALYSIS

The required DTFT calculations can be done with the help of the freqz function, with
MATLAB code similar to the following,

% w = window % define window, same size as x

f = linspace(0,fs/2,2001); % S will have same size as f
om = 2*pi*f/fs; % frequencies in rads/sample

S = abs(freqz(w.*x,1,om)).^2; % magnitude square of DTFT
S = S/max(S); % normalize to unity maximum
SdB = 20*log10(S); % spectrum in dB

plot(f,Sdb);

As in the previous example, because of the interaction of the various sinusoidal terms, the

resulting sidelobe level of the Chebyshev case is not quite at the desired design level of

R = 70. The bottom right graph in Fig. 9.3.3 show a redesign with R = 80 and L = 169,

which brings all the sidelobes dow to the desired 70-dB level.

Example 9.3.3: Consider next the following analog signal consisting of three sinusoids:

x(t)= cos(2πf1t)+10−3 cos(2πf2t)+ cos(2πf3t)

where f1 = 1.5, f2 = 1.6, and f3 = 3.5 kHz, and t is in msec. The middle term represents
a weak sinusoid whose presence we wish to detect by sampling x(t) and computing its
DTFT spectrum. The sampling rate is fs = 10 kHz.

If we were to design our windows exactly as in the previous example, that is, with Kaiser
3-dB width Δf = 0.1 kHz and R = 70 dB, with length L = 169, then the computed spectra
would not be able to resolve the f2 sinusoid because it is very close the first one. This is
illustrated in Fig. 9.3.4 where for all windows, the f2 mainlobe is buried under the influence
of the first sinusoid.

In order to bring out the weak f2 sinusoid, we must choose a longer length L. For example,
if we redesign our Kaiser window based on the narrower width of Δf = 0.02 kHz, the
resulting length would be L = 839. Fig. 9.3.5 shows the spectra in this case and the weak
mainlobe of the f2 sinusoid is now visible for the Kaiser, DPSS, and Chebyshev windows.

For this length L, the null-to-null width of the Kaiser window turns out to be just less than
the frequency separation that needs to be resolved, f2 − f1 = 0.1 kHz. Indeed, we find
from Eq. (9.3.8),

Δfnull = fs
L− 1

· 12(R+ 12)
155

= 0.076 kHz

Because of the very weak amplitude of the f2 sinusoid, the null-to-null width might be a
more suitable design criterion in this case than the 3-dB width.

9.4 Additional Details on Windows

9.4.1 Rectangular Window

We saw earlier that the 3-dB width of a length-L rectangular window is given by,

Δω3dB = 0.886
2π
L

9.4. ADDITIONAL DETAILS ON WINDOWS 383

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Rectangular Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Hamming Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Kaiser Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB
DPSS Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev Window, R = 70 dB

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev Window, R = 80 dB

 dB
 Δf

3dB

Fig. 9.3.3 Rectangular, Hamming, Kaiser, DPSS, and Chebyshev windows for L = 169.

This can be derived by considering the DTFT of the length-L rectangular window,

W(ω) = 1− e−jLω

1− e−jω
= e−jω(L−1)/2 sin(ωL/2)

sin(ω/2)

= e−jπx(L−1)/L sin(πx)
sin(πx/L)

, where ω = 2πx
L

(9.4.1)

384 9. DTFT AND SPECTRAL ANALYSIS

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Rectangular Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Hamming Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Kaiser Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

DPSS Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev Window, R = 70 dB

 dB
 Δf

3dB

Fig. 9.3.4 Windows designed with R = 70 dB and L = 169.

and its magnitude, normalized to unity gain at DC,∣∣∣∣W(ω)
W(0)

∣∣∣∣ = ∣∣∣∣ sin(ωL/2)
L sin(ω/2)

∣∣∣∣ = ∣∣∣∣ sin(πx)
L sin(πx/L)

∣∣∣∣ , ω = 2πx
L

9.4. ADDITIONAL DETAILS ON WINDOWS 385

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Rectangular Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Hamming Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Kaiser Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB
DPSS Window

 dB
 Δf

3dB

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 f (kHz)

dB

Chebyshev Window, R = 70 dB

 dB
 Δf

3dB

Fig. 9.3.5 Windows designed with R = 70 dB and L = 839.

For L > 10, this can be approximated well by a sinc-function,

F(x)= sin(πx)
L sin(πx/L)

≈ sin(πx)
L ·πx/L =

sin(πx)
πx

= sinc(x)

386 9. DTFT AND SPECTRAL ANALYSIS

The 3-dB frequency is obtained by solving the half-power condition,∣∣∣∣W(ω)
W(0)

∣∣∣∣2

= 1

2
⇒ F2(x)= 1

2
⇒ |F(x)| = 1√

2

which can be implemented easily using MATLAB’s fzero function,

% search near the initial value, x0 = 0.4

x3 = fzero(@(x) abs(sinc(x))-1/sqrt(2), 0.4);

% with resulting solution, x3 = 0.4429, rounded to, x3 = 0.443

so that the 3-dB frequency and 3-dB width are,

ω3 = 2πx3

L
= 0.443

2π
L

⇒ Δω3dB = 2ω3 = 0.886
2π
L

The highest sidelobe and the frequency at which it occurs can be found by the fol-
lowing MATLAB code using the minimization function fminbnd, searching within the
interval, 1 ≤ x ≤ 2, because as we noted earlier, the sidelobe frequency is approxi-
mately near ω = 2πx/L, with x ≈ 1.5,

xside = fminbnd(@(x) -abs(sinc(x)), 1,2); % max of |F(x)| is the min of -|F(x)|

% resulting in, xside = 1.4303
% then, evaluate F(xside) in dB

Rside = -20*log10(abs(sinc(xside)));

% Rside = 13.2615 dB

so that,

ωside = 2π1.4303

L
, −20 log10

∣∣∣∣W(ωside)
W(0)

∣∣∣∣ = 13.2615 dB

9.4.2 Hamming Window

For the Hamming window, we may express its DTFT in terms of the DTFT of the rectan-
gular window (9.4.1) using the modulation property of DTFTs,

w(n) = u(n)−u(n− L)= length-L rectangular window

wH(n) = 0.54w(n)−0.46 cos
(

2πn
L− 1

)
w(n)

= 0.54w(n)−0.23e2πjn/(L−1)w(n)−0.23e−2πjn/(L−1)w(n)

WH(ω) = 0.54W(ω)−0.23W
(
ω− 2π

L− 1

)
− 0.23W

(
ω+ 2π

L− 1

)
or, using the x-variable and the sinc approximation,

W(x) = e−jπx(L−1)/L sin(πx)
sin(πx/L)

≈ e−jπx(L−1)/L L
sin(πx)
πx

, ω = 2πx
L

WH(x) = 0.54W(x)−0.23W
(
x− L

L− 1

)
− 0.23W

(
x+ L

L− 1

)

9.4. ADDITIONAL DETAILS ON WINDOWS 387

The exact DC value, WH(0), can be expressed in the simple closed form,

WH(0)= 0.54L− 0.46 (9.4.2)

By noting that the maximum sidelobe always occurs in the range, 4 ≤ x ≤ 5, and finding
the local maximum of the ratio, |WH(x)/WH(0)|, within this x-range, and carrying out a
data fit for several values of L,† we obtain the following approximations to the maximum
sidelobe level in dB and the frequency at which it occurs,

ωside = 2πxside

L
, xside = 4.5− 2.1

L
+ 2.2

L2

Rside = −20 log10

∣∣∣∣WH(ωside)
WH(0)

∣∣∣∣ = −42.67+ 1.5
L
+ 513

L2

(9.4.3)

where both are valid for L > 10. For L > 100, we may simply use, xside = 4.5 and
Rside = −42.67. In a similar fashion, we may determine an approximate expression for
the half-power 3-dB width, by solving the following condition for several values of L,∣∣∣∣WH(ω3dB)

WH(0)

∣∣∣∣2

= 1

2
(9.4.4)

from which we obtain the approximate broadening factor for the full widthΔω3dB, valid
again for L > 10,

Δω3dB = 2ω3dB = 0.886
2πb
L

, b = 1.47+ 0.97

L
(9.4.5)

9.4.3 Kaiser Window

The symmetric Kaiser window is based on the following Fourier transform pair in con-
tinuous time,

2τ0

sinh
[√

τ2
0Ω

2
0 − τ2

0Ω2

]
√
τ2

0Ω
2
0 − τ2

0Ω2
=
∫ τ0

−τ0

I0

[
τ0Ω0

√
1− t2/τ2

0

]
ejΩt dt

defining the time-bandwidth product, α = τ0Ω0, and sampling at some rate fs = 1/Ts,
assuming an integer number of samples within τ0,

τ0 =MTs

t = kTs , −M ≤ k ≤M

ω = ΩTs = digital frequency

τ0Ω =MTsΩ =Mω

then, the sampled and normalized (to unity at its middle) symmetric window becomes,

w(k)=
I0

[
α
√

1− k2/M2
]

I0(α)
, −M ≤ k ≤M

†specifically, we used the range, 10 ≤ L ≤ 2000

388 9. DTFT AND SPECTRAL ANALYSIS

From the sampling theorem, the DTFT of w(k) will be the above continuous-time trans-
form scaled by Ts, with all its replicas at multiples of fs added. For small enough Ts, the
replicas can be ignored approximately, resulting in the scaled and normalized spectrum,

W(ω) = 2M
sinh

[√
α2 −M2ω2

]
I0(α)

√
α2 −M2ω2

, ω = 2πf
fs

= ΩTs

W(ω)
W(0)

= α
sinh(α)

·
sinh

[√
α2 −M2ω2

]
√
α2 −M2ω2

The causal version of the window is obtained by delaying w(k) by M samples,

w(n)=
I0

[
α
√

1− (n−M)2/M2
]

I0(α)
, n = 0,1, . . . ,2M

The 3-dB width and sidelobe levels can be obtained from,

W(ω)
W(0)

= α
sinh(α)

·
sinh

[√
α2 −M2ω2

]
√
α2 −M2ω2

The resulting broadening factor and the exact relationship between α and R are (see
EWA/Ch.20 [46] for computational details),

b = 0.0124R+ 1.0221

R = 13.26+ 20 log10

[
sinh(α)

α

]
with R in dB, and the exact relationship between R and α can be replaced by the Kaiser-
Schafer approximation:

α =

⎧⎪⎪⎨⎪⎪⎩
0, R ≤ 13.26

0.76609(R− 13.26)0.4+0.09834(R− 13.26), 13.26<R≤ 60

0.12438(R+ 6.3), 60<R≤ 120

9.4.4 DPSS Window

The prolate window maximizes the power that resides within the mainlobe of the win-
dow. Assuming the mainlobe is within the range of digital frequencies [−ωc,ωc],
with ωc to be determined from α and L, the minimization criterion is as mentioned in
Eq. (9.3.10),

J =
1

2π

∫ωc

−ωc

|W(ω)|2dω
1

2π

∫ π

−π
|W(ω)|2dω

= max

9.4. ADDITIONAL DETAILS ON WINDOWS 389

where W(ω) is the DTFT of the window wn,

W(ω)=
L−1∑
n=0

wne−jωn , w =

⎡⎢⎢⎢⎢⎢⎣
w0

w1

...
wL−1

⎤⎥⎥⎥⎥⎥⎦
The performance index J can be expressed directly in terms of the window time samples
w as a Rayleigh quotient,

J = wTAw

wTw
= max

where A is the L×L “prolate matrix” defined in terms of its matrix elements,

Anm = sin
(
2πWc(n−m)

)
π(n−m)

, n,m = 0,1, . . . , L− 1 , Wc = ωc

2π

The maximization of the Rayleigh quotient is realized by the maximum eigenvector
of the prolate matrix A, that is, the eigenvector belonging to the maximum eigenvalue,
say, λ0:

Aw = λ0 w

The prolate matrix is notoriously ill-conditioned having approximately 2LWc eigen-
values that are very near one, and the remaining eigenvalues decreasing rapidly to zero.
The following table lists the eigenvalues in decreasing order for the case L = 21 and
Wc = 0.2, so that 2LWc = 8.4, its condition number being, cond(A)= 5.1063×1016,

i λi
0 0.99999999998517786000
1 0.99999999795514627000
2 0.99999987170540139000
3 0.99999517388508363000
4 0.99987947149714795000
5 0.99792457099956200000
6 0.97588122145542644000
7 0.83446090480119717000
8 0.45591142240913063000
9 0.11887181858959120000

10 0.01567636516215985600

i λi
11 0.00131552671490021500
12 0.00007986915605618046
13 0.00000365494381482577
14 0.00000012731149204486
15 0.00000000336154097643
16 0.00000000006621668668
17 0.00000000000094327944
18 0.00000000000000920186
19 0.00000000000000004034
20 0.00000000000000001958

These were generated by the following MATLAB code:

L = 21; Wc = 0.2;
n = 0:L-1;
f = 2*Wc*sinc(2*Wc*n);
A = toeplitz(f,f);
lambda = svd(A);

390 9. DTFT AND SPECTRAL ANALYSIS

The eigenvectors of the prolate matrix are referred to as the discrete prolate spheroidal
sequences (DPSS). The following approximate relationship between Wc and the Kaiser α
parameter works well over the range 14 ≤ R ≤ 120 dB:

Wc = 0.95α/π+ 0.14

L
(9.4.6)

A simple way to compute the maximum eigenvector is by the power iteration, that
is, start with a unit-norm initial vector w0, then iterate, wk = Awk−1, and normalize
to unit-norm at each iteration, wk = wk/‖wk‖. However, because the corresponding
eigenvalue λ0 and the next highest one are so close to unity, the iteration will be very
slow converging.

A more efficient approach is to apply the inverse power iteration on the matrix Q =
I − A, that is, wk+1 = Q−1wk = Q−kw0. This iteration converges to the minimum
eigenvector of Q, which is the same as the maximum eigenvector of A. The minimum
eigenvalue of Q is 1 − λ0, which is very small and its inverse (1 − λ0)−1 very large,
causing the iteration to converge very fast. More details on this approach can be found
in EWA–Ch.23 [46].

We note also that since the discrete-time DPSS functions are approximations to the
sampled versions of the continuous-time prolate spheroidal wave functions (PSWF), one
may construct the DPSS window from the 0th order PSWF. The spatial equivalent of
this for finite apertures is discussed in EWA–Ch.20 [46], where the PSWF functions are
adapted to represent space-limited signals as opposed to their original definition of
frequency bandlimited signals. The construction of the time-limited PSWF window can
be implemented in MATLAB via the function, pswf, see Appendix B.

% calculate alpha,L from R,Df using the Kaiser-Schafer approximation

% alpha = ...

% L = ...

n = 0:L-1; % time range of window

M = (L-1)/2; % middle of window, L must be odd

t0 = M; om0 = alpha/M; % PSWF parameters, alpha = t0*om0

w = pswf(om0,t0,0,(n-M)*om0/t0); % 0th order PSWF

% w = pswf(t0,om0,0,n-M); % alternative version

w = w/max(w); % normalize to unity maximum

But for our purposes in this chapter, the built-in MATLAB function, dpss is perfectly
adequate.

9.4.5 Chebyshev Window

Most windows have largest sidelobes near the main lobe. If a window is designed to
achieve a minimum sidelobe attenuation of R dB, then typically R will be the attenu-

9.4. ADDITIONAL DETAILS ON WINDOWS 391

ation of the sidelobes nearest to the mainlobe; the sidelobes further away will have
attenuations higher than R.

Because of the tradeoff between mainlobe width and sidelobe attenuation, the extra
attenuation of the furthest sidelobes will come at the expense of increased mainlobe
width. If the attenuation of these sidelobes could be decreased (up to the level of the
minimum R), then the mainlobe width would narrow.

It follows that for a given minimum desired sidelobe levelR, the narrowest mainlobe
width will be achieved by a window whose sidelobes are all equal to R. Conversely,
for a given maximum desired mainlobe width, the largest sidelobe attenuation will be
achieved by a window with equal sidelobe levels.

This “optimum” window is the Dolph-Chebyshev window, which is constructed with
the help of Chebyshev polynomials. The mth Chebyshev polynomial Tm(x) is:

Tm(x)= cos
(
m acos(x)

)
If |x| > 1, the inverse cosine acos(x) becomes imaginary, and the expression can be
rewritten in terms of hyperbolic cosines:

Tm(x)= cosh
(
m acosh(x)

)
Setting x = cosθ, or θ = acos(x), we see that Tm(x)= cos(mθ). Using trigonomet-

ric identities, the quantity cos(mθ) can always be expanded as a polynomial in powers
of cosθ. The expansion coefficients are precisely the coefficients of the powers of x of
the Chebyshev polynomial, e.g.,

cos(0θ)= 1 T0(x)= 1

cos(1θ)= cosθ T1(x)= x

cos(2θ)= 2 cos2 θ− 1 ⇒ T2(x)= 2x2 − 1

cos(3θ)= 4 cos3 θ− 3 cosθ T3(x)= 4x3 − 3x

cos(4θ)= 8 cos4 θ− 8 cos2 θ+ 1 T4(x)= 8x4 − 8x2 + 1

For |x| < 1, the Chebyshev polynomial has equal ripples, whereas for |x| > 1, it
increases like xm. Moreover, Tm(x) is even in x if m is even, and odd in x if m is odd.
The figure below depicts the Chebyshev polynomials T9(x) and T10(x).

392 9. DTFT AND SPECTRAL ANALYSIS

The Dolph-Chebyshev window is defined such that its sidelobes will correspond to
a portion of the equiripple range |x| ≤ 1 of the Chebyshev polynomial, whereas its
mainlobe will correspond to a portion of the range x > 1.

For either even or odd L, the window spectrum W(ω) can be written in general as a
polynomial of degree L− 1 in the variable u = cos(ω/2). Indeed, we have for the mth
terms:

cos(mω)= cos
(

2m
ω
2

)
= T2m(u)

cos
(
(m− 1/2)ω)= cos

(
(2m− 1)

ω
2

)
= T2m−1(u)

Thus in the odd case, the summation of such terms will result in a polynomial of
maximal degree 2M = L− 1 in the variable u, and in the even case, it will result into a
polynomial of degree, 2M − 1 = L− 1.

The DTFT of the Dolph-Chebyshev window is defined by the Chebyshev polynomial
of degree L− 1 in the scaled variable x = x0 cos(ω/2), that is,

W(ω)= TL−1(x), x = x0 cos
(
ω
2

)

The relative sidelobe attenuation level in absolute units and in dB is defined in terms
of the ratio of the mainlobe to the sidelobe heights:

Ra = Wmain

Wside
, R = 20 log10(Ra) , Ra = 10R/20

Because the mainlobe peak occurs at ω = 0 or x = x0, we will have Wmain =
TL−1(x0), and because the sidelobe level is equal to the Chebyshev level within |x| ≤ 1,
we will have Wside = 1. Thus, we find:

Ra = TL−1(x0)= cosh
(
(L− 1)acosh(x0)

)
which can be solved for x0 in terms of Ra:

x0 = cosh
(

acosh(Ra)
L− 1

)

Once the scale factor x0 is determined, the window samples w(n) can be computed
by constructing the z-transform of the DTFT from its zeros and then doing an inverse
z-transform. The L− 1 zeros of TL−1(x) are easily found to be:

TL−1(x)= cos
(
(L− 1)acos(x)

) = 0 ⇒ xi = cos
(
(i− 1/2)π

L− 1

)
for i = 1,2, . . . , L−1. Solving for the corresponding frequencies through xi = x0 cos(ωi/2),
we find the DTFT zeros:

ωi = 2 acos
(
xi
x0

)
, zi = ejωi , i = 1,2, . . . , L− 1

9.5. FOURIER OPTICS, APERTURES, SPATIAL ARRAYS 393

The symmetric z-transform of the window is then constructed in terms of its zeros:

W(z)=
L−1∏
i=1

(1− ziz−1)

The inverse z-transform of W(z) are the window coefficients w(n). The typical
MATLAB code is,

L1 = L-1; % number of zeros

Ra = 10^(R/20); % sidelobe level in absolute units

x0 = cosh(acosh(Ra)/L1); % scaling factor

i = 1:L1;

xi = cos(pi*(i-0.5)/L1); % L1 zeros of Chebyshev polynomial

omi = 2 * acos(xi/x0); % L1 zeros in omega-space

zi = exp(j*omi); % L1 zeros of W(z) polynomial

w = real(poly(zi)); % zeros-to-polynomial-coefficients

% see also the more accurate function poly2

% in the EWA toolbox

The window coefficients resulting from this construction can be normalized to unity
maximum. Alternatively, the built-in MATLAB function, chebwin, can be used to calcu-
late the window samples

w = chebwin(L,R); % R in dB

The 3-dB frequency ω3 is defined by the half-power condition:

W(ω3)= TL−1(x3)= TL−1(x0)√
2

= Ra√
2

⇒

cosh
(
(L− 1)acosh(x3)

) = Ra√
2

Solving for x3 and the corresponding 3-dB angle ω3, x3 = x0 cos(ω3/2),

x3 = cosh

(
acosh(Ra/

√
2)

L− 1

)
, ω3 = 2 acos

(
x3

x0

)
From ω3, one calculates the 3-dB width, Δω3dB = 2ω3. However, the following

approximate relationship works well for the broadening factor relative to the rectangular
window, over the range 13 ≤ R ≤ 180 dB,

Δω3dB = 0.886
2πb
L

, b = 0.65+ 0.0195R− 0.00005R2

9.5 Fourier Optics, Apertures, Spatial Arrays

So far we have dealt with time-domain signals and their Fourier transforms. There is
a parallel set of topics involving spatial signals and the corresponding spatial Fourier

394 9. DTFT AND SPECTRAL ANALYSIS

transforms in which the time and frequency variables, t,Ω, are replaced one-dimensionally
by the space and wavenumber variables, x, kx, or, three-dimensionally, x, y, z, kx, ky, kz.

A finite-duration time-windowed signal is replaced by a finite-aperture spatially-
windowed signal. The process of designing a spatial window or aperture function with
tapered ends is referred to in this context as apodization.†

Lens systems act as Fourier transformers in the spatial domain allowing all sorts
of signal processing operations, such as lowpass or highpass spatial filtering, to be
implemented optically.

The problem of designing narrow-beam low-sidelobe antenna or sensor arrays is
equivalent to the problem of spectrum analysis of sinusoidal signals. Typical array
geometries are depicted in Fig. 9.5.1. For example, N identical linear antennas arranged
at equal distances d along the x-axis, xn = nd, n = 0,1,2, . . . ,N − 1 with z-directed
linear elements perpendicular to the xy-plane, will have an array factor, which can be
thought of as a discrete-space Fourier transform (DSFT) of the antenna weights, wn,

W(ψ)=
N−1∑
m=0

wmejψm , ψ = kxd = kd cosφ = 2πd
λ

cosφ

where kx = k cosφ is the wavenumber along the x-direction andφ, the azimuthal angle,
and k is the vacuum wavenumber related to the wavelength λ, by k = 2π/λ, andψ plays
the role of digital spatial frequency in units of radians per space sample. An array that
is scanned towards a particular direction φ0, with ψ0 = kd cosφ0, will have an array
factor, A(ψ)=W(ψ−ψ0).

Fig. 9.5.1 One-dimensional antenna array.

The problem of determining the angles of arrival of several plane waves incident
on an array is the spatial equivalent of the time-domain problem of spectral analysis
of multiple sinusoids. These topics are beyond the scope of this book, but they are
discussed very extensively in the EWA book, Chapters 20, 22, 23 [46]. The Table 9.5.1
illustrates the corresponding concepts between time and spatial concepts.

†from the Greek word for “no feet”

9.6. PERIODOGRAM AND ITS IMPROVEMENTS 395

discrete-time signal processing discrete-space array processing

time-domain sampling, tn = nT space-domain sampling, xn = nd
sampling time interval, T sampling space interval, d
sampling rate, 1/T [samples/sec] sampling rate, 1/d [samples/meter]
frequency, Ω [radians/sec] wavenumber, kx [radians/meter]
digital frequency, ω = ΩT digital wavenumber, ψ = kxd
Nyquist interval, −π ≤ω ≤ π Nyquist interval, −π ≤ ψ ≤ π
sampling theorem, Ω ≤ π/T sampling theorem, kx ≤ π/d
spectral images grating lobes or fringes
frequency response, A(ω) array factor, A(ψ)
z-domain, z = ejω z-domain, z = ejψ

transfer function, A(z) transfer function, A(z)
DTFT and inverse DTFT DSFT and inverse DSFT
pure sinusoid, ejω0n narrow beam, e−jψ0n

windowed sinusoid, w(n)ejω0n windowed narrow beam, w(n)e−jψ0n

resolution of multiple sinusoids resolution of multiple beams
frequency shifting by AM modulation phased array scanning
filter design by window method array design by window method
bandpass FIR filter design angular sector array design
frequency-sampling design Woodward-Lawson design
DFT Blass matrix
FFT Butler matrix

Table 9.5.1 Duality between time-domain and space-domain signal processing.

9.6 Periodogram and Its Improvements

We begin by reviewing some basic random signal concepts, such as autocorrelation func-
tions, power spectra, sample autocorrelations, and the periodogram.

The autocorrelation function of a zero-mean random signal is defined as the corre-
lation between two samples x(n) and x(n+k) separated by a time lag k. It is a measure
of the dependence of successive samples on the previous ones:

Rxx(k)= E
[
x(n+ k)x(n)

]
(autocorrelation function)

For stationary signals, Rxx(k) depends only on the relative time-lag k, and not on
the absolute time n. Note that Rxx(k) is a double-sided sequence and, as a consequence
of stationarity, it is symmetric in k, that is, Rxx(−k)= Rxx(k).

The power spectrum of the random signal x(n) is defined as the DTFT of its auto-
correlation function Rxx(k). It represents the frequency content of the random signal
x(n) in an average sense:

Sxx(ω)=
∞∑

k=−∞
Rxx(k)e−jωk (power spectrum)

396 9. DTFT AND SPECTRAL ANALYSIS

where ω = 2πf/fs is the digital frequency in radians per sample. The inverse DTFT
relationship expresses Rxx(k) in terms of Sxx(ω),

Rxx(k)= E
[
x(n+ k)x(n)

] = ∫ π

−π
Sxx(ω)ejωk dω

2π

In particular, setting k = 0, we obtain the average power, or variance, of the signal x(n):

σ2
x = Rxx(0)= E

[
x(n)2] = ∫ π

−π
Sxx(ω)

dω
2π

=
∫ fs/2

−fs/2
Sxx(f)

df
fs

Sxx(f)=
∞∑

k=−∞
Rxx(k)e−2πjfk/fs

The quantity Sxx(f)/fs represents the power per unit frequency interval. Hence, the
name “power spectrum” or “power spectral density” (psd). It describes how the signal’s
power is distributed among different frequencies. Its integral over the Nyquist interval
gives the total power in the signal.

Often it is more convenient to work with the z-transform of the autocorrelation and
replace z = ejω = e2πjf/fs to obtain the power spectrum Sxx(ω) or Sxx(f):

Sxx(z)=
∞∑

k=−∞
Rxx(k)z−k

White noise has a delta-function autocorrelation and a flat spectrum, as shown below.

Because (by definition) successive signal samples are independent of each other, the
autocorrelation function will factor for k �= 0 into the product of the means which are
assumed to be individually zero:

Rxx(k)= E
[
x(n+ k)x(n

] = E[x(n+ k)]·E[x(n)]= 0

whereas for k = 0, we get the variance

Rxx(0)= E
[
x(n)2] = σ2

x

Combining them into a single equation, we have:

Rxx(k)= σ2
xδ(k) (white noise autocorrelation)

9.6. PERIODOGRAM AND ITS IMPROVEMENTS 397

Only the k = 0 term survives the sum giving the flat spectral density (over the Nyquist
interval):

Sxx(f)= σ2
x , for − fs

2
≤ f ≤ fs

2
(white noise spectrum)

Given a length-N block of signal samples x(n), n = 0,1, . . . ,N−1, one can compute
an estimate of the statistical quantity Rxx(k) by the so-called sample autocorrelation
obtained by replacing the statistical average by the time average:

R̂xx(k)= 1

N

N−1−k∑
n=0

x(n+ k)x(n) (sample autocorrelation)

for k = 0,1, . . . ,N − 1. The negative tail can be defined using the symmetry property
R̂xx(−k)= R̂xx(k), so that we can write, for |k| ≤ N − 1,

R̂xx(k)= 1

N

N−1−|k|∑
n=0

x(n+ |k|)x(n) (sample autocorrelation)

The rule of thumb is that only about the first 5–10% of the lags are statistically
reliable, that is, 0 ≤ k ≤ N/10. The built-in MATLAB function, xcorr, computes R̂xx(k),
for −M ≤ k ≤M, with any M ≤ N − 1, with usage,

Rxx = xcorr(x,M); % with M <= length(x)-1

% examples

x = 0:5;

Rxx = xcorr(x,3);

% Rxx = [14 26 40 55 40 26 14]

Rxx = xcorr(x,5);

% Rxx = [0 5 14 26 40 55 40 26 14 5 0]

with the outputs listed in the order:[
R̂xx(−M) , · · · , R̂xx(−1) , R̂xx(0) , R̂xx(1) , · · · , R̂xx(M)

]
Alternatively, one can use the function, acf.m, in the ISP2e toolbox, which computes

non-negative lags only up to desired maximum lag, and can also compute cross corre-
lations. It has usage,

Rxy = acf(x,x,M) = autocorrelation of length-N vector x

Rxy = acf(x,y,M) = cross-correlation between two length-N vectors x,y

Rxy = acf(x,y) = equivalent to M = N-1

x = length-N vector

y = length-N vector

M = maximum lag (typically, M <= N-1, pads zeros if M > N-1)

Rxy = [Rxy(0), Rxy(1), ..., Rxy(M)], row vector of non-negative lags

398 9. DTFT AND SPECTRAL ANALYSIS

It can be shown that for wide-sense stationary signals, R̂xx(k) is a good (i.e., con-
sistent) estimate of Rxx(k), converging to the latter for large N (in the mean-square
sense):

R̂xx(k) −→ Rxx(k) as N →∞
The DTFT of R̂xx(k) is called the periodogram spectrum and can be thought of as an

estimate of the true power spectrum Sxx(ω):

Ŝxx(ω)=
N−1∑

k=−(N−1)
R̂xx(k)e−jωk (periodogram spectrum) (9.6.1)

Using the definition of R̂xx(k), and rearranging summations, we can express the
periodogram in the alternative way:

Ŝxx(ω)= 1

N
|XN(ω)|2 (periodogram spectrum) (9.6.2)

where XN(ω) is the DTFT of the length-N data block x(n), which can be computed
efficiently using FFTs, or, the MATLAB function freqz,

XN(ω)=
N−1∑
n=0

x(n)e−jωn

A modified periodogram can also be defined by windowing the length-N data block
using a length-N window, such as Hamming, and then computing the DTFT of the win-
dowed signal, that is,

Xw(ω) =
N−1∑
n=0

w(n)x(n)e−jωn

Ŝmod(ω) = 1

N
∣∣Xw(ω)

∣∣2 = modified periodogram

(9.6.3)

It can be shown that for wide-sense stationary random signals the periodogram is
asymptotically unbiased, that is, its mean converges to the true power spectrum Sxx(ω)
in the limit of large N,

Sxx(ω)= lim
N→∞

E
[
Ŝxx(ω)

]
= lim

N→∞
E
[

1

N
|XN(ω)|2

]

Since the sample autocorrelation is an asymptotically unbiased and consistent es-
timate of the true autocorrelation function, Rxx(k)= E

[
x(n + k)x(n)

]
, one may hope

that the periodogram itself can be taken to be an estimate of the true power spectrum
of the process x(n). However, although the periodogram is asymptotically unbiased, it
is not a consistent estimator of the true spectrum, so that while its mean tends to the
true spectrum as N → ∞, but its variance does not tend to zero, resulting therefore in
an unreliable estimate.

9.6. PERIODOGRAM AND ITS IMPROVEMENTS 399

The subject of “classical spectral analysis” is concerned with the methods of improv-
ing the plain periodogram, maintaining its asymptotic unbiasedness while reducing its
variance, thus, improving its statistical reliability. There are two basic methods of im-
provement [240]: (a) periodogram averaging and (b) periodogram smoothing, which are
summarized in Fig. 9.6.1.

Fig. 9.6.1 Periodogram averaging and smoothing methods.

In the periodogram averaging method, the signal is divided into K segments that
may be contiguous or overlapping (usually by 50% in the Welch method). The signal
segments may be optionally pre-windowed and their periodograms are computed and
averaged for each ω. Denoting by Ŝi(ω), i = 1,2, . . . , K, the periodogram of the i-th
segment, the averaged periodogram is calculated by,

Ŝav(ω)= 1

K

K∑
i=1

Ŝi(ω)= averaged periodogram (9.6.4)

It can be shown that the variance of the resulting averaged periodogram is reduced
typically by a factor ofK. The larger the number of segmentsK, the smaller the variance
and the more reliable the spectrum estimate.

The relationship between the overall signal length L, and the number of segments
K and the length N of each segment, is as follows in the non-overlapping and the 50-
percent overlapping cases,

L = KN contiguous

L = 1

2
(K + 1)N 50% overlapping

(9.6.5)

These capture the tradeoff between statistical reliability, which requires a largeK, and
frequency resolution for each segment, which requires a large N, since, Δω ≈ 2πb/N.

400 9. DTFT AND SPECTRAL ANALYSIS

Thus, if a long enough signal is available, it is possible to compute a reliable spectrum
estimate.

This can fail in two ways: (i) a long data record may not be available, and (ii) even
if it is available, it may be too long to represent a stationary random signal, and there-
fore its spectrum computation would be meaningless. These shortcomings have led to
the development of modern spectral analysis methods, which are based on parametric
models of the signal [25,26].

In the periodogram smoothing method, one computes 2M + 1 lags of the sample
autocorrelation of the length-L data, with M� L−1, then windows the autocorrelation
with a symmetric window of length 2M + 1, and computes the DTFT of the result, that
is, given a signal block, x(n), n = 0,1, . . . , L−1, first remove its sample mean, and then,

R̂xx(k)= 1

L

L−1−|k|∑
n=0

x
(
n+ |k|)x(n) , −M ≤ k ≤M

Ŝsm(ω)=
M∑

k=−M
w(k)R̂xx(k)e−jωk = smoothed periodogram

(9.6.6)

Depending on the window used, the variance of the spectrum estimate is typically
reduced by a factor of M/L, while the frequency resolution becomes of the order of
Δω = 2πb/M. We emphasize that in this method, the window is applied to the auto-
correlation itself, not to the time signal. For this reason, such windows are referred to
as lag windows.

Because multiplication in the time domain is equivalent to convolution in the fre-
quency domain, the smoothed periodogram will be the frequency-domain convolution
of the DTFT W(ω) of the lag window w(k) and the ordinary periodogram Ŝper(ω),

Ŝsm(ω)=W(ω)∗Ŝper(ω) =
∫ π

−π
W(ω′)Ŝper(ω−ω′)

dω′

2π
(9.6.7)

Thus, the periodogram gets smeared or smoothed in the frequency domain byW(ω).
Because w(k) is real-valued and symmetric in the the interval, |k| ≤M, its DTFT W(ω)
will also be real valued. However, it need not be positive, and in order to avoid any
negative terms in the convolution integral, it should also be required that Wω)≥ 0 for
all ω. An example of such window is the symmetric Bartlett window of length 2M + 1,
or, length 2M − 1, since it vanishes at k = ±M,

w(k)= 1− |k|
M

, −M ≤ k ≤M (Bartlett window) (9.6.8)

having a non-negative DTFT, known as Fejér’s kernel,

W(ω)=
M∑

k=−M

(
1− |k|

M

)
e−jωk =

M∑
k=−M

w(k)e−jωk = 1

M

sin2
(
Mω

2

)
sin2

(
ω
2

) (9.6.9)

9.7. FILTERING OF RANDOM SIGNALS 401

Another lag window is the Parzen window, defined over −M ≤ k ≤M,

w(k)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− 6

(|k|
M

)2

+ 6
(|k|
M

)3

, |k| ≤ M
2

2
(

1− |k|
M

)3

,
M
2
< |k| ≤M

(9.6.10)

with non-negative DTFT,

W(ω)=
4
[

3− 2 sin2
(
ω
2

)]
sin4

(
Mω

2

)
M3 sin4

(
ω
2

) (9.6.11)

A more complete discussion of these and other lag windows can be found in Percival
and Walden [240].

9.7 Filtering of Random Signals

In designing filters to remove noise, it is necessary to know the effect of filtering on the
autocorrelation function and on the power spectrum of a random signal.

Suppose the input to a strictly stable filter H(z) with impulse response h(n) is a
wide-sense stationary signal x(n). Then, the corresponding output y(n) will also be a
wide-sense stationary random signal:

y(n)=
∑
m
h(m)x(n−m) H(z)

x(n) y(n)

It can be shown [2,45] that the power spectrum of the output is related to that of the
input by:

Syy(ω)= |H(ω)|2Sxx(ω) (9.7.1)

Thus, the input spectrum is reshaped by the filter spectrum. A simple way to justify
this result is in terms of periodograms. The filtering equation in the z-domain is, Y(z)=
H(z)X(z), and in the frequency domain, Y(ω)= H(ω)X(ω). It follows that the
output periodogram will be related to the input periodogram by a similar equation as
(9.7.1):

1

N
|Y(ω)|2 = |H(ω)|2 · 1

N
|X(ω)|2

Applying this result to the special case of a white noise input with a flat spectral
density Sxx(ω)= σ2

x gives

Syy(ω)= |H(ω)|2σ2
x (9.7.2)

Similarly, in the z-transform notation:

Syy(z)= H(z)H(z−1)σ2
x (9.7.3)

402 9. DTFT AND SPECTRAL ANALYSIS

where we replaced H(ω)= H(z) and H(ω)∗= H(z−1), the latter following from the
fact that h(n) is real-valued. Indeed, with z = ejω and z−1 = z∗ = e−jω, we have:

H(ω)∗= (∑
n
h(n)e−jωn)∗ =∑

n
h(n)ejωn = H(z−1)

Equation (9.7.2) implies that the filtered noise y(n) is no longer white. Its power
spectrum acquires the shape of the filter’s spectrum. Its autocorrelation function is no
longer a delta function. It can be computed by taking the (stable) inverse z-transform
of Eq. (9.7.3).

A measure of whether the filter attenuates or magnifies the input noise is given by
the variance of the output σ2

y . Using Eq. (9.7.1) applied to y(n), we have:

σ2
y =

∫ π

−π
Syy(ω)

dω
2π

= σ2
x

∫ π

−π
|H(ω)|2 dω

2π

which can be written in the form:

NRR = σ2
y

σ2
x
=
∫ π

−π
|H(ω)|2 dω

2π
=
∑
n
h(n)2 (NRR) (9.7.4)

where we used Parseval’s equation discussed in Chapter 5.
This ratio will be referred to as the noise reduction ratio (NRR). If it is less than one,

the input noise will be attenuated by the filter. It can be used as a useful criterion for
designing noise-reducing filters—the objective being to design H(z) such that (9.7.4) is
minimized as much as possible.

A necessary assumption for the derivation of the results (9.7.1) or (9.7.4) is that
the filter h(n) be strictly stable. The stability of h(n) is required to ensure that the
stationary input signal x(n) will generate, after the filter transients die out, a stationary
output signal y(n).

Thus, even marginally stable filters with poles on the unit circle are not allowed.
To illustrate the problems that may arise, consider the simplest marginally stable filter,
namely, an accumulator/integrator:

H(z)= 1

1− z−1
, h(n)= u(n)

It has I/O difference equation:

y(n)= y(n− 1)+x(n)

Assuming zero initial conditions, we can write it in the convolutional form:

y(n)= x(n)+x(n− 1)+· · · + x(1)+x(0) (9.7.5)

If x(n) is a zero-mean, white noise signal with varianceσ2
x , the resulting accumulated

output signal y(n) is a version of the random walk process [1277].
The signal y(n) is not stationary and becomes unstable as n increases, in the sense

that its mean-square value (i.e., its variance) σ2
y(n)= E[y(n)2] diverges. Indeed, using

9.8. COMPUTER EXPERIMENT – SUNSPOT TIME SERIES 403

the property that the variance of a sum of independent random variables is equal to the
sum of the individual variances, we obtain from Eq. (9.7.5):

σ2
y(n)= E[y(n)2]= E[x(n)2]+E[x(n− 1)2]+· · · + E[x(0)2]= σ2

x +σ2
x + · · · +σ2

x

where all the terms have a common variance σ2
x , by assumption. It follows that:

σ2
y(n)= E[y(n)2]= (n+ 1)σ2

x (9.7.6)

Thus, the mean-square value of y(n) grows linearly inn. In a digital implementation,
the growing amplitude of y(n) will quickly saturate the hardware registers.

Analog integrators also behave in a similar fashion, growing unstable when their
input is random noise. Therefore, one should never accumulate or integrate white noise.
A standard remedy is to use a so-called leaky integrator, which effectively stabilizes
the filter by pushing its pole slightly into the unit circle. This is accomplished by the
replacement, with 0 < ρ � 1

H(z)= 1

1− z−1
−→ H(z)= 1

1− ρz−1

More generally, a marginally stable filter can be stabilized by the substitution z →
ρ−1z, which pushes all the marginal poles into the inside of the unit circle. The substi-
tution amounts to replacing the transfer function and impulse response by

H(z) −→ H(ρ−1z), h(n) −→ ρnh(n) (9.7.7)

9.8 Computer Experiment – Sunspot Time Series

The sunspot time series has served as a historical benchmark for testing several spec-
trum estimation methods. Yule was the first to model it in terms of a 2nd order au-
toregressive model. However, in this experiment we will consider only the periodogram
averaging and periodogram smoothing methods.

The attached file, sunspots.dat,† contains the yearly mean number of sunspots for
the 309 years of 1700–2008. These can be read into MATLAB and remove their sample
mean as follows,

Y = load(’sunspots.dat’); % Y is 309x2 matrix of [years,sunspots]
x = Y(:,2); % number of sunspots
L = length(x); % here, L = 309
mx = mean(x); % sample mean
x = x - mx; % zero-mean data

where the last line determines the sample mean of the data block and subtracts it from
the data. The mean mx is saved and can be restored at the end if necessary. The time
series with its mean restored is plotted below.

In this problem the time units are “years”, and the frequency units are “cycles/year”,
and the corresponding inverse frequencies or periods are in units of “years/cycle”. The

†included in the ISP2e zip file of MATLAB programs and data

404 9. DTFT AND SPECTRAL ANALYSIS

sampling rate is fs = 1 samples/year. Our objective is to determine the dominant cycle
present in the time series, which is known to have a period of about 11 years.

0 50 100 150 200 250 300
0

50

100

150

200

years

sunspots, 1700−2008

(a) Using a rectangular window calculate the ordinary periodogram of Eq. (9.6.2) over
1001 equally-spaced frequencies in the Nyquist interval 0 ≤ f ≤ fs/2.

Normalize it to unity maximum, convert it into dB scales, and plot it versus f
using vertical scales [−50,10] dB. Use the same vertical scales in all subsequent
questions. This can be done with the help of the freqz function, with typical
MATLAB code as follows,

f = linspace(0,0.5,1001); % frequency range
om = 2*pi*f/fs; % frequencies in rads/sample
S = 1/L * abs(freqz(x,1,om)).^2; % periodogram
S = S/max(S); % unit max
S = 10*log10(S); % dB

(b) Determine the frequency fmax of the dominant cycle, i.e., the frequency of the
maximum of the periodogram spectrum, and calculate the estimated period 1/fmax

of the dominant cycle in years, placing that point on the graph. See some example
graphs at the end. Typical code to determine the maximum and its frequency is
as follows:

% f = ... % frequency range, as above
% S = ... % in dB, as above
[Smax,imax] = max(S); % max S and its index
fmax = f(imax); % frequency at Smax

(c) Repeat parts (a,b) using a length-L Hamming window to calculate a modified pe-
riodogram, as in Eq. (9.6.3).

(d) Next, consider the periodogram averaging method with contiguous segments.
Choose the dimension of each segment to be N = 60 so that there are roughly
K = 309/60 ≈ 5 segments whose periodograms are to be averaged. The division
into segments can be done conveniently using the built-in buffer function, with
usage,

9.8. COMPUTER EXPERIMENT – SUNSPOT TIME SERIES 405

N = 60; % segment length
[X,~] = buffer(x,N,0,’nodelay’); % X = complete segments only
K = size(X,2); % actual number of segments

The “nodelay” option starts the first segment without inserting zeros at the begin-
ning, the “0” option tells it to use contiguous segments, and the particular output
usage ensures that the X output of dimension N×K will consist only of complete
length-N column segments, ignoring any possible incomplete last segment. The
row dimension of X is the actual number K of complete segments.

Using both a rectangular and Hamming window of length N, compute the peri-
odograms of each segment over the same set of frequencies as in part (a), then,
average the periodograms of the segments, normalize the result to unity maxi-
mum, convert it to dB, and plot it versus f , placing on the graph the estimated
maximum, and its estimated period in years.

The computation and averaging of the segment periodograms can be done using
a column-wise for-loop in MATLAB that runs over the columns of X,

% w = ... % length-N window, column
% f = ... % define frequency range
om = 2*pi*f/fs; % frequencies in rads/sample
Sav = zeros(size(om)); % initialize average
for s = X % run over the columns of X

Sav = Sav + abs(freqz(w.*s,1,om)).^2; % accumulate periodograms
end % follow by normalizations, etc.

(e) Repeat part (d) using the Welch periodogram method, implemented with 50% over-
lapping segments and using both a rectangular and a Hamming window. The
buffer function can be used again to divide the signal into overlapping and com-
plete segments. In this part, choose N = 104.

The following MATLAB code segment shows the usage of buffer, where now the
third argument N/2 specifies a 50% overlap,

N = 104; % segment length
[X,~] = buffer(x,N,N/2,’nodelay’); % X = complete segments only
K = size(X,2); % actual number of segments

For both window cases, carry out the periodogram averaging and plotting, as in
part (d), including finding the dominant cycle. Do not use the built-in function
pwelch in this part.

(f) Next, consider the periodogram smoothing method. Choose a maximum lag of
M = 200, and using a Bartlett window, calculate the smoothed periodogram of
Eq. (9.6.6) over the same set of frequencies as in part (a).

As before, normalize the smoothed periodogram to unity maximum, convert to
dB, and plot it versus f , inserting on the graph the estimated maximum point and
the estimated dominant cycle in years.

The sample autocorrelation can be calculated with the built-in xcorr function, and
its windowed DTFT, with freqz,

406 9. DTFT AND SPECTRAL ANALYSIS

% M = 200; % Rxx length is 2*M+1
% w = ... % define window, same size as Rxx
% f = ... % define frequency range
om = 2*pi*f/fs; % frequencies in rads/sample
Rxx = xcorr(x,M); % sample autocorrelation over [-M,M]
S = abs(freqz(w.*Rxx,1,om)); % smoothed periodogram

(g) Repeat part (f) with M = 100 and with M = 50, noting the changes in the amount
of smoothing, as well the reduction in resolution.

Some typical graphs are shown below.

0 0.1 0.2 0.3 0.4 0.5
−50

−40

−30

−20

−10

0

10

f, cycles/year

dB

plain periodogram − rectangular

 periodogram
 10.99 years

0 0.1 0.2 0.3 0.4 0.5
−50

−40

−30

−20

−10

0

10

f, cycles/year

dB

plain periodogram − Hamming

 periodogram
 11.11 years

0 0.1 0.2 0.3 0.4 0.5
−50

−40

−30

−20

−10

0

10

f, cycles/year

dB

modified periodogram − rectangular

 N = 60, K = 5
 plain
 10.81 years

0 0.1 0.2 0.3 0.4 0.5
−50

−40

−30

−20

−10

0

10

f, cycles/year

dB

modified periodogram − Hamming

 N = 60, K = 5
 plain
 10.93 years

9.9. PROBLEMS 407

0 0.1 0.2 0.3 0.4 0.5
−50

−40

−30

−20

−10

0

10

f, cycles/year

dB

Welch periodogram − rectangular

 N = 104, K = 4
 plain
 10.93 years

0 0.1 0.2 0.3 0.4 0.5
−50

−40

−30

−20

−10

0

10

f, cycles/year

dB

Welch periodogram − Hamming

 N = 104, K = 4
 plain
 10.99 years

0 0.1 0.2 0.3 0.4 0.5
−50

−40

−30

−20

−10

0

10

f, cycles/year

dB

smoothed periodogram − Bartlett

 M = 200
 plain
 10.93 years

9.9 Problems

9.1 A 128-millisecond portion of an analog signal is sampled at a rate of 8 kHz and the resulting
L samples are saved for further processing. What is L? The 256-point DFT of these samples
is computed. What is the frequency spacing in Hz of the computed DFT values? What is
the total number of required multiplications: (a) if the computations are done directly using
the definition of the DFT, (b) if the L samples are first wrapped modulo 256 and then the
256-point DFT is computed, and (c) if a 256-point FFT is computed of the wrapped signal?

9.2 A 10 kHz sinusoidal signal is sampled at 80 kHz and 64 samples are collected and used to
compute the 64-point DFT of this signal. At what DFT indices k = 0,1, . . . ,63 would you
expect to see any peaks in the DFT?

9.3 A 5 kHz sinusoidal signal is sampled at 40 kHz and 16 periods of the signal are collected.
What is the length N of the collected samples? Suppose an N-point DFT is performed. Then,
at what DFT indices, k = 0,1, . . . ,N−1, do you expect to see any peaks in the DFT spectrum?

In general, how is the number of periods contained in the N samples related to the DFT
index at which you get a peak?

9.4 An 18 kHz sinusoid is sampled at a rate of 8 kHz and a 16-point DFT of a finite portion of
the signal is computed. At what DFT indices in the range 0 ≤ k ≤ 15 do you expect to see
any peaks in the DFT spectrum? Would it matter if first we folded the 18 kHz frequency to
lie within the Nyquist interval and then computed the DFT? Explain.

408 9. DTFT AND SPECTRAL ANALYSIS

9.5 It is known that the frequency spectrum of a narrowband signal has a peak of width of 20
Hz but it is not known where this peak is located. To find out, an FFT must be computed
and plotted versus frequency. If the signal is sampled at a rate of 8 kHz, what would be the
minimum number of samples L that must be collected in order for the peak to be resolvable
by the length-L data window? What is the duration in seconds of this data segment? What
would be the minimum size N of the FFT in order for the N FFT spectral values to represent
the L time samples accurately?

9.6 Computer Experiment: Rectangular and Hamming Windows. Using the routine dtftr.c,
reproduce the results and graphs of Example 9.1.3.

9.7 Computer Experiment: Frequency Resolution and Windowing. Reproduce the results and
graphs of Example 9.1.4. The spectra of the windowed signals must be computed by first
windowing them using a length-L window and then padding 256− L zeros at their ends to
make them of length-256, and finally calling a 256-point FFT routine.

9.8 Computer Experiment: Physical versus Computational Resolution. Reproduce the results of
Figs. 10.3.1 and 10.3.2. The theoretical DTFTs may be computed by 256-point FFTs. The
32-point and 64-point DFTs may be extracted from the 256-point FFTs by keeping every 8th
point (256/32 = 8) and every 4th point (256/64 = 4.)

9.9 A dual-tone multi-frequency (DTMF) transmitter (touch-tone phone) encodes each keypress
as a sum of two sinusoidal tones, with one frequency taken from group A and one from
group B, where:

group A = 697, 770, 852, 941 Hz

group B = 1209, 1336, 1477 Hz

A digital DTMF receiver computes the spectrum of the received dual-tone signal and deter-
mines the two frequencies that are present, and thus, the key that was pressed.

What is the smallest number of time samples L that we should collect at a sampling rate of
8 kHz, in order for the group-A frequencies to be resolvable from the group-B frequencies?
What is L if a Hamming window is used prior to computing the spectrum?

9.10 Suppose we collect 256 samples of the above DTMF signal and compute a 256-point FFT.
Explain why each keypress generates substantial signal energy in 2 out of 7 possible DFT
frequency bins (and their negatives). What are the indices k for these 7 bins? [Hint: Round
k to its nearest integer. Do not ignore negative frequencies.]

Note that in practice, it may be more economical to just compute the value of X(k) at those
14 k’s instead of computing a full 256-point FFT.

9.11 Computer Experiment: DTMF Sinusoids. Consider the following artificial signal consisting of
the sum of all seven DTMF sinusoids:

x(t)=
4∑

a=1

sin(2πfat)+
3∑

b=1

sin(2πfbt)

where fa and fb are the group A and B frequencies given in Problem 9.9 and t is in seconds.
(In practice, of course, only one fa term and one fb term will be present.)

The signal x(t) is sampled at a rate of 8 kHz and 256 samples are collected, say, x(n),
n = 0,1, . . . ,255. The spectrum of this signal should consist of seven peaks clustered in
two clearly separable groups (and, seven more negative-frequency peaks).

a. Plot the signal x(n) versus n.

9.9. PROBLEMS 409

b. Compute the 256-point DFT or FFT of the signal x(n) and plot the corresponding
magnitude spectrum |X(f)| only over the frequency range 0 ≤ f ≤ 4 kHz.

c. Window the signal x(n) by a length-256 Hamming window w(n), that is, xham(n)=
w(n)x(n), and plot it versus n. Then, compute its 256-point DFT and plot the mag-
nitude spectrum |Xham(f)| over 0 ≤ f ≤ 4 kHz.

10
DFT/FFT Algorithms

10.1 Discrete Fourier Transform

In the previous chapter, we defined the DTFT of a length-L signal, x(n), to be,

X(ω)=
L−1∑
n=0

x(n)e−jωn (10.1.1)

where ω = 2πf/fs is the digital frequency in [rads/sample], and noted that X(ω)
is periodic in ω with period 2π, so that we only need to evaluate X(ω) within the
symmetric Nyquist interval, −π ≤ ω ≤ π, or, within the right-sided Nyquist interval,
0 ≤ω ≤ 2π, and mentioned that X(ω) can be evaluated at any range of ωs using, for
example, MATLAB’s built-in function freqz,

% x = ... % define length-L signal x(n)

% omega = ... % choose a range of omega’s

X = freqz(x,1,omega); % DTFT X(omega) of same length as omega

The N-point discrete Fourier transform (DFT) of a length-L signal is defined to be the
DTFT evaluated at N equally-spaced frequencies spanning the full right-sided Nyquist
interval, 0 ≤ ω ≤ 2π. These so-called “DFT frequencies” are defined in radians per
sample as follows:

ωk = 2πk
N

, k = 0,1, . . . ,N − 1 (10.1.2)

or, in Hz

fk = kfs
N

, k = 0,1, . . . ,N − 1 (10.1.3)

Thus, the N-point DFT will be, for k = 0,1, . . . ,N − 1:

X(ωk)=
L−1∑
n=0

x(n)e−jωkn (N-point DFT of length-L signal) (10.1.4)

410

10.1. DISCRETE FOURIER TRANSFORM 411

Usually, X(ωk) is denoted by Xk in terms of the DFT index k = 0,1, . . . ,N − 1.
The C-function† dft can be used to evaluate the array Xk. Alternatively, the MATLAB
computation in terms of freqz is,

% x = ... % define length-L signal x(n)

k = 0:N-1; % DFT index

wk = 2*pi*k/N; % N-dimensional vector of DFT frequencies

Xk = freqz(x,1,wk); % N-dimensional DFT vector

Note that the value at k = N, corresponding to ωN = 2π, is not computed because
by periodicity it equals the value at ω0 = 0, that is, X(ωN)= X(ω0), or,

XN = X0

More generally, the periodicity of X(ω) with period 2π is reflected in the periodicity of
the DFT, Xk = X(ωk), in the index k with period N, which follows from,

ωk+N = 2π(k+N)
N

= 2πk
N

+ 2π =ωk + 2π

so that,
Xk+N = X(ωk+N)= X(ωk + 2π)= X(ωk)= Xk (10.1.5)

A consequence of this property is also the mapping of the negative-half. −π <≤ω ≤ 0,
of the symmetric Nyquist interval, −π ≤ π, into the second-half, π ≤ ω ≤ 2π, of the
right-sided Nyquist interval, 0 ≤ω ≤ 2π, that is,

X−k = XN−k , k = 1,2 . . . ,N − 1 (10.1.6)

Fig. 10.1.1 Mapping of negative frequencies into positive frequencies in N-point DFT.

so that, for example, X−1 = XN−1, X−2 = XN−2, and so on. The symmetric and right-
sided Nyquist interval DFT values are displayed in Fig. 10.1.1 (see also Fig. 9.2.1). Also
shown is the computational bin width, i.e., the separation between the equally-spaced
computed frequency points, ωk = kΔωbin, k = 0,1, . . . ,N − 1,

Δωbin = 2π
N

or, Δfbin = fs
N

(10.1.7)

†found in the C-function collection of this book.

412 10. DFT/FFT ALGORITHMS

The built-in MATLAB function, fftshift, implements the remapping of the right-half of
an ordinary DFT to the negative-half of a symmetric DFT. For example, the following
16-point DFT computed for indices, k = 0,1, . . . ,15,

Xk = [16, 15, 14, 13, 12, 11, 10, 9︸ ︷︷ ︸
positive-half

, 8, 9, 10, 11, 12, 13, 14, 15︸ ︷︷ ︸
negative-half

]

will get remapped to the symmetric one, with indices, −8 ≤ k ≤ 7,

Xshifted
k = [8, 9, 10, 11, 12, 13, 14, 15︸ ︷︷ ︸

negative-half

, 16, 15, 14, 13, 12, 11, 10, 9︸ ︷︷ ︸
positive-half

]

and shown in Fig. 10.1.2, implemented with MATLAB code,

X = [16, 15, 14, 13, 12, 11, 10, 9, 8, 9, 10, 11, 12, 13, 14, 15];

Xshifted = fftshift(X);

% resulting into,
% Xshifted = [8, 9, 10, 11, 12, 13, 14, 15, 16, 15, 14, 13, 12, 11, 10, 9]

−8 −4 0 4 8 12 16
0

0.2

0.4

0.6

0.8

1

k

ordinary 16−point DFT (blue curve)

−8 −4 0 4 8 12 16
0

0.2

0.4

0.6

0.8

1

k

shifted 16−point DFT (red curve)

Fig. 10.1.2 FFTSHIFT example.

For the case of real-valued signals x(n), the Hermitian conjugation symmetry prop-
erty of the DTFT, X∗(ω)= X(−ω), can be combined with the periodicity property
(10.1.6) resulting in,

X∗k = X−k = XN−k , k = 0,1,2 . . . ,N − 1 (10.1.8)

so that for example, X∗0 = X0 = XN (i.e., real-valued), X∗1 = XN−1, X∗2 = XN−2, etc.
The N computed values X(ωk) can also be thought of as the evaluation of the z-

transform X(z) at the following z-points on the unit circle:

X(ωk)= X(zk)=
L−1∑
n=0

x(n)z−nk (10.1.9)

10.2. ZERO PADDING 413

where

zk = ejωk = e2πjk/N , k = 0,1, . . . ,N − 1 (10.1.10)

These are recognized as theNth roots of unity, that is, theN solutions of the equation
zN = 1. They are evenly spaced around the unit circle at relative angle increments of
2π/N, as shown in Fig. 10.1.3.

Fig. 10.1.3 Nth roots of unity, for N = 8.

10.2 Zero Padding

In principle, the two lengths L and N can be specified independently of each other: L is
the number of time samples in the data record and can even be infinite; N is the number
of frequencies at which we choose to evaluate the DTFT.

Most discussions of the DFT assume thatL = N. The reason for this will be discussed
later. If L < N, we can pad N−L zeros at the end of the data record to make it of length
N. If L > N, we may reduce the data record to length N by wrapping it modulo-N—a
process to be discussed in Section 10.5.

Padding any number of zeros at the end of a signal has no effect on its DTFT. For
example, padding D zeros will result into a length-(L+D) signal:

x = [x0, x1, . . . , xL−1]

xD = [x0, x1, . . . , xL−1,0,0, . . . ,0︸ ︷︷ ︸
D zeros

]

Because xD(n)= x(n) for 0 ≤ n ≤ L− 1 and xD(n)= 0 for L ≤ n ≤ L+D− 1, the
corresponding DTFTs will remain the same:

XD(ω) =
L+D−1∑
n=0

xD(n)e−jωn =
L−1∑
n=0

xD(n)e−jωn +
L+D−1∑
n=L

xD(n)e−jωn

=
L−1∑
n=0

x(n)e−jωn = X(ω)

414 10. DFT/FFT ALGORITHMS

Therefore, their evaluation at the N DFT frequencies will be the same: XD(ωk)=
X(ωk). We note also that padding the D zeros to the front of the signal will be equiv-
alent to a delay by D samples, which in the z-domain corresponds to multiplication by
z−D and in the frequency domain by e−jωD. Therefore, the signals:

x = [x0, x1, . . . , xL−1]

xD = [0,0, . . . ,0︸ ︷︷ ︸
D zeros

, x0, x1, . . . , xL−1] (10.2.1)

will have DTFTs and DFTs:

XD(ω) = e−jωDX(ω)

XD(ωk) = e−jωkDX(ωk), k = 0,1, . . . ,N − 1
(10.2.2)

10.3 Physical versus Computational Resolution

The bin width Δfbin represents the spacing between the DFT frequencies at which the
DTFT is computed and must not be confused with the frequency resolution width Δf =
fs/L of Eq. (9.1.14), which refers to the minimum resolvable frequency separation be-
tween two sinusoidal components. To avoid confusion, we will refer to Eq. (9.1.14) as
the physical frequency resolution and to Eq. (10.1.7) as the computational frequency
resolution.

The interplay between physical and computational resolution is illustrated in Fig. 10.3.1
for the triple sinusoidal signal of Example 9.1.4. The N = 32 and N = 64 point DFTs of
the rectangularly windowed signals of lengths L = 10 and L = 20 are shown together
with their full DTFTs (computed here as 256-point DFTs).

It is evident from these graphs that if the length L of the signal is not large enough
to provide sufficient physical resolution, then there is no point increasing the length N
of the DFT—that would only put more points on the wrong curve.

Another issue related to physical and computational resolution is the question of
how accurately the DFT represents the peaks in the spectrum. For each sinusoid that is
present in the signal, say, at frequency f0, the DTFT will exhibit a mainlobe peak arising
from the shifted window W(f − f0). When we evaluate the N-point DFT, we would like
the peak at f0 to coincide with one of the N DFT frequencies (10.1.3). This will happen
if there is an integer 0 ≤ k0 ≤ N − 1, such that

f0 = fk0 =
k0fs
N

⇒ k0 = N
f0

fs
(10.3.1)

Similarly, the peak at the negative frequency, −f0, or at the equivalent shifted one,
fs − f0, will correspond to the integer, −k0, or to the shifted one N − k0:

−f0 = −k0
fs
N

⇒ fs − f0 = fs − k0
fs
N
= (N − k0)

fs
N

In summary, for each sinusoid with peaks at ±f0, we would like our DFT to show
these peaks at the integers:

10.3. PHYSICAL VERSUS COMPUTATIONAL RESOLUTION 415

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

3

6

9

12

15

f/f
s

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 10, N = 32

 32−point FFT
 DTFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

3

6

9

12

15

f/f
s

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 10, N = 64

 64−point FFT
 DTFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

3

6

9

12

15

f/f
s

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 20, N = 32

 32−point FFT
 DTFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

3

6

9

12

15

f/f
s

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 20, N = 64

 64−point FFT
 DTFT

Fig. 10.3.1 Physical versus computational resolution in DTFT computation.

{f0, −f0} ⇒ {f0, fs − f0} ⇒ {k0, N − k0} (10.3.2)

In general, this is not possible because k0 computed from Eq. (10.3.1) is not an
integer, and the DFT will miss the exact peaks. However, for large N, we may round k0

to the nearest integer and use the corresponding DFT frequency as an estimate of the
actual peak frequency.

A pitfall of using the DFT can be seen in the lower two graphs of Fig. 10.3.1, where
it appears that the DFT correctly identifies the three peaks in the spectrum, for both
N = 32 and N = 64.

However, this is misleading for two reasons: First, it is a numerical accident in this
example that the mainlobe maxima coincide with the DFT frequencies. Second, it can
be seen in the figure that these maxima correspond to the wrong frequencies and not
to the correct ones, which are:

f1

fs
= 0.20,

f2

fs
= 0.25,

f3

fs
= 0.30 (10.3.3)

This phenomenon, whereby the maxima of the peaks in the spectrum do not quite
correspond to the correct frequencies, is called biasing and is caused by the lack of

416 10. DFT/FFT ALGORITHMS

adequate physical resolution, especially when the sinusoidal frequencies are too close to
each other and the sum of terms W(f − f0) interact strongly.

Using Eq. (10.3.1), we can calculate the DFT indices k and N − k to which the true
frequencies (10.3.3) correspond. For N = 32, we have:

k1 = N
f1

fs
= 32 · 0.20 = 6.4, N − k1 = 25.6

k2 = N
f2

fs
= 32 · 0.25 = 8, N − k2 = 24

k3 = N
f3

fs
= 32 · 0.30 = 9.6, N − k3 = 22.4

Similarly, for N = 64, we find:

k1 = N
f1

fs
= 64 · 0.20 = 12.8, N − k1 = 51.2

k2 = N
f2

fs
= 64 · 0.25 = 16, N − k2 = 48

k3 = N
f3

fs
= 64 · 0.30 = 19.2, N − k3 = 44.8

Only the middle one at f2 corresponds to an integer, and therefore, coincides with
a DFT value. The other two are missed by the DFT. We may round k1 and k3 to their
nearest integers and then compute the corresponding DFT frequencies. We find for
N = 32:

k1 = 6.4 ⇒ k1 = 6 ⇒ f1

fs
= k1

N
= 0.1875

k3 = 9.6 ⇒ k3 = 10 ⇒ f3

fs
= k3

N
= 0.3125

and for N = 64:

k1 = 12.8 ⇒ k1 = 13 ⇒ f1

fs
= k1

N
= 0.203125

k3 = 19.2 ⇒ k3 = 19 ⇒ f3

fs
= k3

N
= 0.296875

The rounding error in the frequencies remains less than fs/2N. It decreases with
increasing DFT length N. The biasing error, on the other hand, can only be decreased
by increasing the data length L.

Figure 10.3.2 shows the spectrum of the same signal of Example 9.1.4, but with length
L = 100 samples. Biasing is virtually eliminated with the peak maxima at the correct
frequencies. The spectrum is plotted versus the DFT index k, which is proportional to
the frequency f via the mapping (10.1.3), or

k = N
f
fs

(frequency in units of the DFT index) (10.3.4)

10.3. PHYSICAL VERSUS COMPUTATIONAL RESOLUTION 417

The Nyquist interval 0 ≤ f ≤ fs corresponds to the index interval 0 ≤ k ≤ N. The
N-point DFT is at the integer values k = 0,1, . . . ,N−1. For plotting purposes, the graph
of the spectrum over the full interval 0 ≤ k ≤ N has been split into two side-by-side
graphs covering the half-intervals: 0 ≤ k ≤ N/2 and N/2 ≤ k ≤ N.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

k

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 100, N = 32

 32−point FFT
 DTFT

16 18 20 22 24 26 28 30 32
0

10

20

30

40

50

k

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 100, N = 32

 32−point FFT
 DTFT

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

k

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 100, N = 64

 64−point FFT
 DTFT

32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

k

M
ag

n
it

u
de

 S
pe

ct
ru

m

L = 100, N = 64

 64−point FFT
 DTFT

Fig. 10.3.2 DFT can miss peaks in the spectrum.

In the upper two graphs having N = 32, the DFT misses the f1 and f3 peaks com-
pletely (the peak positions are indicated by the arrows). The actual peaks are so narrow
that they fit completely within the computational resolution width Δfbin.

In the lower two graphs having N = 64, the DFT still misses these peaks, but less so.
Further doubling of N will interpolate half-way between the frequencies of the 64-point
case resulting in a better approximation.

Example 10.3.1: A 5 kHz sinusoidal signal is sampled at 40 kHz and 128 samples are collected
and used to compute the 128-point DFT of the signal. What is the time duration in seconds
of the collected samples? At what DFT indices do we expect to see any peaks in the
spectrum?

Solution: The time duration is TN = NT = N/fs = 128/40 = 3.2 msec. Using Eq. (10.3.1), we
calculate k = Nf/fs = 128 · 5/40 = 16. The negative frequency −5 kHz is represented by
the DFT index N − k = 128− 16 = 112. 	

418 10. DFT/FFT ALGORITHMS

Example 10.3.2: A 10 msec segment of a signal is sampled at a rate of 10 kHz and the resulting
samples are saved. It is desired to compute the spectrum of that segment at 128 equally
spaced frequencies covering the range 2.5 ≤ f < 5 kHz. We would like to use an off-
the-shelf N-point FFT routine to perform this computation. The routine takes as input an
N-dimensional vector x of time samples. Its output is an N-dimensional DFT vector X. (a)
What value of N should we use? (b) How is the routine’s input vector x defined in terms of
the time samples that we collected? (c) Exactly what DFT indices k and DFT values X[k]
correspond to the 128 spectral values that we wish to compute?

Solution: The interval [2.5,5] kHz is one-quarter the Nyquist interval [0,10] kHz. Thus, the
DFT size should beN = 4×128 = 512. This choice places 128 frequencies over the [2.5,5)
interval. Another way is to identify the bin width over the [2.5,5] subinterval with the bin
width over the full interval:

Δfbin = 5− 2.5
128

= 10

N
⇒ N = 512

The number of collected samples is L = TLfs = (10 msec)×(10 kHz)= 100. Thus, the
subroutine’s 512-dimensional input vector x will consist of the 100 input samples with
412 zeros padded at the end.

Because the range [2.5,5) is the second quarter of the Nyquist interval, it will be repre-
sented by the second quarter of DFT indices, that is, 128 ≤ k < 256. 	

10.4 Matrix Form of DFT

The N-point DFT (10.1.4) can be thought of as a linear matrix transformation of the
L-dimensional vector of time data into an N-dimensional vector of frequency data:

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xL−1

⎤⎥⎥⎥⎥⎥⎦ DFT−→ X =

⎡⎢⎢⎢⎢⎢⎣
X0

X1

...
XN−1

⎤⎥⎥⎥⎥⎥⎦
where we denoted the DFT components by Xk = X(ωk), k = 0,1, . . . ,N − 1.

The linear transformation is implemented by an N×L matrix A, to be referred to as
the DFT matrix, and can be written compactly as follows:

X = DFT(x)= Ax (matrix form of DFT) (10.4.1)

or, component-wise:

Xk =
L−1∑
n=0

Aknxn , k = 0,1, . . . ,N − 1 (10.4.2)

The matrix elements Akn are defined from Eq. (10.1.4):

Akn = e−jωkn = e−2πjkn/N =Wkn
N N×L DFT matrix (10.4.3)

10.4. MATRIX FORM OF DFT 419

for 0 ≤ k ≤ N− 1 and 0 ≤ n ≤ L− 1. For convenience, we defined the so-called twiddle
factor WN as the complex number:

WN = e−2πj/N (10.4.4)

Thus, the DFT matrix for an N-point DFT is built from the powers of WN. Note that
the first row (k = 0) and first column (n = 0) of A are always unity:

A0n = 1, 0 ≤ n ≤ L− 1 and Ak0 = 1, 0 ≤ k ≤ N − 1

The matrix A can be built from its second row (k = 1), consisting of the successive
powers of WN:

A1n =Wn
N, n = 0,1, . . . , L− 1

It follows from the definition that the kth row is obtained by raising the second row to
the kth power—element by element:

Akn =Wkn
N = (Wn

N
)k = Ak

1n

Some examples of twiddle factors, DFT matrices, and DFTs are as follows: For L = N
and N = 2,4,8, we have:

W2 = e−2πj/2 = e−πj = −1

W4 = e−2πj/4 = e−πj/2 = cos(π/2)−j sin(π/2)= −j

W8 = e−2πj/8 = e−πj/4 = cos(π/4)−j sin(π/4)= 1− j√
2

(10.4.5)

The corresponding 2-point and 4-point DFT matrices are:

A =
[

1 1
1 W2

]
=
[

1 1
1 −1

]

A =

⎡⎢⎢⎢⎣
1 1 1 1
1 W4 W2

4 W3
4

1 W2
4 W4

4 W6
4

1 W3
4 W6

4 W9
4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
(10.4.6)

And, the 2-point and 4-point DFTs of a length-2 and a length-4 signal will be:[
X0

X1

]
=
[

1 1
1 −1

][
x0

x1

]
=
[
x0 + x1

x0 − x1

]
⎡⎢⎢⎢⎣
X0

X1

X2

X3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦
(10.4.7)

420 10. DFT/FFT ALGORITHMS

Thus, the 2-point DFT is formed by taking the sum and difference of the two time
samples. We will see later that the 2-point DFT is a convenient starting point for the
merging operation in performing the FFT by hand.

The twiddle factor WN satisfies WN
N = 1, and therefore it is one of the Nth roots of

unity; indeed, in the notation of Eq. (10.1.10), it is the root WN = zN−1 and is shown in
Fig. 10.1.3. Actually, all the successive powers Wk

N, k = 0,1, . . . ,N− 1 are Nth roots of
unity, but in reverse order (i.e., clockwise) than the zk of Eq. (10.1.10):

Wk
N = e−2πjk/N = z−k = z−1

k , k = 0,1, . . . ,N − 1 (10.4.8)

Figure 10.4.1 showsWN and its successive powers for the valuesN = 2,4,8. Because
WN

N = 1, the exponents in Wkn
N can be reduced modulo-N, that is, we may replace them

by W(nk)mod(N)
N .

Fig. 10.4.1 Twiddle factor lookup tables for N = 2,4,8.

For example, using the property W4
4 = 1, we may reduce all the powers of W4 in the

4-point DFT matrix of Eq. (10.4.6) to one of the four powers Wk
4 , k = 0,1,2,3 and write

it as

A =

⎡⎢⎢⎢⎣
1 1 1 1
1 W4 W2

4 W3
4

1 W2
4 W4

4 W6
4

1 W3
4 W6

4 W9
4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 1 1 1
1 W4 W2

4 W3
4

1 W2
4 1 W2

4

1 W3
4 W2

4 W4

⎤⎥⎥⎥⎦
The entries in A can be read off from the circular lookup table of powers of W4 in
Fig. 10.4.1, giving,

W4 = −j, W2
4 = −1, W3

4 = j

and for N = 8,

W8 = 1− j√
2

, W2
8 = −j , W3

8 =
−1− j√

2
, W4

8 = −1

W5
8 =

−1+ j√
2

, W6
8 = j , W7

8 =
1+ j√

2

The DFT matrix (10.4.3) can be implemented very simply in MATLAB by the anonymous
function,

DFTmat = @(N,L) exp(-2*pi*j*(0:N-1)’/N * (0:L-1)); % Usage: A = DFTmat(N,L)

10.5. MODULO-N REDUCTION 421

10.5 Modulo-N Reduction

The modulo-N reduction or wrapping of a signal plays a fundamental part in the theory
of the DFT. It is defined by dividing the signal x into contiguous non-overlapping blocks
of length N, wrapping the blocks around to be time-aligned with the first block, and
adding them up. The process is illustrated in Fig. 10.5.1. The resulting wrapped block
x̃ has length N.

The length L of the signal x could be finite or infinite. If L is not an integral multiple
of N, then the last sub-block will have length less than N; in this case, we may pad
enough zeros at the end of the last block to increase its length to N.

Fig. 10.5.1 Modulo-N reduction of a signal.

The wrapping process can also be thought of as partitioning the signal vector x into
N-dimensional subvectors and adding them up. For example, if L = 4N, the signal x
will consist of four length-N subvectors:

x =

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ ⇒ x̃ = x0 + x1 + x2 + x3 (10.5.1)

Example 10.5.1: Determine the mod-4 and mod-3 reductions of the length-8 signal vector:

x = [1, 2, −2, 3, 4, −2, −1, 1]T

For the N = 4 case, we may divide x into two length-4 sub-blocks to get:

x̃ =

⎡⎢⎢⎢⎣
1
2
−2

3

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

4
−2
−1

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

5
0

−3
4

⎤⎥⎥⎥⎦
Similarly, for N = 3 we divide x into length-3 blocks:

x̃ =
⎡⎢⎣ 1

2
−2

⎤⎥⎦+
⎡⎢⎣ 3

4
−2

⎤⎥⎦+
⎡⎢⎣ −1

1
0

⎤⎥⎦ =
⎡⎢⎣ 3

7
−4

⎤⎥⎦
where we padded a zero at the end of the third sub-block. 	

422 10. DFT/FFT ALGORITHMS

We may express the sub-block components in terms of the time samples of the signal
x(n), 0 ≤ n ≤ L− 1, as follows. For m = 0,1, . . .

xm(n)= x(mN + n), n = 0,1, . . . ,N − 1 (10.5.2)

Thus, the mth sub-block occupies the time interval
[
mN, (m + 1)N

)
. The wrapped

vector x̃ will be in this notation:

x̃(n) = x0(n)+x1(n)+x2(n)+x3(n)+· · ·
= x(n)+x(N + n)+x(2N + n)+x(3N + n)+· · ·

(10.5.3)

for n = 0,1, . . . ,N − 1, or, more compactly

x̃(n)=
∞∑

m=0

x(mN + n) , n = 0,1, . . . ,N − 1 (10.5.4)

This expression can be used to define x̃(n) for all n, not just 0 ≤ n ≤ N − 1. The
resulting double-sided infinite signal is the so-called periodic extension of the signal x(n)
with period N. More generally, it is defined by

x̃(n)=
∞∑

m=−∞
x(mN + n), −∞ < n <∞ (10.5.5)

The signal x̃(n) is periodic innwith periodN, that is, x̃(n+N)= x̃(n). The definition
(10.5.4) evaluates only one basic period 0 ≤ n ≤ N−1 of x̃(n), which is all that is needed
in the DFT.

The periodic extension interpretation of mod-N reduction is shown in Fig. 10.5.2.
The terms x(n +N), x(n + 2N), and x(n + 3N) of Eq. (10.5.3) can be thought as the
time-advanced or left-shifted versions of x(n) by N, 2N, and 3N time samples. The
successive sub-blocks of x(n) get time-aligned one under the other over the basic period
0 ≤ n ≤ N − 1, thus, their sum is the wrapped signal x̃.

Fig. 10.5.2 Periodic extension interpretation of mod-N reduction of a signal.

The connection of the mod-N reduction to the DFT is the theorem that the length-N
wrapped signal x̃ has the same N-point DFT as the original unwrapped signal x, that is,

10.5. MODULO-N REDUCTION 423

X̃k = Xk or, X̃(ωk)= X(ωk) , k = 0,1, . . . ,N − 1 (10.5.6)

where X̃k = X̃(ωk) is the N-point DFT of the length-N signal x̃(n):

X̃k = X̃(ωk)=
N−1∑
n=0

x̃(n)e−jωkn , k = 0,1, . . . ,N − 1 (10.5.7)

In the notation of Eq. (10.4.2), we may write:

X̃k =
N−1∑
n=0

Wkn
N x̃(n)=

N−1∑
n=0

Ãknx̃(n) (10.5.8)

where Ã is the DFT matrix defined as in Eq. (10.4.3):

Ãkn =Wkn
N , 0 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1 (10.5.9)

The DFT matrices A and Ã have the same definition, except they differ in their
dimensions, which are N×L and N×N, respectively. We can write the DFT of x̃ in the
compact matrix form:

X̃ = DFT(x̃)= Ãx̃ (10.5.10)

Thus, the above theorem can be stated in vector form:

X̃ = X = Ax = Ãx̃ (10.5.11)

Symbolically, we will write DFT(x̃)= DFT(x) to denote Eqs. (10.5.6) or (10.5.11). The
above theorem can be proved in many ways. In matrix form, it follows from the property
that the N×N submatrices of the full N×L DFT matrix A are all equal to the DFT matrix
Ã.

These submatrices are formed by grouping the first N columns of A into the first
submatrix, the next N columns into the second submatrix, and so on. The matrix ele-
ments of the mth submatrix will be:

Ak,mN+n =Wk(mN+n)
N =WmkN

N Wkn
N

Using the property WN
N = 1, it follows that WkmN

N = 1, and therefore:

Ak,mN+n =Wkn
N = Akn = Ãkn, 0 ≤ k,n ≤ N − 1

Thus, in general, A is partitioned in the form:

A = [Ã, Ã, Ã, . . .] (10.5.12)

As an example, consider the case L = 8, N = 4. The 4×8 DFT matrix A can be
partitioned into two 4×4 identical submatrices, which are equal to Ã. Using W4 =

424 10. DFT/FFT ALGORITHMS

e−2πj/4 = −j, we have:

A =

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 W4 W2

4 W3
4 W4

4 W5
4 W6

4 W7
4

1 W2
4 W4

4 W6
4 W8

4 W10
4 W12

4 W14
4

1 W3
4 W6

4 W9
4 W12

4 W15
4 W18

4 W21
4

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 W4 W2

4 W3
4 1 W4 W2

4 W3
4

1 W2
4 W4

4 W6
4 1 W2

4 W4
4 W6

4

1 W3
4 W6

4 W9
4 1 W3

4 W6
4 W9

4

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 −j −1 j 1 −j −1 j
1 −1 1 −1 1 −1 1 −1
1 j −1 −j 1 j −1 −j

⎤⎥⎥⎥⎦ = [Ã, Ã]

where in the second submatrix, we partially reduced the powers of W4 modulo-4.
The proof of the theorem follows now as a simple consequence of this partitioning

property. For example, we have for the N-point DFT of Eq. (10.5.1):

X = Ax = [Ã, Ã, Ã, Ã]

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ = Ãx0 + Ãx1 + Ãx3 + Ãx3

= Ã(x0 + x1 + x2 + x3)= Ãx̃ = X̃

Figure 10.5.3 illustrates the relative dimensions of these operations. The DFT (10.5.10)
of x̃ requiresN2 complex multiplications, whereas that of x requiresNL. Thus, if L > N,
it is more efficient to first wrap the signal mod-N and then take its DFT.

Fig. 10.5.3 N-point DFTs of the full and wrapped signals are equal.

Example 10.5.2: Compute the 4-point DFT of the length-8 signal of Example 10.5.1 in two ways:
(a) working with the full unwrapped vector x and (b) computing the DFT of its mod-4
reduction.

10.5. MODULO-N REDUCTION 425

Solution: The 4×8 DFT matrix was worked out above. The corresponding DFT is:

X = Ax =

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 −j −1 j 1 −j −1 j
1 −1 1 −1 1 −1 1 −1
1 j −1 −j 1 j −1 −j

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
−2

3
4

−2
−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
6

8+ 4j
−2

8− 4j

⎤⎥⎥⎥⎦

The same DFT can be computed by the DFT matrix Ã acting on the wrapped signal x̃,
determined in Example 10.5.1:

X̃ = Ãx̃ =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

5
0

−3
4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

6
8+ 4j
−2

8− 4j

⎤⎥⎥⎥⎦
The two methods give identical results. 	

Example 10.5.3: The length L of the signal x can be infinite, as long as the signal is stable, so
that the sum (10.5.4) converges. To illustrate the theorem (10.5.6) or (10.5.11), consider
the causal signal x(n)= anu(n), where |a| < 1.

To compute its N-point DFT, we determine its z-transform and evaluate it at the Nth root
of unity points zk = ejωk = e2πjk/N . This gives:

X(z)= 1

1− az−1
⇒ Xk = X(zk)= 1

1− az−1
k
, k = 0,1, . . . ,N − 1

Next, we compute its mod-N reduction by the sum (10.5.4):

x̃(n)=
∞∑

m=0

x(mN + n)=
∞∑

m=0

amNan = an

1− aN
, n = 0,1, . . . ,N − 1

where we used the geometric series sum. Computing its z-transform, we find:

X̃(z)=
N−1∑
n=0

x̃(n)z−n = 1

1− aN

N−1∑
n=0

anz−n = 1− aNz−N

(1− aN)(1− az−1)

Evaluating it at z = zk and using the property that zNk = 1, we find

X̃k = X̃(zk)= 1− aNz−Nk
(1− aN)(1− az−1

k)
= 1− aN

(1− aN)(1− az−1
k)

= 1

1− az−1
k
= Xk

Thus, even though x(n) and x̃(n) are different and have different z-transforms and DTFTs,
their N-point DFTs are the same. 	

426 10. DFT/FFT ALGORITHMS

The following C routine modwrap.c implements the modulo-N reduction operation.
If L < N, it pads N − L zeros at the end of x so that x̃ will have length N. If L > N,
it determines how many length-N blocks fit into L, and adds them up, also taking into
account the few excess points at the end.

/* modwrap.c - modulo-N wrapping of length-L signal */

void modwrap(L, x, N, xtilde) usage: modwrap(L, x, N, xtilde);

int L, N; x is L-dimensional

double *x, *xtilde; xtilde is N-dimensional

{
int n, r, m, M;

r = L % N; remainder r = 0,1, . . . ,N − 1

M = (L-r) / N; quotient of division L/N

for (n=0; n<N; n++) {
if (n < r) non-zero part of last block

xtilde[n] = x[M*N+n]; if L < N, this is the only block

else
xtilde[n] = 0; if L < N, pad N − L zeros at end

for (m=M-1; m>=0; m--) remaining blocks

xtilde[n] += x[m*N+n]; if L < N, this loop is skipped

}
}

Using this routine, we may compute the N-point DFT of a length-L signal by first
wrapping it modulo-N and then computing the N-point DFT of the wrapped signal:

modwrap(L, x, N, xtilde); wrap input modulo-N
dft(N, xtilde, N, X); DFT(x̃) = DFT(x)

Assuming L is a multiple of N, L = MN, the computational cost of the routine
modwrap is N(M − 1)� MN MACs, whereas that of the above dft is N2 MACS. Thus,
the total cost of computing the DFT is N2 + MN MACs. This is to be compared to
LN = MN2 MACs for the routine dft acting on the full length-L input. Replacing the
above DFT by an FFT routine gives an even more efficient implementation, requiring
N log2(N)/2+MN operations.

The built-in MATLAB function datawrap also implements the wrapping process. The
FFT function in MATLAB, X = fft(x,N), has the peculiar syntax that it truncates a length-
L input signal vector x to length N, if N < L, discarding those parts of x that would be
wrapped mod-N. Thus, the correct syntax for computing the N=point DFT of a signal
using the FFT function is,

xtilde = datawrap(x,N); % wrap signal mod-N

X = fft(xtilde, N); % compute N-point DFT of wrapped signal

Example 10.5.4: Compare the cost of computing the 128-point DFT of a length-1024 signal,
using a direct DFT, a prewrapped DFT, and a prewrapped FFT.

The number of length-N segments is M = L/N = 1024/128 = 8. The cost of wrapping
the signal to length 128 is N(M − 1)= 896. The cost of the three methods will be:

10.5. MODULO-N REDUCTION 427

(direct DFT) LN = 1024 · 128 = 131,072

(wrapped DFT) N2 +N(M − 1)= 1282 + 128 · (8− 1)= 17,280

(wrapped FFT)
1

2
N log2(N)+N(M − 1)= 1

2
· 128 · 7+ 128 · (8− 1)= 1,344

where we assumed that all the MAC operations are complex-valued. We may also compare
the above with the cost of a direct 1024-point FFT on the 1024-point input:

(1024-point FFT)
1

2
L log2(L)=

1

2
· 1024 · 10 = 5,120

The DFT frequencies of the desired 128-point DFT are a subset of the DFT frequencies of
the 1024-point DFT; indeed, we have:

ωk = 2πk
128

= 2π(8k)
1024

, k = 0,1, . . . ,127

Thus, the 128-point DFT can be extracted from the 1024-point FFT by taking every eighth
entry, that is, X128(k)= X1024(8k). 	

The two signals x and x̃ are not the only ones that have a common DFT. Any other
signal that has the same mod-N reduction as x will have the same DFT as x. To see this,
consider a length-L signal y such that ỹ = x̃; then its N-point DFT can be obtained by
applying Eq. (10.5.11):

Y = Ay = Ãỹ = Ãx̃ = Ax = X

For example, the following length-8 signals all have the same 4-point DFT,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1

x2

x3

0
x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2

x3

0
0
x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2 + x6

x3

0
0
0
x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2 + x6

x3 + x7

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
because all have the same mod-4 reduction:

x̃ =

⎡⎢⎢⎢⎣
x0 + x4

x1 + x5

x2 + x6

x3 + x7

⎤⎥⎥⎥⎦
The above signals have a bottom half that becomes progressively zero, until the last

vector which is recognized as the x̃, viewed as a length-8 vector. In fact, the mod-N

428 10. DFT/FFT ALGORITHMS

wrapped signal x̃ is unique in the above class of signals in the sense that it is shortest
signal, that is, of length N, that has the same DFT as the signal x.

An equivalent characterization of the class of signals that have a common DFT can
be given in the z-domain. Suppose the length-L signals y and x have equal mod-N
reductions, ỹ = x̃ and, therefore, equal DFTs Xk = Yk. We form the difference of their
z-transforms:

F(z)= X(z)−Y(z)=
L−1∑
n=0

x(n)z−n −
L−1∑
n=0

y(n)z−n

Evaluating F(z) at the Nth roots of unity and using the equality of their N-point
DFTs, we find:

F(zk)= X(zk)−Y(zk)= Xk −Yk = 0, k = 0,1, . . . ,N − 1

Thus, theN complex numbers zk are roots of the difference polynomial F(z). There-
fore, F(z) will be divisible by the Nth order product polynomial:

1− z−N =
N−1∏
k=0

(1− zkz−1)

which represents the factorization of 1−z−N into itsNth root-of-unity zeros. Therefore,
we can write:

X(z)−Y(z)= F(z)= (1− z−N
)
Q(z) or,

X(z)= Y(z)+(1− z−N
)
Q(z) (10.5.13)

Because X(z) and Y(z) have degree L − 1, it follows that Q(z) is an arbitrary
polynomial of degree L − 1 −N. Denoting the coefficients of Q(z) by q(n), 0 ≤ n ≤
L− 1−N, we may write Eq. (10.5.13) in the time domain:

x(n)= y(n)+q(n)−q(n−N) , n = 0,1, . . . , L− 1 (10.5.14)

Thus, any two sequences x(n) and y(n) related by Eq. (10.5.14) will have the same
N-point DFT. The mod-N reduction x̃ and its z-transform X̃(z) are also related by
Eq. (10.5.13):

X(z)= (1− z−N
)
Q(z)+X̃(z) (10.5.15)

Because X̃(z) has degree N − 1, Eq. (10.5.15) represents the division of the polyno-
mial X(z) by the DFT polynomial 1− z−N, with X̃(z) being the remainder polynomial
and Q(z) the quotient polynomial. The remainder X̃(z) is the unique polynomial sat-
isfying Eq. (10.5.15) that has minimal degree N − 1.

10.6. INVERSE DFT 429

10.6 Inverse DFT

The problem of inverting anN-point DFT is the problem of recovering the original length-
L signal x from its N-point DFT X, that is, inverting the relationship:

X = Ax = Ãx̃ (10.6.1)

When L > N, the matrix A is not invertible. As we saw, there are in this case several
possible solutions x, all satisfying Eq. (10.6.1) and having the same mod-N reduction x̃.

Among these solutions, the only one that is uniquely obtainable from the knowledge
of the DFT vector X is x̃. The corresponding DFT matrix Ã is an N×N square invertible
matrix. Thus, we define the inverse DFT by

x̃ = IDFT(X)= Ã−1X (inverse DFT) (10.6.2)

or, component-wise,

x̃n =
N−1∑
k=0

(Ã−1)nkXk , n = 0,1, . . . ,N − 1 (10.6.3)

The inverse Ã−1 can be obtained without having to perform a matrix inversion by
using the following unitarity property of the DFT matrix Ã:

1

N
ÃÃ∗ = IN (10.6.4)

where IN is the N-dimensional identity matrix and Ã∗ is the complex conjugate of Ã,
obtained by conjugating every matrix element of Ã. For example, for N = 4, we can
verify easily:

1

4
ÃÃ∗ = 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦
Multiplying both sides of Eq. (10.6.4) by Ã−1, we obtain for the matrix inverse:

Ã−1 = 1

N
Ã∗ (10.6.5)

Thus, the IDFT (10.6.2) can be written in the form:

x̃ = IDFT(X)= 1

N
Ã∗X (inverse DFT) (10.6.6)

We note also that the IDFT can be thought of as a DFT in the following sense. Intro-
ducing a second conjugation instruction, we have:

Ã∗X = (ÃX∗)∗= [DFT(X∗)
]∗

430 10. DFT/FFT ALGORITHMS

where the matrix Ã acting on the conjugated vector X∗ is the DFT of that vector. Dividing
by N, we have:

IDFT(X)= 1

N
[
DFT(X∗)

]∗
(10.6.7)

Replacing DFT by FFT, we get a convenient inverse FFT formula, which uses an FFT
to perform the IFFT. It is used in most FFT routines.

IFFT(X)= 1

N
[
FFT(X∗)

]∗
(10.6.8)

Example 10.6.1: To illustrate Eqs. (10.6.6) and (10.6.7), we calculate the IDFT of the 4-point
DFT of Example 10.5.2. We have:

x̃ = IDFT(X)= 1

N
Ã∗X = 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

6
8+ 4j
−2

8− 4j

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

5
0
−3

4

⎤⎥⎥⎥⎦
and using Eq. (10.6.7), we conjugate X and transform it:

1

N
(ÃX∗)∗= 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

6
8− 4j
−2

8+ 4j

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

5
0

−3
4

⎤⎥⎥⎥⎦
where the final overall conjugation was omitted because x̃ is real. 	

Using Eq. (10.4.3) the matrix elements of Ã−1 are:

(Ã−1)nk= 1

N
Ã∗nk =

1

N
(Wnk

N)∗= 1

N
W−nk

N

where we used the property W∗
N = e2πj/N = W−1

N . Then, Eq. (10.6.3) can be written in
the form:

(IDFT) x̃n = 1

N

N−1∑
k=0

W−nk
N Xk , n = 0,1, . . . ,N − 1 (10.6.9)

In terms of the DFT frequencies ωk, we have Xk = X(ωk) and

W−nk
N = e2πjkn/N = ejωkn

Therefore, the inverse DFT can be written in the alternative form:

(IDFT) x̃(n)= 1

N

N−1∑
k=0

X(ωk)ejωkn , n = 0,1, . . . ,N − 1 (10.6.10)

10.6. INVERSE DFT 431

It expresses the signal x̃(n) as a sum of N complex sinusoids of frequencies ωk,
whose relative amplitudes and phases are given by the DFT values X(ωk).

The forward DFT of Eq. (10.1.4) is sometimes called an analysis transform, analyzing
a signal x(n) into N Fourier components. The inverse DFT (10.6.10) is called a synthesis
transform, resynthesizing the signal x̃(n) from those Fourier components. The forward
and inverse N-point DFTs are akin to the more general forward and inverse DTFTs that
use all frequencies, not just the N DFT frequencies:

X(ω)=
L−1∑
n=0

x(n)e−jωn, x(n)=
∫ 2π

0
X(ω)ejωn dω

2π
(10.6.11)

The difference between this inverse DTFT and (10.6.10) is that (10.6.11) reconstructs
the full original signal x(n), whereas (10.6.10) reconstructs only the wrapped signal
x̃(n). Eq. (10.6.10) can be thought of as a numerical approximation of the integral in
(10.6.11), obtained by dividing the integration range into N equal bins:

∫ 2π

0
X(ω)ejωn dω

2π
�

N−1∑
k=0

X(ωk)ejωkn Δωbin

2π

where from the definition (10.1.7), we have Δωbin/2π = 1/N.
In summary, the inverse of an N-point DFT reconstructs only the wrapped version

of the original signal that was transformed. This property is shown in Fig. 10.6.1.

Fig. 10.6.1 Forward and inverse N-point DFTs.

In order for the IDFT to generate the original unwrapped signal x, it is necessary to
have x̃ = x. This happens only if the DFT length N is at least L, so that there will be
only one length-N sub-block in x and there will be nothing to wrap around. Thus, we
have the condition:

x̃ = x only if N ≥ L (10.6.12)

If N = L, then Eq. (10.6.12) is exact. If N > L, then we must pad N − L zeros at
the end of x so that the two sides of Eq. (10.6.12) have compatible lengths. If N < L,
the wrapped and original signals will be different because there will be several length-N
sub-blocks in x that get wrapped around. Thus, we also have the condition:

432 10. DFT/FFT ALGORITHMS

x̃ �= x if N < L (10.6.13)

10.7 Sampling of Periodic Signals and the DFT

The inverse DFT (10.6.10) defines the signal x̃(n) for n = 0,1, . . . ,N − 1. However, the
same expression can be used to define it for any value of n. The resulting x̃(n) will
be periodic in n with period N. This follows from the periodicity of the discrete-time
sinusoids:

ejωk(n+N) = e2πjk(n+N)/N = e2πjkn/Ne2πjk = e2πjkn/N = ejωkn

The periodic signal x̃(n) is equivalent to the periodic extension of x(n), as discussed
in Section 10.5. Therefore, if the original signal x(n) is also periodic with period N and
we compute its N-point DFT over one period L = N, then we will have x = x̃, or,
x(n)= x̃(n). It follows that the periodic signal x(n) may be represented by the discrete
Fourier series (DFS):

x(n)= 1

N

N−1∑
k=0

X(ωk)ejωkn (DFS) (10.7.1)

with the DFT playing the role of Fourier series coefficients:

X(ωk)=
N−1∑
n=0

x(n)e−jωkn (DFS coefficients) (10.7.2)

These relationships are helpful in the analysis of analog periodic signals. We saw in
Example 1.4.6 and Section 16.1.2 that for a periodic signal to remain periodic after sam-
pling, it is necessary that the sampling rate be a multiple of the fundamental frequency
of the signal:

fs = Nf1

The periodic analog signal will have an ordinary Fourier series expansion into a sum
of sinusoids at the harmonics of the fundamental, fm =mf1:

x(t)=
∞∑

m=−∞
cme2πjfmt

In general, an infinite number of harmonics are necessary to represent x(t), and
therefore, if the signal is sampled at a rate fs, all harmonics that lie outside the Nyquist
interval will be aliased with the harmonics inside the interval.

Taking the Nyquist interval to be the right-sided one [0, fs], we note that the har-
monics within that interval are none other than the N DFT frequencies:

fk = kf1 = k
fs
N
, k = 0,1, . . . ,N − 1

10.7. SAMPLING OF PERIODIC SIGNALS AND THE DFT 433

Given an integer m, we determine its quotient and remainder of the division by N:

m = qN + k, 0 ≤ k ≤ N − 1

and therefore, the corresponding harmonic will be:

fm =mf1 = qNf1 + kf1 = qfs + fk

which shows that fm will be aliased with fk. Therefore, if the signal x(t) is sampled, it
will give rise to the samples:

x(nT)=
∞∑

m=−∞
cme2πjfmn/fs =

N−1∑
k=0

∞∑
q=−∞

cqN+ke2πj(qfs+fk)n/fs

where we wrote the summation over m as an equivalent double summation over q and
k. Noting that,

e2πjqfsn/fs = e2πjqn = 1

and defining the aliased Fourier series amplitudes,

bk =
∞∑

q=−∞
cqN+k, k = 0,1, . . . ,N − 1

we obtain:

x(nT)=
N−1∑
k=0

bke2πjfkn/fs =
N−1∑
k=0

bkejωkn (10.7.3)

Comparing it with Eq. (10.7.1), we may identify the aliased amplitudes:

bk = 1

N
X(ωk) , k = 0,1, . . . ,N − 1 (10.7.4)

Thus, the aliased amplitudes bk are computable by performing an N-point DFT on
the N samples comprising one period of the signal x(nT). If the samples x(nT) were
to be reconstructed back into analog form using an ideal reconstructor, the following
aliased analog waveform would be obtained:

xal(t)=
N−1∑
k=0

bke2πjfkt (10.7.5)

with the proviso that those harmonics fk that lie in the right half of the Nyquist interval,
fs/2 < fk ≤ fs, will be replaced by their negative selves, fk − fs.

434 10. DFT/FFT ALGORITHMS

Example 10.7.1: In Example 1.4.6, we determined the aliased signal xal(t) resulting by sampling
a square wave of frequency f1 = 1 Hz.

For a sampling rate of fs = 4 Hz, we consider one period consisting of N = 4 samples and
perform its 4-point DFT:

x =

⎡⎢⎢⎢⎣
0
1
0

−1

⎤⎥⎥⎥⎦ ⇒ X = Ax =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
1
0

−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0
−2j

0
2j

⎤⎥⎥⎥⎦
Thus, the Fourier coefficients are:

[b0, b1, b2, b3]= 1

4
[0, −2j, 0, 2j]= [0,

1

2j
, 0, − 1

2j
]

corresponding to the harmonics:

[f0, f1, f2, f3]= [0,1,2,3]≡ [0,1,2,−1]

where f3 = 3 was replaced by its negative version f3 − fs = 3− 4 = −1. It follows that the
aliased signal will be:

xal(t)= b1e2πjt + b3e−2πjt = 1

2j
e2πjt − 1

2j
e−2πjt = sin(2πt)

Similarly, for N = 8 corresponding to fs = 8 Hz, we perform the 8-point DFT of one period
of the square wave, and divide by 8 to get the aliased amplitudes:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
0
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
DFT−→ X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−2j(

√
2+ 1)

0
−2j(

√
2− 1)

0
2j(
√

2− 1)
0

2j(
√

2+ 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
(
√

2+ 1)/4j
0

(
√

2− 1)/4j
0

−(√2− 1)/4j
0

−(√2+ 1)/4j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These amplitudes correspond to the frequencies fk = kf1:

[0,1,2,3,4,5,6,7]≡ [0,1,2,3,4,−3,−2,−1]

It follows that the aliased signal will be:

xal(t) = (
√

2+ 1)
4j

e2πjt + (
√

2− 1)
4j

e2πj3t

− (
√

2− 1)
4j

e−2πj3t − (
√

2+ 1)
4j

e−2πjt

=
√

2+ 1

2
sin(2πt)+

√
2− 1

2
sin(6πt)

which agrees with Example 1.4.6. The above 8-point DFT can be done using the 8×8 DFT
matrix, or, more quickly using an FFT by hand, as done in Example 10.8.3. 	

10.7. SAMPLING OF PERIODIC SIGNALS AND THE DFT 435

Example 10.7.2: Without performing any DFT or FFT computations, determine the 16-point
DFT of the signal:

x(n)= 1+ 2 sin
(πn

2

)+ 2 cos
(3πn

4

)+ cos(πn), n = 0,1, . . . ,15

Then, determine its 8-point DFT.

Solution: The signal x(n) is already given as a sum of sinusoids at frequencies which are 16-
point DFT frequencies. Thus, all we have to do is compare the given expression with the
16-point IDFT formula and identify the DFT coefficients Xk:

x(n)= 1

16

15∑
k=0

Xkejωkn

Using Euler’s formula, we write the given signal as:

x(n)= 1− jejπn/2 + je−jπn/2 + e3jπn/4 + e−3jπn/4 + ejπn

Shifting the negative frequencies by 2π, noting that the 16-point DFT frequencies are
ωk = 2πk/16 = πk/8, and writing the terms in increasing DFT index k, we have:

x(n)= 1

16

[
16ejω0n − 16jejω4n + 16ejω6n + 16ejω8n + 16ejω10n + 16jejω12n

]
where the frequencies, their negatives, and their relative locations with respect to the 16
DFT roots of unity are as follows:

ω4 = 2π · 4

16
= π

2

ω12 = 2π · 12

16
= 2π− 2π · 4

16
= 2π−ω4

ω6 = 2π · 6

16
= 3π

4

ω10 = 2π · 10

16
= 2π− 2π · 6

16
= 2π−ω6

ω8 = 2π · 8

16
= π

Comparing with the IDFT, we identify the coefficients of the exponentials:

X0 = 16, X4 = −16j, X6 = X8 = X10 = 16, X12 = 16j

Thus, the 16-point DFT vector will be:

X = [16, 0, 0, 0, −16j, 0, 16, 0, 16, 0, 16, 0, 16j, 0, 0, 0]T

The 8-point DFT is obtained by picking every other entry of X, that is,

X = [16, 0, −16j, 16, 16, 16, 16j, 0]T (10.7.6)

This follows because the 8-point DFT frequencies are a subset of the 16-point ones, that
is, ωk = 2πk/8 = 2π(2k)/16, k = 0,1, . . . ,7. 	

436 10. DFT/FFT ALGORITHMS

Example 10.7.3: The 8-point DFT determined in the previous example was that of the 16-point
signal. If the signal x(n) is considered as a length-8 signal over 0 ≤ n ≤ 7, then its 8-point
DFT will be different.

To find it, we follow the same method of writing x(n) in its IDFT form, but now we identify
the frequencies as 8-point DFT frequencies ωk = 2πk/8. We have:

ω2 = 2π · 2

8
= π

2
, ω3 = 2π · 3

8
= 3π

4
, ω4 = 2π · 4

8
= π

and x(n) can be written as:

x(n)= 1

8

[
8ejω0n − 8jejω2n + 8ejω3n + 8ejω4n + 8ejω5n + 8jejω6n

]
comparing with the 8-point IDFT,

x(n)= 1

8

7∑
k=0

Xkejωkn

we obtain:

X = [8, 0, −8j, 8, 8, 8, 8j, 0]T

The answer of Eq. (10.7.6) is doubled because the length-16 signal of the previous problem
consists of two length-8 periods, which double when wrapped mod-8. 	

10.8 FFT

The fast Fourier transform is a fast implementation of the DFT. It is based on a divide-
and-conquer approach in which the DFT computation is divided into smaller, simpler,
problems and the final DFT is rebuilt from the simpler DFTs. For a comprehensive
review, history, and recent results, see [256]. For general references, see [242–263,642].

Another application of this divide-and-conquer approach is the computation of very
large FFTs, in which the time data and their DFT are too large to be stored in main
memory. In such cases the FFT is done in parts and the results are pieced together to
form the overall FFT, and saved in secondary storage such as on hard disk [260–263,642].

In the simplest Cooley-Tukey version of the FFT, the dimension of the DFT is suc-
cessively divided in half until it becomes unity. This requires the initial dimension N to
be a power of two:

N = 2B ⇒ B = log2(N) (10.8.1)

The problem of computing the N-point DFT is replaced by the simpler problems of
computing two (N/2)-point DFTs. Each of these is replaced by two (N/4)-point DFTs,
and so on.

We will see shortly that an N-point DFT can be rebuilt from two (N/2)-point DFTs
by an additional cost of N/2 complex multiplications. This basic merging step is shown
in Fig. 10.8.1.

10.8. FFT 437

Fig. 10.8.1 Merging two N/2-DFTs into an N-DFT and its repeated application.

Thus, if we compute the two (N/2)-DFTs directly, at a cost of (N/2)2 multiplications
each, the total cost of rebuilding the full N-DFT will be:

2
(
N
2

)2

+ N
2
= N2

2
+ N

2
� N2

2

where for large N the quadratic term dominates. This amounts to 50 percent savings
over computing the N-point DFT directly at a cost of N2.

Similarly, if the two (N/2)-DFTs were computed indirectly by rebuilding each of
them from two (N/4)-DFTs, the total cost for rebuilding an N-DFT would be:

4
(
N
4

)2

+ 2
N
4
+ N

2
= N2

4
+ 2

N
2
� N2

4

Thus, we gain another factor of two, or a factor of four in efficiency over the direct
N-point DFT. In the above equation, there are 4 direct (N/4)-DFTs at a cost of (N/4)2

each, requiring an additional cost of N/4 each to merge them into (N/2)-DFTs, which
require another N/2 for the final merge.

Proceeding in a similar fashion, we can show that if we start with (N/2m)-point DFTs
and perform m successive merging steps, the total cost to rebuild the final N-DFT will
be:

N2

2m
+ N

2
m (10.8.2)

The first term, N2/2m, corresponds to performing the initial (N/2m)-point DFTs
directly. Because there are 2m of them, they will require a total cost of 2m(N/2m)2=
N2/2m.

However, if the subdivision process is continued for m = B stages, as shown in
Fig. 10.8.1, the final dimension will be N/2m = N/2B = 1, which requires no computa-
tion at all because the 1-point DFT of a 1-point signal is itself.

438 10. DFT/FFT ALGORITHMS

In this case, the first term in Eq. (10.8.2) will be absent, and the total cost will arise
from the second term. Thus, carrying out the subdivision/merging process to its logical
extreme of m = B = log2(N) stages, allows the computation to be done in:

1

2
NB = 1

2
N log2(N) (FFT computational cost) (10.8.3)

It can be seen Fig. 10.8.1 that the total number of multiplications needed to perform
all the mergings in each stage is N/2, and B is the number of stages. Thus, we may
interpret Eq. (10.8.3) as

(total multiplications) = (multiplications per stage)× (no. stages) = N
2
B

For the N = 8 example shown in Fig. 10.8.1, we have B = log2(8)= 3 stages and
N/2 = 8/2 = 4 multiplications per stage. Therefore, the total cost is BN/2 = 3 ·4 = 12
multiplications.

Next, we discuss the so-called decimation-in-time radix-2 FFT algorithm. There is
also a decimation-in-frequency version, which is very similar. The term radix-2 refers to
the choice of N as a power of 2, in Eq. (10.8.1).

Given a length-N sequence x(n), n = 0,1, . . . ,N−1, its N-point DFT X(k)= X(ωk)
can be written in the component-form of Eq. (10.4.2):

X(k)=
N−1∑
n=0

Wkn
N x(n), k = 0,1, . . . ,N − 1 (10.8.4)

The summation index n ranges over both even and odd values in the range 0 ≤ n ≤
N−1. By grouping the even-indexed and odd-indexed terms, we may rewrite Eq. (10.8.4)
as

X(k)=
∑
n
Wk(2n)

N x(2n)+
∑
n
Wk(2n+1)

N x(2n+ 1)

To determine the proper range of summations over n, we consider the two terms
separately. For the even-indexed terms, the index 2n must be within the range 0 ≤
2n ≤ N− 1. But, because N is even (a power of two), the upper limit N− 1 will be odd.
Therefore, the highest even index will be N − 2. This gives the range:

0 ≤ 2n ≤ N − 2 ⇒ 0 ≤ n ≤ N
2
− 1

Similarly, for the odd-indexed terms, we must have 0 ≤ 2n + 1 ≤ N − 1. Now the
upper limit can be realized, but the lower one cannot; the smallest odd index is unity.
Thus, we have:

1 ≤ 2n+ 1 ≤ N − 1 ⇒ 0 ≤ 2n ≤ N − 2 ⇒ 0 ≤ n ≤ N
2
− 1

Therefore, the summation limits are the same for both terms:

X(k)=
N/2−1∑
n=0

Wk(2n)
N x(2n)+

N/2−1∑
n=0

Wk(2n+1)
N x(2n+ 1) (10.8.5)

10.8. FFT 439

This expression leads us to define the two length-(N/2) subsequences:

g(n) = x(2n)

h(n) = x(2n+ 1)
, n = 0,1, . . . ,

N
2
− 1 (10.8.6)

and their (N/2)-point DFTs:

G(k) =
N/2−1∑
n=0

Wkn
N/2g(n)

H(k) =
N/2−1∑
n=0

Wkn
N/2h(n)

, k = 0,1, . . . ,
N
2
− 1 (10.8.7)

Then, the two terms of Eq. (10.8.5) can be expressed in terms of G(k) and H(k). We
note that the twiddle factors WN and WN/2 of orders N and N/2 are related as follows:

WN/2 = e−2πj/(N/2) = e−4πj/N =W2
N

Therefore, we may write:

Wk(2n)
N = (W2

N)
kn=Wkn

N/2, Wk(2n+1)
N =Wk

NW
2kn
N =Wk

NW
kn
N/2

Using the definitions (10.8.6), Eq. (10.8.5) can be written as:

X(k)=
N/2−1∑
n=0

Wkn
N/2g(n)+Wk

N

N/2−1∑
n=0

Wkn
N/2h(n)

and using Eq. (10.8.7),

X(k)= G(k)+Wk
NH(k) , k = 0,1, . . . ,N − 1 (10.8.8)

This is the basic merging result. It states that X(k) can be rebuilt out of the two
(N/2)-point DFTs G(k) and H(k). There are N additional multiplications, Wk

NH(k).
Using the periodicity of G(k) and H(k), the additional multiplications may be reduced
by half to N/2. To see this, we split the full index range 0 ≤ k ≤ N − 1 into two
half-ranges parametrized by the two indices k and k+N/2:

0 ≤ k ≤ N
2
− 1 ⇒ N

2
≤ k+ N

2
≤ N − 1

Therefore, we may write the N equations (10.8.8) as two groups of N/2 equations:

X(k)= G(k)+Wk
NH(k)

X(k+N/2)= G(k+N/2)+W(k+N/2)
N H(k+N/2)

k = 0,1, . . . ,
N
2
− 1

Using the periodicity property that any DFT is periodic in k with period its length,
we have G(k+N/2)= G(k) and H(k+N/2)= H(k). We also have the twiddle factor
property:

440 10. DFT/FFT ALGORITHMS

WN/2
N = (e−2πj/N)N/2= e−jπ = −1

Then, the DFT merging equations become:

X(k) = G(k)+Wk
NH(k)

X(k+N/2) = G(k)−Wk
NH(k)

, k = 0,1, . . . ,
N
2
− 1 (10.8.9)

They are known as the butterfly merging equations. The upper group generates the
upper half of the N-dimensional DFT vector X, and the lower group generates the lower
half. The N/2 multiplications Wk

NH(k) may be used both in the upper and the lower
equations, thus reducing the total extra merging cost to N/2. Vectorially, we may write
them in the form:⎡⎢⎢⎢⎢⎢⎣

X0

X1

...
XN/2−1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
G0

G1

...
GN/2−1

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
H0

H1

...
HN/2−1

⎤⎥⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎢⎣
W0

N
W1

N
...
WN/2−1

N

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
XN/2

XN/2+1

...
XN−1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
G0

G1

...
GN/2−1

⎤⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎣
H0

H1

...
HN/2−1

⎤⎥⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎢⎣
W0

N
W1

N
...
WN/2−1

N

⎤⎥⎥⎥⎥⎥⎦

(10.8.10)

where the indicated multiplication is meant to be component-wise. Together, the two
equations generate the full DFT vector X. The operations are shown in Fig. 10.8.2.

Fig. 10.8.2 Butterfly merging builds upper and lower halves of length-N DFT.

As an example, consider the case N = 2. The twiddle factor is now W2 = −1, but
only its zeroth power appears W0

2 = 1. Thus, we get two 1-dimensional vectors, making
up the final 2-dimensional DFT:[

X0

]
=
[
G0

]
+
[
H0W0

2

]
[
X1

]
=
[
G0

]
−
[
H0W0

2

]

10.8. FFT 441

For N = 4, we have W4 = −j, and only the powers W0
4, W1

4 appear:[
X0

X1

]
=
[
G0

G1

]
+
[
H0W0

4

H1W1
4

]
[
X2

X3

]
=
[
G0

G1

]
−
[
H0W0

4

H1W1
4

]

And, for N = 8, we have: ⎡⎢⎢⎢⎣
X0

X1

X2

X3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
G0

G1

G2

G3

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
H0W0

8

H1W1
8

H2W2
8

H3W3
8

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
X4

X5

X6

X7

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
G0

G1

G2

G3

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣
H0W0

8

H1W1
8

H2W2
8

H3W3
8

⎤⎥⎥⎥⎦
To begin the merging process shown in Fig. 10.8.1, we need to know the starting one-

dimensional DFTs. Once these are known, they may be merged into DFTs of dimension
2,4,8, and so on. The starting one-point DFTs are obtained by the so-called shuffling
or bit reversal of the input time sequence. Thus, the typical FFT algorithm consists of
three conceptual parts:

1. Shuffling the N-dimensional input into N one-dimensional signals.
2. Performing N one-point DFTs.
3. Merging the N one-point DFTs into one N-point DFT.

Performing the one-dimensional DFTs is only a conceptual part that lets us pass from
the time to the frequency domain. Computationally, it is trivial because the one-point
DFT X = [X0] of a 1-point signal x = [x0] is itself, that is, X0 = x0, as follows by setting
N = 1 in Eq. (10.8.4).

The shuffling process is shown in Fig. 10.8.3 for N = 8. It has B = log2(N) stages.
During the first stage, the given length-N signal block x is divided into two length-(N/2)
blocks g and h by putting every other sample into g and the remaining samples into h.

During the second stage, the same subdivision is applied to g, resulting into the
length-(N/4) blocks {a,b} and to h resulting into the blocks {c,d}, and so on. Eventu-
ally, the signal x is time-decimated down to N length-1 subsequences.

These subsequences form the starting point of the DFT merging process, which is
depicted in Fig. 10.8.4 for N = 8. The butterfly merging operations are applied to each
pair of DFTs to generate the next DFT of doubled dimension.

To summarize the operations, the shuffling process generates the smaller and smaller
signals:

x → {g,h} → {{a,b}, {c,d}} → ·· · → {1-point signals}

and the merging process rebuilds the corresponding DFTs:

442 10. DFT/FFT ALGORITHMS

Fig. 10.8.3 Shuffling process generates N one-dimensional signals.

Fig. 10.8.4 DFT merging.

{1-point DFTs} → · · · → {{A,B}, {C,D}} → {G,H} → X

The shuffling process may also be understood as a bit-reversal process, shown in
Fig. 10.8.5. Given a time index n in the range 0 ≤ n ≤ N − 1, it may be represented in
binary by B = log2(N) bits. For example, if N = 8 = 23, we may represent n by three
bits {b0, b1, b2}, which are zero or one:

n = (b2 b1 b0)≡ b222 + b121 + b020

10.8. FFT 443

The binary representations of the time index n for xn are indicated in Fig. 10.8.5,
for both the input and the final shuffled output arrays. The bit-reversed version of n is
obtained by reversing the order of the bits:

r = bitrev(n)= (b0 b1 b2)≡ b022 + b121 + b220

We observe in Fig. 10.8.5 that the overall effect of the successive shuffling stages is
to put the nth sample of the input array into the rth slot of the output array, that is,
swap the locations of xn with xr , where r is the bit-reverse of n. Some slots are reverse-
invariant so that r = n; those samples remain unmoved. All the others get swapped
with the samples at the corresponding bit-reversed positions.

Fig. 10.8.5 Shuffling is equivalent to bit reversal.

The following C routine fft.c implements the FFT algorithm, as described above.
It consists of two parts: bit-reversal and merging.

/* fft.c - decimation-in-time radix-2 FFT */

#include <cmplx.h>

void shuffle(), dftmerge();

void fft(N, X) usage: fft(N, X);

complex *X;
int N;
{

shuffle(N, X); bit-reversal

dftmerge(N, X); merging of DFTs

}

The bit-reversal operation is implemented by the routine shuffle.c, which calls
the routines swap.c and bitrev.c that implement the swapping of the bit-reversed
locations:

/* shuffle.c - in-place shuffling (bit-reversal) of a complex array */

444 10. DFT/FFT ALGORITHMS

#include <cmplx.h>

void swap();
int bitrev();

void shuffle(N, X)
complex *X;
int N; N must be a power of 2

{
int n, r, B=1;

while ((N >> B) > 0) B = number of bits

B++;

B--; N = 2B

for (n = 0; n < N; n++) {
r = bitrev(n, B); bit-reversed version of n
if (r < n) continue; swap only half of the ns

swap(X+n, X+r); swap by addresses

}
}

/* swap.c - swap two complex numbers (by their addresses) */

#include <cmplx.h>

void swap(a,b)
complex *a, *b;
{

complex t;

t = *a;
*a = *b;
*b = t;

}

/* bitrev.c - bit reverse of a B-bit integer n */

#define two(x) (1 << (x)) 2x by left-shifting

int bitrev(n, B)
int n, B;
{

int m, r;

for (r=0, m=B-1; m>=0; m--)
if ((n >> m) == 1) { if 2m term is present, then

r += two(B-1-m); add 2B−1−m to r, and

n -= two(m); subtract 2m from n
}

return(r);
}

A B-bit number n and its reverse can be expressed in terms of their bits as:

10.8. FFT 445

n =
B−1∑
m=0

bm2m

r =
B−1∑
m=0

bm2B−1−m

The routine bitrev builds r by determining if the mth bit bm is one and adding the
corresponding power 2B−1−m to r.

The DFT merging operation is given by the routine dftmerge.c. It is basically a loop
that runs over the successive merging stages of dimensions M = 2,4, . . . ,N.

/* dftmerge.c - DFT merging for radix 2 decimation-in-time FFT */

#include <cmplx.h>

void dftmerge(N, XF)
complex *XF;
int N;
{

double pi = 4. * atan(1.0);
int k, i, p, q, M;
complex A, B, V, W;

M = 2;
while (M <= N) { two (M/2)-DFTs into one M-DFT

W = cexp(cmplx(0.0, -2 * pi / M)); order-M twiddle factor

V = cmplx(1., 0.); successive powers of W
for (k = 0; k < M/2; k++) { index for an (M/2)-DFT

for (i = 0; i < N; i += M) { ith butterfly; increment by M
p = k + i; absolute indices for

q = p + M / 2; ith butterfly

A = XF[p];
B = cmul(XF[q], V); V = Wk

XF[p] = cadd(A, B); butterfly operations

XF[q] = csub(A, B);
}

V = cmul(V, W); V = VW = Wk+1

}
M = 2 * M; next stage

}
}

The appropriate twiddle factorsWk
M are computed on the fly and updated from stage

to stage. For each stage M and value of k, all the butterflies that use the power Wk
M

are computed. For example, in Fig. 10.8.4 the butterflies filling the slots {G0, G2} and
{H0,H2} are done together because they use the same power W0

4. Then, the butterflies
for the slots {G1, G3} and {H1,H3} are done, using the power W1

4.
The routine performs the computations in place, that is, the input time data vector

X is overwritten by its shuffled version, which is repeatedly overwritten by the higher
and higher DFTs during the merging process. The final merge produces the desired DFT
and stores it in X.

446 10. DFT/FFT ALGORITHMS

The following routine ifft.c implements the inverse FFT via Eq. (10.6.8). The rou-
tine conjugates the input DFT, performs its FFT, conjugates the answer, and divides by
N.

/* ifft.c - inverse FFT */

#include <cmplx.h>

void fft();

void ifft(N, X)
complex *X;
int N;
{

int k;

for (k=0; k<N; k++)
X[k] = conjg(X[k]); conjugate input

fft(N, X); compute FFT of conjugate

for (k=0; k<N; k++)
X[k] = rdiv(conjg(X[k]), (double)N); conjugate and divide by N

}

Next, we present some FFT examples. In the merging operations from 2-point to
4-point DFTs and from to 4-DFTs to 8-DFTs, the following twiddle factors are used:

[
W0

4

W1
4

]
=
[

1
−j

]
,

⎡⎢⎢⎢⎣
W0

8

W1
8

W2
8

W3
8

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
(1− j)/

√
2

−j
−(1+ j)/

√
2

⎤⎥⎥⎥⎦
MATLAB’s built-in FFT function is very fast and flexible. Current versions are based

on the FFTW library of FFT functions [264]. Its usage has some caveats, because as we
mentioned earlier it truncates the inputs to the FFT length N instead of wrapping the
input modulo-N. It can also calculate multiple FFTs with a single call, applied to each
column of its input. Its usage is as follows:

X = fft(x,N); % N-point FFT

% if N is omitted, it uses N = L = length(x)

% if N > L, it pads N-L zeros at the end of x before processing

% if N < L, it incorrectly truncates the signal to length N

% without wrapping it mod-N

% this can be fixed by using datawrap,

%

% X = fft(datawrap(x,N),N);

%

% x can be an LxK matrix of K columns of length-L

% the FFTs of all columns are returned into the NxK output X

10.8. FFT 447

Example 10.8.1: Using the FFT algorithm, compute the 4-point DFT of the 4-point wrapped
signal of Example 10.5.2.

Solution: The sequence of FFT operations are shown in Fig. 10.8.6. The shuffling operation was
stopped at dimension 2, and the corresponding 2-point DFTs were computed by taking the
sum and difference of the time sequences, as in Eq. (10.4.7).

The DFT merging stage merges the two 2-DFTs into the final 4-DFT. 	

Fig. 10.8.6 4-point FFT of Example 10.8.1.

Example 10.8.2: Using the FFT algorithm, compute the 8-point DFT of the following 8-point
signal:

x = [4, −3, 2, 0, −1, −2, 3, 1]T

Then, compute the inverse FFT of the result to recover the original time sequence.

Solution: The required FFT operations are shown in Fig. 10.8.7. Again, the shuffling stages stop
with 2-dimensional signals which are transformed into their 2-point DFTs by forming sums
and differences.

Fig. 10.8.7 8-point FFT of Example 10.8.2.

448 10. DFT/FFT ALGORITHMS

We find it more convenient to indicate the butterfly operations vectorially, that is, comput-
ing the sum and difference of the two 2-dimensional DFT vectors to form the upper and
lower parts of the 4-dimensional DFTs, and computing the sum and difference of the two
4-DFT vectors to form the upper and lower parts of the final 8-DFT vector.

The inverse FFT is carried out by the expression (10.6.8). The calculations are shown in
Fig. 10.8.8. First, the just computed DFT is complex conjugated. Then, its FFT is computed
by carrying out the required shuffling and merging processes. The result must be conju-
gated (it is real already) and divided by N = 8 to recover the original sequence x. 	

Fig. 10.8.8 8-point inverse FFT of the FFT in Fig. 10.8.7.

Example 10.8.3: The 8-point DFT of the square wave of Example 10.7.1 can be calculated easily
using the FFT. Figure 10.8.9 shows the details. 	

Fig. 10.8.9 8-point FFT of the square wave in Example 10.8.3.

10.9. FAST CONVOLUTION 449

10.9 Fast Convolution

Time-domain convolution for FIR filtering can be implemented in fast way using the FFT.
Certain issues must be dealt with in this approach:

a. The wrap-around effects that arise in the inverse FFT lead to the concept of circular
convolution, discussed in the next section.

b. Long input signals can be dealt with by dividing the input into blocks and applying
the fast convolution method to each block. Depending how the input subdivision
is done, there are two alternative versions, the overlap-add and the overlap-save
methods, discussed in the following sections.

10.10 Circular Convolution

In the frequency domain, convolution of two sequences h and x is equivalent to multi-
plication of the respective DTFTs:

y = h∗ x � Y(ω)= H(ω)X(ω) (10.10.1)

Therefore, y(n) can be recovered by the inverse DTFT of the product of the two DTFTs:

y(n)=
∫ π

−π
Y(ω)ejωn dω

2π
=
∫ π

−π
H(ω)X(ω)ejωn dω

2π
(10.10.2)

Symbolically, we write Eq. (10.10.2) as:

y = IDTFT
(
DTFT(h)·DTFT(x)

)
(10.10.3)

Equation (10.10.2) is not a practical method of computing y(n) even in the case
of finite-duration signals, because the ω-integration requires knowledge of Y(ω) at a
continuous range of ω’s.

A practical approach is to replace all the DTFTs by N-point DFTs. If Eq. (10.10.2) is
replaced by an inverse DFT, we saw in Eq. (10.6.10) that it will reconstruct the wrapped
signal ỹ(n) instead of the desired one:

ỹ(n)= 1

N

N−1∑
k=0

Y(ωk)ejωkn = 1

N

N−1∑
k=0

H(ωk)X(ωk)ejωkn (10.10.4)

for n = 0,1, . . . ,N − 1, or, written symbolically:

ỹ = IDFT
(
DFT(h)·DFT(x)

)
(10.10.5)

Because the unwrapped y is the ordinary convolution y = h ∗ x, we can write the
above as the wrapped convolution:

ỹ =3h∗ x = IDFT
(
DFT(h)·DFT(x)

)
(mod-N circular convolution) (10.10.6)

450 10. DFT/FFT ALGORITHMS

This expression is the definition of the length-N or modulo-N circular convolution
of the two signals h and x. A fast version is obtained by replacing DFT by FFT resulting
in:

ỹ =3h∗ x = IFFT
(
FFT(h)·FFT(x)

)
(10.10.7)

If h and x are length-N signals, the computational cost of Eq. (10.10.7) is the cost
for three FFTs (i.e., of x, h, and the inverse FFT) plus the cost of the N complex mul-
tiplications Y(ωk)= H(ωk)X(ωk), k = 0,1, . . . ,N − 1. Thus, the total number of
multiplications to implement Eq. (10.10.7) is:

3
1

2
N log2(N)+N (10.10.8)

Some alternative ways of expressing ỹ can be obtained by replacing h and/or x by
their wrapped versions. This would not change the result because the wrapped signals
have the same DFTs as the unwrapped ones, that is, DFT(h)= DFT(h̃) and DFT(x)=
DFT(x̃). Thus, we can write:

ỹ =3h∗ x = IDFT
(
DFT(h)·DFT(x)

)
=3̃h∗ x̃ = IDFT

(
DFT(h̃)·DFT(x̃)

)
=3̃h∗ x = IDFT

(
DFT(h̃)·DFT(x)

)
=3h∗ x̃ = IDFT

(
DFT(h)·DFT(x̃)

)
(10.10.9)

According to Eq. (10.6.12), in order for the circular convolution ỹ to agree with the
ordinary “linear” convolution y, the DFT lengthNmust be chosen to be at least the length
Ly of the sequence y. Recall from Eq. (4.1.12) that if a length-L signal x is convolved
with an order-M filter h, the length of the resulting convolution will be Ly = L +M.
Thus, we obtain the constraint on the choice of N:

ỹ = y only if N ≥ Ly = L+M (10.10.10)

With this choice of N, Eq. (10.10.7) represents a fast way of computing linear convo-
lution. Because both the filter and input vectors h, x have lengths less than N (because
L +M = Ly ≤ N), we must increase them to length N by padding zeros at their ends,
before we actually compute their N-point FFTs.

If N < Ly, part of the tail of y gets wrapped around to ruin the beginning part of y.
The following example illustrates the successive improvement of the circular convolu-
tion as the length N increases to the value required by (10.10.10).

Example 10.10.1: For the values N = 3,5,7,9,11, compute the mod-N circular convolution of
the two signals of Example 4.1.1:

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

10.10. CIRCULAR CONVOLUTION 451

Solution: For this example, we work exclusively in the time domain and perform ordinary con-
volution and wrap it modulo-N. The convolution table of Example 4.1.1, gives the output
signal:

y = x∗ h = [1,3,3,5,3,7,4,3,3,0,1]

The mod-3 circular convolution is obtained by dividing y into length-3 contiguous blocks,
wrapping them around, and summing them to get:

y = [1,3,3][5,3,7][4,3,3][0,1,0] ⇒ ỹ = [10,10,13]

where we padded a 0 at the end to make the last block of length-3. In a similar fashion,
we determine the other cases:

(mod-5): y = [1,3,3,5,3][7,4,3,3,0][1] ⇒ ỹ = [9,7,6,8,3]
(mod-7): y = [1,3,3,5,3,7,4][3,3,0,1] ⇒ ỹ = [4,6,3,6,3,7,4]
(mod-9): y = [1,3,3,5,3,7,4,3,3][0,1] ⇒ ỹ = [1,4,3,5,3,7,4,3,3]
(mod-11): y = [1,3,3,5,3,7,4,3,3,0,1] ⇒ ỹ = [1,3,3,5,3,7,4,3,3,0,1]

As N increases to Ly = L +M = 8 + 3 = 11, the lengths of the parts that get wrapped
around become less and less, making ỹ resemble y more and more. 	

Example 10.10.2: Recompute the length-3 circular convolution of the previous example by first
wrapping mod-3 the signals h and x, performing their linear convolution, and wrapping it
mod-3.

Solution: We find for the mod-3 reductions:

h = [1,2,−1][1] ⇒ h̃ = [2,2,−1]

x = [1,1,2][1,2,2][1,1] ⇒ x̃ = [3,4,4]

The convolution of the wrapped signals is:

h̃∗ x̃ = [2,2,−1]∗[3,4,4]= [6,14,13,4,−4]

and, its mod-3 reduction:

h̃∗ x̃ = [6,14,13][4,−4] ⇒ 3̃h∗ x̃ = [10,10,13]

which agrees with ỹ, in accordance with Eq. (10.10.9). 	

Example 10.10.3: Compute the mod-4 circular convolution of the following signals in two ways:
(a) working in the time domain, and (b) using DFTs.

h = [1,2,2,1], x = [1,3,3,1]

452 10. DFT/FFT ALGORITHMS

Solution: The linear convolution is:

y = h∗ x = [1,2,2,1]∗[1,3,3,1]= [1,5,11,14,11,5,1]

wrapping it mod-4, we get:

y = [1,5,11,14][11,5,1] ⇒ ỹ = [12,10,12,14]

Alternatively, we compute the 4-point DFTs of h and x:

H =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
2
2
1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

6
−1− j

0
−1+ j

⎤⎥⎥⎥⎦

X =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
3
3
1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

8
−2− 2j

0
−2+ 2j

⎤⎥⎥⎥⎦
Multiplying them pointwise, we get:

Y =

⎡⎢⎢⎢⎣
Y0

Y1

Y2

Y3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

H0X0

H1X1

H2X2

H3X3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

48
4j
0
−4j

⎤⎥⎥⎥⎦
To take the inverse DFT, we conjugate, take the 4-point DFT, divide by 4, and conjugate
the answer:

ỹ = IDFT(Y)= 1

N
[
DFT(Y∗)

]∗

ỹ = 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

48
−4j

0
4j

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

12
10
12
14

⎤⎥⎥⎥⎦
The final conjugation is not necessary because ỹ is real. 	

Besides the efficient computation of convolution, the FFT can also be used to deter-
mine the impulse response of an unknown system, such as the reverberation impulse
response of a room. Given a length-N input and a corresponding length-N measured
output, we may compute their N-point DFTs and solve for the DFT of the impulse re-
sponse of the system:

Y(ωk)= H(ωk)X(ωk) ⇒ H(ωk)= Y(ωk)
X(ωk)

, k = 0,1, . . . ,N − 1

10.11. OVERLAP-ADD AND OVERLAP-SAVE METHODS 453

Then, taking the inverse DFT, we have:

h̃(n)= 1

N

N−1∑
k=0

H(ωk)ejωkn = 1

N

N−1∑
k=0

Y(ωk)
X(ωk)

ejωkn (10.10.11)

or, symbolically,

h̃ = IDFT
[

DFT(y)
DFT(x)

]
= IFFT

[
FFT(y)
FFT(x)

]
(10.10.12)

The result is again the wrapped version h̃(n) of the desired impulse response. For
this type of application, the true impulse response h(n) is typically infinite, and there-
fore, its wrapped version will be different from h(n). However, if the wrapping length
N is sufficiently large, such that the exponentially decaying tails of h(n) can be ignored,
then h̃(n) may be an adequate approximation.

Example 10.10.4: The reverberation impulse response of a room is of the form

h(n)= Aan + Bbn, n ≥ 0

Determine the response h̃(n) that might be measured by the above procedure of dividing
the output DFT by the input DFT and taking the IDFT of the result.

Solution: The mod-N reduction of h(n) can be computed as in Example 10.5.3:

h̃(n)=
∞∑

m=0

h(mN + n)= A
1− aN

an + B
1− bN

bn, 0 ≤ n ≤ N − 1

IfN is large enough such that aN and bN are small enough to be ignored, then h̃(n)� h(n)
for n = 0,1, . . . ,N − 1. 	

10.11 Overlap-Add and Overlap-Save Methods

When the length L of the input signal x is infinite or very long, the length Ly = L +M
of the output will be infinite and the condition (10.10.10) cannot be satisfied.

A practical approach is to divide the long input into contiguous non-overlapping
blocks of manageable length, say L samples, then filter each block and piece the output
blocks together to obtain the overall output, as shown in Fig. 10.11.1. Thus, processing
is carried out on a block by block basis.

This is the overlap-add method of block convolution, which we introduced in Sec. 4.1.10.
Each of the input sub-blocks x0, x1, x2, . . . , is convolved with the order-M filter h pro-
ducing the outputs blocks:

y0 = h∗ x0

y1 = h∗ x1

y2 = h∗ x2

(10.11.1)

454 10. DFT/FFT ALGORITHMS

Fig. 10.11.1 Overlap-add block convolution method.

and so on. The resulting blocks are pieced together according to their absolute timing.
Block y0 starts at absolute time n = 0; block y1 starts at n = L because the correspond-
ing input block x1 starts then; block y2 starts at n = 2L, and so forth.

Because each output block is longer than the corresponding input block by M sam-
ples, the last M samples of each output block will overlap with the first M outputs of
the next block.

Note that only the next sub-block will be involved if we assume that 2L > L +M,
or, L > M. To get the correct output points, the overlapped portions must be added
together (hence the name, overlap-add).

The method can be implemented by the following algorithm, which reads the input
data in blocks x of length L and outputs the result also in blocks of length L:

for each length-L input block x, do:

1. compute the length-(L+M) output y :

y = h∗ x , or, alternatively,
y = IFFT

(
FFT(h)·FFT(x)

)
2. for i = 0,1, . . . ,M−1:

y(i)= y(i)+ytemp(i) (overlap)

ytemp(i)= y(i+ L) (save tail)

3. for i = 0,1, . . . , L−1:

output y(i)

(10.11.2)

The algorithm uses a temporaryM-dimensional vector ytemp to store the lastM sam-
ples of each previous block. Before processing the first block, ytemp must be initialized
to zero.

After computing the length–(L+M) filter output, y = h∗ x, the first M samples of
y are added to the last M samples of the previous block held in ytemp. Then, the last
M samples of the currently computed block y are saved in ytemp for use in the next
iteration. Only the first L corrected output samples of y are sent to the output.

A fast version of the method can be obtained by performing the convolutions of the

10.11. OVERLAP-ADD AND OVERLAP-SAVE METHODS 455

input blocks using circular convolution and the FFT by Eq. (10.10.7). The FFT length N
must satisfy Eq. (10.10.10) in order for the output blocks to be correct. Given a desired
power of two for the FFT length N, we determine the length of the input segments via:

N = L+M ⇒ L = N −M (10.11.3)

With this choice of N, there would be no wrap-around errors, and the outputs of the
successive input blocks {x0,x1, . . . }, can be computed by:

y0 = ỹ0 = IFFT
(
FFT(h)·FFT(x0)

)
y1 = ỹ1 = IFFT

(
FFT(h)·FFT(x1)

)
y2 = ỹ2 = IFFT

(
FFT(h)·FFT(x2)

) (10.11.4)

and so on. In counting the computational cost of this method, the FFT of h need not
be counted. It can be computed once, H = FFT(h), and used in all convolutions of
Eq. (10.11.4). We must only count the cost of two FFTs plus the N pointwise multiplica-
tions. Thus, the number of multiplications per input block is:

2
1

2
N log2 N +N = N(log2 N + 1)

This must be compared with the cost of (M+1)L = (M+1)(N−M) for performing
the ordinary time-domain convolution of each block with the filter. The relative cost of
the fast versus the conventional slow method is:

fast

slow
= N(log2 N + 1)
(M + 1)(N −M)

� log2 N
M

(10.11.5)

where the last equation follows in the limit N�M� 1.
The overlap-save fast convolution method is an alternative method that also involves

partitioning the input into blocks and filtering each block by Eq. (10.10.7). The method
is shown in Fig. 10.11.2.

In this method, the input blocks have length equal to the FFT length, L = N, but they
are made to overlap each other by M points, where M is the filter order. The output
blocks will have length Ly = L+M = N+M and therefore, do not satisfy the condition
Eq. (10.10.10).

If the output blocks are computed via Eq. (10.10.7), then the last M points of each
output block will get wrapped around and be added to the firstM output points, ruining
them. This is shown in Fig. 10.11.3. Assuming N > M, the remaining output points will
be correct.

As shown in Fig. 10.11.2, because the input blocks overlap by M points, when the
wrapped output blocks are aligned according to their absolute timings, the firstM points
of each block can be ignored because the correct outputs have already been computed
from the previous block.

There is only one exception, that is, the very first M points of the output sequence
are not computed correctly. This can be corrected by delaying the input by M time units
before commencing the filtering operation.

The computational cost of the method is essentially the same as that of the overlap-
add method, with the relative performance over conventional convolution given by
Eq. (10.11.5).

456 10. DFT/FFT ALGORITHMS

Fig. 10.11.2 Overlap-save method of fast convolution.

Fig. 10.11.3 Mod-N reduction of output block ruins first M output samples.

Example 10.11.1: Using the overlap-save method of fast convolution, implemented in the time
domain by mod-8 circular convolutions, compute the linear convolution of the “long” input:

x = [1,1,1,1,3,3,3,3,1,1,1,2,2,2,2,1,1,1,1]

with the “short” filter:
h = [1,−1,−1,1]

Solution: For comparison, we compute the linear convolution using the convolution table:

y = [1,0,−1,0,2,0,−2,0,−2,0,2,1,0,−1,0,−1,0,1,0,−1,0,1]

For the overlap-save method, we divide the input into length-8 blocks which overlap by
M = 3 points. These blocks are:

x = [1,1,1,1,3,
(
3,3,3],1,1, [1,2,2

)
,2,2,

(
1,1,1],1,0,0,0,0

)

10.12. COMPUTER EXPERIMENT – FAST CONVOLUTION 457

Convolving these blocks with h gives:

y0 = h∗ [1,1,1,1,3,3,3,3]= [1,0,−1,0,2,0,−2,0,−3,0,3]

y1 = h∗ [3,3,3,1,1,1,2,2]= [3,0,−3,−2,0,2,1,0,−3,0,2]

y2 = h∗ [1,2,2,2,2,1,1,1]= [1,1,−1,−1,0,−1,0,1,−1,0,1]

y3 = h∗ [1,1,1,1,0,0,0,0]= [1,0,−1,0,−1,0,1,0,0,0,0]

Reducing them modulo-8 and ignoring the first M points (indicated by ∗),

ỹ0 = [∗,∗,∗,0,2,0,−2,0]

ỹ1 = [∗,∗,∗,−2,0,2,1,0]

ỹ2 = [∗,∗,∗,−1,0,−1,0,1]

ỹ3 = [∗,∗,∗,0,−1,0,1,0]

These would be the outputs computed via the FFT method. Putting them together, we
obtain the overall output signal:

y = [∗,∗,∗,0,2,0,−2,0][−2,0,2,1,0][−1,0,−1,0,1][0,−1,0,1,0]

With the exception of the first 3 points, the answer is correct. 	

10.12 Computer Experiment – Fast Convolution

Write two MATLAB functions, ovadd and ovsave, that implement the overlap-add and
overlap-save methods using both time-domain convolution or the FFT. They should have
syntax,

y = ovadd(h,x,N,’t’); % using time-domain convolution

y = ovadd(h,x,N,’f’); % using the FFT

y = ovsave(h,x,N,’t’); % using time-domain convolution

y = ovsave(h,x,N,’f’); % using the FFT

% h = filter of order M

% x = input signal vector

% y = output signal vector

% N = FFT length

where in all cases, N should denote the FFT length. Thus, in the overlap-add case,
the input block length should be chosen as, L = N −M, and moreover, we must have
N > 2M. In all four cases, your functions should match exactly the output of the
convolution function,

y = conv(h,x);

458 10. DFT/FFT ALGORITHMS

In implementing the FFT versions, you need to perform the FFT of the filter h only once,
and then use it in filtering all input blocks. In order to facilitate the partitioning of the
input into blocks (overlapping or not), you may use the built-in function buffer—even
though its use would defeat the purpose of real-time block processing.

The following example MATLAB code could be used as a guide to constructing the
required ovadd and ovsave functions.

h = [1 2 -1 1]; % filter
x = [1 1 2 1 2 2 1 1 3 3 1 1]; % input
y = conv(h,x); % expected output

% y =
% 1 3 3 5 3 7 4 3 6 9 5 3 4 0 1

N = 8; % FFT length
M = length(h)-1; % filter order
Lx = length(x); % input length
Ly = Lx + M; % length of expected result

% --
% overlap-add method
% --

L = N-M; % input block length, L=5

Xbuff = buffer(x,L); % divide x into length-L contiguous blocks
% additional zeros are padded at the end
% to make complete columns

% Xbuff =
% 1 2 1
% 1 1 1
% 2 1 0
% 1 3 0
% 2 3 0

% H = fft(h(:),N); % N-point FFT of filter

m = 1:M; % selects the last M outputs
ytemp = zeros(M,1); % temporary length-M vector
Y = []; % collect outputs from the input blocks

for s = Xbuff % loop over the columns of Xbuff

ys = conv(h,s); % time-domain method
% ys = real(ifft(H.*fft(s,N), N)); % FFT method

ys(m) = ys(m) + ytemp; % correct last M samples
ytemp = ys(L+m); % save last M samples to be used in next block
Y = [Y,ys]; % corrected output blocks

end % end s-loop

% Y = % the first L entries of each column
% 1 7 5 % are correct, and their concatentation
% 3 4 3 % produces the overall output
% 3 3 4

10.12. COMPUTER EXPERIMENT – FAST CONVOLUTION 459

% 5 6 0
% 3 9 1
%
% 5 4 0 % the last M rows of Y can be discarded
% -1 0 0
% 2 3 0

Y = Y(1:L,:); % keep only the first L entries from each output

y = [Y(:); ytemp]; % concatenate columns and append last M outputs

y = y(1:Ly); % discard any extraneous zeros at end

% y’ =
% 1 3 3 5 3 7 4 3 6 9 5 3 4 0 1
% matches expected result

% alternative calculation using the OLA function
% --
%
% Y = []; % collect outputs from the input blocks
% for s = Xbuff % loop over the columns of Xbuff
% ys = conv(h,s); % time-domain method
% % ys = real(ifft(H.*fft(s,N), N)); % FFT method
% Y = [Y,ys]; % uncorrected output blocks
% end
%
% y = ola(Y,N-M); % N-M = hop size here
% y = y(1:Ly); % discard any extraneous zeros at end

% another FFT calculation, without using loops
% --
%
% Nb = size(Xbuff,2); % no. of input frames
% Hb = H(:,ones(1,Nb)); % replicate FFT Nb times
% Y = real(ifft(Hb.*fft(Xbuff,N), N)); % do all FFTs at once
%
% y = ola(Y,N-M); % N-M = hop size here
% y = y(1:Ly); % discard any extraneous zeros at end

% --
% overlap-save method
% --

% use same h,x, and FFT length N=8, as in the overlap-add case

Xbuff = buffer([x(:); zeros(M,1)], N, M);

% Xbuff = % pads M zeros in front
% 0 2 1 % input blocks overlap by M samples
% 0 1 3 % pad extra M zeros at end in order
% 0 2 3 % to correctly account for the last block
% 1 2 1
% 1 1 1
% 2 1 0
% 1 3 0

460 10. DFT/FFT ALGORITHMS

% 2 3 0

% H = fft(h(:),N); % N-point FFT of filter

Y = []; % collect output blocks
for s = Xbuff % loop over columms of Xbuff

y = datawrap(conv(h,s), N); % t-domain, wrapped mod-N
% y = real(ifft(H.*fft(s,N), N)); % FFT method

Y = [Y, y(M+1:N)]; % discard first M bad poits
end

y = Y(:); % concatenate output blocks

% Y =
% 1 7 5
% 3 4 3
% 3 3 4
% 5 6 0
% 3 9 1

% Y’ =
% 1 3 3 5 3
% 7 4 3 6 9
% 5 3 4 0 1
% matches expected result
% y’ =
% 1 3 3 5 3 7 4 3 6 9 5 3 4 0 1

Test your functions by applying them to an example of your own choosing that has
total input length, Lx = 19, filter order M = 3, and FFT length N = 8.

10.13 Computer Experiment – Matched Filtering

A major application of fast convolution is in implementing the matched filtering oper-
ations required for signal detection in radar processing.

A typical radar transmits a finite-duration pulse, such as a chirped sinusoid, at regu-
lar intervals at the so-called pulse repetition frequency. If there is target at some distance
d, then there will be reflected pulses arriving back at the radar each with a delay td cor-
responding to the time it takes for light to travel from radar to target and back to radar,
that is, such that, 2d = ctd, or, d = ctd/2. By measuring the time delay td, one can infer
the distance d of the target.

To simplify the problem, consider a single transmitted pulse of duration of T sec-
onds of some known shape, s(t), 0 ≤ t ≤ T, and a reflected, delayed and attenuated,
version of s(t), received in the presence of noise v(t),

xrec(t)= as(t − td)+v(t) (10.13.1)

We will assume that the signals are sampled at a rate fs with a sampling interval
Ts = 1/fs. In radar, the sampling is done typically at the down converted IF, intermediate
frequency, level, and the sampling rate is of the order of 1 MHz.

From Communications theory, we know that there are two equivalent approaches to
detecting the presence of the target and estimating the time delay td.

10.13. COMPUTER EXPERIMENT – MATCHED FILTERING 461

(i) A correlator approach, whereby one computes the cross-correlation between the
sampled received signal and the known pulse, that is,

Rxs(k)= E
[
xrec(n+ k)s(n)

]
and determines the lag kd at which there is a maximum, with the time delay being
estimated by, td = kdTs.

(ii) A matched filter approach, whereby the received signal xrec(t) is filtered by an FIR
filter whose impulse response is the reverse of the transmitted pulse, that is,

h(t)= s(T − t) , 0 ≤ t ≤ T

and one determines the time at which the filter output is maximum,

y(t)= h(t)∗xrec(t)= max

The matched filter approach is the more efficient of the two, and can be done with fast
convolution using the FFT. In this part you will actually carry out both approaches and
compare the results. Consider the following chirped sinusoid of duration ofT = 1 msec,

s(t)= sin(20πt + 10πt2) , 0 ≤ t ≤ 1

where t is in units of msec. The sinusoid is sampled at a rate of fs = 1 MHz, and the
sampled matched filter h(tn)= h(nTs) is constructed, where Ts = 1/fs = 1 μsec.

The upper-left graph in Fig. 10.13.1 below shows this sinusoid and a noise-free ver-
sion of it, received with a delay of td = 3 msec, and attenuated by an amplitude of
a = 0.5, that is, srec(t)= 0.5s(t− 3), and measured over a time period, 0 ≤ t ≤ 5 msec.

The upper-right graph shows the same signal srec(t), deeply buried in noise, as in
Eq. (10.13.1), such that the received pulse srec(t) is no longer visible.

The bottom-left graph shows the result of processing the noisy received signal both
with the matched filter, and with the cross-correlator. Note that all signals have been
normalized to unity maximum for display purposes.

The enclosed file, pr05match.m, provides some hints on how to generate the above
three graphs. Please carry out the following similar tasks:

(a) Construct the matched filter impulse response, h(n), based on the given chirped
pulse.

(b) The bottom-right graph shows a different noisy received signal that contains a
reflected pulse with an unknown delay td. This signal resides in the included file,
xrec.mat, and can be loaded into MATLAB with the command,

load xrec.mat

Process this signal with the matched filter using either your overlap-add or overlap-
save functions, Moreover, calculate the cross correlation between xrec(t) and s(t)
as a function of the time lag. For this part, you may use the built-in xcorr function,
but you will need first to extend s(t) to have equal length as xrec(t). Then, make
a plot like the one in the bottom-left graph, and determine the signal delay td in
msec.

462 10. DFT/FFT ALGORITHMS

(c) Explain why there seems to be a discrepancy between the correlator and the
matched-filter approaches in estimating td, and how you can compensate for it.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2
received noise−free signal

t (msec)

 transmitted
 received

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−6

−4

−2

0

2

4

6

8
noisy received signal

t (msec)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1

processed received signal

t (msec)

 transmitted
 matched filter
 correlator

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−6

−4

−2

0

2

4

6

8
noisy received signal − xrec.mat

t (msec)

Fig. 10.13.1 Correlator and matched filter inputs and outputs.

10.14 Problems

10.1 Let x = [1,2,2,1,2,1,1,2]. Compute the 4-point DFT of x using the definition in matrix
form. Recompute it by first reducing x modulo 4 and then computing the 4-DFT of the
result. Finally, compute the 4-point IDFT of the result and verify that you recover the mod-4
wrapped version of x.

10.2 Compute the 8-point FFT of the length-8 signal x = [5, −1, −3, −1, 5, −1, −3, −1]. Noting
that these samples are the first 8 samples of x(n)= 4 cos(πn/2)+ cos(πn), discuss whether
the 8 computed FFT values accurately represent the expected spectrum of x(n). What FFT
indices correspond to the two frequencies of the cosinusoids?

10.3 The 8-point DFT X of an 8-point sequence x is given by

X = [0,4,−4j,4,0,4,4j,4]

10.14. PROBLEMS 463

Using the FFT algorithm, compute the inverse DFT: x = IFFT(X). Using the given FFT X,
express x as a sum of real-valued (co)sinusoidal signals.

10.4 When a very large FFT of a very large data set is required (e.g., of size 216 or larger), it may
be computed in stages by partially decimating the time data down to several data sets of
manageable dimension, computing their FFTs, and then rebuilding the desired FFT from the
smaller ones. See [260–263,642] for a variety of approaches.

In this context, suppose you want to compute a (4N)-point FFT but your FFT hardware can
only accommodate N-point FFTs. Explain how you might use this hardware to compute
that FFT. Discuss how you must partition the time data, what FFTs must be computed, how
they must be combined, and how the partial results must be shipped back and forth from
secondary storage to the FFT processor in groups of no more than N samples. What is the
total number of complex multiplications with your method? Compare this total to the cost
of performing the (4N)-point FFT in a single pass? Do you observe anything interesting?

10.5 Compute the length-4 circular convolution of the two signals h = [1,2,1,2,1], x = [1,1,1,1,1]
in two ways: (a) by computing their linear convolution and then reducing the result mod-4,
(b) by first reducing h and x mod-4, computing the linear convolution of the reduced signals,
and reducing the result mod-4.

10.6 Compute the 8-point FFT of x = [4,2,4,−6,4,2,4,−6]. Without performing any additional
computations, determine the 4-point DFT and the 2-point DFT of the above signal. Explain
your reasoning. Using the computed DFT and the inverse DFT formula, express the sequence
x(n), n = 0,1, . . . ,7 as a linear combination of real-valued sinusoidal signals. Does your
x(n) agree with the given sequence?

10.7 Let x = [1,2,3,4,5]. (a) Determine a length-6 signal that has the same 5-point DFT as x.
(b) Determine a length-7 signal that has the same 5-point DFT as x. Your answers should be
nontrivial, that is, do not increase the length of x by padding zeros at its end.

10.8 Show the property:

1

N
[
1+Wk

N +W2k
N +W3k

N + · · · +W(N−1)k
N

] = δ(k), k = 0,1, . . . ,N − 1

10.9 Show the following properties:

a. WN =W2
2N =W3

3N = · · · =Wp
pN

b. XN(k)= XpN(pk), k = 0,1, . . . ,N − 1

where WpN is the twiddle factor of order pN, p is any integer, XN(k) denotes the N-point
DFT, and XpN(k) the (pN)-point DFT of a common signal x(n) of length L.

10.10 Consider a 16-point signal xn, 0 ≤ n ≤ 15, with 16-point DFT Xk, 0 ≤ k ≤ 15, namely,

[
X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

]
Show that the 8-point DFT of the given 16-point signal is:

[
X0, X2, X4, X6, X8, X10, X12, X14

]
10.11 The following analog signal x(t), where t is in msec, is sampled at a rate of 8 kHz:

x(t)= cos(24πt)+2 sin(12πt)cos(8πt)

464 10. DFT/FFT ALGORITHMS

a. Determine the signal xa(t) that is aliased with x(t).

b. Eight consecutive samples of x(t) are collected. Without performing any DFT or FFT
operations, determine the 8-point DFT of these 8 samples.

10.12 Consider the following 8-point signal, defined for n = 0,1, . . . ,7:

x(n)= 1+ 2 sin(
πn
4
)−2 sin(

πn
2
)+2 sin(

3πn
4

)+3(−1)n

Without performing any DFT or FFT computations, determine the 8-point DFT of this signal.

10.13 Let x(n)= cos(πn/2)+2 cos(πn/8), n = 0,1, . . . ,15. Without performing any actual
DFT/FFT computations, determine the 16-point DFT of this 16-point signal. [Hint: Com-
pare x(n) with the 16-point inverse DFT formula.]

10.14 Let x(n)= cos(πn/2)+2 cos(πn/8), n = 0,1, . . . ,31. Without performing any actual
DFT/FFT computations, determine the 32-point DFT of this 32-point signal.

10.15 Consider the following length-16 signal:

x(n)= 0.5+ 2 sin(0.5πn)+1.5 cos(πn), n = 0,1, . . . ,15

a. Determine the DTFT X(ω) of this finite sequence, and sketch it roughly versus ω in
the range 0 ≤ ω ≤ 2π. [Hint: Remember that each spectral line gets replaced by the
rectangular window’s frequency response.]

b. Without performing any DFT or FFT computations, determine the 16-point DFT of this
sequence. Then, determine the 8-point DFT of the same sequence.

c. Place the 16-point DFT values on the graph of X(ω) of part (a).

10.16 Let X = Ax be the N-point DFT of the length-N signal x expressed in matrix form, where A
is the N ×N DFT matrix defined by its matrix elements Akn = Wkn

N , k,n = 0,1, . . . ,N − 1.
Show that the inverse of this matrix can be obtained essentially by conjugating A, that is,

A−1 = 1

N
A∗

Therefore the IDFT can be expressed by x = A−1X = A∗X/N. Explain how this result justifies
the rule:

IFFT(X)= 1

N
(
FFT(X∗)

)∗
10.17 Let X(k) be the N-point DFT of a length-N (complex-valued) signal x(n). Use the results of

Problem 10.16 to show the Parseval relation:

N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
k=0

|X(k)|2

10.18 Compute the mod-4, mod-5, mod-6, mod-7, and mod-8 circular convolutions of the signals
x = [2, 1, 1, 2] and h = [1, −1, −1, 1]. For what value of N does the mod-N circular
convolution agree with the ordinary linear convolution?

10.19 Compute the modulo-8 circular convolution of the two signals

h = [2,1,1,1,2,1,1,1], x = [2,1,2,−3,2,1,2,−3]

in two ways:

10.14. PROBLEMS 465

a. Working exclusively in the time domain.

b. Using the formula:

ỹ = IFFT
(
FFT(h)·FFT(x)

)
implemented via 8-point FFTs. All the computational details of the required FFTs must
be shown explicitly.

10.20 a. Compute the 8-point FFT of the 8-point signal x = [6,1,0,1,6,1,0,1].
b. Using the inverse DFT formula, express x as a linear combination of real-valued sinu-

soids.

c. Find two other signals, one of length-9 and one of length-10, that have the same 8-point
DFT as x. These signals must not begin or end with zeros.

d. Compute the 4-point FFT of x by carrying out a single 4-point FFT.

10.21 Let A(k) be the N-point DFT of a real-valued signal a(n), n = 0,1, . . . ,N − 1. Prove the
symmetry property:

A(k)∗= A(N − k), k = 0,1, . . . ,N − 1

If we think of A(k) as an N-dimensional array, then how can we state the above relationship
at k = 0?

10.22 Two Real-Valued Signals at a Time. Let x(n)= a(n)+jb(n) be a length-N complex-valued
signal and let X(k) be its N-point DFT. Let A(k) and B(k) denote the N-point DFTs of the
real and imaginary parts a(n) and b(n) of x(n). Show that they can be recovered from
X(k) by

A(k)= 1

2

[
X(k)+X(N − k)∗

]
, B(k)= 1

2j
[
X(k)−X(N − k)∗

]
for k = 0,1, . . . ,N − 1. If we think of X(k) as an N-dimensional array, then how can we
state the above relationships at k = 0?

Thus, the DFTs of real-valued signals can be computed two at a time by computing the DFT
of a single complex-valued signal.

10.23 FFT of Real-Valued Signal. Using the results of Problem 10.22, show that the N-point FFT
X(k) of an N-point real-valued signal x(n), n = 0,1, . . . ,N− 1 can be computed efficiently
as follows: First, pack the even and odd parts of x(n) into a complex-valued signal of length
N/2, that is, define

y(n)= x(2n)+jx(2n+ 1)≡ g(n)+jh(n), n = 0,1, . . . ,
N
2
− 1

Then, compute the N/2-point FFT of y(n), say, Y(k), k = 0,1, . . . ,N/2− 1, and extract the
N/2-point FFTs of g(n) and h(n) by

G(k)= 1

2

[
Y(k)+Y(N

2
− k)∗

]
, H(k)= 1

2j
[
Y(k)−Y(N

2
− k)∗

]
for k = 0,1, . . . ,N/2− 1. And finally, construct the desired N-point FFT by

X(k)= G(k)+Wk
NH(k), X(k+ N

2
)= G(k)−Wk

NH(k)

for k = 0,1, . . . ,N/2− 1. What happens at k = 0?

Determine the relative computational savings of this method versus performing the N-point
FFT of x(n) directly.

466 10. DFT/FFT ALGORITHMS

10.24 Computer Experiment: FFT of Real-Valued Signal. Write a C routine fftreal.c that imple-
ments the method of Problem 10.23. The routine must have inputs/output declarations:

void fftreal(N, x, X)
int N; must be a power of 2

double *x; real-valued N-dimensional time data

complex *X; complex N-dimensional FFT array

The routine must invoke the routine fft.c once on the time-decimated, complexified, input.
In rebuilding the final DFT X(k), special care must be exercised at k = 0.

Write a small main program to test the routine by comparing its output to the output of fft
called on the full input array as usual.

10.25 Consider the following N-point signal and its reverse:

x = [x0, x1, . . . , xN−1]

xR = [xN−1, . . . , x1, x0]

Show that the z-transform and N-point DFT of the reversed signal can be expressed as:

XR(z) = z−(N−1)X(z−1)

XR(k) =W−k
N X(N − k), k = 0,1, . . . ,N − 1

Show that in the time domain the reversal process is equivalent to a two-step process of first
reflecting the signal around the origin n = 0, and then delaying it by N − 1 units.

10.26 Discrete Cosine Transform (DCT). Consider a length-N real-valued signal x and its reverse as
defined in Problem 10.25. Construct the concatenated signal of length 2N:

y = [x,xR]= [x0, x1, . . . , xN−1, xN−1, . . . , x1, x0]

a. Show that its z-transform can be expressed in terms of the z-transform of x:

Y(z)= X(z)+z−NXR(z)= X(z)+z−(2N−1)X(z−1)

b. Let Yk be the (2N)-point DFT of y. Show that it can be expressed in the form:

Yk = 2ejωk/2Ck , k = 0,1, . . . ,2N − 1

where ωk = 2πk/(2N)= πk/N is the kth frequency for the (2N)-point DFT and Ck

is one form of the discrete cosine transform of xn given by:

Ck =
N−1∑
n=0

xn cos
(
ωk(n+ 1/2)

)
(10.14.1)

[Hint: Evaluate part (a) at the (2N)th roots of unity and multiply by z−1/2.]

c. Using the results of Problem 10.21, show that Ck satisfies the symmetry property:

C2N−k = −Ck , k = 0,1, . . . ,2N − 1

In particular, show CN = 0.

10.14. PROBLEMS 467

d. Applying the inverse DFT equation on Yk, show the inverse DCT:

xn = 1

N

2N−1∑
k=0

Ckejωk(n+1/2) , n = 0,1, . . . ,N − 1

Using the symmetry property of part (c), show the alternative inverse DCT, which uses
only the first N DCT coefficients Ck, k = 0,1, . . . ,N − 1:

xn = 1

N

⎡⎣C0 + 2
N−1∑
k=1

Ck cos
(
ωk(n+ 1/2)

)⎤⎦ , n = 0,1, . . . ,N − 1 (10.14.2)

Together, Eqs. (10.14.1) and (10.14.2) form a forward/inverse DCT pair. The rela-
tionship to the doubled signal y allows an efficient calculation using (2N)-point FFTs
[257–259].

10.27 a. Let XN(k) denote the N-point DFT of a length-L sequence x(n), n = 0,1, . . . , L − 1.
Show the relationships:

XN(k)= X2N(2k), k = 0,1, . . . ,N − 1

b. In particular, we have X4(k)= X8(2k), for k = 0,1,2,3. That is, the 4-point DFT of
a sequence can be obtained by keeping every other entry of the 8-point DFT of that
sequence.

10.28 Consider a length-5 sequence and its “circular shifts”

x0 = [x0, x1, x2, x3, x4]

x1 = [x4, x0, x1, x2, x3]

x2 = [x3, x4, x0, x1, x2]

x3 = [x2, x3, x4, x0, x1]

x4 = [x1, x2, x3, x4, x0]

Show that the 5-point DFT Xi(k) of xi is related to the 5-point DFT X0(k) of x0 by

Xi(k)=Wik
5 X0(k), for i = 1,2,3,4

Explain this result in terms of ordinary “linear” shifts of the original sequence x0.

10.29 Show that the following, successively shorter, signals all have the same 4-point DFT:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3 + x7

x4

x5

x6

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2 + x6

x3 + x7

x4

x5

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1 + x5

x2 + x6

x3 + x7

x4

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2 + x6

x3 + x7

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

468 10. DFT/FFT ALGORITHMS

10.30 Using the overlap-save method of fast convolution implemented in the time domain using
length-8 circular convolutions, compute the ordinary convolution of the “long” signal

x = [1,1,1,1,3,3,3,3,1,1,1,2,2,2,2,1,1,1,1]

with the “short” filter
h = [1,−1,−1,1]

and explain any discrepancies from the correct answer. Repeat using the overlap-add method.

10.31 A periodic triangular waveform of period T0 = 1 sec is defined over one period 0 ≤ t ≤ 1
sec as follows (see also Fig. 1.9.1):

x(t)=
⎧⎪⎨⎪⎩

t, if 0 ≤ t ≤ 0.25
0.5− t, if 0.25 ≤ t ≤ 0.75
t − 1, if 0.75 ≤ t ≤ 1

The signal x(t) is sampled at a rate of 8 Hz and the sampled signal x(nT) is immediately
reconstructed into analog form using an ideal reconstructor. Because x(t) is not bandlim-
ited, aliasing effects will cause the reconstructed signal to be different from x(t). Show that
the aliased reconstructed signal will have the form:

xal(t)= A sin(2πf1t)+B sin(2πf2t)

What are the frequencies f1 and f2? Determine the amplitudes A and B by performing
an appropriate 8-point FFT by hand. Explain how the negative frequencies in xal(t) are
represented in this FFT.

10.32 A length-L input signal is to be filtered by an order-M FIR filter using the overlap-save method
of fast convolution, implemented via N-point FFTs. Assume that L� N and N > M.

a. Derive an expression for the total number of multiplications required to compute the
output, in terms of L, N, and M.

b. Repeat part (a) if the overlap-add method is used.

10.33 Computer Experiment: Overlap-Save Method. Write a stand-alone C or MATLAB program,
say ovsave.c, that implements the overlap-save method of fast convolution. The program
must have usage:

ovsave h.dat N < x.dat > y.dat

Like the program firfilt.c of Problem 4.10, it must read dynamically the impulse response
coefficients from a file h.dat. It must keep reading the input samples in blocks of length
N (overlapped by M points), processing each block, and writing the output block. The pro-
cessing of each block must be implemented by N-point FFTs, that is,

ỹ = IFFT
(
H · FFT(x)

)
where the FFT of the filter H = FFT(h) may be computed once and used in processing all
the input blocks.

Care must be exercised in handling the first M inputs, where M zeros must be padded to
the beginning of the input. When the end-of-file of the input is detected, the program must
calculate correctly the input-off output transients. (The output of this program and that of
firfilt.c must be identical, up to perhaps some last zeros.)

11
FIR Digital Filter Design

The filter design problem is the problem of constructing the transfer function of a filter
that meets prescribed frequency response specifications.

The input to any filter design method is the set of desired specifications and the
output is the finite impulse response coefficient vector h = [h0, h1, . . . , hN−1] in the case
of FIR filters, or the numerator and denominator coefficient vectors b = [b0, b1, . . . , bM],
a = [1, a1, . . . , aM] in the case of IIR filters.

The subject of FIR and IIR digital filter design is very extensive [2–8]. In this and the
next chapter, we present only a small cross section of available design methods—our
objective being to give the flavor of the subject, while at the same time presenting some
practical methods.

The two main advantages of FIR filters are their linear phase property and their
guaranteed stability because of the absence of poles. Their potential disadvantage is
that the requirement of sharp filter specifications can lead to long filter lengths N, con-
sequently increasing their computational cost. Recall from Chapter 4 that modern DSP
chips require N MACs per output point computed.

The main advantages of IIR filters are their low computational cost and their efficient
implementation in cascade of second-order sections. Their main disadvantage is the
potential for instabilities introduced when the quantization of the coefficients pushes
the poles outside the unit circle. For IIR filters, linear phase cannot be achieved exactly
over the entire Nyquist interval, but it can be achieved approximately over the relevant
passband of the filter, for example, using Bessel filter designs.

11.1 Window Method

11.1.1 Ideal Filters

The window method is one of the simplest methods of designing FIR digital filters. It
is well suited for designing filters with simple frequency response shapes, such as ideal
lowpass filters. Some typical filter shapes that can be designed are shown in Figs. 11.1.1
and 11.1.2. For arbitrary shapes, a variant of the method, known as frequency sampling
method, may be used; it will be discussed in Section 11.4.

469

470 11. FIR DIGITAL FILTER DESIGN

ω

D(ω)

ωc−ωc π−π 0

1

ω

D(ω)

ωa ωb−ωa−ωb π−π 0

1
bandpass

lowpass

ω

D(ω)

ωc−ωc π−π 0

1

ω

D(ω)

ωa ωb−ωa−ωb π−π 0

1bandstop

highpass

Fig. 11.1.1 Ideal lowpass, highpass, bandpass, and bandstop filters.

ω

D(ω)/j

π−π 0

differentiator
ω

D(ω)/j

π−π 0

1

−1Hilbert
transformer

Fig. 11.1.2 Ideal differentiator and Hilbert transformer filters.

A given desired ideal frequency response, sayD(ω), being periodic inωwith period
2π, need only be specified over one complete Nyquist interval −π ≤ ω ≤ π. The
corresponding impulse response, say d(k), is related to D(ω) by the DTFT and inverse
DTFT relationships:

D(ω)=
∞∑

k=−∞
d(k)e−jωk � d(k)=

∫ π

−π
D(ω)ejωk dω

2π
(11.1.1)

In general, the impulse response d(k) will be double-sided and infinite. For many
ideal filter shapes, the ω-integration in Eq. (11.1.1) can be done in closed form. For
example, for the lowpass filter shown in Fig. 11.1.1, the quantity D(ω) is defined over
the Nyquist interval by

D(ω)=
{

1, if −ωc ≤ω ≤ωc
0, if −π ≤ω < −ωc, or ωc < ω ≤ π

Therefore, Eq. (11.1.1) gives:

d(k) =
∫ π

−π
D(ω)ejωk dω

2π
=
∫ωc

−ωc

1 · ejωk dω
2π

=
[
ejωk

2πjk

]ωc

−ωc

= ejωck − e−jωck

2πjk

11.1. WINDOW METHOD 471

which can be rewritten as

(lowpass filter) d(k)= sin(ωck)
πk

, −∞ < k <∞ (11.1.2)

For computational purposes, the case k = 0 must be handled separately. Taking the
limit k→ 0, we find from Eq. (11.1.2):

d(0)= ωc

π
(11.1.3)

Similarly, we find for the highpass, bandpass, and bandstop filters of Fig. 11.1.1,
defined over −∞ < k <∞

(highpass filter) d(k)= δ(k)−sin(ωck)
πk

(bandpass filter) d(k)= sin(ωbk)− sin(ωak)
πk

(bandstop filter) d(k)= δ(k)−sin(ωbk)− sin(ωak)
πk

(11.1.4)

Note that for the same values of the cutoff frequenciesωc,ωa,ωb, the lowpass/highpass
and bandpass/bandstop filters are complementary, that is, their impulse responses add
up to a unit impulse δ(k) and their frequency responses add up to unity (as can also be
seen by inspecting Fig. 11.1.1):

dLP(k)+dHP(k)= δ(k) � DLP(ω)+DHP(ω)= 1

dBP(k)+dBS(k)= δ(k) � DBP(ω)+DBS(ω)= 1
(11.1.5)

As we see below, such complementarity properties can be exploited to simplify the
implementation of loudspeaker cross-over networks and graphic equalizers.

The ideal differentiator filter of Fig. 11.1.2 has frequency response D(ω)= jω, de-
fined over the Nyquist interval. The ideal Hilbert transformer response can be expressed
compactly as D(ω)= −jsign(ω), where sign(ω) is the signum function which is equal
to±1 depending on the algebraic sign of its argument. Theω-integrations in Eq. (11.1.1)
give the impulse responses:

(differentiator) d(k)= cos(πk)
k

− sin(πk)
πk2

(Hilbert transformer) d(k)= 1− cos(πk)
πk

(11.1.6)

Both filters have d(0)= 0, as can be verified by carefully taking the limit k → 0.
Both impulse responses d(k) are real-valued and odd (antisymmetric) functions of k.
By contrast, the filters of Fig. 11.1.1 all have impulse responses that are real and even
(symmetric) in k. We will refer to the two classes of filters of Figs. 11.1.1 and 11.1.2 as
the symmetric and antisymmetric classes.

In the frequency domain, the symmetric types are characterized by a frequency re-
sponse D(ω) which is real and even in ω; the antisymmetric ones have D(ω) which is

472 11. FIR DIGITAL FILTER DESIGN

imaginary and odd in ω. One of the main consequences of these frequency properties
is the linear phase property of the window designs.

11.1.2 Rectangular Window

The window method consists of truncating, or rectangularly windowing, the double-
sided d(k) to a finite length. For example, we may keep only the coefficients:

d(k)=
∫ π

−π
D(ω)ejωk dω

2π
, −M ≤ k ≤M (11.1.7)

Because the coefficients are taken equally for positive and negative k’s, the total
number of coefficients will be odd, that is, N = 2M + 1 (even values of N are also
possible, but not discussed in this text). The resulting N-dimensional coefficient vector
is the FIR impulse response approximating the infinite ideal response:

d = [d−M, . . . , d−2, d−1, d0, d1, d2, . . . , dM] (11.1.8)

The time origin k = 0 is at the middle d0 of this vector. To make the filter causal we
may shift the time origin to the left of the vector and re-index the entries accordingly:

h = d = [h0, . . . , hM−2, hM−1, hM,hM+1, hM+2, . . . , h2M] (11.1.9)

where we defined h0 = d−M, h1 = d−M+1, . . . , hM = d0, . . . , h2M = dM. Thus, the
vectors d and h are the same, with the understanding that d’s origin is in its middle and
h’s at its left. The definition of h may be thought of as time-delaying the double-sided
sequence d(k), −M ≤ k ≤M, by M time units to make it causal:

h(n)= d(n−M), n = 0,1, . . . ,N − 1 (11.1.10)

The operations of windowing and delaying are shown in Fig. 11.1.3. To summarize,
the steps of the rectangular window method are simply:

1. Pick an odd length N = 2M + 1, and let M = (N − 1)/2.

2. Calculate the N coefficients d(k) from Eq. (11.1.7), and

3. Make them causal by the delay (11.1.10).

0 k

d(k)

1 2 3 4 5 ...-1-2-3-4-5...

rectangular
window

0 n

h(n)

w(n)

1 2 3 4 875 96 ...-1-2

rectangular
window

Fig. 11.1.3 Rectangularly windowed impulse response, with N = 9, M = 4.

11.1. WINDOW METHOD 473

For example, theN-dimensional approximation to the ideal lowpass filter of Eq. (11.1.2)
will be:

h(n)= d(n−M)= sin
(
ωc(n−M)

)
π(n−M)

, n = 0, . . . ,M, . . . ,N − 1 (11.1.11)

where we must calculate separately h(M)= d(0)=ωc/π. For other ideal filter shapes,
we can use the functions d(k) of Eqs. (11.1.4) or (11.1.6). Once the impulse response
coefficients are calculated, the filter may be implemented by its FIR filtering equation,
using the routines fir or cfir of Chapter 4:

yn =
N−1∑
m=0

hmxn−m (11.1.12)

Example 11.1.1: Determine the length-11, rectangularly windowed impulse response that ap-
proximates (a) an ideal lowpass filter of cutoff frequency ωc = π/4, (b) the ideal differen-
tiator filter, and (c) the ideal Hilbert transformer filter.

Solution: With N = 11, we have M = (N − 1)/2 = 5. For the lowpass filter, we evaluate
Eq. (11.1.2), that is,

d(k)= sin(πk/4)
πk

, for −5 ≤ k ≤ 5

We find the numerical values:

h = d =
[
−
√

2

10π
, 0,

√
2

6π
,

1

2π
,
√

2

2π
,

1

4
,
√

2

2π
,

1

2π
,
√

2

6π
, 0, −

√
2

10π

]

For the differentiator filter, the second term, sin(πk)/πk2, vanishes for all values k �= 0.
Therefore, we find:

h = d =
[

1

5
, −1

4
,

1

3
, −1

2
, 1, 0, −1,

1

2
, −1

3
,

1

4
, −1

5

]
And, for the Hilbert transformer:

h = d =
[
− 2

5π
, 0, − 2

3π
, 0, − 2

π
, 0,

2

π
, 0,

2

3π
, 0,

2

5π

]
Note that the lowpass filter’s impulse response is symmetric about its middle, whereas the
differentiator’s and Hilbert transformer’s are antisymmetric. Note also that because of the
presence of the factor 1− cos(πk), every other entry of the Hilbert transformer vanishes.
This property can be exploited to reduce by half the total number of multiplications re-
quired in the convolutional equation Eq. (11.1.12). 	

In the frequency domain, the FIR approximation to D(ω) is equivalent to truncating
the DTFT Fourier series expansion (11.1.1) to the finite sum:

D̂M(ω)=
M∑

k=−M
d(k)e−jωk (11.1.13)

474 11. FIR DIGITAL FILTER DESIGN

Replacing z = ejω, we may also write it as the double-sided z-transform:

D̂M(z)=
M∑

k=−M
d(k)z−k (11.1.14)

The final length-N filter obtained by Eq. (11.1.10) will have transfer function:

H(z)= z−MD̂M(z)= z−M
M∑

k=−M
d(k)z−k (11.1.15)

and frequency response:

H(ω)= e−jωMD̂M(ω)= e−jωM
M∑

k=−M
d(k)e−jωk (11.1.16)

Example 11.1.2: To illustrate the definition ofH(z), consider a case withN = 7 andM = (N−
1)/2 = 3. Let the FIR filter weights be d = [d−3, d−2, d−1, d0, d1, d2, d3] with truncated
z-transform:

D̂M(z)= d−3z3 + d−2z2 + d−1z+ d0 + d1z−1 + d2z−2 + d3z−3

Delaying it by M = 3, we get the causal transfer function:

H(z)= z−3D̂M(z) = z−3
(
d−3z3 + d−2z2 + d−1z+ d0 + d1z−1 + d2z−2 + d3z−3

)
= d−3 + d−2z−1 + d−1z−2 + d0z−3 + d1z−4 + d2z−5 + d3z−6

= h0 + h1z−1 + h2z−2 + h3z−3 + h4z−4 + h5z−5 + h6z−6

where we defined h(n)= d(n− 3), n = 0,1,2,3,4,5,6. 	

The linear phase property of the window design is a direct consequence of Eq. (11.1.16).
The truncated D̂M(ω) has the same symmetry/antisymmetry properties asD(ω). Thus,
in the symmetric case, D̂M(ω) will be real and even in ω. It follows from Eq. (11.1.16)
that the designed FIR filter will have linear phase, arising essentially from the delay fac-
tor e−jωM. More precisely, we may write the real factor D̂M(ω) in terms of its positive
magnitude and its sign:

D̂M(ω)= sign
(
D̂M(ω)

) |D̂M(ω)| = ejπβ(ω) |D̂M(ω)|

where β(ω)= [
1 − sign

(
D̂M(ω)

)]
/2, which is zero or one depending on the sign of

D̂M(ω). It follows that H(ω) will be:

H(ω)= e−jωMD̂M(ω)= e−jωM+jπβ(ω) |D̂M(ω)|

Thus, its magnitude and phase responses will be:

|H(ω)| = |D̂M(ω)| , argH(ω)= −ωM +πβ(ω) (11.1.17)

11.1. WINDOW METHOD 475

making the phase response piece-wise linear in ω with 180o jumps at those ω where
D̂M(ω) changes sign. For the antisymmetric case, D̂M(ω) will be pure imaginary, that
is, of the form D̂M(ω)= jA(ω). The factor j may be made into a phase by writing it as
j = ejπ/2. Thus, we have

H(ω)= e−jωMD̂M(ω)= e−jωMejπ/2A(ω)= e−jωMejπ/2ejπα(ω) |A(ω)|

where α(ω)= [
1 − sign

(
A(ω)

)]
/2, which gives for the magnitude and phase re-

sponses:

|H(ω)| = |A(ω)| , argH(ω)= −ωM + π
2
+πα(ω) (11.1.18)

How good is the rectangular window design? How well does the truncated D̂M(ω)
represent the desired response D(ω)? In other words, how good is the approximation
D̂M(ω)� D(ω)?

Intuitively one would expect that D̂M(ω)→ D(ω) as N increases. This is true for
any ω which is a point of continuity of D(ω), but it fails at points of discontinuity , such
as at the transition edges from passband to stopband. Around these edges one encoun-
ters the celebrated Gibbs phenomenon of Fourier series, which causes the approximation
to be bad regardless of how large N is.

To illustrate the nature of the approximation D̂M(ω)� D(ω), we consider the de-
sign of an ideal lowpass filter of cutoff frequency ωc = 0.3π, approximated by a rectan-
gularly windowed response of lengthN = 41 and then by another one of lengthN = 121.
For the case N = 41, we have M = (N − 1)/2 = 20. The designed impulse response is
given by Eq. (11.1.10):

h(n)= d(n− 20)= sin
(
0.3π(n− 20)

)
π(n− 20)

, n = 0,1, . . . ,40

and in particular, h(20)= d(0)= ωc/π = 0.3. The second design has N = 121 and
M = 60. Its impulse response is, with h(60)= d(0)= 0.3:

h(n)= d(n− 60)= sin
(
0.3π(n− 60)

)
π(n− 60)

, n = 0,1, . . . ,120

The two impulse responses are plotted in Fig. 11.1.4. Note that the portion of the
second response extending ±20 samples around the central peak at n = 60 coincides
numerically with the first response. The corresponding magnitude responses are shown
in Fig. 11.1.5. An intermediate case having N = 81 is shown in Figs. 11.1.6 and 11.1.7.
In Fig. 11.1.5, the magnitude responses were computed by evaluating:

H(ω)=
N−1∑
n=0

h(n)e−jωn (11.1.19)

The length-N impulse response h(n) defined in Eq. (11.1.10) may be thought of
formally as the rectangularly windowed double-sided sequence defined by

h(n)= w(n)d(n−M) , −∞ < n <∞ (11.1.20)

476 11. FIR DIGITAL FILTER DESIGN

Fig. 11.1.4 Rectangularly windowed impulse responses for N = 41 and N = 121.

Fig. 11.1.5 Rectangularly windowed magnitude responses for N = 41 and N = 121.

where w(n) is the length-N rectangular window. In the frequency domain, this trans-
lates to the convolution of the corresponding spectra, as in Eq. (9.1.8):

H(ω)=
∫ π

−π
W(ω−ω′)e−jω

′MD(ω′)
dω′

2π
(11.1.21)

where the e−jω′M arises from the delay in d(n−M).
The spectrumW(ω) of the rectangular window was given in Eq. (9.1.9) (with L = N).

Thus, the designed filter H(ω) will be a smeared version of the desired shape D(ω).
In particular, for the ideal lowpass case, because D(ω′) is nonzero and unity only over
the subinterval −ωc ≤ω′ ≤ωc, the frequency convolution integral becomes:

H(ω)=
∫ωc

−ωc

W(ω−ω′)e−jω
′M dω′

2π
(11.1.22)

The ripples in the frequency response H(ω), observed in Fig. 11.1.5, arise from the
(integrated) ripples of the rectangular window spectrum W(ω). As N increases, we
observe three effects in Fig. 11.1.5:

11.2. GIBBS PHENOMENON 477

1. Forω’s that lie well within the passband or stopband (i.e., points of continuity), the
ripple size decreases as N increases, resulting in flatter passband and stopband.
For such ω, we have D̂M(ω)→ D(ω) as N →∞.

2. The transition width decreases with increasing N. Note also that for any N, the
windowed response H(ω) is always equal to 0.5 at the cutoff frequency ω =ωc.
(This is a standard property of Fourier series.)

3. The largest ripples tend to cluster near the passband-to-stopband discontinuity
(from both sides) and do not get smaller with N. Instead, their size remains
approximately constant, about 8.9 percent, independent of N. Eventually, as N →
∞, these ripples get squeezed onto the discontinuity at ω =ωc, occupying a set
of measure zero. This behavior is the Gibbs phenomenon.

11.1.3 Hamming Window

To eliminate the 8.9% passband and stopband ripples, we may replace the rectangular
window w(n) in Eq. (11.1.20) by a non-rectangular one, which tapers off gradually at
its endpoints, thus reducing the ripple effect. There exist dozens of windows [222–225]
and among these the Hamming window is a popular choice; it is defined by:

w(n)= 0.54− 0.46 cos
(

2πn
N − 1

)
, n = 0,1, . . . ,N − 1 (11.1.23)

In particular, the Hamming windowed impulse response for a length-N lowpass filter
will be, where N = 2M + 1 and n = 0,1, . . . ,N − 1:

h(n)= w(n)d(n−M)=
[

0.54− 0.46 cos
(2πn
N − 1

)] · sin
(
ωc(n−M)

)
π(n−M)

(11.1.24)

As an example, consider the design of a length N = 81 lowpass filter with cutoff
frequency ωc = 0.3π. Fig. 11.1.6 shows the rectangularly and Hamming windowed
impulse responses. Note how the Hamming impulse response tapers off to zero more
gradually. It was computed by Eq. (11.1.24) with N = 81 and M = 40. Fig. 11.1.7 shows
the corresponding magnitude responses.

The passband/stopband ripples of the rectangular window design are virtually elim-
inated from the Hamming window design. Actually, there are small ripples with max-
imum overshoot of about 0.2%, but they are not visible in the scale of Fig. 11.1.7. The
price for eliminating the ripples is loss of resolution, which is reflected into a wider
transition width.

11.2 Gibbs Phenomenon

In this section we give an explanation of the Gibbs phenomenon and provide a justi-
fication for the 8.9% overshoot. The Gibbs phenomenenon was described by Gibbs in
1899, but was earlier observed by Wilbraham in 1848. See Refs. [277–282] for a more
extensive discussion and reviews.

478 11. FIR DIGITAL FILTER DESIGN

Fig. 11.1.6 Rectangular and Hamming windowed impulse responses for N = 81.

Fig. 11.1.7 Rectangular and Hamming windowed magnitude responses for N = 81.

The DTFT/IDTFT relationships relating an ideal impulse reponse dk to the corre-
sponding frequency responseD(ω) represent the Fourier series expansion of the peirodic
function D(ω), with the dk being the “Fourier series coefficients”,

D(ω)=
∞∑

k=−∞
dke−jωk � dk =

∫ π

−π
D(ω)ejωk dω

2π
(11.2.1)

Generally, the convergence of the infinite series (11.2.1) can be proved under the so-
called Dirichlet conditions, which require that over one 2π–period, the periodic function
D(ω) be absolutely integrable, and that it have a finite number of discontinuities, and
a finite number of extrema. More precisely, the infinite Fourier series can be thought of
as the limit of the following finite sum, as the number of terms tends to infinity, that is,

D(ω)= lim
M→∞

D̂M(ω) , where D̂M(ω)=
M∑

k=−M
dke−jωk (11.2.2)

Under the Dirichlet conditions, it can be proved that D̂M(ω) converges to D(ω) in
a point-wise sense but only at points of continuity of D(ω), that is, for each value of ω

11.2. GIBBS PHENOMENON 479

which is not a point of discontinuity. At a discontinuity point, the finite series converges
to the average of the function values from either side of the discontinuity, that is,

lim
M→∞

D̂M(ω)= D(ω−)+D(ω+)
2

If the function D(ω) is square-integrable over one period, then it will also be ab-
solutely integrable over one period, and if it meets the other Dirichlet conditions (dis-
continuities and extrema), the Fourier series representation will still be valid. In this
case, one can show the following Parseval identity between the average “power” and the
Fourier coefficients,

1

2π

∫ π

−π

∣∣D(ω)
∣∣2 dω =

∞∑
k=−∞

|dk|2 (Parseval) (11.2.3)

Moreover, one can prove that D̂M(ω) converges toD(ω) in the following mean-square-
error sense,

lim
M→∞

1

2π

∫ π

−π

∣∣D(ω)−D̂M(ω)
∣∣2 dω = 0 (11.2.4)

If D(ω) has a finite number of discontinuity points, they occupy a set of measure zero
and therefore do not contribute to this integral.

Even though, under the Dirichlet conditions, the finite-term approximation D̂M(ω)
converges to D(ω) at points of continuity, the function D̂M(ω) is not a good approx-
imation to D(ω) near discontinuity points where it exhibits rapidly oscillating Gibbs
ripples which do not diminish in size as M gets larger, but rather they tend to cluster
more and more closely near the discontinuity with their overshoot remaining constant
approximately equal to 8.95%.

To understand this effect, let us start with a symmetric rectangular window, wk,
−M ≤ k ≤M. The windowed coefficients are,

d̂k = wkdk =
⎧⎨⎩dk , −M ≤ k ≤M

0 , otherwise

with corresponding approximate and exact frequency responses,

D̂M(ω)=
M∑

k=−M
dke−jωk =

∞∑
k=−∞

wkdke−jωk

D(ω)=
∞∑

k=−∞
dke−jωk

which will be related by the convolution property,

D̂M(ω)=
∫ π

−π
W(ω−ω′)D(ω′)

dω′

2π

where the DTFT W(ω) of the symmetric window is, with, 2M + 1,

W(ω)= sin(Nω/2)
sin(ω/2)

480 11. FIR DIGITAL FILTER DESIGN

For even small values of M or N = 2M + 1, such as N = 7, we have the approximation,

W(ω)= sin(Nω/2)
sin(ω/2)

≈ sin(Nω/2)
ω/2

so that the D̂M(ω) can be expressed as,

D̂M(ω)=
∫ π

−π
sin(N(ω−ω′)/2)

π(ω−ω′)
D(ω′)dω′ (11.2.5)

Next, consider an ideal lowpass filter with cutoff frequency ωc,

D(ω)=

⎧⎪⎪⎨⎪⎪⎩
1 , |ω| < ωc

0.5 , ω = ±ωc

0 , |ω| > ωc

It can be expressed compactly either in terms of the Heaviside unit-step function, or
in terms of the signum function, as follows,

D(ω) = u(ω+ωc)−u(ω−ωc)

D(ω) = 1

2
sign(ω+ωc)−1

2
sign(ω−ωc)

which is a consequence of the relationship,

u(x)= 1

2
+ 1

2
sign(x)

For such ideal lowpass filter, the approximation of Eq. (11.2.5) becomes,

D̂M(ω)=
∫ωc

−ωc

sin(N(ω−ω′)/2)
π(ω−ω′)

dω′

Introducing the sine-integral, Si(x), function,†

Si(x)=
∫ x

0

sinv
v

dv

we may express D̂M(ω) as the difference,

D̂M(ω)= 1

π
Si
(
N(ω+ωc)/2

)− 1

π
Si
(
N(ω−ωc)/2

)
In fact, the two Si terms match the two sign terms of

D(ω)= 1

2
sign(ω+ωc)−1

2
sign(ω−ωc)

with the Gibbs overshoot arising from the properties of the Si function.
Fig. 11.2.1 below demonstrates how the function, Si(x)/π approximates the func-

tion, sign(x)/2, and how, Si(Nx/2)/π, approximates, sign(x)/2, even better, being a
compressed version of Si(x)/π.

†it can be evaluated by MATLAB’s built-in function, sinint.

11.3. KAISER WINDOW 481

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

−0.5

0

0.5

sine integral

x / π

 sign(x) / 2
 Si(x) / π
 overshoot

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

−0.5

0

0.5

compressed sine integral, N = 9

x / π

 sign(x) / 2
 Si(Nx/2) / π
 overshoot

Fig. 11.2.1 Si and signum functions, and Gibbs overshoot.

The maximum of the Si function occurs at,

d
dx

Si(x)= sinx
x

= 0 ⇒ x = π

resulting in the maximum value, Si(π)/π = 0.58949, shown on the left graph of the
figure, whose deviation from the maximum value of the function sign(x)/2, that is, from
1/2, is the Gibbs overshoot,

Gibbs overshoot = 1

π
Si(π)−1

2
= 0.58949− 0.5 = 0.08949 (11.2.6)

The maximum shown on right graph occurs at Nx/2 = π, or, x = 2π/N, and the
maximum value is still the same, Si(π)/π = 0.58949.

The Gibbs phenomenon is a peculiar property of Fourier series and it always appears
in periodic waveforms that have discontinuities. Replacing the rectangular window with
a tapered non-rectangular one, such as Hamming, tends to diminish the overshoot.

11.3 Kaiser Window

11.3.1 Kaiser Window for Filter Design

The rectangular and Hamming window designs are very simple, but do not provide
good control over the filter design specifications. With these windows, the amount of
overshoot is always fixed to 8.9% or 0.2% and cannot be changed to a smaller value if so
desired.

A flexible set of specifications is shown in Fig. 11.3.1 in which the designer can
arbitrarily specify the amount of passband and stopband overshoot δpass, δstop, as well
as the transition width Δf .

The passband/stopband frequencies {fpass, fstop} are related to the ideal cutoff fre-
quency fc and transition width Δf by

482 11. FIR DIGITAL FILTER DESIGN

fc = 1

2
(fpass + fstop) , Δf = fstop − fpass (11.3.1)

Thus, fc is chosen to lie exactly in the middle between fpass and fstop. Eqs. (11.3.1)
can be inverted to give:

fpass = fc − 1

2
Δf , fstop = fc + 1

2
Δf (11.3.2)

The normalized versions of the frequencies are the digital frequencies:

ωpass = 2πfpass

fs
, ωstop = 2πfstop

fs
, ωc = 2πfc

fs
, Δω = 2πΔf

fs

In practice, the passband and stopband overshoots are usually expressed in dB:

Apass = 20 log10

(
1+ δpass

1− δpass

)
, Astop = −20 log10 δstop (11.3.3)

A simplified version of the passband equation can be obtained by expanding it to
first order in δpass, giving:

Apass = 17.372δpass (11.3.4)

which is valid for small values of δpass. Eqs. (11.3.3) can be inverted to give:

δpass = 10Apass/20 − 1

10Apass/20 + 1
, δstop = 10−Astop/20 (11.3.5)

Thus, one can pass back and forth between the specification sets:

{fpass, fstop,Apass,Astop} � {fc,Δf, δpass, δstop}

Although δpass and δstop can be specified independently of each other, it is a prop-
erty of all window designs that the final designed filter will have equal passband and
stopband ripples. Therefore, we must design the filter on the basis of the smaller of the
two ripples, that is,

δ = min(δpass, δstop) (11.3.6)

The designed filter will have passband and stopband ripple equal to δ. The value of
δ can also be expressed in dB:

A = −20 log10 δ , δ = 10−A/20 (11.3.7)

In practice, the design is usually based on the stopband ripple δstop. This is so
because any reasonably good choices for the passband and stopband attenuations (e.g.,
Apass = 0.1 dB and Astop = 60 dB) will almost always result into δstop < δpass, and

11.3. KAISER WINDOW 483

Apass1

1/2

1+δpass

1−δpass

δstop

0

f

fpass fstop

fc

fs/2

designed
filter |H(f)|

desired ideal
filter |D(f)|

AstopΔf = transition
width

passband stopband

Fig. 11.3.1 Magnitude response specifications for a lowpass filter.

therefore, δ = δstop, and in dB, A = Astop. Thus, it is useful to think of A as the
stopband attenuation.

The main limitation of most windows is that they have a fixed value of δ, which
depends on the particular window shape. Such windows limit the achievable passband
and stopband attenuations {Apass,Astop} to only certain specific values.

For example, Table 11.3.1 shows the attenuations achievable by the rectangular and
Hamming windows, calculated from Eq. (11.3.3) with the values δ = δpass = δstop =
0.089 and δ = δpass = δstop = 0.002, respectively. The table also shows the correspond-
ing value of the transition width parameter D of Eq. (11.3.11).

The only windows that do not suffer from the above limitation are the Kaiser window
[265–267], the Dolph-Chebyshev window [268,269,228–230,270], and the Saramäki win-
dows [271]. These windows have an adjustable shape parameter that allows the window
to achieve any desired value of ripple δ or attenuation A.

Window δ Astop Apass D

Rectangular 8.9% −21 dB 1.55 dB 0.92
Hamming 0.2% −54 dB 0.03 dB 3.21
Kaiser variable δ −20 log10 δ 17.372δ (A− 7.95)/14.36

Table 11.3.1 Specifications for rectangular, Hamming, and Kaiser windows.

The Kaiser window is unique in the above class in that it has near-optimum per-
formance (in the sense of minimizing the sidelobe energy of the window), as well as
having the simplest implementation. It depends on two parameters: its length N and
the shape parameter α. Assuming odd length N = 2M + 1, the window is defined, for
n = 0,1, . . . ,N − 1, as follows:

484 11. FIR DIGITAL FILTER DESIGN

(Kaiser window) w(n)=
I0

(
α
√

1− (n−M)2/M2
)

I0(α)
(11.3.8)

where I0(x) is the modified Bessel function of the first kind and 0th order. This function
and its evaluation by the routine I0.c are discussed at the end of this section. The nu-
merator in Eq. (11.3.8) can be rewritten in the following form, which is more convenient
for numerical evaluation:

w(n)= I0
(
α
√
n(2M − n)/M

)
I0(α)

, n = 0,1, . . . ,N − 1 (11.3.9)

Like all window functions, the Kaiser window is symmetric about its middle, n =M,
and has the value w(M)= 1 there. At the endpoints, n = 0 and n = N − 1, it has the
value 1/I0(α) because I0(0)= 1.

Figure 11.3.2 compares a Hamming window of length N = 51 to the Kaiser windows
of the same length and shape parameters α = 7 and α = 5. For α = 5 the Kaiser and
Hamming windows agree closely, except near their endpoints. For α = 0 the Kaiser
window reduces to the rectangular one.

Fig. 11.3.2 Kaiser and Hamming windows for N = 51 and α = 5,7.

The window parameters {N,α} are computable in terms of the filter specifications,
namely, the ripple δ and transition width Δf . The design equations developed by Kaiser
[265–267] are as follows. The shape parameter α is calculated from:

α =
⎧⎪⎨⎪⎩

0.1102(A− 8.7), if A≥ 50
0.5842(A− 21)0.4+0.07886(A− 21), if 21<A< 50
0, if A ≤ 21

(11.3.10)

where A is the ripple in dB, given by Eq. (11.3.7). The filter length N is inversely related
to the transition width:

Δf = Dfs
N − 1

� N − 1 = Dfs
Δf

(11.3.11)

11.3. KAISER WINDOW 485

where the factor D is computed also in terms of A by

D =
⎧⎨⎩

A− 7.95

14.36
, if A > 21

0.922, if A ≤ 21
(11.3.12)

The most practical range of these formulas is for A ≥ 50 dB, for which they simplify
to:

α = 0.1102(A− 8.7) , D = A− 7.95

14.36
(for A ≥ 50 dB) (11.3.13)

To summarize, the steps for designing a lowpass filter are as follows. Given the
specifications {fpass, fstop,Apass,Astop}:

1. Calculate fc and Δf from Eq. (11.3.1). Then, calculate ωc = 2πfc/fs.

2. Calculate δpass and δstop from Eq. (11.3.5).

3. Calculate δ = min(δpass, δstop) and A = −20 log10 δ in dB.

4. Calculate α and D from Eqs. (11.3.10) and (11.3.12).

5. Calculate the filter length N from Eq. (11.3.11) and round it up to the next odd
integer, N = 2M + 1, and set M = (N − 1)/2.

6. Calculate the window function w(n), n = 0,1, . . . ,N − 1 from Eq. (11.3.8).

7. Calculate the windowed impulse response, for n = 0,1, . . . ,N − 1:

h(n)= w(n)d(n−M)= w(n)·sin
(
ωc(n−M)

)
π(n−M)

(11.3.14)

In particular, we have h(M)= w(M)ωc/π =ωc/π, because w(M)= 1.

Note that the window parameters {N,α} depend only on the specifications {A,Δf} and
not on fc. However, h(n) does depend on fc.

The design steps can be modified easily to design highpass and bandpass filters. For
highpass filters, the role of fpass and fstop are interchanged; therefore, the only change in
the steps is to defineΔf = fpass−fstop and to use the highpass response from Eq. (11.1.4).
The highpass impulse response will be:

h(n)= w(n)d(n−M)= w(n)·
[
δ(n−M)−sin

(
ωc(n−M)

)
π(n−M)

]

The first term can be simplified to w(n)δ(n −M)= w(M)δ(n −M)= δ(n −M)
because w(M)= 1. Therefore, the designed filter will be:

h(n)= δ(n−M)−w(n)·sin
(
ωc(n−M)

)
π(n−M)

(11.3.15)

486 11. FIR DIGITAL FILTER DESIGN

For the same value of ωc, the lowpass and highpass filters are complementary. The
sum of Eqs. (11.3.14) and (11.3.15) gives:

hLP(n)+hHP(n)= δ(n−M) , n = 0,1, . . . ,N − 1 (11.3.16)

which becomes in the z-domain:

HLP(z)+HHP(z)= z−M (11.3.17)

For bandpass filters, the desired specifications may be given as in Fig. 11.3.3. There
are now two stopbands and two transition widths. The final design will have equal
transition widths, given by Eq. (11.3.11). Therefore, we must design the filter based on
the smaller of the two widths, that is,

Δf = min(Δfa,Δfb) (11.3.18)

where the left and right transition widths are:

Δfa = fpa − fsa , Δfb = fsb − fpb (11.3.19)

Figure 11.3.3 shows the case where the left transition width is the smaller one and,
thus, definesΔf . The ideal cutoff frequencies fa and fb can be calculated by taking them
to be Δf/2 away from the passband or from the stopbands. The standard definition is
with respect to the passband:

fa = fpa − 1

2
Δf , fb = fpb + 1

2
Δf (11.3.20)

This choice makes the passband just right and the stopband somewhat wider than
required. The alternative definition makes the stopbands right and the passband wider:

fa = fsa + 1

2
Δf , fb = fsb − 1

2
Δf (11.3.21)

Once the cutoff frequencies {fa, fb} and the window parameters {N,α} are calcu-
lated, the bandpass impulse response may be defined, for n = 0,1, . . . ,N − 1:

h(n)= w(n)d(n−M)= w(n)·sin
(
ωb(n−M)

)− sin
(
ωa(n−M)

)
π(n−M)

(11.3.22)

where h(M)= (ωb −ωa)/π, and ωa = 2πfa/fs, ωb = 2πfb/fs. Next, we present a
lowpass and a bandpass design example.

Example 11.3.1: Lowpass Design. Using the Kaiser window, design a lowpass digital filter with
the following specifications:

fs = 20 kHz
fpass = 4 kHz, fstop = 5 kHz
Apass = 0.1 dB, Astop = 80 dB

11.3. KAISER WINDOW 487

Apass1
1+δpass

1−δpass

δstop

0

f

fpa fpbfsa fsb

fa fb fb

fs/2

desired ideal
filter |D(f)| standard

design alternative
design

Astop

Δfa Δfb

Δf
2

Δf
2

Δf
2

Δf
2

stopbandpassbandstopband

Fig. 11.3.3 Bandpass filter specifications.

Solution: First, we calculate δpass and δstop from Eq. (11.3.5):

δpass = 100.1/20 − 1

100.1/20 + 1
= 0.0058, δstop = 10−80/20 = 0.0001

Therefore, δ = min(δpass, δstop)= δstop = 0.0001, which in dB is A = −20 log10 δ =
Astop = 80. The D and α parameters are computed by:

α = 0.1102(A− 8.7)= 0.1102(80− 8.7)= 7.857, D = A− 7.95

14.36
= 5.017

The filter width and ideal cutoff frequency are:

Δf = fstop − fpass = 1 kHz, fc = 1

2
(fpass + fstop)= 4.5 kHz, ωc = 2πfc

fs
= 0.45π

Eq. (11.3.11) gives for the filter length (rounded up to the nearest odd integer):

N = 1+ Dfs
Δf

= 101.35 ⇒ N = 103, M = 1

2
(N − 1)= 51

The windowed impulse response will be, for n = 0,1, . . . ,102:

h(n)= w(n)d(n−M)= I0
(
7.857

√
n(102− n)/51

)
I0(7.857)

· sin
(
0.45π(n− 51)

)
π(n− 51)

with h(51)= ωc/π = 0.45. Figure 11.3.4 shows the magnitude response in dB of h(n),
that is, 20 log10 |H(ω)|, where H(ω) was evaluated by Eq. (11.1.19). Note the transi-
tion width extending from 4 to 5 kHz and the stopband specification defined by the
horizontal grid line at −80 dB. The passband specification is more than satisfied. It is
Apass � 17.372δ = 0.0017 dB.

The figure also shows the corresponding Hamming and rectangularly windowed designs
for the same length ofN = 103. They both have a smaller transition width—the rectangular
one even more so, but their stopband attenuations are limited to the standard values of
54 dB and 21 dB, respectively. 	

488 11. FIR DIGITAL FILTER DESIGN

Fig. 11.3.4 Kaiser, Hamming, and rectangular window designs, N = 103.

Example 11.3.2: Bandpass Design. Using the Kaiser window, design a bandpass digital filter
with the following specifications:

fs = 20 kHz
fsa = 3 kHz, fpa = 4 kHz, fpb = 6 kHz, fsb = 8 kHz
Apass = 0.1 dB, Astop = 80 dB

Solution: The parameters {δpass, δstop, δ,A,α,D} are the same as in the previous example. The
two transition widths are:

Δfa = fpa − fsa = 4− 3 = 1 kHz, Δfb = fsb − fpb = 8− 6 = 2 kHz

Therefore, the minimum width is Δf = min(Δfa,Δfb)= 1 kHz, and the filter length:

N = 1+ Dfs
Δf

= 101.35 ⇒ N = 103, M = 1

2
(N − 1)= 51

Using the standard definition of Eq. (11.3.20), we find for the left and right ideal cutoff
frequencies:

fa = fpa − 1

2
Δf = 4− 0.5 = 3.5 kHz, fb = fpb + 1

2
Δf = 6+ 0.5 = 6.5 kHz

with the normalized values ωa = 2πfa/fs = 0.35π, ωb = 2πfb/fs = 0.65π.

For the alternative definition of Eq. (11.3.21), we have fa = 3+0.5 = 3.5 and fb = 8−0.5 =
7.5 kHz, resulting in ωa = 0.35π and ωb = 0.75π. Figure 11.3.5 shows the magnitude
response of the designed filter in dB, both for the standard and the alternative definitions.
The standard design has just the right passband extending over [4,6] kHz and a wider
stopband that starts at 7 kHz. The alternative design has a wider passband extending over
[4,7] kHz. 	

Next, we discuss three more Kaiser design examples for digital audio applications,
namely, two-way and three-way loudspeaker crossover filters and a five-band graphic
equalizer.

11.3. KAISER WINDOW 489

Fig. 11.3.5 Kaiser window design of a bandpass filter.

In all three cases, the sampling rate is fs = 44.1 kHz, the stopband attenuation is
Astop = 65 dB, and all the transition widths are taken to be equal to Δf = 2 kHz. This
implies that all the filters will have the same length N and Kaiser parameters D and α.
With A = Astop = 65 dB, we find

D = A− 7.95

14.36
= 3.973, α = 0.1102(A− 8.7)= 6.204,

N − 1 = Dfs
Δf

= 3.973× 44.1
2

= 87.6 ⇒ N = 89, M = 1

2
(N − 1)= 44

Note that the given value of A = 65 dB corresponds to δpass = δstop = 10−65/20 =
0.00056, which results in the small passband attenuation Apass = 0.0097 dB.

Such filters are to within the capabilities of modern DSP chips. Assuming a typical
instruction rate of 20 MIPS, which is 20 instructions per μsec, or, Tinstr = 50 nsec per
instruction, and assuming the sample processing implementation requires N MACs per
output sample computed, the total computational time for processing each input sample
will beNTinstr = 89×50 = 4.45μsec, which fits well within the time separating each input
sample, T = 1/fs = 1/44.1 = 22.68 μsec.

Several such filters can even be implemented simultaneously on the same DSP chip,
namely, 22.68/4.45 = 5.1, or, about five length-89 filters. Conversely, the longest single
filter that can be implemented will have length such thatNTinstr = T, or, N = T/Tinstr =
finstr/fs = 20000/44.1 � 453, resulting in the smallest implementable transition width
of

Δfmin �
Dfs
N

= Dfs2

finstr
= 0.386 kHz

Example 11.3.3: Two-Way Crossover Filters. All conventional loudspeakers contain an analog
crossover network that splits the incoming analog audio signal into its low- and high-
frequency components that drive the woofer and tweeter parts of the loudspeaker. More
advanced loudspeakers may contain even a third component for the mid-frequency part
of the input [272].

490 11. FIR DIGITAL FILTER DESIGN

Digital loudspeaker systems operate on the digitized audio input and use (FIR or IIR) digital
filters to split it into the appropriate frequency bands, which are then converted to analog
format, amplified, and drive the corresponding parts of the loudspeaker [273,274]. Such
“digital” loudspeakers have been available for a while in professional digital studios and
are becoming commercially available for home use (where typically the digital output of a
CD player is connected to the digital input of the loudspeaker).

In this example, we take the cutoff frequency of the lowpass and highpass filters, known as
the crossover frequency, to be fc = 3 kHz, which leads to the normalized frequency ωc =
2πfc/fs = 0.136π. (This numerical value of fc is chosen only for plotting convenience—a
more realistic value would be 1 kHz.) The designed low- and high-frequency driver filters
are then: For n = 0,1, · · · ,N − 1

hLP(n) = w(n)dLP(n−M)= w(n)
[

sin
(
ωc(n−M)

)
π(n−M)

]

hHP(n) = w(n)dHP(n−M)= w(n)
[
δ(n−M)− sin

(
ωc(n−M)

)
π(n−M)

]
=

= δ(n−M)−hLP(n)

where w(n) is the Kaiser window given by Eq. (11.3.8). The magnitude responses of the
designed filters are shown in Fig. 11.3.6, plotted both in absolute scales, |H(ω)|, and in
decibels, 20 log10 |H(ω)|.

Fig. 11.3.6 Low- and high-frequency magnitude responses.

The complementarity relationship between the impulse responses implies in the z-domain:

HHP(z)= z−M −HLP(z)

It leads to the realization of Fig. 11.3.7. Instead of realizing the lowpass and highpass
filters separately, it requires only the lowpass filter and one multiple delay. 	

Example 11.3.4: Three-Way Crossover Filters. In this example, the audio input must be split
into its low-, mid-, and high-frequency components. The crossover frequencies are chosen
to be fa = 3 kHz and fb = 7 kHz. The midpass filter will be a bandpass filter with these
cutoff frequencies. The designed impulse responses will be:

11.3. KAISER WINDOW 491

HLP(z)

z-M -
+

audio in woofer

tweeter

Fig. 11.3.7 Complementary implementation of two-way crossover filters.

hLP(n) = w(n)dLP(n−M)= w(n)
[

sin
(
ωa(n−M)

)
π(n−M)

]

hMP(n) = w(n)dMP(n−M)= w(n)
[

sin
(
ωb(n−M)

)− sin
(
ωa(n−M)

)
π(n−M)

]

hHP(n) = w(n)dHP(n−M)= w(n)
[
δ(n−M)− sin

(
ωb(n−M)

)
π(n−M)

]

where, ωa = 2πfa/fs = 0.136π and ωb = 2πfb/fs = 0.317π. Adding the three impulse
responses, we find

hLP(n)+hMP(n)+hHP(n)= δ(n−M)

and, in the z-domain

HLP(z)+HMP(z)+HHP(z)= z−M

which allows us to express one of them in terms of the other two, for example

HHP(z)= z−M −HLP(z)−HMP(z)

The magnitude responses of the designed filters are shown in Fig. 11.3.8. A realization
that uses the above complementarity property and requires only two filtering operations
instead of three is shown in Fig. 11.3.9. 	

Example 11.3.5: Five-Band Graphic Equalizer. Present-day graphic equalizers typically employ
second-order IIR filters. However, there is no reason not to use FIR filters, if the computa-
tional cost is manageable. In this example, we choose the crossover frequencies of the five
bands to be fa = 3 kHz, fb = 7 kHz, fc = 11 kHz, fd = 15 kHz, defining the five frequency
bands:

[0, fa] band 1
[fa, fb] band 2
[fb, fc] band 3
[fc, fd] band 4
[fd, fs/2] band 5

The designed filter impulse responses will be:

492 11. FIR DIGITAL FILTER DESIGN

Fig. 11.3.8 Lowpass, midpass, and highpass magnitude responses.

HLP(z)

HMP(z)

z-M --
+

audio in woofer

mid-range

tweeter

Fig. 11.3.9 Complementary implementation of three-way crossover filters.

h1(n) = w(n)
[

sin
(
ωa(n−M)

)
π(n−M)

]

h2(n) = w(n)
[

sin
(
ωb(n−M)

)− sin
(
ωa(n−M)

)
π(n−M)

]

h3(n) = w(n)
[

sin
(
ωc(n−M)

)− sin
(
ωb(n−M)

)
π(n−M)

]

h4(n) = w(n)
[

sin
(
ωd(n−M)

)− sin
(
ωc(n−M)

)
π(n−M)

]

h5(n) = w(n)
[
δ(n−M)− sin

(
ωd(n−M)

)
π(n−M)

]

where, ωa = 2πfa/fs = 0.136π, ωb = 2πfb/fs = 0.317π, ωc = 2πfc/fs = 0.499π,
ωd = 2πfd/fs = 0.680π. Adding the five filters we find the relationship:

h1(n)+h2(n)+h3(n)+h4(n)+h5(n)= δ(n−M)

and, in the z-domain

H1(z)+H2(z)+H3(z)+H4(z)+H5(z)= z−M

11.3. KAISER WINDOW 493

It can be solved for one of the transfer functions in terms of the other ones:

H5(z)= z−M −H1(z)−H2(z)−H3(z)−H4(z)

The magnitude responses are shown in Fig. 11.3.10. A realization that uses the above
complementarity property and requires only four filtering operations instead of five is
shown in Fig. 11.3.11.

Fig. 11.3.10 Graphic equalizer magnitude responses.

H1(z)
G1

G2

G3

G4

G5

H3(z)

H2(z)

H4(z)

z-M
-

+

audio in

variable gains

audio out

Fig. 11.3.11 Complementary implementation of graphic equalizer.

The outputs of the five filters are weighted by the user-selectable gainsGi and then summed
up to form the “equalized” audio signal. The overall transfer function from the input to
the overall output is:

H(z)= G1H1(z)+G2H2(z)+G3H3(z)+G4H4(z)+G5H5(z)

In practice, the crossover frequencies are chosen to follow standard ISO (International Stan-
dards Organization) frequencies, dividing the 20 kHz audio range into octaves or fractions
of octaves. 	

494 11. FIR DIGITAL FILTER DESIGN

The above three examples are special cases of parallel filter banks in which the in-
put is split into several non-overlapping frequency bands covering the Nyquist interval.
Applications include multirate filter banks and subband coding of speech, audio, and
picture signals in which the outputs of the bank filters are quantized with fewer num-
ber of bits and at the same time their sampling rates are dropped, such that the overall
bit rate required for the digital transmission or storage of the signal is substantially re-
duced [349]. For example, in the recent DCC audio cassette system, the allocation of bits
in each band is governed by psychoacoustic perceptual criteria in which fewer bits are
assigned to bands that will be less audible [369–374]. Wavelets and the discrete wavelet
transform are also examples of filter banks [349].

Finally, we consider the definition and computation of the Bessel function I0(x). It
is defined by its Taylor series expansion:

I0(x)=
∞∑
k=0

[
(x/2)k

k!

]2

(11.3.23)

The Kaiser window (11.3.8) requires the evaluation of I0(x) over the range of argu-
ment 0 ≤ x ≤ α. The following C function I0.c evaluates I0(x) for any x. The routine
is essentially a C version of the Fortran routine given by Kaiser in [267].

/* I0.c - Modified Bessel Function I0(x)
*
* I0(x) =

∑∞
k=0

[
(x/2)k /k!

]2

*
*/

#include <math.h>

#define eps (1.E-9) ε = 10−9

double I0(x) usage: y = I0(x)

double x;
{

int n = 1;
double S = 1, D = 1, T;

while (D > eps * S) {
T = x / (2 * n++);
D *= T * T;
S += D;
}

return S;
}

The routine is based on the following recursions, which evaluate the power series
(11.3.23) by keeping enough terms in the expansion. We define the partial sum of the
series (11.3.23):

Sn =
n∑

k=0

[
(x/2)k

k!

]2

It is initialized to S0 = 1 and satisfies the recursion, for n ≥ 1:

11.3. KAISER WINDOW 495

Sn = Sn−1 +Dn , where Dn =
[
(x/2)n

n!

]2

In turn, Dn itself satisfies a recursion, for n ≥ 1:

Dn =
[
x

2n

]2

Dn−1 = T2
nDn−1 , where Tn = x

2n

and it is initialized toD0 = 1. The iteration stops when the successiveDn terms become
much smaller than the accumulated terms Sn, that is, when

Dn

Sn
= Sn − Sn−1

Sn
< ε

where ε is a small number, such as, ε = 10−9. The Kaiser window itself may be calculated
by invoking the routine I0.c; for example:

I0a = I0(alpha);

for (n=0; n<N; n++)
w[n]= I0(alpha * sqrt(n*(2*M-n)) / M) / I0a;

11.3.2 Kaiser Window for Spectral Analysis

We saw in Section 9.1 that one of the main issues in spectral analysis was the tradeoff
between frequency resolution and leakage. The more one tries to suppress the sidelobes,
the wider the mainlobe of the window becomes, reducing the amount of achievable
resolution.

For example, the Hamming window provides about 40 dB sidelobe suppression at
the expense of doubling the mainlobe width of the rectangular window. Recall from
Eq. (9.1.18) that the mainlobe width Δfw of a window depends inversely on the data
record length L:

Δfw =
cfs
L− 1

� L− 1 = cfs
Δfw

(11.3.24)

where the factor c depends on the window used. For the Kaiser window, we use the more
accurate denominator L − 1, instead of L of Eq. (9.1.18); the difference is insignificant
in spectral analysis where L is large.

The more the sidelobe suppression, the larger the factor c. Thus, to maintain a
certain required value for the resolution width Δfw, one must increase the data length
L commensurately with c.

Most windows have fixed values for the amount of sidelobe suppression and width
factor c. Table 11.3.2 shows these values for the rectangular and Hamming windows.
Adjustable windows, like the Kaiser window, have a variable sidelobe level R that can
be chosen as the application requires.

Kaiser and Schafer [224] have developed simple design equations for the use of
the Kaiser window in spectral analysis—we discussed it briefly in Sec. 9.3. Given a

496 11. FIR DIGITAL FILTER DESIGN

Window R c

Rectangular −13 dB 1
Hamming −40 dB 2
Kaiser variable R 6(R+ 12)/155

Table 11.3.2 Relative sidelobe levels.

desired relative sidelobe level R in dB and a desired amount of resolution Δfw, the
design equations determine the length L and shape parameter α of the window. The
length is determined from Eq. (11.3.24), where c is given in terms of R by:

c = 6(R+ 12)
155

(11.3.25)

Note that our values for c given in Eq. (11.3.25) and Table 11.3.2 are smaller by a
factor of 2 than in most texts, because we defineΔfw to be half the base of the mainlobe,
instead of the base itself. The window shape parameterα can be calculated also in terms
of R by:

α =
⎧⎪⎨⎪⎩

0, R < 13.26
0.76609(R− 13.26)0.4+0.09834(R− 13.26), 13.26<R<60
0.12438(R+ 6.3), 60<R< 120

(11.3.26)

Once the window parameters {L,α} have been determined, the window may be cal-
culated by:

w(n)=
I0

(
α
√

1− (n−M)2/M2
)

I0(α)
, n = 0,1, . . . , L− 1 (11.3.27)

where M = (L− 1)/2, and then applied to a length-L data record by

xL(n)= w(n)x(n), n = 0,1, . . . , L− 1 (11.3.28)

The sidelobe levelRmust be distinguished from the attenuationA of the filter design
case. There, the attenuation A and ripple δ arise from the integrated window spectrum
W(ω), as in Eq. (11.1.22), whereas R arises from W(ω) itself.

Because of the adjustable sidelobe levelR, the Kaiser window can be used to pull very
weak sinusoids out of the DFT spectrum of a windowed signal, whereas another type of
window, such as a Hamming window, might fail. The following example illustrates this
remark.

Example 11.3.6: The following analog signal consisting of three sinusoids of frequencies f1 = 2
kHz, f2 = 2.5 kHz, and f3 = 3 kHz is sampled at a rate of fs = 10 kHz:

x(t)= A1 cos(2πf1t)+A2 cos(2πf2t)+A3 cos(2πf3t)7

11.3. KAISER WINDOW 497

where t is in msec. The relative amplitudes are

A1 = A3 = 1, A2 = 10−50/20 = 0.0032

so that the middle sinusoid is 50 dB below the other two. A finite duration portion of
length L is measured and the DFT spectrum is computed for the purpose of detecting the
presence of the sinusoids by their peaks.

If we use a length-L Hamming window on the time data, the f2-component will be lost
below the 40 dB sidelobes of the window. Thus, we must use a window whose sidelobe
level is well below 50 dB. We choose a Kaiser window with R = 70 dB. Moreover, to make
the peaks clearly visible, we choose the resolution width to be Δf = (f2 − f1)/3 = 0.167
kHz. The Kaiser window parameters are calculated as follows:

α = 0.12438(R+ 6.3)= 9.490, c = 6(R+ 12)
155

= 3.174

L = 1+ cfs
Δf

= 191.45 ⇒ L = 193, M = 1

2
(L− 1)= 96

The length-L sampled signal is, for n = 0,1, . . . , L− 1:

x(n)= A1 cos(2πf1n/fs)+A2 cos(2πf2n/fs)+A3 cos(2πf3n/fs)

The Kaiser and Hamming windowed signals will be, for n = 0,1, . . . , L− 1:

xK(n) = w(n)x(n)= I0
(
α
√
n(2M − n)/M

)
I0(α)

· x(n)

xH(n) = w(n)x(n)=
[

0.54− 0.46 cos
(2πn
L− 1

)] · x(n)
The corresponding spectra are:

XK(f)=
L−1∑
n=0

xK(n)e−2πjfn/fs , XH(f)=
L−1∑
n=0

xH(n)e−2πjfn/fs

Figure 11.3.12 shows these spectra in dB, that is, 20 log10 |XK(f)|, computed at 256 equally
spaced frequencies in the interval [0, fs/2]. (This can be done by the MATLAB function
dtft.m of Appendix C.)

Both spectra are normalized to 0 dB at their maximum value. The Kaiser spectrum shows
three clearly separated peaks, with the middle one being 50 dB below the other two. The
sidelobes are suppressed by at least 70 dB and do not swamp the middle peak, as they do
in the Hamming spectrum. That spectrum, on the other hand, has narrower peaks because
the length L is somewhat larger than required to resolve the given Δf . The width of the
Hamming peaks is Δf = cfs/(L− 1) with c = 2, or, Δf = 0.104 kHz. 	

498 11. FIR DIGITAL FILTER DESIGN

Fig. 11.3.12 Kaiser and Hamming spectra.

11.4 Frequency Sampling Method

The window method is very convenient for designing ideally shaped filters, primarily
because the frequency integral in Eq. (11.1.7) can be carried out in closed form.

For arbitrary frequency responsesD(ω), we may use the frequency sampling method,
in which the integral (11.1.7) is replaced by the approximate sum:

d̃(k)= 1

N

M∑
i=−M

D(ωi)ejωik, −M ≤ k ≤M (11.4.1)

where N = 2M + 1. The approximation is essentially an inverse N-point DFT, with the
DFT frequencies ωi spanning equally the interval [−π,π], instead of the standard DFT
interval [0,2π]:

ωi = 2πi
N

, −M ≤ i ≤M (11.4.2)

The forward DFT applied to Eq. (11.4.1) gives:

D(ωi)=
M∑

k=−M
d̃(k)e−jωik (11.4.3)

The rest of the window method may be applied as before, that is, given an appropri-
ate length-N window w(n), the final designed filter will be the delayed and windowed
version of d̃(k):

h(n)= w(n)d̃(n−M), n = 0,1, . . . ,N − 1 (11.4.4)

We will discuss some examples of the frequency sampling method in Section 14.4.3,
where we will design FIR filters for equalizing the slight passband droop of D/A con-
verters and imperfect analog anti-image postfilters.

11.5. OTHER FIR DESIGN METHODS 499

11.5 Other FIR Design Methods

The Kaiser window method is simple and flexible and can be applied to a variety of filter
design problems. However, it does not always result in the smallest possible filter length
N, which may be required in some very stringent applications.

The Parks-McClellan method [2–8] based on the so-called optimum equiripple Cheby-
shev approximation generally results in shorter filters. Kaiser [267] has shown that the
filter length can be estimated in such cases by a variant of Eq. (11.3.12) that uses the

geometric mean of the two ripples, δg =
√
δpassδstop:

N − 1 = Dfs
Δf

, D = Ag − 13

14.6
, Ag = −20 log10(δg) (11.5.1)

Moreover, it may be desirable at times to design filters that have additional prop-
erties, such as convexity constraints, monotonicity constraints in the passband, or a
certain degree of flatness at DC. A recent linear-programming-based filter design pro-
gram called “meteor” by Steiglitz, Parks, and Kaiser [275,276] addresses such type of
designs with constraints.

See Ref. [34] for a summary of filter design methods in MATLAB, both for FIR and
IIR filters.

11.6 Problems

11.1 Consider thed(k),D(ω) pair of Eq. (11.1.1). For the symmetric case, show that the condition
that d(k) be real and even in k is equivalent toD(ω) being real and even inω. Similarly for
the antisymmetric case, show that the condition that d(k) be real and odd in k is equivalent
to D(ω) being imaginary and odd in ω.

In both cases, use Euler’s formula to writeD(ω) is a form that shows its symmetry properties
explicitly.

If you only had the reality condition that d(k) be real-valued (with no other symmetry con-
straints), what would be the equivalent condition on D(ω)?

11.2 By performing the appropriate integrations in Eq. (11.1.1), verify the expressions for d(k)
of the five filters in Eqs. (11.1.4) and (11.1.6).

11.3 Consider the lowpass differentiator and Hilbert transformer filters with ideal frequency re-
sponses defined over one Nyquist interval:

D(ω)=
{

jω, if |ω| ≤ωc

0, if ωc < |ω| ≤ π , D(ω)=
{
−jsign(ω), if |ω| ≤ωc

0, if ωc < |ω| ≤ π

Show that the corresponding ideal impulse responses are given by:

d(k) = ωc cos(ωck)
πk

− sin(ωck)
πk2

d(k) = 1− cos(ωck)
πk

(differentiator)

(Hilbert transformer)

They reduce to those of Eq. (11.1.6) in the full-band case of ωc = π. Do they have the right
value at k = 0?

500 11. FIR DIGITAL FILTER DESIGN

11.4 Determine the ideal impulse response d(k) of the bandpass differentiator defined over one
Nyquist interval by:

D(ω)=
{

jω, if ωa ≤ |ω| ≤ωb

0, if 0 ≤ |ω| < ωa, or ωb < |ω| ≤ π

11.5 Differentiation is an inherently noisy operation in the sense that it amplifies any noise in the
data. To see this, calculate the NRR of the FIR differentiation filter y(n)= x(n)−x(n − 1).
In what sense is this filter an approximation to the ideal differentiator?

Then, calculate the NRR of the ideal lowpass differentiator of Problem 11.3 and compare it
with NRR of the full-band case. How does it vary with the cutoff frequency ωc?

By choosing ωc to be the bandwidth of the desired signal, lowpass differentiators strike a
compromise between differentiating the data and keeping the noise amplification as low as
possible.

Lowpass differentiators designed by the Kaiser window method (see Problem 11.20), perform
better than the optimal Savitzky-Golay least-squares differentiators of Chap. 23; see Refs.
[640,643].

11.6 Show that the mean-square approximation error between the desired and windowed fre-
quency responses of Eqs. (11.1.1) and (11.1.13) can be expressed in the form:

EM =
∫ π

−π
|D(ω)−D̂M(ω)|2 dω

2π
=
∫ π

−π
|D(ω)|2 dω

2π
−

M∑
k=−M

d(k)2

Then, show the limit EM → 0 as M →∞.

11.7 Using the differentiator and Hilbert transformer filters and the result of Problem 11.6, show
the infinite series:

∞∑
k=1

1

k2
= π2

6
,

∞∑
k=1
k=odd

1

k2
= π2

8
,

∞∑
k=2

k=even

1

k2
= π2

24

11.8 The ideal Hilbert transformer has frequency responseD(ω)= −jsign(ω), for−π ≤ω ≤ π.
Show that it acts as 90o phase shifter converting a cosinusoidal input into a sinusoidal output
and vice versa, that is, show the input/output pairs:

cos(ωn) D−→ sin(ωn), sin(ωn) D−→ − cos(ωn)

11.9 Consider the length-(2M + 1) FIR filter of Eq. (11.1.14). Show that it satisfies D̂M(z)=
D̂M(z−1) in the symmetric case, and D̂M(z)= −D̂M(z−1) in the antisymmetric one.

Then, assuming real coefficients d(k), show that in both the symmetric and antisymmetric
cases, if z0 is a zero of D̂M(z) not on the unit circle, then necessarily the complex numbers
{z−1

0 , z∗0 , z−1∗
0 } are also zeros. Indicate the relative locations of these four zeros on the

z-plane with respect to the unit circle.

Moreover, show that in the antisymmetric case, the points z = ±1 are always zeros of D̂M(z).
Can you also see this result from the expression of D̂M(ω)?
Show that the results of this problem still hold if the impulse response d(k) is windowed
with a Hamming, Kaiser, or any other window.

11.6. PROBLEMS 501

11.10 It is desired to design a linear-phase, odd-length FIR filter having real-valued symmetric
impulse response. The filter is required to have the smallest possible length and to have a
zero at the complex location z = 0.5+0.5j. Determine the impulse response h of this filter.
[Hint: Use the results of Problem 11.9.]

Determine expressions for the magnitude and phase responses of this filter. Is the phase
response linear in ω?

Repeat the problem if the filter is to have an antisymmetric impulse response. Is your answer
antisymmetric?

11.11 Determine the (a) symmetric and (b) antisymmetric linear-phase FIR filter that has the short-
est possible length and has at least one zero at the location z = 0.5j.

11.12 Expanding Eq. (11.3.3) to first-order in δpass, show the approximation of (11.3.4).

11.13 It is desired to design a digital lowpass linear-phase FIR filter using the Kaiser window
method. The design specifications are as follows: sampling rate of 10 kHz, passband fre-
quency of 1.5 kHz, stopband frequency of 2 kHz, passband attenuation of 0.1 dB, and stop-
band attenuation of 80 dB. Determine the number of filter taps N.

11.14 It is desired to design a digital lowpass FIR linear phase filter using the Kaiser window
method. The maximum passband attenuation is 0.1 dB and the minimum stopband at-
tenuation is 80 dB. At a sampling rate of 10 kHz, the maximum filter length that can be
accommodated by your DSP hardware is 251 taps. What is the narrowest transition width
Δf in kHz that you can demand?

11.15 Your DSP chip can accommodate FIR filters of maximum length 129 at audio rates of 44.1
kHz. Suppose such a filter is designed by the Kaiser method.

a. What would be the minimum transition width Δf between passband and stopband that
you can demand if the stopband attenuation is to be 80 dB?

b. If the minimum transition width Δf between passband and stopband is taken to be
2 kHz, then what would be the maximum stopband attenuation in dB that you can
demand? What would be the corresponding passband attenuation in dB of the designed
filter in this case?

c. Suppose your DSP chip could handle length-129 FIR filters at four times the audio
rate, that is, 4 × 44.1 = 176.4 kHz. You wish to use such a filter as a four-times
oversampling FIR interpolator filter for a CD player. The filter is required to have
passband from 0 kHz to 19.55 kHz and stopband from 24.55 kHz up to the Nyquist
frequency 176.4/2 = 88.2 kHz. Using a Kaiser design, how much stopband attenuation
in dB would you have for such a filter?

11.16 A lowpass FIR filter operating at a rate fs is implemented on a DSP chip that has instruction
rate finstr. Suppose the filter is designed using the Kaiser method. Show that the maxi-
mum filter length and minimum transition width (in Hz) that can be implemented are given
approximately by:

Nmax = finstr

fs
, Δfmin =

Dfs2

finstr

where D is the Kaiser design parameter of Eq. (11.3.12). What assumptions were made about
the DSP chip?

11.17 A lowpass FIR filter designed by the Kaiser method is required to have transition width Δf
Hz and sampling rate fs. If the filter is to be implemented on a DSP chip that has instruction
rate finstr, show that the maximum attainable stopband attenuation for the filter is given by:

502 11. FIR DIGITAL FILTER DESIGN

Amax = 14.36FinstrΔF + 7.95

where we defined the normalized frequencies Finstr = finstr/fs, ΔF = Δf/fs.
11.18 Computer Experiment: Rectangular and Hamming Windows. For the lengths N = 11, 41,

81, and 121, and using a rectangular window, design a lowpass FIR filter of cutoff frequency
ωc = 0.3π. Plot the impulse responses h(n) and magnitude responses |H(ω)| of the
designed filters. Repeat using a Hamming window. Compare the two windows.

11.19 Computer Experiment: Kaiser Window Designs. Reproduce the designs and graphs of Exam-
ples 11.3.1 and 11.3.2. Plot also the phase responses of the designed filters for 0 ≤ f ≤ fs/2.

You may find useful the MATLAB routines klh.m and kbp.m. Write versions of these routines
for the Hamming window and use them in this experiment.

Finally, using a Kaiser window, design a highpass filter with specifications: fs = 20 kHz,
fpass = 5 kHz, fstop = 4 kHz, Apass = 0.1 dB, and Astop = 80 dB. Plot its magnitude (in dB)
and phase response. Compare the Kaiser design with the rectangular and Hamming window
designs of the same length.

11.20 Computer Experiment: Kaiser Window Differentiator Design. Using the MATLAB routine
kdiff, design a lowpass FIR differentiator for the following values of the cutoff frequency,
transition width, and stopband attenuation parameters {ωc,Δω,A}:

ωc = 0.40π, 0.80π

Δω = 0.10π, 0.05π

A = 30, 60

[rads/sample]

[rads/sample]

[dB]

For each of the eight cases, plot the magnitude response |H(ω)| of the designed filter over
the interval 0 ≤ω ≤ π.

11.21 Computer Experiment: Comparison of Kaiser and Savitzky-Golay Differentiators. For the two
cases of Problem 11.20 having ωc = 0.4π, A = 60 dB, and Δω = {0.1π,0.05π}, you will
find that the corresponding filter lengths are N = 75 and N = 147. Using the MATLAB
routine sg.m, design the order-2 and order-3 Savitzky-Golay differentiator filters of lengths
N = 75 and 147. This can be done by the MATLAB statements:

[B, S] = sg(d, N); F = S’ * S; G = S * F^(-1);

and extract the second column of G. On the same graph, plot and compare the magnitude
responses of the Kaiser design, the order-2, and order-3 SG designs for the two values of N.
Use frequency scales 0 ≤ ω ≤ π. Then replot only over the range 0 ≤ ω ≤ 0.1π and use
vertical scales [0,0.1] to magnify the graphs.

Comment on the bandwidth of the SG designs versus the Kaiser design. See also the com-
ments of Problem 11.5.

11.22 Computer Experiment: Kaiser Window Hilbert Transformer Design. Using the MATLAB rou-
tine khilb, design a lowpass FIR Hilbert transformer for the following values of the cutoff
frequency, transition width, and stopband attenuation parameters {ωc,Δω,A}:

ωc = 0.80π, 1.00π

Δω = 0.10π, 0.05π

A = 30, 60

[rads/sample]

[rads/sample]

[dB]

For each of the eight cases, plot the magnitude response |H(ω)| of the designed filter over
the interval 0 ≤ω ≤ π.

11.6. PROBLEMS 503

11.23 Computer Experiment: Kaiser Window for Spectral Analysis. (a) Reproduce all the results and
graphs of Example 11.3.6. You may use the MATLAB routine kparm2 to calculate the window
parameters and the routine dtft.m to calculate the spectra. (b) Keeping the Kaiser sidelobe
level at R = 70 dB, repeat part (a) when the middle sinusoid is 35 dB below the other two,
and when it is 70 dB below. (c) Repeat parts (a,b) when the transition width is chosen to be
Δf = (f2 − f1)/6, and when it is Δf = (f2 − f1)/12.

12
IIR Digital Filter Design

12.1 Bilinear Transformation

One of the simplest and effective methods of designing IIR digital filters with prescribed
magnitude response specifications is the bilinear transformation method.

Instead of designing the digital filter directly, the method maps the digital filter into
an equivalent analog filter, which can be designed by one of the well-developed analog
filter design methods, such as Butterworth, Chebyshev, or elliptic filter designs. The
designed analog filter is then mapped back into the desired digital filter. The procedure
is illustrated in Fig. 12.1.1.

Fig. 12.1.1 Bilinear transformation method.

The z-plane design of the digital filter is replaced by an s-plane design of the equiv-
alent analog filter. The mapping between the s and z planes is carried out by a transfor-
mation of the form:

s = f(z) (12.1.1)

The corresponding mapping between the physical digital frequencyω = 2πf/fs and
the equivalent analog frequency† Ω is obtained by replacing s = jΩ and z = ejω into
Eq. (12.1.1), giving jΩ = f(ejω), which can be written as:

†Here, Ω is the frequency of a fictitious equivalent analog filter. It has arbitrary units and should not be
confused with the physical frequency 2πf in radians/sec.

504

12.1. BILINEAR TRANSFORMATION 505

Ω = g(ω) (12.1.2)

The bilinear transformation is a particular case of Eq. (12.1.1) defined by:

s = f(z)= 1− z−1

1+ z−1
(bilinear transformation) (12.1.3)

The corresponding mapping of frequencies is obtained as follows:

jΩ = f(ejω)= 1− e−jω

1+ e−jω
= ejω/2 − e−jω/2

ejω/2 + e−jω/2
= j

sin(ω/2)
cos(ω/2)

= j tan
(
ω
2

)
which gives:

Ω = g(ω)= tan
(
ω
2

)
(bilinear transformation) (12.1.4)

Because of the nonlinear relationship between the physical frequency ω and the
fictitious analog frequency Ω, Eq. (12.1.4) is sometimes referred to as a frequency pre-
warping transformation.

Other versions of the bilinear transformation, which are appropriate for designing
highpass, bandpass, or bandstop digital filters by starting from an equivalent lowpass
analog filter, are as follows:

(lowpass) s = f(z)= 1− z−1

1+ z−1

(highpass) s = f(z)= 1+ z−1

1− z−1

(bandpass) s = f(z)= 1− 2cz−1 + z−2

1− z−2

(bandstop) s = f(z)= 1− z−2

1− 2c + z−2

(12.1.5)

with corresponding frequency maps:

(lowpass) Ω = g(ω)= tan
(
ω
2

)

(highpass) Ω = g(ω)= − cot
(
ω
2

)

(bandpass) Ω = g(ω)= c− cosω
sinω

(bandstop) Ω = g(ω)= sinω
cosω− c

(12.1.6)

506 12. IIR DIGITAL FILTER DESIGN

The overall design method can be summarized as follows: Starting with given mag-
nitude response specifications for the digital filter, the specifications are transformed
by the appropriate prewarping transformation, Eqs. (12.1.4) or (12.1.6), into the spec-
ifications of an equivalent analog filter. Using an analog filter design technique, the
equivalent analog filter, say Ha(s), is designed. Using the bilinear transformation, Eqs.
(12.1.3) or (12.1.5), the analog filter is mapped back into the desired digital filter H(z),
by defining:

H(z)= Ha(s)
∣∣∣∣
s=f(z)

= Ha
(
f(z)

)
(12.1.7)

The corresponding frequency responses also map in a similar fashion:

H(ω)= Ha(Ω)
∣∣∣∣
Ω=g(ω)

= Ha
(
g(ω)

)
(12.1.8)

A useful property of the bilinear transformation (12.1.3) is that it maps the left-hand
s-plane into the inside of the unit circle on the z-plane. Figure 12.1.2 shows this property.
Because all analog filter design methods give rise to stable and causal transfer functions
Ha(s), this property guarantees that the digital filter H(z) obtained by Eq. (12.1.7) will
also be stable and causal.

The alternative transformations of Eqs. (12.1.5) also share this property, where in
the bandpass and bandstop cases it is required that |c| ≤ 1.

Fig. 12.1.2 Interior of unit z-circle gets mapped onto left-hand s-plane.

A related property of the bilinear transformation is that it maps the s-plane fre-
quency axis, that is, the imaginary axis s = jΩ onto the z-plane frequency axis, that is,
the periphery of the unit circle z = ejω. The above properties can be proved easily by
taking real parts of Eq. (12.1.3):

Re s = 1

2
(s+ s∗)= 1

2

[
z− 1

z+ 1
+ z∗ − 1

z∗ + 1

]
= (z− 1)(z∗ + 1)+(z+ 1)(z∗ − 1)

2(z+ 1)(z∗ + 1)

or,

12.2. FIRST-ORDER LOWPASS AND HIGHPASS FILTERS 507

Re s = |z|2 − 1

|z+ 1|2

which shows that

Re s < 0 � |z| < 1 and Re s = 0 � |z| = 1

Next, we apply the bilinear transformation method to the design of simple first- and
second-order filters, and then to higher-order filters based on Butterworth and Cheby-
shev analog designs.

12.2 First-Order Lowpass and Highpass Filters

Perhaps the simplest filter design problem is that of designing a first-order lowpass filter
that has a prescribed cutoff frequency, say fc, and operates at a given sampling rate fs.
Such a filter will have a transfer function of the form:

H(z)= b0 + b1z−1

1+ a1z−1

The design problem is to determine the filter coefficients {b0, b1, a1} in terms of
the cutoff frequency fc and rate fs. The definition of the cutoff frequency is a matter of
convention. Roughly speaking, it defines the range of frequencies that pass through, that
is, 0 ≤ f ≤ fc, and the range of frequencies that are filtered out, that is, fc ≤ f ≤ fs/2.
The digital cutoff frequency ωc in units of radians per sample is defined to be:

ωc = 2πfc
fs

By convention, ωc is usually taken to be the so-called 3-dB cutoff frequency, that is,
the frequency at which the magnitude response squared drops by a factor of two (i.e., 3
dB) compared to its value at DC:

|H(ωc)|2
|H(0)|2 = 1

2
⇒ −10 log10

[
|H(ωc)|2
|H(0)|2

]
= −10 log10

[
1

2

]
= 3 dB

Assuming that H(z) is normalized to unity gain at DC, |H(0)| = 1, this condition
reads equivalently:

|H(ωc)|2 = 1

2
(12.2.1)

More generally, we may define ωc or fc to be the frequency at which |H(ω)|2 drops
by a factor of G2

c < 1, or a drop in dB:

Ac = −10 log10(G2
c)= −20 log10 Gc (12.2.2)

508 12. IIR DIGITAL FILTER DESIGN

which can be inverted to give:

Gc = 10−Ac/20 (12.2.3)

Thus, in this case, the defining condition for ωc is:

|H(ωc)|2 = G2
c = 10−Ac/10 (12.2.4)

If Ac = 3 dB, we have G2
c = 1/2, and (12.2.4) reduces to (12.2.1). Figure 12.2.1 shows

this type of magnitude response specification, both in the general and 3-dB cases. The
design problem is then to determine the filter coefficients {b0, b1, a1} for given values
of the cutoff specifications {fc,Ac}.

|H(f)|
2

1

1/2

3 dB

fc fs /20

f

|H(f)|
2

Gc
2

Ac dB
1

fc fs /20

f

Fig. 12.2.1 Cutoff frequency specifications for lowpass digital filter.

The bilinear transformation method can be applied as follows. First, we prewarp the
cutoff frequency to get the cutoff frequency of the equivalent analog filter:

Ωc = tan
(
ωc

2

)
= tan

(
πfc
fs

)

Then, we design a first-order analog filter and adjust its parameters so that its cutoff
frequency is Ωc. Figure 12.2.2 shows the transformation of the specifications. The
analog filter’s transfer function is taken to be:

Ha(s)= α
s+α

(12.2.5)

Note that Ha(s) has been normalized to unity gain at DC, or at s = 0. Its frequency
and magnitude responses are obtained by setting s = jΩ:

Ha(Ω)= α
jΩ+α

⇒ |Ha(Ω)|2 = α2

Ω2 +α2
(12.2.6)

Because the design method satisfies Eq. (12.1.8) for the frequency and magnitude
responses, we can determine the filter parameter α by requiring the cutoff condition:

12.2. FIRST-ORDER LOWPASS AND HIGHPASS FILTERS 509

|H(ω)|
2

Gc
2

Ac dB
1

ωc π0

ω

|Ha(Ω)|
2

Gc
2

Ac dB
1

Ωc
0

Ω

desired digital
lowpass filter

equivalent analog
lowpass filter

Fig. 12.2.2 Equivalent cutoff specifications of lowpass digital and analog filters.

|H(ωc)|2 = |Ha(Ωc)|2 = α2

Ω2
c +α2

= G2
c (12.2.7)

which can be solved for α:

α = Gc√
1−G2

c

Ωc = Gc√
1−G2

c

tan
(
ωc

2

)
(12.2.8)

Once the parameter α of the analog filter is fixed, we may transform the filter to the
z-domain by the bilinear transformation (12.1.3):

H(z)= Ha(s)= α
s+α

∣∣∣∣
s= 1−z−1

1+z−1

= α
1− z−1

1+ z−1
+α

= α(1+ z−1)
1− z−1 +α(1+ z−1)

which gives after some algebra:

H(z)= b
1+ z−1

1− az−1
(12.2.9)

where its coefficients are computed in terms of α:

a = 1−α
1+α

, b = α
1+α

(12.2.10)

The overall design is summarized as follows: Given the cutoff frequency ωc and
corresponding gain Ac in dB, compute Gc using Eq. (12.2.3); then compute the analog
parameter α and the digital filter coefficients {b,a}.

Note that because Ha(s) is stable and causal, its pole s = −α lies in the left-hand
s-plane. This follows from the fact that tan(ωc/2)> 0 for any value of ωc in the range
0 < ωc < π. This pole gets mapped onto the z-plane pole z = a, which satisfies |a| < 1
for α > 0. The zero of the digital filter at z = −1 corresponds to the Nyquist frequency
ω = π or f = fs/2. Also note that the normalizing gain b can be expressed directly in
terms of a, as follows:

510 12. IIR DIGITAL FILTER DESIGN

b = 1− a
2

(12.2.11)

If ωc is taken to be the 3-dB cutoff frequency, then G2
c = 1/2 and Eq. (12.2.8) sim-

plifies to:

α = Ωc = tan
(
ωc

2

)
(12.2.12)

The frequency response of the digital filter can be obtained by setting z = ejω in
Eq. (12.2.9), or more simply in terms of the frequency response of the transformed
analog filter, that is, using Eq. (12.1.8):

H(ω)= Ha(Ω)= α
α+ jΩ

= α
α+ j tan(ω/2)

Thus, we have the two equivalent expressions:

H(ω)= b
1+ e−jω

1− ae−jω
= α
α+ j tan(ω/2)

and similarly for the magnitude response:

|H(ω)|2 = b2 2(1+ cosω)
1− 2a cosω+ a2

= α2

α2 + tan2(ω/2)
(12.2.13)

The bilinear transformation is not necessary. In fact, using the first of the two expres-
sions in Eq. (12.2.13), the digital filter can be designed directly without the intermediate
step of an analog filter. However, for higher-order filters the bilinear transformation
approach is algebraically simpler than the direct design.

Example 12.2.1: Design a lowpass digital filter operating at a rate of 10 kHz, whose 3-dB fre-
quency is 1 kHz. Then, redesign it such that at 1 kHz its attenuation is G2

c = 0.9, corre-
sponding to Ac = −10 log10(0.9)= 0.46 dB.

Then, redesign the above two filters such that their cutoff frequency is now 3.5 kHz.

Solution: The digital cutoff frequency is

ωc = 2πfc
fs

= 2π · 1 kHz

10 kHz
= 0.2π rads/sample

and its prewarped analog version:

Ωc = tan
(
ωc

2

)
= tan(0.1π)= 0.3249

For the first filter, we have G2
c = 0.5 corresponding to Eq. (12.2.12), which gives the filter

parameters:

α = Ωc = 0.3249, a = 1−α
1+α

= 0.5095, b = 1− a
2

= 0.2453

12.2. FIRST-ORDER LOWPASS AND HIGHPASS FILTERS 511

and digital filter transfer function:

H(z)= 0.2453
1+ z−1

1− 0.5095z−1

For the second filter, ωc corresponds to attenuation G2
c = 0.9. Using Eq. (12.2.8) we find:

α = Ωc
Gc√

1−G2
c

= 0.3249

√
0.9√

1− 0.9
= 0.9748

corresponding to filter coefficients and transfer function:

a = 1−α
1+α

= 0.0128, b = 1− a
2

= 0.4936, H(z)= 0.4936
1+ z−1

1− 0.0128z−1

The magnitude responses of the two designed filters and their specifications are shown in
the left graph of Fig. 12.2.3.

Fig. 12.2.3 First-order lowpass digital filters of Example 12.2.1.

For the next two cases, we have fc = 3.5 kHz, resulting in the digital frequency ωc =
2πfc/fs = 0.7π, and corresponding prewarped version Ωc = tan(ωc/2)= tan(0.35π)=
1.9626.

For the 3-dB case, we haveα = Ωc = 1.9626, which gives the filter coefficients and transfer
function:

a = 1−α
1+α

= −0.3249, b = 1− a
2

= 0.6625, H(z)= 0.6625
1+ z−1

1+ 0.3249z−1

For the 0.46-dB case having G2
c = 0.9, we calculate:

α = Ωc
Gc√

1−G2
c

= 1.9626

√
0.9√

1− 0.9
= 5.8878

which gives for the digital filter coefficients and transfer function:

512 12. IIR DIGITAL FILTER DESIGN

a = 1−α
1+α

= −0.7096, b = 1− a
2

= 0.8548, H(z)= 0.8548
1+ z−1

1+ 0.7096z−1

The corresponding magnitude responses are shown in the right graph of Fig. 12.2.3. Note
that in the last two cases the cutoff frequency is ωc > π/2 which results in a negative
value of the filter pole a. 	

Highpass digital filters can be designed just as easily. Starting with a highpass analog
first-order filter of the form:

Ha(s)= s
s+α

(12.2.14)

we can transform it into a highpass digital filter by the bilinear transformation:

H(z)= Ha(s)= s
s+α

∣∣∣∣
s= 1−z−1

1+z−1

=
1− z−1

1+ z−1

1− z−1

1+ z−1
+α

= 1− z−1

1− z−1 +α(1+ z−1)

which gives:

H(z)= b
1− z−1

1− az−1
(12.2.15)

where its coefficients are computed in terms of α:

a = 1−α
1+α

, b = 1

1+α
= 1+ a

2
(12.2.16)

To determine the parameter α, we require that at a given highpass cutoff frequency
ωc the attenuation is Ac dB. That is, we demand

|H(ωc)|2 = G2
c = 10−Ac/10 (12.2.17)

Figure (12.2.4) depicts the mapping of the specifications of the digital filter to the
equivalent analog filter. Setting s = jΩ into Eq. (12.2.14), we obtain for the frequency
and magnitude responses:

Ha(Ω)= jΩ
jΩ+α

⇒ |Ha(Ω)|2 = Ω2

Ω2 +α2
(12.2.18)

The design condition (12.2.17) gives then:

|H(ωc)|2 = |Ha(Ωc)|2 = Ω2
c

Ω2
c +α2

= G2
c

which can be solved for α:

α =
√

1−G2
c

Gc
Ωc =

√
1−G2

c

Gc
tan

(
ωc

2

)
(12.2.19)

12.2. FIRST-ORDER LOWPASS AND HIGHPASS FILTERS 513

|H(ω)|
2

Gc
2

Ac dB
1

ωc π0

ω

|Ha(Ω)|
2

Gc
2

Ac dB
1

Ωc
0

Ω

equivalent analog
highpass filter

desired digital
highpass filter

Fig. 12.2.4 Equivalent cutoff specifications of highpass digital and analog filters.

In summary, given the specifications {ωc,Ac}, we compute the analog parameter α
and then the digital filter parameters {b,a} which define the desired transfer function
(12.2.15).

As in the lowpass case, we can replace Ω = tan(ω/2) and write the frequency and
magnitude responses of the designed filter in the two equivalent forms:

H(ω)= b
1− e−jω

1− ae−jω
= j tan(ω/2)
α+ j tan(ω/2)

|H(ω)|2 = b2 2(1− cosω)
1− 2a cosω+ a2

= tan2(ω/2)
α2 + tan2(ω/2)

We note again that if ωc represents the 3-dB cutoff frequency corresponding to
G2
c = 1/2, then Eq. (12.2.19) simplifies to:

α = Ωc = tan
(
ωc

2

)
(12.2.20)

This and Eq. (12.2.12) imply that if the lowpass and highpass filters have the same
3-dB cutoff frequency ωc, then they will have the same analog filter parameter α, and
hence the same z-plane pole parameter a. Thus, in this case, the analog filters will be:

HLP(s)= α
s+α

, HHP(s)= s
s+α

(12.2.21)

and the corresponding digital filters:

HLP(z)= 1− a
2

1+ z−1

1− az−1
, HHP(z)= 1+ a

2

1− z−1

1− az−1
(12.2.22)

They are complementary filters in the sense that their transfer functions add up to
unity:

HLP(s)+HHP(s)= α
s+α

+ s
s+α

= s+α
s+α

= 1

and similarly,

514 12. IIR DIGITAL FILTER DESIGN

HLP(z)+HHP(z)= 1 (12.2.23)

We have already encountered such complementary filters in the comb and notch
filters of Section 15.11. The corresponding frequency and magnitude responses squared
also add up to unity; for example,

|HLP(ω)|2 + |HHP(ω)|2 = α2

α2 + tan2(ω/2)
+ tan2(ω/2)
α2 + tan2(ω/2)

= 1

Example 12.2.2: Design a highpass digital filter operating at a rate of 10 kHz, whose 3-dB
cutoff frequency is 1 kHz. Then, redesign it such that at 1 kHz its attenuation is G2

c = 0.9,
corresponding to Ac = −10 log10(0.9)= 0.46 dB.

Solution: The digital cutoff frequency is as in Example 12.2.1, ωc = 0.2π. Its prewarped analog
version is Ωc = tan(ωc/2)= 0.3249.

For the first filter, we have G2
c = 0.5 corresponding to Eq. (12.2.20), which gives the filter

parameters:

α = Ωc = 0.3249, a = 1−α
1+α

= 0.5095, b = 1+ a
2

= 0.7548

and transfer function:

H(z)= 0.7548
1− z−1

1− 0.5095z−1

For the second filter, we set G2
c = 0.9 into Eq. (12.2.19) to get:

α = Ωc

√
1−G2

c

Gc
= 0.1083

corresponding to filter coefficients and transfer function:

a = 1−α
1+α

= 0.8046, b = 1+ a
2

= 0.9023, H(z)= 0.9023
1− z−1

1− 0.8046z−1

The magnitude responses of the two designed filters and their specifications are shown in
the left graph of Fig. 12.2.5.

The right graph shows the complementarity property of the highpass and lowpass filters,
with 3-dB frequency of ωc = 0.2π. The magnitude responses intersect at precisely the
3-dB point. 	

12.3 Second-Order Peaking and Notching Filters

In Section 6.4, we designed second-order resonator and notch filters using pole/zero
placement. For narrow-width filters this technique is adequate. But, it becomes cum-
bersome for wider peak widths, such as those that might be used in graphic and para-
metric audio equalizers. The bilinear transformation method offers precise control over
the desired specifications of such filters [283–292].

12.3. SECOND-ORDER PEAKING AND NOTCHING FILTERS 515

Fig. 12.2.5 Highpass and complementary lowpass digital filters.

Consider first the design of notch filters. The desired specifications are the sam-
pling rate fs, notch frequency f0, and bandwidth Δf of the notch, or, equivalently, the
corresponding digital frequencies:

ω0 = 2πf0

fs
, Δω = 2πΔf

fs

Alternatively, we may specify ω0 and the Q-factor, Q = ω0/Δω = f0/Δf . The
specifications together with their bilinear analog equivalents are shown in Fig. 12.3.1.
The bandwidth Δω is usually defined to be the 3-dB width, that is, the full width at half
maximum of the magnitude squared response. More generally, it can be defined to be
the full width at a level G2

B, or in decibels:

AB = −10 log10(G2
B) ⇒ GB = 10−AB/20 (12.3.1)

The bandwidth Δω is defined as the difference Δω =ω2−ω1 of the left and right
bandwidth frequencies ω1 and ω2 that are solutions of the equation |H(ω)|2 = G2

B, as
shown in Fig. 12.3.1. For the 3-dB width, we have the condition |H(ω)|2 = 1/2.

|H(ω)|
2

ω

|Ha(Ω)|
2

Ω00

Ω

desired digital
notch filter

equivalent analog
notch filter

GB
2

AB dB
1

ω0

ω1 ω2

Δω

π0

GB
2

AB dB
1

Ω1 Ω2

ΔΩ

Fig. 12.3.1 Digital notch filter and its analog equivalent.

516 12. IIR DIGITAL FILTER DESIGN

Given the desired specifications {ω0, Δω,G2
B}, the design procedure begins with

the following expression for the equivalent analog filter, which has a notch at frequency
Ω = Ω0:

Ha(s)= s2 +Ω2
0

s2 +αs+Ω2
0

(12.3.2)

We will see below that the filter parameters {α,Ω0} can be calculated from the given
specifications by:

Ω0 = tan
(
ω0

2

)
, α =

√
1−G2

B

GB
(1+Ω2

0)tan
(
Δω

2

)
(12.3.3)

Then, using the bilinear transformation s = (1− z−1)/(1+ z−1), the filter Ha(s) is
transformed into the digital filter H(z) as follows:

H(z) = Ha(s)= s2 +Ω2
0

s2 +αs+Ω2
0
=

(
1− z−1

1+ z−1

)2

+Ω2
0(

1− z−1

1+ z−1

)2

+α
(

1− z−1

1+ z−1

)
+Ω2

0

= (1− z−1)2+Ω2
0(1+ z−1)2

(1− z−1)2+α(1− z−1)(1+ z−1)+Ω2
0(1+ z−1)2

=
(

1+Ω2
0

1+Ω2
0 +α

) 1− 2

(
1−Ω2

0

1+Ω2
0

)
z−1 + z−2

1− 2

(
1−Ω2

0

1+Ω2
0 +α

)
z−1 +

(
1+Ω2

0 −α
1+Ω2

0 +α

)
z−2

The coefficients of the digital filter can be simplified considerably by recognizing
that α already has a factor (1 +Ω2

0) in its definition (12.3.3). Thus, we may replace it
by

α = (1+Ω2
0)β

where

β =
√

1−G2
B

GB
tan

(
Δω

2

)
(12.3.4)

Using some trigonometry, we can write also

1−Ω2
0

1+Ω2
0
= 1− tan2(ω0/2)

1+ tan2(ω0/2)
= cosω0

Canceling several common factors of (1 +Ω2
0), we can write the transfer function

H(z) in the simplified form:

12.3. SECOND-ORDER PEAKING AND NOTCHING FILTERS 517

H(z)=
(

1

1+ β

)
1− 2 cosω0 z−1 + z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(12.3.5)

Defining the overall normalization gain by

b = 1

1+ β
= 1

1+
√

1−G2
B

GB
tan

(
Δω

2

) (12.3.6)

we may write (1− β)/(1+ β)= 2b− 1, and therefore, the coefficients of H(z) can be
expressed in terms of b as follows:

H(z)= b
1− 2 cosω0 z−1 + z−2

1− 2b cosω0 z−1 + (2b− 1)z−2
(notch filter) (12.3.7)

This is the final design. It expresses the filter coefficients in terms of the design spec-
ifications {ω0, Δω,G2

B}. Note that the numerator has a notch at the desired frequency
ωo and its conjugate −ω0, because it factors into:

1− 2 cosω0 z−1 + z−2 = (1− ejω0z−1)(1− e−jω0z−1)

It remains to justify the design equations (12.3.3). The first one, Ω0 = tan(ω0/2), is
simply the bilinear transformation ofω0 and makes the analog filter’s notch correspond
to the digital filter’s notch. The equation for α can be derived as follows. Setting s = jΩ
in Eq. (12.3.2), we obtain the frequency and magnitude responses:

Ha(Ω)= −Ω2 +Ω2
0

−Ω2 + jαΩ+Ω2
0

⇒ |Ha(Ω)|2 = (Ω2 −Ω2
0)2

(Ω2 −Ω2
0)2+α2Ω2

It is evident from these expressions thatHa(Ω) has a notch atΩ = ±Ω0. The analog
bandwidth frequencies Ω1 and Ω2 are solutions of the equation |Ha(Ω)|2 = G2

B, that
is,

(Ω2 −Ω2
0)2

(Ω2 −Ω2
0)2+α2Ω2

= G2
B (12.3.8)

Eliminating the denominator and rearranging terms, we can write it as the quartic
equation in Ω:

Ω4 − (2Ω2
0 +

G2
B

1−G2
B
α2)Ω2 +Ω4

0 = 0 (12.3.9)

It may be thought of as a quadratic equation in the variable x = Ω2, that is,

x2 − (2Ω2
0 +

G2
B

1−G2
B
α2)x+Ω4

0 = 0

518 12. IIR DIGITAL FILTER DESIGN

Let x1 = Ω2
1 and x2 = Ω2

2 be its two solutions. Rather than solving it, we use the
properties that the sum and product of the two solutions are related to the first and
second coefficients of the quadratic by:

Ω2
1 +Ω2

2 = x1 + x2 = 2Ω2
0 +

G2
B

1−G2
B
α2

Ω2
1Ω

2
2 = x1x2 = Ω4

0

(12.3.10)

From the second equation, we obtain:

Ω1Ω2 = Ω2
0 (12.3.11)

which states that Ω0 is the geometric mean of the left and right bandwidth frequencies.
Using this result in the first of (12.3.10), we obtain:

Ω2
1 +Ω2

2 = 2Ω1Ω2 + G2
B

1−G2
B
α2

which allows us to solve for the analog bandwidth:

ΔΩ2 = (Ω2 −Ω1)2= Ω2
1 +Ω2

2 − 2Ω1Ω2 = G2
B

1−G2
B
α2

or,

ΔΩ = Ω2 −Ω1 = GB√
1−G2

B

α (AB-dB width) (12.3.12)

Solving for α, we have:

α =
√

1−G2
B

GB
ΔΩ (12.3.13)

Note that for the 3-dB case, G2
B = 1/2, the parameter α is equal to the 3-dB band-

width:

α = ΔΩ (3-dB width) (12.3.14)

Finally, we must relate the analog bandwidth ΔΩ to the physical bandwidth Δω =
ω2 −ω1. Using the bilinear transformations Ω1 = tan(ω1/2), Ω2 = tan(ω2/2), and
some trigonometry, we find:

tan
(
Δω

2

)
= tan

(
ω2 −ω1

2

)
= tan(ω2/2)− tan(ω1/2)

1+ tan(ω2/2)tan(ω1/2)

= Ω2 −Ω1

1+Ω2Ω1
= ΔΩ

1+Ω2
0

where we used Ω1Ω2 = Ω2
0. Solving for ΔΩ, we have:

12.3. SECOND-ORDER PEAKING AND NOTCHING FILTERS 519

ΔΩ = (1+Ω2
0)tan

(
Δω

2

)
(12.3.15)

Thus, combining Eqs. (12.3.13) and (12.3.15), we obtain Eq. (12.3.3). The design
equations (12.3.6) and (12.3.7) and some design examples were discussed also in Sections
16.2.2 and 15.11. For example, see Fig. 16.2.14.

In the limit as ω0 or Ω0 tend to zero, the notch filter will behave as a highpass
filter. The transfer functions H(z) and Ha(s) become in this case the highpass transfer
functions of the previous section. For example, setting Ω0 = 0 in Eq. (12.3.2), we have:

Ha(s)= s2 +Ω2
0

s2 +αs+Ω2
0

∣∣∣∣∣
Ω0=0

= s2

s2 +αs
= s
s+α

Peaking or resonator filters can be designed in a similar fashion. The desired spec-
ifications are shown in Fig. 12.3.2. The design procedure starts with the second-order
analog resonator filter:

Ha(s)= αs
s2 +αs+Ω2

0
(12.3.16)

which has frequency and magnitude responses:

Ha(Ω)= jαΩ
−Ω2 + jαΩ+Ω2

0
⇒ |Ha(Ω)|2 = α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

|H(ω)|
2

ω

|Ha(Ω)|
2

Ω00

Ω

desired digital
peaking filter

equivalent analog
peaking filter

GB
2

1

ω0

ω1 ω2

Δω

π0

GB
2

1

Ω1 Ω2

ΔΩ
AB dB AB dB

Fig. 12.3.2 Digital peaking filter and its analog equivalent.

Note that Ha(Ω) is normalized to unity gain at the peak frequencies Ω = ±Ω0. The
bandwidth frequencies Ω1 and Ω2 will satisfy the bandwidth condition:

|Ha(Ω)|2 = α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

= G2
B

It can be written as the quartic:

520 12. IIR DIGITAL FILTER DESIGN

Ω4 − (2Ω2
0 +

1−G2
B

G2
B

α2)Ω2 +Ω4
0 = 0

which is similar to Eq. (12.3.9). Its two solutions Ω2
1 and Ω2

2 satisfy the conditions:

Ω2
1 +Ω2

2 = 2Ω2
0 +

1−G2
B

G2
B

α2

Ω2
1Ω

2
2 = Ω4

0

from which we obtain Ω1Ω2 = Ω2
0 and

ΔΩ = Ω2 −Ω1 =
√

1−G2
B

GB
α ⇒ α = GB√

1−G2
B

ΔΩ

The relationship (12.3.15) between the analog and digital bandwidth remains the
same. Therefore, we obtain the analog filter parameters {α,Ω0} by equations similar
to (12.3.3):

Ω0 = tan
(
ω0

2

)
, α = GB√

1−G2
B

(1+Ω2
0)tan

(
Δω

2

)
(12.3.17)

The digital filter is obtained by the bilinear transformation:

H(z)= Ha(s)= αs
s2 +αs+Ω2

0

∣∣∣∣∣
s= 1−z−1

1+z−1

which can be written in the form:

H(z)=
(

β
1+ β

)
1− z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(12.3.18)

where β is similar, but not identical, to that in Eq. (12.3.4):

β = GB√
1−G2

B

tan
(
Δω

2

)
(12.3.19)

Defining the gain b as in Eq. (12.3.6)

b = 1

1+ β
= 1

1+ GB√
1−G2

B

tan
(
Δω

2

) (12.3.20)

we may write (1 − β)/(1 + β)= 2b − 1, and β/(1 + β)= 1 − b, and therefore, the
coefficients of H(z) can be expressed in terms of b as follows:

12.3. SECOND-ORDER PEAKING AND NOTCHING FILTERS 521

H(z)= (1− b)
1− z−2

1− 2b cosω0 z−1 + (2b− 1)z−2
(peak filter) (12.3.21)

Note that the numerator vanishes at z = ±1, that is, at DC and the Nyquist frequency.
For the 3-dB widths, we have G2

B = 1/2, and the parameters β or b are the same as those
of the notch filter:

β = tan
(
Δω

2

)
, b = 1

1+ β
= 1

1+ tan(Δω/2)
(12.3.22)

In this case, the notch and peak filters are complementary with transfer functions,
frequency responses, and magnitude responses squared that add up to unity. For ex-
ample, adding Eqs. (12.3.7) and (12.3.21), we have:

Hnotch (z)+Hpeak(z)= 1 (12.3.23)

Note, finally, that in the limit as ω0 or Ω0 tend to zero, the peaking filter will behave
as a lowpass filter. The transfer functions H(z) and Ha(s) become in this case the
lowpass transfer functions of the previous section. For example, setting Ω0 = 0 in
Eq. (12.3.16), we have:

Ha(s)= αs
s2 +αs+Ω2

0

∣∣∣∣∣
Ω0=0

= αs
s2 +αs

= α
s+α

Example 12.3.1: Design a peaking digital filter operating at a rate of 10 kHz that has a peak
at 1.75 kHz and 3-dB width of 500 Hz. Then, redesign it such that 500 Hz represents its
10-dB width.

For the 3-dB width case, determine also the corresponding complementary notch filter.

Solution: The digital frequencies in radians per sample are:

ω0 = 2πf0

fs
= 2π · 1.75

10
= 0.35π, Δω = 2πΔf

fs
= 2π · 0.5

10
= 0.1π

For the 3-dB case, we calculate the parameter, cosω0 = 0.4540, and:

β = tan
(
Δω

2

)
= 0.1584, b = 1

1+ β
= 0.8633, 1− b = 0.1367

For the caseAB = 10 dB, we have bandwidth gainG2
B = 10−AB/10 = 0.1. Then, we calculate:

β = GB√
1−G2

B

tan
(
Δω

2

)
= 0.0528, b = 1

1+ β
= 0.9499, 1− b = 0.0501

Inserting the above two sets of parameter values into Eq. (12.3.21), we obtain the transfer
functions:

522 12. IIR DIGITAL FILTER DESIGN

H(z)= 0.1367(1− z−2)
1− 0.7838z−1 + 0.7265z−2

, H(z)= 0.0501(1− z−2)
1− 0.8624z−1 + 0.8997z−2

The squared magnitude responses are shown in Fig. 12.3.3. They were calculated using
the simpler analog expressions:

|H(ω)|2 = |Ha(Ω)|2 = α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

Replacing Ω = tan(ω/2)= tan(πf/fs), we have in terms of the physical frequency f in
Hz:

|H(f)|2 = α2 tan2(πf/fs)(
tan2(πf/fs)−Ω2

0

)2 +α2 tan2(πf/fs)

Fig. 12.3.3 Peaking and complementary notch filters.

The right graph of Fig. 12.3.3 shows the complementary peak and notch filters. The pa-
rameters β and b of the notch filter were already calculated above. Using Eq. (12.3.7), we
find its transfer function:

H(z)= 0.8633
1− 0.9080z−1 + z−2

1− 0.7838z−1 + 0.7265z−2

The zeros of the denominator, 1−0.7838z−1+0.7265z−2 = 0, determine the poles of the
transfer function. They are:

p, p∗ = 0.3919± j0.7569 = 0.8524e±j0.3479π

The poles are not exactly at the desired frequency ω0 = 0.35π. Naive pole placement
would have placed them there. For example, choosing the same radius R = 0.8524, we
would have in that case:

p, p∗ = 0.8524e±j0.35π = 0.3870± j0.7597

corresponding to the denominator polynomial 1 − 0.7739z−1 + 0.7265z−2. The bilinear
transformation method places the poles at appropriate locations to achieve the desired
peak and width. 	

12.4. PARAMETRIC EQUALIZER FILTERS 523

|H(ω)|
2

|H(ω)|
2

ω ω

GB
2

G0
2

G2

GB
2

G0
2

G2

ω0 ω0π π0 0

Δω

Δω

boost cut

Fig. 12.4.1 Parametric EQ filter with boost or cut.

12.4 Parametric Equalizer Filters

Frequency equalization (EQ) is a common requirement in audio systems—analog, digital,
home, car, public, or studio recording/mixing systems [272].

Graphic equalizers are the more common type, in which the audio band is divided
into a fixed number of frequency bands, and the amount of equalization in each band
is controlled by a bandpass filter whose gain can be varied up and down. The center
frequencies of the bands and the filter 3-dB widths are fixed, and the user can vary only
the overall gain in each band. Usually, second-order bandpass filters are adequate for
audio applications.

A more flexible equalizer type is the parametric equalizer , in which all three filter
parameters—gain, center frequency, and bandwidth—can be varied. Cascading four or
five such filters together can achieve almost any desired equalization effect.

Figure 12.4.1 shows the frequency response of a typical second-order parametric
equalizer. The specification parameters are: a reference gain G0 (typically taken to
be unity for cascadable filters), the center frequency ω0 of the boost or cut, the filter
gain G at ω0, and a desired width Δω at an appropriate bandwidth level GB that lies
between G0 and G. As shown in Fig. 12.4.1, the relative gains must be chosen as follows,
depending on whether we have a boost or a cut:

G2
0 < G2

B < G2 (boost)

G2 < G2
B < G2

0 (cut)
(12.4.1)

The notch and peak filters of the previous section can be thought of as special cases
of such a filter. The peaking filter corresponds to G0 = 0, G = 1 and the notching filter
to G0 = 1, G = 0.

The definition of Δω is arbitrary, and not without ambiguity. For example, we can
define it to be the 3-dB width. But, what exactly do we mean by “3 dB”?

For the boosting case, we can take it to mean 3 dB below the peak, that is, choose
G2
B = G2/2; alternatively, we can take it to mean 3 dB above the reference, that is,

G2
B = 2G2

0. Moreover, because G2
B must lie between G2

0 and G2, the first alternative
implies that G2

0 < G2
B = G2/2, or 2G2

0 < G2, and the second 2G2
0 = G2

B < G2. Thus,

524 12. IIR DIGITAL FILTER DESIGN

either alternative requires that G2 > 2G2
0, that is, the boost gain must be at least 3 dB

higher than the reference. So, what do we do when G2
0 < G2 < 2G2

0? In that case, any
G2
B that lies in G2

0 < G2
B < G2 will do. A particularly interesting choice is to take it to be

the arithmetic mean of the end values:

G2
B =

G2
0 +G2

2
(12.4.2)

Another good choice is the geometric mean, G2
B = GG0, corresponding to the arith-

metic mean of the dB values of the endpoints [289,292] (see Problem 12.4.)
Similar ambiguities arise in the cutting case: we can take 3 dB to mean 3 dB above the

dip, that is, G2
B = 2G2, or, alternatively, we can take it to mean 3 dB below the reference,

G2
B = G2

0/2. Either alternative requires that G2 < G2
0/2, that is, the cut gain must be

at least 3 dB below the reference. If G2
0/2 < G2 < G2

0, we may again use the average
(12.4.2). To summarize, some possible (but not necessary) choices for G2

B are as follows:

G2
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G2/2, if G2 > 2G2
0 (boost, alternative 1)

2G2
0, if G2 > 2G2

0 (boost, alternative 2)
(G2

0 +G2)/2, if G2
0 < G2 < 2G2

0 (boost)

2G2, if G2 < G2
0/2 (cut, alternative 1)

G2
0/2, if G2 < G2

0/2 (cut, alternative 2)
(G2

0 +G2)/2, if G2
0/2 < G2 < G2

0 (cut)

(12.4.3)

The filter design problem is to determine the filter’s transfer function in terms of
the specification parameters: {G0, G,GB,ω0, Δω}. In this section, we present a simple
design method based on the bilinear transformation, which is a variation of the methods
in [283–292].

We define the parametric equalizer filter as the following linear combination of the
notching and peaking filters of the previous section:

H(z)= G0Hnotch(z)+GHpeak(z) (12.4.4)

At ω0 the gain is G, because the notch filter vanishes and the peak filter has unity
gain. Similarly, at DC and the Nyquist frequency, the gain is equal to the reference G0,
because the notch is unity and the peak vanishes. From the complementarity property
(12.3.23) it follows that when G = G0 we have H(z)= G0, that is, no equalization.
Inserting the expressions (12.3.5) and (12.3.18) into Eq. (12.4.4), we obtain:

H(z)=

(
G0 +Gβ

1+ β

)
− 2

(
G0 cosω0

1+ β

)
z−1 +

(
G0 −Gβ

1+ β

)
z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

(12.4.5)

The parameter β is a generalization of Eqs. (12.3.4) and (12.3.19) and is given by:

12.4. PARAMETRIC EQUALIZER FILTERS 525

β =
√√√√G2

B −G2
0

G2 −G2
B

tan
(
Δω

2

)
(12.4.6)

Note that because of the assumed inequalities (12.4.1), the quantity under the square
root is always positive. Also, for the special choice of G2

B of Eq. (12.4.2), the square root
factor is unity. This choice (and those of Problem 12.4) allows a smooth transition to the
no-equalization limit G → G0. Indeed, because β does not depend on the G’s, setting
G = G0 in the numerator of Eq. (12.4.5) gives H(z)= G0.

The design equations (12.4.5) and (12.4.6) can be justified as follows. Starting with
the same linear combination of the analog versions of the notching and peaking filters
given by Eqs. (12.3.2) and (12.3.16), we obtain the analog version of H(z):

Ha(s)= G0Hnotch(s)+GHpeak(s)= G0(s2 +Ω2
0)+Gαs

s2 +αs+Ω2
0

(12.4.7)

Then, the bandwidth condition |Ha(Ω)|2 = G2
B can be stated as:

|Ha(Ω)|2 = G2
0(Ω2 −Ω2

0)2+G2α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

= G2
B (12.4.8)

It can be cast as the quartic equation:

Ω4 − (2Ω2
0 +

G2 −G2
B

G2
B −G2

0
α2)Ω2 +Ω4

0 = 0

Proceeding as in the previous section and using the geometric-mean propertyΩ1Ω2 =
Ω2

0 and Eq. (12.3.15), we find the relationship between the parameter α and the analog
bandwidth ΔΩ = Ω2 −Ω1:

α =
√√√√G2

B −G2
0

G2 −G2
B
ΔΩ =

√√√√G2
B −G2

0

G2 −G2
B
(1+Ω2

0)tan
(
Δω

2

)
≡ (1+Ω2

0)β

This defines β. Then, the bilinear transformation of Eq. (12.4.7) leads to Eq. (12.4.5).

Example 12.4.1: Design the following six parametric EQ filters operating at 10 kHz rate that
satisfy the specifications: G0 = 1 and

(a) center frequency of 1.75 kHz, 9-dB boost gain, and 3-dB width of 500 Hz defined to
be 3 dB below the peak (alternative 1).

(b) same as (a), except the width is 3 dB above the reference (alternative 2).

(c) center frequency of 3 kHz, 9-dB cut gain, and 3-dB width of 1 kHz defined to be 3 dB
above the dip (alternative 1).

(d) same as (c), except the width is 3 dB below the reference (alternative 2).

(e) center frequency of 1.75 kHz, 2-dB boost, and 500 Hz width defined by Eq. (12.4.2).

(f) center frequency of 3 kHz, 2-dB cut, and 1 kHz width defined by Eq. (12.4.2).

526 12. IIR DIGITAL FILTER DESIGN

Solution: The boost examples (a), (b), and (e) have digital frequency and width:

ω0 = 2π · 1.75

10
= 0.35π, Δω = 2π · 0.5

10
= 0.1π

and the cut examples (c), (d), and (f) have:

ω0 = 2π · 3

10
= 0.6π, Δω = 2π · 1

10
= 0.2π

Normally, a “3-dB” change means a change by a factor of 2 in the magnitude square. Here,
for plotting purposes, we take “3 dB” to mean literally 3 dB, which corresponds to changes
by 103/10 = 1.9953 � 2. Therefore, in case (a), a boost gain of 9 dB above the reference G0

corresponds to the value:

G = 109/20G0 = 2.8184, G2 = 7.9433 (instead of 8)

The bandwidth level is defined to be 3 dB below the peak, that is, AB = 9− 3 = 6 dB, and
therefore:

GB = 10−3/20G = 106/20G0 = 1.9953, G2
B = 3.9811

With these values of {G0, G,GB,ω0, Δω}, we calculate the value of β from Eq. (12.4.6):

β =
√√√√G2

B −G2
0

G2 −G2
B

tan
(
Δω

2

)
=
√

3.9811− 1

7.9433− 3.9811
tan

(
0.1π

2

)
= 0.1374

We calculate also cosω0 = cos(0.35π)= 0.4540. The transfer function of filter (a), ob-
tained from Eq. (12.4.5), is then:

Ha(z)= 1.2196− 0.7983z−1 + 0.5388z−2

1− 0.7983z−1 + 0.7584z−2

For filter (b), the width is defined to be 3 dB above the reference, that is, AB = 3 dB:

GB = 103/20G0 = 103/20 = 1.4125, G2
B = 1.9953

From Eq. (12.4.6), we calculate β = 0.0648, and from Eq. (12.4.5) the filter:

Hb(z)= 1.1106− 0.8527z−1 + 0.7677z−2

1− 0.8527z−1 + 0.8783z−2

For filter (c), we have a 9-dB cut gain, that is, 9 dB below the reference:

G = 10−9/20G0 = 0.3548, G2 = 0.1259

and the bandwidth level is 3 dB above this dip, that is, AB = −9+ 3 = −6 dB:

GB = 103/20G = 10−6/20G0 = 0.5012, G2
B = 0.2512

12.4. PARAMETRIC EQUALIZER FILTERS 527

Then, we calculate cosω0 = cos(0.6π)= −0.3090 and β = 0.7943, and the transfer
function:

Hc(z)= 0.7144+ 0.3444z−1 + 0.4002z−2

1+ 0.3444z−1 + 0.1146z−2

For filter (d), the width is 3 dB below the reference, that is, AB = 0− 3 = −3 dB:

GB = 10−3/20G0 = 0.7079, G2
B = 0.5012

We calculate β = 0.3746 and the transfer function:

Hd(z)= 0.8242+ 0.4496z−1 + 0.6308z−2

1+ 0.4496z−1 + 0.4550z−2

The four filters (a)–(d) are shown in the left graph of Fig. 12.4.2. The magnitude responses
are plotted in dB, that is, 20 log10 |H(ω)|. The reference level G0 = 1 corresponds to 0
dB. Notice the horizontal grid lines at 6 dB, 3 dB, −3 dB, and −6 dB, whose intersections
with the magnitude responses define the corresponding bandwidths Δω.

Fig. 12.4.2 Parametric EQ filters of Example 12.4.1.

For filter (e), the boost gain is 2 dB and therefore, the bandwidth level cannot be chosen
to be 3 dB below the peak or 3 dB above the reference. We must use an intermediate
level between 0 and 2 dB. In particular, we may use Eq. (12.4.2). Thus, we calculate the
parameters:

G = 102/20G0 = 1.2589, G2
B =

G2
0 +G2

2
= 1.2924

corresponding to AB = 10 log10(G2
B)= 1.114 dB. The square root factor in the definition

of β is unity, therefore, we calculate:

β = tan
(
Δω

2

)
= tan

(
0.1π

2

)
= 0.1584

and the transfer function:

528 12. IIR DIGITAL FILTER DESIGN

He(z)= 1.0354− 0.7838z−1 + 0.6911z−2

1− 0.7838z−1 + 0.7265z−2

Finally, in case (f), we have a 2-dB cut, giving the values:

G = 10−2/20G0 = 0.7943, G2
B =

G2
0 +G2

2
= 0.8155

corresponding toAB = 10 log10(G2
B)= −0.886 dB. The parameterβ is nowβ = tan(Δω/2)=

tan(0.2π/2)= 0.3249, resulting in the transfer function:

Hf(z)= 0.9496+ 0.4665z−1 + 0.5600z−2

1+ 0.4665z−1 + 0.5095z−2

Filters (e) and (f) are shown in the right graph of Fig. 12.4.2. The vertical scales are expanded
compared to those of the left graph. The horizontal lines defining the bandwidth levels
AB = 1.114 dB and AB = −0.886 dB are also shown.

In practice, parametric EQ filters for audio have cut and boost gains that vary typically
from −18 dB to 18 dB with respect to the reference gain. 	

Example 12.4.2: Instead of specifying the parameters {ω0, Δω}, it is often convenient to spec-
ify either one or both of the corner frequencies {ω1,ω2} that define the width Δω =
ω2 −ω1.

Design four parametric EQ filters that have a 2.5-dB cut and bandwidth defined at 1 dB
below the reference, and have center or corner frequencies as follows:

(a) Center frequency ω0 = 0.6π and right corner ω2 = 0.7π. Determine also the left
corner ω1 and the bandwidth Δω.

(b) Center frequency ω0 = 0.6π and left corner ω1 = 0.5π. Determine also the right
corner ω2 and the bandwidth Δω.

(c) Left and right corner frequencies ω1 = 0.5π and ω2 = 0.7π. Determine also the
center frequency ω0.

(d) Compare the above to the standard design that has ω0 = 0.6π, and Δω = 0.2π.
Determine the values of ω1, ω2.

Solution: Assuming G0 = 1, the cut and bandwidth gains are:

G = 10−2.5/20 = 0.7499, GB = 10−1/20 = 0.8913

Note that GB was chosen arbitrarily in this example and not according to Eq. (12.4.2). For
case (a), we are givenω0 andω2. Under the bilinear transformation they map to the values:

Ω0 = tan(ω0/2)= 1.3764, Ω2 = tan(ω2/2)= 1.9626

Using the geometric-mean property (12.3.11), we may solve for ω1:

tan
(
ω1

2

)
= Ω1 = Ω2

0

Ω2
= 0.9653 ⇒ ω1 = 0.4887π

12.4. PARAMETRIC EQUALIZER FILTERS 529

Thus, the bandwidth is Δω = ω2 −ω1 = 0.2113π. The design equations (12.4.5) and
(12.4.6) give then β = 0.3244 and the transfer function:

Ha(z)= 0.9387+ 0.4666z−1 + 0.5713z−2

1+ 0.4666z−1 + 0.5101z−2

For case (b), we are given ω0 and ω1 and calculate ω2:

Ω1 = tan
(
ω1

2

)
= 1, tan

(
ω2

2

)
= Ω2 = Ω2

0

Ω1
= 1.8944 ⇒ ω2 = 0.6908π

where Ω0 was as in case (a). The width is Δω = ω2 −ω1 = 0.1908π. Then, we find
β = 0.2910 and the transfer function:

Hb(z)= 0.9436+ 0.4787z−1 + 0.6056z−2

1+ 0.4787z−1 + 0.5492z−2

The magnitude responses (in dB) of cases (a) and (b) are shown in the left graph of Fig. 12.4.3.
The bandwidths are defined by the intersection of the horizontal grid line at −1 dB and
the curves.

Fig. 12.4.3 Parametric EQ filters.

For case (c), we are given ω1 and ω2. Their bilinear transformations are:

Ω1 = tan(ω1/2)= 1, Ω2 = tan(ω2/2)= 1.9626

The center frequency is computed from:

tan(ω0/2)= Ω0 =
√
Ω1Ω2 = 1.4009 ⇒ ω0 = 0.6053π

Using the calculated ω0 and the width Δω =ω2−ω1 = 0.2π, we find cosω0 = −0.3249,
β = 0.3059, and the transfer function:

Hc(z)= 0.9414+ 0.4976z−1 + 0.5901z−2

1+ 0.4976z−1 + 0.5315z−2

530 12. IIR DIGITAL FILTER DESIGN

Finally, in the standard case (d), we start with ω0 and Δω. We find cosω0 = −0.3090,
β = 0.3059, and the transfer function:

Hd(z)= 0.9414+ 0.4732z−1 + 0.5901z−2

1+ 0.4732z−1 + 0.5315z−2

With Ω0 = tan(ω0/2)= 1.3764, the exact values of ω1 and ω2 are obtained by solving
the system of equations:

Ω1Ω2 = Ω2
0 = 1.8944, Ω2 −Ω1 = ΔΩ = (1+Ω2

0)tan(Δω/2)= 0.9404

which have positive solutions Ω1 = 0.9843, Ω2 = 1.9247. It follows that

ω1 = 2 arctan(Ω1)= 0.494951π, ω2 = 2 arctan(Ω2)= 0.694951π

where as expected Δω = ω2 −ω1 = 0.2π. The magnitude responses are shown in the
right graph of Fig. 12.4.3. Note that cases (c) and (d) have the same β because their widths
Δω are the same. But, the values of cosω0 are different, resulting in different values for
the coefficients of z−1; the other coefficients are the same. 	

12.4.1 Shelving Equalizers

In addition to parametric equalizers with variable center frequencies ω0, in audio appli-
cations we also need lowpass and highpass filters, referred to as “shelving” filters, with
adjustable gains and cutoff frequencies. Such filters can be obtained from Eq. (12.4.5)
by replacing ω0 = 0 for the lowpass case and ω0 = π for the highpass one.

In the lowpass limit, ω0 = 0, we have cosω0 = 1 and the numerator and denomina-
tor of Eq. (12.4.5) develop a common factor (1− z−1). Canceling this factor, we obtain
the lowpass shelving filter :

HLP(z)=

(
G0 +Gβ

1+ β

)
−
(
G0 −Gβ

1+ β

)
z−1

1−
(

1− β
1+ β

)
z−1

(12.4.9)

where β is still given by Eq. (12.4.6), but withΔω replaced by the filter’s cutoff frequency
ωc and with GB replaced by the defining level Gc of the cutoff frequency:

β =
√√√G2

c −G2
0

G2 −G2
c

tan
(
ωc

2

)
(12.4.10)

In the highpass limit, ω0 = π, we have cosω0 = −1 and the numerator and de-
nominator of Eq. (12.4.5) have a common factor (1 + z−1). Canceling it, we obtain the
highpass shelving filter :

12.4. PARAMETRIC EQUALIZER FILTERS 531

HHP(z)=

(
G0 +Gβ

1+ β

)
+
(
G0 −Gβ

1+ β

)
z−1

1+
(

1− β
1+ β

)
z−1

(12.4.11)

It can also be obtained from Eq. (12.4.9) by the replacement z→ −z. The parameter
β is obtained from Eq. (12.4.6) by the replacements GB → Gc and Δω → π −ωc. The
latter is necessary becauseΔω is measured from the center frequencyω0 = π, whereas
ωc is measured from the origin ω = 0. Noting that tan

(
(π−ωc)/2

) = cot(ωc/2), we
have:

β =
√√√G2

c −G2
0

G2 −G2
c

cot
(
ωc

2

)
(12.4.12)

For both the lowpass and highpass cases, the filter specifications are the parameters
{G0, G,Gc,ωc}. They must satisfy Eq. (12.4.1) for boosting or cutting. Figure 12.4.4
depicts these specifications. Some possible choices for G2

c are still given by Eq. (12.4.3).

|H(ω)|
2

|H(ω)|
2

ω ω
ωc ωcπ π0 0

boost

cut

boost

cut

Gc
2 Gc

2

G0
2

G2

G0
2

G2

lowpass highpass

Fig. 12.4.4 Lowpass and highpass shelving filters with boost or cut.

The limiting forms of the corresponding analog filter (12.4.7) can be obtained by
taking the appropriate limits in the variable Ω0 = tan(ω0/2). For the lowpass case,
we have the limit Ω0 → 0 and for the highpass case, the limit Ω0 → ∞. We must also
replace α = (1+Ω2

0)β before taking these limits.
Taking the limits, we obtain the analog filters whose bilinear transformations are the

shelving filters Eq. (12.4.9) and (12.4.11):

HLP(s)= G0s+Gβ
s+ β

, HHP(s)= G0 +Gβs
1+ βs

(12.4.13)

The special case G0 = 0, G = 1 was considered in Section 12.2. In that section, the
lowpass case corresponded to α = β and the highpass to α = 1/β.

Setting Ω = Ωc = tan(ωc/2), the following bandwidth conditions may be solved
for β, resulting into the design equations (12.4.10) and (12.4.12):

532 12. IIR DIGITAL FILTER DESIGN

|HLP(Ω)|2 = G2
0Ω2 +G2β2

Ω2 + β2
= G2

c , |HHP(Ω)|2 = G2
0 +G2β2Ω2

1+ β2Ω2
= G2

c

12.4.2 Equalizers with Prescribed Nyquist-Frequency Gain

An alternative type of second-order digital parametric equalizer has been proposed in
[296], whose frequency response matches closely that of its analog counterpart through-
out the Nyquist interval and does not suffer from the prewarping effect of the bilinear
transformation near the Nyquist frequency. Fig. 12.4.5 compares the analog and digital
equalizers for the conventional and the alternative designs.

Fig. 12.4.5 Top figures: conventional analog and digital equalizers, digital design has G1 =
G0 at fs/2. Bottom figures: New digital equalizer matches the Nyquist-frequency gain of the
corresponding analog equalizer.

It is defined by the following expressions, where G1 is the prescribed gain at the
Nyquist frequency f1 = fs/2, and GB is the desired bandwidth gain,

12.4. PARAMETRIC EQUALIZER FILTERS 533

Ω0 = tan
(
ω0

2

)

ΔΩ =
⎛⎝1+

√√√√G2
B −G2

0

G2
B −G2

1

√√√√G2 −G2
1

G2 −G2
0
Ω0

2

⎞⎠ tan
(
Δω

2

) (12.4.14)

W2 =
√√√√G2 −G2

1

G2 −G2
0
Ω0

2 , A =
√

C+D∣∣G2 −G2
B
∣∣ , B =

√√√√G2C+G2
BD∣∣G2 −G2
B
∣∣ (12.4.15)

C = (ΔΩ)2
∣∣G2

B −G2
1

∣∣− 2W2
(∣∣G2

B −G0G1
∣∣− √(G2

B −G2
0)(G

2
B −G2

1)
)

D = 2W2
(∣∣G2 −G0G1

∣∣− √(G2 −G2
0)(G2 −G2

1)
) (12.4.16)

H(z)=

(
G1 +G0W2 + B

1+W2 +A

)
− 2

(
G1 −G0W2

1+W2 +A

)
z−1 +

(
G1 +G0W2 − B

1+W2 +A

)
z−2

1− 2

(
1−W2

1+W2 +A

)
z−1 +

(
1+W2 −A
1+W2 +A

)
z−2

(12.4.17)
To summarize, given the set of digital filter specifications {ω0, Δω,G0, G1, G,GB}, use
Eqs. (12.4.14) to calculate the prewarped analog frequencies. Then, use Eqs. (12.4.15) and
(12.4.16) to calculate the parameters {A,B,W2}, from which the digital filter coefficients
of Eq. (12.4.17) are determined.

In the special case G1 = G0, we recover the conventional parametrric equalizer of
Sec. 12.4. The Nyquist-frequency gain G1 can be chosen arbitrarily. However, for the
digital filter to match the corresponding (physical) analog filter as much as possible, the
gain G1 must match the analog filter’s gain at fs/2. This leads [296] to the following
definition of G1,

G2
1 =

G2
0(ω

2
0 −π2)2+G2π2(Δω)2 G

2
B −G2

0

G2 −G2
B

(ω2
0 −π2)2+π2(Δω)2

G2
B −G2

0

G2 −G2
B

(12.4.18)

The design can be implemented by the following MATLAB function peq.m,

% peq.m - Parametric EQ with matching gain at Nyquist frequency

%

% Usage: [b, a, G1] = peq(G0, G, GB, w0, Dw)

%

% G0 = reference gain at DC

% G = boost/cut gain

% GB = bandwidth gain

534 12. IIR DIGITAL FILTER DESIGN

%

% w0 = center frequency in rads/sample

% Dw = bandwidth in rads/sample

%

% b = [b0, b1, b2] = numerator coefficients

% a = [1, a1, a2] = denominator coefficients

% G1 = Nyquist-frequency gain

Its inputs are the gains G0, G, GB in absolute units, and the digital frequencies ω0,
Δω in units of rads/sample. Its outputs are the Nyquist-frequency gain G1 given by
Eq. (12.4.18), and the numerator and denominator coefficient vectors b = [b0, b1, b2],
a = [1, a1, a2], defining the transfer function of Eq. (12.4.17).

Additional details on this method, including derivations, bandwidth definitions, and
several design examples, can be found in [296].

12.5 Comb Filters

The lowpass and highpass shelving filters of the previous section can be turned into
periodic comb or notch filters with adjustable gains and peak widths. This can be ac-
complished by the replicating transformation of Eq. (15.11.7), that is, z → zD, which
shrinks the frequency response by a factor of D and replicates it D times such that D
copies of it fit into the Nyquist interval. Under this transformation, the lowpass filter
HLP(z) of Eq. (12.4.9) becomes the comb filter:

H(z)= b− cz−D

1− az−D
, a = 1− β

1+ β
, b = G0 +Gβ

1+ β
, c = G0 −Gβ

1+ β
(12.5.1)

This transfer function can also be obtained from the analog lowpass shelving filter
HLP(s) of Eq. (12.4.13) by the generalized bilinear transformation:

s = 1− z−D

1+ z−D
, Ω = tan

(
ωD

2

)
= tan

(
πfD
fs

)
(12.5.2)

The DC peak of the lowpass filter HLP(z) has full width 2ωc, counting also its sym-
metric negative-frequency side. Under D-fold replication, the symmetric DC peak will
be shrunk in width by a factor of D and replicated D times, with replicas centered at the
Dth root-of-unity frequencies ωk = 2πk/D, k = 0,1, . . . ,D − 1. Thus, the full width
Δω of the individual replicas can be obtained by the substitution 2ωc/D → Δω, or
ωc → DΔω/2.

Making this substitution in Eq. (12.4.10) and replacing the cutoff frequency gain Gc
by the bandwidth gain GB, the filter parameter β can be expressed as:

β =
√√√√G2

B −G2
0

G2 −G2
B

tan
(
DΔω

4

)
(12.5.3)

12.5. COMB FILTERS 535

The resulting comb filter can be thought of as a “comb equalizer” with variable
gain and peak width. The boost or cut choices of the gain G given in Eq. (12.4.1) will
correspond to either a peaking or a notching periodic comb filter.

The periodic notch and comb filters of Section 15.11 are special cases of the general
comb filter (12.5.1). The notch filter of Eq. (15.11.3) is obtained in the limit G0 = 1,
G = 0, and the comb filter of Eq. (15.11.10) in the limit G0 = 0, G = 1. In both cases,
the bandwidth gain can be chosen to be G2

B = 1/2, that is, 3 dB.
The replicating transformation z→ zD can also be applied to the highpass shelving

filter HHP(z) of Eq. (12.4.11), resulting in the comb filter:

H(z)= b+ cz−D

1+ az−D
(12.5.4)

The sign change of the coefficients causes the peaks to shift by π/D, placing them
between the peaks of the comb (12.5.1), that is, at the odd-multiple frequencies ωk =
(2k+ 1)π/D, k = 0,1, . . . ,D− 1. The parameter β is still calculated from Eq. (12.5.3).

Example 12.5.1: Design a peaking comb filter of period 10, reference gain of 0 dB, peak gain
of 9 dB, bandwidth gain of 3 dB (above the reference), and bandwidth Δω = 0.025π
rads/sample.

Then, design a notching comb filter with dip gain of −12 dB and having the same period,
reference gain, and bandwidth as the peaking filer. The bandwidth is defined to be 3 dB
below the reference.

Then, redesign both of the above peaking and notching comb filters such that their peaks
or dips are shifted to lie exactly between the peaks of the previous filters.

Solution: For the peaking filter, we have:

G0 = 1, G = 109/20G0 = 2.8184, GB = 103/20G0 = 1.4125

and for the notching filter:

G0 = 1, G = 10−12/20G0 = 0.2512, GB = 10−3/20G0 = 0.7079

With D = 10 and Δω = 0.025π, we find the values: β = 0.0814 for the peaking filter
and β = 0.2123 for the notching filter. Then, the transfer functions are obtained from
Eq. (12.5.1):

Hpeak(z)= 1.1368− 0.7127z−10

1− 0.8495z−10
, Hnotch(z)= 0.8689− 0.7809z−10

1− 0.6498z−10

Their peaks/dips are at the multiples ωk = 2πk/D = 0.2πk, k = 0,1, . . . ,9. The filters
with the shifted peaks are obtained by changing the sign of z−10:

Hpeak(z)= 1.1368+ 0.7127z−10

1+ 0.8495z−10
, Hnotch(z)= 0.8689+ 0.7809z−10

1+ 0.6498z−10

The magnitude responses of the four filters are shown in Fig. 12.5.1, plotted in dB, that is,
20 log10 |H(ω)|, over one complete Nyquist interval, 0 ≤ω ≤ 2π. 	

536 12. IIR DIGITAL FILTER DESIGN

Fig. 12.5.1 Periodic peaking and notching comb filters.

Figure 12.5.1 also shows the peak width Δω as well as the quantity Δω′, which is
a measure of the separation of two successive peaks at the bandwidth level. Because of
symmetry, the D equal peak widths and the D equal separations must make up the full
2π Nyquist interval. Thus, we have the condition:

DΔω+DΔω′ = 2π ⇒ Δω+Δω′ = 2π
D

(12.5.5)

Decreasing the peak width increases the separation and vice versa. The maximum
possible value of Δω corresponds to the case when Δω′ = 0, that is, zero separation
between peaks. This gives Δωmax = 2π/D. However, a more useful practical limit is
when Δω ≤ Δω′, which causes the peaks to be narrower than their separation. This
condition requires that 2Δω ≤ Δω+Δω′ = 2π/D, and gives the maximum for Δω:

Δω ≤ π
D

⇒ Δf ≤ fs
2D

(12.5.6)

This maximum was also discussed in Section 15.11.

12.6 Higher-Order Filters

The first- and second-order designs of the above sections are adequate in some appli-
cations such as audio equalization, but are too limited when we need filters with very
sharp cutoff specifications. Higher-order filters can achieve such sharp cutoffs, but at
the price of increasing the filter complexity, that is, the filter order.

Figure 12.6.1 shows the specifications of a typical lowpass filter and its analog equiv-
alent obtained by the bilinear transformation. The specification parameters are the four
numbers {fpass, fstop,Apass,Astop}, that is, the passband and stopband frequencies and
the desired passband and stopband attenuations in dB.

Within the passband range 0 ≤ f ≤ fpass, the filter’s attenuation is required to be
less than Apass decibels. And, within the stopband fstop ≤ f ≤ fs/2, it is required to
be greater than Astop decibels. Thus, the quantity Apass is the maximum attenuation

12.6. HIGHER-ORDER FILTERS 537

|H(f)|2

Apass Apass
1

1/(1+εpass
2)

1/(1+εstop
2)

1

0

f

fpass Ωpassfstop Ωstopfs/2

|Ha(Ω)| 2

0

desired digital
lowpass filter

equivalent analog
lowpass filter

Astop Astop

passband stopband passband stopband

Ω

Fig. 12.6.1 Lowpass digital filter and its analog equivalent.

that can be tolerated in the passband and Astop the minimum attenuation that must be
achieved in the stopband.

The filter can be made into a better lowpass filter in three ways: (1) decreasing Apass

so that the passband becomes flatter, (2) increasing Astop so that the stopband becomes
deeper, and (3) moving fstop closer to fpass so that the transition region between pass-
band and stopband becomes narrower. Thus, by appropriate choice of the specification
parameters, the filter can be made as close to an ideal lowpass filter as desired.

Assuming the filter’s magnitude response squared |H(f)|2 is normalized to unity
at DC, we can express the specification requirements as the following conditions on the
filter’s attenuation response in dB, defined as A(f)= −10 log10 |H(f)|2 :

0 ≤A(f)≤ Apass , for 0 ≤ f ≤ fpass

A(f)≥ Astop , for fstop ≤ f ≤ fs/2
(12.6.1)

Equivalently, in absolute units, the design specifications are:

1 ≥|H(f)|2 ≥ 1

1+ ε2
pass

, for 0 ≤ f ≤ fpass

|H(f)|2 ≤ 1

1+ ε2
stop

, for fstop ≤ f ≤ fs/2

(12.6.2)

where {εpass, εstop} are defined in terms of {Apass,Astop} as follows:

|H(fpass)|2 = 1

1+ ε2
pass

= 10−Apass/10 ,

|H(fstop)|2 = 1

1+ ε2
stop

= 10−Astop/10 ,
(12.6.3)

The quantities {εpass, εstop} control the depths of the passband and stopband. They
can be written in the equivalent forms:

538 12. IIR DIGITAL FILTER DESIGN

εpass =
√

10Apass/10 − 1

εstop =
√

10Astop/10 − 1

�
Apass = 10 log10(1+ ε2

pass)

Astop = 10 log10(1+ ε2
stop)

(12.6.4)

The specifications of the equivalent analog filter are {Ωpass,Ωstop,Apass,Astop}, or,
{Ωpass,Ωstop, εpass, εstop}, where the analog frequencies are obtained by prewarping the
digital frequencies:

Ωpass = tan
(ωpass

2

)
, Ωstop = tan

(ωstop

2

)
(12.6.5)

where

ωpass = 2πfpass

fs
, ωstop = 2πfstop

fs
(12.6.6)

The parameters {εpass, εstop} are useful in the design of both Butterworth and Cheby-
shev filters. In the next section, we begin with the Butterworth case.

12.7 Analog Lowpass Butterworth Filters

Analog lowpass Butterworth filters are characterized by just two parameters: the filter
order N and the 3-dB normalization frequency Ω0. Their magnitude response is simply:

|H(Ω)|2 = 1

1+
(
Ω
Ω0

)2N (12.7.1)

and the corresponding attenuation in decibels:

A(Ω)= −10 log10 |H(Ω)|2 = 10 log10

[
1+

(
Ω
Ω0

)2N
]

(12.7.2)

Note that, as N increases for fixed Ω0, the filter becomes a better lowpass filter. At
Ω = Ω0, the magnitude response is |H(Ω0)|2 = 1/2, or, 3-dB attenuation A(Ω0)= 3
dB. The two filter parameters {N,Ω0} can be determined from the given specifications
{Ωpass,Ωstop,Apass,Astop} by requiring the conditions:

A(Ωpass) = 10 log10

[
1+

(Ωpass

Ω0

)2N]
= Apass = 10 log10(1+ ε2

pass)

A(Ωstop) = 10 log10

[
1+

(Ωstop

Ω0

)2N]
= Astop = 10 log10(1+ ε2

stop)

Because of the monotonicity of the magnitude response, these conditions are equiv-
alent to the passband/stopband range conditions (12.6.1). To solve them for N and Ω0,
we rewrite them in the form:

12.7. ANALOG LOWPASS BUTTERWORTH FILTERS 539

(Ωpass

Ω0

)2N
= 10Apass/10 − 1 = ε2

pass

(Ωstop

Ω0

)2N
= 10Astop/10 − 1 = ε2

stop

(12.7.3)

Taking square roots and dividing, we get an equation for N :(
Ωstop

Ωpass

)N
= εstop

εpass
=
√

10Astop/10 − 1

10Apass/10 − 1

with exact solution:

Nexact = ln(εstop/εpass)
ln(Ωstop/Ωpass)

= ln(e)
ln(w)

(12.7.4)

where we defined the stopband to passband ratios:

e = εstop

εpass
=
√

10Astop/10 − 1

10Apass/10 − 1
, w = Ωstop

Ωpass
(12.7.5)

Since N must be an integer, we choose it to be the next integer above Nexact, that is,

N = ⌈Nexact
⌉

(12.7.6)

BecauseN is slightly increased from its exact value, the resulting filter will be slightly
better than required. But, because N is different from Nexact, we can no longer satisfy
simultaneously both of Eqs. (12.7.3). So we choose to satisfy the first one exactly. This
determines Ω0 as follows:

Ω0 = Ωpass(
10Apass/10 − 1

)1/2N = Ωpass

ε1/N
pass

(12.7.7)

With these values of N and Ω0, the stopband specification is more than satisfied,
that is, the actual stopband attenuation will be nowA(Ωstop)> Astop. In summary, given
{Ωpass,Ωstop,Apass,Astop}, we solve Eqs. (12.7.4)–(12.7.7) to get the filter parameters
N and Ω0. We note also that we may rewrite Eq. (12.7.1) in terms of the passband
parameters; replacing Ω0 by Eq. (12.7.7), we have

|H(Ω)|2 = 1

1+
(
Ω
Ω0

)2N = 1

1+ ε2
pass

(
Ω

Ωpass

)2N (12.7.8)

An alternative design can be obtained by matching the stopband specification ex-
actly, resulting in a slightly better passband, that is, A(Ωstop)= Astop and A(Ωpass)<
Apass. The 3-dB frequency Ω0 is now computed from the second of Eqs. (12.7.3):

Ω0 = Ωstop(
10Astop/10 − 1

)1/2N = Ωstop

ε1/N
stop

540 12. IIR DIGITAL FILTER DESIGN

In this case, Eq. (12.7.1) can be written in terms of the stopband parameters:

|H(Ω)|2 = 1

1+ ε2
stop

(
Ω

Ωstop

)2N =

(Ωstop

Ω

)2N

(Ωstop

Ω

)2N
+ ε2

stop

(12.7.9)

We will see in Section 12.12 that the expressions (12.7.8) and (12.7.9) generalize to
the Chebyshev type 1 and type 2 filters.

The analog Butterworth transfer function H(s) can be constructed from the knowl-
edge of {N,Ω0} by the method of spectral factorization, as described below. Using
s = jΩ and noting that

(
H(Ω)

)∗ = H∗(−Ω), we may write Eq. (12.7.1) in terms of the
variable s†

H(s)H∗(−s)= 1

1+
(

s
jΩ0

)2N = 1

1+ (−1)N
(
s
Ω0

)2N

Setting H(s)= 1

D(s)
, we have

D(s)D∗(−s)= 1+ (−1)N
(
s
Ω0

)2N
(12.7.10)

Because the right-hand side is a polynomial of degree 2N in s, D(s) will be a poly-
nomial of degree N. There exist 2N different polynomials D(s) of degree N satisfying
Eq. (12.7.10). But, among them, there is a unique one that has all its zeros in the left-hand
s-plane. This is the one we want, because then the transfer function H(s)= 1/D(s) will
be stable and causal. To find D(s), we first determine all the 2N roots of Eq. (12.7.10)
and then choose those that lie in the left-hand s-plane. The 2N solutions of

1+ (−1)N
(
s
Ω0

)2N
= 0 ⇒ s2N = (−1)N−1Ω0

2N

are given by

si = Ω0ejθi , θi = π
2N

(N − 1+ 2i) , i = 1,2, . . . ,N, . . . ,2N (12.7.11)

The index i is chosen such that the first N of the si lie in the left-hand s-plane, that
is, π/2 < θi < 3π/2 for i = 1,2, . . . ,N. Because |si| = Ω0, all of the zeros lie on a circle
of radius Ω0, called the Butterworth circle and shown in Fig. 12.7.1.

It is evident from Eq. (12.7.11) that the si can be paired in complex conjugate pairs;
that is, sN = s∗1 , sN−1 = s∗2 , and so on. If N is even, say N = 2K, then there are exactly
K conjugate pairs, namely, {si, s∗i }, i = 1,2, . . . , K. In this case, D(s) will factor into
second-order sections as follows:

†The notation H∗(−s) denotes complex conjugation of the filter coefficients and replacement of s by
−s, for example, H∗(−s)=∑a∗n (−s)n if H(s)=∑ansn.

12.7. ANALOG LOWPASS BUTTERWORTH FILTERS 541

.
.

.

.
.

.

s1

sN

s2

sN-1

s3

sN-2

0
−Ω0

s-plane

Butterworth
circle

Ω0

π/N

Fig. 12.7.1 Butterworth filter poles lie on Butterworth circle.

D(s)= D1(s)D2(s)· · ·DK(s) (12.7.12)

where

Di(s)=
(

1− s
si

)(
1− s

s∗i

)
, i = 1,2, . . . , K (12.7.13)

On the other hand, if N is odd , say N = 2K + 1, there will be K conjugate pairs
and one additional zero that cannot be paired and must necessarily be real-valued. That
zero must lie in the left-hand s-plane and on the Butterworth circle; thus, it must be the
point s = −Ω0. The polynomial D(s) factors now as:

D(s)= D0(s)D1(s)D2(s)· · ·DK(s), where D0(s)=
(

1+ s
Ω0

)
The remaining factors Di(s) are the same as in Eq. (12.7.13). They can be rewritten

as factors with real coefficients as follows. Inserting si = Ω0ejθi into Eq. (12.7.13), we
find for i = 1,2, . . . , K:

Di(s)=
(

1− s
si

)(
1− s

s∗i

)
= 1− 2

s
Ω0

cosθi + s2

Ω2
0

(12.7.14)

Inserting these factors into the Butterworth analog transfer functionH(s)= 1/D(s),
we can express it as a cascade of second-order sections:

H(s)= H0(s)H1(s)H2(s)· · ·HK(s) (12.7.15)

where

542 12. IIR DIGITAL FILTER DESIGN

H0(s) =

⎧⎪⎪⎨⎪⎪⎩
1, if N = 2K
1

1+ s
Ω0

, if N = 2K + 1

Hi(s) = 1

1− 2
s
Ω0

cosθi + s2

Ω2
0

, i = 1,2, . . . , K

(12.7.16)

Example 12.7.1: The Butterworth polynomialsD(s) of orders 1–7 and unity 3-dB normalization
frequency Ω0 = 1 are shown in Table 12.7.1. For other values of Ω0, s must be replaced
by s/Ω0 in each table entry.

The coefficients of s of the second-order sections are the cosine factors, −2 cosθi, of
Eq. (12.7.14). For example, in the case N = 7, we have K = 3 and the three θ’s are
calculated from Eq. (12.7.11):

θi = π
14

(6+ 2i)= 8π
14

,
10π
14

,
12π
14

, for i = 1,2,3

−2 cosθi = 0.4450, 1.2470, 1.8019

The corresponding Butterworth filters H(s) of orders 1–7 are obtained as the inverses of
the table entries. 	

N K θ1, θ2, . . . , θK D(s)

1 0 (1+ s)

2 1
3π
4

(1+ 1.4142s+ s2)

3 1
4π
6

(1+ s)(1+ s+ s2)

4 2
5π
8
,

7π
8

(1+ 0.7654s+ s2)(1+ 1.8478s+ s2)

5 2
6π
10

,
8π
10

(1+ s)(1+ 0.6180s+ s2)(1+ 1.6180s+ s2)

6 3
7π
12

,
9π
12

,
11π
12

(1+ 0.5176s+ s2)(1+ 1.4142s+ s2)(1+ 1.9319s+ s2)

7 3
8π
14

,
10π
14

,
12π
14

(1+ s)(1+ 0.4450s+ s2)(1+ 1.2470s+ s2)(1+ 1.8019s+ s2)

Table 12.7.1 Butterworth polynomials.

Example 12.7.2: Determine the 2N possibleNth degree polynomialsD(s) satisfying Eq. (12.7.10),
for the cases N = 2 and N = 3. Take Ω0 = 1.

Solution: For N = 2, we must find all second-degree polynomials that satisfy Eq. (12.7.10),
D(s)D∗(−s)= 1+ (−1)2s4. They are:

12.8. DIGITAL LOWPASS FILTERS 543

D(s) = 1+√2s+ s2

D(s) = 1−√2s+ s2

D(s) = 1+ js2

D(s) = 1− js2

⇒

D∗(−s) = 1−√2s+ s2

D∗(−s) = 1+√2s+ s2

D∗(−s) = 1− js2

D∗(−s) = 1+ js2

Only the first one has all of its zeros in the left-hand s-plane. Similarly, for N = 3 the
23 = 8 different third-degree polynomials D(s) are:

D(s) = (1+ s)(1+ s+ s2)

D(s) = (1+ s)(1− s+ s2)

D(s) = (1+ s)(1− s2e2jπ/3)

D(s) = (1+ s)(1− s2e−2jπ/3)

D(s) = (1− s)(1− s2e−2jπ/3)

D(s) = (1− s)(1− s2e2jπ/3)

D(s) = (1− s)(1+ s+ s2)

D(s) = (1− s)(1− s+ s2)

⇒

D∗(−s) = (1− s)(1− s+ s2)

D∗(−s) = (1− s)(1+ s+ s2)

D∗(−s) = (1− s)(1− s2e−2jπ/3)

D∗(−s) = (1− s)(1− s2e2jπ/3)

D∗(−s) = (1+ s)(1− s2e2jπ/3)

D∗(−s) = (1+ s)(1− s2e−2jπ/3)

D∗(−s) = (1+ s)(1− s+ s2)

D∗(−s) = (1+ s)(1+ s+ s2)

They all satisfy D(s)D∗(−s)= 1 + (−1)3s6 but, only the first one has its zeros in the
left-hand s-plane.

Note also that not all solutions of Eq. (12.7.10) have real coefficients. If we restrict our
search to those with real coefficients (pairing the zeros in conjugate pairs), then there are
2K such polynomials D(s) if N = 2K, and 2K+1 if N = 2K + 1. 	

12.8 Digital Lowpass Filters

Under the bilinear transformation, the lowpass analog filter will be transformed into
a lowpass digital filter. Each analog second-order section will be transformed into a
second-order section of the digital filter, as follows:

Hi(z)= 1

1− 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1−z−1

1+z−1

= Gi(1+ z−1)2

1+ ai1z−1 + ai2z−2
(12.8.1)

where the filter coefficients Gi, ai1, ai2 are easily found to be:

544 12. IIR DIGITAL FILTER DESIGN

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2

ai2 = 1+ 2Ω0 cosθi +Ω2
0

1− 2Ω0 cosθi +Ω0
2

(12.8.2)

for i = 1,2, . . . , K. If N is odd, then there is also a first-order section:

H0(z)= 1

1+ s
Ω0

∣∣∣∣∣∣∣∣
s= 1−z−1

1+z−1

= G0(1+ z−1)
1+ a01z−1

(12.8.3)

where

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(12.8.4)

If N is even, we may set H0(z)= 1. The overall transfer function of the designed
lowpass digital filter is given by:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (12.8.5)

with the factors given by Eqs. (12.8.1)–(12.8.4). Note that the 3-dB frequency f0 in Hz is
related to the Butterworth parameter Ω0 by

Ω0 = tan
(
ω0

2

)
= tan

(
πf0

fs

)
⇒ f0 = fs

π
arctan(Ω0) (12.8.6)

Note that the filter sections have zeros at z = −1, that is, the Nyquist frequency
ω = π. Setting Ω = tan(ω/2), the magnitude response of the designed digital filter
can be expressed simply via Eq. (12.7.1), as follows:

|H(ω)|2 = 1

1+ (Ω/Ω0
)2N = 1

1+ (tan(ω/2)/Ω0
)2N (12.8.7)

Note also that each second-order section has unity gain at zero frequency, f = 0,
ω = 0, or z = 1. Indeed, setting z = 1 in Eq. (12.8.1), we obtain the following condition,
which can be verified from the definitions (12.8.2):

4Gi

1+ ai1 + ai2
= 1 and

2G0

1+ a01
= 1

In summary, the design steps for a lowpass digital filter with given specifications
{fpass, fstop,Apass,Astop} are:

1. Calculate the digital frequencies {ωpass,ωstop} and the corresponding prewarped
versions {Ωpass,Ωstop} from Eqs. (12.6.6) and (12.6.5).

12.8. DIGITAL LOWPASS FILTERS 545

2. Calculate the orderN and 3-dB frequencyΩ0 of the equivalent lowpass analog But-
terworth filter based on the transformed specifications {Ωpass,Ωstop,Apass,Astop}
by Eqs. (12.7.4)–(12.7.7).

3. The transfer function of the desired lowpass digital filter is then obtained from
Eq. (12.8.5), where the SOS coefficients are calculated from Eqs. (12.8.2) and (12.8.4).

Example 12.8.1: Using the bilinear transformation and a lowpass analog Butterworth proto-
type, design a lowpass digital filter operating at a rate of 20 kHz and having passband
extending to 4 kHz with maximum passband attenuation of 0.5 dB, and stopband starting
at 5 kHz with a minimum stopband attenuation of 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The digital frequencies in radians per sample are:

ωpass = 2πfpass

fs
= 2π · 4

20
= 0.4π, ωstop = 2πfstop

fs
= 2π · 5

20
= 0.5π

and their prewarped versions:

Ωpass = tan
(ωpass

2

)
= 0.7265, Ωstop = tan

(ωstop

2

)
= 1

Eq. (12.6.4) can be used with Apass = 0.5 dB and Astop = 10 dB to calculate the parameters
{εpass, εstop}:

εpass =
√

10Apass/10 − 1 =
√

100.5/10 − 1 = 0.3493

εstop =
√

10Astop/10 − 1 =
√

1010/10 − 1 = 3

Then, Eq. (12.7.4) gives:

Nexact = ln(e)
ln(w)

= ln(εstop/εpass)
ln(Ωstop/Ωpass)

= ln(3/0.3493)
ln(1/0.7265)

= 6.73 ⇒ N = 7

Thus, there is one first-order section H0(z) and three second-order sections. Eq. (12.7.7)
gives for Ω0 and its value in Hz:

Ω0 = Ωpass

ε1/N
pass

= 0.7265

(0.3493)1/7
= 0.8443

f0 = fs
π

arctan(Ω0)= 20

π
arctan(0.8443)= 4.4640 kHz

The Butterworth angles θ1, θ2, θ3 were calculated in Example 12.7.1. The SOS coefficients
are calculated from Eqs. (12.8.4) and (12.8.2):

i Gi ai1 ai2
0 0.4578 −0.0844
1 0.3413 −0.2749 0.6402
2 0.2578 −0.2076 0.2386
3 0.2204 −0.1775 0.0592

546 12. IIR DIGITAL FILTER DESIGN

resulting in the transfer function:

H(z) = H0(z)H1(z)H2(z)H3(z)

= 0.4578(1+ z−1)
1− 0.0844z−1

· 0.3413(1+ z−1)2

1− 0.2749z−1 + 0.6402z−2

· 0.2578(1+ z−1)2

1− 0.2076z−1 + 0.2386z−2
· 0.2204(1+ z−1)2

1− 0.1775z−1 + 0.0592z−2

It can be implemented in the time domain by the routines cas or ccas. The left graph of
Fig. 12.8.1 shows the magnitude response squared, |H(f)|2. The brick-wall specifications
and the 3-dB line intersecting the response at f = f0 are shown on the graph. The magni-
tude response was calculated using the simpler formula Eq. (12.8.7), with ω expressed in
kHz, ω = 2πf/fs:

|H(f)|2 = 1

1+ (tan(πf/fs)/Ω0
)2N = 1

1+ (tan(πf/20)/0.8443
)14

The passband attenuation in absolute units is 10−0.5/10 = 0.89125 and the stopband at-
tenuation 10−10/10 = 0.1. Note that the actual stopband attenuation at f = fstop = 5 kHz
is slightly better than required, that is, A(fstop)= 10.68 dB.

Fig. 12.8.1 Digital lowpass Butterworth filters.

The second filter has more stringent specifications. The desired passband attenuation is
Apass = −10 log10(0.98)= 0.0877 dB, and the stopband attenuationAstop = −10 log10(0.02)=
16.9897 dB. With these values, we find the design parameters {εpass, εstop} = {0.1429,7}
and:

Nexact = 12.18, N = 13, Ω0 = 0.8439, f0 = 4.4622 kHz

The digital filter will have one first-order and six second-order sections. The SOS coeffi-
cients were calculated with the MATLAB function lhbutt.m of Appendix C:

12.9. DIGITAL HIGHPASS FILTERS 547

i Gi ai1 ai2
0 0.4577 −0.0847
1 0.3717 −0.3006 0.7876
2 0.3082 −0.2492 0.4820
3 0.2666 −0.2156 0.2821
4 0.2393 −0.1935 0.1508
5 0.2221 −0.1796 0.0679
6 0.2125 −0.1718 0.0219

Its magnitude response is shown in the right graph of Fig. 12.8.1. As is always the case,
making the specifications more stringent results in higher order N. 	

12.9 Digital Highpass Filters

There are two possible approaches one can follow to design a highpass digital filter with
the bilinear transformation: One is to use the transformation (12.1.3) to map the given
specifications onto the specifications of an equivalent highpass analog filter. The other
is to use the highpass version of the bilinear transformation given in Eq. (12.1.5) to map
the given highpass specifications onto equivalent analog lowpass specifications.

The first approach was used in the design of the first-order highpass filters of Section
12.2. Here, we will follow the second method, which is more convenient for high-order
designs because we can use the lowpass Butterworth design we developed already. The
mapping of the highpass specifications to the equivalent analog lowpass ones is depicted
in Fig. 12.9.1.

|H(f)|2

Apass Apass
1

1/(1+εpass
2)

1/(1+εstop
2)

1

0

f

fpass Ωpassfstop Ωstopfs/2

|Ha(Ω)|2

0

desired digital
highpass filter

equivalent analog
lowpass filter

Astop Astop

passbandstopband passband stopband

Ω

Fig. 12.9.1 Highpass digital filter and its analog lowpass equivalent.

The mapping is accomplished by the highpass version of the bilinear transformation,
given in Eqs. (12.1.5) and (12.1.6):

s = 1+ z−1

1− z−1
, Ω = − cot

(
ω
2

)
, ω = 2πf

fs
(12.9.1)

548 12. IIR DIGITAL FILTER DESIGN

It maps the point z = −1 to s = 0, or equivalently, the center of the passband of the
highpass filter at ω = π to the center of the passband of the lowpass filter at Ω = 0.
The prewarped versions of the passband and stopband frequencies are computed as
follows:

Ωpass = cot
(ωpass

2

)
= cot

(
πfpass

fs

)

Ωstop = cot
(ωstop

2

)
= cot

(
πfstop

fs

) (12.9.2)

According to Eq. (12.9.1), we should have used Ωpass = − cot(ωpass/2). However,
as far as the determination of the parameters N and Ω0 is concerned, it does not mat-
ter whether we use positive or negative signs because we are working only with the
magnitude response of the analog filter, which is even as a function of Ω.

Using Eqs. (12.7.4)–(12.7.7), we determine the parameters N and Ω0, and the cor-
responding analog filter sections given by Eq. (12.7.15). Under the highpass bilinear
transformation of Eq. (12.9.1), each SOS of the analog filter will be transformed into an
SOS of the digital filter, as follows:

Hi(z)= 1

1− 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1+z−1

1−z−1

= Gi(1− z−1)2

1+ ai1z−1 + ai2z−2
(12.9.3)

where the filter coefficients Gi, ai1, ai2 are easily found to be

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = − 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2

ai2 = 1+ 2Ω0 cosθi +Ω2
0

1− 2Ω0 cosθi +Ω0
2

(12.9.4)

for i = 1,2, . . . , K. If N is odd, then there is also a first-order section given by

H0(z)= 1

1+ s
Ω0

∣∣∣∣∣∣∣∣
s= 1+z−1

1−z−1

= G0(1− z−1)
1+ a01z−1

(12.9.5)

where

G0 = Ω0

Ω0 + 1
, a01 = − Ω0 − 1

Ω0 + 1
(12.9.6)

If N is even, we may set H0(z)= 1. The overall transfer function of the designed
highpass digital filter will be given by

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (12.9.7)

12.9. DIGITAL HIGHPASS FILTERS 549

with the factors given by Eqs. (12.9.3–12.9.6). The 3-dB frequency f0 of the designed
filter may be calculated from:

Ω0 = cot
(
ω0

2

)
= cot

(
πf0

fs

)
⇒ f0 = fs

π
arctan

(
1

Ω0

)

and the magnitude response from:

|H(ω)|2 = 1

1+ (cot(ω/2)/Ω0
)2N

Note the similarities and differences between the highpass and lowpass cases: The
coefficients Gi and ai2 are the same, but ai1 has reverse sign. Also, the numerator of
the SOS is now (1− z−1)2 instead of (1+ z−1)2, resulting in a zero at z = 1 or ω = 0.
These changes are easily understood by noting that the lowpass bilinear transformation
(12.1.3) becomes the highpass one given by Eq. (12.9.1) under the substitution z→ −z.

Example 12.9.1: Using the bilinear transformation and a lowpass analog Butterworth proto-
type, design a highpass digital filter operating at a rate of 20 kHz and having passband
starting at 5 kHz with maximum passband attenuation of 0.5 dB, and stopband ending at
4 kHz with a minimum stopband attenuation of 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The digital frequencies and their prewarped versions are:

ωpass = 2πfpass

fs
= 2π · 5

20
= 0.5π,

ωstop = 2πfstop

fs
= 2π · 4

20
= 0.4π,

⇒
Ωpass = cot

(ωpass

2

)
= 1

Ωstop = cot
(ωstop

2

)
= 1.3764

The dB attenuations {Apass,Astop} = {0.5,10} correspond to {εpass, εstop} = {0.3493,3}.
Then, Eq. (12.7.4) can be solved for the filter order:

Nexact = ln(εstop/εpass)
ln(Ωstop/Ωpass)

= ln(3/0.3493)
ln(1.3764/1)

= 6.73 ⇒ N = 7

Thus, there is one first-order section H0(z) and three second-order sections. Eq. (12.7.7)
gives for Ω0:

Ω0 = Ωpass(
10Apass/10 − 1

)1/2N = Ωpass

ε1/N
pass

= 1

(0.3493)1/7
= 1.1621

The SOS coefficients are calculated from Eqs. (12.9.4) and (12.9.6):

i Gi ai1 ai2
0 0.5375 −0.0750
1 0.4709 −0.2445 0.6393
2 0.3554 −0.1845 0.2372
3 0.3039 −0.1577 0.0577

550 12. IIR DIGITAL FILTER DESIGN

resulting in the transfer function:

H(z) = H0(z)H1(z)H2(z)H3(z)

= 0.5375(1− z−1)
1− 0.0750z−1

· 0.4709(1− z−1)2

1− 0.2445z−1 + 0.6393z−2

· 0.3554(1− z−1)2

1− 0.1845z−1 + 0.2372z−2
· 0.3039(1− z−1)2

1− 0.1577z−1 + 0.0577z−2

As in Example 12.8.1, the second filter has passband and stopband attenuations: Apass =
−10 log10(0.98)= 0.0877 dB andAstop = −10 log10(0.02)= 16.9897 dB. With these values,
we find the design parameters {εpass, εstop} = {0.1429,7} and:

Nexact = 12.18, N = 13, Ω0 = 1.1615, f0 = 4.5253 kHz

The coefficients of the first- and second-order sections are:

i Gi ai1 ai2
0 0.5374 −0.0747
1 0.5131 −0.2655 0.7870
2 0.4252 −0.2200 0.4807
3 0.3677 −0.1903 0.2806
4 0.3300 −0.1708 0.1493
5 0.3062 −0.1584 0.0663
6 0.2930 −0.1516 0.0203

The magnitude responses of the two designs are shown in Fig. 12.9.2. 	

Fig. 12.9.2 Digital highpass Butterworth filters.

12.10 Digital Bandpass Filters

As in the highpass case, we can follow two possible approaches to the design of a dig-
ital bandpass filter. We can map the digital bandpass filter onto an equivalent analog

12.10. DIGITAL BANDPASS FILTERS 551

bandpass filter using the transformation (12.1.3). Alternatively, we can use the band-
pass version of the transformation (12.1.5) to map the bandpass digital filter onto an
equivalent lowpass analog filter.

The first method was used in Sections 12.3 to design bandpass peaking filters. The
second method is, however, more convenient because it reduces the bandpass design
problem to a standard lowpass analog design problem. Figure 12.10.1 shows the band-
pass specifications and their analog equivalents.

Fig. 12.10.1 Bandpass digital filter and its analog lowpass equivalent.

The specifications are the quantities {fpa, fpb, fsa, fsb,Apass,Astop}, defining the pass-
band range fpa ≤ f ≤ fpb, the left stopband 0 ≤ f ≤ fsa, and the right stopband
fsb ≤ f ≤ fs/2. The stopband attenuations were assumed to be equal in the two stop-
bands; if they are not, we may design the filter based on the maximum of the two.

The bandpass version of the bilinear† transformation and the corresponding fre-
quency mapping are in this case:

s = 1− 2cz−1 + z−2

1− z−2
, Ω = c− cosω

sinω
, ω = 2πf

fs
(12.10.1)

A new parameter c has been introduced. Note that c = 1 recovers the lowpass case,
and c = −1 the highpass one. The parameter c is required to be |c| ≤ 1 in order to map
the left-hand s-plane into the inside of the unit circle in the z-plane.

Therefore, we may set c = cosωc, for some value of ωc. The center of the analog
passband Ω = 0 corresponds to cosω = c = cosωc, or, ω = ωc. Therefore, ωc may
be thought of as the “center” frequency of the bandpass filter (although it need not be
exactly at the center of the passband).

The given bandpass specifications, must be mapped onto the specifications of the
equivalent analog filter, {Ωpass,Ωstop,Apass,Astop}. This can be done as follows. We
require that the passband [fpa, fpb] of the digital filter be mapped onto the entire pass-
band [−Ωpass,Ωpass] of the analog filter. This requires that:

†It should really be called “biquadratic” in this case.

552 12. IIR DIGITAL FILTER DESIGN

−Ωpass = c− cosωpa

sinωpa

Ωpass = c− cosωpb

sinωpb

where ωpa = 2πfpa/fs and ωpb = 2πfpb/fs. By adding them, we solve for c. Then,
inserting the computed value of c into one or the other we find Ωpass. The resulting
solution is:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

, Ωpass =
∣∣∣∣∣c− cosωpb

sinωpb

∣∣∣∣∣ (12.10.2)

Note that for ωpa, ωpb in the interval [0,π], the above expression for c implies
|c| ≤ 1, as required for stability. Next, we compute the two numbers:

Ωsa = c− cosωsa

sinωsa
, Ωsb = c− cosωsb

sinωsb

where ωsa = 2πfsa/fs and ωsb = 2πfsb/fs.
Ideally, the stopband of the digital filter should map exactly onto the stopband of

the analog filter so that we should have Ωsb = Ωstop and Ωsa = −Ωstop. But this is
impossible because c has already been determined from Eq. (12.10.2).

Because the Butterworth magnitude response is a monotonically decreasing function
of Ω, it is enough to choose the smallest of the two stopbands defined above. Thus, we
define:

Ωstop = min
(|Ωsa|, |Ωsb|

)
(12.10.3)

With the computed values ofΩpass andΩstop, we proceed to compute the Butterworth
parametersN andΩ0 and the corresponding SOSs of Eq. (12.7.15). Because s is quadratic
in z, the substitution of s into these SOSs will give rise to fourth-order sections in z:

Hi(z) = 1

1− 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1−2cz−1+z−2

1−z−2

= Gi(1− z−2)2

1+ ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

(12.10.4)

where, for i = 1,2, . . . , K:

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = 4c(Ω0 cosθi − 1)
1− 2Ω0 cosθi +Ω0

2

ai3 = − 4c(Ω0 cosθi + 1)
1− 2Ω0 cosθi +Ω0

2

ai2 = 2(2c2 + 1−Ω2
0)

1− 2Ω0 cosθi +Ω0
2

ai4 = 1+ 2Ω0 cosθi +Ω2
0

1− 2Ω0 cosθi +Ω0
2

(12.10.5)

12.10. DIGITAL BANDPASS FILTERS 553

IfN is odd, then there is also a first-order section in s which becomes a second-order
section in z:

H0(z)= 1

1+ s
Ω0

∣∣∣∣∣∣∣∣
s= 1−2cz−1+z−2

1−z−2

= G0(1− z−2)
1+ a01z−1 + a02z−2

(12.10.6)

where

G0 = Ω0

1+Ω0
, a01 = − 2c

1+Ω0
, a02 = 1−Ω0

1+Ω0
(12.10.7)

The overall transfer function of the designed bandpass digital filter will be given as
the cascade of fourth-order sections with the possibility of one SOS:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z)

The order of the digital filter is 2N, because s is quadratic in z. The filter sections
have zeros at z = ±1, that is, ω = 0 and ω = π. The left and right 3-dB frequencies
can be calculated from the equations:

c− cosω0

sinω0
= ∓Ω0

They can be solved by writing cosω0 and sinω0 in terms of tan(ω0/2), solving the
resulting quadratic equation, and picking the positive solutions:

tan
(
ω0a

2

)
= tan

(
πf0a

fs

)
=
√
Ω2

0 + 1− c2 −Ω0

1+ c

tan
(
ω0b

2

)
= tan

(
πf0b

fs

)
=
√
Ω2

0 + 1− c2 +Ω0

1+ c

(12.10.8)

Example 12.10.1: Using the bilinear transformation and a lowpass analog Butterworth proto-
type, design a bandpass digital filter operating at a rate of 20 kHz and having left and right
passband frequencies of 2 and 4 kHz, and left and right stopband frequencies of 1.5 and
4.5 kHz. The maximum passband attenuation is required to be 0.5 dB, and the minimum
stopband attenuation 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopbands.

Solution: The digital passband frequencies are:

ωpa = 2πfpa
fs

= 2π · 2

20
= 0.2π, ωpb = 2πfpb

fs
= 2π · 4

20
= 0.4π

Then, we calculate c and Ωpass:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

= 0.6180, Ωpass =
∣∣∣∣∣c− cosωpb

sinωpb

∣∣∣∣∣ = 0.3249

554 12. IIR DIGITAL FILTER DESIGN

With the stopband digital frequencies:

ωsa = 2πfsa
fs

= 2π · 1.5
20

= 0.15π, ωsb = 2πfsb
fs

= 2π · 4.5
20

= 0.45π

we calculate:

Ωsa = c− cosωsa

sinωsa
= −0.6013, Ωsb = c− cosωsb

sinωsb
= 0.4674

andΩstop = min
(|Ωsa|, |Ωsb|

) = 0.4674. The analog filter with the specifications {Ωpass,Ωstop,Apass,Asto

has parameters {εpass, εstop} = {0.3493,3} and:

Nexact = 5.92, N = 6, Ω0 = 0.3872

The left-right 3-dB frequencies are calculated from Eq. (12.10.8) to be: f0a = 1.8689 kHz,
f0b = 4.2206 kHz. The coefficients of the three fourth-order sections of the digital filter
are (computed by the MATLAB function bpsbutt.m):

i Gi ai1 ai2 ai3 ai4
1 0.1110 −2.0142 2.3906 −1.6473 0.7032
2 0.0883 −1.8551 1.9017 −1.0577 0.3549
3 0.0790 −1.7897 1.7009 −0.8154 0.2118

The magnitude response can be calculated from:

|H(ω)|2 = 1

1+
(
Ω
Ω0

)2N = 1

1+
(
c− cosω
Ω0 sinω

)2N

The magnitude response is shown in the left graph of Fig. 12.10.2. The passband specifi-
cations are met exactly by design. Because the maximum stopband frequency was on the
right, Ωstop = |Ωsb|, the right stopband specification is met stringently. The left stopband
specification is more than required.

Fig. 12.10.2 Digital bandpass Butterworth filters.

12.11. DIGITAL BANDSTOP FILTERS 555

For the second set of specifications, we have Apass = −10 log10(0.98)= 0.0877 dB, and
Astop = −10 log10(0.02)= 16.9897 dB and {εpass, εstop} = {0.1429,7}. The design has the
same c, Ωpass, and Ωstop, which lead to the Butterworth parameters:

Nexact = 10.71, N = 11, Ω0 = 0.3878

The left and right 3-dB frequencies are now f0a = 1.8677 kHz, f0b = 4.2228 kHz. The
digital filter coefficients of the second- and fourth-order sections are:

i Gi ai1 ai2 ai3 ai4
0 0.2794 −0.8907 0.4411
1 0.1193 −2.0690 2.5596 −1.8526 0.8249
2 0.1021 −1.9492 2.1915 −1.4083 0.5624
3 0.0907 −1.8694 1.9460 −1.1122 0.3874
4 0.0834 −1.8186 1.7900 −0.9239 0.2762
5 0.0794 −1.7904 1.7033 −0.8193 0.2144

Again, the right stopband specification is more stringently met than the left one. The
“center” frequency of the passband is the same for both filters and can be obtained by
inverting cosωc = c. In Hz, we have fc = fs arccos(c)/(2π)= 2.8793 kHz. The magnitude
response is normalized to unity at fc. 	

12.11 Digital Bandstop Filters

The specifications of a bandstop digital filter are shown in Fig. 12.11.1, together with
their analog equivalents. There are now two passbands, that is, 0 ≤ f ≤ fpa and fpb ≤
f ≤ fs/2, and one stopband fsa ≤ f ≤ fsb.

|H(f)|2

Apass Apass

Apass
1

1/(1+εpass
2)

1/(1+εstop
2)

1

0

f

fpa fpbfsa fsb Ωpass Ωstopfs/2

|Ha(Ω)|2

0

desired digital
bandstop filter

equivalent analog
lowpass filter

Astop Astop

passband passband passband stopbandstopband

Ω

Fig. 12.11.1 Bandstop digital filter and its analog lowpass equivalent.

The bandstop version of the bilinear transformation and the corresponding fre-
quency mapping were given in Eqs. (12.1.5) and (12.1.6):

s = 1− z−2

1− 2cz−1 + z−2
, Ω = sinω

cosω− c
, ω = 2πf

fs
(12.11.1)

556 12. IIR DIGITAL FILTER DESIGN

The design steps are summarized as follows. First, we compute the digital frequen-
cies in radians per sample:

ωpa = 2πfpa
fs

, ωpb = 2πfpb
fs

, ωsa = 2πfsa
fs

, ωsb = 2πfsb
fs

Then, we calculate c and Ωpass by requiring:

−Ωpass = sinωpa

cosωpa − c
, Ωpass = sinωpb

cosωpb − c

which may be solved as follows:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

, Ωpass =
∣∣∣∣∣ sinωpb

cosωpb − c

∣∣∣∣∣
Next, we compute the two possible stopbands:

Ωsa = sinωsa

cosωsa − c
, Ωsb = sinωsb

cosωsb − c

and define:

Ωstop = min
(|Ωsa|, |Ωsb|

)
Then, use the analog specifications {Ωpass,Ωstop,Apass,Astop} to compute the But-

terworth parameters {N,Ω0}. And finally, transform the analog filter sections into
fourth-order sections by Eq. (12.11.1):

Hi(z) = 1

1− 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1−z−2

1−2cz−1+z−2

= Gi(1− 2cz−1 + z−2)2

1+ ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

where the coefficients are given for i = 1,2, . . . , K:

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = 4cΩ0(cosθi −Ω0)
1− 2Ω0 cosθi +Ω0

2

ai3 = − 4cΩ0(cosθi +Ω0)
1− 2Ω0 cosθi +Ω0

2

ai2 = 2(2c2Ω2
0 +Ω2

0 − 1)
1− 2Ω0 cosθi +Ω0

2

ai4 = 1+ 2Ω0 cosθi +Ω2
0

1− 2Ω0 cosθi +Ω0
2

If N is odd, we also have a second-order section in z:

H0(z)= 1

1+ s
Ω0

∣∣∣∣∣∣∣∣
s= 1−z−2

1−2cz−1+z−2

= G0(1− 2cz−1 + z−2)
1+ a01z−1 + a02z−2

12.11. DIGITAL BANDSTOP FILTERS 557

where

G0 = Ω0

1+Ω0
, a01 = − 2cΩ0

1+Ω0
, a02 = −1−Ω0

1+Ω0

Note that each section has zeros at 1 − 2cz−1 + z−2 = 0, which correspond to the
anglesω = ±ωc, where cosωc = c. The 3-dB frequencies at the edges of the passbands
can be determined by solving for the positive solutions of the equations:

sinω0

cosω0 − c
= ±Ω0

which give:

tan
(
ω0a

2

)
= tan

(
πf0a

fs

)
=
√

1+Ω2
0(1− c2)− 1

Ω0(1+ c)

tan
(
ω0b

2

)
= tan

(
πf0b

fs

)
=
√

1+Ω2
0(1− c2)+ 1

Ω0(1+ c)

Example 12.11.1: Using the bilinear transformation and a lowpass analog Butterworth proto-
type, design a bandstop digital filter operating at a rate of 20 kHz and having left and right
passband frequencies of 1.5 and 4.5 kHz, and left and right stopband frequencies of 2 and
4 kHz. The maximum passband attenuation is required to be 0.5 dB, and the minimum
stopband attenuation 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passbands, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The digital passband and stopband frequencies are:

ωpa = 2πfpa
fs

= 2π · 1.5
20

= 0.15π,

ωsa = 2πfsa
fs

= 2π · 2

20
= 0.2π,

ωpb = 2πfpb
fs

= 2π · 4.5
20

= 0.45π

ωsb = 2πfsb
fs

= 2π · 4

20
= 0.4π

Then, we calculate c and Ωpass:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

= 0.6597, Ωpass =
∣∣∣∣∣ sinωpb

cosωpb − c

∣∣∣∣∣ = 1.9626

Then, we calculate the stopband frequencies:

Ωsa = sinωsa

cosωsa − c
= 3.9361, Ωsb = sinωsb

cosωsb − c
= −2.7121

and define Ωstop = min
(|Ωsa|, |Ωsb|

) = 2.7121. The analog filter parameters are:

Nexact = 6.65, N = 7, Ω0 = 2.2808

The left-right 3-dB frequencies are calculated to be f0a = 1.6198 kHz, f0b = 4.2503 kHz.
The coefficients of the SOS and the three fourth-order sections of the digital filter are:

558 12. IIR DIGITAL FILTER DESIGN

i Gi ai1 ai2 ai3 ai4
0 0.6952 −0.9172 0.3904
1 0.7208 −2.0876 2.4192 −1.7164 0.7187
2 0.5751 −1.9322 1.9301 −1.1026 0.3712
3 0.5045 −1.8570 1.6932 −0.8053 0.2029

The magnitude response of the designed filter is shown in the left graph of Fig. 12.11.2.

Fig. 12.11.2 Digital bandstop Butterworth filters.

For the second set of specifications, we have Apass = −10 log10(0.98)= 0.0877 dB, and
Astop = −10 log10(0.02)= 16.9897 dB. The design has the same c, Ωpass, and Ωstop, which
lead to the Butterworth parameters:

Nexact = 12.03, N = 13, Ω0 = 2.2795

The left-right 3-dB frequencies are now f0a = 1.6194 kHz, f0b = 4.2512 kHz. The digital
filter coefficients of the second- and fourth-order sections are:

i Gi ai1 ai2 ai3 ai4
0 0.6951 −0.9171 −0.3902
1 0.7703 −2.1401 2.5850 −1.9251 0.8371
2 0.6651 −2.0280 2.2319 −1.4820 0.5862
3 0.5914 −1.9495 1.9847 −1.1717 0.4105
4 0.5408 −1.8956 1.8148 −0.9584 0.2897
5 0.5078 −1.8604 1.7041 −0.8194 0.2110
6 0.4892 −1.8406 1.6415 −0.7410 0.1666

The magnitude response is shown on the right graph of Fig. 12.11.2. The rounding of
the exact N of 12.03 to 13 is perhaps overkill in this case. It causes the actual stopband
attenuation at the right edge of the stopband to be A(Ωstop)= 19.67 dB, corresponding to
a magnitude square of 0.011 instead of the required 0.02.

For both designs, the “center” notch frequency of the stopband can be obtained by inverting
cosωc = c. In Hz, we have fc = fs arccos(c)/(2π)= 2.7069 kHz. 	

12.12. CHEBYSHEV FILTER DESIGN 559

12.12 Chebyshev Filter Design

In designing the equivalent analog lowpass filters one can use alternative filter proto-
types, such as Chebyshev or elliptic filters [298–300]. For the same set of specifications,
they provide steeper transition widths and lead to smaller filter orders than the Butter-
worth filters.

Chebyshev filters come in two varieties. Type 1 has equiripple passband and mono-
tonic stopband, and type 2, also known as inverse Chebyshev, has equiripple stop-
band and monotonic passband. A typical Chebyshev magnitude response is shown in
Fig. 12.12.1.

|H(Ω)|2

1

|H(Ω)|2

1/(1+εpass
2)

1/(1+εstop
2)

Type 1

Apass

Ωpass Ωstop0

Ω

Astop

passband stopband

1

Type 2

Apass

Ωpass Ωstop
0

Ω

Astop

passband stopband

Fig. 12.12.1 Magnitude square responses of type 1 and type 2 Chebyshev filters.

It is the equiripple property that is responsible for the narrower transition widths of
these filters. For example, for the type 1 case, because the passband response is allowed
to go slightly up near the edge of the passband, it can fall off more steeply.

The specifications of the filter are {Ωpass,Ωstop,Apass,Astop} and are obtained by
prewarping the desired digital filter specifications using the appropriate bilinear trans-
formation (lowpass, highpass, bandpass, or bandstop). Two important design parame-
ters are the quantities {εpass, εstop} that were defined in Eq. (12.6.4), and are shown in
Figs. 12.6.1 and 12.12.1.

The magnitude response squared of an Nth order Chebyshev filter is expressible in
terms of these parameters as follows. For the type 1 case:

|H(Ω)|2 = 1

1+ ε2
passC

2
N

(
Ω

Ωpass

) (12.12.1)

and, for the type 2 case:

|H(Ω)|2 =
C2
N

(Ωstop

Ω

)
C2
N

(Ωstop

Ω

)
+ ε2

stop

(12.12.2)

560 12. IIR DIGITAL FILTER DESIGN

where CN(x) is the Chebyshev polynomial [301] of degree N, defined by

CN(x)=
{

cos
(
N cos−1(x)

)
, if |x| ≤ 1

cosh
(
N cosh−1(x)

)
, if |x| > 1

(12.12.3)

Chebyshev polynomials can be understood by defining the angle θ = cos−1 x, so that
x = cosθ and CN(x)= cos(Nθ). When |x| > 1, the equation x = cosθ requires θ to be
imaginary, say θ = jβ, so that x = cos(jβ)= cosh(β) and

CN(x)= cos(Nθ)= cos(Njβ)= cosh(Nβ)= cosh(N cosh−1 x)

Using trigonometric identities, it can be shown that cos(Nθ) is expressible as an
Nth order polynomial in cosθ, that is,

cos(Nθ)=
N∑
i=0

ci(cosθ)i

The ci are the coefficients of the Chebyshev polynomials:

CN(x)=
N∑
i=0

cixi

For example, we have C1(x)= cosθ = x, and

cos(2θ) = 2 cos2 θ− 1

cos(3θ) = 4 cos3 θ− 3 cosθ

cos(4θ) = 8 cos4 θ− 8 cos2 θ+ 1

⇒
C2(x) = 2x2 − 1

C3(x) = 4x3 − 3x

C4(x) = 8x4 − 8x2 + 1

The following routine cheby.c returns the value of the Nth order Chebyshev poly-
nomial for non-negative values of x and can be used in the numerical evaluation of the
magnitude responses:

/* cheby.c - Chebyshev polynomial CN(x) */

#include <math.h>

double cheby(N, x) usage: y = cheby(N, x);

int N; N = polynomial order

double x; x must be non-negative

{
if (x <= 1)

return cos(N * acos(x));
else

return cosh(N * log(x + sqrt(x*x-1)));
}

For x > 1, the values are computed by the alternative expression:

cosh(N cosh−1 x)= cosh
(
N ln

(
x+

√
x2 − 1

))

12.12. CHEBYSHEV FILTER DESIGN 561

Next, we consider the details of the type 1 case. The argument ofCN(x) in Eq. (12.12.1)
is x = Ω/Ωpass. Therefore, within the passband range 0 ≤ Ω ≤ Ωpass we have 0 ≤ x ≤ 1,
which makes CN(x) oscillatory and results in the passband ripples.

Within the passband, the magnitude response remains bounded between the values
1 and 1/(1 + ε2

pass). At the edge of the passband, corresponding to x = Ω/Ωpass = 1,
we have CN(x)= 1, giving the value |H(Ωpass)|2 = 1/(1 + ε2

pass). The value at Ω = 0
depends on N. Because CN(0) equals zero for odd N and unity for even N, we have:

|H(0)|2 = 1 (odd N), |H(0)|2 = 1

1+ ε2
pass

(even N) (12.12.4)

The order N can be determined by imposing the stopband specification, that is,
|H(Ω)|2 ≤ 1/(1 + ε2

stop) for Ω ≥ Ωstop. Because of the monotonicity of the stopband,
this condition is equivalent to the stopband edge condition:

|H(Ωstop)|2 = 1

1+ ε2
stop

Using Eq. (12.12.1), we obtain:

1

1+ ε2
pass cosh2(N cosh−1(Ωstop/Ωpass)

) = 1

1+ ε2
stop

which gives:

cosh
(
N cosh−1(Ωstop/Ωpass)

) = εstop/εpass ⇒ cosh(N cosh−1 w)= e

where, as in Eq. (12.7.5), we used the stopband to passband ratios:

e = εstop

εpass
=
√

10Astop/10 − 1

10Apass/10 − 1
, w = Ωstop

Ωpass
(12.12.5)

Thus, solving for N, we find:

Nexact = cosh−1 e
cosh−1 w

= ln
(
e+√e2 − 1

)
ln
(
w+√w2 − 1

) (12.12.6)

The final value of N is obtained by rounding Nexact up to the next integer, that is,
N = ⌈

Nexact
⌉
. As in the Butterworth case, increasing N slightly from its exact value

results in a slightly better stopband than required, that is, |H(Ωstop)|2 < 1/(1+ ε2
stop).

The 3-dB frequency can be calculated by requiring |H(Ω)|2 = 1/2, which can be solved
to give:

1

1+ ε2
passC

2
N(Ω3dB/Ωpass)

= 1

2
⇒ cosh

(
N cosh−1(Ω3dB/Ωpass)

) = 1

εpass

or,

tan

(
πf3dB

fs

)
= Ω3dB = Ωpass cosh

(
1

N
cosh−1(1

εpass

))
(12.12.7)

562 12. IIR DIGITAL FILTER DESIGN

The transfer function H(s) of the Chebyshev filter can be constructed by determin-
ing the left-hand-plane poles of Eq. (12.12.1) and pairing them in conjugate pairs to form
second-order sections. These conjugate pairs are {si, s∗i }, where

si = Ωpass sinha cosθi + jΩpass cosha sinθi, i = 1,2, . . . , K (12.12.8)

where N = 2K or N = 2K + 1. In the odd case, there is also a real pole at

s0 = −Ωpass sinha (12.12.9)

where the parameter a is the solution of

sinh(Na)= 1

εpass
(12.12.10)

that is,

a = 1

N
sinh−1

(
1

εpass

)
= 1

N
ln

(
1

εpass
+
√

1

ε2
pass

+ 1

)
(12.12.11)

The angles θi are the same as the Butterworth angles of Eq. (12.7.11):

θi = π
2N

(N − 1+ 2i) , i = 1,2, . . . , K (12.12.12)

The second-quadrant values of these angles place the si in the left-hand s-plane. The
second-order sections are then:

Hi(s)= 1(
1− s

si

)(
1− s

s∗i

) = |si|2
s2 − (2Resi)s+ |si|2

For convenience, we define the parameters:

Ω0 = Ωpass sinha, Ωi = Ωpass sinθi , i = 1,2, . . . , K (12.12.13)

Then, we may express the second-order sections in the form:

Hi(s)= Ω2
0 +Ωi

2

s2 − 2Ω0 cosθi s+Ω2
0 +Ωi

2 , i = 1,2, . . . , K (12.12.14)

The first-order factor H0(s) is defined by

H0(s)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1

1+ ε2
pass

if N is even, N = 2K

Ω0

s+Ω0
if N is odd, N = 2K + 1

(12.12.15)

If N is odd, all filter sections are normalized to unity gain at DC, as required by
Eq. (12.12.4). If N is even, the overall gain is 1/(1+ ε2

pass)1/2. It follows that the overall
transfer function will be the cascade:

H(s)= H0(s)H1(s)H2(s)· · ·HK(s) (12.12.16)

12.12. CHEBYSHEV FILTER DESIGN 563

Next, we verify that the poles are properly given by Eq. (12.12.8). Replacing s = jΩ
or Ω = −js into Eq. (12.12.1), we see that the zeros of the denominator are the solutions
of the equation:

1+ ε2
pass cosh2(N cosh−1(−js/Ωpass)

) = 0 , or

cosh
(
N cosh−1(−js/Ωpass)

) = ±j
εpass

(12.12.17)

Replacing θi = φi +π/2, where φi = (2i− 1)π/(2N), into Eq. (12.12.8), we find

−jsi/Ωpass = cosha sinθi − j sinha cosθi = cosha cosφi + j sinha sinφi

Using the trigonometric identity

cosh(x+ jy)= coshx cosy + j sinhx siny

we find

−jsi/Ωpass = cosh(a+ jφi) ⇒ cosh−1(−jsi/Ωpass)= a+ jφi

and therefore,

cosh
(
N cosh−1(−jsi/Ωpass)

) = cosh(Na+ jNφi)

= cosh(Na)cos(Nφi)+j sinh(Na)sin(Nφi)= ±j
εpass

where we used cos(Nφi)= cos
(
(2i− 1)π/2

) = 0, sin(Nφi)= sin
(
(2i− 1)π/2

) = ±1,
and Eq. (12.12.10). Thus, the si are solutions of the root equation Eq. (12.12.17).

Once the analog transfer function is constructed, each second-order section may
be transformed into a digital second-order section by the appropriate bilinear trans-
formation. For example, applying the lowpass version of the bilinear transformation
s = (1− z−1)/(1+ z−1), we find the digital transfer function:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (12.12.18)

where Hi(z) are the transformations of Eq. (12.12.14):

Hi(z)= Gi(1+ z−1)2

1+ ai1z−1 + ai2z−2
, i = 1,2, . . . , K (12.12.19)

where the coefficients are computed in terms of the definitions Eq. (12.12.13):

Gi = Ω2
0 +Ωi

2

1− 2Ω0 cosθi +Ω2
0 +Ωi

2

ai1 = 2(Ω2
0 +Ωi

2 − 1)
1− 2Ω0 cosθi +Ω2

0 +Ωi
2

ai2 = 1+ 2Ω0 cosθi +Ω2
0 +Ωi

2

1− 2Ω0 cosθi +Ω2
0 +Ωi

2

(12.12.20)

564 12. IIR DIGITAL FILTER DESIGN

The first-order factor is given by

H0(z)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1

1+ ε2
pass

if N is even

G0(1+ z−1)
1+ a01z−1

if N is odd

(12.12.21)

where

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(12.12.22)

Example 12.12.1: Using the bilinear transformation and a lowpass analog Chebyshev type 1
prototype, design a lowpass digital filter operating at a rate of 20 kHz and having passband
extending to 4 kHz with maximum passband attenuation of 0.5 dB, and stopband starting
at 5 kHz with a minimum stopband attenuation of 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The specifications and the prewarped digital frequencies are the same as in Example
12.8.1, that is, Ωpass = 0.7265 and Ωstop = 1.

We calculate εpass = 0.3493 and εstop = 3 and the quantities in Eq. (12.12.5) e = εstop/εpass =
8.5883, w = Ωstop/Ωpass = 1.3764. Then, Eq. (12.12.6) gives Nexact = 3.37, which is
rounded up to N = 4. Thus, there are K = 2 second-order sections. The 3-dB frequency
can be calculated by inverting the bilinear transformation and Eq. (12.12.7):

tan

(
πf3dB

fs

)
= Ω3dB = Ωpass cosh

(
1

N
cosh−1(1

εpass

))

which gives f3dB = 4.2729 kHz. The actual stopband attenuation is larger than Astop

because of the increased value of N. We calculate:

A(Ωstop)= 10 log10

(
1+ ε2

passC
2
N(Ωstop/Ωpass)

) = 14.29 dB

The parameter a is calculated from Eq. (12.12.10) to be a = 0.4435. Then, the coeffi-
cients of the digital filter are calculated from Eqs. (12.12.20) and (12.12.22), resulting in
the transfer function:

H(z)= 0.9441 · 0.3091(1+ z−1)2

1− 0.4830z−1 + 0.7194z−2
· 0.1043(1+ z−1)2

1− 0.9004z−1 + 0.3177z−2

The magnitude response squared is shown in the left graph of Fig. 12.12.2. It was computed
by inserting the bilinear transformation into Eq. (12.12.1) and evaluating it with cheby, that
is,

|H(f)|2 = 1

1+ ε2
pass

(
cheby(N, tan(πf/fs)/Ωpass)

)2

For the more stringent specifications, we have Apass = 0.08774 dB and Astop = 16.9897
dB. We calculate the parameters:

12.12. CHEBYSHEV FILTER DESIGN 565

Fig. 12.12.2 Digital lowpass Chebyshev type 1 filters.

εpass = 0.1429, εstop = 7, Nexact = 5.44, N = 6, a = 0.4407

The 3-dB frequency is found to be f3dB = 4.2865 kHz. The actual stopband attenuation is
A(Ωstop)= 21.02 dB, instead of the nominal one of Astop = 16.9897 dB. The digital filter
coefficients are then:

i Gi ai1 ai2
0 0.9899
1 0.3394 −0.4492 0.8069
2 0.2028 −0.6809 0.4920
3 0.0811 −0.9592 0.2837

The gain factor G0 represents here the overall gain 1/
√

1+ ε2
pass =

√
0.98 = 0.9899. The

magnitude response is shown in the right graph of Fig. 12.12.2. By comparison, recall that
the two Butterworth filters of Example 12.8.1 had filter orders of 7 and 13, respectively. 	

Example 12.12.2: Redesign the highpass digital filters of Example 12.9.1 using a Chebyshev
type 1 analog lowpass prototype filter.

Solution: The equivalent analog lowpass specifications {Ωpass,Ωstop,Apass,Astop} are the same
as in Example 12.9.1. We have Ωpass = 1 and Ωstop = 1.3764. Based on the first set of
specifications, we find the Chebyshev design parameters:

εpass = 0.3493, εstop = 3, Nexact = 3.37, N = 4, a = 0.4435

and based on the second set:

εpass = 0.1429, εstop = 7, Nexact = 5.44, N = 6, a = 0.4407

The 3-dB frequencies can be calculated by inverting:

cot

(
πf3dB

fs

)
= Ω3dB = Ωpass cosh

(
1

N
cosh−1(1

εpass

))

566 12. IIR DIGITAL FILTER DESIGN

which gives for the two specification sets: f0 = 4.7170 and 4.7031 kHz. The actual stop-
band attenuations attained by the designed filter are in the two cases: A(Ωstop)= 14.29
and 21.02 dB.

The digital transfer functions are obtained by transforming the analog filter sections by
the highpass bilinear transformation s = (1+ z−1)/(1− z−1).

The digital filter coefficients are obtained from Eqs. (12.12.20) and (12.12.22) by changing
the sign of the ai1 coefficients. We have for the two specification sets:

i Gi ai1 ai2
0 0.9441
1 0.4405 −0.0526 0.7095
2 0.1618 0.5843 0.2314

i Gi ai1 ai2
0 0.9899
1 0.4799 −0.1180 0.8017
2 0.3008 0.2492 0.4524
3 0.1273 0.6742 0.1834

Thus, for example, the first transfer function will be:

H(z)= 0.9441 · 0.4405(1− z−1)2

1− 0.0526z−1 + 0.7095z−2
· 0.1618(1− z−1)2

1+ 0.5843z−1 + 0.2314z−2

The designed magnitude responses are shown in Fig. 12.12.3. 	

Fig. 12.12.3 Digital highpass Chebyshev type 1 filters.

Next, we discuss type 2 Chebyshev filters. The argument of the Chebyshev polynomi-
als in Eq. (12.12.2) is now x = Ωstop/Ω. Therefore, the stopband range Ω ≥ Ωstop maps
to 0 ≤ x ≤ 1 where the Chebyshev polynomial is oscillatory resulting in the stopband
ripples.

At the edge of the stopband, Ω = Ωstop, we have x = 1, CN(x)= 1, and magnitude

response equal to |H(Ωstop)|2 = 1/
√

1+ ε2
stop. At large frequencies, Ω → ∞, we have

x → 0. Because the value of CN(0) depends on N being zero for odd N and unity for
even N, it follows that the magnitude response will either tend to zero for odd N or to

1/
√

1+ ε2
stop for even N.

The zero frequency Ω = 0 corresponds to the limit x→∞ which causes the Cheby-
shev polynomials to grow like a power xN. It follows that the numerator and denom-
inator of the magnitude response (12.12.2) will both diverge but in such a way that

12.12. CHEBYSHEV FILTER DESIGN 567

|H(0)|2 = 1. Thus, type 2 filters are always normalized to unity at DC. The filter order
N can be determined by requiring the passband specification:

|H(Ωpass)|2 =
C2
N

(
Ωstop

Ωpass

)

C2
N

(
Ωstop

Ωpass

)
+ ε2

stop

= 1

1+ ε2
pass

It has the same solution Eq. (12.12.6) as the type 1 case. Once N is fixed, the 3-dB
frequency can be obtained by solving |H(Ω3dB)|2 = 1/2 which gives the solution:

Ω3dB = Ωstop

cosh
(1

N
cosh−1(εstop)

) (12.12.23)

Because of the non-trivial numerator in Eq. (12.12.2), the filter will have both zeros
and poles. They are solutions of the following equations obtained by replacingΩ = −js:

cosh2

(
N cosh−1(Ωstop

−js
)) = 0, cosh2

(
N cosh−1(jΩstop

−js
))+ ε2

stop = 0

The zeros are the conjugate pairs {zi, z∗i }:

zi = jΩstop

sinθi
, i = 1,2, . . . , K (12.12.24)

where N = 2K or N = 2K + 1. The poles are essentially the reciprocals of the type 1
poles, that is, the pairs {si, s∗i }:

si = Ωstop

sinha cosθi + j cosha sinθi
, i = 1,2, . . . , K (12.12.25)

In the odd-N case, there is also a real pole at

s0 = − Ωstop

sinha
(12.12.26)

where the parameter a is the solution of

sinh(Na)= εstop (12.12.27)

that is,

a = 1

N
sinh−1(εstop)= 1

N
ln
(
εstop +

√
ε2

stop + 1
)

(12.12.28)

The angles θi are the same as in the type 1 case and given by Eq. (12.12.12). The
second-order sections are formed by pairing the zeros and poles in conjugate pairs:

Hi(s)=

(
1− s

zi

)(
1− s

z∗i

)
(

1− s
si

)(
1− s

s∗i

) (12.12.29)

568 12. IIR DIGITAL FILTER DESIGN

For convenience, we define the parameters:

Ω0 = Ωstop

sinha
, Ωi = Ωstop

sinθi
, i = 1,2, . . . , K (12.12.30)

Then, we may express the second-order sections in the form:

Hi(s)= 1+Ωi
−2s2

1− 2Ω−1
0 cosθi s+ (Ω−2

0 +Ωi
−2)s2

, i = 1,2, . . . , K (12.12.31)

The first-order factor H0(s) is defined by

H0(s)=
⎧⎪⎨⎪⎩

1, if N is even
Ω0

Ω0 + s
, if N is odd

(12.12.32)

Again, all filter sections are normalized to unity gain at DC. Under the bilinear trans-
formation s = (1− z−1)/(1+ z−1), the analog sections transform to digital versions of
the form:

Hi(z)= Gi(1+ bi1z−1 + z−2)
1+ ai1z−1 + ai2z−2

, i = 1,2, . . . , K (12.12.33)

where the coefficients are computed in terms of the definitions in Eq. (12.12.30):

Gi = 1+Ωi
−2

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2 , bi1 = 2

1−Ωi
−2

1+Ωi
−2

ai1 = 2(1−Ω−2
0 −Ωi

−2)
1− 2Ω−1

0 cosθi +Ω−2
0 +Ωi

−2

ai2 = 1+ 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

(12.12.34)

The first-order factor, if present, is given by

H0(z)= G0(1+ z−1)
1+ a01z−1

(12.12.35)

where

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(12.12.36)

The overall digital transfer function is then:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (12.12.37)

Example 12.12.3: Redesign the two filters of Example 12.12.1 using a type 2 Chebyshev design.

12.12. CHEBYSHEV FILTER DESIGN 569

Solution: The values of εpass, εstop, Nexact, N remain the same as in Example 12.12.1. The pa-
rameter a, calculated from Eq. (12.12.28), is for the two specification sets: a = 0.4546 and
0.4407.

The actual passband attenuations are slightly higher than the specified ones. Evaluating
Eq. (12.12.2) for the two designs, we find the values A(Ωpass)= 0.18 and 0.03 dB, instead
of the required ones 0.5 and 0.08774. The 3-dB frequencies are obtained by inverting:

tan

(
πf3dB

fs

)
= Ω3dB = Ωstop

cosh
(1

N
cosh−1(εstop)

)
which gives the values f3dB = 4.7009 and 4.7031 kHz. For the first specification set, we have
two second-order sections whose coefficients are calculated from Eq. (12.12.34), resulting
in the transfer function:

H(z)= 0.7612(1+ 0.1580z−1 + z−2)
1− 0.0615z−1 + 0.7043z−2

· 0.5125(1+ 1.4890z−1 + z−2)
1+ 0.5653z−1 + 0.2228z−2

For the second specification set, we have three sections with coefficients:

i Gi bi1 ai1 ai2
1 0.8137 0.0693 −0.1180 0.8017
2 0.6381 0.6667 0.2492 0.4524
3 0.4955 1.7489 0.6742 0.1834

The designed magnitude responses are shown in Fig. 12.12.4. 	

Fig. 12.12.4 Digital lowpass Chebyshev type 2 filters.

The Chebyshev filter can also be transformed by the bandpass or bandstop versions
of the bilinear transformation to design bandpass or bandstop digital filters. For exam-
ple, transforming a type 2 filter by the bandpass transformation in Eq. (12.1.5) gives rise
to fourth-order sections of the form:

Hi(z)= Gi
1+ bi1z−1 + bi2z−2 + bi1z−3 + z−4

1+ ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4
, i = 1,2, . . . , K (12.12.38)

570 12. IIR DIGITAL FILTER DESIGN

where by symmetry, the numerator coefficients of z−1 and z−3 are the same. The coef-
ficients are given by:

Gi = 1+Ωi
−2

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

bi1 = − 4cΩi
−2

1+Ωi
−2 , bi2 = 2

(
Ωi

−2(2c2 + 1)−1
)

1+Ωi
−2

ai1 = 4c
(
Ω−1

0 cosθi −Ω−2
0 −Ωi

−2)
1− 2Ω−1

0 cosθi +Ω−2
0 +Ωi

−2 , ai2 = 2
(
(Ω−2

0 +Ωi
−2)(2c2 + 1)−1

)
1− 2Ω−1

0 cosθi +Ω−2
0 +Ωi

−2

ai3 = − 4c
(
Ω−1

0 cosθi +Ω−2
0 +Ωi

−2)
1− 2Ω−1

0 cosθi +Ω−2
0 +Ωi

−2 , ai4 = 1+ 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

IfN is odd, the first-order analog sectionH0(s) is transformed to the same quadratic
section H0(z) given in Section 12.10. Similarly, applying the bandstop transformation
of Eq. (12.11.1), the type 2 Chebyshev second-order sections in s are transformed into
fourth-order sections in z in the same form of Eq. (12.12.38), but with coefficients given
by:

Gi = 1+Ωi
−2

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

bi1 = − 4c
1+Ωi

−2 , bi2 = 2
(
2c2 + 1−Ωi

−2)
1+Ωi

−2

ai1 = − 4c
(
1−Ω−1

0 cosθi
)

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2 , ai2 = 2

(
2c2 + 1−Ω−2

0 −Ωi
−2)

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

ai3 = − 4c
(
1+Ω−1

0 cosθi
)

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2 , ai4 = 1+ 2Ω−1

0 cosθi +Ω−2
0 +Ωi

−2

1− 2Ω−1
0 cosθi +Ω−2

0 +Ωi
−2

The first-order sectionH0(s) transforms to the sameH0(z) as that of Section 12.11,
but with Ω0 given by Eq. (12.12.30).

Example 12.12.4: Redesign the bandpass digital filters of Example 12.10.1 using a type 2 Cheby-
shev analog prototype.

Solution: The prewarped frequencies and bilinear transformation parameter c are as in that
example: Ωpass = 0.3249, Ωstop = 0.4674, c = 0.6180.

The Chebyshev design parameters are for the two specification sets:

εpass = 0.3493, εstop = 3, Nexact = 3.14, N = 4, a = 0.4546

εpass = 0.1429, εstop = 7, Nexact = 5.07, N = 6, a = 0.4407

For the first set, there are two fourth-order sections with coefficients:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.7334 −1.9684 2.4015 −1.9604 2.2956 −1.6758 0.7697
2 0.3677 −0.9922 0.2187 −1.4221 0.8671 −0.4101 0.1813

12.12. CHEBYSHEV FILTER DESIGN 571

For the second set, there are three fourth-order sections:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.7840 −2.0032 2.4793 −2.0118 2.4413 −1.8265 0.8501
2 0.5858 −1.7205 1.8472 −1.7286 1.6780 −1.1223 0.5094
3 0.3159 −0.5802 −0.7026 −1.3122 0.5868 −0.1879 0.0904

The designed magnitude responses are shown in Fig. 12.12.5. 	

Fig. 12.12.5 Digital bandpass Chebyshev type 2 filters.

Example 12.12.5: Redesign the bandstop digital filters of Example 12.11.1 using a type 2 Cheby-
shev analog prototype.

Solution: The prewarped frequencies and bilinear transformation parameter c are as in that
example: Ωpass = 1.9626, Ωstop = 2.7121, c = 0.6597.

For the two specification sets, the exact Chebyshev orders are Nexact = 3.35 and 5.40,
which round up to N = 4 and 6, respectively. The other Chebyshev parameters remain the
same as in Example 12.12.4. For the first set, the fourth-order sections have coefficients:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.8727 −2.3644 3.1438 −2.2003 2.6965 −1.9264 0.7924
2 0.7442 −2.5872 3.6287 −2.2339 2.6565 −1.6168 0.5323

For the second set, there are three fourth-order sections:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.9074 −2.3417 3.0945 −2.2171 2.7626 −2.0326 0.8601
2 0.8009 −2.4708 3.3754 −2.2137 2.6612 −1.7441 0.6441
3 0.7412 −2.6149 3.6889 −2.2524 2.6929 −1.6241 0.5238

The designed magnitude responses are shown in Fig. 12.12.6. 	

572 12. IIR DIGITAL FILTER DESIGN

Fig. 12.12.6 Digital bandstop Chebyshev type 2 filters.

12.13 Problems

12.1 Consider the peaking filter of Eq. (12.3.21). Derive an analytical expression for its impulse
response h(n) in terms of the parameters ω0 and Δω. Show that its transient (ε-level) time
constant is given by:

neff = ln ε
lnρ

, ρ =
√

1− β
1+ β

12.2 Consider the peaking filter of Eq. (12.3.21). Taking the limit Δω → 0 and keeping only the
lowest-order terms in Δω, show that the pole radius R is related approximately to Δω by
Eq. (6.4.4), that is, Δω � 2(1−R). Show also that neff � −2 ln ε/Δω.

12.3 Verify the complementarity properties for the filters of Eqs. (12.3.7) and (12.3.21):

Hnotch(z)+Hpeak(z)= 1, |Hnotch(ω)|2 + |Hpeak(ω)|2 = 1, (when G2
B = 1/2)

12.4 Consider the three choices for the bandwidth reference gain in parametric equalizer filters:
G2
B = (G2

0+G2)/2 (arithmetic mean), G2
B = G0G (geometric mean), and G2

B = 2G2
0G2/(G2

0+
G2) (harmonic mean). For each case, discuss how the design parameter β of Eq. (12.4.6)
simplifies. For the geometric mean case [292], show that if you design two boost and
cut digital filters centered at the same frequency and having equal bandwidths and equal
and opposite boost/cut gains (in dB), then their magnitude responses will be related by
|Hboost(ω)|2|Hcut(ω)|2 = G4

0. Show that the more general weighted geometric mean choice
G2
B = G1−c

0 G1+c, 0 ≤ c < 1 also satisfies this property.

12.5 Computer Experiment: Peaking and Notching Filters. Reproduce the results and graphs of
Example 12.3.1. Plot also the phase responses of all the filters. For each filter, draw its
canonical realization and write the corresponding sample processing algorithm. (You may
use the MATLAB function parmeq.m to design them.)

Calculate the 5% time constants of the filters. Send a unit impulse δ(n) into the input and
calculate and plot the impulse responses h(n) of these filters. You must compute h(n) for
a period of at least two 5% time constants. (You may use the routines sos.c or sos.m to
implement them.)

12.6 Computer Experiment: Parametric EQ Filter Design. Reproduce the results and graphs of
Examples 12.4.1 and 12.4.2. Plot also the phase responses of all the filters. (You may use
the MATLAB function parmeq.m to design them.)

12.13. PROBLEMS 573

For the filters of Example 12.4.1, compute their 5% time constants and compute and plot
their impulse responses h(n) versus n.

12.7 Computer Experiment: Lowpass/Highpass EQ Filters. Write a MATLAB function (similar
to parmeq.m) to design the lowpass or highpass shelving equalizer filters defined by Eqs.
(12.4.9) and (12.4.11).

Use the function to reproduce the results and graphs of Examples 12.2.1 and 12.2.2.

12.8 Computer Experiment: Periodic Comb/Notch Parametric EQ Design. Reproduce the results
and graphs of Example 12.5.1. Plot also the phase responses of all the filters. (You may use
the MATLAB function combeq.m to design them.)

Write a C or MATLAB function, say combfilt, that implements the sample processing algo-
rithm of the time domain operation of the comb filter. It must have usage:

y = combfilt(a, b, c, D, w, x); (C version)

[y, w] = combfilt(a, b, c, D, w, x); (MATLAB version)

where w is the (D+1)-dimensional delay-line buffer, and {x, y} are the input and output
samples. The parameters {a,b, c} are generated by combeq. For the C case, you may use a
circular buffer. Using this function, calculate and plot the impulse response h(n) of all the
designed filters.

12.9 The passband and stopband specifications are defined somewhat differently in FIR and IIR
designs. Discuss these differences and explain why the parameter sets {δpass, δstop} of
Eq. (11.3.5) and {εpass, εstop} of Eq. (12.6.4) are appropriate for FIR and IIR designs.

12.10 The parameters N and Ω0 of an analog Butterworth filter are determined by solving the two
specification equations A(Ωpass)= Apass, A(Ωstop)= Astop. The resulting filter order is then
rounded up to the next integer value N.

Using this slightly larger N, show that if Ω0 is found from the passband specification, that
is, by solving A(Ωpass)= Apass, then the stopband specification is more than satisfied, that
is, A(Ωstop)> Astop.

Similarly, show that if we find Ω0 from the stopband specification A(Ωstop)= Astop, then
the passband specification is more than satisfied, that is, A(Ωpass)< Apass.

12.11 Using the bilinear transformation and a lowpass analog Butterworth prototype filter, design
a lowpass digital filter operating at a rate of 40 kHz and having the following specifications:
fpass = 10 kHz, Apass = 3 dB, fstop = 15 kHz, Astop = 35 dB. Carry out all the design steps by
hand.

Draw the cascade realization form and write the difference equations and the corresponding
sample processing algorithm implementing this realization in the time domain.

12.12 Using the bilinear transformation method and a Butterworth lowpass analog prototype, de-
sign (by hand) a digital highpass filter operating at a rate of 10 kHz and having passband
and stopband frequencies of 3 kHz and 2 kHz, respectively. The maximum passband and
minimum stopband attenuations are required to be 0.5 dB and 10 dB respectively.

a. What are the actual maximum passband and minimum stopband attenuations in dB
achieved by the designed filter?

b. Draw the cascade realization and write the corresponding difference equations de-
scribing the time-domain operation of the filter.

c. Give a simple closed-form expression of the magnitude response of the designed fil-
ter as a function of the variable cot(ω/2). Sketch the magnitude response over the
frequency interval 0 ≤ f ≤ 20 kHz.

574 12. IIR DIGITAL FILTER DESIGN

12.13 Show that the generalized bilinear transformation

s = 1− 2cz−1 + z−2

1− z−2
(12.13.1)

maps the left-hand s-plane onto the inside of the unit circle of the z-plane, provided the real
constant c is such that |c| ≤ 1.

12.14 In the design of bandpass/bandstop filters, we found that the constant c of the generalized
bilinear transformation of Eq. (12.13.1) was given by an expression of the form:

c = sin(ω1 +ω2)
sin(ω1)+ sin(ω2)

Show that it satisfies the stability condition |c| ≤ 1, regardless of the values of ω1 and ω2

in the interval [0,π].

12.15 Using a third-order analog lowpass Butterworth prototype filter and the bandpass bilinear
transformation of Eq. (12.13.1), design a digital bandpass filter operating at 20 kHz and
having attenuation of 0.5 dB at the frequencies 2 kHz and 8 kHz.

What is the transfer function of the designed filter? What are the upper and lower 3-dB
frequencies of this filter? What is its center frequency in kHz? Sketch roughly the magnitude
response over the range 0 ≤ f ≤ 30 kHz.

12.16 Carry out the algebra in Eq. (12.8.1) to show the coefficient equations (12.8.2) for designing
a digital lowpass Butterworth filter. Verify also Eq. (12.8.4).

Repeat for the highpass case, Eqs. (12.9.3)—(12.9.6). Repeat for the bandpass case, Eqs.
(12.10.4)–(12.10.7).

12.17 Prove Eqs. (12.10.8) for the left and right 3-dB frequencies of a bandpass Butterworth design.

12.18 The bandpass and bandstop Butterworth designs discussed in Sections 12.10 and 12.11
match the passband specifications exactly and use the more conservative of the two stop-
bands. Instead, if we were to match the stopbands exactly and use the more conservative
passband, what changes in the design procedure should we make?

12.19 Carry out the algebra of the bilinear transformation to verify the design equations of Eqs.
(12.12.20) and (12.12.34) for designing digital lowpass type 1 and type 2 Chebyshev filters.

12.20 Equations (12.12.8) and (12.12.13) define the Chebyshev poles si and the quantities {Ω0,Ωi}.
Show that they satisfy the following relationship, which is used in the second-order Cheby-
shev sections (12.12.14):

|si|2 = Ω2
0 +Ωi

2

12.21 The IIR cascade filtering routines cas.c or cas.m are appropriate for cascading second-
order sections and can be used in the lowpass and highpass designs. In bandpass and
bandstop designs, however, we have the cascade of fourth-order sections whose coefficients
are stored in the K×5 matrices A and B that are generated by the filter design functions,
such as bpcheb2.m, where K is the number of fourth-order sections.

Write C and/or MATLAB versions of the routine cas, say cas4, that works with fourth-order
sections. Its inputs must be the matrices A and B, a K×5 state matrix W whose rows are
the state vectors of the cascaded fourth-order sections, and the current input sample x. Its
outputs must be the current output sample y and the updated state matrix W. It must have
usage:

12.13. PROBLEMS 575

y = cas4(K, B, A, W, x); (C version)

[y, W] = cas4(K, B, A, W, x); (MATLAB version)

It must call K times a single fourth-order section routine, like the sos routine. Then, write
C and/or MATLAB filtering routines, like casfilt of Problem 7.15, that can filter a vector of
input samples producing a vector of output samples.

12.22 Computer Experiment: Butterworth Digital Filter Designs. Reproduce all the results and
graphs of the lowpass, highpass, bandpass, and bandstop Butterworth design Examples
12.8.1–12.11.1. You may use the MATLAB functions lhbutt.m and bpsbutt.m to design
the filters.

For each design, also do the following: Plot the phase response of the filter. Compute the
filter’s 5% time constant (you will need to use MATLAB’s root finder roots). Then, using
the routines cas.c or cas.m, (or cas4.c, cas4.m of Problem 12.21), compute and plot the
impulse response h(n) of the filter over a period lasting two time constants.

12.23 Computer Experiment: Chebyshev Digital Filter Designs. Reproduce all the results and graphs
of the lowpass, highpass, bandpass, and bandstop Chebyshev design Examples 12.12.1–
12.12.5. You may use the MATLAB functions lhcheb1, lhcheb2, bpcheb2, and bscheb2 to
design the filters.

For each design, also do the following: Plot the phase response of the filter. Compute the
filter’s 5% time constant. Then, compute and plot the impulse response h(n) of the filter
over a period lasting two time constants.

Since the specifications of the filters are the same as those of Problem 12.22, compare the
Butterworth and Chebyshev designs in terms of their order N and their phase response.

In both problems, the frequency responses can be computed with the included MATLAB
functions cas2can and dtft. For example, the frequency response of a type 2 bandstop
design can be computed as follows:

[A, B, P] = bscheb2(fs, fpa, fpb, fsa, fsb, Apass, Astop);
a = cas2can(A); direct-form denominator

b = cas2can(B); direct-form numerator

w = (0:NF-1) * pi / NF; NF frequencies over [0,π]
H = dtft(b, w) ./ dtft(a, w); compute H(ω) = N(ω)/D(ω)

13
Elliptic Filter Design

13.1 Introduction

Elliptic filters [302–330] also known as Cauer or Zolotarev filters, achieve the smallest
filter order for the same specifications, or, the narrowest transition width for the same
filter order, as compared to other filter types. On the negative side, they have the most
nonlinear phase response over their passband.† The following table compares the basic
filter types with regard to filter order and phase response:

In this chapter, we are primarily concerned with elliptic filters. But we will also
discuss briefly the design of Butterworth, Chebyshev-1, and Chebyshev-2 filters and
present a unified method of designing all cases. We also discuss the design of digital
IIR filters using the bilinear transformation method.

The typical “brick wall” specifications for an analog lowpass filter are shown in
Fig. 13.1.1 for the case of a monotonically decreasing Butterworth filter, normalized
to unity gain at DC.

The passband and stopband gains Gp,Gs and the corresponding attenuations in dB
are defined in terms of the “ripple” parameters εp, εs as follows:

Gp = 1√
1+ ε2

p
= 10−Ap/20 , Gs = 1√

1+ ε2
s

= 10−As/20 (13.1.1)

which can be inverted to give:

Ap = −20 log10 Gp = 10 log10(1+ ε2
p)

As = −20 log10 Gs = 10 log10(1+ ε2
s)

⇒
εp =

√
G−2
p − 1 =

√
10Ap/10 − 1

εs =
√
G−2
s − 1 =

√
10As/10 − 1

(13.1.2)

†Bessel filters have, by design, the most linear phase over their passband, discussed briefly in Sec. 14.4.4.

576

13.1. INTRODUCTION 577

Fig. 13.1.1 Brick wall specifications for a Butterworth filter.

Associated with these specifications, we define the following design parameters k, k1:

k = Ωp

Ωs
, k1 = εp

εs
(13.1.3)

where k, k1 are known as the selectivity and discrimination parameters, respectively.
Both are less than unity. A narrow transition width would imply that k � 1, whereas a
deep stopband or a flat passband would imply that k1 � 1. Thus, for most practical
desired specifications, we will have k1 � k � 1.

The magnitude responses of the analog lowpass Butterworth, Chebyshev, and elliptic
filters are given as functions of the analog frequency Ω by:†

|H(Ω)|2 = 1

1+ ε2
pF2

N(w)
, w = Ω

Ωp
(13.1.4)

where N is the filter order and FN(w) is a function of the normalized frequency w :

FN(w)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wN, Butterworth

CN(w), Chebyshev, type-1[
k1CN(k−1w−1)

]−1, Chebyshev, type-2

cd(NuK1, k1), w = cd(uK, k), Elliptic

(13.1.5)

where CN(x) is the order-N Chebyshev polynomial, that is, CN(x)= cos(N cos−1 x),
and cd(x, k) denotes the Jacobian elliptic function cd with modulus k and real quarter-
period K.

†Ω is in units of radians per second and is related to the frequency f in Hz by Ω = 2πf . For digi-
tal filter design, Ω is related to the physical digital frequency ω = 2πf/fs via the appropriate bilinear
transformation, e.g., for a lowpass design, Ω = tan(ω/2).

578 13. ELLIPTIC FILTER DESIGN

The Chebyshev-2 definition looks a little peculiar, but it is equivalent to that given
previously in Sec. 12.12. Indeed, noting that, k−1w−1 = (Ωs/Ωp)(Ωp/Ω)= Ωs/Ω, and
that, εs = εpk−1

1 , we can rewrite:

|H(Ω)|2 = 1

1+ ε2
pk−2

1 /C2
N(k−1w−1)

= 1

1+ ε2
s/C2

N(Ωs/Ω)
(13.1.6)

The normalized frequency w = 1 corresponds to the passband edge frequency Ω =
Ωp, whereas the value w = Ωs/Ωp = 1/k corresponds to the stopband edge, Ω = Ωs.
The requirement that the passband and stopband specifications are met at the corners
Ω = Ωp or w = 1 and Ω = Ωs or w = k−1 gives rise to the following design conditions:

|H(Ωp)|2 = 1

1+ ε2
pF2

N(1)
= 1

1+ ε2
p

⇒ FN(1)= 1

|H(Ωs)|2 = 1

1+ ε2
pF2

N(k−1)
= 1

1+ ε2
s

⇒ FN(k−1)= εs
εp
= 1

k1

(13.1.7)

Thus, in all four cases, the function FN(w) is normalized such that FN(1)= 1 and
must satisfy the following “degree equation” that relates the three design parameters
N,k, k1:†

FN(k−1)= k−1
1 (degree equation) (13.1.8)

In particular, we find that the degree equation takes the following forms in the But-
terworth and both Chebyshev cases:

k−N = k−1
1 ⇒ N = ln(k−1

1)
ln(k−1)

= ln(εs/εp)
ln(Ωs/Ωp)

CN(k−1) = k−1
1 ⇒ N = acosh(k−1

1)
acosh(k−1)

= acosh(εs/εp)
acosh(Ωs/Ωp)

(13.1.9)

These equations may be solved for any one of the three parameters N,k, k1 in terms
of the other two. Often, in practice, one specifies Ωp,Ωs and εp, εs, which fix the values
of k, k1. Then, Eqs. (13.1.9) may be solved for N, which must be rounded up to the next
integer value.

Since N is slightly increased, Eqs. (13.1.9) may be used to recompute either k in
terms of N,k1, or alternatively, k1 in terms of N,k. Because k is an increasing function
of N, and k1 a decreasing one, it follows that the final design will have slightly improved
specifications, either by making the transition width narrower (k gets nearer to 1), or by
increasing the stopband or decreasing the passband attenuations (k1 becomes smaller).

Fig. 13.1.2 shows an example designed with Butterworth, Chebyshev types-1&2, and
elliptic filters. Fig. 13.1.3 shows the corresponding phase responses (their piece-wise
nature arises because they are always wrapped modulo 2π to lie within [−π,π].) The
specifications were as follows:

fp = 4, Gp = 0.95, Ap = −20 log10 Gp = 0.4455 dB

fs = 4.5, Gs = 0.05, As = −20 log10 Gs = 26.0206 dB
(13.1.10)

†For Chebyshev-2, it is FN(1)= 1 that provides the desired relationship among N,k, k1.

13.1. INTRODUCTION 579

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Butterworth, N = 35

f

|H
(f

)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chebyshev− 1, N = 10

f

|H
(f

)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chebyshev− 2, N = 10

f

|H
(f

)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Elliptic, N = 5

f

|H
(f

)|

Fig. 13.1.2 Butterworth, Chebyshev, and elliptic design examples.

where the radian frequencies were computed as Ωp = 2πfp, Ωs = 2πfs. The design
parameters k, k1 were computed to be:

k = Ωp

Ωs
= fp
fs
= 0.8889

k1 = εp
εs
=
√

10Ap/10 − 1√
10As/10 − 1

=
√

100.04455 − 1√
102.60206 − 1

= 0.0165

(13.1.11)

We note that the elliptic design has the smallest filter order N, and the Butterworth,
the largest. The difference between the Chebyshev designs is that type-1 is equiripple in
the passband, whereas type-2 is equiripple in the stopband. It follows from Eq. (13.1.5)
that the replacement

CN(w)−→ 1

k1CN(k−1w−1)
causes the type-1 case to be replaced by the type-2 case, and the equal ripples in the
passband to become equal ripples in the stopband.

In the elliptic case, we want a filter that is equiripple in both the passband and the
stopband, as shown in Fig. 13.1.2. This will be accomplished if we can find a filter

580 13. ELLIPTIC FILTER DESIGN

0 1 2 3 4 5 6 7 8 9 10
−180

−120

−60

0

60

120

180
Butterworth, N = 35

f

A
rg

H
(f

),
 (

de
gr

ee
s)

0 1 2 3 4 5 6 7 8 9 10
−180

−120

−60

0

60

120

180
Chebyshev− 1, N = 10

f

A
rg

H
(f

),
 (

de
gr

ee
s)

0 1 2 3 4 5 6 7 8 9 10
−180

−120

−60

0

60

120

180
Chebyshev− 2, N = 10

f

A
rg

H
(f

),
 (

de
gr

ee
s)

0 1 2 3 4 5 6 7 8 9 10
−180

−120

−60

0

60

120

180
Elliptic, N = 5

f

A
rg

H
(f

),
 (

de
gr

ee
s)

Fig. 13.1.3 Phase responses.

function FN(w) that is equiripple in the passband and satisfies the identity:

FN(w)= 1

k1FN(k−1w−1)
(13.1.12)

which is equivalent to εpFN(Ω/Ωp)= εs/FN(Ωs/Ω), so that in this case the magnitude
response can be written as follows and will have ripples in both the passband and the
stopband:

|H(Ω)|2 = 1

1+ ε2
pF2

N(Ω/Ωp)
= 1

1+ ε2
s/F2

N(Ωs/Ω)
(13.1.13)

We note that the Butterworth filter also satisfies Eq. (13.1.12), because of the degree
equation k1 = kN, but in this case FN(w) is monotonic in both the passband and the
stopband.

13.2 Jacobian Elliptic Functions

Jacobian elliptic functions are a fascinating subject with many applications [313–320].
Here, we give some definitions and discuss some of the properties that are relevant in

13.2. JACOBIAN ELLIPTIC FUNCTIONS 581

filter design [309]. The elliptic function, w = sn(z, k), is defined indirectly through the
elliptic integral:

w = sinφ, z =
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ w

0

dt√
(1− t2)(1− k2t2)

(13.2.1)

where the second integral was obtained from the first by the change of variables t = sinθ
and w = sinφ. The parameter k is called the elliptic modulus† and is assumed to be a
real number in the interval, 0 ≤ k ≤ 1. Thus, writing, φ = φ(z, k), the function sn is
defined as:

w = sn(z, k)= sinφ(z, k) (13.2.2)

The three related elliptic functions, cn, dn, cd, are defined in terms of sn by:

w = cn(z, k)= cosφ(z, k)= cos
[
arcsin

(
sn(z, k)

)]
w = dn(z, k)=

√
1− k2 sn2(z, k)

w = cd(z, k)= cn(z, k)
dn(z, k)

(13.2.3)

In filter design, only the functions sn and cd are needed. In the limits k = 0 and
k = 1, we obtain the trigonometric and hyperbolic functions, respectively:

sn(z,0)= sinz , sn(z,1)= tanhz
cn(z,0)= cosz , cn(z,1)= sechz
dn(z,0)= 1 , dn(z,1)= sechz
cd(z,0)= cosz , cd(z,1)= 1

(13.2.4)

The functions sn, cn, dn, cd satisfy the following properties, where k′ = (1− k2)1/2:

sn2(z, k)+ cn2(z, k)= 1

k2 sn2(z, k)+dn2(z, k)= 1

dn2(z, k)−k2 cn2(z, k)= k′2

k′2 sn2(z, k)+ cn2(z, k)= dn2(z, k)

sn2(z, k)= 1− cd2(z, k)
1− k2 cd2(z, k)

(13.2.5)

The value of z at φ = π/2 in Eq. (13.2.1) defines the so-called complete elliptic
integral of the first kind, which is denoted by K(k) or simply K:

K =
∫ π/2

0

dθ√
1− k2 sin2 θ

(complete elliptic integral) (13.2.6)

It follows from the definitions (13.2.2) and (13.2.3) that, sn(K, k)= 1, and, cd(K, k)=
0. Associated with an elliptic modulus k, we may define the complementary modulus

†In some discussions, as well as in MATLAB, the parameter m = k2 is used instead of k.

582 13. ELLIPTIC FILTER DESIGN

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

k

K(k) and K ’(k)

K(k)

K ’(k)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

k2

K and K ’ plotted versus k2

K(k)

K ’(k)

Fig. 13.2.1 Complete elliptic integrals K(k) and K′(k), where K(0)= K′(1)= π/2.

k′ = (1 − k2)1/2 and its associated complete elliptic integral K(k′) denoted by K′(k)
or simply K′:

K′ =
∫ π/2

0

dθ√
1− k′2 sin2 θ

=
∫ π/2

0

dθ√
1− (1− k2)sin2 θ

, k′ =
√

1− k2 (13.2.7)

The quantities K,K′ are referred to as quarter periods. At the end-point, k = 0, we
have K = π/2, K′ = ∞; at the other end, k = 1, we have K = ∞, K′ = π/2. Fig. 13.2.1
shows a plot of K,K′ versus k. The curves intersect at k = 1/

√
2 and are symmetric if

plotted versus k2.
The significance of the quarter periods K,K′ is that sn and cd are doubly-periodic

functions in the z-plane with a real period 4K and a complex period 2jK′.
Fig. 13.2.2 shows the graphs of, w = sn(uK, k), and, w = cd(uK, k), plotted over

two real periods for different values of k. The argument of the functions is z = uK,
where u is in units of the quarter period K, so that the plotting range −4 ≤ u ≤ 4 is
equivalent to two real periods −4K ≤ z ≤ 4K.

For k ≤ 0.5, sn(uK, k) and cd(uK, k) are almost identical to the trigonometric
functions sin(uπ/2) and cos(uπ/2), that is, to the limiting case k = 0.

We note that sn(z, k) is an odd function of z, and cd(z, k), an even function. More-
over, by analogy with the property that a cosine and sine are shifted relative to each
other by a quarter period 2π/4 = π/2, that is, cosz = sin(z+π/2)= sin(π/2−z), the
functions cd and sn are shifted by a quarter period K, satisfying the following identity,
which is valid for all complex values of z and can be used as an alternative definition of
the function cd:

cd(z, k)= sn(z+K,k)= sn(K − z, k) (13.2.8)

This property is evident in Fig. 13.2.2. The functions dn(uK, k) and dn(uK′, k′)
are plotted in Fig. 13.2.3 for the values k = 0.8 and k′ = √

1− k2 = 0.6. Because
dn(uK, k)= √1− k2 sn2(uK, k), we have the range of variation k′ ≤ dn(uK, k)≤ 1, for
real u, and similarly, k ≤ dn(uK′, k′)≤ 1.

13.2. JACOBIAN ELLIPTIC FUNCTIONS 583

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

sn(uK,k)

k = 0.500
k = 0

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

cd(uK,k)

k = 0.500
k = 0

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

k = 0.900
k = 0

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

k = 0.900
k = 0

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

k = 0.950
k = 0

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

k = 0.950
k = 0

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

k = 0.999
k = 0

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

u

k = 0.999
k = 0

Fig. 13.2.2 Elliptic functions sn and cd.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

u

dn(uK,k), k = 0.8

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

u

dn(uK′,k′), k′ = 0.6

Fig. 13.2.3 The function dn with complementary moduli k = 0.8 and k′ = 0.6.

Four additional properties, which will prove useful in filter design, are:

cd
(
z+ (2i− 1)K, k

) = (−1)isn(z, k) , for any integer i (13.2.9)

cd(z+ 2iK, k)= (−1)icd(z, k) , for any integer i (13.2.10)

cd(z+ jK′, k)= 1

k cd(z, k)
(13.2.11)

cd(jz, k)= 1

dn(z, k′)
, for real z (13.2.12)

584 13. ELLIPTIC FILTER DESIGN

In particular, setting z = 0 in (13.2.11), or, z = K′ in (13.2.12), we obtain:

cd(jK′, k)= 1

k
(13.2.13)

The naming convention of the Jacobian elliptic functions may be understood with
reference to the so-called fundamental rectangle on the complex z-plane with corners
at {0, K, jK′, K+ jK′}, as shown in Fig. 13.2.4, where these corners are labeled with the
letters S,C,N,D.

Fig. 13.2.4 The fundamental rectangle.

An elliptic function pq(z, k) is named such that the first letter p can be any of the
four letters {s, c, d, n}, and the second letter q, any of the remaining three letters. Thus,
there are 4×3 = 12 Jacobian elliptic functions, namely,

sn, sd, sc, cn, cd, cs, dn, dc, ds, ns, nd, nc

Each function pq(z, k) has a simple zero at corner p and a simple pole at corner q of
the fundamental rectangle. For example, sn(z, k) has a zero at the point S, z = 0, and
a pole at the point N, z = jK′. Similarly, cd(z, k) has a zero at the point C, z = K, and
a pole at the point D, z = K + jK′. Moreover, the following relationships hold:

pq(z, k)= 1

qp(z, k)
, pq(z, k)= pr(z, k)

qr(z, k)
(13.2.14)

where r is any one of the letters {s, c, d, n} distinct from p and q, for example, as we
saw in Eq. (13.2.3), cd(z, k)= cn(z, k)/dn(z, k).

The zeros and poles of the function pq are congruent modulo 2K and 2jK′ to those
at the corners p and q of the fundamental rectangle. In particular, the zeros and poles
of cd(z, k), shown in Fig. 13.2.5, are given follows, where n,m are arbitrary integers
(positive, negative, or zero):

zeros: z = K + 2mK + 2njK′ = (2m+ 1)K + 2njK′

poles: z = K + jK′ + 2mK + 2njK′ = (2m+ 1)K + (2n+ 1)jK′
(13.2.15)

The functions, w = cd(z, k), and, w = sn(z, k), map the z-plane conformally onto
the w-plane. The smallest region of the z-plane that gets mapped onto the whole of
the w-plane is called a fundamental region. For each function pq(z, k), such a region

13.2. JACOBIAN ELLIPTIC FUNCTIONS 585

Fig. 13.2.5 Pole and zero patterns of the function cd(z, k).

is centered at the zero point p and surrounded by four fundamental rectangles, each
rectangle being mapped onto a particular quadrant of the w-plane [309]. For example,
the fundamental regions of the cd(z, k) and sn(z, k) functions are centered at the points
C and S, respectively, and are defined by:

cd(z, k): 0 ≤ Rez ≤ 2K , −K′ ≤ Imz ≤ K′

sn(z, k): −K ≤ Rez ≤ K , −K′ ≤ Imz ≤ K′
(fundamental regions)

(13.2.16)

Fig. 13.2.6 Fundamental region, quadrant mappings, and period rectangle of the function w =
cd(z, k).

These are shown in Figs. 13.2.6 and 13.2.7. The w-plane quadrants to which the
z-plane quadrants map have been labeled by the quadrant numbers {1,2,3,4}. In par-
ticular, we note in Fig. 13.2.6 that the bottom two z-plane quadrants are mapped onto
the first and second w-plane quadrants, that is, z = z1 − jz2 with 0 ≤ z1 ≤ 2K and
0 < z2 < K′ gets mapped ontow = w1+jw2 withw2 > 0. Because the s-plane is related

586 13. ELLIPTIC FILTER DESIGN

to the frequency plane by s = jw, it follows that the first and second w-plane quadrants
will get mapped onto the left-hand s-plane, indeed, s = j(w1 + jw2)= −w2 + jw1. This
property will be used in the construction of the analog filter’s left-hand s-plane poles.

Fig. 13.2.7 Fundamental region, quadrant mappings, and period rectangle of the function w =
sn(z, k).

Recalling that the periods of cd and sn are 4K and 2jK′, we have doubled-up the
fundamental regions in Figs. 13.2.6 and 13.2.7 to cover one complete period rectangle,
that is,

cd(z, k): 0 ≤ Rez ≤ 4K , −K′ ≤ Imz ≤ K′

sn(z, k): −K ≤ Rez ≤ 3K , −K′ ≤ Imz ≤ K′
(period rectangles) (13.2.17)

Of particular interest to filter design is the property that for the function, w =
cd(z, k), the path around the fundamental rectangle C → S → N → D shown in
Fig. 13.2.6, from the zero C to the pole D, gets mapped onto the positive real w-axis,
such that the individual path segments, parametrized with the real parameter 0 ≤ u ≤ 1,
get mapped as follows:

path C→ S, 0 ≤ u ≤ 1, z = K −Ku ⇒ 0 ≤ w ≤ 1, passband

path S → N, 0 ≤ u ≤ 1, z = jK′u ⇒ 1 ≤ w ≤ 1/k, transition region

path N → D, 0 ≤ u ≤ 1, z = Ku+ jK′ ⇒ 1/k ≤ w ≤ ∞, stopband
(13.2.18)

Because of the filter definition, Eq. (13.1.5), the above intervals of the w = Ω/Ωp
axis will correspond to the passband, transition region, and stopband. Similarly, the
continuation of the path to D→ N− → S− → C covers the negative w-axis.

To verify these properties, we note that for the first segment C → S, the argument
z = K − Ku is real and the values of w = cd(K − Ku,k)= sn(Ku, k) will vary over
the interval 0 ≤ w ≤ 1, as seen in Fig. 13.2.2. For the segment S → N, using property
(13.2.12), we have w = cd(juK′, k)= 1/dn(uK′, k′), which increases from w = 1 at
u = 0 to the value w = cd(jK′, k)= 1/dn(K′, k′)= 1/k at u = 1. Finally, for the
segment N → D, we use the property (13.2.11) to get:

w = cd(Ku+ jK′, k)= 1

k cd(Ku, k)

13.3. ELLIPTIC RATIONAL FUNCTION AND THE DEGREE EQUATION 587

with a starting value of k cd(0, k)= k in the denominator or w = 1/k, and an ending
value of k cd(K, k)= 0 or w = ∞.

In filter design, it is also required to be able to invert the functions w = cd(z, k) and
w = sn(z, k), that is, to determine the value of z corresponding to a given complex-
valued w. The resulting z is not unique. However, z becomes unique if it is restricted to
lie within the fundamental region, that is, satisfying Eqs. (13.2.16). We will denote such
an inverse by z = cd−1(w, k) or z = acd(w, k). We note that within a period rectangle
there are two values of z, the one in the fundamental region, the other in the adjacent
region.

For example, if z = cd−1(w, k) lies in the fundamental region, then z1 = 4K − z
lies in the adjacent region and both satisfy w = cd(z, k)= cd(z1, k). Similarly, for the
sn function the inverses are z and z1 = 2K − z, with z satisfying −K ≤ Rez ≤ K and
K ≤ Rez1 ≤ 3K, and w = sn(z, k)= sn(z1, k).

The MATLAB functions acde and asne mentioned in Sect. 13.4 allow the computation
of these inverse functions. Because sn(z, k)= cd(K−z, k), the inverse of the sn function
may be computed from the inverse of cd, by z = K − cd−1(w, k).

13.3 Elliptic Rational Function and the Degree Equation

The analog filter characteristic functionFN(w)was defined in the elliptic case by Eq. (13.1.5)
in terms of the cd function [309]:

FN(w)= cd(NuK1, k1) , w = cd(uK, k) (13.3.1)

where w = cd(uK, k) may be inverted to give u as a function of w, that is, uK =
cd−1(w, k). This indirect way of writing the function FN(w) is analogous to the Cheby-
shev -1 case, which can be thought of as the limit k = k1 = 0 of the elliptic case:

CN(w)= cos(Nuπ/2) , w = cos(uπ/2) (13.3.2)

where in this limit, we have, K = K1 = π/2. In order for the function FN(w) to satisfy
the identity of Eq. (13.1.12), the three parameters N,k, k1 must satisfy the following
constraint, which is known as the degree equation for elliptic filters:

N
K′

K
= K′1
K1

(degree equation) (13.3.3)

where K,K1 are the complete elliptic integrals (13.2.6) corresponding to the moduli
k, k1, andK′, K′1 are the complete elliptic integrals corresponding to the complementary
moduli k′ = (1 − k2)1/2 and k′1 = (1 − k2

1)1/2. To verify this constraint, we use the
definition (13.3.1) and Eq. (13.2.11) to obtain:

k−1w−1 = 1

k cd(uK, k)
= cd(uK + jK′, k)= cd

((
u+ jK′

K

)
K,k

)

FN(k−1w−1) = cd
(
N
(
u+ jK′

K

)
K1, k1

)
= cd

(
NuK1 + jNK′K1

K
,k1

) (13.3.4)

588 13. ELLIPTIC FILTER DESIGN

and using Eq. (13.2.11) again, applied with respect to the modulus k1, we have:

1

k1FN(w)
= 1

k1 cd(NuK1, k1)
= cd(NuK1 + jK′1, k1) (13.3.5)

Comparing Eqs. (13.3.4) and (13.3.5), we conclude that in order to satisfy the constraint,
FN(k−1w−1)= [k1FN(w)

]−1
, the following identity must be satisfied for all u:

cd
(
NuK1 + jNK′K1

K
,k1

)
= cd(NuK1 + jK′1, k1) ⇒ NK′K1

K
= K′1 (13.3.6)

from which Eq. (13.3.3) follows. We will see below that condition (13.1.8) that was ob-
tained earlier,

FN(k−1)= k−1
1 (13.3.7)

actually provides the solution of Eq. (13.3.3) for the parameter k1 in terms of N,k, or for
the parameter k in terms of N,k1. Using Eq. (13.3.3), we may also determine the values
of FN(w) along the z-plane path C → S → N → D. It follows from Eq. (13.2.18) and
(13.3.1) that

C→ S, w = cd(K −Ku, k), FN(w)= cd(NK1 −NK1u, k1)

S → N, w = cd(juK′, k), FN(w)= cd(juK′1, k1)= 1/dn(uK′1, k′1)

N → D, w = cd(Ku+ jK′, k), FN(w)= cd(NK1u+ jK′1, k1)=
[
k1 cd(NK1u, k1)

]−1

(13.3.8)
For the path C→ S, FN(w) is equiripple and bounded by |FN(w)| ≤ 1. For the path

S → N, we have, using the degree equation (13.3.3):

w = cd
(
(juK′/K)K, k

) ⇒

FN(w)= cd
(
jNK1(juK′/K), k1

) = cd(juK′1, k1)= 1

dn(uK′1, k′1)

and therefore, FN(w) is an increasing function taking the values 1 ≤ |FN(w)| ≤ 1/k1.
Finally, for N → D, we have, using w = cd(Ku+ jK′, k)= cd

(
(u+ jK′/K)K, k) and the

degree equation:

FN(w)= cd
(
jNK1(u+ jK′/K), k1

) = cd(NK1u+ jK′1, k1)= 1

k1 cd(NK1u, k1)

Thus, the inverse 1/FN(w)= k1 cd(NK1u, k1) is equiripple and remains bounded in
the interval,

∣∣1/FN(w)
∣∣ ≤ k1. These properties cause the magnitude response (13.1.4)

to be equiripple in the passband and the stopband, and be monotonically decreasing in
the transition band.

Next, we constructFN(w) as a rational function ofw. In the same way that Eq. (13.3.2)
implies that CN(w) is a polynomial of degree N, Eq. (13.3.1) implies that FN(w) will be
a rational function of w of order N.

Let us look briefly at the construction of CN(w) in terms of its zeros. Then, we will
use the same technique to construct FN(w). Setting N = 2L + r, where r = 0 if N is
even, and r = 1 if N is odd, with L representing the number of second-order sections,
we note that CN(w) is even in w if N is even, and odd if N is odd. Thus, CN(w) can

13.3. ELLIPTIC RATIONAL FUNCTION AND THE DEGREE EQUATION 589

be factored in the form CN(w)= [w]rG(w2), where [w]r means that the factor w is
present if r = 1 and absent if r = 0, and G(w2) will be an L-th degree polynomial in
w2. To construct it, we solve the equation CN(w)= 0, or,

cos(Nuπ/2)= 0 ⇒ Nui
π
2
= (2i− 1)

π
2
, or,

ui = 2i− 1

N
, i = 1,2, . . . , L (13.3.9)

with the zeros of CN(w) constructed by

ζi = cos
(
uiπ

2

)
, i = 1,2, . . . , L (13.3.10)

resulting in the Nth degree polynomial CN(w):

CN(w)= [w]r
L∏
i=1

w2 − ζ2
i

1− ζ2
i

(13.3.11)

normalized such that CN(1)= 1. Thus, Eq. (13.3.11) is the representation of the poly-
nomial CN(w) in terms of its N zeros.

Next, we construct the function FN(w). It follows from the definition (13.3.1) that
FN(w)will be an even (odd) function ofw ifN is even (odd). Indeed, applying Eq. (13.2.10)
with i = 1 and i = N:

−w = − cd(uK, k)= cd(uK + 2K,k)= cd
(
(u+ 2)K, k

)
FN(−w) = cd

(
N(u+ 2)K1, k1

) = cd(NuK1 + 2NK1, k1)

= (−1)Ncd(NuK1, k1)= (−1)NFN(w)

The zeros of FN(w) are obtained by solving the equation, cd(NuK1, k1)= 0. It follows
from Eq. (13.2.15) that:

cd(NuK1, k1)= 0 ⇒ NuiK1 = (2i− 1)K1 or,

ui = 2i− 1

N
, i = 1,2, . . . , L (13.3.12)

so that the ui are the same as those in Eq. (13.3.9). Thus, the corresponding zeros of
FN(w) will be at the frequencies, wi = cd(uiK, k), and we denote them by:

ζi = cd(uiK, k) , i = 1,2, . . . , L (13.3.13)

Because of the relationship FN(k−1w−1)= [
k1FN(w)

]−1
, the frequencies wi =

(kζi)−1 will be the poles of FN(w). Thus, we may construct FN(w) as a rational func-
tion from its poles and zeros, and normalize it such that FN(1)= 1:

FN(w)= [w]r
L∏
i=1

[(
w2 − ζ2

i
1−w2k2ζ2

i

)(
1− k2ζ2

i
1− ζ2

i

)]
(13.3.14)

590 13. ELLIPTIC FILTER DESIGN

Eq. (13.3.14) is known as an elliptic rational function, or a Chebyshev rational function.
We note that in the limit k = 0, Eq. (13.3.13) reduces to (13.3.10), and Eq. (13.3.14)
reduces to (13.3.11).

Next, we obtain the solution of the degree equation (13.3.3). Using the condition
(13.3.7) and setting w = 1/k and FN(w)= 1/k1 in Eq. (13.3.14), we obtain the following
formula for k1 in terms of N,k:

k−1
1 = [k−1]r L∏

i=1

[(
k−2 − ζ2

i
1− ζ2

i

)(
1− k2ζ2

i
1− ζ2

i

)]
= [k−1]2L+r

L∏
i=1

(
1− k2ζ2

i
1− ζ2

i

)2

Noting that N = 2L+ r, this can be rearranged into:

k1 = kN
L∏
i=1

sn4(uiK, k) (degree equation) (13.3.15)

where we used the property (1−ζ2
i)/(1−k2ζ2

i)= sn2(uiK, k), which follows from the
last of Eqs. (13.2.5). Noting the invariance [312] of the degree equation (13.3.3) under
the substitutions k → k′1 and k1 → k′, we also obtain the exact solution for k in terms
of N,k1, expressed via the complementary moduli k′, k′1:

k′ = (k′1)N L∏
i=1

sn4(uiK′1, k′1) (degree equation) (13.3.16)

Eqs. (13.3.15) and (13.3.16)—known as the modular equations—were derived first by
Jacobi in his original treatise on elliptic functions [313] and have been used since in the
context of elliptic filter design [307,311,312].

The degree equation can also be solved approximately, and accurately, by working
with the so-called nomes q,q1, corresponding to the moduli k, k1, defined by

q = e−πK
′/K , q1 = e−πK

′
1/K1

Exponentiating the degree equation (13.3.3), we have:

q1 = qN � q = q1/N
1 (13.3.17)

Once q has been calculated from N and q1, the modulus k can be determined from
the following series expansion [317], which converges very fast:

k = 4
√
q

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=0

qm(m+1)

1+ 2
∞∑

m=1

qm
2

⎤⎥⎥⎥⎥⎥⎦
2

(13.3.18)

For example, keeping only the terms up to m = 7, gives a very accurate approximation.

13.4. LANDEN TRANSFORMATIONS 591

13.4 Landen Transformations

The key tool for the evaluation of the elliptic functions w = cd(z, k) and w = sn(z, k)
at any complex-valued argument z is the Landen transformation [309,318], which starts
with a given elliptic modulus k and generates a sequence of decreasing moduli kn via
the following recursion, initialized at k0 = k:

kn =
(

kn−1

1+ k′n−1

)2

, n = 1,2, . . . ,M (13.4.1)

where k′n−1 = (1 − k2
n−1)1/2. The moduli kn decrease rapidly to zero. The recursion

is stopped at n = M when kM has become smaller than a specified tolerance level, for
example, smaller than the machine epsilon.† For all practical values of k, such as those
in the range 0 ≤ k ≤ 0.999, the recursion may be stopped at M = 5, with all subsequent
kn being smaller than 10−15, while for k ≤ 0.99, the subsequent kn remain smaller than
10−20. The recursion (13.4.1) may also be written in the equivalent form:

kn = 1− k′n−1

1+ k′n−1

The inverse of the recursion (13.4.1) is:

kn−1 = 2
√
kn

1+ kn
, n =M,M−1, . . . ,1 (13.4.2)

The Landen recursions (13.4.1) imply the following recursions [318] for the complete
elliptic integral, Kn = K(kn), corresponding to the modulus kn:

Kn−1 = (1+ kn)Kn (13.4.3)

The recursion (13.4.3) can be repeated to compute the elliptic integral K = K(k) at
the initial modulus k, that is, K = K0 = (1 + k1)K1 = (1 + k1)(1 + k2)K2, and so on,
yielding after M iterations:

K = (1+ k1)(1+ k2)· · · (1+ kM)KM , KM = π
2

(13.4.4)

Because kM is almost zero, its elliptic integral will be essentially equal to KM =
π/2. The elliptic integral K′ can be computed in the same way by applying the Landen
recursion to k′. Floating point accuracy limits the applicability of Eq. (13.4.4) to roughly
the range 0 ≤ k ≤ kmax, where kmax = (1 − k2

min)1/2, with kmin = 10−6. For k in the
range kmax < k ≤ 1− ε, where ε is the machine epsilon, one may use the expansion:

K = L+ (L− 1)
k′2

2
, L = − ln

(
k′

4

)
, k′ = (1− k2)1/2

†The machine epsilon for MATLAB is, ε = 2−52 = 2.2204×10−16.

592 13. ELLIPTIC FILTER DESIGN

The Landen transformations allow also the efficient evaluation of the elliptic func-
tions cd and sn via the following backward recursion, known as the Gauss transformation
[318], and written in the notation of [309]:

1

cd(uKn−1, kn−1)
= 1

1+ kn

[
1

cd(uKn, kn)
+ kn cd(uKn, kn)

]
(13.4.5)

for n = M,M−1, . . . ,1. The recursion is initialized at n = M where kM is so small that
the cd function is indistinguishable from a cosine, that is, cd(uKM, kM)� cos(uπ/2).
Thus, the computation of w = cd(uK, k), at any complex value of u, proceeds by cal-
culating the quantities wn = cd(uKn, kn), initialized at wM = cos(uπ/2), and ending
with w0 = w = cd(uK, k):

w−1
n−1 =

1

1+ kn

[
w−1
n + knwn

]
, n =M,M−1, . . . ,1 (13.4.6)

The function, w = sn(uK, k), can be evaluated by the same recursion, initialized at
wM = sin(uπ/2). The recursion (13.4.6) can also be used to calculate the inverse cd
and sn functions by inverting it to proceed forward from n = 1 to n =M:

w−1
n = 1+ kn

2

[
w−1
n−1 +

√
w−2
n−1 − k2

n−1

]
, n = 1,2, . . . ,M (13.4.7)

Starting with a given complex value w = cd(uK, k), and setting w0 = w, the recur-
sion will end at,wM = cos(uπ/2), which may be inverted to yield, u = (2/π)acos(wM).
Because u is not unique, it may be reduced to lie within its fundamental region, 0 ≤
Re(u)≤ 2 and 0 ≤ ∣∣Im(u)

∣∣ ≤ K′/K. The inverse of w = sn(uK, k) is obtained from
the same recursion, but with, u = (2/π)asin(wM), and reduced to lie in,−1 ≤ Re(u)≤ 1
and 0 ≤ ∣∣Im(u)

∣∣ ≤ K′/K.
The evaluation of the cd elliptic function at a complex argument can also be carried

out via the addition theorem [318]:

cd(u+ jv, k)= cn(u, k)cn(v, k′)−j sn(u, k)dn(u, k)sn(v, k′)dn(v, k′)
dn(u, k)cn(v, k′)dn(v, k′)−jk2 sn(u, k)cn(u, k)sn(v, k′)

(13.4.8)

We note also the following identity, valid for evenN with the ui defined as in Eq. (13.3.9):

L∏
i=1

cd(uiK, k)=
L∏
i=1

sn(uiK, k) (13.4.9)

where N = 2L. It may be used to derive the values of the function FN(w) at w = 0 and
w = ∞, that is, F2L(0)= (−1)L and F2L(∞)= (−1)L/k1.

All elliptic function computations described above can be carried out by the following
set of MATLAB functions [329,330]:

landen Landen transformation, Eq. (13.4.1)

cde,acde cd elliptic function and its inverse, Eqs. (13.4.6) and (13.4.7)

sne,asne sn elliptic function and its inverse, Eqs. (13.4.6) and (13.4.7)

cne,dne cn and dn elliptic functions (for real arguments)

ellipk complete elliptic integral K(k), Eq. (13.4.4)

ellipdeg exact solution of degree equation (k from N,k1), Eq. (13.3.16)

ellipdeg1 exact solution of degree equation (k1 from N,k), Eq. (13.3.15)

ellipdeg2 solution of degree equation using nomes, Eq. (13.3.18)

elliprf elliptic rational function, Eq. (13.3.14)

13.5. ANALOG ELLIPTIC FILTER DESIGN 593

13.5 Analog Elliptic Filter Design

The transfer function of an elliptic (as well as Butterworth and Chebyshev) lowpass ana-
log filter is constructed from its zeros and poles {zai, pai} in the second-order factored
form:†

Ha(s)= H0

[
1

1− s/pa0

]r L∏
i=1

[
(1− s/zai)(1− s/z∗ai)
(1− s/pai)(1− s/p∗ai)

]
(13.5.1)

where L is the number of analog second-order sections, related to the filter order by
N = 2L + r. Again, the notation [F]r means that the factor F is present if r = 1 and
absent if r = 0. The quantity H0 is the gain at Ω = 0 and is given as follows:

H0 =
⎧⎨⎩1, Butterworth and Chebyshev-2

G1−r
p , Chebyshev-1 and Elliptic

(13.5.2)

where Gp = (1 + ε2
p)−1/2 is the passband gain. The variable s must be replaced by

s = jΩ = j2πf to get the filter’s frequency response. Multiplying the second-order
factors, we may write the transfer function in the form:

H(s)= H0

[
1

1+A01s

]r L∏
i=1

[
1+ Bi1s+ Bi2s2

1+Ai1s+Ai2s2

]
(13.5.3)

where the numerator and denominator coefficients are given by

[1, Bi1, Bi2] =
[

1, −2 Re
(

1

zai

)
,

1

|zai|2
]

[1, Ai1, Ai2] =
[

1, −2 Re
(

1

pai

)
,

1

|pai|2
]

[1, A01] =
[

1, − 1

pa0

] (13.5.4)

Because the magnitude response corresponding to Eq. (13.5.1) is given by

|H(Ω)|2 = 1

1+ ε2
pF2

N(w)
, w = Ω

Ωp
, (13.5.5)

it follows that the zeros zai will arise from the poles ofFN(w), and the polespai will arise
from the zeros of the denominator, that is, 1 + ε2

pF
2
N(w)= 0. We saw in the previous

section that the poles of FN(w) occur at the normalized frequencies wi = (kζi)−1.
Therefore, taking into account the normalization factor Ωp, the denormalized s-plane
zeros zai = Ωp jwi will be:

zai = Ωp j(kζi)−1 , i = 1,2, . . . , L (s-plane zeros) (13.5.6)

†The Butterworth and Chebyshev-1 cases do not have any zero factors.

594 13. ELLIPTIC FILTER DESIGN

The poles pai are found by solving the equation: 1+ ε2
pF

2
N(w)= 0, or,

FN(w)= ±j 1

εp
(13.5.7)

The complex-frequency solutions wi of (13.5.7) determine the denormalized poles
by setting, pai = Ωp jwi. The resulting left-hand s-plane poles pai are found to be:

pai = Ωp j cd
(
(ui − jv0)K, k

)
, i = 1,2, . . . , L (left-hand s-plane poles) (13.5.8)

where the ui are the same as in Eq. (13.3.12), and v0 is the real-valued solution of the
equation:

sn(jv0NK1, k1)= j
1

εp
⇒ v0 = − j

NK1
sn−1

(
j
εp
, k1

)
(13.5.9)

As noted earlier in Fig. 13.2.6, the bottom two quadrants of the fundamental rectan-
gle on the z- or u-plane get mapped onto the left-hand s-plane. If N is odd, there is an
additional real-valued left-hand s-plane pole pa0 obtained from Eq. (13.5.8) by setting
ui = 1 (which corresponds to the index i = L+ 1):

pa0 = Ωp j cd
(
(1− jv0)K, k

) = Ωp j sn(jv0K,k) (13.5.10)

To verify that wi = cd
(
(ui − jv0)K, k

)
is a solution of Eq. (13.5.7), we use the defi-

nition (13.3.1), property (13.2.9), and condition (13.5.9) to obtain:

FN(wi) = cd
(
(ui − jv0)NK1, k1

)
= cd(uiNK1 − jv0NK1, k1)= cd

(
(2i− 1)K1 − jv0NK1, k1

)
= (−1)isn(−jv0NK1, k1)= −(−1)isn(jv0NK1, k1)= ±j 1

εp

13.6 Design Example

To clarify the above design steps, we give the MATLAB code for calculating the zeros,
poles, and transfer function of the elliptic example of Fig. 13.1.2.

fp = 4; fs = 4.5; Gp = 0.95; Gs = 0.05; % filter specifications

Wp = 2*pi*fp; Ws = 2*pi*fs;

ep = sqrt(1/Gp^2 - 1); es = sqrt(1/Gs^2 - 1); % ripples εp = 0.3287, εs = 19.9750

k = Wp/Ws; % k = 0.8889

k1 = ep/es; % k1 = 0.0165

[K,Kp] = ellipk(k); % elliptic integrals K = 2.2353, K′ = 1.6646

[K1,K1p] = ellipk(k1); % elliptic integrals K1 = 1.5709, K′1 = 5.4937

Nexact = (K1p/K1)/(Kp/K); N = ceil(Nexact); % Nexact = 4.6961, N = 5

13.6. DESIGN EXAMPLE 595

k = ellipdeg(N,k1); % recalculated k = 0.9143

fs_new = fp/k; % new stopband fs = 4.3751

L = floor(N/2); r = mod(N,2); i = (1:L)’; % L = 2, r = 1, i = [1; 2]
u = (2*i-1)/N; zeta_i = cde(u,k); % ui = [0.2; 0.6], ζi = [0.9808; 0.7471]

za = Wp * j./(k*zeta_i); % filter zeros

v0 = -j*asne(j/ep, k1)/N; % v0 = 0.2331

pa = Wp * j*cde(u-j*v0, k); % filter poles

pa0 = Wp * j*sne(j*v0, k);

B = [ones(L,1), -2*real(1./za), abs(1./za).^2]; % numerator second-order sections

A = [ones(L,1), -2*real(1./pa), abs(1./pa).^2]; % denominator second-order sections

if r==0, % prepend first-order sections

B = [Gp, 0, 0; B]; % DC gain is H0 = Gp , if N is even

A = [1, 0, 0; A];
else
B = [1, 0, 0; B]; % DC gain is H0 = 1, if N is odd

A = [1, -real(1/pa0), 0; A];
end

f = linspace(0,10,2001);

for n=1:length(f), % calculate frequency response

s = j*2*pi*f(n); % s = jΩ = 2πjf
H(n) = prod((B(:,1) + B(:,2)*s + B(:,3)*s^2)./... % cascade filter sections

(A(:,1) + A(:,2)*s + A(:,3)*s^2));
end % alternatively, use H=fresp_a(B,A,f)

plot(f,abs(H),’r-’);

xlim([0,10]); ylim([0,1.1]); grid off;
set(gca, ’xtick’, 0:1:10); set(gca, ’ytick’, 0:0.1:1);

title(’Elliptic, N = 5’);
xlabel(’f’); ylabel(’|H(f)|’);

line([0,fp],[1,1]); line([fp,fp],[1,1.05]); % draw brick-wall specs

line([0,fp],[Gp,Gp]); line([fp,fp],[Gp,0]);
line([fs_new,10],[Gs,Gs]); line([fs,fs],[4*Gs,Gs]);

The filter order was determined by calculating the exact value of N that satisfies the
degree equation (13.3.3), that is, Nexact = (K′1/K1)/(K′/K), and then, rounding it up to
the next integer. With the slightly increased integer value of N, the degree equation is
no longer satisfied with the given k, k1. To satisfy it exactly, we recalculate k from N,k1

using Eq. (13.3.16). The resulting k is slightly larger than the original one, and hence,
the effective stopband fs = fp/k will be slightly smaller, making the transition width

596 13. ELLIPTIC FILTER DESIGN

narrower. The calculated zeros and poles of the filter are, for N = 5 and L = 2:

z1 = 28.0265j
z2 = 36.7945j

p0 = −15.1717
p1 = −1.0115+ 25.4353j
p2 = −6.2951+ 21.4113j

The resulting first- and second-order numerator and denominator coefficients of the
transfer function (13.5.1) are the rows of the matrices B and A, respectively:

B =
⎡⎢⎣ 1 0 0

1 0 0.00127
1 0 0.00074

⎤⎥⎦ , A =
⎡⎢⎣ 1 0.06591 0

1 0.00312 0.00154
1 0.02528 0.00201

⎤⎥⎦ (13.6.1)

Thus, the transfer function will be, with s = 2πjf :

H(s)= 1

1+ 0.06591 s
· 1+ 0.00127 s2

1+ 0.00312 s+ 0.00154 s2
· 1+ 0.00074 s2

1+ 0.02528 s+ 0.00201 s2

The following function ellipap2.m incorporates the above design steps and serves
as a substitute for MATLAB’s built-in function ellipap.

% ellipap2.m - analog lowpass elliptic filter design

%

% Usage: [z,p,H0,B,A] = ellipap2(N,Ap,As)

%

% N = filter order

% Ap = passband attenuation in dB

% As = stopband attenuation in dB

%

% z = vector of normalized filter zeros (in units of the passband frequency Ωp = 2π fp)

% p = vector of normalized filter poles

% H0 = DC gain factor

% B = matrix whose rows are the first- and second-order numerator coefficients

% A = matrix whose rows are the first- and second-order denominator coefficients

%

% notes: serves as a substitute for the built-in function ELLIPAP

% the gain factor g returned by ELLIPAP is related to the dc gain by g = abs(H0*prod(p)/prod(z))

%

% N = 2*L+r, r = mod(N,2), L = floor(N/2) = no. second-order sections

%

% length(p) = N, length(z) = 2*L

% transfer function: H(s) = H0

[
1

1− s/p0

]r L∏
i=1

[
(1− s/zi)(1− s/z∗i)
(1− s/pi)(1− s/p∗i)

]
%

% normalized s-plane variable, s = jΩ/Ωp, Ω = 2π f, Ωp = 2π fp, fp = passband frequency

function [z,p,H0,B,A] = ellipap2(N,Ap,As)

if nargin==0, help ellipap2; return; end

Gp = 10^(-Ap/20); % passband gain

ep = sqrt(10^(Ap/10) - 1); % ripple factors

es = sqrt(10^(As/10) - 1);

k1 = ep/es;
k = ellipdeg(N,k1); % solve degree equation

13.7. BUTTERWORTH AND CHEBYSHEV DESIGNS 597

L = floor(N/2); r = mod(N,2); % L is the number of second-order sections

i = (1:L)’; ui = (2*i-1)/N;
zeta_i = cde(ui,k); % zeros of elliptic rational function

z = j./(k*zeta_i); % filter zeros = poles of elliptic rational function

v0 = -j*asne(j/ep, k1)/N; % solution of sn(jv0NK1, k1) = j/εp

p = j*cde(ui-j*v0, k); % filter poles

p0 = j*sne(j*v0, k); % first-order pole, needed when N is odd

B = [ones(L,1), -2*real(1./z), abs(1./z).^2]; % second-order numerator sections

A = [ones(L,1), -2*real(1./p), abs(1./p).^2]; % second-order denominator sections

if r==0, % prepend first-order sections

B = [Gp, 0, 0; B]; A = [1, 0, 0; A];
else
B = [1, 0, 0; B]; A = [1, -real(1/p0), 0; A];

end

z = cplxpair([z; conj(z)]); % append conjugate zeros

p = cplxpair([p; conj(p)]); % append conjugate poles

if r==1, p = [p; p0]; end % append first-order pole when N is odd

H0 = Gp^(1-r); % dc gain

13.7 Butterworth and Chebyshev Designs

For completeness, we discuss also the design of Butterworth, Chebyshev-1, and Chebyshev-
2 analog filters. For given specifications {Ωp,Ωs,Ap,As}, one calculates the parameters
k, k1 from Eq. (13.1.3), and solves for the filter order from Eq. (13.1.9), rounding it up to
the next integer. In all cases, the filter poles are obtained by solving the equation:

1+ ε2
pF

2
N(w)= 0 ⇒ F2

N(w)= −
1

ε2
p

(13.7.1)

As in the elliptic case, we define the quantities:

r = mod(N,2) , L = N − r
2

, ui = 2i− 1

N
, i = 1,2, . . . , L (13.7.2)

For the Butterworth case, we obtain the conjugate poles {pai, p∗ai} of the second-
order factors of Eq. (13.5.1) and the real-valued pole pa0 when N is odd (corresponding
to the value ui = 1):

pai = Ωp ε−1/N
p jejuiπ/2 , i = 1,2, . . . , L

pa0 = Ωp ε−1/N
p jejπ/2 = −Ωp ε−1/N

p

(Butterworth) (13.7.3)

We note that the quantity Ω0 = Ωp ε−1/N
p is the 3-dB frequency of the Butterworth

598 13. ELLIPTIC FILTER DESIGN

filter. Indeed, since Ω2N
0 = Ω2N

p /ε2
p, the magnitude response can be written as

|H(Ω)|2 = 1

1+ ε2
pw2N = 1

1+ ε2
p

(
Ω
Ωp

)2N = 1

1+
(
Ω
Ω0

)2N

In the Chebyshev-1 case, we have:

pai = Ωp j cos
(
(ui − jv0)π/2

)
, i = 1,2, . . . , L

pa0 = Ωp j cos
(
(1− jv0)π/2

) = −Ωp sinh(v0π/2)
(Chebyshev-1) (13.7.4)

where v0 is obtained from the solution of:

sinh(Nv0π/2)= 1

εp
⇒ v0 = asinh(1/εp)

Nπ/2
(13.7.5)

In the Chebyshev-2 case, the transfer function (13.5.1) has both poles and zeros, the
latter arising from the numerator of Eq. (13.1.6), that is,

|H(Ω)|2 = 1

1+ ε2
pk−2

1 /C2
N(k−1w−1)

= C2
N(k−1w−1)

C2
N(k−1w−1)+ε2

pk−2
1

The resulting conjugate s-plane zeros {zai, z∗ai} and poles {pai, p∗ai}, and the ex-
tra real-valued pole pa0 when N is odd, are essentially the inverses of those of the
Chebyshev-1 case because of the correspondence w → k−1w−1:

k−1z−1
ai = Ω−1

p j cos(uiπ/2) , i = 1,2, . . . , L

k−1p−1
ai = Ω−1

p j cos
(
(ui − jv0)π/2

)
, i = 1,2, . . . , L

k−1p−1
a0 = Ω−1

p j cos
(
(1− jv0)π/2

) = −Ω−1
p sinh(v0π/2)

(Chebyshev-2) (13.7.6)

where v0 is the solution of the equation:

sinh(Nv0π/2)= εpk−1
1 = εs ⇒ v0 = asinh(εs)

Nπ/2
(13.7.7)

Because k is used in Eq. (13.7.6), it must be recalculated by solving the second
of Eqs. (13.1.9) for k in terms of k1 and the rounded-up value of N, that is, k =
1/cosh

(
acosh(k−1

1)/N
)
.

In all cases, the poles lie in the left-hand s-plane, that is, Re(pai)< 0. The overall
transfer function is constructed by Eqs. (13.5.2)–(13.5.4), where in the Butterworth and
Chebyshev-1 cases one may set Bi1 = Bi2 = 0 in the second-order numerator factors.

In all cases, the passband specification is matched exactly, while the stopband spec-
ification is exceeded because of the rounding of the exact N to the next integer.

The above design steps, as well as those for elliptic filters, have been incorporated
into the MATLAB function lpa.m, listed below:

13.7. BUTTERWORTH AND CHEBYSHEV DESIGNS 599

% lpa.m - lowpass analog filter design
%
% function [N,B,A] = lpa(Wp, Ws, Ap, As, type)
%
% Wp,Ws = passband and stopband frequencies in rad/sec
% Ap,As = passband and stopband attenuations in dB
% type = 0,1,2,3 for Butterworth, Chebyshev-1, Chebyshev-2, Elliptic
%
% N = filter order
% B,A = (L+1)x3 matrices of numerator and denominator coefficients, L=floor(N/2)

function [N,B,A] = lpa(Wp, Ws, Ap, As, type)

if nargin==0, help lpa; return; end

ep = sqrt(10^(Ap/10)-1); es = sqrt(10^(As/10)-1);

k = Wp/Ws; k1 = ep/es; % selectivity and discrimination parameters

switch type % determine order N
case 0

Nexact = log(1/k1) / log(1/k);
N = ceil(Nexact);

case 1
Nexact = acosh(1/k1) / acosh(1/k);
N = ceil(Nexact);

case 2
Nexact = acosh(1/k1) / acosh(1/k);
N = ceil(Nexact);
k = 1/cosh(acosh(1/k1) / N); % recalculate k to satisfy degree equation

case 3
[K,Kp] = ellipk(k);
[K1,K1p] = ellipk(k1);
Nexact = (K1p/K1)/(Kp/K);
N = ceil(Nexact);
k = ellipdeg(N,k1); % recalculate k to satisfy degree equation

end

r = mod(N,2); L = (N-r)/2; i = (1:L)’; u=(2*i-1)/N;

switch type % determine poles and zeros
case 0

pa = Wp * j * exp(j*u*pi/2) / ep^(1/N);
pa0 = -Wp / ep^(1/N);

case 1
v0 = asinh(1/ep) / (N*pi/2);
pa = Wp * j * cos((u-j*v0)*pi/2);
pa0 = -Wp * sinh(v0*pi/2);

case 2
v0 = asinh(es) / (N*pi/2);
za = Wp ./ (j*k*cos(u*pi/2));
pa = Wp ./ (j*k*cos((u-j*v0)*pi/2));
pa0 = -Wp / (k*sinh(v0*pi/2));

case 3
v0 = -j * asne(j/ep, k1) / N;
za = Wp * j ./(k*cde(u,k));
pa = Wp * j * cde(u-j*v0, k);
pa0 = Wp * j * sne(j*v0, k);

600 13. ELLIPTIC FILTER DESIGN

end

B = [ones(L+1,1), zeros(L+1,2)];
A = [ones(L,1), -2*real(1./pa), abs(1./pa).^2]; % coefficient matrices

A = [[1, -r*real(1/pa0), 0]; A];

if type==2 | type==3,
B(2:L+1,:) = [ones(L,1), -2*real(1./za), abs(1./za).^2];

end

Gp = 10^(-Ap/20);

if type==1 | type==3, % adjust dc gain
B(1,1) = Gp^(1-r);

end

The elliptic portion of lpa is essentially equivalent to ellipap2. The function out-
puts the filter order N and the numerator and denominator coefficient matrices B,A,
as given for example in Eq. (13.6.1), with the corresponding transfer function given by
Eq. (13.5.3). The graphs of Fig. 13.1.2 can be generated by the following code fragment:

fp = 4; fs = 4.5;
Wp = 2*pi*fp; Ws = 2*pi*fs;
Gp = 0.95; Gs = 0.05;
Ap = -20*log10(Gp); As = -20*log10(Gs);

type = 3; % type = 0,1,2,3 for butter, cheby-1, cheby-2, elliptic

[N,B,A] = lpa(Wp,Ws,Ap,As,type);

f = linspace(0,10,1001);
s = j*2*pi*f; % s-domain

H = 1;
for i=1:size(B,1),

H = H .* (B(i,1) + B(i,2)*s + B(i,3)*s.^2) ./ (A(i,1) + A(i,2)*s + A(i,3)*s.^2);
end

plot(f,abs(H),’r’);

xtick(0:1:10); ylim([0,1.1]); ytick(0:0.1:1); grid off;

line([0,fp],[1,1],’LineStyle’,’:’);
line([fp,fp],[1,1.05],’LineStyle’,’:’);
line([0,fp],[Gp,Gp]); line([fp,fp],[Gp,0]);
line([fs,10],[Gs,Gs]); line([fs,fs],[4*Gs,Gs]);

13.8 Highpass, Bandpass, and Bandstop Analog Filters

The design of highpass, bandpass, or bandstop filters can be accomplished by applying
an s-domain frequency transformation that maps a lowpass analog prototype to the
desired filter. Such a transformation takes the following form, where s′ is the equivalent
lowpass variable:

s′ = F(s) (13.8.1)

13.8. HIGHPASS, BANDPASS, AND BANDSTOP ANALOG FILTERS 601

Fig. 13.8.1 Specifications of HP, BP, BS filters and of the equivalent LP filter.

The specifications of the desired highpass, bandpass, or bandstop filter are mapped
by the same transformation into specifications, such as {Ω′

p,Ω′
s,Ap,As}, for the equiv-

alent lowpass filter. Based on the transformed specifications, the equivalent lowpass
filter’s transfer function can be designed in the following form (using for example the
function lpa):

HLP(s′)= H0

[
1

1+A01s′

]r L∏
i=1

[
1+ Bi1s′ + Bi2s′2

1+Ai1s′ +Ai2s′2

]
(13.8.2)

and then mapped onto the desired filter by:

H(s)= HLP(s′)= HLP
(
F(s)

)
(13.8.3)

The brick-wall specifications of the highpass, bandpass, and bandstop filters, and the
corresponding specifications of the equivalent lowpass filter are shown in Fig. 13.8.1.

The mapping function F(s) and the corresponding mapping specifications are given
as follows in the three cases. For highpass designs, define:

s′ = 1

s
, Ω′

p =
1

Ωp
, Ω′

s =
1

Ωs
(13.8.4)

For bandpass designs, the bandwidth and center frequency of the passband are:

ΔΩ = Ωp2 −Ωp1 , Ω0 =
√
Ωp1Ωp2 (13.8.5)

Then, the corresponding LP parameters are:

s′ = s+ Ω2
0

s
, Ω′

p = ΔΩ, Ω′
s = min

(|Ω′
s1|, |Ω′

s2|
)

(13.8.6)

602 13. ELLIPTIC FILTER DESIGN

where

Ω′
s1 = Ωs1 − Ω2

0

Ωs1
, Ω′

s2 = Ωs2 − Ω2
0

Ωs2
(13.8.7)

These are justified as follows. Setting s′ = jΩ′ and s = jΩ into Eq. (13.8.6), we obtain
the corresponding mapping of the bandpass frequency Ω to the lowpass frequency Ω′:

Ω′ = Ω− Ω2
0

Ω

and demand that the passband interval [Ωp1,Ωp2] get mapped onto [−Ω′
p,Ω′

p], that
is,

−Ω′
p = Ωp1 − Ω2

0

Ωp1
, Ω′

p = Ωp2 − Ω2
0

Ωp2

These may be solved to give:

Ω′
p = Ωp2 −Ωp1 , Ω2

0 = Ωp1Ωp2

Once Ω0 is fixed from the passband frequencies, it is no longer possible to map the
stopband interval [Ωs1,Ωs2] onto the symmetric lowpass interval [−Ω′

s,Ω′
s]. There-

fore, Ω′
s is selected on the basis of the shorter of the two mapped stopband frequencies

of Eq. (13.8.7).
For bandstop filters, the bandwidth ΔΩ and center frequency Ω0 are selected on the

basis of the stopband interval:

ΔΩ = Ωs2 −Ωs1 , Ω0 =
√
Ωs1Ωs2 (13.8.8)

Then, the corresponding LP parameters are:

s′ = 1

s+ Ω2
0

s

, Ω′
p = max

(|Ω′
p1|, |Ω′

p2|
)
, Ω′

s =
1

ΔΩ
(13.8.9)

where

Ω′
p1 =

1

Ωp1 − Ω2
0

Ωp1

, Ω′
p2 =

1

Ωp2 − Ω2
0

Ωp2

(13.8.10)

In all three cases, once the equivalent frequencies Ω′
p,Ω′

s have been determined, the
selectivity parameter can be calculated by k = Ω′

p/Ω′
s. The discrimination parameter

k1 = εp/εs remains the same. Based on the values of k, k1, the equivalent lowpass filter
can be designed as a Butterworth, Chebyshev, or elliptic filter.

Fig. 13.8.2 shows some design examples. To clarify the design steps, the following
code fragment implements the elliptic bandpass example:

fp1 = 3;
fp2 = 6;
fs1 = 2.5;
fs2 = 6.5;

Wp1 = 2*pi*fp1;
Wp2 = 2*pi*fp2;

13.8. HIGHPASS, BANDPASS, AND BANDSTOP ANALOG FILTERS 603

Ws1 = 2*pi*fs1;
Ws2 = 2*pi*fs2;

Gp = 0.95;
Gs = 0.05;

Ap = -20*log10(Gp);
As = -20*log10(Gs);

Wp = Wp2-Wp1; W0 = sqrt(Wp1*Wp2);

W1 = Ws1 - W0^2/Ws1; W2 = Ws2 - W0^2/Ws2;

Ws = min(abs([W1,W2]));

type = 3;
[N,B,A] = lpa(Wp,Ws,Ap,As,type);

f = linspace(0,10,1001);
s = j*2*pi*f;
s = s + W0^2./s; % division by zero warning can be ignored

H = 1;
for i=1:size(B,1),

H = H .* (B(i,1) + B(i,2)*s + B(i,3)*s.^2) ./ (A(i,1) + A(i,2)*s + A(i,3)*s.^2);
end

figure; plot(f,abs(H),’r’);

xtick(0:1:10); ylim([0,1.1]); ytick(0:0.1:1); grid off;

line([fp1,fp2],[1,1],’LineStyle’,’:’);

line([fp1,fp1],[1,1.05],’LineStyle’,’:’); line([fp2,fp2],[1,1.05],’LineStyle’,’:’);

line([fp1,fp2],[Gp,Gp]); line([fp1,fp1],[Gp,0]); line([fp2,fp2],[Gp,0]);

line([0,fs1],[Gs,Gs]); line([fs1,fs1],[4*Gs,Gs]);

line([fs2,10],[Gs,Gs]); line([fs2,fs2],[4*Gs,Gs]);

604 13. ELLIPTIC FILTER DESIGN

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Butterworth, N=35

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Butterworth, N=19

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Butterworth, N=19

f

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Chebyshev−1, N=10

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Chebyshev−1, N=8

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Chebyshev−1, N=8

f

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Chebyshev−2, N=10

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Chebyshev−2, N=8

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Chebyshev−2, N=8

f

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Elliptic, N=5

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Elliptic, N=5

f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Elliptic, N=5

f

Fig. 13.8.2 Highpass, bandpass, and bandstop analog filters.

13.9. DIGITAL FILTER DESIGN 605

13.9 Digital Filter Design

Digital filters may be designed by the bilinear transformation method carried out by the
following steps: (a) the specifications of the digital filter are transformed into equivalent
specifications for a lowpass analog prototype filter, (b) the analog prototype is designed
as a Butterworth, Chebyshev, or elliptic filter using the methods discussed above, and (c)
the analog filter’s transfer function Ha(s) is transformed into the desired digital filter’s
transfer function H(z) with an appropriate bilinear transformation, that is, a mapping
between the s-plane and the z-plane of the form s = f(z):

H(z)= Ha(s)
∣∣∣∣
s=f(z)

= Ha
(
f(z)

)
(13.9.1)

The mappings used for lowpass, highpass, bandpass, and bandstop filters, and the
corresponding frequency mappings obtained by setting s = jΩ and z = ejω, where Ω is
the equivalent analog frequency and ω = 2πf/fs, the digital frequency, are as follows:

(LP) s = 1− z−1

1+ z−1
, Ω = tan

(
ω
2

)

(HP) s = 1+ z−1

1− z−1
, Ω = − cot

(
ω
2

)

(BP) s = 1− 2c0z−1 + z−2

1− z−2
, Ω = c0 − cosω

sinω

(BS) s = 1− z−2

1− 2c0z−1 + z−2
, Ω = − sinω

c0 − cosω

(13.9.2)

where c0 = cosω0, with ω0 corresponding to the center of the bandpass or bandstop
filter.

13.10 Pole and Zero Transformations

We begin with lowpass digital filters constructed with the lowpass bilinear transforma-
tion:

s = 1− z−1

1+ z−1
(13.10.1)

Assuming that the equivalent lowpass analog filter Ha(s) has already been constructed
in terms of its zeros and poles, the lowpass digital filter’s transfer function will be:

HLP(z)= Ha(s)
∣∣
s= 1−z−1

1+z−1
= H0

[
1

1− s/pa0

]r L∏
i=1

[
(1− s/zai)(1− s/z∗ai)
(1− s/pai)(1− s/p∗ai)

]∣∣∣∣∣∣
s= 1−z−1

1+z−1

(13.10.2)
After mapping the analog s-plane poles and zeros {pai, zai} to the digital z-plane

poles and zeros {pi, zi} by Eq. (13.10.1), the resulting digital transfer function will have
the form:

HLP(z)= H0

[
G0

1+ z−1

1− p0z−1

]r L∏
i=1

[
|Gi|2 (1− ziz−1)(1− z∗i z−1)

(1− piz−1)(1− p∗i z−1)

]
(13.10.3)

606 13. ELLIPTIC FILTER DESIGN

Noting that the inverse of Eq. (13.10.1) is z = 1+ s
1− s

, the digital poles and zeros are

computed by:

p0 = 1+ pa0

1− pa0
, pi = 1+ pai

1− pai
, zi = 1+ zai

1− zai
, i = 1,2, . . . , L (13.10.4)

and the gains factors, by:

G0 = 1− p0

2
, Gi = 1− pi

1− zi
(13.10.5)

Eq. (13.10.3) follows from the transformation identity of each s-plane pole/zero factor:

1− s/zai
1− s/pai

= Gi
1− ziz−1

1− piz−1
, Gi = 1− pi

1− zi
(13.10.6)

The zeros of the Butterworth and Chebyshev-1 cases are simply zi = −1 as follows
by setting zai = ∞ in Eq. (13.10.4). Highpass digital filters can designed by mapping the
lowpass analog prototype by the highpass version of the bilinear transformation:

s = 1+ z−1

1− z−1
(13.10.7)

which amounts to making the replacement z−1 → −z−1 in the lowpass case. Replacing
the lowpass poles and zeros {pi, zi} by their negatives, one obtains the highpass transfer
function:

HHP(z) = H0

[
1

1− s/pa0

]r L∏
i=1

[
(1− s/zai)(1− s/z∗ai)
(1− s/pai)(1− s/p∗ai)

]∣∣∣∣∣∣
s= 1+z−1

1−z−1

= H0

[
G0

1− z−1

1− p0z−1

]r L∏
i=1

[
|Gi|2 (1− ziz−1)(1− z∗i z−1)

(1− piz−1)(1− p∗i z−1)

] (13.10.8)

where the highpass digital poles and zeros are now given by:

p0 = −1+ pa0

1− pa0
, pi = −1+ pai

1− pai
, zi = −1+ zai

1− zai
, i = 1,2, . . . , L (13.10.9)

and the gains factors, by:

G0 = 1+ p0

2
, Gi = 1+ pi

1+ zi
(13.10.10)

More generally, the lowpass analog filter can be mapped first into a lowpass digital
filter using Eq. (13.10.1), which can subsequently be mapped by a z-domain frequency
transformation [321,322] to a highpass, bandpass, or bandstop digital filter:

LP analog
s-plane
Ha(s)

−→
LP digital
ẑ-plane
Ĥ(ẑ)

−→
HP/BP/BS digital

z-plane
H(z)

(13.10.11)

For bandpass designs, the required transformations take the two-step form:

s = 1− ẑ−1

1+ ẑ−1
= 1− 2c0z−1 + z−2

1− z−2
, ẑ−1 = z−1(c0 − z−1)

1− c0z−1
(13.10.12)

13.10. POLE AND ZERO TRANSFORMATIONS 607

where c0 = cosω0 and ω0 = 2πf0/fs is the center frequency of the bandpass filter.
Setting ω0 = π or c0 = −1 yields the highpass case, which has ẑ−1 = −z−1. The
lowpass case corresponds to ω0 = 0 or c0 = 1, which gives ẑ = z.

The mapping s → ẑ transforms a lowpass analog filter Ha(s) into lowpass digital
filter Ĥ(ẑ), which is further transformed into a bandpass digital filter HBP(z) by the
mapping ẑ→ z, that is, the transfer functions are related by:

HBP(z)= Ĥ(ẑ)
∣∣∣∣
ẑ−1= z−1(c0−z−1)

1−c0z−1

= Ha(s)
∣∣∣∣
s= 1−ẑ−1

1+ẑ−1

(13.10.13)

For bandstop designs, we may use:

s = 1− ẑ−1

1+ ẑ−1
= 1− z−2

1− 2c0z−1 + z−2
, ẑ−1 = −z

−1(c0 − z−1)
1− c0z−1

(13.10.14)

with transfer functions related by:

HBS(z)= Ĥ(ẑ)
∣∣∣∣
ẑ−1=− z−1(c0−z−1)

1−c0z−1

= Ha(s)
∣∣∣∣
s= 1−ẑ−1

1+ẑ−1

(13.10.15)

The bandpass and bandstop cases can be combined into one by defining:

s = 1− ẑ−1

1+ ẑ−1
, ẑ−1 = q

z−1(c0 − z−1)
1− c0z−1

, q =
{
+1, BP case
−1, BS case

(13.10.16)

The transfer functions will be related by:

H(z)= Ĥ(ẑ)
∣∣∣∣
ẑ−1= qz−1(c0−z−1)

1−c0z−1

= Ha(s)
∣∣∣∣
s= 1−ẑ−1

1+ẑ−1

(13.10.17)

Setting, s = jΩ, ẑ = ejω̂, and, z = ejω, we find the corresponding frequency relation-
ships:

Ω = tan
(
ω̂
2

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0 − cosω

sinω
, if q = 1

− sinω
c0 − cosω

, if q = −1

(13.10.18)

Because ẑ depends quadratically on z, each lowpass analog s-plane pole pai will
first get mapped into a lowpass digital ẑ-plane pole p̂i, which will then be mapped into
two z-plane poles, say, p+i , p

−
i . The pole p̂i is constructed from the analog pole pai via

Eq. (13.10.16):

pai = 1− p̂−1
i

1+ p̂−1
i

⇒ p̂i = 1+ pai
1− pai

(13.10.19)

then, the pole pairs p±i are obtained as the two solutions for pi of the equation:

p̂i = q
pi(c0 − pi)

1− c0pi
⇒ p±i =

1

2

[
c0(1+ qp̂i)±

√
c2

0(1+ qp̂i)2−4qp̂i
]

(13.10.20)

608 13. ELLIPTIC FILTER DESIGN

Because ẑ remains invariant under the substitution z → z′ = (c0 − z)/(1 − c0z), that
is,

ẑ = q
z(c0 − z)
1− c0z

= q
z′(c0 − z′)

1− c0z′
, with z′ = c0 − z

1− c0z
, z = c0 − z′

1− c0z′
, (13.10.21)

it follows that the pair p+i , p
−
i can be constructed, alternatively, by:

p+i =
1

2

[
c0(1+ qp̂i)+

√
c2

0(1+ qp̂i)2−4qp̂i
]
, p−i =

c0 − p+i
1− c0p+i

(13.10.22)

Thus, Eqs. (13.10.19) and (13.10.22) allow the mapping of the analog poles to the
final digital filter poles. The analog zeros zai are mapped in a similar way to the zeros
ẑi and then to z+i , z

−
i . Using Eqs. (13.10.16), (13.10.19), and (13.10.22), the following

identity can be verified easily:

1− s/zai
1− s/pai

= Gi
1− ẑiẑ−1

1− p̂iẑ−1
= Gi

(1− z+i z−1)(1− z−i z−1)
(1− p+i z−1)(1− p−i z−1)

, Gi = 1− p̂i
1− ẑi

(13.10.23)

It follows that the transfer function can be expressed in the equivalent factored forms:

H(z) = H0

[
1

1− s/pa0

]r L∏
i=1

[
(1− s/zai)(1− s/z∗ai)
(1− s/pai)(1− s/p∗ai)

]∣∣∣∣∣∣
s= 1−ẑ−1

1+ẑ−1

= H0

[
G0

1+ ẑ−1

1− p̂0ẑ−1

]r L∏
i=1

[
|Gi|2 (1− ẑiẑ−1)(1− ẑ∗i ẑ−1)

(1− p̂iẑ−1)(1− p̂∗i ẑ−1)

]∣∣∣∣∣∣
ẑ−1= qz−1(c0−z−1)

1−c0z−1

= H0

[
G0

(1− z+0 z−1)(1− z−0 z−1)
(1− p+0 z−1)(1− p−0 z−1)

]r
·

L∏
i=1

[
|Gi| (1− z+i z−1)(1− z+∗i z−1)

(1− p+i z−1)(1− p+∗i z−1)

]
·

L∏
i=1

[
|Gi| (1− z−i z−1)(1− z−∗i z−1)

(1− p−i z−1)(1− p−∗i z−1)

]
(13.10.24)

The poles p±0 arise from the mapping of the analog pole pa0:

p̂0 = 1+ pa0

1− pa0
⇒ p±0 =

1

2

[
c0(1+ qp̂0)±

√
c2

0(1+ qp̂0)2−4qp̂0

]
(13.10.25)

Because pa0 is real, p±0 are either both real-valued or conjugate pairs. The zeros z±0 arise
from mapping the analog zero za0 = ∞ to ẑ0 = −1, and are given in the two cases
q = ±1 by:

ẑ0 = −1 ⇒ z±0 =
1

2

[
c0(1+ qẑ0)±

√
c2

0(1+ qẑ0)2−4qẑ0

]
=
⎧⎨⎩±1 , if q = 1

e±jω0 , if q = −1
(13.10.26)

Thus, the corresponding numerator second-order factor becomes:

(1− z+0 z−1)(1− z−0 z−1)=
⎧⎨⎩1− z−2 , if q = 1

1− 2c0z−1 + z−2 , if q = −1
(13.10.27)

13.11. TRANSFORMATION OF FREQUENCY SPECIFICATIONS 609

Such are also the other numerator factors in the Butterworth and Chebyshev-1 cases.
In summary, Eq. (13.10.24) expresses H(z) as a product of second-order sections,

which is usually the preferred form. By combining the last two groups of L second-order
factors, we may express H(z) as a cascade of L fourth-order sections:

H(z) = H0

[
G0

(1− z+0 z−1)(1− z−0 z−1)
(1− p+0 z−1)(1− p−0 z−1)

]r
·

L∏
i=1

[
|Gi|2 (1− z+i z−1)(1− z+∗i z−1)(1− z−i z−1)(1− z−∗i z−1)

(1− p+i z−1)(1− p+∗i z−1)(1− p−i z−1)(1− p−∗i z−1)

]
(13.10.28)

Eq. (13.10.24) includes also the LP and HP cases, which have q = 1 and c0 = ±1
resulting in ẑ = ±z. The second group of L sections reduces to unity because p−i =
(c0−p+i)/(1−c0p+i)= ±1 when c0 = ±1, and similarly z−i = ±1, as well as, p−0 = z−0 =
±1.

We note finally that the mappings defined in Eq. (13.10.16) preserve the causality
and stability of the filters, in the sense that they map left-hand s-plane poles to poles
inside the ẑ-plane unit circle, to poles inside the z-plane unit circle. These follows from
the relationships:

Re(s)= 1− |ẑ|2
|ẑ+ 1|2 , 1− |ẑ|2 = (1− |z|2) |c0 − z|2 + s2

0

|1− c0z|2 , s0 = sinω0 (13.10.29)

which show that Re(s)≤ 0 is equivalent to |ẑ| ≤ 1 and to |z| ≤ 1.

13.11 Transformation of Frequency Specifications

The design specifications for lowpass, highpass, bandpass, and bandstop digital filters,
and the specifications of the equivalent lowpass analog filter are shown in Fig. 13.11.1,
where f is in Hz and fs is the sampling rate. The frequency transformation equations
(13.9.2) give rise to the following procedures for mapping the given specifications into
the analog ones.

For lowpass filters having passband and stopband frequencies fpass < fstop < fs/2,
we calculate ωpass = 2πfpass/fs, ωstop = 2πfstop/fs, and

Ωp = tan
(ωpass

2

)
, Ωs = tan

(ωstop

2

)
(13.11.1)

For highpass designs with passband and stopband frequencies fstop < fpass < fs/2,
we calculate ωpass = 2πfpass/fs, ωstop = 2πfstop/fs, and:

Ωp = cot
(ωpass

2

)
, Ωs = cot

(ωstop

2

)
(13.11.2)

For bandpass designs with a passband interval [fp1, fp2] given as a subset of a stop-
band interval [fs1, fs2], we calculate the analog filter’s parameters as follows, where

610 13. ELLIPTIC FILTER DESIGN

Fig. 13.11.1 Specifications of digital and equivalent analog filters (fs is the sampling frequency).

ωp1 = 2πfp1/fs, ωp2 = 2πfp2/fs, ωs1 = 2πfs1/fs, ωs2 = 2πfs2/fs:

cosω0 = sin(ωp1 +ωp2)
sinωp1 + sinωp2

, Ωs1 = cosω0 − cosωs1

sinωs1
, Ωs2 = cosω0 − cosωs2

sinωs2

Ωp = tan
(ωp2 −ωp1

2

)
, Ωs = min

(|Ωs1|, |Ωs2|
)

(13.11.3)
These choices match the passband specifications. An alternative choice that matches

the stopband specifications is as follows:

cosω0 = sin(ωs1 +ωs2)
sinωs1 + sinωs2

, Ωp1 = cosω0 − cosωp1

sinωp1
, Ωp2 = cosω0 − cosωp2

sinωp2

Ωp = max
(|Ωp1|, |Ωp2|

)
, Ωs = tan

(
ωs2 −ωs1

2

)
(13.11.4)

For bandstop designs with a stopband interval [fs1, fs2] given as a subset of a pass-
band interval [fp1, fp2], we calculate the analog filter’s parameters as follows, where
ωp1 = 2πfp1/fs, ωp2 = 2πfp2/fs, ωs1 = 2πfs1/fs, ωs2 = 2πfs2/fs, choosing to
match the passband as in Sec. 12.12:

13.12. MATLAB IMPLEMENTATION AND EXAMPLES 611

cosω0 = sin(ωp1 +ωp2)
sinωp1 + sinωp2

, Ωs1 = sinωs1

cosω0 − cosωs1
, Ωs2 = sinωs2

cosω0 − cosωs2

Ωp = cot
(ωp2 −ωp1

2

)
, Ωs = min

(|Ωs1|, |Ωs2|
)

(13.11.5)
Alternatively, we may match the stopband specifications:

cosω0 = sin(ωs1 +ωs2)
sinωs1 + sinωs2

, Ωp1 = sinωp1

cosω0 − cosωp1
, Ωp2 = sinωp2

cosω0 − cosωp2

Ωp = max
(|Ωp1|, |Ωp2|

)
, Ωs = cot

(
ωs2 −ωs1

2

)
(13.11.6)

13.12 MATLAB Implementation and Examples

Once the parameters Ωp,Ωs have been determined, the equivalent lowpass analog pro-
totype filter can be designed, based on the specifications {Ωp,Ωs,Ap,As} using for
example the function lpa, and the analog zeros and poles may be mapped into those of
the digital filter.

In order to emulate MATLAB’s built-in filter design functions, the above design steps
have been divided into two stages, In the first stage, the function dford.m uses the given
specifications to determine the analog filter order N and the frequency and attenuation
level that must be matched exactly:

% dford.m - digital filter order determination
%
% Usage: [N,Ad,wd] = dford(wp,ws,Ap,As,type,match);
%
% wp,ws = passband and stopband frequencies in rads/sample, (1d for LP/HP, 2d for BP/BS)
% Ap,As = passband and stopband attenuations in dB
% type = 0,1,2,3 for Butterworth, Chebyshev-1, Chebyshev-2, Elliptic
% match = ’p’, ’s’, if omitted it defaults to ’p’ for type=0,1,3, ’s’ for type=2
%
% N = filter order of LP analog prototype
% Ad = attenuation in dB to be matched exactly at design frequency wd
% wd = design frequency (1d or 2d) that must be matched exactly
%
% the outputs N,Ad,wd may be passed directly to DFDES to design the filter
%
% it determines the type LP/HP/BP/BS from wp,ws using the following conventions:
%
% match=’p’ matches passband specs exactly
% match=’s’ matches stopband specs exactly
%
% LP: wp,ws are scalars with wp < ws
% HP: wp,ws are scalars with wp > ws
% BP: wp = [wp1,wp2], ws = [ws1,ws2], with ws1 < wp1 < wp2 < ws2
% BS: wp = [wp1,wp2], ws = [ws1,ws2], with wp1 < ws1 < ws2 < wp2

612 13. ELLIPTIC FILTER DESIGN

This function serves as substitute for the built-in functions buttord, cheb1ord,
cheb2ord, and ellipord. In the second stage, the function dfdes.m uses the calculated
filter order and the matched frequency band and attenuation to calculate the analog
filter poles and zeros, remap them to the digital ones, and construct the second-order
or fourth-order section coefficients using Eq. (13.10.24) or (13.10.28):

% dfdes.m - digital filter design with the bilinear transformation
%
% Usage: [B,A,w0] = dfdes(N,Ad,wd,type,shape,coeffs)
%
% [B,A,w0] = dfdes(N,Ad,wd,type,shape) % equivalent to coeffs=’4os’
% [B,A,w0] = dfdes(N,Ad,wd,type,shape,’4os’) % fourth-order sections
% [B,A,w0] = dfdes(N,Ad,wd,type,shape,’sos’) % second-order sections
% [B,A,w0] = dfdes(N,Ad,wd,type,shape,’hsos’) % hat-second-order sections
% [B,A,w0] = dfdes(N,Ad,wd,type,shape,’dir’) % direct-form coefficients
%
% N = filter order of LP analog prototype, digital filter order is 2*N
% Ad = attenuation in dB at the design frequency wd, (Ad is 1d, 2d, or 3d row)
% wd = design frequency in radians/sample, (wd is 1d for LP/HP, or, 2d for BP/BS)
% type = 0,1,2,3 for Butterworth, Chebyshev-1, Chebyshev-2, Elliptic
% shape = ’LP’, ’HP’, ’BP’, ’BS’, for lowpass, highpass, bandpass, bandstop designs
% coeffs = ’4os’, ’sos’, ’hsos’, ’dir’
%
% B,A = (L+1)x5 for ’4os’, (L+1)x3 for ’hsos’, (2L+1)x3 for ’sos’, (2N+1)x1 for ’dir’
% w0 = center freq (rads/sample) of the wd band for BP/BS, w0=0 or pi for LP or HP
%
% note that N = 2L+r, r=0,1, L = floor(N/2) = number of SOSs of LP analog prototype
%
% Ad,wd are entered using the following conventions:
%
% [B,A,w0] = dfdes(N,Ap,wp,0,shape,coeffs) match Ap at wp
% [B,A,w0] = dfdes(N,Ap,wp,1,shape,coeffs) match Ap at wp
% [B,A,w0] = dfdes(N,As,ws,2,shape,coeffs) match As at ws
% [B,A,w0] = dfdes(N,[Ap,As],wp,3,shape,coeffs) match Ap at wp, equiripple at Ap,As
%
% [B,A,w0] = dfdes(N,[Ap,Ab],wb,1,shape,coeffs) match Ab at wb, equiripple at Ap
% [B,A,w0] = dfdes(N,[Ab,As],wb,2,shape,coeffs) match Ab at wb, equiripple at As
% [B,A,w0] = dfdes(N,[Ap,Ab,As],wb,3,shape,coeffs) match Ab at wb, equiripple at Ap,As
% [B,A,w0] = dfdes(N,[Ap,As,As],ws,3,shape,coeffs) match As at ws, equiripple at Ap,As

This function serves as substitute for the built-in functions butter, cheby1, cheby2,
and ellip. Fig. 13.12.1 depicts Butterworth, Chebyshev-1, Chebyshev-2, and elliptic
digital filter designs of lowpass, highpass, bandpass, and bandstop filters designed with
the same passband and stopband attenuations as in Eq. (13.1.10) and with the following
frequency specifications (in kHz):

LP case: fs = 20 , fpass = 4.0 , fstop = 4.5

HP case: fs = 20 , fpass = 4.5 , fstop = 4.0

BP case: fs = 20 , [fp1, fp2]= [3.0, 6.0] , [fs1, fs2]= [2.5, 6.5]

BS case: fs = 20 , [fp1, fp2]= [2.5, 6.5] , [fs1, fs2]= [3.0, 6.0]

For example, the elliptic designs may be generated by the code fragment:

13.12. MATLAB IMPLEMENTATION AND EXAMPLES 613

Gp = 0.95; Ap = -20*log10(Gp);
Gs = 0.05; As = -20*log10(Gs);

fsamp=20;
f = linspace(0,10,1001);
w = 2*pi*f/fsamp;

% -------- LP --
fp = 4; fs = 4.5; wp = 2*pi*fp/fsamp; ws = 2*pi*fs/fsamp;
[N,Ad,wd] = dford(wp,ws,Ap,As,3,’s’);
[B,A] = dfdes(N,Ad,wd,3,’LP’,’sos’);
H = fresp(B,A,w); figure; plot(f,abs(H),’r’);

% -------- HP --
fp = 4.5; fs = 4; wp = 2*pi*fp/fsamp; ws = 2*pi*fs/fsamp;
[N,Ad,wd] = dford(wp,ws,Ap,As,3,’s’);
[B,A] = dfdes(N,Ad,wd,3,’HP’,’sos’);
H = fresp(B,A,w); figure; plot(f,abs(H),’r’);

% -------- BP --
fp1=3; fp2=6; fs1=2.5; fs2=6.5;
wp = 2*pi*[fp1,fp2]/fsamp; ws = 2*pi*[fs1,fs2]/fsamp;
[N,Ad,wd] = dford(wp,ws,Ap,As,3,’s’);
[B,A] = dfdes(N,Ad,wd,3,’BP’,’sos’);
H = fresp(B,A,w); figure; plot(f,abs(H),’r’);

% -------- BS --
fp1=2.5; fp2=6.5; fs1=3; fs2=6;
wp = 2*pi*[fp1,fp2]/fsamp; ws = 2*pi*[fs1,fs2]/fsamp;
[N,Ad,wd] = dford(wp,ws,Ap,As,3,’s’);
[B,A] = dfdes(N,Ad,wd,3,’BS’,’sos’);
H = fresp(B,A,w); figure; plot(f,abs(H),’r’);

where we have chosen to match the stopbands exactly and output the filter coefficients
as second-order sections. The frequency response evaluation of the cascaded sections
was implemented with the help of the MATLAB function fresp.m, borrowed from [329].
The designed transfer functions and coefficient matrices are as follows:

LP case:

B =
⎡⎢⎣ 0.3204 0.3204 0

0.8591 −0.2363 0.8591
0.4534 0.1206 0.4534

⎤⎥⎦ , A =
⎡⎢⎣ 1 −0.3593 0

1 −0.4436 0.9255
1 −0.5547 0.5821

⎤⎥⎦ , N = 5

HLP(z)= 0.3204(1+ z−1)
1− 0.3593z−1

·0.8591− 0.2363z−1 + 0.8591z−2

1− 0.4436z−1 + 0.9255z−2
·0.4534+ 0.1206z−1 + 0.4534z−2

1− 0.5547z−1 + 0.5821z−2

HP case:

B =
⎡⎢⎣ 0.4317 −0.4317 0

0.8986 −0.5866 0.8986
0.5615 −0.6118 0.5615

⎤⎥⎦ , A =
⎡⎢⎣ 1 0.1366 0

1 −0.4582 0.9257
1 −0.1727 0.5621

⎤⎥⎦ , N = 5

614 13. ELLIPTIC FILTER DESIGN

BP case:

B =

⎡⎢⎢⎢⎢⎢⎢⎣
0.9500 0 0
0.8161 −1.1771 0.8161
0.4017 −0.7171 0.4017
0.8161 0.7778 0.8161
0.4017 0.6260 0.4017

⎤⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
1 −1.2501 0.9253
1 −0.8124 0.6129
1 0.6965 0.9093
1 0.2530 0.5697

⎤⎥⎥⎥⎥⎥⎥⎦ , N = 4

BS case:

B =

⎡⎢⎢⎢⎢⎢⎢⎣
0.9500 0 0
0.9081 −1.0417 0.9081
0.6221 −0.4912 0.6221
0.9081 0.5257 0.9081
0.6221 0.0778 0.6221

⎤⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
1 −1.2399 0.9239
1 −1.0384 0.5163
1 0.7432 0.9090
1 0.6453 0.4377

⎤⎥⎥⎥⎥⎥⎥⎦ , N = 4

The functions lpa, dford, and dfdes are available in the ISP toolbx.

13.13 Frequency-Shifted Realizations

Besides the conventional realizations based on second- or fourth-order sections, it is
possible to realize the digital filter as a cascade of second-order sections in the ẑ−1

variable. These realizations are also generated by the function dfdes and have transfer
function:

H(z) = H0

[
G0

1+ ẑ−1

1− p̂0ẑ−1

]r L∏
i=1

[
|Gi|2 (1− ẑiẑ−1)(1− ẑ∗i ẑ−1)

(1− p̂iẑ−1)(1− p̂∗i ẑ−1)

]

≡ H0

[
b̂00 + b̂01ẑ−1

1+ â01ẑ−1

]r L∏
i=1

[
b̂i0 + b̂i1ẑ−1 + b̂i2ẑ−2

1+ âi1ẑ−1 + âi2ẑ−2

] (13.13.1)

where ẑ−1 must be replaced by

ẑ−1 = q
z−1(c0 − z−1)

1− c0z−1
(13.13.2)

This transformation may be represented by the block diagram shown in Fig. 13.13.1,
where c0 = cosω0 and s0 = sinω0. This diagram is the so-called normalized lattice
realization of Eq. (13.13.2). Other realizations of (13.13.2) are possible [323–326].

If one has a realization of Eq. (13.13.1), then each unit-delay ẑ−1 may be replaced
by the block diagram of Fig. 13.13.1, resulting in a realization of the final digital filter.
For example, Fig. 13.13.2 shows the transposed realization of one of the second-order
sections and its shifted version.

The advantage of such realizations is that they decouple the dependence on the
center frequency ω0. The hat-coefficients depend only on the desired bandwidth and
attenuations, and not on ω0. Thus, one can design a lowpass filter and shift it to any
center frequency ω0, transforming it into a bandpass (or bandstop) filter.

The MATLAB function dfdes calculates (with argument coeffs set to ‘hsos’) the
hat-coefficients from the order N of the analog prototype and a prescribed frequency

13.13. FREQUENCY-SHIFTED REALIZATIONS 615

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LP, Butterworth, N=26

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Butterworth, N=26

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Butterworth, N=13

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Butterworth, N=13

 f

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LP, Chebyshev−1, N=9

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Chebyshev−1, N=9

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Chebyshev−1, N=6

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Chebyshev−1, N=6

 f

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LP, Chebyshev−2, N=9

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Chebyshev−2, N=9

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Chebyshev−2, N=6

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Chebyshev−2, N=6

 f

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LP, Elliptic, N=5

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HP, Elliptic, N=5

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BP, Elliptic, N=4

 f
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BS, Elliptic, N=4

 f

Fig. 13.12.1 Digital LP, HP, BP, and BS filters.

band [ωd1,ωd2] that is matched exactly at a desired attenuation level Ad (chosen to
be either the passband or the stopband.)

The bandwidthΔωd =ωd2−ωd1 is used internally by dfdes to calculate the analog
design parameter Ωd = tan(Δωd/2). Then, Ωd is mapped to the passband parameter
Ωp, which is used to design of the analog prototype filter.

To design a bandpass filter with a given bandwidth of Δωd and center frequency
ω0, one may start by designing a lowpass digital filter with cutoff frequency ω̂d = Δωd
matched at level Ad, and then shift it to ω0. Since ω0 and Δωd are given, the bandedge
frequencies [ωd1,ωd2] cannot be independently specified, but may be calculated by

616 13. ELLIPTIC FILTER DESIGN

Fig. 13.13.1 LP to BP/BS frequency transformation, q = 1 for BP, q = −1 for BS.

Fig. 13.13.2 Frequency-shifted transposed realization.

the following formulas [329]:

cosωd1 =
c0 +Ωd

√
Ω2
d + s2

0

1+Ω2
d

, cosωd2 =
c0 −Ωd

√
Ω2
d + s2

0

1+Ω2
d

(13.13.3)

where Ωd = tan(Δωd/2), and c0 = cosω0, s0 = sinω0. These are derived by demand-
ing that the interval [ωd1,ωd2] be mapped onto the analog lowpass interval [−Ωd,Ωd]
through the bilinear transformation of Eq. (13.9.2), that is,

−Ωd = c0 − cosωd1

sinωd1
, Ωd = c0 − cosωd2

sinωd2

If the bandedge frequencies [ωd1,ωd2] are specified, then, Δωd =ωd2−ωd1, and
the center frequency ω0 is calculated by

cosω0 = sin(ωd1 +ωd2)
sinωd1 + sinωd2

(13.13.4)

13.13. FREQUENCY-SHIFTED REALIZATIONS 617

Eqs. (13.13.3) and (13.13.4) are valid also for shifted bandstop filters, but now the
lowpass filter’s design frequency must be measured from Nyquist, that is, ω̂d = π −
Δωd, because the LP stopband will be transformed to the BS stopband.

Next, we look at some design examples. Fig. 13.13.3 shows a Chebyshev-2 bandpass
digital filter with sampling rate fs = 20 kHz and bandwidth of Δfp = 3 kHz measured
at the passband level of Ap = −20 log10(0.95) dB, and shifted to the passband center
frequency of f0 = 4 kHz.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 3

Δfs = 4

LP, Cheby− 2, matched passband

f̂

|
Ĥ

(f̂
)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 3

Δfs = 4

BP, shifted to f0 = 4

f

|
H

(f
)|

Fig. 13.13.3 LP Chebyshev-2 shifted to BP with passband centered at f0 = 4.

The bandpass filter was obtained by shifting a lowpass digital filter that was designed
with passband frequency f̂pass = Δfp = 3 kHz at level Ap and stopband frequency
f̂stop = 4 kHz at the stopband level of As = −10 log10(0.05) dB. The passband and
stopband edge frequencies of the shifted filter were calculated from Eq. (13.13.3) and
are shown as brick-walls on Fig. 13.13.3:

[fp1, fp2]= [2.6121 , 5.6121] kHz , [fs1, fs2]= [2.1957 , 6.1957] kHz

The passband frequencies satisfy Δfp = fp2 − fp1 = 3 kHz. The stopband edge
frequencies were calculated by using the center frequency f0 = 4 and the width of the
lowpass filter’s stopband, that is, Δfs = f̂stop = 4 kHz. The resulting filter order was
N = 6. The hat-second-order section coefficients were:

B̂ =

⎡⎢⎢⎢⎣
1 0 0

0.6796 −0.4558 0.6796
0.4768 −0.0352 0.4768
0.2919 0.4366 0.2919

⎤⎥⎥⎥⎦ , Â =

⎡⎢⎢⎢⎣
1 0 0
1 −0.8721 0.7755
1 −0.4583 0.3767
1 −0.0335 0.0539

⎤⎥⎥⎥⎦
The c0 parameter was equal to 0.3090. The MATLAB code used to generate Fig. 13.13.3
was:

Gp = 0.95; Gs = 0.05; Ap = -20*log10(Gp); As = -20*log10(Gs);

fsamp = 20; fpass = 3; fstop = 4; f0 = 4;
wp = 2*pi*fpass/fsamp; ws = 2*pi*fstop/fsamp; w0 = 2*pi*f0/fsamp;

618 13. ELLIPTIC FILTER DESIGN

[N,Ad,wd] = dford(wp,ws,Ap,As,2,’p’); % match passband
[Bh,Ah] = dfdes(N,Ad,wd,2,’LP’,’hsos’); % hat-sos sections

f = linspace(0,10,1001); w = 2*pi*f/fsamp;

HLP = fresp(Bh,Ah,w); % frequency response of LP digital filter
HBP = fresp(Bh,Ah,w,w0); % frequency response of shifted LP filter

figure; plot(f,abs(HLP),’r’);
figure; plot(f,abs(HBP),’r’);

c0 = cos(w0); s0=sin(w0); % calculate bandedge frequencies
Wp = tan(wp/2);
wp1 = acos((c0 + Wp*sqrt(Wp^2+s0^2))/(1+Wp^2)); fp1 = wp1*fsamp/2/pi;
wp2 = acos((c0 - Wp*sqrt(Wp^2+s0^2))/(1+Wp^2)); fp2 = wp2*fsamp/2/pi;

Ws = tan(ws/2);
ws1 = acos((c0 + Ws*sqrt(Ws^2+s0^2))/(1+Ws^2)); fs1 = ws1*fsamp/2/pi;
ws2 = acos((c0 - Ws*sqrt(Ws^2+s0^2))/(1+Ws^2)); fs2 = ws2*fsamp/2/pi;

Fig. 13.13.4 shows another example in which the same lowpass digital filter was
transformed to a bandpass filter with a passband given by [fp1, fp2]= [2,5] kHz, which
has the same bandwidth Δfp = 5 − 2 = 3 kHz as the previous example. In this case,
because the bandedge frequencies were given, the center frequency ω0 was calculated
by Eq. (13.13.4), and the stopband edge frequencies by Eq. (13.13.3):

f0 = 3.2982 kHz , [fs1, fs2]= [1.6476, , 5.6476] kHz

By construction, the stopband width was as before, that is, Δfs = fs2 − fs1 = 4 kHz.
The hat-coefficients were the same as in the previous example, but the new value of c0

was 0.5095.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 3

Δfs = 4

LP, Cheby− 2, matched passband

f̂

|
Ĥ

(f̂
)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 3

Δfs = 4

BP, shifted to [fp1, fp2] = [2, 5]

f

|
H

(f
)|

Fig. 13.13.4 LP Chebyshev-2 shifted to BP with passband at [fp1, fp2]= [2,5].

In the example shown in Fig. 13.13.5, the digital lowpass filter was designed with
the same specifications as the previous two examples, but the stopband was matched

13.13. FREQUENCY-SHIFTED REALIZATIONS 619

exactly. The resulting hat-coefficients were:

B̂ =

⎡⎢⎢⎢⎣
1 0 0

0.6843 −0.3796 0.6843
0.4830 0.0262 0.4830
0.3065 0.4749 0.3065

⎤⎥⎥⎥⎦ , Â =

⎡⎢⎢⎢⎣
1 0 0
1 −0.7805 0.7695
1 −0.3760 0.3683
1 0.0340 0.0539

⎤⎥⎥⎥⎦

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 3

Δfs = 4

LP, Cheby− 2, matched stopband

f̂

|
Ĥ

(f̂
)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 3

Δfs = 4

BP, shifted to [fs1, fs2] = [2, 6]

f

|
H

(f
)|

Fig. 13.13.5 LP Chebyshev-2 shifted to BP with stopband at [fs1, fs2]= [2,6].

The 4-kHz stopband frequency of the lowpass filter was shifted to the stopband
interval [fs1, fs2]= [2,6] kHz, so that Δfs = 6−2 = 4 kHz. The center frequency f0 was
calculated on the basis of the stopband frequencies using Eq. (13.13.4), and then, the
passband frequencies were determined using (13.13.3) and satisfyingΔfp = fp2−fp1 = 3
kHz:

f0 = 3.7525 kHz , c0 = 0.3820 , [fp1, fp2]= [2.3946 , 5.3946]kHz

Fig. 13.13.6 shows a bandstop design with passband and stopband bandwidths of
Δfp = 4 and Δfs = 3 kHz. The corresponding passband and stopband frequencies of
the equivalent lowpass digital filter must be measured from Nyquist, that is,

f̂pass = fs
2
−Δfp = 10− 4 = 6 kHz , f̂stop = fs

2
−Δfs = 10− 3 = 7 kHz

The lowpass digital filter was designed with the same attenuation Ap,As as the
previous three examples with matching the passband exactly. The lowpass filter was
shifted to the center frequency f0 = 4 kHz, from which the passband and stopband
edge frequencies of the bandstop filter were found to be:

[fp1, fp2]= [2.1957 , 6.1957] kHz , [fs1, fs2]= [2.6121 , 5.6121] kHz

The c0 parameter was 0.3090, and the hat-coefficients:

B̂ =

⎡⎢⎢⎢⎣
1 0 0

0.8043 0.9141 0.8043
0.6460 0.9598 0.6460
0.5565 1.0698 0.5565

⎤⎥⎥⎥⎦ , Â =

⎡⎢⎢⎢⎣
1 0 0
1 0.7548 0.7680
1 0.8176 0.4342
1 0.9320 0.2508

⎤⎥⎥⎥⎦
The MATLAB code used to generate Fig. 13.13.6 was:

620 13. ELLIPTIC FILTER DESIGN

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 4

Δfs = 3

LP, Cheby− 2, matched passband

f̂

|
Ĥ

(f̂
)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfs = 3

Δfp = 4

BS, shifted to f0 = 4

f

|
H

(f
)|

Fig. 13.13.6 LP Chebyshev-2 shifted to BS with passband centered at f0 = 4.

Gp = 0.95; Gs = 0.05; Ap = -20*log10(Gp); As = -20*log10(Gs);

fsamp = 20; Dfp = 4; Dfs = 3; f0 = 4;
Dwp = 2*pi*Dfp/fsamp; Dws = 2*pi*Dfs/fsamp; w0 = 2*pi*f0/fsamp;

fpass = fsamp/2 - Dfp; fstop = fsamp/2 - Dfs;
wp = 2*pi*fpass/fsamp; ws = 2*pi*fstop/fsamp;

[N,Ad,wd] = dford(wp,ws,Ap,As,2,’p’); % match passband
[Bh,Ah] = dfdes(N,Ad,wd,2,’LP’,’hsos’); % output hat-sos sections

f = linspace(0,10,1001); w = 2*pi*f/fsamp;

HLP = fresp(Bh,Ah,w); % frequency response of LP digital filter
q = -1; % shift LP to BS
HBS = fresp(Bh,Ah,w,w0,q); % frequency response of shifted LP filter

figure; plot(f,abs(HLP),’r’);
figure; plot(f,abs(HBS),’r’);

c0 = cos(w0), s0 = sin(w0); % calculate bandedge frequencies
Wp = tan(Dwp/2);;
wp1 = acos((c0 + Wp*sqrt(Wp^2+s0^2))/(1+Wp^2)); fp1 = wp1*fsamp/2/pi;
wp2 = acos((c0 - Wp*sqrt(Wp^2+s0^2))/(1+Wp^2)); fp2 = wp2*fsamp/2/pi;

Ws = tan(Dws/2);
ws1 = acos((c0 + Ws*sqrt(Ws^2+s0^2))/(1+Ws^2)); fs1 = ws1*fsamp/2/pi;
ws2 = acos((c0 - Ws*sqrt(Ws^2+s0^2))/(1+Ws^2)); fs2 = ws2*fsamp/2/pi;

The shifted frequency response was computed with the help of the function fresp
which was modified from that of [329] to handle the bandstop case with q = −1 as an
additional input.

Fig. 13.13.7 redesigns the lowpass filter of Fig. 13.13.6 to match the stopband exactly,
and then shifts it the stopband interval [fs1, fs2]= [2,5] kHz, from which the center
frequency f0, shift parameter c0, and passband edge frequencies can be calculated:

f0 = 3.2982 kHz , c0 = 0.5095 , [fp1, fp2]= [1.6476 , 5.6476]kHz

13.13. FREQUENCY-SHIFTED REALIZATIONS 621

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfp = 4

Δfs = 3

LP, Cheby− 2, matched stopband

f̂

|
Ĥ

(f̂
)|

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δfs = 3

Δfp = 4

BS, shifted to [fs1, fs2] = [2, 5]

f

|
H

(f
)|

Fig. 13.13.7 LP Chebyshev-2 shifted to BS with stopband at [fs1, fs2]= [2,5].

14
Interpolation, Decimation, and

Oversampling

14.1 Interpolation and Oversampling

Sampling rate changes are useful in many applications, such as interconnecting digital
processing systems operating at different rates [347–350]. Sampling rate increase is ac-
complished by interpolation, that is, the process of inserting additional samples between
the original low-rate samples. The inserted, or interpolated, samples are calculated by
an FIR digital filter.† This is illustrated in Fig. 14.1.1 for the case of a 4-fold interpolator
which increases the sampling rate by a factor of four, that is, fs′ = 4fs.

FIR
interpolation

filter

ttt

T T′=T/4 T′=T/4

low rate
fs

high rate
4fs

upsampler high rate
4fs

4

Fig. 14.1.1 Sampling rate increase with digital interpolation.

With respect to the fast time scale, the low-rate samples may be thought of as being
separated by three zero samples. The 4-fold rate expander or upsampler simply inserts
three zero samples for every low-rate sample. The job of the FIR filter is to replace the
three zeros by the calculated interpolated values.

The interpolating filter is sometimes called an oversampling digital filter because
it operates at the fast rate 4fs. However, because only one out of every four input
samples is non-zero, the required filtering operations may be rearranged in such a way
as to operate only on the low-rate samples, thus, effectively reducing the computational
requirements of the filter—by a factor of four in this case.

This is accomplished by replacing the high-rate interpolating FIR filter by four shorter
FIR subfilters, known as polyphase filters, operating at the low rate fs. The length of each

†IIR filters can also be used, but are less common in practice.

622

14.1. INTERPOLATION AND OVERSAMPLING 623

subfilter is one-quarter that of the original filter. Because each low-rate input sample
generates four high-rate interpolated outputs (itself and three others), each of the four
low-rate subfilters is dedicated to computing only one of the four outputs. Such real-
ization is computationally efficient and lends itself naturally to parallel multiprocessor
hardware implementations in which a different DSP chip may be used to implement each
subfilter.

An interesting application of interpolation is the use of oversampling digital filters
in CD or DAT players, where they help to alleviate the need for high-quality analog
anti-image postfilters in the playback system. Moreover, each high-rate sample can be
requantized without loss of quality to fewer number of bits (even as low as 1 bit per
sample) using appropriate noise shaping quantizers, thus, trading off bits for samples
and simplifying the structure of the analog part of the playback system.

To understand the motivation behind this application, consider an analog signal
sampled at a rate fs, such as 44.1 kHz for digital audio. The analog signal is prefiltered
by an analog lowpass antialiasing prefilter having cutoff frequency fc ≤ fs/2 and then
sampled at rate fs and quantized. This operation is shown in Fig. 14.1.2.

A/D
converter

bandlimited
analog signal digital signalanalog input lowpass

antialiasing
prefilter rate fs

fc < fs/2

xa(t)

Fig. 14.1.2 Prefiltering and sampling of analog signal.

The prefilter ensures that the spectral images generated by the sampling process at
integral multiples of fs do not overlap, as required by the sampling theorem. This is
shown in Fig. 14.1.3 (we ignore here the scaling factor 1/T).

0 fs/2-fs/2 fs-fs 2fs-2fs 3fs-3fs 4fs-4fs

f

Nyquist
interval

original spectrum Xa(f)
X(f) spectral images

Fig. 14.1.3 Spectrum of signal sampled at low rate fs.

After digital processing, the sampled signal is reconstructed back to analog form by
a D/A staircase reconstructor, followed by an analog anti-image lowpass postfilter with
effective cutoff fs/2, as seen in Fig. 14.1.4.

The D/A converter, with its typical sinx/x response, removes the spectral images
partially; the postfilter completes their removal. The combination of the staircase DAC
and the postfilter emulates the ideal reconstructing analog filter. The ideal reconstruc-

624 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

lowpass
anti-image
postfilter

staircase
analog signaldigital signal analog output

D/A
converter

rate fs
fc < fs/2

Fig. 14.1.4 Analog reconstruction of sampled signal.

tor is a lowpass filter with cutoff the Nyquist frequency fs/2. It has a very sharp tran-
sition between its passband, that is, the Nyquist interval, and its stopband, as shown in
Fig. 14.1.5.

0 fs/2-fs/2 fs-fs 2fs-2fs 3fs-3fs 4fs-4fs

f

ideal reconstructor sharp transition

Fig. 14.1.5 Ideal reconstructor removes spectral images due to sampling.

In hi-fi applications such as digital audio, to maintain high quality in the resulting
reconstructed analog signal, a very high quality analog postfilter is required, which may
be expensive. One way to alleviate the need for a high quality postfilter is to increase
the sampling rate. This would cause the spectral images to be more widely separated
and, therefore, require a less stringent, simpler, lowpass postfilter. This is depicted in
Fig. 14.1.6, for a new sampling rate that is four times higher than required, fs′ = 4fs.

0 fs′/8 7fs′/8fs′/2-fs′/8-fs′/2-fs′ fs′
f

postfilter
passband

postfilter
stopband

wide
transition

Nyquist interval

X′(f)

Fig. 14.1.6 Spectrum of signal resampled at high rate 4fs, and postfilter requirements.

The passband of the postfilter extends up to fpass = fs′/8 = fs/2, but its stopband
need only begin at fstop = fs′ − fs′/8 = 7fs′/8. It is this wide transition region between
passband and stopband that allows the use of a less stringent postfilter. For example, in
oversampled digital audio applications, simple third-order Butterworth or Bessel analog
postfilters are used. See Section 14.4.4.

The same conclusion can also be drawn in the time domain. Figure 14.1.7 shows the
staircase output of the D/A converter for the two sampling rates fs and fs′ = 4fs. It is
evident from this figure that the higher the sampling rate, the more closely the staircase

14.1. INTERPOLATION AND OVERSAMPLING 625

output approximates the true signal, and the easier it is for the postfilter to smooth out
the staircase levels.

t t
T T ′=T/4

DAC output DAC output

Fig. 14.1.7 Staircase DAC output is smoothed more easily in the oversampled case.

The above approach, however, is impractical because it requires the actual resam-
pling of the analog signal at the higher rate fs′. For example, in a CD player the low rate
samples are already stored on the CD at the prescribed rate of 44.1 kHz and the audio
signal cannot be resampled.

The philosophy of oversampling is to increase the sampling rate digitally using an
interpolation filter which operates only on the available low-rate input samples. With
respect to the new rate fs′ and new Nyquist interval [−fs′/2, fs′/2], the spectrum of
the low-rate samples depicted in Fig. 14.1.3 will be as shown in Fig. 14.1.8. This is also
the spectrum of the high-rate upsampled signal at the output of the rate expander in
Fig. 14.1.1.

0 fs′/8 fs′/2-f ′/8s-fs′/2-fs′ fs′
f

Nyquist interval

Xup(f) = X(f)upsampled spectrum

Fig. 14.1.8 Spectrum of low-rate samples with respect to the high rate 4fs.

A digital lowpass FIR filter with cutoff frequency fs′/8 and operating at the high rate
fs′, would eliminate the three spectral replicas that lie between replicas at multiples of
fs′, resulting in a spectrum that is identical to that of a signal sampled at the high rate
fs′, like that shown in Fig. 14.1.6.

The digital filter, being periodic in f with period fs′, cannot of course remove the
spectral replicas that are centered at integral multiples of fs′. Those are removed later
by the D/A reconstructor and the anti-image analog postfilter.

The effect of such a digital filter on the spectrum of the low-rate samples is shown
in Fig. 14.1.9, both with respect to the physical frequency f in Hz and the corresponding
digital frequency, ω′ = 2πf/fs′, in radians/sample.

In summary, a substantial part of the analog reconstruction process is accomplished
by DSP methods, that is, using a digital oversampling filter to remove several adjacent
spectral replicas and thereby easing the requirements of the analog postfilter. The re-
quired sharp transition characteristics of the overall reconstructor are provided by the

626 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

0 fs′/8 fs′/2-fs′/8-fs′/2-fs′ fs′
f

Nyquist interval

lowpass digital filter D(f)
digital filter is periodic
with period fs′

0 π/4 π−π/4-π-2π 2π
ω′

Nyquist interval

lowpass digital filter D(ω′)
digital filter is periodic
with period 2π

Fig. 14.1.9 High-rate FIR interpolator removes intermediate spectral images.

digital filter. Thus, the high-quality analog postfilter is traded off for a high-quality
digital filter operating at a higher sampling rate. The overall system is depicted in
Fig. 14.1.10.

upsampler

4fsfs 4fsFIR
interpolation

filter

D/A
converter

anti-image
lowpass
postfilter

analog
output4

Fig. 14.1.10 4-times oversampling digital filter helps analog reconstruction.

How does an interpolation filter operate in the time domain and calculate the missing
signal values between low-rate samples? To illustrate the type of operations it must
carry out, consider a 4-fold interpolator and a set of six successive low-rate samples
{A,B,C,D,E, F} as shown in Fig. 14.1.11.

A
B

T T′=T/4

C

D

E
F

Y
Z

X

time

Fig. 14.1.11 Filter calculates missing samples from the surrounding low-rate samples.

The filter calculates three intermediate samples, such as {X,Y,Z}, between any two
low-rate samples by forming linear combinations of the surrounding low-rate samples.

14.1. INTERPOLATION AND OVERSAMPLING 627

Depending on the type of interpolator and desired quality of the calculated values, sev-
eral different ways of calculating {X,Y,Z} are possible. For example, the simplest one
is to keep the value of the previous sample C constant throughout the sampling interval
and define:

X = Y = Z = C

This choice corresponds to the so-called hold interpolator. Another simple possibil-
ity is to interpolate linearly between samples {C,D} calculating {X,Y,Z} as follows:

X = 0.75C+ 0.25D

Y = 0.50C+ 0.50D

Z = 0.25C+ 0.75D

(14.1.1)

Indeed, the straight line connecting C and D is parametrized as C+(D−C)t/T, for
0 ≤ t ≤ T. Setting t = T′, 2T′, 3T′ with T′ = T/4 gives the above expressions for {X,
Y,Z}. For more accurate interpolation, more surrounding samples must be taken into
account. For example, using four samples we have:

X = −0.18B+ 0.90C+ 0.30D− 0.13E

Y = −0.21B+ 0.64C+ 0.64D− 0.21E

Z = −0.13B+ 0.30C+ 0.90D− 0.18E

(14.1.2)

corresponding to a length-17 FIR approximation to the ideal interpolation filter. Simi-
larly, a length-25 approximation to the ideal interpolator uses six surrounding low-rate
samples as follows:

X = 0.10A− 0.18B+ 0.90C+ 0.30D− 0.13E + 0.08F

Y = 0.13A− 0.21B+ 0.64C+ 0.64D− 0.21E + 0.13F

Z = 0.08A− 0.13B+ 0.30C+ 0.90D− 0.18E + 0.10F

(14.1.3)

In general, the more the surrounding samples, the more accurate the calculated
values. In typical CD players with 4-times oversampling filters, about 20–30 surrounding
low-rate samples are used.

The above expressions do not quite look like the convolutional equations of linear
filtering. They are special cases of the polyphase realizations of the interpolation filters
and are equivalent to convolution. They will be discussed in detail in the next section,
where starting with the frequency domain specifications of the filter, its impulse re-
sponse and corresponding direct and polyphase realization forms are derived. See also
Section 14.4.1.

628 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

14.2 Interpolation Filter Design

14.2.1 Direct Form

Consider the general case of an L-fold interpolator, which increases the sampling rate
by a factor of L, that is, fs′ = Lfs. The L-fold rate expander inserts L− 1 zeros between
adjacent low-rate samples and the corresponding L−1 interpolated values are calculated
by an FIR digital filter operating at the high rate Lfs, as shown in Fig. 14.2.1.

FIR interpolation
filter d(k ′)

H

L-fold
rate expander

L
low rate

fs

low rate
input

upsampled
input

high rate
output

high rate
Lfs

high rate
Lfs

n

T

x(n)

n′

T′=T/L

xup(n′) yup(n′)

n′

T′=T/L

Fig. 14.2.1 L-fold digital interpolator.

Let x(n) denote the low-rate samples that are input to the rate expander and let
xup(n′) be its high-rate output, consisting of the low-rate samples separated by L − 1
zeros. With respect to the high-rate time index n′, the low-rate samples occur every L
high-rate ones, that is, at integral multiples of L, n′ = nL,

xup(nL)= x(n) (14.2.1)

The L− 1 intermediate samples between xup(nL) and xup(nL+ L) are zero:

xup(nL+ i)= 0, i = 1,2, . . . , L− 1 (14.2.2)

This is shown in Fig. 14.2.2. More compactly, the upsampled signal xup(n′) can be
defined with respect to the high-rate time index n′ by:

xup(n′)=
{

x(n), if n′ = nL
0, otherwise

(14.2.3)

Given an arbitrary value of the high-rate index n′, we can always write it uniquely in
the form n′ = nL+ i, where i is restricted to the range of values i = 0,1, . . . , L− 1.

Mathematically, the integers n and i are the quotient and remainder of the division
of n′ by L. Intuitively, this means that n′ will either fall exactly on a low-rate sample
(when i = 0), or will fall strictly between two of them (i �= 0). Using T = LT′, we find
the absolute time in seconds corresponding to n′

t = n′T′ = nLT′ + iT′ = nT + iT′

that is, it will be offset from a low-rate sampling time by i high-rate sampling units T′.
The interpolated values must be computed at these times.

14.2. INTERPOLATION FILTER DESIGN 629

nL-L

xup(nL-L)

nL

xup(nL)

nL+1 nL+2 nL+L

xup(nL+L)

nL+2L

xup(nL+2L)

L-1 zeros rate Lfs

n′
...

n-1

x(n-1)

n

x(n)

n+1

x(n+1)

n+2

x(n+2)
rate fs

= slow time

= fast time

n

Fig. 14.2.2 Low-rate samples with respect to the slow and fast time scales.

The ideal L-fold interpolation filter is a lowpass filter, operating at the fast rate fs′,
with cutoff frequency equal to the low-rate Nyquist frequency fc = fs/2, or in terms of
fs′,

fc = fs
2
= fs′

2L
(14.2.4)

and expressed in units of the digital frequency, ω′ = 2πf/fs′:

ω′
c =

2πfc
fs′

= π
L

(14.2.5)

The frequency response of this filter is shown in Fig. 14.2.3. Its passband gain is
taken to be L instead of unity. This is justified below. The ideal impulse response
coefficients are obtained from the inverse Fourier transform:

d(k′)=
∫ π

−π
D(ω′)ejω

′k′ dω′

2π
=
∫ π/L

−π/L
Lejω

′k′ dω′

2π
= sin(πk′/L)

πk′/L

0 π/L

LL L

π−π/L-π-2π 2π
ω′

Nyquist interval

lowpass digital filter D(ω′)
digital filter is periodic
with period 2π

Fig. 14.2.3 Ideal lowpass digital filter operating at high rate Lfs.

An FIR approximation to the ideal interpolator is obtained by truncating d(k′) to
finite length, say N = 2LM + 1:

630 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

d(k′)= sin(πk′/L)
πk′/L

, −LM ≤ k′ ≤ LM (14.2.6)

A causal version of the filter may be obtained by delaying it by LM samples:

h(n′)= d(n′ − LM)= sin
(
π(n′ − LM)/L

)
π(n′ − LM)/L

, n′ = 0,1, . . . ,N − 1

And a windowed version is obtained by:

h(n′)= w(n′)d(n′ − LM) , n′ = 0,1, . . . ,N − 1 (14.2.7)

where w(n′) is an appropriate length-N window, such as a Hamming window:

w(n′)= 0.54− 0.46 cos
(

2πn′

N − 1

)
, n′ = 0,1, . . . ,N − 1

or a Kaiser window. The output of the ideal FIR interpolation filter is obtained by the
convolution of the upsampled input xup(n′) with the impulse response d(k′):

yup(n′)=
LM∑

k′=−LM
d(k′)xup(n′ − k′) , n′ = 0,1, . . . ,N − 1 (14.2.8)

14.2.2 Polyphase Form

The interpolated values between the low-rate samples xup(nL) and xup(nL + L), that
is, the values at the high-rate time instants n′ = nL + i, are calculated by the filter as
follows:

yup(nL+ i)=
LM∑

k′=−LM
d(k′)xup(nL+ i− k′), i = 0,1, . . . , L− 1 (14.2.9)

Writing uniquely k′ = kL+ j, with 0 ≤ j ≤ L−1, and replacing the single summation
over k′ by a double summation over k and j, we find

yup(nL+ i)=
M−1∑
k=−M

L−1∑
j=0

d(kL+ j)xup(nL+ i− kL− j)

To be precise, for the case i = 0, the summation over k should be over the range
−M ≤ k ≤ M. But as we will see shortly, the term k = M does not contribute to the
sum. Defining the ith polyphase subfilter by†

di(k)= d(kL+ i) , −M ≤ k ≤M − 1 (14.2.10)

for i = 0,1, . . . , L− 1, we can rewrite the ith interpolated sample value as:

†For i = 0, the range of k is −M ≤ k ≤M.

14.2. INTERPOLATION FILTER DESIGN 631

yup(nL+ i)=
M−1∑
k=−M

L−1∑
j=0

dj(k)xup(nL− kL+ i− j)

But the upsampled input signal is non-zero only at times that are integral multiples
of L. Therefore, using Eqs. (14.2.1) and (14.2.2), we have

xup(nL− kL+ i− j)= 0, if i �= j

This follows from the fact that |i− j| ≤ L− 1. Thus, keeping only the j = i term in
the above convolution sum, we obtain

yup(nL+ i)=
M−1∑
k=−M

di(k)xup(nL− kL), i = 0,1, . . . , L− 1 (14.2.11)

or, in terms of the low-rate samples:

yi(n)=
M−1∑
k=−M

di(k)x(n− k) , i = 0,1, . . . , L− 1 (14.2.12)

where we set yi(n)= yup(nL + i). Thus, the ith interpolated value, yup(nL + i), is
computed by the ith polyphase subfilter, di(k), which has length 2M and is acting only
on the low-rate input samples x(n). Each interpolated value is computed as a linear
combination of M low-rate samples above and M below the desired interpolation time,
as shown in Fig. 14.2.4.

n-1 n+M

x(n-1)

x(n+M)

n

x(n)

yi(n)

n+1

x(n+1)

n+2n-M+1

n′=nL+i

x(n+2)
x(n-M+1)

n...

... ...

...

M low-rate samples M low-rate samples

Fig. 14.2.4 Interpolator uses M low-rate samples before and after yup(nL+ i).

Using the L subfilters, interpolation is performed at a reduced computational cost
as compared with the cost of the full, length-N, interpolation filter d(k′) acting on the
upsampled signal xup(n′) by Eq. (14.2.9).

The computational cost of Eq. (14.2.9) is essentially 2LM multiplications per interpo-
lated value, or, 2L2M multiplications for computing L interpolated values. By contrast,

632 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Eq. (14.2.11) requires 2M multiplications per polyphase subfilter, or, 2LM multiplica-
tions for L interpolated values. Thus, the polyphase subfilter implementation achieves
a factor of L in computational savings.

Another way to view the computational rate is in terms of the total number of mul-
tiplications per second required for the filtering operations, that is,

R = N(Lfs)= NLfs (direct form)

R = L(2M)fs = Nfs (polyphase form)

where in the direct form we have a single filter of length N operating at rate Lfs and
in the polyphase form we have L filters operating at fs, each having computational rate
(2M)fs multiplications per second.†

The polyphase implementation is depicted in Fig. 14.2.5, where during each low-rate
sampling period T, the commutator reads, in sequence of T′ = T/L seconds, the L
interpolated values at the outputs of the subfilters.

n′n

T T′=T/L
T/L

T

low rate
fs

high rate
Lfs

x(n) yup(n′)
subfilter

d0(k)

subfilter
d1(k)

subfilter
dL-1(k)

y0(n)

y1(n)

yL-1(n)

Fig. 14.2.5 Polyphase subfilter implementation of digital interpolator.

This can be seen more formally, as follows. Let ζ−1 denote the unit delay with
respect to the high rate Lfs and let z−1 denote the low-rate delay. Since L high-rate
delays equal one low-rate delay, that is, LT′ = T, we will have:

z = ζL � ζ = z1/L (14.2.13)

The ζ-transform of the high-rate filter output yup(n′) can be expressed in terms of
the z-transforms of the L low-rate output signals yi(n) as follows. Writing uniquely
n′ = nL+ i with 0 ≤ i ≤ L− 1, we have

Yup(ζ) =
∞∑

n′=−∞
yup(n′)ζ−n

′ =
L−1∑
i=0

∞∑
n=−∞

yup(nL+ i)ζ−nL−i

=
L−1∑
i=0

ζ−i
∞∑

n=−∞
yi(n)ζ−Ln , or,

†Actually, there are L−1 subfilters of length (2M) and one (the filter d0) of length (2M+1), giving rise
to R = (L− 1)(2M)fs + (2M + 1)fs = Nfs, where N = 2LM + 1.

14.2. INTERPOLATION FILTER DESIGN 633

Yup(ζ)=
L−1∑
i=0

ζ−iYi(ζL)=
L−1∑
i=0

z−i/LYi(z) (14.2.14)

which shows how the L low-rate output signals are put together, in sequence of T/L
high-rate delays to make up the high-rate interpolated output signal. In a similar fashion,
we can derive the relationship between the ζ-transform of the high-rate filter (14.2.6)
and the z-transforms of its polyphase subfilters (14.2.10), justifying the realization of
Fig. 14.2.5:

D(ζ)=
L−1∑
i=0

ζ−iDi(ζL)=
L−1∑
i=0

z−i/LDi(z) (14.2.15)

Next, we consider the 0th polyphase subfilter, d0(k), which plays a special role. It
follows from Eqs. (14.2.6) and (14.2.10) that:

d0(k)= d(kL)= sin(πk)
πk

= δ(k), −M ≤ k ≤M

and therefore, its output will be trivially equal to its input, that is, the low-rate input
sample x(n)= xup(nL). We have from Eq. (14.2.12):

y0(n)= yup(nL)=
M−1∑
k=−M

d0(k)x(n− k)=
M−1∑
k=−M

δ(k)x(n− k)= x(n)

This property is preserved even for the windowed case of Eq. (14.2.7), because all
windows w(n′) are equal to unity at their middle. This result justifies the requirement
for the passband gain of the interpolator filter in Fig. 14.2.3 to be L instead of 1. If
the gain were 1, we would have yup(nL)= x(n)/L. An alternative, frequency domain
justification is given in Section 14.2.3.

The causal filter implementation of Eq. (14.2.12) requires that we either delay the
output or advance the input by M units. We choose the latter. The polyphase subfilters
in Eqs. (14.2.12) can be made causal by a delay of M low-rate samples:

hi(n)= di(n−M)= d
(
(n−M)L+ i

) = d(nL+ i− LM) (14.2.16)

for n = 0,1, . . . ,2M − 1. For the windowed case, we have:

hi(n)= d(nL+ i− LM)w(nL+ i), n = 0,1, . . . ,2M − 1 (14.2.17)

In terms of the causal subfilters hi(n), Eq. (14.2.12) becomes

yi(n)=
M−1∑
k=−M

di(k)x(n− k)=
M−1∑
k=−M

hi(k+M)x(n− k)

or, setting m = k+M and k =m−M,

634 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

yi(n)=
P∑

m=0

hi(m)x(M + n−m) , i = 0,1, . . . , L− 1 (14.2.18)

where P = 2M − 1 denotes the order of each polyphase subfilter. In other words, the
interpolated samples are obtained by ordinary causal FIR filtering of the time-advanced
low-rate input samples. The same result can also be obtained by z-transforms. Defini-
tion (14.2.16) reads in the z-domain:

Hi(z)= z−MDi(z)

where z−1 represents a low-rate delay. Similarly, Eq. (14.2.12) reads

Yi(z)= Di(z)X(z)

Writing Di(z)= zMHi(z), we obtain the z-domain equivalent of Eq. (14.2.18):

Yi(z)= Di(z)X(z)= Hi(z)
(
zMX(z)

)
The sample-by-sample processing implementation of Eq. (14.2.18) requires a com-

mon low-rate tapped delay line which is used in sequence by all the subfilters hi(n)
before its contents are updated. Figure 14.4.5 shows a concrete example when L = 4
and M = 2. The required time-advance by M samples is implemented by initially filling
the delay line with the first M low-rate samples. The internal states of the tapped delay
line can be defined as

wm(n)= x(M + n−m), m = 0,1, . . . , P

Then, Eq. (14.2.18) can be written in the dot-product notation of Chapter 4:

yi(n)= dot
(
P,hi,w(n)

) = P∑
m=0

hi(m)wm(n), i = 0,1, . . . , L− 1

After computing the outputs of the L subfilters, the internal state w may be updated
to the next time instant by a call to the routine delay, which shifts the contents:

wm(n+ 1)= wm−1(n), m = 1,2, . . . , P

This leads to the following sample processing algorithm for the polyphase form:
Initialize the internal state vector w(n)= [w0(n),w1(n), . . . ,wP(n)] by filling it with
the first M low-rate input samples, x(0), x(1), . . . , x(M− 1), that is, at time n = 0 start
with

w(0)= [0, xM−1, xM−2, . . . , x0, 0, 0, . . . , 0︸ ︷︷ ︸
M−1 zeros

]

The value w0(0) need not be initialized—it is read as the current input sample. If
the low-rate samples are being read sequentially from a file or an input port, then this
initialization can be implemented by the following algorithm:

14.2. INTERPOLATION FILTER DESIGN 635

for m =M down to m = 1 do:
read low-rate input sample x
wm = x

(14.2.19)

Then, proceed by reading each successive low-rate sample, x(M + n), n = 0,1, . . . ,
and processing it by the algorithm:

for each low-rate input sample x do:
w0 = x
for i = 0,1, . . . , L− 1 compute:

yi = dot(P,hi,w)
delay(P,w)

(14.2.20)

14.2.3 Frequency Domain Characteristics

Finally, we look in more detail at the passband and stopband characteristics of the ideal
lowpass interpolation filter. Let T = 1/fs and T′ = 1/fs′ = T/L be the sampling time
periods with respect to the low and high rates fs and fs′. With reference to Fig. 14.1.2,
let xa(t) be the output of the prefilter and let Xa(f) be its bandlimited spectrum. The
spectrum of the sampled low-rate signal x(n)= xa(nT), shown in Fig. 14.1.3, will be
related to Xa(f) by the Poisson summation formula:

X(f)=
∑
n
x(n)e−2πjfnT = 1

T

∞∑
m=−∞

Xa(f −mfs)

The upsampled signal xup(n′) at the output of the L-fold rate expander of Fig. 14.2.1
has exactly the same spectrum as x(n), as indicated in Fig. 14.1.8. Indeed, using Eqs. (14.2.1)
and (14.2.2) and T = LT′, we have

Xup(f) =
∑
n′
xup(n′)e−2πjfn′T′ =

∑
n
xup(nL)e−2πjfnLT′

=
∑
n
xup(nL)e−2πjfnT =

∑
n
x(n)e−2πjfnT = X(f)

Thus,

Xup(f)= X(f)= 1

T

∞∑
m=−∞

Xa(f −mfs) (14.2.21)

The same relationship can be expressed in terms of the digital frequencies as:

Xup(ω′)= X(ω)= X(ω′L)

where

ω = 2πf
fs

= 2πfT, ω′ = 2πf
fs′

= 2πfT′, ω =ω′L

636 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

and

Xup(ω′)=
∑
n′
xup(n′)e−jω

′n′ , X(ω)=
∑
n
x(n)e−jωn

Similarly, using Eq. (14.2.13), their z-transforms will be related by

Xup(ζ)= X(z)= X(ζL)

where the slow and fast z variables are related to the corresponding digital frequencies
by

z = ejω = e2πjf/fs , ζ = ejω
′ = e2πjf/fs′ = e2πjf/Lfs

If the analog signal xa(t) had actually been resampled at the higher rate fs′ giving
rise to the sampled signal x′(n′)= xa(n′T′), then the corresponding spectrum, depicted
in Fig. 14.1.6, would be:

X′(f)=
∑
n′
xa(n′T′)e−2πjfn′T′ = 1

T′
∑
m′
Xa(f −m′fs′) (14.2.22)

The difference between x′(n′) and xup(n′) is that x′(n′) contains the correct inter-
polated values between low-rate samples, whereas the xup(n′) is zero there.

In the time domain, the job of an ideal interpolation filter is to reproduce the inter-
polated samples correctly, that is, its output is required to be yup(n′)= x′(n′) for all
n′. In the frequency domain, its job is to reshape the low-rate sampled spectrum X(f),
shown in Fig. 14.1.8, into the high-rate spectrum X′(f) shown in Fig. 14.1.6. Denoting
the ideal interpolation filter by D(f), we have for the spectrum of the output yup(n′):

Yup(f)= D(f)Xup(f)= D(f)X(f)

The filter output is required to be Yup(f)= X′(f), thus,

X′(f)= D(f)X(f) (ideal interpolation) (14.2.23)

for all f . This condition determines the ideal passband and stopband specifications for
D(f). Using Eqs. (14.2.21) and (14.2.22) and separating out the central replica of X′(f)
and the first L replicas of X(f), we rewrite the above condition as

1

T′
Xa(f)+replicas = 1

T
D(f)Xa(f)︸ ︷︷ ︸

passband

+ 1

T
D(f)

L−1∑
m=1

Xa(f −mfs)︸ ︷︷ ︸
stopband

+ replicas

Because Xa(f) is bandlimited to within [−fs/2, fs/2], it follows that the L− 1 interme-
diate replicas

∑L−1
m=1 Xa(f −mfs) will be bandlimited to within [fs/2, Lfs − fs/2]. The

filter D(f) is required to remove these replicas, that is,

D(f)= 0,
fs
2
≤ |f| ≤ Lfs − fs

2

14.2. INTERPOLATION FILTER DESIGN 637

as shown in Fig. 14.2.3. Similarly, within the low-rate Nyquist interval −fs/2 ≤ f ≤ fs/2,
the filter must satisfy:

1

T′
Xa(f)= 1

T
D(f)Xa(f) ⇒ D(f)= T

T′
= L

This justifies the choice L for the passband gain. In summary, the ideal digital inter-
polation filterD(f) is defined as follows over the high-rate Nyquist interval [−fs′/2, fs′/2]:

(ideal interpolator) D(f)=

⎧⎪⎪⎨⎪⎪⎩
L, if |f| ≤ fs

2

0, if
fs
2
< |f| ≤ fs′

2

(14.2.24)

and is periodically extended outside that interval. It is depicted in Figs. 14.1.9 and
14.2.3. Its impulse response is given by Eq. (14.2.6).

The operation of the ideal interpolation filter, expressed by Eq. (14.2.23), can also be
understood in the time domain in terms of the sampling theorem. The sampled analog
signal x(n)= xa(nT) can be reconstructed to analog form by the analog reconstructor:

xa(t)=
∑
n
xa(nT)h(t − nT)

where h(t) is the ideal reconstructor for the rate fs:

h(t)= sin(πt/T)
πt/T

(14.2.25)

Resampling at the higher rate fs′ gives the sampled signal:

x′(n′)= xa(n′T′)=
∑
n
xa(nT)h(n′T′ − nT)=

∑
n
xa(nLT′)h(n′T′ − nLT′)

Denoting

d(k′)= h(k′T′)= sin(πk′T′/T)
πk′T′/T

= sin(πk′/L)
πk′/L

(14.2.26)

and using xa(nLT′)= xa(nT)= x(n), we obtain h(n′T′ −nLT′)= d(n′ −nL) and the
filtering equation:

x′(n′)=
∑
n
d(n′ − nL)x(n)=

∑
m′
d(n′ −m′)xup(m′)

which is recognized as the time-domain version of Eq. (14.2.23).
In summary, the effect of the ideal interpolator in the frequency domain is shown in

Fig. 14.2.6. The input spectrum consists of replicas at multiples of the input sampling
rate fs. The filter removes all of these replicas, except those that are multiples of the
output rate Lfs. The output spectrum consists only of replicas at multiples of Lfs. (The
scaling by the gain L is not shown.)

638 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

upsampler

digital filter
D(f)

ideal interpolator

rate Lfs rate Lfsrate fs

fs ...2fs Lfs0
f

input spectrum X(f)

fs ...2fs Lfs0
f

output spectrum Yup(f)

Xup(f)X(f) Yup(f) = X′(f)
L

Fig. 14.2.6 Ideal interpolator in frequency domain.

14.2.4 Kaiser Window Designs

Digital interpolation filters can be designed by a variety of filter design methods, such
as the Fourier series method with windowing, Parks-McClellan, or IIR designs. Here we
summarize FIR designs based on the Kaiser window method.

We follow the design steps of Section 11.3, but use fs′ in place of fs, because the
interpolation filter is operating at the fast rate fs′. For any length-N window w(n′), the
interpolator’s impulse response is computed by

h(n′)= w(n′)d(n′ − LM), n′ = 0,1, . . . ,N − 1 = 2LM (14.2.27)

The L length-(2M) polyphase subfilters are defined in terms of h(n′) as follows. For
i = 0,1, . . . , L− 1:

hi(n)= h(nL+ i), n = 0,1, . . . ,2M − 1 (14.2.28)

For a Kaiser window design, we start by specifying the desired stopband attenuation
A in dB, and desired transition width Δf about the ideal cutoff frequency:

fc = fs′

2L
= fs

2

so that the passband and stopband frequencies are:

fpass = fc − 1

2
Δf, fstop = fc + 1

2
Δf

The Kaiser window parameters are calculated by:

δ = 10−A/20

D = A− 7.95

14.36

α = 0.1102(A− 8.7) (because, typically, A > 50 dB)

N − 1 ≥ Dfs′

Δf
= DLfs

Δf
= DL
ΔF

(14.2.29)

14.2. INTERPOLATION FILTER DESIGN 639

where we used fs′ in the formula for N and set ΔF = Δf/fs. Then, N must be rounded
up to the smallest odd integer of the form N = 2LM+1 satisfying the above inequality.

The design specifications are shown in Fig. 14.2.7. The designed length-N impulse
response is given by Eq. (14.2.27), with w(n′) given for n′ = 0,1, . . . ,N − 1:

w(n′)= I0
(
α
√

1− (n′ − LM)2/(LM)2
)

I0(α)
= I0

(
α
√
n′(2LM − n′)/LM

)
I0(α)

The frequency response of the designed filter may be computed by:

H(f)=
N−1∑
n′=0

h(n′)e−2πjfn′/fs′ =
N−1∑
n′=0

h(n′)e−2πjfn′/(Lfs)

The designed filter h(n′) can be implemented in its direct or polyphase forms.

0 f ′/2Ls fs′/2 fs′
f

A
Δf

1±δ

δ

|H(f)| /L

Fig. 14.2.7 Kaiser design specifications for L-fold interpolation filter.

14.2.5 Multistage Designs

Interpolation filters can also be implemented in a multistage form, whereby the sampling
rate is gradually increased in stages until the final rate is reached. This is shown in
Fig. 14.2.8. The first filter increases the sampling rate by a factor of L0, the second by a
factor of L1, and the third by L2, so that the overall interpolation factor is L = L0L1L2.
Such multistage realizations allow additional savings in the overall computational rate
of the interpolator.

L0 fs

fs

L0 L1 fs

L0 L1L2 f s
H0L0 H1L1 H2L2

Fig. 14.2.8 Three-stage interpolation filter.

The first filter H0(f) must have the most stringent specifications in the sense that
it has the desired transition width Δf , which is typically very narrow. The remaining
stages have much wider transition widths and therefore smaller filter lengths.

640 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0 f

Δf1

H0 H0 H0H0H1

Fig. 14.2.9 Two-stage 2×2 interpolation filter.

To see this, consider the design of a 4-fold interpolator realized as the cascade of
two 2-fold interpolators, L = L0L1, with L0 = L1 = 2. The desired ideal frequency
characteristics of the two interpolation filters are depicted in Fig. 14.2.9.

The first interpolator H0 is operating at the intermediate rate fs′ = L0fs = 2fs and
is designed to act as an ideal lowpass filter with cutoff fc = fs/2 = fs′/4. It removes all
the replicas at multiples of its input rate fs, except those that are multiples of its output
rate 2fs.

It can be designed using a Kaiser window. For example, assuming a narrow transition
width Δf about fc, and a stopband attenuation A, we obtain from Eqs. (14.2.29):

N0 − 1 = Dfs′

Δf
= D(2fs)

Δf
= 2D
ΔF

where again ΔF = Δf/fs. The second interpolator H1 is operating at the rate 2fs′ = 4fs,
and must remove all replicas at multiples of its input rate 2fs, except those that are
multiples of its output rate 4fs. Therefore, it has a wide transition width given by

Δf1 = fs′ − fs = 2fs − fs = fs

Its Kaiser length will be:

N1 − 1 = D(4fs)
Δf1

= D(4fs)
fs

= 4D

The combined effect of the two interpolation filters is to remove every three inter-
vening replicas leaving only the replicas at multiples of 4fs. Because H0 is operating at
rate 2fs and H1 at rate 4fs, the corresponding frequency responses will be:

H0(f)=
N0−1∑
n′=0

h0(n′)e−2πjfn′/(2fs), H1(f)=
N1−1∑
n′=0

h1(n′)e−2πjfn′/(4fs)

Assuming that both filters h0(n′) and h1(n′) are realized in their polyphase forms,
the total computational rate of the multistage case will be, in MACs per second:

Rmulti = N0fs +N1(2fs)�
(

2D
ΔF

+ 8D
)
fs = 2D

ΔF
(1+ 4ΔF)fs

14.2. INTERPOLATION FILTER DESIGN 641

By contrast, a single stage design would have filter length:

N − 1 = D(Lfs)
Δf

= 4D
ΔF

and polyphase computational rate:

Rsingle = Nfs � 4D
ΔF

fs

The relative performance of the multistage versus the single stage designs will be

Rmulti

Rsingle
= 1+ 4ΔF

2
= 1

2
+ 2ΔF (14.2.30)

We note that this ratio is independent of the filter lengths and stopband attenuations;
it depends only on the transition width. Computational savings will take place whenever:

1

2
+ 2ΔF < 1 � ΔF <

1

4

which is usually satisfied because typical values of ΔF are of the order of 0.1. As an-
other example, consider an 8-fold interpolator which can be realized in three different
multistage ways:

8 = 2× 2× 2 = 2× 4 = 4× 2

The frequency characteristics of the different stages are shown in Fig. 14.2.10. The
interpolator at each stage removes all replicas at multiples of its input rate, except those
that are multiples of its output rate. In all three cases, the combined effect is to remove
every seven intervening replicas leaving only the replicas at the multiples of 8fs. For the
2×2×2 case, the transition widths of the three stages are taken to be:

Δf0 = Δf, Δf1 = 2fs − fs = fs, Δf2 = 4fs − fs = 3fs

resulting in Kaiser filter lengths:

N0 − 1 = D(2fs)
Δf0

= 2D
ΔF

, N1 − 1 = D(4fs)
Δf1

= 4D, N2 − 1 = D(8fs)
Δf2

= 8D
3

and total polyphase computational rate:

Rmulti = N0fs +N1(2fs)+N2(4fs)�
(

2D
ΔF

+ 8D+ 32D
3

)
fs

By contrast, the single stage design would have filter length:

N − 1 = D(8fs)
Δf

= 8D
ΔF

and polyphase computational cost:

Rsingle = Nfs = 8D
ΔF

fs

642 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

H0 H1 H2

f

Δf2

Δf1

H0 H1

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

f

Δf1

H0 H1

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

f

Δf1

2x2x2 realization

2x4 realization

4x2 realization

Fig. 14.2.10 Frequency characteristics of multistage 8-fold interpolators.

The relative performance of the multistage versus the single stage design is then

Rmulti

Rsingle
= 1

4
+ 7

3
ΔF

with savings whenever ΔF < 9/28 = 0.321. In a similar fashion, we find the multistage
versus single stage polyphase computational costs of the 2×4 and 4×2 cases:

Rmulti

Rsingle
= 1

4
+ 2ΔF (2×4 case)

Rmulti

Rsingle
= 1

2
+ 4

3
ΔF (4×2 case)

Comparing the three multistage cases, it appears that the 2×4 case is more efficient
than the 2×2×2 case, which is more efficient than the 4×2 case. Indeed,

1

4
+ 2ΔF <

1

4
+ 7

3
ΔF <

1

2
+ 4

3
ΔF

the second inequality being valid for ΔF < 1/4. Some specific design examples will be
presented later on.

14.2. INTERPOLATION FILTER DESIGN 643

The general multistage design procedure is as follows [347]. Assume there are K
interpolation stagesH0,H1, . . . ,HK−1 that increase the sampling rate successively by the
factors L0, L1, . . . , LK−1. The sampling rate at the input of the ith interpolation filter Hi
will be Fi−1fs and at its output it will be increased by a factor Li, that is, Fifs = LiFi−1fs,
where:

Fi = LiFi−1 = L0L1 · · ·Li , i = 0,1, . . . , K − 1

We set F−1 = 1, so that F0 = L0. The total interpolation factor will be:

L = FK−1 = L0L1 · · ·LK−1

For a Kaiser design, we assume a given transition width Δf about the ideal cutoff
frequency of the L-fold interpolator fc = fs/2 and given stopband attenuations in dB
for each stage A0,A1, . . . ,AK−1. Typically, these attenuations will be the same.† Next,
compute the Kaiser D factors, α parameters, and passband/stopband ripples δ. For
i = 0,1, . . . , K − 1

δi = 10−Ai/20

Di = Ai − 7.95

14.36

αi = 0.1102(Ai − 8.7) (assuming Ai > 50 dB)

Then, compute the effective transition widths for the interpolation filters:

Δf0 = Δf

Δfi = Fi−1fs − fs = (Fi−1 − 1)fs, i = 1,2, . . . , K − 1
(14.2.31)

The theoretical cutoff frequencies of these filters will be:

fci = Fifs
2Li

= 1

2
Fi−1fs ⇒ ω′

ci =
2πfci
Fifs

= π
Li

for i = 0,1, . . . , K − 1. In particular, fc0 = fs/2. For Kaiser designs, the above choices
of widths imply the following passband and stopband frequencies for the filters. For
i = 0, we have

fpass,0 = fc0 − 1

2
Δf0 = fs

2
− 1

2
Δf, fstop,0 = fc0 + 1

2
Δf0 = fs

2
+ 1

2
Δf

and for i = 1,2, . . . , K − 1

fpass,i = fci − 1

2
Δfi = fs

2
, fstop,i = fci + 1

2
Δfi = Fi−1fs − fs

2

Alternatively, we can demand that all filters have exactly the same passband fre-
quency, namely, fs/2 − Δf/2. This changes all the stopband frequencies by shifting
them down by Δf/2, that is, we can define for i = 1,2, . . . , K − 1

†If the overall multistage output is reconstructed by a DAC and analog postfilter, then the second and
later stages can have less attenuation than A0 because their suppression of the replicas will be aided by
the postfilter. See Section 14.4.5.

644 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

fpass,i = fs
2
− 1

2
Δf, fstop,i = Fi−1fs − fs

2
− 1

2
Δf

Note that the transition widths remain the same, but the ideal cutoff frequencies
also shift down by Δf/2, that is, for i = 1,2, . . . , K − 1

fci = 1

2
(fpass,i + fstop,i)= 1

2
Fi−1fs − 1

2
Δf ⇒ ω′

ci =
2πfci
Fifs

= π
Li
−π

ΔF
Fi

where ΔF = Δf/fs. The frequency characteristics of the first filter H0 are as shown in
Fig. 14.2.7, with L = L0. The specifications of the ith stage are shown in Fig. 14.2.11.

Fi-1 fs

fpass,i fstop,i

fci

2Fi-1 fs Li Fi-1 fs = Fi fs(Li-1)Fi-1 fs...

...

0

Δfi

f

Ai

Fi-1 fs Fi fs

HiLi

ith stage interpolator

Fig. 14.2.11 Hi removes replicas at multiples of Fi−1fs, but not at Fifs.

The filter Hi removes all replicas at multiples of its input rate Fi−1fs except those
that are multiples of its output rate Fifs. The replicas between the first replica and that
at Fi−1fs have already been removed by the previous stages; hence, the wide transition
width Δfi. The corresponding Kaiser filter lengths are:

N0 − 1 = D0(F0fs)
Δf0

= D0L0

ΔF

Ni − 1 = Di(Fifs)
Δfi

= DiFi
Fi−1 − 1

, i = 1,2, . . . , K − 1

(14.2.32)

where Ni must be rounded to the next smallest integer of the form:

Ni = 2LiMi + 1, i = 0,1, . . . , K − 1

The windowed impulse responses of the filters will be, for i = 0,1, . . . , K − 1

hi(n′)= d(Li, n′ − LiMi)w(αi,Ni, n′), n′ = 0,1, . . . ,Ni − 1

where d(Li, k′) is the ideal interpolation filter with cutoff frequency† ω′
ci = π/Li

†For the alternative case, replace ω′
ci by its shifted version ω′

ci = π/Li −πΔF/Fi.

14.2. INTERPOLATION FILTER DESIGN 645

d(Li, k′)= sin(ω′
cik′)

ω′
cik′

= sin(πk′/Li)
πk′/Li

and w(αi,Ni, n′) is the corresponding Kaiser window:

w(αi,Ni, n′)= I0
(
αi
√

1− (n′ − LiMi)2/(LiMi)2
)

I0(αi)

The polyphase subfilters of each Hi are defined by

hij(n)= h(nLi + j), j = 0,1, . . . , Li − 1, n = 0,1, . . . , Pi

where Pi = 2Mi − 1. Finally, compute the frequency responses of the individual stages:

Hi(f)=
Ni−1∑
n′=0

hi(n′)e−2πjfn′/(Fifs), i = 0,1, . . . , K − 1

and the total frequency response:

Htot(f)= H0(f)H1(f)· · ·HK−1(f)

Note that the effective passband ripple of the combined filter Htot(f) is worse than
the ripples of the individual factors. This can be seen as follows. In the passband
frequency range, the individual filters satisfy

1− δi ≤
∣∣∣∣Hi(f)

Li

∣∣∣∣ ≤ 1+ δi

where the DC gain Li has been factored out. Multiplying these inequalities together, we
obtain the bounds:

K−1∏
i=0

(1− δi)≤
∣∣∣∣H0(f)H1(f)· · ·HK−1(f)

L0L1 · · ·LK−1

∣∣∣∣ ≤ K−1∏
i=0

(1+ δi)

For small δi we may use the approximation

K−1∏
i=0

(1± δi)� 1±
K−1∑
i=0

δi

to get the total passband ripple of the cascaded filter

1− δtot ≤
∣∣∣∣Htot(f)

L

∣∣∣∣ ≤ 1+ δtot, where δtot =
K−1∑
i=0

δi

For equal ripples δi = δ and K stages, we have δtot = Kδ. If so desired, this effect
can be compensated by starting the design of the Hi(f) using δi’s that are smaller
by a factor of K. It should be noted, however, that this may not always be necessary
because the individual filters may not reach their extremum values simultaneously over

646 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

the passband, and therefore the bounds (1 ± δtot) may be too conservative. This is
illustrated in the design examples later.

Also, in Kaiser window designs, it is the stopband attenuation A that essentially
determines the passband ripples. In order to achieve reasonably high stopband attenu-
ations, for example, in the range 70-100 dB, the corresponding passband ripples will be
so small that even if they are multiplied by any K of the order of 10, they will still give
rise to excellent passbands.

The total polyphase computational rate in MACs per second is obtained by adding
up the computational rates of all the stages, that is,

Rmulti =
K−1∑
i=0

Ri , where Ri = NiFi−1fs, i = 0,1, . . . , K − 1

These follow from the observation that the ith filter operates at rate Fifs and would
have computational rate NiFifs in its direct form. But in its polyphase form we save a
factor of Li, resulting in the rate NiFifs/Li = NiFi−1fs. By comparison, the single-stage
design will have Kaiser length and polyphase computational rate:

N − 1 = D(Lfs)
Δf

= DL
ΔF

, Rsingle = Nfs

where we may take A = A0 for the stopband attenuation and D = D0. It follows that
the relative performance of multistage versus single stage designs will be:

Rmulti

Rsingle
= N0 +

∑K−1
i=1 NiFi−1

N
(14.2.33)

Assuming that all the attenuations are the same, Ai = A, and therefore all the Di
are the same, we may use the approximations:

N0 � DL0

ΔF
, Ni � DFi

Fi−1 − 1
, N � DL

ΔF

to obtain the simplified expression:

Rmulti

Rsingle
= L0

L
+ΔF

K−1∑
i=1

FiFi−1

(Fi−1 − 1)L
(14.2.34)

For a two-stage design with L = L0L1, F1 = L, and F0 = L0, we have

Rmulti

Rsingle
= L0

L
+ F1F0

(F0 − 1)L
ΔF = 1

L1
+ L0

L0 − 1
ΔF

Setting L0 = L1 = 2, or L0 = 2, L1 = 4, or L0 = 4, L1 = 2, we recover the results
obtained previously for the 2×2, 2×4, and 4×2 cases. The condition that the multistage
form be more efficient than the single-stage one is:

1

L1
+ L0

L0 − 1
ΔF < 1 � ΔF <

(
1− 1

L0

)(
1− 1

L1

)

14.3. LINEAR AND HOLD INTERPOLATORS 647

Given this condition, then the most efficient ordering of the two filters is to place
first the filter with the smaller oversampling ratio. For example, assuming L0 < L1 then
the ordering H0H1 is more efficient than H1H0 because

1

L1
+ L0

L0 − 1
ΔF <

1

L0
+ L1

L1 − 1
ΔF < 1

For a three-stage design with F0 = L0, F1 = L0L1, and F2 = L0L1L2 = L, we find

Rmulti

Rsingle
= L0

L
+ΔF

[
F1F0

(F0 − 1)L
+ F2F1

(F1 − 1)L

]
= 1

L1L2
+ΔF

[
L0

L2(L0 − 1)
+ L0L1

L0L1 − 1

]
Setting L0 = L1 = L2 = 2, we recover the results of the 2×2×2 case. Because the

designed filter lengths Ni are slightly larger than those given by the Kaiser formulas,
the correct relative computational rate should be computed using Eq. (14.2.33), whereas
Eq. (14.2.34) gives only an approximation.

14.3 Linear and Hold Interpolators

We saw in Section 14.2.3 that the ideal interpolator may be thought of as the sampled
version of the ideal analog reconstructor, sampled at the high rate fs′, that is,

d(k′)= h(k′T′) (14.3.1)

This relationship can be applied to other analog reconstructors, resulting in simpler
interpolators. For any analog reconstructor h(t) that reconstructs the low-rate samples
by

ya(t)=
∑
m
h(t −mT)x(m)

we can obtain the interpolated samples by resampling ya(t) at the high rate fs′:

ya(n′T′)=
∑
m
h(n′T′ −mT)x(m)

which can be written in the form

yup(n′)=
∑
m
d(n′ −mL)x(m) (14.3.2)

where d(k′) is obtained from h(t) via Eq. (14.3.1). The interpolation equation can be
written also in terms of the upsampled version of x(n)

yup(n′)=
∑
m′
d(n′ −m′)xup(m′)=

∑
k′
d(k′)xup(n′ − k′) (14.3.3)

Two of the most common interpolators are the hold and linear interpolators result-
ing from the sample/hold and linear analog reconstructors having impulse responses:

h(t)=
{

1, if 0 ≤ t < T
0, otherwise

and h(t)=
⎧⎨⎩ 1− |t|

T
, if |t| ≤ T

0, otherwise

648 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

They are shown in Fig. 14.3.1. Setting t = k′T′ in these definitions, and using the
relationship T = LT′, we find the following discrete-time versions:

(hold) d(k′)=
{

1, if 0 ≤ k′ ≤ L− 1
0, otherwise

= u(k′)−u(k′ − L)

(linear) d(k′)=
⎧⎨⎩ 1− |k

′|
L

, if |k′| ≤ L− 1

0, otherwise

Note that in the linear case, the endpoints k′ = ±L are not considered because d(k′)
vanishes there. Figure 14.3.1 shows the sampled impulse responses for L = 8.

0 T -T
t t

T′=T/8
0 T

T′=T/8

h(t) h(t)
1 1

Fig. 14.3.1 Hold and linear interpolator impulse responses for L = 8.

The filtering operations of these interpolators are very simple. The hold interpolator
holds each low-rate sample constant forL high-rate sampling times. In other words, each
low-rate sample is repeated L times at the high rate. The linear interpolator interpolates
linearly between a given low-rate sample and the next one.

To see this, we rewrite the filtering equation (14.3.3) in its polyphase form. As we
argued for Eq. (14.2.12), we set n′ = nL + i and k′ = kL + j and use the fact that
xup(nL+ i− kL− j)= 0, if i �= j, to get

yup(nL+ i)=
∑
k
di(k)x(n− k) (14.3.4)

where di(k) are the corresponding polyphase subfilters:

di(k)= d(kL+ i), i = 0,1, . . . , L− 1

The summation over k must be determined for each case. In the hold case, we have
the restriction on k:

0 ≤ k′ ≤ L− 1 ⇒ 0 ≤ kL+ i ≤ L− 1 ⇒ 0 ≤ k ≤ 1− 1+ i
L

Because 0 ≤ i ≤ L− 1, the only allowed value of k in that range is k = 0. Similarly,
in the linear case, we have:

|k′| ≤ L− 1 ⇒ |kL+ i| ≤ L− 1 ⇒ −1+ 1− i
L

≤ k ≤ 1− 1+ i
L

The only possible integer value in the left-hand side is k = −1, which is realized
when i = 1, and the only integer value of the right-hand side is k = 0. Therefore, the
polyphase subfilters are in the two cases:

14.3. LINEAR AND HOLD INTERPOLATORS 649

(hold) di(k)= di(0)δ(k)

(linear) di(k)= di(0)δ(k)+di(−1)δ(k+ 1)

where for the hold case, we have:

di(0)= d(i)= u(i)−u(i− L)= 1− 0 = 1

and for the linear case:

di(0) = d(i)= 1− |i|
L
= 1− i

L

di(−1) = d(−L+ i)= 1− |i− L|
L

= 1− L− i
L

= i
L

Thus, the polyphase subfilters are:

(hold) di(k)= δ(k)

(linear) di(k)=
(
1− i

L
)
δ(k)+ i

L
δ(k+ 1)

(14.3.5)

for i = 0,1, . . . , L − 1. Inserting these impulse responses in Eq. (14.3.4), we find the
interpolation equations in the two cases. For the hold case:

yup(nL+ i)= x(n) , i = 0,1, . . . , L− 1 (14.3.6)

Thus, each low-rate sample is repeated L times. For the linear case we have:

yup(nL+ i)= (1− i
L
)
x(n)+ i

L
x(n+ 1) , i = 0,1, . . . , L− 1 (14.3.7)

They correspond to linearly weighting the two successive low-rate samples x(n) and
x(n + 1). For example, when L = 8 the eight interpolated samples between x(n) and
x(n+ 1) are calculated by:

yup(8n) = x(n)

yup(8n+ 1) = 0.875x(n)+0.125x(n+ 1)

yup(8n+ 2) = 0.750x(n)+0.250x(n+ 1)

yup(8n+ 3) = 0.625x(n)+0.375x(n+ 1)

yup(8n+ 4) = 0.500x(n)+0.500x(n+ 1)

yup(8n+ 5) = 0.375x(n)+0.625x(n+ 1)

yup(8n+ 6) = 0.250x(n)+0.750x(n+ 1)

yup(8n+ 7) = 0.125x(n)+0.875x(n+ 1)

650 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Figure 14.3.2 shows the interpolated signal using 8-fold hold and linear interpolators.
To understand the frequency domain properties of the hold and linear interpolators and
the extent to which they differ from the ideal interpolator, we compute their high-rate
ζ-transforms using Eq. (14.2.15). For the hold case, taking the low-rate z-transform of
di(k) given in Eq. (14.3.5), we find

xup(8n-8)

xup(8n+8)

8n+8

xup(8n)

8n
n′

8n-8

xup(8n-8)

xup(8n+8)

8n+8

xup(8n)

8n
n′

8n-8

hold

linear

Fig. 14.3.2 8-fold hold and linear interpolators.

Di(z)= 1 ⇒ Di(ζL)= 1

Then, it follows from Eq. (14.2.15)

D(ζ)=
L−1∑
i=0

ζ−iDi(ζL)=
L−1∑
i=0

ζ−i = 1− ζ−L

1− ζ−1
(14.3.8)

Setting ζ = ejω′ = e2πjf/fs′ = e2πjf/Lfs we obtain the frequency response of the hold
interpolator:

D(f) = 1− e−jLω′

1− e−jω′ = sin(Lω′/2)
sin(ω′/2)

e−j(L−1)ω′/2

= sin(πf/fs)
sin(πf/Lfs)

e−jπ(L−1)f/Lfs

(14.3.9)

Similarly, the low-rate z-transform of di(k) for the linear case is:

Di(z)= 1− i
L
+ i
L
z ⇒ Di(ζL)= 1+ i

L
(ζL − 1)

From Eq. (14.2.15) we find:

D(ζ)=
L−1∑
i=0

ζ−iDi(ζL)=
L−1∑
i=0

ζ−i + ζL − 1

L

L−1∑
i=0

iζ−i

14.4. DESIGN EXAMPLES 651

and using the identity:

L−1∑
i=0

iζ−i = (1− ζ−L)ζ−1

(1− ζ−1)2
− Lζ−L

1− ζ−1

we obtain (see also Problem 5.11):

D(ζ)= 1

L
(1− ζ−L)(1− ζL)
(1− ζ−1)(1− ζ)

= 1

L

(
1− ζ−L

1− ζ−1

)2

ζL−1

which leads to the frequency response:

D(f)= 1

L

∣∣∣∣sin(Lω′/2)
sin(ω′/2)

∣∣∣∣2

= 1

L

∣∣∣∣∣ sin(πf/fs)
sin(πf/Lfs)

∣∣∣∣∣
2

(14.3.10)

Both responses (14.3.9) and (14.3.10) are periodic in f with period fs′ = Lfs and van-
ish at all multiples of fs which are not multiples of Lfs. Therefore, they partially remove
the spectral replicas that are between multiples of fs′. They are shown in Fig. 14.3.3 for
the case L = 8, together with the ideal response.

Because of their simple structure, linear and hold interpolators are used in multi-
stage implementations of interpolators, especially in the latter stages that have higher
sampling rates. Some example designs are discussed in Section 14.4.5.

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

f

hold interpolator

ideal interpolator

linear interpolator

|D
(f

)|

8

Fig. 14.3.3 Hold and linear interpolator frequency responses for L = 8.

14.4 Design Examples

14.4.1 4-fold Interpolators

Consider the case of a 4-fold interpolator having L = 4 and polyphase filter length
2M = 4 or M = 2. This corresponds to a filter length N = 2LM + 1 = 17. The ideal
impulse response will be:

d(k′)= sin(πk′/4)
πk′/4

, −8 ≤ k′ ≤ 8

652 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

or, numerically,

h = d = [0,−0.13,−0.21,−0.18,0,0.30,0.64,0.90,1,0.90,0.64,

0.30,0,−0.18,−0.21,−0.13,0]
(14.4.1)

where h is the causal version, with time origin shifted to the left of the vector, and d
is the symmetric one with time origin at the middle of the vector. This truncated ideal
impulse response is shown in Fig. 14.4.1. The four polyphase subfilters are defined by
Eq. (14.2.10), that is, for i = 0,1,2,3,

0

5-5

4-4 2-2 1-1

6-6 7-7 8-8

3-3

d(k′)

k′

1
0.900.90

0.640.64

0.30

-0.18 -0.21
-0.13-0.13

-0.21 -0.18

0.30

L=4, M=2, N=17

Fig. 14.4.1 Length-17 symmetric impulse response of 4-fold FIR interpolator.

di(k)= d(4k+ i), −2 ≤ k ≤ 1

They are extracted from h by taking every fourth entry, starting with the ith entry:

h0 = d0 = [0, 0, 1, 0]

h1 = d1 = [−0.13, 0.30, 0.90, −0.18]

h2 = d2 = [−0.21, 0.64, 0.64, −0.21]

h3 = d3 = [−0.18, 0.90, 0.30, −0.13]

(14.4.2)

The interpolated samples between x(n)= xup(4n) and x(n + 1)= xup(4n + 4) are
calculated from Eqs. (14.2.18). All four subfilters act on the time-advanced low-rate
input samples {x(n + 2), x(n + 1), x(n), x(n − 1)}, or, {xup(4n + 8), xup(4n + 4),
xup(4n), xup(4n− 4)}. Equations (14.2.12) can be cast in a compact matrix form:

⎡⎢⎢⎢⎣
yup(4n)
yup(4n+ 1)
yup(4n+ 2)
yup(4n+ 3)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0 0 1 0
−0.13 0.30 0.90 −0.18
−0.21 0.64 0.64 −0.21
−0.18 0.90 0.30 −0.13

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xup(4n+ 8)
xup(4n+ 4)
xup(4n)
xup(4n− 4)

⎤⎥⎥⎥⎦ (14.4.3)

These results can be understood more intuitively using the LTI form of convolution,
that is, superimposing the full length-17 symmetric impulse response d at the four
contributing low-rate samples and summing up their contributions at the four desired
time instants, that is, at n′ = 4n+ i, i = 0,1,2,3. This is illustrated in Fig. 14.4.2.

14.4. DESIGN EXAMPLES 653

xup(4n-4)

4n-4

xup(4n+4)

yup(4n+1)

4n+4

xup(4n+8)

4n+8

xup(4n)

4n

n′

Fig. 14.4.2 LTI form of convolution by superposition of FIR impulse responses.

For example, referring to the impulse response values indicated on Fig. 14.4.1, we
find that at time instant 4n+1, the input sample xup(4n+8) will contribute an amount
−0.13xup(4n+ 8), the sample xup(4n+ 4) will contribute an amount 0.30xup(4n+ 4),
the sample xup(4n) will contribute 0.90xup(4n), and the sample xup(4n−4) an amount
−0.18xup(4n− 4). The interpolated value is built up from these four contributions:

yup(4n+ 1)= −0.13xup(4n+ 8)+0.30xup(4n+ 4)+0.90xup(4n)−0.18xup(4n− 4)

Similarly, it should be evident from Fig. 14.4.2 that yup(4n)= xup(4n), with the
contributions of the other low-rate inputs vanishing at time instant 4n. We may also use
the flip-and-slide form of convolution, in which the impulse response d(k′) is flipped,
delayed, and positioned at the sampling instant n′ to be computed. For example, at
n′ = 4n+ 1, we have:

yup(4n+ 1)=
∑
k′
d(4n+ 1− k′)xup(k′)

Figure 14.4.3 shows this operation. Because of symmetry, the flipped impulse re-
sponse is the same as that in Fig. 14.4.1. It is then translated to n′ = 4n + 1 and the
above linear combination is performed.

xup(4n-4)
xup(4n+4)

d(4n+1−k′) =

4n+4
4n+1

xup(4n+8)

xup(4n)

4n
k′

flipped/shifted
impulse response

-0.18

0.90

0.30

-0.13

Fig. 14.4.3 Flip-and-slide form of convolution.

The only contributions come from the low-rate samples that fall within the finite
extent of the impulse response. Thus, only the terms k′ = 4n − 4,4n,4n + 4,4n + 8

654 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

contribute, and each is weighted by the appropriate impulse response values that are
read off from the figure, that is, {−0.18,0.90,0.30,−0.13}, so that again:

yup(4n+ 1)= −0.18xup(4n− 4)+0.90xup(4n)+0.30xup(4n+ 4)−0.13xup(4n+ 8)

The Hamming windowed version of the filter is obtained by multiplying the full
length-17 filter response h by a length-17 Hamming window. The resulting impulse
response becomes:

h = [0,−0.02,−0.05,−0.07,0,0.22,0.55,0.87,1,0.87,0.55,0.22,0,

− 0.07,−0.05,−0.02,0]

The polyphase interpolation equations become in this case:⎡⎢⎢⎢⎣
up(4n)
up(4n+ 1)
up(4n+ 2)
up(4n+ 3)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0 0 1 0
−0.02 0.22 0.87 −0.07
−0.05 0.55 0.55 −0.05
−0.07 0.87 0.22 −0.02

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xup(4n+ 8)
xup(4n+ 4)
xup(4n)
xup(4n− 4)

⎤⎥⎥⎥⎦
The graphs in Fig. 14.4.4 compare the magnitude responses of the rectangularly and

Hamming windowed interpolation filters. A block diagram realization of the polyphase
form for this example is shown in Fig. 14.4.5. It is based on Eqs. (14.2.14) and (14.2.15),
that is,

Fig. 14.4.4 Magnitude response |H(ω′)| versus ω′ = 2πf/fs′.

H(ζ) = H0(ζ4)+ζ−1H1(ζ4)+ζ−2H2(ζ4)+ζ−3H3(ζ4)

= H0(z)+z−1/4H1(z)+z−2/4H2(z)+z−3/4H3(z)

with all the subfilters using the same tapped delay line holding the incoming low-rate
samples. The block diagram is equivalent to the commutator model of Fig. 14.2.5. The
polyphase subfilters are defined by:

hi = [hi0, hi1, hi2, hi3], Hi(z)= hi0 + hi1z−1 + hi2z−2 + hi3z−3

14.4. DESIGN EXAMPLES 655

z -1/4

z -1

z -1

z -1

z -2/4

z -3/4

y0(n)

y1(n)

y2(n)

y3(n)

yup(n′)

x(n+2)

x(n+1)

x(n-1)

x(n)

h00

h10

h20

h30

h01

h11

h21

h31

h02

h12

h22

h32

h03

h13

h23

h33

low-rate
input

high-rate
output

Fig. 14.4.5 Polyphase realization of 4-fold interpolator.

for i = 0,1,2,3, where hi are given by Eq. (14.4.2).
The possibility of a parallel multiprocessor implementation is evident from this di-

agram. The four outputs of the filters Hi(z) are produced simultaneously in a parallel
implementation, but they are not sent to the overall output simultaneously. During each
low-rate sampling period T, the sample y0(n) is sent out first, then T/4 seconds later
(represented by the delay z−1/4) the second computed interpolated sample y1(n) is sent
out, anotherT/4 seconds later the third sample y2(n) is sent out, andT/4 seconds after
that, the fourth interpolated sample y3(n) is sent out.

As a concrete filtering example, consider the following low-rate input signal x(n)
consisting of 25 DC samples, and depicted in Fig. 14.4.6 with respect to the fast time
scale:

x(n)= {1,1}

The interpolated values between these low-rate samples are shown in Fig. 14.4.7 for
the cases of the rectangularly and Hamming windowed interpolating filters. They were
computed by the polyphase sample processing algorithm of Eq. (14.2.20). The input-on
and input-off transients are evident.

As another example, consider the case of L = 4 and M = 12, that is, interpolation
filter length N = 2LM + 1 = 97. This is a more realistic length for typical 4-fold
oversampling digital filters used in CD players. The corresponding rectangularly and
Hamming windowed magnitude responses are shown in Fig. 14.4.8. The interpolated

656 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Fig. 14.4.6 Low-rate input samples xup(n′).

Fig. 14.4.7 High-rate interpolated output samples yup(n′).

output signals from these two filters are shown in Fig. 14.4.9 for the same low-rate
input signal x(n). Note the longer input-on and input-off transients.

Fig. 14.4.8 Magnitude responses of length-97 interpolation filters.

14.4. DESIGN EXAMPLES 657

Fig. 14.4.9 High-rate interpolated outputs yup(n′).

14.4.2 Multistage 4-fold Interpolators

Here, we follow the discussion of Section 14.2.5 and design multistage and single stage
digital interpolation filters using the Kaiser window method. Such filters may be used
as oversampling digital filters in CD players.†

We take L = 4 for the oversampling ratio, and assume a nominal digital audio sam-
pling rate of fs = 40 kHz, so that the fast rate will be fs′ = Lfs = 4 × 40 = 160
kHz. We take the transition width to be Δf = 5 kHz about the ideal cutoff frequency
fc = fs′/(2L)= fs/2 = 20 kHz. Therefore, the passband and stopband frequencies of
the filter will be

fpass = 20− 5

2
= 17.5 kHz, fstop = 20+ 5

2
= 22.5 kHz

and the normalized transition width

ΔF = Δf
fs
= 5

40
= 0.125

The stopband attenuation is taken to be A = 80 dB, which gives rise to a pass-
band/stopband ripple δ = 10−4, passband attenuation Apass = 0.0017 dB, and the
following values for the Kaiser window parameters D and α:

D = A− 7.95

14.36
= 5.017, α = 0.1102(A− 8.7)= 7.857

For a 2×2 multistage design, shown in Fig. 14.4.10, we may use the general design
equations (14.2.31) and (14.2.32) to find the Kaiser lengths of the two filters H0 and H1:

N0 − 1 = DL0

ΔF
= 2D
ΔF

= 80.27, N1 − 1 = DF1

F0 − 1
= 4D = 20.07

which get rounded up to the values:

†See Ref. [356] for actual DSP chips with comparable design characteristics.

658 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

H0 H1

2fs 4fsfs

2 2
x(n) yup(n′)

Fig. 14.4.10 2×2 = 4-fold oversampling filter.

N0 = 85 = 2L0M0 + 1 = 4M0 + 1 ⇒ M0 = 21

N1 = 25 = 2L1M1 + 1 = 4M1 + 1 ⇒ M1 = 6

The magnitude response of the filter H0(f) in dB and a typical low-rate sinusoidal
input to be interpolated are shown in Fig. 14.4.11. The 2-fold interpolated output of
H0(f) is shown in Fig. 14.4.12. It serves as the input to the next filter H1(f) whose
magnitude response is also shown in Fig. 14.4.12.

Fig. 14.4.11 Filter H0(f) and its low-rate input signal.

Fig. 14.4.12 Filter H1(f) and its input which is the output of H0(f).

14.4. DESIGN EXAMPLES 659

The 2-fold interpolated output of H1(f) will be the final 4-fold interpolated output.
It is shown in Fig. 14.4.13 together with the superimposed plots of the filters H0(f)
and H1(f). In these figures, the frequency responses have been normalized by their DC
values, that is, H0(f)/L0, H1(f)/L1.

Finally, we compare the multistage design to an equivalent single stage Kaiser design.
In this case the Kaiser filter length will be

N − 1 = 4D
ΔF

= 160.56

which is rounded up to the value

N = 169 = 2LM + 1 = 8M + 1 ⇒ M = 21

Its magnitude response H(f) is shown in Fig. 14.4.14 together with the magnitude
response of the combined multistage filter Htot(f)= H0(f)H1(f). Again, we have nor-
malized them to their DC values, namely, H(f)/L, and Htot(f)/L.

Fig. 14.4.13 Filters H0(f), H1(f) and the overall interpolated output.

Fig. 14.4.14 Multistage filter H0(f)H1(f) and single-stage filter H(f).

660 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

The multistage realization requires only 80 percent of the computational rate of the
single-stage design. Indeed, the relative computational rate of the multistage versus the
single stage designs is given according to Eq. (14.2.33) by:

Rmulti

Rsingle
= N0 +N1F0

N
= 85+ 25 · 2

169
= 0.80

which compares well with the approximate result of Eq. (14.2.30).

Rmulti

Rsingle
= 1

2
+ 2ΔF = 0.5+ 2 · 0.125 = 0.75

Finally, as we saw earlier, the passband of the total filter Htot(f)= H0(f)H1(f)
tends to be worse than the passbands of the individual factors. Let δ be the common
passband ripple, as calculated from Eq. (14.2.29). Then, the two individual filters will
satisfy within their passbands:

1− δ ≤
∣∣∣∣H0(f)

L0

∣∣∣∣ ≤ 1+ δ , 1− δ ≤
∣∣∣∣H1(f)

L1

∣∣∣∣ ≤ 1+ δ

Multiplying the two inequalities, we find for the total filter

(1− δ)2≤
∣∣∣∣H0(f)H1(f)

L0L1

∣∣∣∣ ≤ (1+ δ)2

or, approximately if δ is small,

1− 2δ ≤
∣∣∣∣Htot(f)

L

∣∣∣∣ ≤ 1+ 2δ

Thus, the passband ripple is effectively doubled, δtot = 2δ. Taking logs of both
sides, we obtain the following bounds for the passband attenuations in dB:

−8.7δ ≤ 20 log10

∣∣∣∣H0(f)
L0

∣∣∣∣ ≤ 8.7δ, − 8.7δ ≤ 20 log10

∣∣∣∣H1(f)
L1

∣∣∣∣ ≤ 8.7δ

−8.7(2δ)≤ 20 log10

∣∣∣∣Htot(f)
L

∣∣∣∣ ≤ 8.7(2δ)

where we used the small-δ approximation:

20 log10(1+ δ)� 8.7δ

Figure 14.4.15 shows a magnified plot of the passband region of the individual and
total filters for the above designs, with the passband bounds placed on the figure. It
is evident that the actual passband ripple of Htot(f) is less than the worst-case ripple
δtot = 2δ.

14.4. DESIGN EXAMPLES 661

Fig. 14.4.15 Magnified passband of 2×2 interpolator.

14.4.3 DAC Equalization

In an oversampling DSP system, the interpolator output samples are reconstructed by
a staircase D/A converter operating at the high rate fs′ = Lfs. Its frequency response
(normalized to unity gain at DC) is

Hdac(f)= sin(πf/fs′)
πf/fs′

e−jπf/fs
′

It causes some attenuation within the Nyquist interval, with maximum of about 4
dB at the Nyquist frequency fs′/2. For an L-fold interpolation filter which has cutoff at
fc = fs/2 = fs′/2L, the maximum attenuation within the filter’s passband will be:

|Hdac(fc)| =
∣∣∣∣∣sin(πfc/fs′)

πfc/fs′

∣∣∣∣∣ = sin(π/2L)
π/2L

(14.4.4)

For large values of the oversampling ratio L, this attenuation is insignificant, ap-
proaching 0 dB. Thus, one of the benefits of oversampling is that the aperture effect of
the DAC can be neglected.

However, for smaller values of L (for example, L ≤ 8) it may be desirable to com-
pensate this attenuation by designing the interpolation filter to have an inverse shape to
the sinx/x DAC response over the relevant passband range. The desired equalized ideal
interpolation filter can then be defined by the following equation, replacing Eq. (14.2.24):

D(f)=

⎧⎪⎪⎨⎪⎪⎩
LDeq(f), if |f| ≤ fs

2

0, if
fs
2
< |f| ≤ fs′

2

(14.4.5)

where Deq(f) is essentially the inverse response 1/Hdac(f) with the phase removed in
order to keep D(f) real and even in f :

Deq(f)= πf/fs′

sin(πf/fs′)
, |f| ≤ fs

2
(14.4.6)

662 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

In units of the high-rate digital frequency ω′ = 2πf/fs′, Eq. (14.4.5) becomes:

D(ω′)=

⎧⎪⎪⎨⎪⎪⎩
L

ω′/2

sin(ω′/2)
, if |ω′| ≤ π

L
0, if

π
L
< |ω′| ≤ π

(14.4.7)

Such a filter can be designed by the frequency sampling design method of Section
11.4. If the filter order is known, say N = 2LM + 1, then we can compute the desired
filter weights by the inverse N-point DFT:

d̃(k′)= 1

N

LM∑
i=−LM

D(ω′
i)e

jω′
ik′ , −LM ≤ k′ ≤ LM (14.4.8)

where ω′
i are the N DFT frequencies spanning the symmetric Nyquist interval [−π,π]:

ω′
i =

2πi
N

, −LM ≤ i ≤ LM

The designed causal windowed filter will be

h(n′)= d̃(n′ − LM)w(n′), 0 ≤ n′ ≤ N − 1 (14.4.9)

In the Hamming window case, we must assume a desired value for N. In the Kaiser
case, we may start with a desired stopband attenuation A and transition width Δf , and
then determine the filter length N and the window parameter α. Because the filter is
sloping upwards in the passband, to achieve a true attenuation A in the stopband, we
may have to carry out the design with a slightly larger value of A. This is illustrated in
the examples below.

Note also that because d̃(k′) and D(ω′) are real-valued, we may replace the right-
hand side of Eq. (14.4.8) by its real part and write it in the cosine form:

d̃(k′)= 1

N

LM∑
i=−LM

D(ω′
i)cos(ω′

ik
′), −LM ≤ k′ ≤ LM

and because D(ω′) is even in ω′

d̃(k′)= 1

N

⎡⎣D(ω′
0)+2

LM∑
i=1

D(ω′
i)cos(ω′

ik
′)

⎤⎦ , −LM ≤ k′ ≤ LM

where D(ω′
0)= D(0)= L. This expression can be simplified even further by noting that

D(ω′
i) is non-zero only for

0 < ω′
i <

π
L

⇒ 0 <
2πi
N

<
π
L

⇒ 0 < i <
N
2L

= 2LM + 1

2L
=M + 1

2L

Thus, the summation can be restricted over 1 ≤ i ≤M, giving

d̃(k′)= L
N

⎡⎣1+ 2
M∑
i=1

ω′
i/2

sin(ω′
i/2)

cos(ω′
ik
′)

⎤⎦ , −LM ≤ k′ ≤ LM

14.4. DESIGN EXAMPLES 663

As a first example, consider a 2-times oversampling filter for a CD player. Assume
a nominal audio rate of fs = 40 kHz, transition width Δf = 5 kHz, and stopband
attenuation A = 80 dB. The normalized width is ΔF = Δf/fs = 0.125. The Kaiser D
parameter and filter length N will be

D = A− 7.95

14.36
= 5.017, N − 1 ≥= DL

ΔF
= 80.3

which rounds up to N = 85. Fig. 14.4.16 shows the designed filter together with the
inverse DAC response 1/|Hdac(f)| over the high-rate Nyquist interval. It also shows the
passband in a magnified scale. Notice how the inverse DAC response reaches 4 dB at
the Nyquist frequency of fs′/2 = 40 kHz.

Fig. 14.4.16 2-fold interpolator/equalizer designed with A = 80 dB.

The actual stopband attenuation is somewhat less than the prescribed 80 dB, namely,
about 72 dB at f = fs/2 + Δf/2 = 22.5 kHz. Thus, we may wish to redesign the filter
starting out with a somewhat larger attenuation. For example, assuming A = 90 dB,
we obtain filter length N = 93. See [356] for a similar design. The redesigned filter is
shown in Fig. 14.4.17. It achieves 80 dB attenuation at 22.5 kHz.

Fig. 14.4.17 2-fold interpolator/equalizer redesigned with A = 90 dB.

As another example, we design an equalized 4-times oversampling filter for digital

664 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

audio, assuming 40 kHz audio rate, 5 kHz transition width, and a stopband attenuation
of 60 dB. The Kaiser parameters are:

D = A− 7.95

14.36
= 3.625, N − 1 ≥= DL

ΔF
= 115.98 ⇒ N = 121

The designed filter and its passband are shown in Fig. 14.4.18.

Fig. 14.4.18 4-fold interpolator/equalizer filter and its magnified passband.

14.4.4 Postfilter Design and Equalization

In addition to compensating for the attenuation of the DAC, one may wish to compen-
sate for other effects. For example, the staircase output of the DAC will be fed into
an analog anti-image postfilter which introduces its own slight attenuation within the
desired passband. This attenuation can be equalized digitally by the interpolation filter.
Figure 14.4.19 shows this arrangement.

Hinterp Hdac Hpost
digital
input

fs

rate

L-fold interpolator

L fs

rate
analog
outputL

Fig. 14.4.19 Interpolation filter equalizes DAC and postfilter responses.

As we saw in Section 14.1, because of oversampling, the postfilter will have a wide
transition region resulting in low filter order, such as 2 or 3. The postfilter must provide
enough attenuation in its stopband to remove the spectral images of the interpolated
signal at multiples of fs′, as shown in Fig. 14.4.20. Its passband extends up to the low-
rate Nyquist frequency† and its stopband begins at the left edge of the first spectral
image, that is,

†If the interpolator is not ideal but has transition width Δf about fs/2, we may use the more accurate
expressions fpass = fs/2−Δf/2 and fstop = Lfs − fs/2−Δf/2.

14.4. DESIGN EXAMPLES 665

fs/2 Lfs 2Lfs
0 f

fstopfpass

Astop

postfilter
spectral images
removed by postfilter

passband

stopband

Fig. 14.4.20 Analog anti-image postfilter specifications.

fpass = fs
2
, fstop = fs′ − fpass = Lfs − fs

2

At fstop, the DAC already provides a certain amount of attenuation given by:

|Hdac(fstop)| =
∣∣∣∣∣sin(πfstop/fs′)

πfstop/fs′

∣∣∣∣∣ = sin(π−π/2L)
π−π/2L

= sin(π/2L)
π−π/2L

which, for large L, becomes approximately:

|Hdac(fstop)| = sin(π/2L)
π−π/2L

� 1

2L

or, in dB

Adac � 20 log10(2L) (14.4.10)

The analog postfilter must supply an additional amount of attenuation Astop, raising
the total attenuation at fstop to a desired level, say Atot dB:

Atot = Adac +Astop

For example, suppose fs = 40 kHz and L = 4, and we require the total suppression
of the replicas to be more than Atot = 60 dB. The stopband frequency will be fstop =
Lfs−fs/2 = 160−20 = 140 kHz. At that frequency the DAC will provide an attenuation
Adac = 20 log10(8)= 18 dB, and therefore the postfilter must provide the rest:

Astop = Atot −Adac = 60− 18 = 42 dB

Suppose we use a third-order Butterworth filter with magnitude response [298–300]:

|Hpost(f)|2 = 1

1+
(
f
f0

)6

and attenuation in dB:

666 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Apost(f)= −10 log10 |Hpost(f)|2 = 10 log10

⎡⎣1+
(
f
f0

)6
⎤⎦ (14.4.11)

where f0 is the 3-dB normalization frequency to be determined. Then, the requirement
that at fstop the attenuation be equal to Astop gives:

Astop = 10 log10

⎡⎣1+
(
fstop

f0

)6
⎤⎦

which can be solved for f0:

f0 = fstop
[
10Astop/10 − 1

]−1/6 = 140 · [1042/10 − 1
]−1/6 = 28 kHz

The third-order Butterworth analog transfer function of the postfilter will be:

Hpost(s)= 1

1+ 2
(
s
Ω0

)
+ 2

(
s
Ω0

)2

+
(
s
Ω0

)3 (14.4.12)

where Ω0 = 2πf0. This postfilter will adequately remove the spectral images at mul-
tiples of fs′, but it will also cause a small amount of attenuation within the desired
passband. The maximum passband attenuations caused by the postfilter and the DAC
at fpass = fs/2 can be computed from Eqs. (14.4.11) and (14.4.4):

Apost(fpass) = 10 log10

[
1+

(
fpass

f0

)6] = 10 log10

[
1+ (20

28

)6
]
= 0.54 dB

Adac(fpass) = −20 log10

[
sin(π/2L)
π/2L

]
= 0.22 dB

resulting in a total passband attenuation of 0.54 + 0.22 = 0.76 dB. This combined at-
tenuation of the DAC and postfilter can be equalized by the interpolator filter. Using
the frequency sampling design, we replace the interpolator’s defining equation (14.4.7)
by the equalized version:

D(ω′)=

⎧⎪⎪⎨⎪⎪⎩
L
[

ω′/2

sin(ω′/2)

][
1+ (ω′

ω0

)6
]1/2

, if |ω′| ≤ π
L

0, if
π
L
< |ω′| ≤ π

(14.4.13)

where ω0 = 2πf0/fs′. The impulse response coefficients will be calculated by:

d̃(k′)= L
N

⎡⎣1+ 2
M∑
i=1

[
ω′

i/2

sin(ω′
i/2)

][
1+ (ω′

i
ω0

)6

]1/2

cos(ω′
ik
′)

⎤⎦
for −LM ≤ k′ ≤ LM. These coefficients must be weighted by an appropriate window,
as in Eq. (14.4.9).

14.4. DESIGN EXAMPLES 667

Figure 14.4.21 shows a Kaiser design corresponding to interpolator stopband atten-
uation of A = 60 dB and a transition width of Δf = 5 kHz. As before, the resulting filter
length is N = 121.

For reference, the DAC response Hdac(f), postfilter response Hpost(f), and total re-
sponse Hdac(f)Hpost(f) are superimposed on the figure. Notice how they meet their
respective specifications at fstop = 140 kHz. The DAC response vanishes (i.e., it has infi-
nite attenuation) at fs′ = 160 kHz and all its multiples. The figure also shows the filter’s
passband in a magnified scale, together with the plots of the total filter Hdac(f)Hpost(f)
and total inverse filter 1/

(
Hdac(f)Hpost(f)

)
.

The effective overall analog reconstructor Hinterp(f)Hdac(f)Hpost(f), consisting of
the equalized interpolator, DAC, and postfilter, is shown in Fig. 14.4.22. The spectral
images at multiples of fs′ = 160 kHz are suppressed by more than 60 dB and the 20 kHz
passband is essentially flat. The figure also shows the passband in a magnified scale.

Fig. 14.4.21 4-fold interpolator with equalization of DAC and Butterworth postfilter.

Fig. 14.4.22 Effective reconstructor has flat passband.

In digital audio applications, Bessel postfilters may also be used instead of Butter-
worth filters; see [353] for an example. Bessel filters provide the additional benefit that
they have approximately linear phase over their passband. In particular, the transfer
function and magnitude response of a third-order Bessel filter are given by [298–301]:

668 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Hpost(s)= 15

15+ 15
(
s
Ω0

)
+ 6

(
s
Ω0

)2

+
(
s
Ω0

)3 (14.4.14)

|Hpost(f)|2 = 225

225+ 45

(
f
f0

)2

+ 6

(
f
f0

)4

+
(
f
f0

)6 (14.4.15)

where Ω0 = 2πf0 and f0 is related to the 3-dB frequency of the filter by

f3dB = 1.75f0

The passband attenuation of this filter can be equalized digitally in a similar fashion.
For equal 3-dB frequencies, Bessel filters fall off somewhat less sharply than Butterworth
ones, thus, suppressing the spectral images by a lesser amount.

For example, for the previous 3-dB frequency f3dB = 28 kHz, we find the normaliza-
tion frequency f0 = f3dB/1.75 = 16 kHz. The corresponding postfilter attenuations at
the passband and stopband frequencies, fpass = 20 kHz and fstop = 140 kHz, calculated
from Eq. (14.4.15) are:

Apost(fpass)= 1.44 dB, Apost(fstop)= 33 dB

Thus, the DAC/postfilter combination will only achieve a total stopband attenuation
of 33+ 18 = 51 dB for the removal of the spectral images. Similarly, the total passband
attenuation to be compensated by the interpolator will be 0.22+ 1.44 = 1.66 dB.

If 51 dB suppression of the spectral images is acceptable† then we may redesign the
interpolator so that it suppresses its stopband also by 51 dB. With A = 51 and L = 4,
the redesigned interpolator will have Kaiser parameters:

D = A− 7.95

14.36
= 2.998

N − 1 ≥= DL
ΔF

= 95.93 ⇒ N = 97

The redesigned equalized interpolation filter and the effective overall reconstruc-
tion filter are shown in Fig. 14.4.23. The overall reconstructor has a flat passband and
suppresses all spectral images by at least 51 dB.

14.4.5 Multistage Equalization

Another application where equalization may be desirable is in multistage implementa-
tions of interpolators. The first stage is usually a high-quality lowpass digital filter,
whereas the subsequent stages may be interpolators with simplified structure, such as
linear or hold interpolators which do not have a flat passband. In such cases, the filter in
the first stage can be designed to equalize the attenuation of all the subsequent stages
within the passband. In addition, the analog reconstructing DAC and postfilter may also
be equalized by the first stage. The overall system is shown in Fig. 14.4.24.

†The first Philips CD player had a similar 4-times oversampling interpolator of order N = 97 and stop-
band attenuation of A = 50 dB; see [353] for details.

14.4. DESIGN EXAMPLES 669

Fig. 14.4.23 4-fold interpolator with equalization of DAC and Bessel postfilter.

H0 H1
L0 fsfs L0 L1 fs

digital
output

digital
input

analog
output

2-stage interpolator

Hdac HpostL0 L1

Fig. 14.4.24 First stage equalizes the passband responses of all remaining stages.

As an example, consider a 2-stage interpolator with oversampling factors L = L0L1.
The first interpolation filter is a lowpass digital filter with sharp cutoff at fs/2, and the
second is a linear interpolator. The first filter H0 increases the sampling rate from fs
to L0fs. The second filter H1 increases it by a factor L1, from L0fs to L1L0fs. It has
magnitude response (normalized to unity at DC):

|H1(f)| =
∣∣∣∣∣ sin(πf/L0fs)
L1 sin(πf/L1L0fs)

∣∣∣∣∣
2

=
∣∣∣∣ sin(ω′/2)
L1 sin(ω′/2L1)

∣∣∣∣2

≡ Dlin(ω′)

whereω′ = 2πf/(L0fs) is the digital frequency with respect to the rate L0fs of the filter
H0.

The job of the filter H0 is to remove the (L0 − 1) spectral replicas that lie between
replicas at multiples of L0fs. Because it is periodic with period L0fs, the filter H0 cannot
remove the replicas at multiples of L0fs. Those are partially removed by the second filter
H1, which vanishes at multiples of L0fs that are not multiples of L1L0fs. Even though
these replicas vanish at their centers, their edges are only suppressed by about 33 dB.
Further suppression requires the aid of a postfilter. The combined effect of the H0 and
H1 filters is to leave only the replicas at multiples of the final sampling rate L1L0fs.
Those are also removed by the postfilter. Figures (14.4.25) and (14.4.27) illustrate these
remarks for L0 = L1 = 4.

The output of H1 is applied to a staircase DAC operating at the high rate L1L0fs. Its
frequency response (normalized to unity at DC) is:

|Hdac(f)| =
∣∣∣∣∣sin(πf/L1L0fs)

πf/L1L0fs

∣∣∣∣∣ =
∣∣∣∣sin(ω′/2L1)

ω′/2L1

∣∣∣∣ ≡ Ddac(ω′)

670 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

The DAC’s sinx/x response vanishes at multiples of the final rate L1L0fs. Finally, the
staircase output of the DAC will be smoothed by an analog postfilter, say, a third-order
Butterworth filter with 3-dB cutoff frequency f0, having magnitude response:

|Hpost(f)| = 1⎡⎣1+
(
f
f0

)6
⎤⎦1/2 =

1[
1+

(
ω′

ω0

)6
]1/2 ≡ Dpost(ω′)

whereω0 = 2πf0/L0fs. The three responsesDlin(ω′), Ddac(ω′), andDpost(ω′) can be
equalized simultaneously by the interpolation filter H0 by defining its passband speci-
fications as:

D(ω′)=

⎧⎪⎪⎨⎪⎪⎩
L0

Dlin(ω′)Ddac(ω′)Dpost(ω′)
if |ω′| ≤ π

L0

0, if
π
L0

< |ω′| ≤ π
(14.4.16)

Assuming a filter length N0 = 2L0M0 + 1, we obtain the coefficients of the filter H0

by the following frequency sampling design expression:

d̃(k′)= L0

N0

⎡⎣1+ 2
M0∑
i=1

1

Dlin(ω′
i)Ddac(ω′

i)Dpost(ω′
i)

cos(ω′
ik
′)

⎤⎦
for −L0M0 ≤ k′ ≤ L0M0. Note that if L0 and L1 are large, two simplifications may be
introduced in the definition (14.4.16). First, we may omit the DAC equalization factor
Ddac(ω′) because within the passband 0 ≤ω′ ≤ π/L0 it reaches a maximum attenua-
tion of:

sin(π/2L1L0)
π/2L1L0

which will be extremely small. Second, again within the passband 0 ≤ ω′ ≤ π/L0,
we can approximate the linear interpolator response by its analog equivalent (sinx/x)2

response, which is independent of L1:

Dlin(ω′)=
∣∣∣∣ sin(ω′/2)
L1 sin(ω′/2L1)

∣∣∣∣2

�
∣∣∣∣sin(ω′/2)

ω′/2

∣∣∣∣2

In deciding the specifications of the postfilter, we must consider the total attenuation
of the replica at L0fs, which will have the worst attenuation. Because of the downward
sloping of the postfilter, the remaining replicas will be attenuated more. At the left edge
of that replica, that is, at frequency

fstop = L0fs − fs
2

⇒ ω′
stop =

2πfstop

L0fs
= π(2L0 − 1)

L0

the attenuations of the linear interpolator, DAC, and postfilter can be calculated by

14.4. DESIGN EXAMPLES 671

Alin(fstop)= −20 log10

∣∣∣∣∣ sin(ω′
stop/2)

L1 sin(ω′
stop/2L1)

∣∣∣∣∣
2

Adac(fstop)= −20 log10

∣∣∣∣∣sin(ω′
stop/2L1)

ω′
stop/2L1

∣∣∣∣∣
Apost(fstop)= 10 log10

⎡⎣1+
(
fstop

f0

)6
⎤⎦

(14.4.17)

From these equations, one may determine the 3-dB frequency f0 of the postfilter in
order that the total attenuation at fstop be equal to a desired level, say Atot

Atot = Alin(fstop)+Adac(fstop)+Apost(fstop)

Similarly, one can calculate the attenuations of the linear interpolator, DAC, and
postfilter at the edge of the passband, that is, at fpass = fs/2 or ω′

pass = π/L0

Alin(fpass)= −20 log10

∣∣∣∣∣ sin(ω′
pass/2)

L1 sin(ω′
pass/2L1)

∣∣∣∣∣
2

Adac(fpass)= −20 log10

∣∣∣∣∣sin(ω′
pass/2L1)

ω′
pass/2L1

∣∣∣∣∣
Apost(fpass)= 10 log10

⎡⎣1+
(
fpass

f0

)6
⎤⎦

(14.4.18)

Their sum is the total passband attenuation that must be equalized by the interpola-
tor H0. Finally, one must verify that the last replica at L1L0fs, which survives the com-
bined interpolation filters H0 and H1, is attenuated sufficiently by the DAC/postfilter
combination. At the left edge of that replica, that is, at frequency

flast = L1L0fs − fs
2

⇒ ω′
last =

2πflast

L0fs
= π(2L1L0 − 1)

L0

the attenuations of the linear interpolator, DAC, and postfilter are

Alin(flast)= −20 log10

∣∣∣∣∣ sin(ω′
last/2)

L1 sin(ω′
last/2L1)

∣∣∣∣∣
2

Adac(flast)= −20 log10

∣∣∣∣∣sin(ω′
last/2L1)

ω′
last/2L1

∣∣∣∣∣
Apost(flast)= 10 log10

⎡⎣1+
(
flast

f0

)6
⎤⎦

(14.4.19)

As a concrete design example,† suppose fs = 40 kHz and L0 = L1 = 4, so that the
total interpolation factor will be L = 16. For the first stage H0, we use a Kaiser design

†See [355] for a similar example having three stages L0 = 4, L1 = 32 linear, and L2 = 2 hold interpolator,
with overall L = 256.

672 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

with stopband attenuation A = 60 dB and transition width Δf = 5 kHz. The Kaiser
parameters are:

D = A− 7.95

14.36
= 3.625

N0 − 1 ≥ DL0

ΔF
= 115.98 ⇒ N0 = 121

The linear interpolator and DAC will have frequency responses:

|H1(f)| =
∣∣∣∣∣ sin(πf/4fs)

4 sin(πf/16fs)

∣∣∣∣∣
2

, |Hdac(f)| =
∣∣∣∣∣sin(πf/16fs)

πf/16fs

∣∣∣∣∣
It is evident that |H1(f)| vanishes at all multiples of 4fs which are not multiples of

16fs, whereas |Hdac(f)| vanishes at all non-zero multiples of 16fs.
Using Eqs. (14.4.17), we find that the requirement that at fstop = L0fs − fs/2 = 140

kHz the total attenuation be more than 60 dB gives the value f0 = 50 kHz for the 3-dB
frequency of the postfilter.

Table 14.4.1 shows the attenuations calculated by Eqs. (14.4.17–14.4.19) at the three
frequencies fpass = 20 kHz, fstop = 140 kHz, and flast = 620 kHz, or equivalently, the
normalized ones ω′

pass = π/4, ω′
stop = 7π/4, and ω′

last = 31π/4.

fpass fstop flast

Alin 0.421 32.863 0.421
Adac 0.014 0.695 29.841
Apost 0.018 26.838 65.605

Atot 0.453 60.396 95.867

Table 14.4.1 Attenuations in dB.

It is evident from this table that most of the attenuation in the passband arises from
the linear interpolator—one could have equalized only the linear interpolator, ignoring
the DAC and postfilter, without much degradation.

At 140 kHz, the linear interpolator and postfilter contribute almost equally towards
the suppression of the 160 kHz replica—the linear interpolator providing an attenuation
of about 33 dB and the postfilter supplementing it with another 27 dB for a total of 60
dB. The DAC’s contribution is minimal there.

At 620 kHz, the main contributors towards the suppression of the 640 kHz replica
are the postfilter and the DAC providing a total of 95 dB suppression. The linear inter-
polator’s contribution is minimal (by symmetry, its attenuation is the same at 20 kHz
and 620 kHz).

Figure 14.4.25 shows the magnitude responses H0(f), H1(f), Hdac(f), Hpost(f). It
also shows the total interpolator response H0(f)H1(f), which removes the replicas at
multiples of L0fs only at the 33 dB level.

Figure 14.4.26 shows the magnified passband of the filter H0(f), together with the
inverse filter

[
H1(f)Hdac(f)Hpost(f)

]−1
. It also shows the magnified passband of the

14.4. DESIGN EXAMPLES 673

total interpolator filter H0(f)H1(f), which is essentially flat since most of the equal-
izing action of H0(f) goes to equalize H1(f). Figure 14.4.27 shows the effective total
reconstruction filter

Hrec(f)= H0(f)H1(f)Hdac(f)Hpost(f)

which has a flat passband and suppresses all spectral images by at least 60 dB.
In summary, the spectral images of the original sampled signal at multiples mfs =

m40 kHz, are removed in several stages: First, the interpolator H0 removes the replicas
at m = (1,2,3), (5,6,7), (9,10,11), (13,14,15), and so on. Then, the second inter-
polator H1, with the help of the postfilter, removes the replicas at m = 4,8,12, and so
on. Finally, the postfilter removes the replica m = 16 (and all others at multiples of 16
beyond that).

Fig. 14.4.25 16-times interpolator with DAC, postfilter, and multistage equalization.

Fig. 14.4.26 Magnified passbands of H0(f) and H0(f)H1(f).

This design example raises some additional questions: Could we have used a second-
order Butterworth postfilter? A first-order one? Given a desired level, say A dB, of
suppression of the images in the overall equalized reconstructor, can we predict what
the lowest order of the postfilter would be? To answer these questions and to give a

674 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Fig. 14.4.27 Effective reconstructor has flat passband and 60 dB stopband.

more accurate design technique, let us define the total filter being equalized by H0(f),
namely,

Heq(f)= H1(f)Hdac(f)Hpost(f)

so that the overall reconstructor is:

Hrec(f)= H0(f)Heq(f)

Assuming that H0 and Hrec are normalized to unity at DC by dividing out a factor
L0, we write the corresponding attenuations in dB:

Arec(f) = −20 log10 |Hrec(f)|
A0(f) = −20 log10 |H0(f)|
Aeq(f) = −20 log10 |Heq(f)|

and therefore, we have:

Arec(f)= A0(f)+Aeq(f)

The attenuation achieved by Hrec(f) at frequency fstop should be at least A dB, that
is, Arec(fstop)≥ A, and therefore

A0(fstop)+Aeq(fstop)≥ A (14.4.20)

Because the filterH0(f) is periodic with period L0fs and the passband and stopband
frequencies satisfy fstop = L0fs − fpass, it follows that

|H0(fstop)| = |H0(L0fs − fpass)| = |H0(−fpass)| = |H0(fpass)|

or, in dB:

A0(fstop)= A0(fpass)

14.4. DESIGN EXAMPLES 675

But at frequency fpass, the filter H0(f) is designed to equalize the total filter Heq(f),
that is,

|H0(fpass)| = 1

|Heq(fpass)| ⇒ A0(fstop)= A0(fpass)= −Aeq(fpass)

Therefore, we rewrite the design condition (14.4.20) as:

Aeq(fstop)−Aeq(fpass)≥ A (14.4.21)

For the designed example above, we can subtract the two entries in the last row of
Table 14.4.1 to get the value 60.396 − 0.453 = 59.943, which is almost the desired
60 dB—it would exceed 60 dB had we chosen a slightly smaller 3-dB normalization
frequency for the postfilter, for example, f0 = 49.8 kHz.

Writing Aeq as the sum of the individual attenuations of the linear interpolator, the
DAC, and the postfilter, and solving Eq. (14.4.21) for the difference of attenuations of
the postfilter, we find

Apost(fstop)−Apost(fpass)≥ A−Ad (14.4.22)

where

Ad = Alin(fstop)−Alin(fpass)+Adac(fstop)−Adac(fpass)

Given the value of A, the right-hand side of Eq. (14.4.22) can be calculated using
Eqs. (14.4.17) and (14.4.18). Then, Eq. (14.4.22) imposes a certain restriction on the
order of the postfilter. For a Butterworth filter of order Nb, we have

Apost(f)= 10 log10

⎡⎣1+
(
f
f0

)2Nb
⎤⎦

and therefore, the design condition (14.4.22) becomes

10 log10

[
1+ (fstop/f0)2Nb

1+ (fpass/f0)2Nb

]
≥ A−Ad (14.4.23)

GivenNb, Eq. (14.4.23) can be solved for the 3-dB frequency f0. For large values ofNb,
the passband term Apost(fpass) can be ignored because it is much smaller than the stop-
band term Apost(fstop), as was the case in Table 14.4.1. For small values of Nb, f0 must
also get smaller in order to provide sufficient attenuation at fstop, but this also causes
more attenuation within the passband, so that the difference Apost(fstop)−Apost(fpass)
may never become large enough to satisfy Eq. (14.4.22).

In fact, thinking of the left-hand side of Eq. (14.4.23) as a function of f0, one can
easily verify that it is a decreasing function of f0 and its maximum value, reached at
f0 = 0, is 20Nb log10(fstop/fpass). Therefore, Eq. (14.4.23) will have a solution for f0

only if Nb is large enough to satisfy

20Nb log10

(
fstop

fpass

)
≥ A−Ad ⇒ Nb ≥ A−Ad

20 log10

(
fstop

fpass

)

676 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Because fstop/fpass = 2L0 − 1, we can rewrite this condition as

Nb ≥ A−Ad

20 log10(2L0 − 1)
(14.4.24)

If Eq. (14.4.24) is satisfied, then the solution of Eq. (14.4.23) for f0 is

f0 = fpass

[
(2L0 − 1)2Nb−1

10(A−Ad)/10 − 1
− 1

]1/2Nb

(14.4.25)

Figure 14.4.28 shows the minimum Butterworth order given in Eq. (14.4.24) as a
function of the desired attenuation A, for various values of the interpolation factor
L0. One should pick, of course, the next integer above each curve. As L0 increases,
separating the L0fs replicas more, the allowed filter order becomes less. In the figure,
L1 = 4. For a given value of L0, the dependence of the curves on L1 is very minimal.
Only the intercept Ad, not the slope, of the straight lines is slightly changed if L1 is
changed.

Inspecting this figure, we find for the above example that any filter order Nb ≥ 2
can be used, but Nb = 1 cannot. Alternatively, we can calculate Eq. (14.4.24) directly.
Using Table 14.4.1, we find Ad = 33.123 dB and therefore Eq. (14.4.24) yields Nb ≥
(60− 33.123)/20 log10(8− 1)= 1.59.

Fig. 14.4.28 Minimum Butterworth postfilter order for given stopband attenuation.

14.5 Decimation and Oversampling

Decimation by an integer factor L is the reverse of interpolation, that is, decreasing the
sampling rate from the high rate fs′ to the lower rate fs = fs′/L.

An ideal interpolator replaces a low-rate signal x(n) by the high-rate interpolated
signal x′(n′), which would ideally correspond to the resampling of the analog signal at
the higher rate. As shown in Fig. 14.2.6, the spectrum X′(f) of x′(n′) is the spectrum
of x(n) with L−1 spectral images removed between multiples of fs′. This ideal interpo-
lation process can be reversed by keeping from x′(n′) every Lth sample and discarding
the L− 1 samples that were interpolated between the low-rate ones.

14.5. DECIMATION AND OVERSAMPLING 677

This process of downsampling and its effect in the time and frequency domains is
depicted in Fig. 14.5.1. Formally, the downsampled signal is defined in terms of the slow
time scale as follows:

xdown(n)= x′(n′)
∣∣
n′=nL = x′(nL) (14.5.1)

For the ideal situation depicted in Fig. 14.5.1, the downsampled signal xdown(n)
coincides with the low-rate signal x(n) that would have been obtained had the analog
signal been resampled at the lower rate fs, that is,

x(n)= xdown(n)= x′(nL) (14.5.2)

The gaps in the input spectrumX′(f) are necessary to guarantee this equality. Drop-
ping the sampling rate by a factor of L, shrinks the Nyquist interval [−fs′/2, fs′/2] by
a factor of L to the new interval [−fs/2, fs/2]. Thus, if the signal had frequency com-
ponents outside the new Nyquist interval, aliasing would occur and xdown(n)�= x(n).

downsampler

fs ...2fs Lfs0
f

output Xdown(f)=X(f)

fs ...2fs Lfs0
f

input X′(f)

fs′ fs=fs′/LL

n

T=LT′

x′(n′) x(n)=xdown(n)=x′(nL)

n′

T′

Fig. 14.5.1 Downsampler keeps one out of every L high-rate samples.

In Fig. 14.5.1, the input spectrum was already restricted to the fs Nyquist interval,
and therefore, aliasing did not occur. The rate decrease causes the spectral images of
X′(f) at multiples of fs′ to be down shifted and become images of X(f) at multiples of
fs without overlapping. The mathematical justification of this down-shifting property is
derived by expressing Eq. (14.5.2) in the frequency domain. It can be shown (see Problem
14.12) that:

X(f)= Xdown(f)= 1

L

L−1∑
m=0

X′(f −mfs) (14.5.3)

Therefore, the downsampling process causes the periodic replication of the original
spectrum X′(f) at multiples of the low rate fs. This operation is depicted in Fig. 14.5.2
for L = 4.

In general, if the high-rate signal x′(n′) has frequency components outside the low-
rate Nyquist interval [−fs/2, fs/2], then downsampling alone is not sufficient to perform
decimation. For example, noise in the signal, such as quantization noise arising from
the A/D conversion process, will have such frequency components.

678 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

fs 2fs 3fs 4fs0
f

X′(f)

fs 2fs 3fs 4fs0
f

X′(f -fs)

fs 2fs 3fs 4fs0
f

X′(f -2fs)

fs 2fs 3fs 4fs0
f

X′(f -3fs)

fs 2fs 3fs 4fs0
f

Xdown(f)

Fig. 14.5.2 Downsampled spectrum is sum of shifted high-rate spectra.

To avoid the aliasing that will arise by the spectrum replication property (14.5.3),
the high-rate input x′(n′) must be prefiltered by a digital lowpass filter, called the dec-
imation filter. The combined filter/downsampler system is called a decimator and is
depicted in Fig. 14.5.3.

downsampler
digital filter

ideal decimator

fs ...2fs Lfs0
f

Y′(f)

fs ...2fs Lfs0

X′(f)

fs′fs′ fs

L
H

x′(n′) y′(n′) ydown(n)

fs ...2fs Lfs0
f

Ydown(f)

f

filter filter

Fig. 14.5.3 Ideal digital decimator in frequency domain.

The filter operates at the high rate fs′ and has cutoff frequency fc = fs/2 = fs′/2L.
It is similar to the ideal interpolation filter, except its DC gain is unity instead of L. The
high-rate output of the filter is downsampled to obtain the desired low-rate decimated
signal, with non-overlapping down-shifted replicas:

ydown(n)= y′(nL), Ydown(f)= 1

L

L−1∑
m=0

Y′(f −mfs) (14.5.4)

The design of the decimation filter is identical to that of the interpolation filter.
For example, a length-N FIR decimator can be obtained by windowing the (causal) ideal
impulse response:

h(n′)= w(n′)d(n′ − LM), where d(k′)= sin(πk′/L)
πk′

14.5. DECIMATION AND OVERSAMPLING 679

where n′ = 0,1, . . . ,N − 1, and N = 2LM + 1. A Kaiser window w(n′) may be used.
The downsampled output is obtained by:

ydown(n)= y′(nL)=
N−1∑
m′=0

h(m′)x′(nL−m′) (14.5.5)

Because only every Lth output of the filter is needed, the overall computational rate
is reduced by a factor of L, that is,

R = 1

L
Nfs′ = Nfs (14.5.6)

This is similar to the savings of the polyphase form of interpolation. A simple imple-
mentation uses a length-N tapped delay line into which the high-rate input samples are
shifted at the high rate fs′. Every L inputs, its contents are used to perform the filter’s
dot product output computation. A circular buffer implementation of the delay-line
would, of course, avoid the time it takes to perform the shifting. Denoting by w = [w0,
w1, . . . ,wN−1] the N-dimensional internal state vector of the filter, we may state this
filtering/downsampling algorithm as follows:

for each high-rate input sample x′ do:
w0 = x′

for every Lth input compute:
ydown = dot(N − 1,h,w)

delay(N − 1,w)

(14.5.7)

Multistage implementations of decimators are also possible [347–350]. The proper
ordering of the decimation stages is the reverse of the interpolation case, that is, the
decimator with the most stringent specifications is placed last.

Often, the earlier decimators, which also have the highest rates, are chosen to have
simplified structures, such as simple averaging filters [351]. For example, the decimation
version of the hold interpolator of Section 14.3 is obtained by dividing Eq. (14.3.8) by L
to restore its DC gain to unity:

H(ζ)= 1

L
1− ζ−L

1− ζ−1
= 1

L
[
1+ ζ−1 + ζ−2 + · · · + ζ−(L−1)] (14.5.8)

where ζ−1 is one high-rate delay. Thus, the decimator is a simple FIR averaging filter
that averages L successive high-rate samples:

ydown(n)= x′(nL)+x′(nL− 1)+x′(nL− 2)+· · · + x′(nL− L+ 1)
L

(14.5.9)

If so desired, the cruder passbands of the earlier decimators can be equalized by the
last decimator, which can also equalize any imperfect passband of the analog antialias-
ing prefilter used prior to sampling.

Indeed, one of the main uses of decimators is to alleviate the need for high-quality
analog prefilters, much as the interpolators ease the specifications of the anti-image

680 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

postfilters. This idea is used in many current applications, such as the sampling systems
of DAT machines, PC sound cards, speech CODECs, and various types of delta-sigma A/D
converter chips.

Sampling an analog signal, such as audio, at its nominal Nyquist rate fs would require
a high-quality analog prefilter to bandlimit the input to the Nyquist frequency fmax =
fs/2. In a sampling system that uses oversampling and decimation, the analog input
is first prefiltered by a simple prefilter and then sampled at the higher rate fs′ = Lfs.
The decimation filter then reduces the bandwidth of the sampled signal to fs/2. The
sharp cutoffs at the Nyquist frequency fs/2 are provided by the digital decimation filter
instead of the prefilter.

The specifications of the prefilter are shown in Fig. 14.5.4. The decimator removes
all frequencies from the range [fs/2, Lfs − fs/2]. But because of periodicity, it cannot
remove any frequencies in the range Lfs±fs/2. Such frequencies, if present in the analog
input, must be removed by the prefilter prior to sampling; otherwise they will be aliased
back into the desired Nyquist interval [−fs/2, fs/2]. Therefore, the prefilter’s passband
and stopband frequencies are:

fpass = fs
2
, fstop = Lfs − fs

2
(14.5.10)

The transition width of the prefilter is Δf = fstop − fpass = (L− 1)fs and gets wider
with the oversampling ratio L. Hence, the filter’s complexity reduces with increasing L.
(See Problem 14.16 for a quantitative relationship between L and filter order N.)

fs/2 Lfs 2Lfs
0 f

fstopfpass

Astop

prefilter
spectral images
introduced by sampling

passband

stopband

Fig. 14.5.4 Analog prefilter specifications for L-fold decimation.

In summary, oversampling in conjunction with decimation and interpolation allevi-
ates the need for high-quality analog prefilters and postfilters by assigning the burden
of achieving sharp transition characteristics to the digital filters. Figure 14.5.5 shows an
oversampling DSP system in which sampling and reconstruction are carried out at the
fast rate fs′, and any intermediate digital processing at the low rate fs.

A second major benefit of oversampling is that it also simplifies the structure of
the A/D and D/A converters shown in the figure, so that they require fewer bits without
sacrificing quality. This is accomplished by the principle of feedback quantization, which
we discuss in Section 14.7. The changes in Fig. 14.5.5 are to replace the conventional
ADC block by a delta-sigma ADC operating at fewer bits (even 1 bit), and insert between
the output interpolator and the DAC a noise shaping quantizer that requantizes the
output to fewer bits.

14.6. SAMPLING RATE CONVERTERS 681

Hdecim

low-rate
digital signal
to DSP, CD, etc.

L-fold decimator

analog
input

analog
prefilter ADC L

fast clock fs′

fs′ fs

low-rate
digital signal

from DSP, CD, etc.

analog
outputHinterp

L-fold interpolator

analog
postfilterDACL

fs′fs

fast clock fs′

Fig. 14.5.5 Oversampling DSP system.

14.6 Sampling Rate Converters

Interpolators and decimators are examples of sampling rate converters that change the
rate by integer factors. A more general sampling rate converter [347–350] can change
the rate by an arbitrary rational factor, say L/M, so that the output rate will be related
to the input rate by:

fs′ = L
M
fs (14.6.1)

Such rate changes are necessary in practice for interfacing DSP systems operating
at different rates. For example, to convert digital audio for broadcasting, sampled at 32
kHz, to digital audio for a DAT machine, sampled at 48 kHz, one must use a conversion
factor of 48/32 = 3/2. Similarly, to convert DAT audio to CD audio at 44.1 kHz, one
must use the factor 44.1/48 = 147/160.

The rate conversion can be accomplished by first increasing the rate by a factor of
L to the high rate fs′′ = Lfs using an L-fold interpolator, and then decreasing the rate
by a factor of M down to fs′ = fs′′/M = Lfs/M using an M-fold decimator.

Note that fs′′ is an integer multiple of both the input and output rates, and the
corresponding sampling time interval T′′ = 1/fs′′ is an integer fraction of both the
input and output sampling times T and T′:

fs′′ = Lfs =Mfs′ , T′′ = T
L
= T′

M
(14.6.2)

Because both the interpolation and decimation filters are operating at the same high
rate fs′′ and both are lowpass filters, they may be combined into a single lowpass filter
preceded by an upsampler and followed by a downsampler, as shown in Fig. 14.6.1.

The interpolation filter must have cutoff frequency fs′′/2L = fs/2 and the decima-
tion filter fs′′/2M = fs′/2. Thus, the cutoff frequency of the common filter must be
chosen to be the minimum of the two:

fc = 1

2
min(fs, fs′) (14.6.3)

682 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

L M
fs′fs fs′′ fs′′

H

interpolation
decimation

filter

upsampler

sampling rate converter

downsampler

x(n) xup(n′′) yup(n′′) y(n′)

Fig. 14.6.1 Sampling rate conversion by a factor of L/M.

which can be written also in the alternative forms:

fc = min
(
1,

L
M
) fs

2
= min

(M
L
,1
) fs′

2
= min

(1

L
,

1

M
) fs′′

2

In units of the high-rate digital frequency ω′′ = 2πf/fs′′, we have:

ω′′
c =

2πfc
fs′′

= min
(π
L
,
π
M
) = π

max(L,M)
(14.6.4)

When fs′ > fs, the common filter acts as an anti-image postfilter for the upsampler,
removing the spectral replicas at multiples of fs but not at multiples of Lfs. When
fs′ < fs, it acts as an antialiasing prefilter for the downsampler, making sure that the
down-shifted replicas at multiples of fs′ do not overlap.

The design of the filter is straightforward. Assuming a filter length N of the form†

N = 2LK + 1 and passband gain of L, we define the windowed impulse response, with
respect to the high-rate time index n′′ = 0,1, . . . ,N − 1:

h(n′′)= w(n′′)d(n′′ − LK), where d(k′′)= L
sin(ω′′

c k′′)
πk′′

(14.6.5)

where w(n′′) is any desired length-N window. Its L polyphase subfilters of length 2K
are defined for i = 0,1, . . . , L− 1:

hi(n)= h(Ln+ i), n = 0,1, . . . ,2K − 1 (14.6.6)

Next, we discuss the time-domain operation and implementation of the converter.
The input signal x(n) is upsampled to the high rate fs′′. Then, the upsampled input
xup(n′′) is filtered, generating the interpolated output yup(n′′), which is then down-
sampled by keeping one out of every M samples, that is, setting n′′ =Mn′ to obtain the
desired signal y(n′) resampled at rate fs′. Thus, we have:

yup(n′′)=
N−1∑
m′′=0

h(m′′)xup(n′′ −m′′) and y(n′)= yup(Mn′)

The interpolation operation can be implemented efficiently in its polyphase realiza-
tion. Setting n′′ = Ln+ i, with i = 0,1, . . . , L− 1, we obtain the ith sample interpolated
between the input samples x(n) and x(n+ 1), from Eq. (14.2.18):

†Here, we use K instead of M to avoid confusion with the downsampling factor M.

14.6. SAMPLING RATE CONVERTERS 683

yi(n)= yup(Ln+ i)=
P∑

m=0

hi(m)x(n−m)= dot
(
P,hi,w(n)

)
(14.6.7)

where we set P = 2K − 1 for the order of the polyphase subfilters (the time-advance
required for causal operation is not shown here). As we saw in Eq. (14.2.20), its imple-
mentation requires a low-rate tapped delay line w = [w0,w1, . . . ,wP], which is used by
all polyphase subfilters before it is updated.

Because the downsampler keeps only every Mth filter output, it is not necessary to
compute all L interpolated outputs between input samples. Only those interpolated
values that correspond to the output time grid need be computed. Given an output
sample time n′′ = Mn′, we can write it uniquely in the form Mn′ = Ln + i, where
0 ≤ i ≤ L− 1. It follows that the downsampled output will be the ith interpolated value
arising from the current input x(n) and computed as the output of the ith polyphase
subfilter hi :

y(n′)= yup(Mn′)= yup(Ln+ i)= yi(n)

The pattern of polyphase indices i that correspond to successive output times n′

repeats with period L, and depends only on the relative values of L and M. Therefore,
for the purpose of deriving a sample processing implementation of the converter, it
proves convenient to think in terms of blocks of output samples of length-L. The total
time duration of such an output block is LT′. Using Eq. (14.6.2), we have:

Tblock = LT′ = LMT′′ =MT (14.6.8)

Thus, within each output time block there are M input samples, LM high-rate inter-
polated samples, and L output samples. The M input samples get interpolated into the
LM high-rate ones, from which the L output samples are selected.

The computational rate is M times smaller than the polyphase rate Nfs required for
full interpolation. Indeed, we have 2KMACs per polyphase filter output and L polyphase
outputs in each period Tblock, that is, R = 2KL/Tblock = N/Tblock = N/MT = Nfs/M.
Equivalently, we have one polyphase output in each output period T′, R = 2K/T′ =
2Kfs′. Thus,

R = Nfs
M

= Nfs′

L
= 2Kfs′ (14.6.9)

Figure 14.6.2 shows an example with L = 5 and M = 3, so that fs′ = 5fs/3. The
interpolating high rate is fs′′ = 5fs = 3fs′. The top and bottom figures show the in-
put and output signals and their spectra. The two middle figures show the high-rate
interpolated signal, viewed both with respect to the input and output time scales.

Because fs′ > fs, the interpolation filter has cutoff fs/2, and acts as an antialiasing
prefilter removing the four input replicas up to fs′′ = 5fs. The downsampling operation
then downshifts the replicas at multiples of fs′.

In the time domain, each block period Tblock = 15T′′ = 3T = 5T′ contains three
input samples, say {x0, x1, x2}, five output samples, say {y0, y1, y2, y3, y4}, and 15 in-
terpolated high-rate samples.

684 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

fs 2fs 3fs 5fs0

fs 2fs 3fs 4fs

4fs

5fs=fs′′0

fs′ 2fs′ 3fs′=fs′′0

fs′ 2fs′ 3fs′0

filter

polyphase
selector

T′

T′/3=T′′

T/5=T′′

15T′′=3T=5T′

T

x0

y0

y4
y3

x1

y1
y2

x2

t

t

t

t

f

f

f

f

min(fs, fs ′)1
2

0 1 23 4i =

Fig. 14.6.2 Sampling rate conversion by a factor of 5/3.

As can be seen in the figure, the first input period from x0 to x1 contains two outputs:
y0, y1. We have time-aligned the samples so that y0 = x0. The output y1 is the third
(i = 3) interpolated value, and therefore, it is obtained as the output of the polyphase
filter h3 with current input x0. After this operation, the input sample x0 is no longer
needed and the delay-line w holding the input samples may be shifted and the next
input x1 read into it.

During the next input period from x1 to x2, there are two more outputs: y2, y3. The
output y2 is the first (i = 1) interpolated value, and therefore, it is the output of the
filter h1, whereas the output y3 is the fourth (i = 4) interpolated value, or the output of
h4. After this operation, the delay-line w may be updated and x2 read into it.

Finally, the third input period starting at x2 contains only one output, namely, y4,
which is the second (i = 2) interpolated value, or the output of h2 with input x2. After
this operation, the delay-line may be shifted and the same computational cycle involving
the next three inputs repeated. The above steps may be summarized in the following
sample processing algorithm:

for each input block {x0, x1, x2} do:
w0 = x0

y0 = dot(P,h0,w)= x0

y1 = dot(P,h3,w)
delay(P,w)
w0 = x1

y2 = dot(P,h1,w)
y3 = dot(P,h4,w)

delay(P,w)
w0 = x2

y4 = dot(P,h2,w)
delay(P,w)

(14.6.10)

The outputs {y0, y1, y2, y3, y4} were computed by the five polyphase filters {h0,h3,

14.6. SAMPLING RATE CONVERTERS 685

h1,h4,h2} corresponding to the sequence of polyphase indices i = {0,3,1,4,2}. The
input samples that were used in the computations were {x0, x0, x1, x1, x2}, so that the
corresponding index of xn was n = {0,0,1,1,2}. When the index was repeated, the
delay line was not updated.

It is easily seen from Fig. 14.6.2 that the patterns of i’s and n’s get repeated for
every group of five outputs. These patterns can be predetermined as the solutions of
the equations 5n+ i = 3m for m = 0,1, . . . ,4. In general, we can calculate the patterns
by solving the L equations:

Lnm + im =Mm, m = 0,1, . . . , L− 1 (14.6.11)

with solution (where % denotes the modulo operation):

for m = 0,1, . . . , L− 1 compute:
im = (Mm)%L
nm = (Mm− im)/L

(polyphase selectors) (14.6.12)

Assuming that the sequences {im, nm}, m = 0,1, . . . , L−1, have been precomputed,
the general sample rate conversion algorithm that transforms each length-M input block
{x0, x1, . . . , xM−1} into a length-L output block {y0, y1, . . . , yL−1}, can be stated as fol-
lows:

for each input block {x0, x1, . . . , xM−1} do:
for n = 0,1, . . . ,M − 1 do:

w0 = xn
for Ln/M ≤m < L(n+ 1)/M do:

ym = dot(P,him ,w)
delay(P,w)

(14.6.13)

The inner loop ensures that the output time indexm lies between the two input times
Ln ≤ Mm < L(n + 1), with respect to the T′′ time scale. Because Mm = Lnm + im,
it follows that such m’s will have nm = n. The index im serves as a polyphase filter
selector.

In the special cases of interpolation (M = 1), or decimation (L = 1), the algo-
rithm reduces to the corresponding sample processing algorithms given in Eqs. (14.2.20)
and (14.5.7). For causal processing, the initialization of the algorithm must be as in
Eq. (14.2.19) (with K replacing M).

Another example is shown in Fig. 14.6.3 that has L = 3, M = 5 and decreases the
sampling rate by a factor of 3/5 so that fs′ = 3fs/5. The interpolating high rate is now
fs′′ = 3fs = 5fs′. Because fs′ < fs, the filter’s cutoff frequency must be fc = fs′/2,
and therefore, the filter acts as an antialiasing filter for the downsampler. The filter
necessarily chops off those high frequencies from the input that would otherwise be
aliased by the downsampling operation, that is, the frequencies in the range fs′/2 ≤ f ≤
fs/2.

In the time domain, each block of five input samples {x0, x1, x2, x3, x4} generates
a block of three output samples {y0, y1, y2}. The solution of Eq. (14.6.12) gives the
polyphase selector sequences, for m = 0,1,2:

686 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

nm = {0,1,3}, im = {0,2,1}

which means that only the inputs {x0, x1, x3} will generate interpolated outputs, with
the polyphase subfilters {h0,h2,h1}. The inputs {x2, x4} will not generate outputs, but
still must be shifted into the delay-line buffer. The same conclusions can also be derived
by inspecting Fig. 14.6.3. The corresponding sample processing algorithm, which is a
special case of Eq. (14.6.13), is:

for each input block {x0, x1, x2, x3, x4} do:
w0 = x0

y0 = dot(P,h0,w)= x0

delay(P,w)
w0 = x1

y1 = dot(P,h2,w)
delay(P,w)
w0 = x2

delay(P,w)
w0 = x3

y2 = dot(P,h1,w)
delay(P,w)
w0 = x4

delay(P,w)

(14.6.14)

0

0

fs′ 2fs′ 3fs′ 4fs′ 5fs′

fs′ 2fs′ 3fs′ 4fs′ 5fs′=fs′′

3fs=fs′′

0

fs 2fs
3fs

fs 2fs

0

filter

polyphase
selector

T′/5=T′′

T/3=T′′

15T′′=5T=3T′

T

x0

x4
x3x1

x2

y0

y1
y2

t

t

t

t

f

f

f

f

T′
min(fs, fs′)1

2

0 12i =

Fig. 14.6.3 Sampling rate conversion by a factor of 3/5.

The type of converter discussed above is useful when the sampling rates remain
fixed and synchronous. In some applications, it may be desirable to have asynchronous
rate changes that can accommodate slowly changing input and output sampling clocks.
Such converters must be able to change the rate by arbitrary factors, not just rational
ones.

14.6. SAMPLING RATE CONVERTERS 687

Theoretically, the sampling rate can be changed by an arbitrary factor by recon-
structing the sampled signal to analog form and then resampling it at the output rate.
Digitally, one can use an extremely large interpolation factor L to effectively obtain an
analog signal and then resample it at the new rate.

The large value of L creates a very dense time grid for the interpolated signal. Every
output time instant falls between two such time grid points and the output sample can
be chosen to be the nearest of the two interpolated samples, or, it can be formed by linear
or higher-order interpolations. References [357–362] discuss practical implementations
of this idea.

For example, a recent sample rate conversion chip, designed by Analog Devices for
use with digital audio [360–362], uses an interpolation ratio of L = 216 = 65536. It can
convert sampling rates from 8 to 56 kHz.

The built-in interpolation filter has length N = 64×216 = 222 � 4×106 and is real-
ized in its polyphase form. Thus, there are L = 216 polyphase filters of length 2K = 64.
The input delay-line buffer also has length 64. The computational rate of the chip is
only R = (2K)fs′ = 64fs′ MAC/sec, where fs′ is the output rate.

The chip has a polyphase filter selector (like the quantity im) that selects the appro-
priate polyphase filter to use for each output sampling time. To minimize coefficient
storage for the 222 filter coefficients, only 1 out of every 128 impulse response coeffi-
cients are saved in ROM; the intermediate values are computed when needed by linear
interpolation. Thus, the ROM storage is 222/128 = 32768 words.

The interpolation filter has a variable cutoff frequency fc = min(fs/2, fs′/2). To
avoid having to redesign the filter every time the cutoff changes, the filter is designed
once based on a nominal input frequency fs, such as 44.1 kHz, and then it is “time-
stretched” to accommodate the variable cutoff [359,360]. To understand this, we define
the scale factor ρ = min(1, fs′/fs), such that ρ < 1 whenever the output rate is less
than the input rate. Then, we may write fc in the form:

fc = ρ
fs
2

⇒ ω′′
c =

2πfc
fs′′

= ρ
π
L

If ρ < 1, the corresponding ideal impulse response is:

dρ(k′′)= L
sin(ω′′

c k′′)
πk′′

= ρ
sin(πρk′′/L)
πρk′′/L

The fixed filter has response corresponding to ρ = 1:

d(k′′)= sin(πk′′/L)
πk′′/L

, −LK ≤ k′′ ≤ LK

It follows that dρ(k′′) will be the “stretched” version of d(k′′):

dρ(k′′)= ρd(ρk′′) (14.6.15)

The effective length of this filter must also stretch commensurately. Indeed, because
the argument ρk′′ must lie in the designed index range of the original filter, that is,
−LK ≤ ρk′′ ≤ LK, we must have in Eq. (14.6.15):

688 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

− 1

ρ
LK ≤ k′′ ≤ 1

ρ
LK

Thus, K increases to Kρ = K/ρ, and the effective length of the filter becomes Nρ =
2LKρ = 2LK/ρ = N/ρ. The length of the tapped delay line also becomes longer,
2Kρ = 2K/ρ. Because the coefficients d(k′′) are stored in ROM only for integer values
of k′′, the argument of d(ρk′′) must be rounded to the nearest integer. Because of the
highly oversampled nature of d(k′′), this rounding causes only a small distortion [360].

14.7 Noise Shaping Quantizers

The main purpose of noise shaping is to reshape the spectrum of quantization noise so
that most of the noise is filtered out of the relevant frequency band, such as the audio
band. Noise shaping is used in four major applications:

• Oversampled delta-sigma A/D converters.
• Oversampled requantizers for D/A conversion.
• Non-oversampled dithered noise shaping for requantization.
• Non-oversampled roundoff noise shaping in digital filters.

In the oversampled cases, the main objective is to trade off bits for samples, that is,
increasing the sampling rate but reducing the number of bits per sample. The resulting
increase in quantization noise is compensated by a noise shaping quantizer that pushes
the added noise out of the relevant frequency band in such a way as to preserve a desired
level of signal quality. The reduction in the number of bits simplifies the structure of
the A/D and D/A converters. See [350,351] for a review and earlier references.

In the non-oversampled cases, one objective is to minimize the accumulation of
roundoff noise in digital filter structures [86–92]. Another objective is to reduce the
number of bits without reducing quality. For example, in a digital audio recording and
mixing system where all the digital processing is done with 20 bits, the resulting audio
signal must be rounded eventually to 16 bits in order to place it on a CD. The rounding
operation can cause unwanted granulation distortions. Adding a dither signal helps re-
move such distortions and makes the quantization noise sound like steady background
white noise. However, further noise shaping can make this white noise even more in-
audible by concentrating it onto spectral bands where the ear is least sensitive [75–83].

A related application in digital audio is to actually keep the bits saved from noise
shaping and use them to carry extra data on a conventional CD, such as compressed
images, speech, or text, and other information [84,85]. This “buried” data channel is
encoded to look like pseudorandom dither which is then added (subtractively) to the
CD data and subjected to noise shaping. As many as 4 bits from each 16-bit CD word
may be dedicated to such hidden data without sacrificing the quality of the CD material.
The resulting data rates are 4×44.1 = 176.4 kbits/sec or double that for two stereo
channels.

In Section 2.2, we introduced noise shaping quantizers and discussed some of their
implications, such as the tradeoff between oversampling ratio and number of bits, but
did not discuss how they are constructed.

14.7. NOISE SHAPING QUANTIZERS 689

Figure 14.7.1 shows a typical oversampled first-order delta-sigma A/D converter
system.† The analog input is assumed to have been prefiltered by an antialiasing pre-
filter whose structure is simplified because of oversampling. The relevant frequency
range of the input is the low-rate Nyquist interval fs/2. Such converters are commonly
used in oversampling DSP systems, shown in Figs. 2.2.5 and 14.5.5.

analog
input

ADC decimation
filter

decimator

delta-sigma ADC

integrator
1/s

L
+

−

DAC

fs′-clock

B′-bits
fs′-rate

B-bits

fs-rate

Fig. 14.7.1 Oversampled first-order delta-sigma A/D converter.

The analog part of the converter contains an ordinary A/D converter operating at
the fast rate fs′ = Lfs and having a small number of bits, say B′ bits. The most useful
practical choice is B′ = 1, that is, a two-level ADC. The output of the ADC is recon-
structed back into analog form by the DAC (i.e., a two-level analog signal, if B′ = 1) and
subtracted from the input.

The difference signal (the “delta” part) is accumulated into the integrator (the “sigma”
part) and provides a local average of the input. The feedback loop causes the quantiza-
tion noise generated by the ADC to be highpass filtered, pushing its energy towards the
higher frequencies (i.e., fs′/2) and away from the signal band.

The digital part of the converter contains an L-fold decimator that reduces the sam-
pling rate down to fs and increases the number of bits up to a desired resolution, say B
bits, where B > B′. In practice, the analog and digital parts reside usually on board the
same chip.

The lowpass decimation filter does three jobs: (1) It removes the high-frequency
quantization noise that was introduced by the feedback loop, (2) it removes any unde-
sired frequency components beyond fs/2 that were not removed by the simple analog
prefilter, and (3) through its filtering operation, it increases the number of bits by lin-
early combining the coarsely quantized input samples with its coefficients, which are
taken to have enough bits.

To see the filtering action of the feedback loop on the input and quantization noise,
we consider a sampled-data equivalent model of the delta-sigma quantizer, shown in
Fig. 14.7.2. The time samples, at rate fs′, are denoted by x′(n′) in accordance with our
notation in this chapter.

The ADC is replaced by its equivalent additive-noise model of Fig. 2.1.3 and the
integrator by a discrete-time accumulator H(ζ) with transfer function:

†Also called a sigma-delta converter or a feedback quantizer.

690 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

+

−
ζ -1

x′(n′) y′(n′)

e′(n′), E′(ζ)

to decimator

= quantization noise

quantizer
model

accumulator H(ζ)

X′(ζ) Y′(ζ)

Fig. 14.7.2 Discrete-time model of first-order delta-sigma quantizer.

H(ζ)= ζ−1

1− ζ−1
(14.7.1)

where ζ−1 denotes a high-rate unit delay. The numerator delay ζ−1 is necessary to make
the feedback loop computable.

Working with ζ-transforms, we note that the input to H(ζ) is the difference signal
X′(ζ)−Y′(ζ). Its output is added to E′(ζ) to generate Y′(ζ). Thus,

H(ζ)
(
X′(ζ)−Y′(ζ))+ E′(ζ)= Y′(ζ)

which may be solved for Y′(ζ) in terms of the two inputs X′(ζ) and E′(ζ):

Y′(ζ)= H(ζ)
1+H(ζ)

X′(ζ)+ 1

1+H(ζ)
E′(ζ) (14.7.2)

It can be written in the form:

Y′(ζ)= Hx(ζ)X′(ζ)+HNS(ζ)E′(ζ) (14.7.3)

where the noise shaping transfer function HNS(ζ) and the transfer function for the
input Hx(ζ) are defined as:

Hx(ζ)= H(ζ)
1+H(ζ)

, HNS(ζ)= 1

1+H(ζ)
(14.7.4)

Inserting H(ζ) from Eq. (14.7.1), we find for the first-order case:

Hx(ζ)= ζ−1, HNS(ζ)= 1− ζ−1 (14.7.5)

Thus, HNS(ζ) is a simple highpass filter, and Hx(ζ) an allpass plain delay. The I/O
equation (14.7.3) becomes:

Y′(ζ)= ζ−1X′(ζ)+(1− ζ−1)E′(ζ) (14.7.6)

or, in the time domain:

y′(n′)= x′(n′ − 1)+ε(n′) (14.7.7)

where we defined the filtered quantization noise:

14.7. NOISE SHAPING QUANTIZERS 691

ε(n′)= e′(n′)−e′(n′ − 1) � E(ζ)= (1− ζ−1)E′(ζ) (14.7.8)

Thus, the quantized output y′(n′) is the (delayed) input plus the filtered quantiza-
tion noise. Because the noise is highpass filtered, further processing of y′(n′) by the
lowpass decimation filter will tend to average out the noise to zero and also replace the
input by its locally averaged, decimated, value. A typical example of a decimator is the
hold decimator of Eq. (14.5.9), which averages L successive high-rate samples.

By comparison, had we used a conventional B-bit ADC and sampled the input at the
low rate fs, the corresponding quantized output would be:

y(n)= x(n)+e(n) (14.7.9)

where e(n) is modeled as white noise over [−fs/2, fs/2].
The “design” condition that renders the quality of the two quantizing systems equiv-

alent and determines the tradeoff between oversampling ratio L and savings in bits, is
to require that the rms quantization errors of Eqs. (14.7.7) and (14.7.9) be the same over
the desired frequency band [−fs/2, fs/2]. As we saw in Section 2.2, the mean-square
errors are obtained by integrating the power spectral densities of the noise signals over
that frequency interval, yielding the condition:

σ2
e = σ2

e′
1

fs′
∫ fs/2

−fs/2
|HNS(f)|2 df (14.7.10)

Setting fs′ = Lfs and σe/σe′ = 2−B/2−B′ = 2−ΔB, where ΔB = B− B′, we obtain the
desired relationship between L and ΔB given by Eq. (2.2.10).

Higher-order delta-sigma quantizers have highpass noise shaping transfer functions
of the form:

HNS(ζ)= (1− ζ−1)p (14.7.11)

wherep is the order. The input/output equations for such quantizers are still of the form
of Eq. (14.7.3), where Hx(ζ) is typically a multiple delay. The frequency and magnitude
responses of HNS(ζ) are obtained by setting ζ = e2πjf/fs′ :

HNS(f)=
(

1− e−2πjf/fs′
)p

, |HNS(f)|2 =
∣∣∣∣∣2 sin

(
πf
fs′

)∣∣∣∣∣
2p

(14.7.12)

resulting in the expressions used in Eq. (2.2.8).
There exist many architectures for higher-order delta-sigma quantizers that address

various circuit limitations and limit-cycle instability problems [351,364–368]. Some ex-
amples of such architectures are given in the problems.

Example 14.7.1: To illustrate the time-domain operation of a delta-sigma quantizer, consider
the common 1-bit case that has a two-level ADC. LetQ(x) denote the two-level quantization
function defined by:

Q(x)= sign(x)=
{
+1, if x ≥ 0
−1, if x < 0

(14.7.13)

692 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

The corresponding block diagram of the quantizer is shown below, together with the com-
putational sample processing algorithm. The quantity w1 is the content of the accumula-
tor’s delay:

+

−
ζ -1

x v w1
Q

w0 y

quantizer

for each input x do:
y = Q(w1)
v = x− y
w0 = w1 + v
w1 = w0

The following table shows the computed outputs for the two constant inputs, x = 0.4 and
x = −0.2, with the algorithm iterated ten times:

x w1 y v w0

0.4 0.0 1.0 −0.6 −0.6
0.4 −0.6 −1.0 1.4 0.8
0.4 0.8 1.0 −0.6 0.2
0.4 0.2 1.0 −0.6 −0.4
0.4 −0.4 −1.0 1.4 1.0
0.4 1.0 1.0 −0.6 0.4
0.4 0.4 1.0 −0.6 −0.2
0.4 −0.2 −1.0 1.4 1.2
0.4 1.2 1.0 −0.6 0.6
0.4 0.6 1.0 −0.6 0.0

x w1 y v w0

−0.2 0.0 1.0 −1.2 −1.2
−0.2 −1.2 −1.0 0.8 −0.4
−0.2 −0.4 −1.0 0.8 0.4
−0.2 0.4 1.0 −1.2 −0.8
−0.2 −0.8 −1.0 0.8 0.0
−0.2 0.0 1.0 −1.2 −1.2
−0.2 −1.2 −1.0 0.8 −0.4
−0.2 −0.4 −1.0 0.8 0.4
−0.2 0.4 1.0 −1.2 −0.8
−0.2 −0.8 −1.0 0.8 0.0

The average of the ten successive values of y are in the two cases, ȳ = 0.4 and ȳ =
−0.2. Such averaging would take place in the decimator, for example, using a 10-fold hold
decimator of the form of Eq. (14.5.9). 	

Example 14.7.2: To illustrate the capability of a delta-sigma quantizer/decimator system to
accurately sample an analog signal, consider the first-order quantizer of the previous ex-
ample, but with a time-varying input defined with respect to the fast time scale as:

x′(n′)= 0.5 sin(2πf0n′/fs′), n′ = 0,1, . . . ,Ntot − 1

We choose the values f0 = 8.82 kHz, fs = 44.1 kHz, L = 10, and Ntot = 200 samples. The
fast rate is fs′ = 10× 44.1 = 441 kHz, and the normalized frequency f0/fs′ = 0.02.

We want to see how the two-level quantized output y′(n′) of the delta-sigma quantizer
is filtered by the decimation filter to effectively recover the input (and resample it at the
lower rate). We compare three different decimation filters, whose frequency responses are
shown in Fig. 14.7.3, with magnified passbands on the right.

The first one is an L-fold averaging decimator with transfer function given by Eq. (14.5.8).
The other two are designed by the window method, and have impulse responses:

h(n′)= w(n′)
sin
(
π(n′ − LM)/L

)
π(n′ − LM)

, n′ = 0,1, . . . ,N − 1

where N = 2LM + 1. One has the minimum possible length, that is, N = 2LM + 1, with
M = 1, giving N = 21, and uses a rectangular window, w(n′)= 1. The other one is

14.7. NOISE SHAPING QUANTIZERS 693

Fig. 14.7.3 Magnitude responses of decimation filters.

designed by the Kaiser method using a stopband attenuation of A = 35 dB and transition
width Δf = 4.41 kHz, or Δf/fs = 0.1 (about the cutoff frequency fc = fs/2 = 22.05 kHz).
It has length N = 201, M = 10, and Kaiser parameters D = 1.88 and α = 2.78.

The output of the quantizer y′(n′), which is the input to the three decimators, is shown
on the left of Fig. 14.7.4; the output of the averaging decimator is on the right. The outputs
of the rectangular and Kaiser decimators are shown in Fig. 14.7.5.

Fig. 14.7.4 Delta-sigma quantizer output and averaging decimator’s output.

The averager recovers the input sinusoid only approximately and with a delay of (L −
1)/2 = 4.5. Some of the high frequencies in y′(n′) get through, because they cannot
be completely removed by the filter. This can be seen from the decimator’s frequency
response, shown in Fig. 14.7.3,

|H(f)| =
∣∣∣∣∣ sin(πf/fs)
L sin(πf/10fs)

∣∣∣∣∣
which does not vanish everywhere between [fs/2,10fs − fs/2], although it does vanish at
the multiples mfs, m = 1,2, . . . ,9.

694 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Fig. 14.7.5 Decimator filter output for rectangular and Kaiser designs.

The outputs of the window designs are faithful representations of the input sinusoid, up
to the filter delay of LM samples, that is, LM = 10 and LM = 100, respectively. The Kaiser
decimator gives the best output because it acts as a better lowpass filter.

What is being plotted in these graphs is the output of the decimation filter before it is
downsampled by a factor of L = 10. The downsampled signal is extracted by taking
every tenth output. The nine intermediate samples which are to be discarded need not be
computed. However, we did compute them here for plotting purposes.

We chose simple specifications for our designs in order to get small values for the filter
delays LM. In practice, stricter specifications can result in long filter lengths, for example,
for a third-order noise shaper to give CD quality audio, we need L = 64 (see Table 2.2.1)
which would require N = DLfs/Δf � 4100 for A = 100 dB and Δf = 0.1fs. In such cases,
a practical approach is to use multistage decimators. 	

Next, we discuss oversampled noise shaping requantizers for D/A conversion. A
typical requantizer system is shown in Fig. 14.7.6. The digital input is incoming at rate
fs and B-bits per sample. It is upsampled and interpolated by an L-fold interpolator,
which increases the rate to fs′. The noise shaping requantizer reduces the number of
bits to B′ < B. This output is, then, fed into an ordinary B′-bit DAC, followed by an
anti-image postfilter (whose structure is greatly simplified because of oversampling).

digital
input

noise shaping requantizer

quantizer

loop filter

to B′-bit
DAC and
postfilter

+

−

B′-bits
fs′-rate

B-bits
fs′-rate

interpolation
filter

interpolator

L
B-bits

fs-rate

H(ζ)

Q
w wMSB

wLSB

Fig. 14.7.6 Oversampled noise shaping requantizer for D/A conversion.

The quantizer Q rounds the incoming B-bit word w by keeping the B′ most signifi-
cant bits, say wMSB, which become the output, y = wMSB. The requantization error, that

14.7. NOISE SHAPING QUANTIZERS 695

is, the B− B′ least significant bits of w, wLSB = w −wMSB, are fed back through a loop
filter and subtracted from the input.

The feedback loop causes the quantization noise to be highpass filtered, reducing its
power within the input’s baseband by just the right amount to counteract the increase
in noise caused by the reduction in bits.

Figure 14.7.7 shows a model of the requantizer in which the quantizer Q is replaced
by its equivalent noise model and the difference of the signals around the quantizer
generates the LSB signal and feeds it back.

loop filter

+

+

−

−

H(ζ)

Q
x′(n′) w′(n′)

e′(n′)

e′(n′)

y′(n′)

B′-bits
fs′-rate

B-bits
fs′-rate

Fig. 14.7.7 Noise shaping requantizer model.

The quantized output is y′(n′)= w′(n′)+e′(n′), so that y′(n′)−w′(n′)= e′(n′).
Therefore, the input to the loop filter is e′(n′) itself. In the ζ-domain, we have:

Y′(ζ)=W′(ζ)+E′(ζ) and W′(ζ)= X′(ζ)−H(ζ)E′(ζ)

which gives the I/O equation:

Y′(ζ)= X′(ζ)+(1−H(ζ)
)
E′(ζ)= X′(ζ)+HNS(ζ)E′(ζ) (14.7.14)

Thus, the effective noise shaping filter is

HNS(ζ)= 1−H(ζ) (14.7.15)

First-, second-, or higher-order filters HNS(ζ) can be constructed easily by choosing
the loop filter as H(ζ)= 1−HNS(ζ), for example:

H(ζ) = ζ−1

H(ζ) = 2ζ−1 − ζ−2
⇒

HNS(ζ) = (1− ζ−1)

HNS(ζ) = (1− ζ−1)2

Noise shaping requantizers are based on the same principle of feedback quantiza-
tion as delta-sigma A/D converters. Therefore, the tradeoff between L and ΔB remains
the same. They are used routinely in the playback systems of CD players, DATs, and
speech CODECs. For example, the first CD player built by Philips employed a first-order
requantizer with H(ζ)= ζ−1 and a 4-times oversampling interpolator [353].

696 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

14.8 Problems

14.1 Consider the 4-fold, length-17 interpolator defined in Eq. (14.4.1). Write down the low-rate
transfer functions Di(z), i = 0,1,2,3 and their causal versions Hi(z), corresponding to the
polyphase subfilters of Eq. (14.4.2).

Then, replace z = ζ4 and verify explicitly that the high-rate overall transfer function of the
sequence d of Eq. (14.4.1) is given by the polyphase decomposition Eq. (14.2.15):

D(ζ)= D0(ζ4)+ζ−1D1(ζ4)+ζ−2D2(ζ4)+ζ−3D3(ζ4)

14.2 Design a 2-fold interpolator of length N = 9, using a rectangular window. Show that the
polyphase form of the interpolator is:

[
yup(2n)
yup(2n+ 1)

]
=
[

0 0 1 0
−0.21 0.64 0.64 −0.21

]⎡⎢⎢⎢⎣
xup(2n+ 4)
xup(2n+ 2)
xup(2n)
xup(2n− 2)

⎤⎥⎥⎥⎦
By superimposing impulse responses, give a graphical interpretation of the above result
using the LTI form of convolution, as was done in Fig. 14.4.2.

14.3 Design a 3-fold interpolator of length N = 13, using a rectangular and a Hamming window.
Show that the polyphase form of the interpolator in the rectangular case is:

⎡⎢⎣ yup(3n)
yup(3n+ 1)
yup(3n+ 2)

⎤⎥⎦ =
⎡⎢⎣ 0 0 1 0
−0.17 0.41 0.83 −0.21
−0.21 0.83 0.41 −0.17

⎤⎥⎦
⎡⎢⎢⎢⎣
xup(3n+ 6)
xup(3n+ 3)
xup(3n)
xup(3n− 3)

⎤⎥⎥⎥⎦
Determine a similar expression for the Hamming case. For the rectangular case, give a graph-
ical interpretation of the above result using the LTI form of convolution, as in Fig. 14.4.2.

14.4 Using the LTI form of convolution, that is, superimposing impulse responses, justify the
interpolation equations (14.1.3) of a length-25 rectangularly windowed ideal interpolator.
Then, rewrite them in the form of Eq. (14.4.3) using the appropriate 4×6 coefficient matrix
on the right.

14.5 Design a 3-fold FIR interpolation filter that uses at most four low-rate samples to compute
the interpolated values between x(n) and x(n+ 1), that is,

yup(3n+ i)= aix(n+ 2)+bix(n+ 1)+cix(n)+dix(n− 1)

for i = 0,1,2. Determine the values of the coefficients {ai, bi, ci, di}, i = 0,1,2,3, for the
two cases:

a. When the filter is an ideal interpolator.

b. When the filter is a linear interpolator.

14.6 Computer Experiment: Interpolation Filter Design. Consider the following triangular and
sinusoidal low-rate signals:

x(n) = {0,1,2,3,4,5,6,7,8,9,10,11,12,11,10,9,8,7,6,5,4,3,2,1,0}
x(n) = sin(2πF0n), n = 0,1, . . . ,24

14.8. PROBLEMS 697

where F0 = 0.04 cycles per sample. Design a length-17 4-fold interpolation filter using a rect-
angular window, as in Section 14.4.1. Using the polyphase form implemented by the circular
buffer version of the sample processing algorithm (14.2.20) and initialized by Eq. (14.2.19),
process the above signals to get the interpolated signals yup(n′), n′ = 0,1, . . . ,99, and plot
them versus the fast time n′.
Repeat by designing the corresponding Hamming windowed interpolation filter and filtering
the two signals x(n) through it.

14.7 Computer Experiment: Multistage 8× Interpolation Filter Design. Design a multistage 8-times
oversampling interpolation filter for digital audio applications (see [356] for a comparable
design). The sampling rate, transition width, and stopband attenuation for all stages are
taken to be fs = 40 kHz, Δf = 5 kHz, A = 80 dB. There are three possible multistage
designs, as shown in Fig. 14.2.10:

2× 4 = 4× 2 = 2× 2× 2 = 8

a. For each possibility, use the Kaiser method to determine the filter lengths N0, N1, (and
N2 for the 3-stage case). Determine also the length N of a single-stage design with the
same specifications.

b. Compute the frequency responses of each stage H0(f), H1(f), (and H2(f) in the 3-
stage case) and plot their magnitudes in dB and on the same graph over the range
0 ≤ f ≤ 320 kHz. Normalize them to 0 dB at DC. Plot also the total response of the
stages, that is, Htot(f)= H0(f)H1(f), (or, H0(f)H1(f)H2(f) in the 3-stage case), and
compare it with the response H(f) of the single-stage design.

Note that in order to keep the overall stopband attenuation in Htot(f) below 80 dB,
you may have to increase slightly the value of A that you put into the design equations
for some of the stages, for example, A = 84 dB.

c. Assuming all filters are realized in their polyphase form, calculate the relative com-
putational cost Rmulti/Rsingle and its approximation using Eq. (14.2.34). Which of the
three possibilities is the most efficient?

14.8 It is desired to design a 4× oversampling digital FIR interpolation filter for a CD player. As-
sume the following specifications: audio sampling rate of 44.1 kHz, passband range [0,20]
kHz, stopband range [24.1,88.2] kHz, and stopband attenuation of 80 dB.

Using the Kaiser window design method, determine the filter length and the total computa-
tional rate in MAC/sec for the following cases:

a. Single-stage design implemented in its polyphase form.

b. Two-stage (2×2) design implemented in its polyphase form. What are the design spec-
ifications of the two stages?

Draw a sketch of the magnitude responses of the designed filters versus frequency in the
range 0 ≤ f ≤ 176.4 kHz, and of the two individual filter responses in the two-stage design
case. What are the computational savings of design (b) versus design (a)? Can a 20 MIPS DSP
chip handle the computational rates?

14.9 Computer Experiment: Bessel Postfilters. Bessel analog filters have almost linear phase re-
sponse within their passband. Consider the Butterworth and Bessel filters designed in Sec-
tion 14.4.4, and given by Eqs. (14.4.12) and (14.4.14). Compute and on the same graph plot
their phase response over the passband interval 0 ≤ f ≤ 20 kHz. On a separate graph,
plot their phase response over the range 0 ≤ f ≤ 160 kHz. Moreover, plot their magnitude
response in dB over the same range.

698 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

14.10 Consider a three-stage interpolator H0, H1, H2 with oversampling factors L0, L1, L2 respec-
tively, so that the total interpolation factor is L = L0L1L2. The filter H0 is a very sharp
lowpass filter designed by some method, such as Kaiser’s. The filter H1 is a linear interpola-
tor, and H2 a hold interpolator. The output of H2 is fed into a noise shaping requantizer to
reduce the number of bits and then fed at rate Lfs into a staircase DAC, Hdac, and then into
a final analog postfilter Hpost. Such a system is used, for example, in the Philips Bitstream
1-bit DAC system for CD players [355], with L0 = 4, L1 = 32, L2 = 2.

a. Write expressions for the magnitude responses |H1(f)|, |H2(f)|, |Hdac(f)|, in terms
of f and L0, L1, L2.

b. Using part (a), show that the combined effect of the hold interpolator H2 followed
by the DAC is equivalent to a staircase DAC operating at the reduced sampling rate
L0L1fs.
Why, then, do we need the hold interpolator at all? Why not use only a two-stage
interpolator and an oversampling factor of L0L1?

c. Consider the special case L0 = 4, L1 = 2, L2 = 2. On the same graph, sketch roughly
over the frequency range 0 ≤ f ≤ 16fs, the spectra at the input and output of H0, at
the output of H1, at the output of H2, at the output Hdac, at the output of Hpost. What
transition width did you choose for Hpost?

d. Sketch the time-domain signals at the input and output of H2 and the output of Hdac.
Does that explain part (b) in the time domain?

14.11 Show that the ideal L-fold interpolation filterD(f), defined in Eq. (14.2.24) over the high-rate
Nyquist interval [−fs′/2, fs′/2] and shown in Fig. 14.2.3, satisfies the replication property:

1

L

L−1∑
m=0

D(f −mfs)= 1

for all f , where fs is the low rate fs = fs′/L.

14.12 Consider the sampling of an analog signal xa(t) at the two sampling rates fs and fs′ =
Lfs. The corresponding signal samples are x(n)= xa(nT) and x′(n′)= xa(n′T′). Because
T = LT′, it follows that x(n) will be the downsampled version of x′(n′) in the sense of
Eq. (14.5.1), that is, x(n)= xa(nT)= xa(nLT′)= x′(nL). The spectra of x(n) and x′(n′)
are given by the Poisson summation formulas:

X(f)= 1

T

∞∑
k=−∞

Xa(f − kfs), X′(f)= 1

T′

∞∑
k′=−∞

Xa(f − k′fs′)

Using the change of variables k = k′L+m, wherem = 0,1, . . . , L−1, show that the spectrum
of the downsampled signal is given by the discrete-time version of the Poisson summation
formula:

X(f)= 1

L

L−1∑
m=0

X′(f −mfs) (14.8.1)

Why is the factor L needed? Show that the same equation can be expressed in terms of the
normalized digital frequencies ω = 2πf/fs and ω′ = 2πf/fs′ as

X(ω)= 1

L

L−1∑
m=0

X′
(
ω′ − 2πm

L
)

(14.8.2)

14.8. PROBLEMS 699

14.13 The downsampled signal x(n), defined in Eq. (14.5.1), can be thought of as re-sampling of
x′(n′). More precisely, the upsampled version of the downsampled signal x(n), that is, the
samples x(n)with L−1 zeros inserted between them, can be thought of as the multiplication
of x′(n′) by a discrete-time sampling function:

xup(n′)=
∞∑

n=−∞
x′(nL)δ(n′ − nL)= s′(n′)x′(n′), where s′(n′)=

∞∑
n=−∞

δ(n′ − nL)

First, show that s′(n′), being periodic in n′ with period L, can be written in terms of the
following discrete Fourier series, which is essentially an L-point inverse DFT:

s′(n′)=
∞∑

n=−∞
δ(n′ − nL)= 1

L

L−1∑
m=0

e2πjmn′/L (14.8.3)

Then, prove the downsampling property Eq. (14.8.2) using the representation Eq. (14.8.3).

14.14 Prove the downsampling equation (14.8.1) by using the property X′(f)= D(f)X(f) where
D(f) is the ideal interpolator defined by Eq. (14.2.24), and using the results of Problem 14.11.
Why can’t we write X(f)= X′(f)/D(f)?

14.15 Consider a third-order analog Butterworth antialiasing prefilter that precedes an L-fold dec-
imator. The passband attenuation is required to be less than 0.1 dB. Show that the minimum
oversampling ratio L that must be used in order for the prefilter to suppress the spectral
images by at least Astop dB is given approximately by:

L = 0.94 · 10Astop/60 + 0.5

Make a plot of the above formula versus Astop in the range 20 < Astop < 100 dB.

14.16 Show that the order N of an analog Butterworth antialiasing prefilter to be used in conjunc-
tion with an L-fold decimator and designed with specifications {Apass,Astop, fpass, fstop}, as
shown in Fig. 14.5.4, is given by:

N =
ln

(
10Astop/10 − 1

10Apass/10 − 1

)
2 ln(2L− 1)

Determine N for the values Apass = 0.1 dB, Astop = 60 dB, L = 16. Round N up to the next
integer, say N0. For what range of Ls does the filter order remain fixed at N0?

14.17 Using the Kaiser window method, design a sample rate converter for up-converting CD audio
at 44.1 kHz to DAT audio at 48 kHz. The required ratio is L/M = 160/147. Assume a
transition region of [20,24.41] kHz and stopband attenuation of 95 dB.

What is the filter lengthN? What is the computational cost in MAC/sec assuming a polyphase
realization? Can a modern DSP chip handle this cost? What are the memory requirements
for such a converter?

14.18 A DAT-recorded digital audio signal is to be broadcast digitally. Using the Kaiser method,
design a sampling rate converter filter for down-converting the 48 kHz DAT rate to a 32 kHz
broadcast rate.

What is the filter’s cutoff frequency? Assume reasonable values for the filter’s transition
width and stopband attenuation. What is the filter length N? What is the computational
cost in MAC/sec assuming a polyphase realization? Write explicitly (i.e., in the form of
Eq. (14.6.10)) the sample processing algorithm implementing the conversion algorithm.

700 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

14.19 Consider two sample rate converters for converting by the ratios 7/4 and 4/7. For each case,
sketch figures similar to Figs. 14.6.2 and 14.6.3 showing the conversion stages in the time and
frequency domains. For both cases, determine the polyphase filter selection indices im, nm,
and write explicitly (i.e., in the form of Eq. (14.6.10)) the corresponding sample processing
algorithms implementing the conversion process.

14.20 Show that the time-stretching property given in Eq. (14.6.15) is preserved if the impulse
response is windowed by a Hamming or Kaiser window (or, any other window).

14.21 Computer Experiment: Sample Rate Conversion. Write a general C or MATLAB program that
implements sample rate conversion (SRC) by a factor L/M.

The SRC filter may be designed by the Kaiser method. The program must have as inputs the
parameters L, M, stopband attenuation A, and normalized transition width ΔF = Δf/fs,
where fs is the input rate. Then, it must process an arbitrary file or array of input-rate data
and output a file or array of output-rate data.

The program must initialize the (P + 1)-dimensional state vector w correctly by reading
in the first K input samples, as in Eq. (14.2.19). Then, it must continue processing input
samples via the sample processing algorithm of Eq. (14.6.13), until the last input sample.
Finally, it must calculate an additional K input-off transients to compensate for the initial
delay. [Hint: You need to call Eq. (14.6.13) approximately K/M more times with zero input.]

As a filtering example, consider a 10 msec portion of a 100 Hz sinusoid, that is, x(t)=
sin(2πt/10), where 0 ≤ t ≤ 10 msec. Show that if this signal is sampled at 3 kHz, at 5 kHz,
or at 15 kHz, its samples will be given respectively by:

x(n) = sin(2πn/30),

x′(n′) = sin(2πn′/50),

x′′(n′′) = sin(2πn′′/150),

n = 0,1, . . . ,29

n′ = 0,1, . . . ,49

n′′ = 0,1, . . . ,149

Design a 5/3 converter that has A = 30 dB and ΔF = 0.1. Filter the signal x(n) through the
SRC filter to generate the output y(n′). Compare the digitally resampled signal y(n′) with
the analog resampled signal x′(n′).
To compare x(n) with y(n′), you must work with respect to the same time scale. That is,
upsample the input x(n) by a factor of L = 5 and the output y(n′) by a factor of M = 3.
Then, plot the upsampled signals versus the fast time n′′ and compare them.

A typical output is shown in Fig. 14.8.1. Within each 15-sample period, there are 3 input-rate
samples and 5 output-rate samples. Had we not downsampled the output of the SRC filter
by a factor of 3, it would be equal (for a perfect filter) to the signal x′′(n′′).
Next, design a reverse sample rate converter to convert back by a factor of 3/5. The SRC filter
has the same A and ΔF. Then, process y(n′) through it to see how well you may recover the
original signal x(n). Finally, plot the magnitude responses of the 5/3 and 3/5 filters versus
frequency in the range 0 ≤ f ≤ 15 kHz, both in absolute and decibel scales.

14.22 An alternative discrete-time model for a first-order delta-sigma quantizer is shown in Fig. 14.8.2.
It uses a conventional accumulator, but puts a delay in the feedback loop to make it com-
putable. Replace the quantizer Q by its equivalent noise model and work out the I/O rela-
tionship in the form of Eq. (14.7.3). What are the transfer functions Hx(ζ) and HNS(ζ)?
Write Eq. (14.7.3) in the n′ time domain.

14.23 For the delta-sigma quantizer model shown in Fig. 14.8.2, define the action of the quantizer
Q by the two-level function Q(x) of Eq. (14.7.13). Using the indicated intermediate variables
on the figure, write the corresponding sample processing algorithm. For the two constant

14.8. PROBLEMS 701

Fig. 14.8.1 Sample rate conversion by 5/3.

+

−
ζ -1

ζ -1

x v

w1

u

Q
w0

y

quantizer

Fig. 14.8.2 Alternative model of first-order delta-sigma quantizer.

inputs, x = 0.4 and x = −0.2, iterate the algorithm ten times and make a table of the values
of all the variables, as in Example 14.7.1. Compute the average of the quantized outputs y.

14.24 A discrete-time model for a second-order delta-sigma quantizer is shown in Fig. 14.8.3. Write
the I/O equation in the form of Eq. (14.7.3) and determine the signal and noise transfer
functionsHx(ζ) andHNS(ζ) in terms of the loop filtersH1(ζ) andH2(ζ). Then, determine
H1(ζ) and H2(ζ) such that

Hx(ζ)= 1, HNS(ζ)= (1− ζ−1)2

Redraw the full block diagram by replacing each Hi(ζ) by its realization, and write the
sample processing algorithm assuming a quantizer function of the form Q(x).

+ +

− −
H2(ζ)H1(ζ)

ζ -1

x′(n′) y′(n′)

e′(n′), E′(ζ)

X′(ζ) Y′(ζ)
quantizer

Fig. 14.8.3 Discrete-time model of second-order delta-sigma quantizer.

14.25 An alternative discrete-time model for the second-order ΔΣ quantizer is obtained by remov-
ing the delay ζ−1 from the feedback loop in Fig. 14.8.3. Determine H1(ζ) and H2(ζ) in
order that the signal and noise transfer functions be:

702 14. INTERPOLATION, DECIMATION, AND OVERSAMPLING

Hx(ζ)= ζ−1, HNS(ζ)= (1− ζ−1)2

14.26 Computer Experiment: First-Order Delta-Sigma ADC. Write C or MATLAB programs to repro-
duce all the results and graphs of Example 14.7.2. Implement the decimator filtering opera-
tions in their sample-by-sample processing form using the routines fir or cfir of Chapter
4. In computing the outputs of the filters, you must also compute the input-off transients.
In particular, for the window designs, you need to compute an extra LM input-off transients
to compensate for the filter’s delay.

Better decimators are obtained by raising the simple averaging decimator to some power.
For example, a second-order L-fold “comb” decimator is defined by:

H(ζ)=
[

1

L
1− ζ−L

1− ζ−1

]2

It is similar to a linear interpolator normalized by L. For L = 10, determine its impulse
response h. Then, compute its output for the same quantized input as above, and compare
it with the outputs of the averaging and length-21 decimators. Also, plot the magnitude
response of this decimator on the same graph with the other three.

14.27 Computer Experiment: Second-Order Delta-Sigma ADC. Using the second-order delta-sigma
quantizer and its sample processing algorithm defined in Problem 14.24 and using the same
quantizer function Q(x) of Eq. (14.7.13), repeat all the questions and graphs of the above
computer experiment.

14.28 A second-order multistage delta-sigma quantizer architecture (known as MASH [351,363–
365]) is shown in Fig. 14.8.4. It employs two identical first-order quantizers of the type of
Fig. 14.8.2, with H(ζ)= 1/(1− ζ−1), and D(ζ)= 1− ζ−1.

D(ζ)

x +

−

ζ -1

H(ζ)
y1

y2

y

e1

−e1

+
+ −

−

ζ -1

H(ζ)

e2

1st stage

2nd stage

Fig. 14.8.4 MASH architecture of second-order delta-sigma quantizer.

The negative of the quantization error e1, obtained by subtracting the two signals around
the first quantizer, becomes the input to the second stage and its output is postfiltered by
the differencing filter D(ζ) and added to the output of the first stage.

Using the I/O equation derived in Problem 14.22, show that the overall I/O equation of
Fig. 14.8.4 involves only the second quantization error e2, and is given by

Y′(ζ)= X′(ζ)+(1− ζ−1)2E′2(ζ)

14.8. PROBLEMS 703

14.29 A third-order delta-sigma MASH quantizer, can be obtained by adding a third first-order
quantizer to the diagram of Fig. 14.8.4 [351,363–365]. The signal −e2 can be generated from
the second stage just like −e1 is generated by the first stage. Then, the signal −e2 is fed into
the third stage, which has its own quantization noise e3.

Draw the 3-stage block diagram and add an additional differentiator D(ζ) so that when you
sum the outputs of the three stages, you get a third-order noise shaping I/O relationship,
that is, combine the I/O equations of the three stages so that:

Y′1 = X′ +DE′1

Y′2 = −E′1 +DE′2

Y′3 = −E′2 +DE′3

⇒ Y′ = X′ +D3E′3

14.30 A third-order delta-sigma MASH quantizer, can also be obtained by using a cascade combina-
tion of first- and second-order quantizers [351,363–365]. In the block diagram of Fig. 14.8.4,
replace the first-order quantizer of the second stage by the second-order quantizer of Fig. 14.8.3.
The differencer D(ζ) remains unchanged. Show that the overall I/O equation is now:

Y′(ζ)= X′(ζ)+(1− ζ−1)3E′2(ζ)

14.31 Delta-sigma A/D converters are not always appropriate and must be used with caution,
especially in multiplexing the sampling of several input channels or in feedback control
systems. Why would you say this is so?

15
Noise Reduction and Signal

Enhancement

15.1 Noise Reduction and Signal Extraction

One of the most common problems in signal processing is to extract a desired signal,
say s(n), from a noisy measured signal:

x(n)= s(n)+v(n) (15.1.1)

where v(n) is the undesired noise component.
The noise signal v(n) depends on the application. For example, it could be (1) a white

noise signal, which is typical of the background noise picked up during the measurement
process; (2) a periodic interference signal, such as the 60 Hz power-frequency pickup; (3)
a low-frequency noise signal, such as radar clutter; (4) any other signal—not necessarily
measurement noise—that must be separated from s(n) as, for example, in separating
the luminance and chrominance signal components embedded in the composite video
signal in a color TV receiver.

The standard method of extracting s(n) from x(n) is to design an appropriate filter
H(z) which removes the noise component v(n) and at the same time lets the desired
signal s(n) go through unchanged. Using linearity, we can express the output signal
due to the input of Eq. (15.1.1) in the form:

y(n)= ys(n)+yv(n) (15.1.2)

where ys(n) is the output due to s(n) and yv(n) the output due to v(n).
The two design conditions for the filter are that yv(n) be as small as possible and

ys(n) be as similar to s(n) as possible; that is, ideally we require:†

ys(n) = s(n)

yv(n) = 0
(15.1.3)

†An overall delay in the recovered signal is also acceptable, that is, ys(n)= s(n−D).

704

15.1. NOISE REDUCTION AND SIGNAL EXTRACTION 705

In general, these conditions cannot be satisfied simultaneously. To determine when
they can be satisfied, we express them in the frequency domain in terms of the corre-
sponding frequency spectra as follows: Ys(ω)= S(ω) and Yv(ω)= 0.

Applying the filtering equation Y(ω)= H(ω)X(ω) separately to the signal and
noise components, we have the conditions:

Ys(ω) = H(ω)S(ω)= S(ω)

Yv(ω) = H(ω)V(ω)= 0
(15.1.4)

The first requires that H(ω)= 1 at all ω for which the signal spectrum is nonzero,
S(ω)≠ 0. The second requires that H(ω)= 0 at all ω for which the noise spectrum is
nonzero, V(ω)≠ 0.

These two conditions can be met simultaneously only if the signal and noise spectra
do not overlap, as shown in Fig. 15.1.1. In such cases, the filter H(ω) must have pass-
band that coincides with the signal band, and stopband that coincides with the noise
band. The filter removes the noise spectrum and leaves the signal spectrum unchanged.

Fig. 15.1.1 Signal and noise spectra before and after filtering.

If the signal and noise spectra overlap, as is the typical case in practice, the above
conditions cannot be satisfied simultaneously, because there would be values of ω such
that both S(ω)≠ 0 and V(ω)≠ 0 and therefore the conditions (15.1.4) would require
H(ω)= 1 and H(ω)= 0 for the same ω.

In such cases, we must compromise between the two design conditions and trade
off one for the other. Depending on the application, we may decide to design the filter
to remove as much noise as possible, but at the expense of distorting the desired signal.
Alternatively, we may decide to leave the desired signal as undistorted as possible, but
at the expense of having some noise in the output.

The latter alternative is depicted in Fig. 15.1.2 where a low-frequency signal s(n)
exists in the presence of a broadband noise component, such as white noise, having a
flat spectrum extending over the entire† Nyquist interval, −π ≤ω ≤ π.

The filter H(ω) is chosen to be an ideal lowpass filter with passband covering the
signal bandwidth, say 0 ≤ω ≤ωc. The noise energy in the filter’s stopband ωc ≤ω ≤
π is removed completely by the filter, thus reducing the strength (i.e., the rms value) of

†For discrete-time signals, the spectra are periodic in ω with period 2π.

706 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

Fig. 15.1.2 Signal enhancement filter with partial noise reduction.

the noise. The spectrum of the desired signal is not affected by the filter, but neither is
the portion of the noise spectrum that falls within the signal band. Thus, some noise
will survive the filtering process.

The amount of noise reduction achieved by this filter can be calculated using the noise
reduction ratio (NRR) of Eq. (9.7.4) of Appendix 9.7, which is valid for white noise input
signals. Denoting the input and output mean-square noise values by σ2

v = E[v(n)2]
and σ2

yv = E[yv(n)2], we have the definition,

R = σ2
yv

σ2
v
=
∫ π

−π

∣∣H(ω)
∣∣2 dω

2π
=
∑
n
h2
n (NRR) (15.1.5)

Because H(ω) is an ideal lowpass filter, the integration range reduces to the filter’s
passband, that is, −ωc ≤ω ≤ωc. Over this range, the value of H(ω) is unity, giving:

R = σ2
yv

σ2
v
=
∫ωc

−ωc

1 · dω
2π

= 2ωc

2π
= ωc

π
(15.1.6)

Thus, the NRR is the proportion of the signal bandwidth with respect to the Nyquist
interval. The same conclusion also holds when the desired signal is a high-frequency
or a mid-frequency signal. For example, if the signal spectrum extends only over the
mid-frequency band ωa ≤ |ω| ≤ωb, then H(ω) can be designed to be unity over this
band and zero otherwise. A similar calculation yields in this case:

R = σ2
yv

σ2
v
= ωb −ωa

π
(15.1.7)

The noise reduction/signal enhancement capability of a filter can also be formulated
in terms of the signal-to-noise ratio. The SNRs at the input and output of the filter are
defined in terms of the mean-square values as:

SNRin = E[s(n)2]
E[v(n)2]

, SNRout = E[ys(n)2]
E[yv(n)2]

15.1. NOISE REDUCTION AND SIGNAL EXTRACTION 707

Therefore, the relative improvement in the SNR introduced by the filter will be:

SNRout

SNRin
= E[ys(n)2]
E[yv(n)2]

· E[v(n)
2]

E[s(n)2]
= 1

R · E[ys(n)
2]

E[s(n)2]

If the desired signal is not changed by the filter, ys(n)≈ s(n), then

SNRout

SNRin
= 1

R (15.1.8)

Thus, minimizing the noise reduction ratio is equivalent to maximizing the signal-to-
noise ratio at the filter’s output.

The NRRs computed in Eqs. (15.1.6) or (15.1.7) give the maximum noise reductions
achievable with ideal lowpass or bandpass filters that do not distort the desired signal.
Such ideal filters are not realizable because they have double-sided impulse responses
with infinite anticausal tails. Thus, in practice, we must use realizable approximations
to the ideal filters. Chapters 11 and 12 discuss filter design methods that approximate
the ideal responses to any desired degree.

The use of realizable noise reduction filters introduces two further design issues
that must be dealt with in practice: One is the transient response of the filter and the
other is the amount of delay introduced into the output.

The more closely a filter approximates the sharp transition characteristics of an
ideal response, the closer to the unit circle its poles get, and the longer its transient
response becomes. Stated differently, maximum noise reduction, approaching the ideal
limit (15.1.6), can be achieved only at the expense of introducing long transients in the
output.

The issue of the delay introduced into the output has to do with the steady-state
response of the filter. We recall from Eq. (6.3.8) of Chapter 6 that after steady state has
set in, different frequency components of an input signal suffer different amounts of
delay, as determined by the phase delay d(ω) of the filter.

In particular, if the filter has linear phase, then it causes an overall delay in the
output. Indeed, assuming that the filter has unity magnitude, |H(ω)| = 1, over its
passband (i.e., the signal band) and is zero over the stopband, and assuming a constant
phase delay d(ω)= D, we find for the filtered version of the desired signal:

ys(n) =
∫ π

−π
Ys(ω)ejωn dω

2π
=
∫ π

−π
|H(ω)|S(ω)ejω(n−D) dω

2π

=
∫ωc

−ωc

S(ω)ejω(n−D) dω
2π

= s(n−D)

the last equation following from the inverse DTFT of the desired signal:

s(n)=
∫ωc

−ωc

S(ω)ejωn dω
2π

Essentially all practical FIR noise reduction filters, such as the Savitzky-Golay smooth-
ing filters discussed in Chap. 23 and the Kaiser window designs discussed in Section 11.3,
have linear phase.

708 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

Next, we consider some noise reduction examples based on simple filters, calcu-
late the corresponding noise reduction ratios, discuss the tradeoff between transient
response times and noise reduction, and present some simulation examples.

15.2 IIR Exponential Smoother

It is desired to extract a constant signal s(n)= s from the noisy measured signal

x(n)= s(n)+v(n)= s+ v(n)

where v(n) is zero-mean white Gaussian noise of variance σ2
v . To this end, the

following IIR lowpass filter is used:

H(z)= α
1− λz−1

, H(ω)= α
1− λe−jω

, |H(ω)|2 = α2

1− 2λ cosω+ λ2

where the parameter λ is restricted to the range 0 < λ < 1. This filter is known
as an “exponentially-weighted moving average” (EMA) because its impulse response is
exponentially decaying,

hn = αλnu(n)

Because the desired signal s(n) is constant in time, the signal band will only be the
DC frequency ω = 0. We require, therefore, that the filter have unity response at ω = 0
or equivalently at z = 1. This condition fixes the overall gain α of the filter:

H(z)
∣∣
z=1 =

α
1− λ

= 1 ⇒ α = 1− λ

The NRR of this filter can be calculated from Eq. (15.1.5) by summing the impulse
response squared. Using the geometric series, we find

R = σ2
yv

σ2
v
=
∑
n
h2
n = α2

∞∑
n=0

λ2n = α2

1− λ2
= (1− λ)2

1− λ2
= 1− λ

1+ λ

This ratio is always less than one because λ is restricted to 0 < λ < 1. To achieve
high noise reduction, λ must be chosen near one. But, then the filter’s transient time
constant, given by Eq. (6.3.12), will become large:

neff = ln ε
lnλ

→∞ as λ→ 1

The filter’s magnitude response, pole-zero pattern, and the corresponding input and
output noise spectra are shown in Fig. 15.2.1. The shaded area under the |H(ω)|2 curve
is the same as the NRR computed above.

The filter’s 3-dB cutoff frequency ωc can be calculated by requiring that |H(ωc)|2
drops by 1/2, that is,

|H(ωc)|2 = α2

1− 2λ cosωc + λ2
= 1

2

15.2. IIR EXPONENTIAL SMOOTHER 709

Fig. 15.2.1 Lowpass noise reduction filter of Example 15.2.

which can be solved to give cosωc = 1 − (1 − λ)2/2λ. If a is near one, a � 1, we
can use the approximation cosx � 1− x2/2 and solve for ωc approximately:

ωc � 1− λ

This shows that as λ → 1, the filter becomes a narrower lowpass filter, removing
more noise from the input, but at the expense of increasing the time constant.

The tradeoff between noise reduction and speed of response is illustrated in Fig. 15.2.2,
where 200 samples of a simulated noisy signal x(n) were filtered using the difference
equation of the filter, that is, with α = 1− λ

y(n)= λy(n− 1)+αx(n) (15.2.1)

and implemented with the sample processing algorithm, where w1(n)= y(n− 1)

for each input sample x do:
y = λw1 +αx
w1 = y

The value of the constant signal was s = 5 and the input noise variance σ2
v = 1.

The random signal v(n) was generated by successive calls to the Gaussian generator
routine gran of Appendix A.1. The figure on the left corresponds to α = 0.90, which
has 1-percent time constant and NRR:

neff = ln(0.01)
ln(0.90)

= 44, R = 1− 0.90

1+ 0.90
= 1

19

It corresponds to an improvement of the SNR by, 10 log10(1/R)= 12.8 dB. The right
figure has λ = 0.98, with a longer time constant and smaller NRR:

neff = ln(0.01)
ln(0.98)

= 228, R = 1− 0.98

1+ 0.98
= 1

99

and an SNR improvement by, 10 log10(1/R)= 20 dB. To understand how this filter
works in the time domain and manages to reduce the noise, we rewrite the difference
equation (15.2.1) in its convolutional form:

710 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

λ = 0.90

 y(n)
 x(n)

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

λ = 0.99

 y(n)
 x(n)

Fig. 15.2.2 Noisy input and smoothed output for Example 15.2.

y(n)= α
n∑

m=0

λmx(n−m)= α
[
x(n)+λx(n− 1)+λ2x(n− 2)+· · · + λnx(0)

]
This sum corresponds to the accumulation or averaging of all the past samples up to

the present time instant. As a result, the rapid fluctuations of the noise component v(n)
are averaged out. The closer λ is to 1, the more equal weighting the terms get, resulting
in more effective averaging of the noise. The exponential weighting de-emphasizes the
older samples and causes the sum to behave as though it had effectively a finite number
of terms, thus, safeguarding the mean-square value of y(n) from diverging. Because of
the exponential weights, this filter is also called an exponential smoother.

The first-order EMA smoother can be applied to the smoothing of any low-frequency
signal, not just constants. It is a standard tool in many applications requiring the
smoothing of data, such as signal processing, statistics, economics, physics, and chem-
istry.

In general, one must make sure that the bandwidth of the desired signal s(n) is
narrower than the filter’s lowpass width ωc, so that the filter will not remove any of the
higher frequencies present in s(n).

Improved EMA Smoother

The NRR of Example 15.2 can be improved slightly, without affecting the speed of re-
sponse, by adding a zero in the transfer function at z = −1 or equivalently, at ω = π.
The resulting first-order filter will be:

H(z)= α(1+ z−1)
1− λz−1

⇒ |H(ω)|2 = 2α2(1+ cosω)
1− 2λ cosω+ λ2

(15.2.2)

where α is fixed by requiring unity gain at DC:

H(1)= 2α
1− λ

= 1 ⇒ α = 1− λ
2

15.2. IIR EXPONENTIAL SMOOTHER 711

The zero at ω = π suppresses the high-frequency portion of the input noise spec-
trum even more than the filter of Example 15.2, thus, resulting in smaller NRR for the
same value of λ. The impulse response of this filter can be computed using partial
fractions:

H(z)= α(1+ z−1)
1− λz−1

= A0 + A1

1− λz−1

where

A0 = −αλ , A1 = α(1+ λ)
λ

Therefore, the (causal) impulse response will be:

hn = A0δ(n)+A1λnu(n)

Note, in particular, h0 = A0 +A1 = α. It follows that

R =
∞∑
n=0

h2
n = h2

0 +
∞∑
n=1

h2
n = α2 +A2

1
λ2

1− λ2
= 1− λ

2

This is slightly smaller than the NRR of Example 15.2, because of the inequality:

1− λ
2

<
1− λ
1+ λ

The 3-dB cutoff frequency can be calculated easily in this example. We have

|H(ωc)|2 = 2α2(1+ cosωc)
1− 2λ cosωc + λ2

= 1

2

which can be solved for ωc in terms of λ:

l cosωc = 2λ
1+ λ2

(15.2.3)

Conversely, we can solve for λ in terms of ωc:

λ = 1− sinωc

cosωc
= 1− tan(ωc/2)

1+ tan(ωc/2)
(15.2.4)

It is easily checked that the condition 0 < λ < 1 requires that ωc < π/2. We will
encounter this example again in Chapter 12 and redesign it using the bilinear trans-
formation. Note also that the replacement z → −z changes the filter into a highpass
one. Such simple first-order lowpass or highpass filters with easily controllable widths
are useful in many applications, such as the low- and high-frequency shelving filters of
audio equalizers.

712 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

15.3 IIR Highpass Signal Extraction

It is desired to extract a high-frequency signal s(n)= (−1)ns from the noisy signal

x(n)= s(n)+v(n)= (−1)ns+ v(n)

where v(n) is zero-mean, white Gaussian noise with varianceσ2
v . Because, the signal

band is now at the Nyquist frequencyω = π, we may use a first-order highpass IIR filter:

H(z)= α
1+ λz−1

, H(ω)= α
1+ λe−jω

, |H(ω)|2 = α2

1+ 2λ cosω+ λ2

where 0 < λ < 1. The gain α is fixed such that H(π)= 1, or equivalently H(z)= 1
at z = ejπ = −1, which gives the condition:

H(z)
∣∣
z=−1 =

α
1− λ

= 1 ⇒ α = 1− λ

The impulse response is now, hn = α(−λ)nu(n). The corresponding NRR can be
calculated as in the previous example:

R =
∑
n
h2
n = α2

∞∑
n=0

(−λ)2n= α2

1− λ2
= (1− λ)2

1− λ2
= 1− λ

1+ λ

The noise reduction frequency characteristics of this highpass filter and its pole/zero
pattern are shown in Fig. 15.3.1. Note that the pole is now at z = −λ. The 3-dB width
ωc is the same as in the previous example.

Fig. 15.3.1 Highpass noise reduction filter of Example 15.3.

Fig. 15.3.2 shows a simulation of 100 samples x(n) filtered via the difference equa-
tion

y(n)= −λy(n− 1)+(1− λ)x(n)

The following values of the parameters were used: s = 2, λ = 0.97, σ2
v = 1. The

corresponding one-percent time constant and NRR are in this case:

neff = ln(0.01)
ln(0.97)

= 151, R = 1− 0.97

1+ 0.97
= 3

197
= 0.0101

which corresponds to an SNR improvement by, 10 log10(1/R)= 19.96 dB.

15.4. BANDPASS SIGNAL EXTRACTION 713

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

time samples, n

input signal x(n)

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

time samples, n

output signal y(n), λ = 0.97

Fig. 15.3.2 Noisy input and high-frequency output for Example 15.3.

15.4 Bandpass Signal Extraction

A noisy sinusoid of frequency f0 = 500 Hz is sampled at a rate of fs = 10 kHz:

x(n)= s(n)+v(n)= cos(ω0n)+v(n)

where ω0 = 2πf0/fs, and v(n) is a zero-mean, unit-variance, white Gaussian noise
signal. The sinusoid can be extracted by a simple resonator filter of the type discussed
in Section 6.4.2. The poles of the filter are placed at z = Re±jω0 , as shown in Fig. 6.4.2.

If R is near 1, the resonator’s 3-dB width given by Eq. (6.4.4), Δω = 2(1 − R), will
be small, resulting in a very narrow bandpass filter. The narrower the filter, the more
the noise will be reduced. The transfer function and impulse response of the filter were
derived in Section 6.4.2:

H(z)= G
1+ a1z−1 + a2z−2

, hn = G
sinω0

Rn sin(ω0n+ω0)u(n)

where a1 = −2R cosω0 and a2 = R2. The gain G is adjusted such that the filter’s
magnitude response is unity at the sinusoid’s frequency, that is, |H(ω0)| = 1. In
Section 6.4.2, we found

G = (1−R)
√

1− 2R cos(2ω0)+R2

The NRR can be calculated in closed form:

R =
∞∑
n=0

h2
n =

(1−R)(1+R2)(1− 2R cos(2ω0)+R2)
(1+R)(1− 2R2 cos(2ω0)+R4)

(15.4.1)

For R = 0.99 and ω0 = 0.1π, we have R = 1/99.6, and filter parameters a1 =
−1.8831, a2 = 0.9801, and G = 6.1502×10−3. Fig. 15.4.1 shows 300 samples of the
noisy sinusoidal input x(n) and the corresponding output signal y(n) plotted together
with desired sinusoid s(n). The noise v(n) was generated by the routine gran. The
output was computed by the sample processing algorithm of the filter:

714 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

for each input sample x do:
y = −a1w1 − a2w2 +Gx
w2 = w1

w1 = y

0 50 100 150 200 250 300
−4

−2

0

2

4
noisy input

time samples, n
0 50 100 150 200 250 300

−4

−2

0

2

4
recovered output

time samples, n

 recovered
 desired

Fig. 15.4.1 Noisy sinusoidal input and extracted sinusoid.

The recovered sinusoid is slightly shifted with respect to s(n) by an amount corre-
sponding to the phase delay of the filter atω =ω0, that is, nph(ω0)= − argH(ω0)/ω0.
For the given numerical values, we find, nph(ω0)= 3.95 samples.

15.5 FIR Averaging Filters

The problem of extracting a constant or a low-frequency signal s(n) from the noisy
signal x(n)= s(n)+v(n) can also be approached with FIR filters. Consider, for example,
the third-order filter

H(z)= h0 + h1z−1 + h2z−2 + h3z−3

The condition that the constant signal s(n) go through the filter unchanged is the
condition that the filter have unity gain at DC, which gives the constraint among the
filter weights:

H(z)
∣∣
z=1 = h0 + h1 + h2 + h3 = 1 (15.5.1)

The NRR of this filter will be simply:

R =
∑
n
h2
n = h2

0 + h2
1 + h2

2 + h2
3 (15.5.2)

The best third-order FIR filter will be the one that minimizes this NRR, subject to the
lowpass constraint (15.5.1). To solve this minimization problem, we use the constraint
to solve for one of the unknowns, say h3:

h3 = 1− h0 − h1 − h2

15.5. FIR AVERAGING FILTERS 715

Substituting into the NRR, we find

R = h2
0 + h2

1 + h2
2 + (h0 + h1 + h2 − 1)2

The minimization of this expression can be carried out easily by setting the partial
derivatives of R to zero and solving for the h’s:

∂
∂h0

R = 2h0 + 2(h0 + h1 + h2 − 1)= 2(h0 − h3)= 0

∂
∂h1

R = 2h1 + 2(h0 + h1 + h2 − 1)= 2(h1 − h3)= 0

∂
∂h2

R = 2h2 + 2(h0 + h1 + h2 − 1)= 2(h2 − h3)= 0

It follows that all four h’s will be equal to each other, h0 = h1 = h2 = h3. But,
because they must sum up to 1, we must have the optimum solution:

h0 = h1 = h2 = h3 = 1

4

and the minimized NRR becomes:

Rmin =
(

1

4

)2

+
(

1

4

)2

+
(

1

4

)2

+
(

1

4

)2

= 4 ·
(

1

4

)2

= 1

4

The I/O equation for this optimum smoothing filter becomes:

y(n)= 1

4

[
x(n)+x(n− 1)+x(n− 2)+x(n− 3)

]
More generally, the optimum length-N FIR filter with unity DC gain and minimum

NRR is the filter with equal weights:

hn = 1

N
, n = 0,1, . . . ,N − 1 (15.5.3)

and I/O equation:

y(n)= 1

N
(
x(n)+x(n− 1)+x(n− 2)+· · · + x(n−N + 1)

)
(15.5.4)

Its NRR is:

R = h2
0 + h2

1 + · · · + h2
N−1 = N · (1

N
)2 = 1

N
(15.5.5)

Thus, by choosing N large enough, the NRR can be made as small as desired. Again,
as the NRR decreases, the filter’s time constant increases.

How does the FIR smoother compare with the IIR/EMA smoother of Example 15.2?
First, we note the EMA smoother is very simple computationally, requiring only 2 MACs
per output sample, whereas the FIR requires N MACs.

716 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

Second, the FIR smoother typically performs better in terms of both the NRR and
the transient response, in the sense that for the same NRR value, the FIR smoother has
shorter time constant, and for the same time constant, it has smaller NRR.

Given a time constant neff for an EMA smoother, the “equivalent” FIR smoother
should be chosen to have the same length, that is,

N = neff = ln ε
lnλ

For example, if a = 0.90, then N = neff = 44 as in Example 15.2. But then, the NRR
of the FIR smoother will be R = 1/N = 1/44, which is better than that of the IIR filter,
R = 1/19. This case is illustrated in the left graph of Fig. 15.5.1, where the FIR output
was computed by Eq. (15.5.4) with N = 44, and implemented in MATLAB for the same
noisy input of Example 15.2. The EMA output was already computed in Example 15.2.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

equal time constants

 FIR
 EMA

0 50 100 150 200
0

1

2

3

4

5

6

7

8

time samples, n

equal NRRs

 FIR
 EMA

Fig. 15.5.1 Comparison of FIR and IIR smoothing filters.

Similarly, given an EMA smoother that achieves a certain NRR value, the “equivalent”
FIR filter with the same NRR should have length N such that:

R = 1− λ
1+ λ

= 1

N
⇒ N = 1+ λ

1− λ
, ⇒ λ = N − 1

N + 1
(15.5.6)

For example, if λ = 0.98, then we get N = 99, which is much shorter than the EMA
time constant, neff = 228 computed in Example 15.2. The right graph of Fig. 15.5.1
illustrates this case, where the FIR output was computed by Eq. (15.5.4) with N = 99.

An approximate relationship between the IIR time constant neff andN can be derived
as follows. Using the small-x approximation ln

(
(1+x)/(1−x)) � 2x, we have for large

N:

ln(1/λ)= ln
(

1+ 1/N
1− 1/N

)
� 2

N
It follows that,

neff = ln(1/ε)
ln(1/λ)

� N
1

2
ln
(

1

ε

)

15.5. FIR AVERAGING FILTERS 717

Typically, the factor (ln(1/ε)/2) is greater than one, resulting in a longer IIR time
constant neff than N. For example, we have:

neff = 1.15N , if ε = 10−1 (10% time constant)
neff = 1.50N , if ε = 5 · 10−2 (5% time constant)
neff = 2.30N , if ε = 10−2 (1% or 40 dB time constant)
neff = 3.45N , if ε = 10−3 (0.1% or 60 dB time constant)

Finally, we note that a further advantage of the FIR smoother is that it is a linear
phase filter. Indeed, using the finite geometric series formula, we can write the transfer
function of Eq. (15.5.4) in the form:

H(z)= 1

N
(
1+ z−1 + z−2 + · · · + z−(N−1)) = 1

N
1− z−N

1− z−1
(15.5.7)

Setting, z = ejω, we obtain the frequency response:

H(ω)= 1

N
1− e−jNω

1− e−jω
= 1

N
sin(Nω/2)
sin(ω/2)

e−jω(N−1)/2 (15.5.8)

which has a linear phase response. The transfer function (15.5.7) has zeros at the
Nth roots of unity, except at z = 1, that is,

zk = ejωk, ωk = 2πk
N

, k = 1,2, . . . ,N − 1

The zeros are distributed equally around the unit circle and tend to suppress the
noise spectrum along the Nyquist interval, except at z = 1 where there is a pole/zero
cancellation and we have H(z)= 1.

Fig. 15.5.2 shows the magnitude and phase response of H(ω) for N = 16. Note that
the phase response is piece-wise linear with slope (N− 1)/2. It exhibits 180o jumps at
ω =ωk, where the factor sin(Nω/2)/ sin(ω/2) changes algebraic sign.

Fig. 15.5.2 Magnitude and phase responses of FIR smoother, for N = 16.

The cutoff frequency of the filter could be taken to be approximately half of the base
of the mainlobe, that is,

ωc = π
N

718 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

This frequency corresponds to a 3.9 dB drop of the magnitude response. Indeed,
setting ω =ωc = π/N we have:∣∣∣∣ 1

N
sin(Nπ/2N)
sin(π/2N)

∣∣∣∣2

�
∣∣∣∣ 1

N
sin(π/2)
(π/2N)

∣∣∣∣2

=
∣∣∣∣ 2

π

∣∣∣∣2

where we used the approximation sin(π/2N)� π/2N, for large N. In decibels, we
have −10 log10

(
(2/π)2

) = 3.9 dB. (Thus, ωc is the 3.9-dB frequency.)
The 3-dB cutoff frequency is usually a more preferred measure of the passband width

of a lowpass filter, defined to be the solution of the “half-power” condition,

|H(ω)|2 =
∣∣∣∣ sin(Nω/2)
N sin(ω/2)

∣∣∣∣2

= 1

2

Setting, ω = 2πx/N, the condition reads,∣∣∣∣ sin(πx)
N sin(πx/N)

∣∣∣∣2

= 1

2

For fairly small values of N, such as N ≥ 7, we may make the following approxima-
tion in the denominator,

N sin
(
πx
N

)
≈ N · πx

N
= πx

so that the 3-dB condition simplifies into the equation,∣∣∣∣sin(πx)
πx

∣∣∣∣2

= 1

2
(15.5.9)

with solution, x ≈ 0.443, resulting in the following useful approximation for the 3-dB
cutoff frequency of te FIR averager,

ωc = 0.443
2π
N
= 0.886π

N
(15.5.10)

In MATLAB, the solution of Eq. (15.5.9) can be obtained by the command,

x = fzero(@(x) sinc(x).^2 - 0.5, 0.5); % resulting in x = 0.44294...

Like its IIR/EMA counterpart of Example 15.2, the FIR averaging filter (15.5.4) can be
applied to any low-frequency signal s(n)—not just a constant signal. The averaging of
theN successive samples in Eq. (15.5.4) tends to smooth out the highly fluctuating noise
component v(n), while it leaves the slowly varying component s(n) almost unchanged.

However, if s(n) is not so slowly varying, the filter will also tend to average out
these variations, especially when the averaging operation (15.5.4) reaches across many
time samples when N is large. In the frequency domain, the same conclusion follows
by noting that as N increases, the filter’s cutoff frequency ωc decreases, thus removing
more and more of the higher frequencies present in the desired signal.

Thus, there is a limit to the applicability of this type of smoothing filter: Its length
must be chosen to be large enough to reduce the noise, but not so large as to start
distorting the desired signal by smoothing it too much.

15.5. FIR AVERAGING FILTERS 719

A rough quantitative criterion for the selection of the length N is as follows. If it is
known that the desired signal s(n) contains significant frequencies up to a maximum
frequency, say ωmax, then we may choose N such that ωc ≥ ωmax, which gives N ≤
π/ωmax, and in units of Hz, N ≤ fs/2fmax.

The FIR smoothing filter (15.5.4) will be considered in further detail in Chap. 23 and
generalized to include additional linear constraints on the filter weights. Like the IIR
smoother, the FIR smoother is widely used in many data analysis applications.

Recursive Realization of FIR Averager

The FIR averaging filter can also be implemented in a recursive form based on the
summed version of the transfer function (15.5.7). For example, the direct form real-
ization of H(z) will be described by the I/O difference equation:

y(n)= y(n− 1)+ 1

N
(
x(n)−x(n−N)

)
(direct form) (15.5.11)

and the canonical realization by the system of equations:

w(n) = x(n)+w(n− 1)

y(n) = 1

N
(
w(n)−w(n−N)

) (canonical form) (15.5.12)

These realizations are prone to roundoff accumulation errors and instabilities, and
therefore, are not recommended even though they are efficient computationally.

To see the problems that may arise, consider the canonical realization. Assuming
that the input x(n) is a white noise signal, the equation w(n)= w(n− 1)+x(n) corre-
sponds to the accumulation of x(n) and, as we discuss in Appendix 9.7, this causes the
mean-square value of w(n) to become unstable. This is unacceptable because w(n) is
a required intermediate signal in this realization.

Similarly, considering the direct form realization of Eq. (15.5.11), if y(n) is inadver-
tently initialized not to zero, but to some other constant, this constant cannot be rid of
from the output because it gets canceled from the difference y(n)−y(n−1). Similarly,
if the operation (x(n)−x(n − N))/N is done with finite arithmetic precision, which
introduces a small roundoff error, this error will get accumulated and eventually grow
out of bounds.

The above recursive implementation can be stabilized using the standard procedure
of pushing all the marginal poles into the unit circle. The replacement of Eq. (9.7.7) gives
in this case:

H(z)= 1

N
1− ρNz−N

1− ρz−1

where 0 < ρ � 1. If so desired, the filter may be renormalized to unity gain at DC
resulting in

H(z)= 1− ρ
1− ρN

1− ρNz−N

1− ρz−1

In the limit as ρ→ 1, this expression converges to the original filter (15.5.7).

720 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

This stabilized version behaves comparably to the first-order smoother of Example
15.2. Indeed, ifN is taken to be large for a fixed value ofρ, then we can set approximately
ρN � 0. In this limit, the filter reduces to the IIR smoother.

15.6 FIR Highpass Signal Extraction

In general, the substitution z → −z changes any lowpass filter into a highpass one. It
corresponds to a change in the transfer function:

H(z)=
∑
n
hnz−n −→ H(−z)=

∑
n
hn(−z)−n=

∑
n
(−1)nhnz−n

and to the change in the impulse response:

hn −→ (−1)nhn

We may think of Example 15.3 as being obtained from Example 15.2 by this substi-
tution. Similarly, applying the substitution to the lowpass FIR smoother will result into
a highpass FIR filter with impulse response:

hn = (−1)n
1

N
, n = 0,1, . . . ,N − 1 (15.6.1)

and transfer function:

H(z)= 1

N

N−1∑
n=0

(−1)nz−n = 1

N
1− (−1)Nz−N

1+ z−1

The transfer function has unity gain at ω = π, or z = −1; indeed,

H(−1)=
N−1∑
n=0

(−1)nhn = 1 (15.6.2)

The noise reduction ratio remains the same, namely, Eq. (15.5.5). In fact, one can
obtain the filter (15.6.1) by minimizing the NRR of (15.5.5) subject to the highpass con-
straint (15.6.2).

15.7 Noise Reduction, Time Constant, Group Delay

In this section, we demonstrate with some concrete examples, the basic tradeoff between
noise reduction and the time constant as well as the group delay of a filter, that is, as
the filter becomes more effective in reducing noise, its time constant and group delay
become longer.

For a stable and causal filter, the amount of noise reduction is quantified by the noise-
reduction-ratio R, which can be expressed in terms of the filter’s impulse response,
h(n), or in terms of its frequency response, H(ω), or in terms of its transfer function,
H(z), recalling that, H(ω)= H(z)

∣∣
z=ejω , and that, H∗(ω)= H(−ω), for a real-valued

impulse response,

15.7. NOISE REDUCTION, TIME CONSTANT, GROUP DELAY 721

R =
∞∑
n=0

h2(n)=
∫ π

−π

∣∣H(ω)
∣∣2 dω

2π
=
∮
u.c.

H(z)H(z−1)
dz

2πjz
(15.7.1)

In addition to noise-reduction, one must also consider the time-constant of the fil-
ter that quantifies the duration of the filter transients (or, the duration of its impulse
response), as well as the filter lag, or group delay, introduced by the filter.

For a stable and causal IIR filter, the filter poles must lie within the unit circle. The
pole p with maximum magnitude, |p|max , determines the effective time constant, given
as follows in time samples or in seconds,

neff = ln(ε)
ln |p|max

⇒ teff = neffT = 1

fs
neff (15.7.2)

where, fs = 1/T is the sampling rate, and ε is a small user-defined constant, such as,
ε = 10−2, or, ε = 10−3. These two choices define the so-called 40-dB and 60-dB time
constants, since in dB the values of ε are, εdB = 20 log10(ε)= −40, and εdB = −60 dB,
respectively.

The phase delay and group delay of a filter are in general functions of frequency and
are defined in terms of the phase response, θ(ω), of the filter, as follows,†

H(ω)= |H(ω)|ejθ(ω)

nph(ω)= −θ(ω)
ω

ngr(ω)= −θ′(ω)= −dθ(ω)
dω

(15.7.3)

The group delay is also known as the filter lag. It can be shown that ngr(ω) is
expressible directly in terms of H(ω), or in terms of h(n), by,

ngr(ω)= −θ′(ω)= −Re
[
jH′(ω)
H(ω)

]
= Re

⎡⎢⎢⎢⎢⎢⎣
∞∑
n=0

nh(n)e−jωn

∞∑
n=0

h(n)e−jωn

⎤⎥⎥⎥⎥⎥⎦ (15.7.4)

The significance of the phase and group delays may be appreciated by the follow-
ing result. Let, x(n)= cos(ω0n)·p(n), denote a sinewave modulated by slowly-varying
pulse envelope p(n) whose frequency spectrum, P(ω), is narrowband and highly con-
centrated at DC. Then, upon passing through a filter H(ω), the output signal will be
given approximately by,

y(n) = |H(ω0)| · cos
(
ω0n+ θ(ω0)

) · p(n− ngr(ω0)
)

= |H(ω0)| · cos
(
ω0n−ω0nph(ω0)

) · p(n− ngr(ω0)
)

= |H(ω0)| · cos
(
ω0

(
n− nph(ω0)

))
· p

(
n− ngr(ω0)

) (15.7.5)

†we assume that the angle θ(ω) is reduced modulo-2π to the standard interval [−π,π]

722 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

that is, the envelope p(n) gets delayed by the group delay at ω0 , whereas the sinusoid
is modified in magnitude by the magnitude response, |H(ω0)|, and shifted in phase by
the phase delay at frequency ω0.
To derive this result, consider the complex sinusoid ejω0n being modulated by p(n),
and its DTFT,

x(n)= ejω0np(n) ⇒ X(ω)= P(ω−ω0)

where P(ω) is the DTFT of p(n),

P(ω)=
∑
n
p(n)e−jωn � p(n)=

∫ π

−π
P(ω)ejωn dω

2π

and we used the modulation theorem of Fourier transforms. It follows that the spectrum
of the output signal y(n) will be,

Y(ω)= H(ω)X(ω)= H(ω)P(ω−ω0)

and y(n) is reconstructed by the inverse DTFT,

y(n)=
∫ π

−π
Y(ω)ejωn dω

2π
=
∫ π

−π
H(ω)P(ω−ω0)ejωn dω

2π
(15.7.6)

Since P(ω) is highly concentrated at DC, it follows that P(ω −ω0) will be highly
concentrated about ω0. Therefore inside the integral of Eq. (15.7.6), we may expand
H(ω) in the neighborhood of ω0, that is, to the lowest order in the variable, ω−ω0,
and assume the following approximations for the magnitude and phase responses,

|H(ω)| ≈ |H(ω0)|
θ(ω)≈ θ(ω0)+(ω−ω0)θ′(ω0)= θ(ω0)−(ω−ω0)ngr(ω0)

H(ω)= |H(ω)|ejθ(ω) ≈ |H(ω0)|ejθ(ω0)−j(ω−ω0)ngr(ω0)

Thus, the output signal will be in the time domain,

y(n) =
∫ π

−π
H(ω)P(ω−ω0)ejωn dω

2π

≈
∫ π

−π
|H(ω0)|ejθ(ω0)−j(ω−ω0)ngr(ω0)P(ω−ω0)ejωn dω

2π

≈ |H(ω0)|ejθ(ω0)
∫ π

−π
e−j(ω−ω0)ngr(ω0)P(ω−ω0)ejωn dω

2π

= |H(ω0)|ejθ(ω0)ejω0n
∫ π

−π
e−j(ω−ω0)ngr(ω0)P(ω−ω0)ej(ω−ω0)n dω

2π

= |H(ω0)|ejθ(ω0)ejω0n
∫ π

−π
P(ω−ω0)ej(ω−ω0)

(
n−ngr(ω0)

) dω
2π

= |H(ω0)|ejω0n+jθ(ω0)p
(
n− ngr(ω0)

)
Replacing the complex sinusoid ejω0n by cos(ω0n) amounts to taking the real part

of the above complex-valued output, resulting in Eq. (15.7.5).

15.7. NOISE REDUCTION, TIME CONSTANT, GROUP DELAY 723

A particularly important case is the filter lag at DC, ω = 0, denoted by, n̄ = ngr(0),
and given as follows as a special case of Eq. (15.7.4),

n̄ = ngr(0)=

∞∑
n=0

nh(n)

∞∑
n=0

h(n)
(filter lag) (15.7.7)

where we assumed that h(n) is real valued. If the frequency response is normalized to
unity-gain at DC, as is usually done for lowpass filters, then,

n̄ =
∞∑
n=0

nh(n) (15.7.8)

where we used the assumed fact that,

H(ω)
∣∣∣∣
ω=0

=
∞∑
n=0

h(n)= 1

The DC filter lag n̄ plays an important role in financial market indicators that are
used to smooth and predict price data, as we discuss in Chap. 25. The tradeoff between
lag and noise reduction is apparent here also. Too much lag is undesirable since one
may miss important changes in the prices, but on the other hand, attempting to reduce
the lag may be less effective in smoothing the data and reducing noise.

There are filters, such as the “predictive moving average”, and the “double EMA
indicator” that have zero lag, n̄ = 0, but at a price of less noise reduction. In addition,
FIR filters can be designed to have optimum noise reduction and any desired value of
n̄, even negative values which correspond to time-advancing or prediction instead of
delaying. We studied such filters in Chap. 24 and 25.

The significance of the DC lag may be seen by the following result. Assuming a
straight-line input, x(n)= a+bn, with intercept a and slope b, one can verify that upon
passing through a (unity-dc-gain) filter, the steady-state output will still be a straight line
with the same slope, but shifted by n̄, that is,

x(n)= a+ bn −→ H −→ y(n)= a+ b(n− n̄) (15.7.9)

Passing through a cascade of two identical filters H(z), the lag will be doubled,

x(n)= a+ bn −→ H −→ H −→ y(n)= a+ b(n− 2n̄)

By forming the new filter,

Ha(z)= 2H(z)−H2(z) (zero-lag filter) (15.7.10)

the lag can be eliminated,

x(n)= a+ bn −→ Ha −→ y(n)= a+ bn

724 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

Indeed, the output of 2H(z) will be, 2
[
a+b(n− n̄)], and upon subtracting the output

of H2(z), we obtain,

y(n)= 2
[
a+ b(n− n̄)

]− [a+ b(n− 2n̄)
] = a+ bn

This method of lag reduction is known as Tukey’s twicing operation and is the
method used to construct the double EMA indicator mentioned above. The method
has been generalized by Kaiser and Hamming [644].

15.8 Computer Experiment – Noise-Reduction vs. Group-Delay

To illustrate the property (15.7.5), as well as the tradeoff between noise reduction and
the time constant of a filter, and between noise reduction and group delay, consider a
similar example as that of Sec. 15.4, but use instead an exact design for the resonator
filter as discussed in Sec. 12.3.

The input is a sinusoidal signal, s(n)= cos(ω0n), in zero-mean, unit-variance, white
gaussian noise, v(n),

x(n)= s(n)+v(n)= cos(ω0n)+v(n) (15.8.1)

The desired signal s(n) can be extracted with the help of a peaking resonator filter
with center frequency at ω0. By choosing the width of the peak to be very narrow, the
noise will be substantially reduced. However, as we see below, the time constant of the
filter as well as the group delay increase as the width becomes narrower. The transfer
function of the filter has the form,

H(z)= β
1+ β

· 1− z−2

1− 2 cosω0

1+ β
z−1 + 1− β

1+ β
z−2

(15.8.2)

where β is related to the peak’s 3-dB width, say, Δω in rads/sample, by,

β = tan
(
Δω

2

)
(15.8.3)

The filter has the following properties. Its zeros are at DC and Nyquist, that is, at
ω = 0 and ω = π. Its poles are at the locations,

p± =
cosω0 ± j

√
sin2 ω0 − β2

1+ β
(15.8.4)

The poles are complex conjugates, if | sinω0| ≥ β, which is usually the practical case
if the bandwidth Δω is sufficiently small. Otherwise, the poles are real valued. We will
assume here that the poles are complex. In this case, they have a common magnitude,

|p±| =
√

1− β
1+ β

(15.8.5)

15.8. COMPUTER EXPERIMENT – NOISE-REDUCTION VS. GROUP-DELAY 725

and therefore, the ε-level time constant, will be,

neff = ln(ε)
ln
(|p±|) = 2 ln(ε)

ln

(
1− β
1+ β

) (15.8.6)

The frequency response and magnitude response squared are given by,

H(ω)= H(z)
∣∣∣∣
z=ejω

= jβ sinω
cosω− cosω0 + jβ sinω

|H(ω)|2 = β2 sin2 ω
(cosω− cosω0)2+β2 sin2 ω

(15.8.7)

Thus, the filter has unity gain at the peak,H(ω0)= 1. The group delay and its maximum
value at, ω =ω0, are as follows,

ngr(ω)= β(1− cosω cosω0)
(cosω− cosω0)2+β2 sin2 ω

ngr(ω0)= 1

β

(15.8.8)

The filter’s left and right 3-dB frequencies, are obtained from the equations,

cosωL =
cosω0 + β

√
sin2 ω0 + β2

1+ β2

cosωR =
cosω0 − β

√
sin2 ω0 + β2

1+ β2

(15.8.9)

and are the solutions of the 3-dB condition, |H(ω)|2 = 1

2
, and satisfy the constraint,

ωR −ωL = Δω (15.8.10)

The filter’s causal/stable impulse response h(n) is given by,

h(n)= A0δ(n)+A+pn+u(n)+A−pn−u(n) (15.8.11)

where p± are the filter poles of Eq. (15.8.4), and,

A0 = − β
1− β

, A± = β
1− β2

⎡⎣1± jβ cosω0√
sin2 ω0 − β2

⎤⎦ (15.8.12)

The noise reduction ratio of this filter is found to be,

R =
∞∑
n=0

h2(n)= β
1+ β

(15.8.13)

To first order in Δω, the parameter β becomes, β = tan(Δω/2)≈ Δω/2, imply-
ing the following approximations capturing the tradeoff between the NRR, the time-
constant, and the group delay,

R ≈ Δω
2

, neff ≈ 2 ln(ε−1)
Δω

, ngr(ω0)≈ 2

Δω
(15.8.14)

726 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

Questions

For the parameter values,

ω0 = 0.2π, Δω = 0.01π, [rads/sample],

please carry out the following experiments.

(a) First, prove Eqs. (15.8.4)–(15.8.14).

(b) Calculate and plot the magnitude response squared |H(ω)|2 of the peaking filter
over the frequency range, 0 ≤ ω ≤ π. Suggestion: For plotting purposes, you
may compute |H(ω)|2 at 1001 equally-spaced frequencies in that range.

Add the left/right 3-dB frequencies, ωL,ωR, on the graph and connect them with
a straight-line segment to indicate the 3-dB width.

(c) Calculate and plot the group delay ngr(ω) over the same frequency range as in
part (a). Calculate and place on the graph the maximum value of the group delay
at ω =ω0.

(d) Calculate and plot N = 300 samples of the impulse response h(n) of the peaking
filter using Eq. (15.8.11). Alternatively, calculate the impulse response numerically
by sending a unit impulse δ(n) into the filter and computing N = 300 output
samples.

Verify that the analytical and numerical calculations of h(n) produce the same
result (to within the double-precision of MATLAB).

(e) Load a length N = 300 segment of a zero-mean, unit-variance, white gaussian
noise signal, v(n), from the attached file, v.mat, via the MATLAB command,

load v;

Then, construct the time signal, x(n), n = 0,1, . . . ,N−1, as defined in Eq. (15.8.1),
and filter it through the peaking filter to obtain the output y(n). You may carry
out the filtering operation using the built-in MATLAB function, filter,

y = filter(num,den,x);

Moreover, filter separately the noise v(n), obtaining its filtered version yv(n).

On four separate graphs, plot the signals, x(n), y(n), v(n), yv(n), using the same
vertical scale in all four cases for comparison purposes. See some example graphs
at the end of this section.

To the y(n) graph, add the noise-free sinusoid s(n) so that you can observe how
well it is recovered by the filter. Are the observed transients consistent with the
40-dB time constant of the filter?

In addition, explain why the filtered noise yv(n), albeit weak, looks more like a
quasi-sinusoid than noise.

15.8. COMPUTER EXPERIMENT – NOISE-REDUCTION VS. GROUP-DELAY 727

(f) Using the built-in standard deviation MATLAB function, std, calculate the sample
variances of the input and output noise signals, and calculate the estimated NRR
as the ratio of the estimated variances, comparing it with the theoretical NRR given
in Eq. (15.8.13),

R̂ = std2(yv)
std2 (v)

(g) Next, we look at the group-delay property of Eq. (15.7.5). First, construct a slowly-
varying narrowband envelope signal p(n) of length M+1 by the Hanning window
expression,

p(n)=

⎧⎪⎪⎨⎪⎪⎩
0.5− 0.5 cos

(
2πn
M

)
, 0 ≤ n ≤M

0 , otherwise

With M = 1000, calculate and plot the magnitude spectrum |P(ω)| of the pulse
p(n) over the narrow interval |ω| ≤ 0.1π using the built-in MATLAB function,
freqz, and verify that it is narrowly concentrated about ω = 0. For plotting
purposes, normalize the spectrum to unity gain at DC.

Then, calculate the modulated sinusoid, with N = 1100,

x(n)= cos(ω0n)·p(n) , 0 ≤ n ≤ N − 1

Filter x(n) through the peaking filter and calculate and plot the corresponding
output y(n). Note that since, H(ω0)= 1, having unit magnitude and zero phase,
|H(ω0)| = 1, ArgH(ω0)= 0, the expected approximate output of Eq. (15.7.5)
will be of the form,

y(n)= cos(ω0n)·p
(
n− ngr(ω0)

)
To visualize this result better, add the delayed envelope signal p

(
n − ngr(ω0)

)
to the graph of y(n). Additionally, calculate and plot the error difference signal,

y(n)− cos(ω0n)·p
(
n− ngr(ω0)

)
, 0 ≤ n ≤ N − 1

Example Graphs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

magnitude response, Δω = 0.01π

ω / π

 |H(ω)|2

 3−dB width

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

group delay, n
gr

(ω)

ω / π

 group delay
 max = 1/β

728 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

0 100 200 300
−0.04

−0.02

0

0.02

0.04

time samples, n

impulse response, h(n), n
eff

 = 293

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

time samples, n

noisy sinusoid, x(n)

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

time samples, n

filtered noisy sinusoid

 s(n)
 y(n)

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

time samples, n

noise component, v(n)

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

time samples, n

filtered noise, y
v
(n)

15.9. COMPUTER EXPERIMENT – TIME–BANDWIDTH TRADEOFFS 729

−0.1 −0.05 0 0.05 0.1
0

0.5

1

narrowband pulse spectrum |P(ω)|

ω / π
0 200 400 600 800 1000

−1

0

1

time samples, n

narrow−band modulated pulse

x(n) = cos(ω
0
n)⋅p(n)

 input pulse
 output pulse
 envelope, p(n − n

gr
)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

time samples, n

approximation error, y(n) − cos(ω
0
n)⋅p(n − n

gr
)

15.9 Computer Experiment – Time–Bandwidth Tradeoffs

In this experiment, we examine the tradeoffs between filter bandwidth and time constant
and steady-state response, that is, the more narrow the bandwidth, the longer the time
constant and the longer it takes to reach steady state.

Consider the following notch and peaking filters from Sec. 12.3, with center fre-
quency ω0 rads/sample, and 3-dB width Δω,

Hnotch(z) = 1

1+ β
· 1− 2 cosω0 z−1 + z−2

1− 2 cosω0

1+ β
z−1 + 1− β

1+ β
z−2

Hpeak(z) = β
1+ β

· 1− z−2

1− 2 cosω0

1+ β
z−1 + 1− β

1+ β
z−2

(15.9.1)

The peaking filter is the same as in Eq. (15.8.2). The parameter β is related to the
bandwidth Δω as in Eq. (15.8.3), and both filters have the same poles as in Eq. (15.8.4),

730 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

but with the notch filter having zeros at ω = ±ω0, and the peaking filter having zeros
at ω = 0,π. Moreover, the two filters have the same time constant as in Eq. (15.8.6),
the same group delay as in Eq. (15.8.8), and the same left and right 3-dB frequencies as
in Eq. (15.8.9).

The two filters satisfy the following complementarity properties for their trans-
fer functions, frequency responses, magnitude-square responses, impulse responses,
and noise-reduction ratios, where the peaking filter’s impulse response is given by
Eq. (15.8.11) and its noise-reduction ratio by Eq. (15.8.13),

Hnotch(z)+Hpeak(z)= 1

Hnotch(ω)+Hpeak(ω)= 1

|Hnotch(ω)|2 + |Hpeak(ω)|2 = 1

hnotch(n)+hpeak(n)= δ(n)

Rnotch +Rpeak = 1

Rnotch = 1

1+ β

Rpeak = β
1+ β

(15.9.2)

Questions

(a) Prove the complementarity properties listed in Eq. (15.9.2).

(b) Consider the following analog signal of duration of 15 seconds defined as three
concatenated five-second unity-amplitude sinusoidal signals of frequencies f1 = 2
Hz, f2 = 4 Hz, and f3 = 6 Hz:

xa(t)=

⎧⎪⎪⎨⎪⎪⎩
cos(2πf1t), 0 ≤ t < 5 sec

cos(2πf2t), 5 ≤ t < 10 sec

cos(2πf3t), 10 ≤ t < 15 sec

This signal is sampled at a rate of fs = 200 samples/sec, or sampling time interval
T = 1/200 = 0.005 sec, and denote the resulting sampled times by, tn = nT. In
MATLAB, you could construct the vector of times as follows, with Tmax = 15 sec,

tn = 0:T:Tmax;

Calculate and plot the sampled signal x(tn) vs. tn.

(c) Design a notch filter Hnotch(z), operating at the rate fs = 200 Hz, having a notch
at f2 = 4 Hz, and 3-dB width of Δf = 1 Hz, so that its defining parameters are,

ω0 = 2πf2

fs
= 0.04π, Δω = 2πΔf

fs
= 0.01π

15.9. COMPUTER EXPERIMENT – TIME–BANDWIDTH TRADEOFFS 731

This filter is designed to knock out the middle portion of x(t), after its transients
die out. Calculate the 40-dB time constant of this filter in seconds, and its left/right
3-dB frequencies in Hz.

Plot the magnitude-squared response |Hnotch(f)|2 versus f in the interval 0 ≤ f ≤
10 Hz. Add to the graph the values corresponding the three input frequencies
f1, f2, f3, and also add the 3-dB frequencies connected with a straight-line segment
indicating the notch width.

(d) Filter x(tn) through the filter and plot the resulting output y(tn) vs. tn using the
same vertical scales as for the previous plot of x(tn). Observe the transient and
steady-state parts in the three input segments and discuss whether the calculated
40-dB time constant reasonably represents the duration of the transients.

For the first and third 5-sec segment, draw horizontal lines at the expected steady-
state amplitude levels as calculated from the frequency response of part (c), that
is, at the values of |Hnotch(f1)| and |Hnotch(f3)|.

(e) Repeat parts (c,d) for the corresponding complementary peaking filter Hpeak(z)
that has a peak at f2 = 4 Hz and the same 3-dB width of Δf = 1 Hz. See example
graphs at end.

(f) Repeat parts (c,d,e) by redesigning the filters to have the shorter 3-dB width of
Δf = 0.3 Hz, and comment of the tradeoff between filter width and time constant.

(g) Regarding the noise reduction ratios of the two filters given in Eq. (15.9.2), provide
an intuitive explanation of why for narrow bandwidth ΔΩ, the NRR of the peaking
filter, Rpeak, is very small, while that of the notch, Rnotch, is very large and near
its maximum value of unity.

Example Graphs

0 5 10 15
−2

−1

0

1

2
input signal, x(t)

t (sec)

732 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

f (Hz)

notch filter response, Δf = 1

 |H(f)|2

 3−dB width
 f

1
, f

2
, f

3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

f (Hz)

peak filter response, Δf = 1

 |H(f)|2

 3−dB width
 f

1
, f

2
, f

3

0 5 10 15
−2

−1

0

1

2
notch filter output, Δf = 1

t (sec)

 output
 steady

0 5 10 15
−2

−1

0

1

2
peak filter output, Δf = 1

t (sec)

 output
 steady

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

f (Hz)

notch filter response, Δf = 0.3

 |H(f)|2

 3−dB width
 f

1
, f

2
, f

3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

f (Hz)

peak filter response, Δf = 0.3

 |H(f)|2

 3−dB width
 f

1
, f

2
, f

3

15.10. COMPUTER EXPERIMENT – SMA, EMA, PMA, DEMA FILTERS 733

0 5 10 15
−2

−1

0

1

2
notch filter output, Δf = 0.3

t (sec)
0 5 10 15

−2

−1

0

1

2
peak filter output, Δf = 0.3

t (sec)

15.10 Computer Experiment – SMA, EMA, PMA, DEMA filters

Technical analysis of financial markets refers to a family of DSP methods and indicators
used by stock market traders to make sense of the constantly fluctuating market data
and arrive at successful “buy” or “sell” decisions. Both linear and nonlinear filtering
methods are used. More details can be found in Chap. 25.

Among the linear filtering methods are smoothing filters that are used to smooth
out the daily fluctuations and bring out the trends in the data. The two most commonly
used filters are the FIR averaging filter, referred to in the financial context as a simple
moving average (SMA), and the exponentially-weighted moving average (EMA), with both
filters discussed earlier in this chapter.

The impulse responses, transfer functions and filtering equations of these filters are
as follows. For the SMA case,

h(n)= 1

N
, 0 ≤ n ≤ N − 1

H(z)= 1

N
(
1+ z−1 + z−2 + · · · + z−N+1) = 1

N
1− z−N

1− z−1

yn = 1

N
(
xn + xn−1 + xn−2 + · · · + xn−N+1

)
(15.10.1)

and for EMA,
h(n)= (1− λ)λn , 0 ≤ n <∞

H(z)= 1− λ
1− λz−1

yn = λyn−1 + (1− λ)xn

(15.10.2)

Here, xn denotes price data and the sampling rate is typically “once per day”, and yn
denotes the smoothed trend over a period of days. The filter span of the SMA case is N

734 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

days, while the parameter λ of the EMA case is a forgetting factor such that 0 < λ < 1,
which is usually specified in terms an equivalent SMA length N given by,

N = 1+ λ
1− λ

� λ = N − 1

N + 1
(15.10.3)

The typical trading rule used by traders is to “buy” when yn is rising and yn lies
above xn, and to “sell” when yn is falling and yn lies below xn.

Unfortunately, these widely used filters have an inherent lag, which can often result
in false buy/sell signals. The basic tradeoff is that longer lengthsN result in longer lags,
but at the same time, the filters become more effective in smoothing out and reducing
noise in the data. The group delays of the SMA and EMA filters are as follows at any ω
and at DC,

(SMA) ngr(ω)= n̄ = N − 1

2

(EMA) ngr(ω)= λ(cosω− λ)
1+ λ2 − 2λ cosω

, n̄ = ngr(0)= λ
1− λ

(15.10.4)

The filter lags and noise-reduction ratios will be the same for the two filters provided
one imposes the condition of Eq. (25.2.3), as is usually done in market trading,

n̄ = N − 1

2
= λ

1− λ
� R = 1

N
= 1− λ

1+ λ
(15.10.5)

The tradeoff is evident, with R decreasing and n̄ increasing with N, or equivalently,
with increasing λ towards unity. The time constants of the two filters are as follows,
where in the SMA case it is simply the filter order,

neff, SMA = N − 1 , neff, EMA = ln ε
lnλ

(15.10.6)

There are several methods for reducing the lag, or eliminating it altogether, as we
discuss in Chap. 25. Among these are the predictive FIR and double EMA filters which
are widely used.

The predictive FIR filter with zero lag is a special case of a more general length-N
predictive filter designed to predict ahead by τ time steps. The impulse response of
that filter is, for n = 0,1, . . . ,N − 1,

hτ(n)= ha(n)+τhb(n)= 2(2N − 1− 3n)
N(N + 1)

+ τ
6(N − 1− 2n)
N(N2 − 1)

(15.10.7)

This filter has negative group-delay at DC equal to −τ, that is, n̄ = −τ, thus, it has
a positive time advance of +τ corresponding to predicting ahead by τ units.

Actually, the time “advance” τ can be non-integer, positive, or negative. Positive τs
correspond to prediction or forecasting, negative τs to delaying or lag. In fact, the SMA
filter is a special case of Eq. (15.10.7) for the particular choice of τ = −(N − 1)/2.

The filters hτ(n) are very flexible and useful in the trading context, and are actually
the optimal filters that have minimum noise-reduction ratio, subject to the two con-
straints of unity DC gain and lag equal to −τ, that is, for fixed N, hτ(n) is the solution
of the optimization problem:

15.10. COMPUTER EXPERIMENT – SMA, EMA, PMA, DEMA FILTERS 735

Rτ =
N−1∑
n=0

h2
τ(n)= min, subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N−1∑
n=0

hτ(n)= 1

N−1∑
n=0

nhτ(n)= −τ
(15.10.8)

The minimized value of Rτ is,

Rτ = 1

N
+ 3(N − 1+ 2τ)2

N(N2 − 1)
(15.10.9)

The zero-lag predictive moving average (PMA) filter corresponds to the case, τ = 0,
that is, its impulse response is simply the ha(n) part of Eq. (15.10.7),

hpma(n)= 2(2N − 1− 3n)
N(N + 1)

, n = 0,1, . . . ,N − 1 (15.10.10)

Its noise-reduction ratio is obtained by setting τ = 0 in Eq. (25.3.5),

Rpma = 1

N
+ 3(N − 1)2

N(N2 − 1)
= 4N − 2

N(N + 1)
(15.10.11)

It decreases with increasing N, just not as fast as in the SMA/EMA cases.
The double EMA (DEMA) filter is another option for a zero-lag filter and is obtained

by applying Tukey’s twicing rule of Eq. (15.7.10) to the plain EMA filter of Eq. (15.10.2).
Thus, its transfer function becomes,

Hema(z) = 1− λ
1− λz−1

Hdema(z) = 2Hema(z)−H2
ema(z)=

1− λ2 − 2λ(1− λ)z−1

(1− λz−1)2

(15.10.12)

Its DC lag is zero, n̄ = 0, while its impulse response and noise-reduction ratio are
found to be,

hdema(n)=
[
1− λ2 − (1− λ)2n

]
λnu(n)

Rdema = (1− λ)(1+ 4λ+ 5λ2)
(1+ λ)3

(15.10.13)

Questions

(a) First, prove Eqs. (15.10.4)–(15.10.13).

(b) Construct the following length-301 piecewise linear signal,

s(n)=

⎧⎪⎪⎨⎪⎪⎩
20+ 0.8n , 0 ≤ n < 75

80− 0.3(n− 75) , 75 ≤ n < 225

35+ 0.8(n− 225) , 225 ≤ n ≤ 300

(15.10.14)

736 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

For N = 24 and λ defined through Eq. (15.10.3), filter s(n) through an SMA and
an EMA filter, and plot the corresponding outputs, ysma(n) and yema(n).

Comment on whether the observed lag is consistent with Eq. (15.10.5), and whether
the observed transients at the slope changes are consistent with Eq. (15.10.6) (with
ε = 10−2.)

(c) Repeat part (a) using the PMA and DEMA filters with the same values of N and λ,
and plot the corresponding outputs, ypma(n) and ydema(n).

Observe the elimination of lag, and comment on whether the observed transients
at the slope changes are consistent with Eq. (15.10.6).

(d) The PMA filter of Eq. (15.10.7) has two parts, hτ(n)= ha(n)+τhb(n), where
ha(n) represents the zero-lag portion. The part, hb(n), is a slope-tracking filter
that tracks the changing slope of the input,

hb(n)= 6(N − 1− 2n)
N(N2 − 1)

, n = 0,1, . . . ,N − 1 , (PMA slope filter) (15.10.15)

Similarly, in the DEMA case, the corresponding slope filter is constructed by the
following rule, derived in Chap. 25,

Hb(z)= 1− λ
λ

[
Hema(z)−H2

ema(z)
]
, (DEMA slope filter) (15.10.16)

The signal that represents the slope of the piecewise linear input s(n) is obtained
by inspection from Eq. (15.10.14),

sb(n)=

⎧⎪⎪⎨⎪⎪⎩
0.8 , 0 ≤ n < 75

−0.3 , 75 ≤ n < 225

0.8 , 225 ≤ n ≤ 300

(15.10.17)

Filter sb(n) through the PMA and DEMA slope filters of Eqs. (15.10.15) and (15.10.16),
and plot the resulting outputs together with sb(n) on a single graph. Observe how,
up to transients, both filters attempt to track the changing slope. Such slope filter
outputs are also used as indicators in financial market trading.

(e) Construct a length-301 noisy version of s(n) by

x(n)= s(n)+v(n) (15.10.18)

where v(n) is a length-301 segment of a zero-mean white-noise gaussian signal
of variance σ2

v = 16. Make sure to initialize the random number generator with
the same seed each time you run your program in order to always generate the
same random signal. The MATLAB code would be something like,

% seed = ... % define your seed here
randn(’state’, seed); % initialize generator
sigma = 4; % variance sigma^2 = 16
v = sigma * randn(size(s)); % noise signal, same size as s(n)
x = s + v; % noisy input

15.10. COMPUTER EXPERIMENT – SMA, EMA, PMA, DEMA FILTERS 737

Repeat parts (a,b) using x(n) as the input to the SMA, EMA, PMA, DEMA filters.
Some example graphs are below.

Example Graphs

0 50 100 150 200 250 300
0

20

40

60

80

100

n

noise−free input and outputs

 input
 EMA
 SMA

0 50 100 150 200 250 300
0

20

40

60

80

100

n

noise−free input and outputs

 input
 PMA
 DEMA

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

2

n

slope filter outputs

 input slope
 PMA slope
 DEMA slope

0 50 100 150 200 250 300
0

20

40

60

80

100

n

noisy input

 noisy input
 noise−free

0 50 100 150 200 250 300
0

20

40

60

80

100

n

noisy input and outputs

 noisy input
 EMA
 SMA

0 50 100 150 200 250 300
0

20

40

60

80

100

n

noisy input and outputs

 noisy input
 PMA
 DEMA

738 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

15.11 Notch and Comb Filters for Periodic Signals

Two special cases of the signal enhancement/noise reduction problem arise when:

1. The noise signal v(n) in Eq. (15.1.1) is periodic . Its spectrum is concentrated at
the harmonics of a fundamental frequency. The noise reduction filter is an ideal
notch filter with notches at these harmonics, as shown in Fig. 15.11.1.

2. The desired signal s(n) is periodic and the noise is a wideband signal. Now, the
signal enhancement filter is an ideal comb filter with peaks at the harmonics of
the desired signal, as shown in Fig. 15.11.2.

Fig. 15.11.1 Notch filter for reducing periodic interference.

Fig. 15.11.2 Comb filter for enhancing periodic signal.

The ideal notch and comb filters of Figs. 15.11.1 and 15.11.2 are complementary
filters, in the sense that one is zero where the other is one, so that their frequency
responses add up to unity:

Hnotch(ω)+Hcomb(ω)= 1 (15.11.1)

15.11. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 739

A typical application of the notch case is the 60 Hz power-frequency interference
picked up through insufficiently shielded instrumentation. This problem is especially
acute in biomedical applications, such as measuring an electrocardiogram (ECG) by chest
electrodes—a procedure which is prone to such interference. The literature on biomedi-
cal applications of DSP is extensive, with many filter design methods that are specialized
for efficient microprocessor implementations [174–192].

Let f1 be the fundamental frequency of the periodic noise (e.g., f1 = 60 Hz), or, in
radians per sample ω1 = 2πf1/fs. If only one notch at f1 must be canceled, then a
single-notch filter, such as that given in Eqs. (16.2.22) and (16.2.23) of Section 16.2.2,
will be adequate.

Example 15.11.1: Single-notch filter for ECG processing. It is desired to design a single-notch
filter to cancel the 60 Hz power-frequency pickup in an ECG recording. The ECG is sampled
at a rate of 1 kHz, and we assume that the beat rate is 2 beats/sec. Thus, there are 500
samples in each beat.

The digital notch frequency will be:

ω1 = 2πf1

fs
= 2π60

1000
= 0.12π radians/sample

Assuming a Q-factor of 60 for the notch filter, we have a 3-dB width:

Δf = f1

Q
= 1 Hz ⇒ Δω = 2πΔf

fs
= 0.002π radians/sample

Using the design equations (16.2.22) and (16.2.23), we find the notch filter:

H(z)= 0.99687
1− 1.85955z−1 + z−2

1− 1.85373z−1 + 0.99374z−2

Figure 15.11.3 shows three beats of a simulated ECG with 60 Hz noise generated by

x(n)= s(n)+0.5 cos(ω1n), n = 0,1, . . . ,1500

The ECG signal s(n) was normalized to maximum value of unity (i.e., unity QRS-peak).
Thus, the noise amplitude is 50% the QRS-peak amplitude. Fig. 15.11.3 shows the noisy
signal x(n) and the notch filter’s magnitude characteristics. The filtered signal y(n) is
juxtaposed next to the noise-free ECG for reference.

Except for the initial transients, the filter is very effective in removing the noise. The
filter’s time constant can be estimated from the filter pole radius, that is, from the last
denominator coefficient a2 = R2:

R2 = 0.99374 ⇒ R = 0.99686

which gives for the 1% time constant neff = ln(0.01)/ ln(R)= 1464 samples. In seconds,
this is τ = neffT = 1464/1000 = 1.464 sec, where T = 1/fs = 1 msec. 	

740 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

0 0.5 1 1.5
−2

−1

0

1

2

t (sec)

x(
t)

ECG + 60 Hz noise

0 60 120 180 240 300 360 420 480
0

0.2

0.4

0.6

0.8

1

1.2

f (Hz)

|H
(f

)|

60 Hz notch filter

0 0.5 1 1.5
−2

−1

0

1

2

t (sec)

y(
t)

filtered ECG

0 0.5 1 1.5
−2

−1

0

1

2

t (sec)

s(
t)

noise−free ECG

Fig. 15.11.3 Removing 60 Hz noise from ECG signal.

If all the harmonics of f1 must be canceled, then it proves convenient to choose the
sampling rate to be a multiple of the fundamental frequency, that is, fs = Df1. Then,
the noise harmonics will occur at the Dth roots-of-unity frequencies:

fk = kf1 = k
fs
D
, or, ωk = kω1 = 2πk

D
, k = 0,1, . . . ,D− 1 (15.11.2)

In this case, we can use the general procedure discussed in Section 6.4.3. The notch
polynomial having as roots the Dth roots of unity, zk = ejωk = e2πjk/D is given by
N(z)= 1 − z−D. The corresponding multi-notch filter is obtained by sharpening the
zeros, that is, putting poles behind the zeros by the replacement z→ z/ρ:

Hnotch(z)= bN(z)
N(ρ−1z)

= b
1− z−D

1− az−D
, b = 1+ a

2
(15.11.3)

where a = ρD.
The choice b = (1+a)/2 ensures thatH(z) is normalized to unity half-way between

the notches, that is, at ωk = (2k+ 1)π/D.

15.11. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 741

The value of the parameter a depends on the desired 3-dB width Δω = 2πΔf/fs of
the notch dips. Using the bilinear transformation method† of Chapter 12, we obtain the
following design equations, for a given Δω:

β = tan
(DΔω

4

)
, a = 1− β

1+ β
, b = 1

1+ β
(15.11.4)

Because a must be in the interval 0 ≤ a < 1, we find the restriction 0 < β ≤ 1, which
translates into the following bound on the desired 3-dB width: DΔω/4 ≤ π/4, or

Δω ≤ π
D

⇒ Δf ≤ fs
2D

(15.11.5)

Its maximum value Δω = π/D corresponds to β = 1 and a = 0.
It follows from the bilinear transformation that the magnitude response squared of

the filter (15.11.3) can be written in the simple form:

|Hnotch(ω)|2 = tan2(ωD/2)
tan2(ωD/2)+β2

(15.11.6)

Example 15.11.2: Multi-notch filter design. As an example of the above design method, consider
the case D = 10. According to Eq. (15.11.5), the 3-dB width is allowed to be in the range
0 < Δω ≤ π/D = 0.1π.

Using Eqs. (15.11.4), we design the filter for the following three values of Δω:

Δω = 0.1π ⇒ β = 1 a = 0 b = 0.5
Δω = 0.05π ⇒ β = 0.4142 a = 0.4142 b = 0.7071
Δω = 0.0125π ⇒ β = 0.0985 a = 0.8207 b = 0.9103

corresponding to the three transfer functions:

Hnotch(z) = 0.5(1− z−10)

Hnotch(z) = 0.7071
1− z−10

1− 0.4142z−10

Hnotch(z) = 0.9103
1− z−10

1− 0.8207z−10

The magnitude squared responses, |Hnotch(ω)|2, are plotted in Fig. 15.11.4. 	

Example 15.11.3: Multi-notch filter for ECG processing. To illustrate the filtering operation
with the notch filter of the type (15.11.3), consider the following simulated ECG signal,
generated by adding a 60 Hz square wave to two beats of a noise-free ECG:

x(n)= s(n)+v(n), n = 0,1, . . . ,1199

†Here, the highpass analog filter s/(s+ β) is transformed by s = (1− z−D)/(1+ z−D).

742 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ω in units of π

|H
(ω

)|
2

notch filters, D = 10

 Δω = 0.1π
 Δω = 0.05π
 Δω = 0.0125π

Fig. 15.11.4 Multi-notch filters of different widths (Δω in units of π).

where s(n) is a one-beat-per-second ECG signal sampled at a rate of 600 Hz, thus, having
600 samples per beat. The QRS-peak is normalized to unity as in Example 15.11.1. The
square wave noise signal v(n) has period

D = fs
f1
= 600

60
= 10

and is defined as follows:

v(n)= 1+ 0.5w(n), w(n)= [1,1,1,1,1,−1,−1,−1,−1,−1, . . .]

where w(n) alternates between +1 and −1 every 5 samples. The alternating square wave
w(n) has only odd harmonics, namely, f1, 3f1, 5f1, and so on.

This particular v(n) is used here only for illustrating the behavior of a multi-notch filter
and does not represent any real-life noise. The nonzero mean of v(n) is meant to imitate
a typical baseline shift that can occur in ECG measurements, in addition to the 60 Hz
harmonics.

The filter (15.11.3) was designed by requiring that its Q-factor be 80. This gives the 3-dB
width:

Δf = f1

Q
= 60

80
= 0.75 Hz ⇒ Δω = 2πΔf

fs
= 0.0025π rads/sample

The design equations (15.11.4) give: a = 0.9615, b = 0.9807, with a resulting transfer
function:

Hnotch(z)= 0.9807
1− z−10

1− 0.9615z−10

Its magnitude response is similar to those of Fig. 15.11.4, but narrower. It can be imple-
mented in its canonical form using the 11-dimensional vector of internal states w = [w0,
w1, . . . ,w10] by the sample processing algorithm:

15.11. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 743

for each input sample x do:
w0 = 0.9615w10 + 0.9807x
y = w0 −w10

delay(10, w)

Fig. 15.11.5 shows the input x(n) and the filtered output y(n). To improve the visibility
of the graphs, the two beats, for 0 ≤ t ≤ 1 sec and 1 ≤ t ≤ 2 sec, have been split into two
side-by-side graphs.

0 0.5 1
−1

0

1

2

3

t (sec)

x(
t)

ECG + 60 Hz square wave

 1st beat
 noise−free

1 1.5 2
−1

0

1

2

3

t (sec)

x(
t)

ECG + 60 Hz square wave

 2nd beat
 noise−free

0 0.5 1
−1

0

1

2

3

t (sec)

x(
t)

filtered ECG

 1st beat
 noise−free

1 1.5 2
−1

0

1

2

3

t (sec)

x(
t)

filtered ECG

 2nd beat
 noise−free

Fig. 15.11.5 Eliminating baseline shifts and 60 Hz harmonics from ECG.

Notice how the filter’s zero at DC eliminates the baseline shift, while its notches at the 60
Hz harmonics eliminate the alternating square wave.

A single-notch filter at 60 Hz would not be adequate in this case, because it would not
remove the DC and the higher harmonics of the noise. For example, using the method of
Example 15.11.1, the single notch filter with the same Q = 80 and width Δf as the above
multi-notch filter, is found to be:

744 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

H1(z)= 0.99609
1− 1.61803z−1 + z−2

1− 1.61170z−1 + 0.99218z−2

0 0.5 1
−1

0

1

2

3

t (sec)

x(
t)

filtered ECG

 1st beat
 noise−free

1 1.5 2
−1

0

1

2

3

t (sec)

x(
t)

filtered ECG

 2nd beat
 noise−free

Fig. 15.11.6 Inadequate filtering by the single-notch filter H1(z).

Fig. 15.11.6 shows the filtered ECG in this case. Only the 60 Hz harmonic of the square
wave noise is removed. The DC and the higher harmonics at 3f1, 5f1, and so on, are still
in the output.

Actually, for this example, the highest harmonic is 5f1 and coincides with the Nyquist
frequency 5f1 = fs/2 = 300 Hz. Because D is even, all the higher odd harmonics will be
aliased with one of the three odd Nyquist-interval harmonics: f1, 3f1, or, 5f1.

We can attempt to cancel these additional harmonics by designing separate notch filters
for each one. For example, using a common width Δf = 0.75 Hz, we design the following
notch filters:

H3(z) = 0.99609
1+ 0.61803z−1 + z−2

1+ 0.61562z−1 + 0.99218z−2
(notch at 3f1)

H5(z) = 0.99609
1+ z−1

1+ 0.99218z−1
(notch at 5f1)

H0(z) = 0.99609
1− z−1

1− 0.99218z−1
(notch at 0)

Fig. 15.11.7 shows the output of the cascaded filter H1(z)H3(z)H5(z), which removes
completely all the harmonics in the square wave, except DC. That can be removed by
sending the output through the DC notch filter H0(z).

Note that the notch filters at DC and Nyquist frequency are first-order filters of the form:

H0(z)= b
1− z−1

1− az−1
, H5(z)= b

1+ z−1

1+ az−1

These are limiting cases of the designs of Eq. (16.2.22) for ω0 = 0 and ω0 = π. In both
cases, b = 1/(1+ tan(Δω/2)) and a = 2b− 1. 	

15.11. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 745

0 0.5 1
−1

0

1

2

3

t (sec)

x(
t)

filtered ECG

 1st beat
 noise−free

1 1.5 2
−1

0

1

2

3

t (sec)

x(
t)

filtered ECG

 2nd beat
 noise−free

Fig. 15.11.7 Output from the cascade filter H1(z)H3(z)H5(z).

The multi-notch filter (15.11.3) can be obtained from the first-order filter H(z)=
b(1− z−1)/(1− az−1) by the substitution

z −→ zD (15.11.7)

that is,

H(z)= b
1− z−1

1− az−1
−→ H(zD)= b

1− z−D

1− az−D
(15.11.8)

The effect of this substitution is theD-fold replication of the spectrum of the original
filter. Indeed, in the frequency domain Eq. (15.11.7) gives:

H(ω)−→ H(ωD),

This transformation shrinks the original spectrum H(ω) by a factor of D and repli-
cates it D times. Because the spectrum H(ω) has period 0 ≤ ω ≤ 2π, the new
spectrum H(ωD) will have period 0 ≤ ωD ≤ 2π, which becomes the scaled period
0 ≤ω ≤ 2π/D fitting exactly D times into the new Nyquist interval 0 ≤ω ≤ 2π.

The first-order filter in Eq. (15.11.8) has a single notch atω = 0, which gets replicated
D times and becomes a multi-notch filter.

The replicating transformation (15.11.7) can also be applied to any narrow lowpass
filter, replicating it D times into a comb filter. For example, applying it to the filter of
Example 15.2 we get:

H(z)= 1− a
1− az−D

(15.11.9)

which has a comb structure similar to that of the plain reverberator shown in Fig. 16.2.7.
Similarly, the transformation (15.11.7) applied to the filter of Eq. (15.2.2), gives the fol-

746 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

lowing comb filter with unity-gain peaks at ωk = 2kπ/D and zeros at ωk = (2k +
1)π/D:

Hcomb(z)= b
1+ z−D

1− az−D
, b = 1− a

2
(15.11.10)

This filter can also be designed directly using the bilinear transformation method†

of Chapter 12. Given a prescribed 3-dB width for the peaks, Δω, the filter parameters
can be calculated from the design equations:

β = tan
(DΔω

4

)
, a = 1− β

1+ β
, b = β

1+ β
(15.11.11)

where, as in Eq. (15.11.4), the width is constrained to be in the interval: 0 ≤ Δω ≤ π/D.
Like Eq. (15.11.6), the magnitude response squared of (15.11.10) can be expressed simply
in the form:

|Hcomb(ω)|2 = β2

tan2(ωD/2)+β2
(15.11.12)

The comb and notch filters of Eqs. (15.11.10) and (15.11.3) are complementary in the
sense of Eq. (15.11.1); indeed, we have the identity in z:

Hcomb(z)+Hnotch(z)= 1− a
2

1+ z−D

1− az−D
+ 1+ a

2

1− z−D

1− az−D
= 1

It follows by inspecting Eqs. (15.11.6) and (15.11.12) that their magnitude responses
squared also add up to one:

|Hcomb(ω)|2 + |Hnotch(ω)|2 = 1 (15.11.13)

This implies that both filters have the same width, as seen in the design equations
(15.11.4) and (15.11.11). But, how is it possible to satisfy simultaneously Eq. (15.11.13)
and Hcomb(ω)+Hnotch(ω)= 1? This happens because their phase responses differ by
90o. Indeed, it is left as an exercise to show that:

Hcomb(ω)= jHnotch(ω)tan(ωD/2)/β

Example 15.11.4: Comb filter design. As a design example, consider the case D = 10. Using
Eqs. (15.11.11), we design the filter for the following three values of Δω:

Δω = 0.1π ⇒ β = 1 a = 0 b = 0.5
Δω = 0.05π ⇒ β = 0.4142 a = 0.4142 b = 0.2929
Δω = 0.0125π ⇒ β = 0.0985 a = 0.8207 b = 0.0897

corresponding to the three transfer functions:

†Here, the lowpass analog filter β/(s+ β) is transformed by s = (1− z−D)/(1+ z−D).

15.11. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 747

Hcomb(z) = 0.5(1+ z−10)

Hcomb(z) = 0.2929
1+ z−10

1− 0.4142z−10

Hcomb(z) = 0.0897
1+ z−10

1− 0.8207z−10

The magnitude squared responses, |H(ω)|2, are plotted in Fig. 15.11.8. 	

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ω in units of π

|H
(ω

)|
2

comb filters, D = 10

 Δω = 0.1π
 Δω = 0.05π
 Δω = 0.0125π

Fig. 15.11.8 Comb filters of different widths (Δω in units of π).

Either comb filter, (15.11.9) or (15.11.10), can be used to enhance a periodic signal
buried in white noise. Their NRRs are, NRR = (1 − a)/(1 + a) and NRR = (1 − a)/2,
respectively. This follows from the property that the substitution (15.11.7) leaves the
NRR unchanged. Indeed, in the time domain the transformation is equivalent to inserting
D−1 zeros between the original impulse response samples:

h = [h0, h1, h2, . . .] −→ h = [h0,0,0, . . . ,0, h1,0,0, . . . ,0, h2, . . .] (15.11.14)

and, therefore, the quantity
∑
h2
n remains invariant.

Example 15.11.5: Comb filter for periodic signal enhancement. To illustrate the noise reduction
capability of the comb filter (15.11.10), consider the following signal of length 2000:

x(n)= s(n)+v(n), n = 0,1, . . . ,1999,

where s(n) is a periodic triangular wave of period D = 50, linearly alternating between
±1 every 25 samples. Thus, there are 40 periods in x(n). The noise signal v(n) is a zero-
mean, white Gaussian noise of rms amplitude (i.e., standard deviation) equal to 0.5, that
is, 50 percent of the triangular wave.

748 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

The width of the comb filter is chosen to be Δω = 0.0008π radians/sample, with corre-
sponding Q-factor of:

Q = ω1

Δω
= 2π/D

Δω
= 50

Using the design equations (15.11.11), we find a = 0.9391 and b = 0.0305, and the transfer
function:

Hcomb(z)= 0.0305
1+ z−50

1− 0.9391z−50

The filter’s magnitude response |Hcomb(ω)|2 and its canonical realization are shown in
Fig. 15.11.9. The peaks are at ωk = 2kπ/50, and the zeros at ωk = (2k+ 1)π/50.

0 0.5 1
0

0.5

1

ω in units of π

|H
(ω

)|
2

comb filter, D = 50

Fig. 15.11.9 Comb filter with D = 50 and Q = 50.

The canonical form uses a 51-dimensional state vector w = [w0,w1, . . . ,w50] to implement
the delay z−50. The corresponding sample processing algorithm can be formulated with a
linear or a circular delay line, as follows:

for each input sample x do:
w0 = 0.9391w50 + 0.0305x
y = w0 +w50

delay(50, w)

for each input sample x do:
s50 = tap(50, w, p, 50)
s0 = 0.9391 s50 + 0.0305x
y = s0 + s50

∗p = s0

cdelay(50, w, &p)

where p is a circular pointer to the linear buffer w, and s50, s0 denote the 50th and 0th
components of the circular state vector pointed to by p.

Fig. 15.11.10 shows the input x(n) and the filtered output y(n). For plotting purposes,
the signals have been split into two consecutive segments of length-1000.

The noise reduction ratio of this filter is NRR = (1−a)/2 = 0.0305, which corresponds to
a 10 log10(1/NRR)= 15.16 dB improvement of the SNR, or equivalently, to a suppression
of the rms noise value by a factor of 1/

√
NRR = 5.7. 	

The replicating transformation (15.11.7) can also be applied to the FIR averager filter
of Sec. 15.5. The resulting periodic comb filter is equivalent to the method of signal
averaging and is discussed further in Section 27.5.

15.12. LINE AND FRAME COMBS FOR DIGITAL TV 749

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3

time samples, n

x(
n

)

noisy input

1000 1200 1400 1600 1800 2000
−3

−2

−1

0

1

2

3

time samples, n

x(
n

)

noisy input

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3

time samples, n

x(
n

)

filtered output

1000 1200 1400 1600 1800 2000
−3

−2

−1

0

1

2

3

time samples, n

x(
n

)
filtered output

Fig. 15.11.10 Periodic signal enhancement by comb filtering.

15.12 Line and Frame Combs for Digital TV

Another application of notch and comb filters is in the case when both signals s(n) and
v(n) in Eq. (15.1.1) are periodic and must be separated from each other.

To extract s(n), one may use either a comb filter with peaks at the harmonics of
s(n), or a notch filter at the harmonics of v(n). Similarly, to extract v(n), one may use
a comb at the harmonics of v(n), or a notch at the harmonics of s(n). For the method
to work, the harmonics of s(n) may not coincide with the harmonics of v(n).

A major application of this idea is in color TV, digital videodisc systems, and pro-
posed HDTV systems [193–213]. The notch/comb filters are used to separate the lumi-
nance (black & white) and chrominance (color) signals from the composite video signal,
and also to reduce noise.

Consider a scanned two-dimensional still picture of horizontal and vertical dimen-
sions a and b, as shown in Fig. 15.12.1, and assume there are N horizontal scan lines.
If TH is the time to scan one line, then the time to scan the complete picture (i.e., one
frame) is equal to the scanning time for N lines, that is, (ignoring horizontal retrace and
blanking times):

750 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

TF = NTH (15.12.1)

The quantities TH and TF are called the line and frame delays, and their inverses are
the line and frame rates:

fH = 1

TH
, fF = 1

TF
⇒ fH = NfF (15.12.2)

The frequencies fH and fF are related to the horizontal and vertical velocities of the
scanning spot by

fH = vx
a
, fF = vy

b
(15.12.3)

The typical spectrum of a video signal, shown in Fig. 15.12.1, has a macro-structure
consisting of the harmonics of the line rate fH. About each of these, it has a micro-
structure consisting of the harmonics of the frame rate fF. There are N fF-harmonics
between any two fH-harmonics. The fH-harmonics represent the horizontal variations
in the image, and the fF-harmonics the vertical variations.

Fig. 15.12.1 Scanned image and corresponding video spectrum.

If there is motion in the image, the sharp spectral lines get smeared somewhat, but
the basic macro/micro-structure is preserved. In the rest of this section, we will assume
that there is no motion and that we are dealing with a still picture. At the end, we will
discuss what happens when motion is introduced.

This type of spectrum can be understood qualitatively as follows: Suppose we have
a still picture consisting only of a test pattern of vertical bars. Then, each scan line will
be the same and the resulting signal will be periodic in time with period TH = 1/fH. Its
spectrum will consist of the harmonics of fH. Now, if there is some vertical detail in
the picture, the signal will only be periodic with respect to the frame period TF, and its
spectrum will consist of the harmonics of fF. However, because adjacent lines tend to
be similar, the harmonics of fH will still dominate the macro-structure of the spectrum.

A more mathematical explanation is as follows [200]. Let g(x, y) be the brightness of
the picture at position (x, y). Expanding g(x, y) into a double Fourier series, we obtain:

g(x, y)=
∑
k,m

ckme2πjkx/ae2πjmy/b

15.12. LINE AND FRAME COMBS FOR DIGITAL TV 751

The indices k and m correspond to the horizontal and vertical variations in g(x, y).
A scanned picture, with a uniformly moving scanning spot, is obtained by replacing
x = vxt and y = vyt, resulting in the video signal :

V(t)= g(vxt, vyt)=
∑
k,m

ckme2πjkvxt/ae2πjmvyt/b

Using Eq. (15.12.3), we can rewrite:

V(t)=
∑
k,m

ckme2πjfkmt (15.12.4)

where

fkm = kfH +mfF = (kN +m)fF = (k+ m
N
)fH (15.12.5)

Thus, the video signal V(t) will have spectrum with sharp spectral lines at fkm.
Because of the large difference in value between fH and fF, the spectrum will look as
in Fig. 15.12.1, that is, exhibiting a coarse structure at the harmonics kfH and a fine
structure at the harmonics mfF.

In the NTSC† TV system used in the U.S., there are N = 525 lines in each frame, but
they are interlaced, with each half (i.e., a field) being presented at double the frame rate,
that is, ffield = 2fF. The field rate is approximately 60 Hz in the U.S., and the frame rate
approximately 30 Hz. The exact values are [204]:

fH = 4.5 MHz

286
= 15.73426 kHz, fF = fH

525
= 29.97 Hz (15.12.6)

where, by convention, the values are derived from the sound carrier frequency of 4.5
MHz. The corresponding time delays are TH = 63.55 μsec and TF = 33.37 msec.

In a color TV system, there are three scanning beams for red, green, and blue (RGB),
which can be combined to yield other colors. To reduce the transmission bandwidth
requirements and maintain compatibility with black and white receivers, appropriate
linear combinations of the RGB colors are formed.

The black and white information (brightness and spatial details) is contained in the
luminance signal defined by:

Y = 0.299R+ 0.587G+ 0.114B

Color information (hue and saturation) can be transmitted by the difference signals
R− Y and G− Y. In the NTSC system, the following linear combinations—called the I
and Q chrominance signals—are transmitted instead:

I = 0.736(R−Y)−0.269(B−Y)

Q = 0.478(R−Y)+0.413(B−Y)

The three RGB colors can be recovered from the three YIQ signals. The advantage
of the IQ linear combinations is that they have reduced bandwidth requirements. The

†National Television System Committee.

752 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

luminance bandwidth is 4.2 MHz, whereas the bandwidths of I and Q are 1.3 MHz and
0.5 MHz, respectively.

To transmit the YIQ signals efficiently, the I and Q are placed on a color subcarrier
signal by quadrature modulation and added to the luminance component, that is, the
following composite video signal is transmitted:

V(t)= Y(t)+I(t)cos(2πfsct +φ)+Q(t)sin(2πfsct +φ)

where φ = 33o.
To simplify the algebra, we work with the following complex-valued version of the

above, with the understanding that we must take real parts:

V(t)= Y(t)+ej2πfsctC(t)≡ Y(t)+Z(t) (15.12.7)

where C(t)≡ (I(t)−jQ(t))ejφ.
The spectra of the separate component signals {Y, I,Q} are all similar to the basic

video spectrum of Fig. 15.12.1. The subcarrier modulation shifts the spectra of the
chrominance signals I andQ and centers them about the subcarrier frequency fsc. Thus,
the frequencies of the modulated chrominance signal Z(t) will be at:

fsc + fkm = fsc + kfH +mfF (15.12.8)

By choosing fsc to be a half-multiple of the line frequency fH, the chrominance peaks
will fall exactly half-way between the luminance peaks, as shown in Fig. 15.12.2. We can
take, for example,

fsc =
(
dH + 1

2

)
fH = 1

2
(2dH + 1)fH (15.12.9)

Therefore, the chrominance macro-structure peaks are centered at half-multiples of
fH:

fsc + fkm =
(
dH + k+ 1

2

)
fH +mfF (15.12.10)

Moreover, because fH = NfF with N odd, the subcarrier frequency fsc will also be
equal to a half-multiple of the frame frequency fF:

fsc =
(
dH + 1

2

)
fH =

(
dH + 1

2

)
NfF

Setting

dF + 1

2
= (dH + 1

2

)
N ⇒ dF = NdH + N − 1

2

we find,

fsc =
(
dF + 1

2

)
fF = 1

2
(2dF + 1)fF (15.12.11)

15.12. LINE AND FRAME COMBS FOR DIGITAL TV 753

It follows that the chrominance micro-structure peaks will be centered at half-multiples
of fF (about the kfH macro-structure peaks), falling half-way between the micro-structure
peaks of the luminance signal, as shown in Fig. 15.12.2:

fsc + fkm = kfH +
(
dF +m+ 1

2

)
fF (15.12.12)

In the NTSC system, we have the choices:

dH = 227, dF = NdH + N − 1

2
= 119437 (15.12.13)

which give the subcarrier frequency:

fsc = 227.5 fH = 119437.5 fF = 3.579545 MHz

In summary, the luminance and modulated chrominance signals have spectra that
are interleaved both at the macro- and micro-structure levels. This property makes them
ideal candidates for comb filtering.

Fig. 15.12.2 Interleaved luminance and chrominance spectra.

In Fig. 15.12.2, the extent of the chrominance spectrum is somewhat exaggerated and
shown to reach almost down to zero frequency. In fact, because of the small bandwidth
of C, the effective extent of the chrominance spectrum about fsc will be±0.5 MHz [204],
which translates to about ±32fH harmonics about fsc; indeed, 227.5×0.5/3.58 � 32.

In a conventional color TV receiver, the luminance part is extracted by lowpass fil-
tering of the composite signal V(t) with a lowpass filter having passband from zero to
about fsc − 0.5 = 3.08 MHz. The chrominance component is extracted by a bandpass
filter centered at fsc, with passband fsc±0.5 = 3.58±0.5 MHz. The extracted C compo-
nent is then demodulated and the I and Q parts are linearly combined with Y to form
the RGB signals.

These filtering operations can cause various degradations in image quality. For ex-
ample, the high-frequency part of Y is filtered out, causing some loss of spatial details

754 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

in the image. Moreover, because of the finite transition widths of the lowpass and band-
pass filters, some chrominance will survive the luminance lowpass filter and show up as
the so-called cross-luminance or “dot-crawl” effect [205]. Similarly, some high-frequency
luminance will survive the chrominance bandpass filter and will appear as the “cross-
color” rainbow-type effect around sharp edges [205].

A better method of separation is to take advantage of the interlaced comb-like nature
of the composite video spectrum of Fig. 15.12.2 and use digital comb filters to separate
the Y and C signals. The development of large-scale digital memories that can be used
to store a whole line or a whole frame [196] has made this approach possible.

A common sampling rate for digital video systems is four times the color subcarrier
frequency, that is,

fs = 4fsc (15.12.14)

Using Eqs. (15.12.9) and (15.12.11), we may express the sampling rate in terms of
the line frequency fH and the frame frequency fF:

fs = DH fH = DF fF (15.12.15)

where

DH = 2(2dH + 1), DF = NDH = 2(2dF + 1) (15.12.16)

For the NTSC system, we have from Eq. (15.12.13)

DH = 910, DF = 477750

and

fs = 910 fH = 477750 fF = 14.31818 MHz

with a corresponding sampling time interval of T = 1/fs = 69.84 nsec.
Equation (15.12.15) implies that there are DH samples along each scan line and DF

samples in each frame. In units of radians per sample, the subcarrier frequency fsc
becomes:

ωsc = 2πfsc
fs

= π
2

(15.12.17)

Similarly, the frame and line frequencies are in these units:

ωF = 2πfF
fs

= 2π
DF

, ωH = 2πfH
fs

= 2π
DH

= NωF

Using Eq. (15.12.15), the luminance video frequencies fkm become:

ωkm = 2πfkm
fs

= 2πk
DH

+ 2πm
DF

= kωH +mωF (15.12.18)

The shifted chrominance frequencies Eq. (15.12.8) can be expressed as half-multiples
of either the line or the frame digital frequencies:

15.12. LINE AND FRAME COMBS FOR DIGITAL TV 755

ωsc +ωkm = (2dH + 2k+ 1)
π
DH

+ 2πm
DF

= 2πk
DH

+ (2dF + 2m+ 1)
π
DF

= (2kN + 2dF + 2m+ 1)
π
DF

(15.12.19)

where in the last line we replaced DH = DF/N.
The comb filters used in video systems are of the type (15.11.10), where D can be

either a line delay D = DH or a frame delay D = DF. Because of the high sampling rates
involved, to minimize the computational cost, the filter parameters are chosen to have
simple values, such as powers of two. For example, the simplest choice is the following
FIR comb filter, obtained by setting a = 0 and b = 1/2 in Eq. (15.11.10):

Hcomb(z)= 1

2
(1+ z−D) (15.12.20)

with a complementary notch filter Hnotch(z)= 1−Hcomb(z):

Hnotch(z)= 1

2
(1− z−D) (15.12.21)

Their magnitude responses have been plotted in Figs. 15.11.8 and 15.11.4 forD = 10.
They have the maximum allowed 3-dB width of all the comb/notch filters of the types
(15.11.10) and (15.11.3), that is, Δω = π/D.

The comb filterHcomb(z) has (unity-gain) peaks at the multiples 2kπ/D and notches
at the half-multiples (2k+ 1)π/D. Conversely, the notch filter Hnotch(z) has peaks at
the half-multiples (2k+ 1)π/D and notches at 2kπ/D.

IfD is a line delay,D = DH, then the peaks ofHcomb(z)will coincide with the macro-
structure line-frequency peaks of the luminance signal Y; and its notches will coincide
with the macro-structure peaks of the modulated chrominance signal C. Thus, filtering
the composite video signal V through Hcomb(z) will tend to remove C and let Y pass
through, at least at the macro-structure level which is the dominant part the spectrum.

Conversely, filtering V through the notch filter Hnotch(z) will tend to remove Y and
let C pass through. Thus, the two filters can be used in parallel to extract the Y and C
components. A block diagram implementation of (15.12.20) and (15.12.21) is shown in
Fig. 15.12.3.

The separation of Y and C is not perfect, because the line comb Hcomb(z) does
not remove from the C signal its micro-structure frequencies, that is, the terms mfF in
Eq. (15.12.10). And similarly,Hnotch(z) does not remove the micro-structure frequencies
of Y.

Moreover, because Eq. (15.12.20) is equivalent to the averaging of two successive
horizontal lines, some vertical detail will be lost or averaged out, resulting in a blurrier
Y signal. However, as we see below, the lost vertical detail can be restored by further
filtering.

Because the luminance and chrominance spectra are interleaved at their micro-structure
frame-frequency level, the delay D can also be chosen to be a frame delay, D = DF.
This type of comb/notch filter would do a much better job in separating the Y and C

756 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

Fig. 15.12.3 Line or frame comb filters.

components because Hcomb(z) now has nulls at all the chrominance frequencies, and
Hnotch(z) has nulls at all the luminance frequencies. However, such frame-delay filters
can be used only if there is very little motion from frame to frame. The effect of motion
is to broaden the fF-harmonics making the separation of Y and C less than perfect.

Another simple popular type of comb filter uses two D-fold delays and is obtained
by squaring Eq. (15.12.20):

Hcomb(z)= 1

4
(1+ z−D)2= 1

4
(1+ 2z−D + z−2D) (15.12.22)

When D = DH, it is referred to as a 2-H comb because it requires the storage of
two horizontal lines. It is also known as a 1-2-1 comb because of the particular weights
given to the three horizontal lines.

Its peaks and notches are the same as those of the 1-H comb (15.12.20), but here the
squaring operation has the effect of making the peaks narrower and the notches flatter.
The corresponding complementary notch filter is defined as:

Hnotch(z)= −1

4
(1− z−D)2= 1

4
(−1+ 2z−D − z−2D) (15.12.23)

These definitions imply Hcomb(z)+Hnotch(z)= z−D. This is required because the
filters have an inherent delay of D samples. Indeed, if we advance them by D samples,
we get the more symmetric definitions corresponding to truly complementary filters:

zDHcomb(z) = 1

2
+ 1

4
(zD + z−D)

zDHnotch(z) = 1

2
− 1

4
(zD + z−D)

(15.12.24)

It is instructive to also understand the above comb/notch filtering operations in the
time domain. The sampled version of Eq. (15.12.7) is

Vn = Yn + Zn = Yn + ejωscnCn (15.12.25)

The video time index n can be mapped uniquely onto a particular pixel (i, j) on the
image, as shown in Fig. 15.12.4. The row index i corresponds to the quotient of the
division of n by DH and the column index j corresponds to the remainder. That is, we
can write uniquely:

15.12. LINE AND FRAME COMBS FOR DIGITAL TV 757

(i, j) −→ n = iDH + j, j = 0,1, . . . ,DH − 1 (15.12.26)

The row index i takes on the values i = 0,1, . . .N − 1, for N lines per frame. The
maximum value of n corresponding to the last pixel of the last line is obtained by setting
i = N − 1 and j = DH − 1, giving n = (N − 1)DH +DH − 1 = NDH − 1 = DF − 1.

Subsequent values of n will map to pixels on the next frame, and so on. Thus, two
values of n separated by DF samples correspond to the same pixel (i, j) on the image,
as shown in Fig. 15.12.4.

Fig. 15.12.4 Successive lines and successive frames.

Pixels on successive lines on the same column are separated by a time delay of DH
samples, as shown in Fig. 15.12.4. Indeed, we have from Eq. (15.12.26):

n±DH = iDH + j ±DH = (i± 1)DH + j −→ (i± 1, j)

With Vn as input, the output signals of the 1-H luminance and chrominance comb
filters, (15.12.20) and (15.12.21), are the sum and difference signals:

Vn = 1

2
(Vn +Vn−D)

ΔVn = 1

2
(Vn −Vn−D)

(15.12.27)

If D = DH, we may think of Vn as being the average of the current horizontal line
with the previous one. Indeed, using the map (15.12.26), we can rewrite Eq. (15.12.27)
in the equivalent form:

Vi, j = 1

2
(Vi, j +Vi−1, j)

ΔVi, j = 1

2
(Vi, j −Vi−1, j)

In a similar fashion, the outputs of the 2-H filters (15.12.24) can be expressed in
terms of the video time index n:

758 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

Vn = 1

2
Vn + 1

4
(Vn+D +Vn−D)

ΔVn = 1

2
Vn − 1

4
(Vn+D +Vn−D)

or, in terms of the pixel locations, showing the weighted averaging of the current line
with the lines above and below it:

Vi, j = 1

2
Vi, j + 1

4
(Vi+1, j +Vi−1, j)

ΔVi, j = 1

2
Vi, j − 1

4
(Vi+1, j +Vi−1, j)

Using Eq. (15.12.25), we have for the delayed signal Vn−D:

Vn−D = Yn−D + Zn−D = Yn−D + ejωsc(n−D)Cn−D

The property that makes possible the comb filtering separation of the luminance
and chrominance is that the subcarrier signal ejωscn changes sign from line to line and
from frame to frame. This follows from the (intentional) choice of DH and DF to be
even multiples of an odd integer, Eq. (15.12.16). Indeed, assuming that D is of the form
D = 2(2d+ 1), we find:

ωscD = π
2

2(2d+ 1)= 2πd+π

which corresponds to a 180o phase shift. Indeed,

ejωscD = e2πjd+jπ = ejπ = −1

It follows that:

Vn−D = Yn−D − ejωscnCn−D (15.12.28)

The outputs of the luminance and chrominance combs can be expressed then in the
form:

Vn = 1

2
(Vn +Vn−D)= 1

2
(Yn +Yn−D)+ejωscn 1

2
(Cn −Cn−D)

ΔVn = 1

2
(Vn −Vn−D)= 1

2
(Yn −Yn−D)+ejωscn 1

2
(Cn +Cn−D)

which can be written in terms of the corresponding sum and difference signals:

Vn = Yn + ejωscnΔCn

ΔVn = ΔYn + ejωscn Cn
(15.12.29)

Consider the line-comb case first, D = DH. Assuming that the chrominance signal
Cn does not change much from line to line (i.e., ignoring its micro-structure frequency

15.12. LINE AND FRAME COMBS FOR DIGITAL TV 759

content), we may set ΔCn � 0. Similarly, ignoring the micro-structure of Y, we may set
ΔYn � 0. Then, (15.12.29) simplifies as follows:

Vn = Yn

ΔVn = ejωscn Cn
(15.12.30)

Thus, the comb outputs are effectively the desired luminance and chrominance com-
ponents. The chrominance part ejωscn Cn is then sent into a subcarrier demodulator and
Cn is extracted.

For the frame-comb case, D = DF, the difference signals will be identically zero,
ΔCn = ΔYn = 0, because of the periodicity with period DF. Thus, the frame combs are
capable of separating Y and C exactly. However, they will fail when there is motion in
the image which makes the video signal non-periodic. Advanced digital video systems
use frame combs when there is no or very little motion, and switch to line combs when
substantial motion is detected [196].

In the line-comb case, the approximation ΔYn � 0 is more severe than ΔCn � 0,
because the luminance signal carries most of the spatial detail information. Setting
ΔYn = 0 implies a loss of vertical detail, because the output of Eq. (15.12.30) gives a
luminance value Yn averaged across two lines, instead of Yn itself.

It follows from the above that a better approximation may be obtained by setting
ΔCn to zero, but not ΔYn. The filtering equations (15.12.29) become in this case:

Vn = Yn

ΔVn = ΔYn + ejωscn Cn
(15.12.31)

The averaged signal Yn can be expressed in terms of the desired one Yn and the
missing vertical detail signal ΔYn, as follows:

Yn = 1

2
(Yn +Yn−D)= Yn − 1

2
(Yn −Yn−D)= Yn −ΔYn

Therefore, we may write Eq. (15.12.31) as:

Vn = Yn −ΔYn

ΔVn = ΔYn + ejωscn Cn
(15.12.32)

This result suggests a method of restoring the lost vertical detail [193,205,207]. Be-
cause the vertical detail signal ΔYn is common in both outputs, it can be extracted from
the second output ΔVn by lowpass filtering and then reinserted into the first to recover
Yn. This works because most of the energy in ΔYn is between 0–1 MHz, whereas the
C-term in ΔVn is centered around 3.58 MHz. Moreover, the term ΔYn can be removed
from ΔVn by a bandpass filter centered at the subcarrier frequency.

Figure 15.12.5 shows the above method of vertical detail restoration. The delay
z−M compensates for the delay introduced by the filter HLP(z). The required lowpass
filter HLP(z) must be chosen to remove the C-term from the ΔVn output and be flat
at low frequencies. Therefore, it is really a bandstop filter with a zero at the subcarrier

760 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

frequency ωsc = π/2. In the z-domain, the filter must have zeros at z = e±jωsc =
e±jπ/2 = ±j.

Fig. 15.12.5 Vertical detail reinsertion filters.

Another requirement for such a filter is that it have simple coefficients, expressible
as sums of powers of two. Some examples of such filters are given below [193,205,207],
normalized to unity gain at DC:

HLP(z) = 1

4
(1+ z−2)2

HLP(z) = 1

16
(1+ z−2)2(−1+ 6z−2 − z−4)

HLP(z) = 1

32
(1+ z−2)2(−3+ 14z−2 − 3z−4)

HLP(z) = 1

64
(1+ z−2)4(1− 4z−2 + 5z−4 + 5z−8 − 4z−10 + z−12)

(15.12.33)

The factors (1+z−2) vanish at z = ±j. The corresponding bandpass filters HBP(z)
are obtained by requiring that they be complementary to HLP(z), that is, they satisfy
HLP(z)+HBP(z)= z−M, where M is the inherent delay introduced by the filters (i.e.,
half the filter order). Thus, we define:

HBP(z)= z−M −HLP(z) (15.12.34)

For the above four examples, we have M = 2,4,4,10. Using Eqs. (15.12.33) and
(15.12.34), we find:

HBP(z) = −1

4
(1− z−2)2

HBP(z) = 1

16
(1− z−2)4

HBP(z) = 1

32
(1− z−2)2(3− 2z−2 + 3z−4)

HBP(z) = − 1

64
(1− z−2)4(1+ 4z−2 + 5z−4 + 5z−8 + 4z−10 + z−12)

(15.12.35)

15.13. PROBLEMS 761

all having a common factor (1− z−2), vanishing at DC and the Nyquist frequency.
Figure 15.12.6 shows the magnitude responses of the fourth filters in (15.12.33) and

(15.12.35) [193], plotted over the effective video band 0 ≤ f ≤ 4.2 MHz. Over this
band, they behave as lowpass and highpass filters. The passband of the lowpass filter
coincides with the significant frequency range of the vertical detail signal ΔVn, whereas
the passband of the highpass/bandpass filter coincides with the chrominance band.

0 0.6 1.2 1.8 2.4 3 3.6 4.2
0

0.2

0.4

0.6

0.8

1

f (MHz)

|H
(f

)|

lowpass / bandstop filter

f
sc

 = 3.58 MHz

0 0.6 1.2 1.8 2.4 3 3.6 4.2
0

0.2

0.4

0.6

0.8

1

f (MHz)

|H
(f

)|

highpass / bandpass filter

f
sc

 = 3.58 MHz

Fig. 15.12.6 Vertical detail restoration filters.

We note finally that in Fig. 15.12.5, the bandpass filter block HBP(z) may be elimi-
nated and replaced by Eq. (15.12.34), which can be used to construct the required band-
pass output from the lowpass output and another delay z−M, thus making the imple-
mentation more efficient computationally; see, for example, Fig. 11.3.7.

15.13 Problems

15.1 A zero-mean white noise sequence x(n), n ≥ 0, of variance σ2
x is sent through a stable and

causal filter. Using convolution, show that the variance of the output sequence y(n) will be
given by:

σ2
y(n)= E[y(n)2]= σ2

x

n∑
m=0

h(m)2

so that for large n it converges to the theoretical NRR of Eq. (9.7.4).

15.2 Show that the NRR summation of Eq. (9.7.4) always converges for a stable and causal filter
with rational transfer function. In particular, show that it is bounded by:

R =
∞∑
n=0

h2
n ≤

C
1− |pmax|2

where pmax is the pole of maximum magnitude and C is a constant that depends on the PF
expansion coefficients. You may assume the PF expansion: hn =

∑M
i=1 Aipni u(n).

15.3 For an ideal bandpass filter with passband ωa ≤ |ω| ≤ωb, prove the theoretical NRR given
by Eq. (15.1.7).

762 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

15.4 Computer Experiment: Exponential Smoother. Write a C program, say smooth.c, that imple-
ments the first-order smoother of Example 15.2 with transfer function H(z)= (1−a)/(1−
az−1), where 0 < a < 1. The program must have usage:

smooth a < x.dat > y.dat

where a is a command-line argument. The input signal to be smoothed must be read from
stdin or a file x.dat, and the smoothed output must be written to the stdout or a file
y.dat.

15.5 Computer Experiment: Exponential Smoother. Using the above program smooth.c reproduce
the graphs in Fig. 15.2.2. Generate also two similar graphs for the filter parameter values
a = 0.99 and a = 0.8.

In all four cases, compute the experimental NRRs computed from the sample variances based
on the L = 200 input and output data sequences x(n), y(n) with means mx, my:

σ̂2
x =

1

L

L−1∑
n=0

(
x(n)−mx

)2, σ̂2
y =

1

L

L−1∑
n=0

(
y(n)−my

)2, R̂ = σ̂2
y

σ̂2
x

and compare them with the theoretical values. Explain any discrepancies.

15.6 Normally, you would use a lowpass (or highpass) filter to extract a low- (or high-) frequency
signal. Suppose instead you used the lowpass filter H(z)= b/(1− az−1), where 0 < a < 1,
to extract the high-frequency signal x(n)= s(−1)n+v(n), where v(n) is zero-mean white
noise of variance σ2

v .

How should you choose b so that the part s(−1)n comes out unchanged? Show that in
this case the noise will be amplified. Explain this result by calculating the NRR as well as
graphically by sketching the frequency spectra of the signals and filter, as in Fig. 15.2.1.

15.7 Consider the highpass FIR averager filter of Example 15.6. Using the minimization techniques
outlined in Sec. 15.5, show that the optimum length-N FIR filter that minimizes the NRR
subject to the highpass constraint (15.6.2) is given by Eq. (15.6.1).

15.8 Using partial fractions, derive Eq. (15.4.1) for the NRR of the bandpass resonator filter of
Example 15.4.

15.9 Computer Experiment: Bandpass Signal Extraction. An improved version of the bandpass
filter of Example 15.4, which has prescribed 3-dB width Δω and center frequency ω0, can
be designed with the methods of Chapter 12. Using the design equations (12.3.21) and
(12.3.22), design the following two peaking filters that have specifications:

a. Center frequency ω0 = 0.1π, 3-dB width Δω = 0.05π. Determine the filter’s transfer
function, write its sample processing algorithm, compute its NRR and its 5% time con-
stant neff, and plot its magnitude response squared |H(ω)|2 over 400 equally spaced
frequencies over 0 ≤ω < π.

b. Center frequency ω0 = 0.1π, but with 5% time constant of neff = 300. Then, repeat
all the questions of part (a).

c. Using the Gaussian generator gran, generate a noisy sinusoidal input of the form:

x(n)= s(n)+v(n)= cos(ω0n)+v(n), n = 0,1, . . . ,N − 1

whereω0 = 0.1π,N = 300, and v(n)= gran(0,1,&iseed) is zero-mean, unit-variance,
white Gaussian noise. Send x(n) through the above two filters and compute the output
y(n). Plot x(n) versus n. Plot the two outputs y(n) together with the desired signal
s(n).

15.13. PROBLEMS 763

15.10 Computer Experiment: Single-Notch Filter. Consider Example 15.11.1, but with a simplified
signal instead of the ECG, defined to be a double pulse which is replicated three times at a
period of 0.5 sec, with a 60 Hz noise component added to it:

f(t) = [u(t − 0.15)−u(t − 0.30)
]− 0.75

[
u(t − 0.30)−u(t − 0.45)

]
s(t) = f(t)+f(t − 0.5)+f(t − 1)

x(t) = s(t)+0.5 cos(2πf1t)

where t is in seconds, u(t) is the unit-step function, and f1 = 60 Hz. The signal x(t)
is sampled at a rate of 1 kHz for a period of 1.5 seconds. Let x(n) denote the resulting
samples. Plot x(n) and the noise-free signal s(n) for 0 ≤ n ≤ 1499.

Using the design method described in Example 15.11.1, design two second-order notch filters
with notch frequency at f1, one having Q = 6 and the other Q = 60. Determine their filter
coefficients and their 1% time constants. Plot their magnitude responses over 0 ≤ f ≤ fs/2.

Filter the sampled signal x(n) through both filters, and plot the resulting output signals y(n)
for 0 ≤ n ≤ 1499. Discuss the capability of the filters in removing the 60 Hz interference.
Discuss also the residual ringing that is left in the output after the 60 Hz sinusoid has died
out. (To study it, you may use superposition and filter s(n) and the noise part separately;
you may also look at the impulse responses.)

15.11 Computer Experiment: Multi-Notch Filter. Consider the signal x(n) consisting of three peri-
ods of a pulse signal f(n) plus additive noise, defined for 0 ≤ n < 1800:

f(n) = [u(n− 150)−u(n− 300)
]− 0.75

[
u(n− 300)−u(n− 450)

]
s(n) = f(n)+f(n− 600)+f(n− 1200)

x(n) = s(n)+v(n)

where v(n) is defined as in Example 15.11.3 to be a periodic square wave of period D = 10.
Therefore, a periodic notch filter with notches at the harmonics of f1 = fs/D or ω1 = 2π/D
will remove the noise component. Using the design method of Example 15.11.3, design such
a multi-notch filter having Q = 80.

Implement the filter using the sample processing algorithm of Example 15.11.3, and process
the noisy signal x(n) through it to get the output signal y(n). On separate graphs, plot the
signals s(n), x(n), and y(n), for 0 ≤ n < 1800. For display purposes, split each graph
into three separate graphs that cover the time periods 0 ≤ n < 600, 600 ≤ n < 1200, and
1200 ≤ n < 1800.

The noise is removed fairly well, but you will notice that the filter also distorts the desired
signal s(n) rather severely. To understand the origin of this distortion, filter s(n) separately
through the filter and plot the corresponding output. Then, design three other periodic notch
filters having Q = 200, 400, and 800, filter s(n) through them, and plot the outputs. In all
cases, compute the 1% time constants of the filters and discuss the tradeoff between speed
of response, noise reduction, and non-distortion of the input.

Moreover, for the two cases Q = 80 and Q = 800, plot the corresponding magnitude
responses |H(f)| over one Nyquist interval 0 ≤ f ≤ fs assuming fs = 600 Hz, so that
f1 = fs/D = 60 Hz.

15.12 Computer Experiment: ECG Processing. Reproduce all the designs, results, and graphs of
Example 15.11.1. The simulated ECG data s(n) may be generated by the MATLAB routine
ecg.m of Appendix C, as follows:

764 15. NOISE REDUCTION AND SIGNAL ENHANCEMENT

s = ecg(500)’; one beat of length 500

s = [s; s; s]; three beats

s0 = sgfilt(0, 5, s); 5-point smoother

s = s0 / max(s0); normalized to unity maximum

15.13 Computer Experiment: ECG Processing. Reproduce all the designs, results, and graphs of
Example 15.11.3. The simulated ECG data s(n) may be generated by the MATLAB routine
ecg.m of Appendix C, as follows:

s = ecg(600)’; one beat of length 600

s = [s; s; s]; three beats

s0 = sgfilt(0, 9, s); 9-point smoother

s = s0 / max(s0); normalized to unity maximum

15.14 Show that the following periodic comb filter has NRR:

H(z)= 1− a
2

1+ z−D

1− az−D
⇒ R = 1− a

2

Then show that if we define its Q-factor in terms of its 3-dB width Δω and its first harmonic
ω1 = 2π/D by Q =ω1/Δω, then the parameter a can be calculated as:

a = 1− tan(π/2Q)
1+ tan(π/2Q)

Finally, determine and sketch its causal impulse response h(n).

15.15 Computer Experiment: Periodic Signal Enhancement. Reproduce all the results and graphs of
Example 15.11.5. Implement the comb filter using the circular-buffer version of the sample
processing algorithm. (This is more appropriate because in practice the signal’s period may
be large.)

Repeat using Q-factors: Q = 40 and Q = 30. In all cases, compute the filter’s 5% time
constant and discuss the tradeoff between speed of response, signal enhancement, and noise
reduction.

15.16 Computer Experiment: TV Vertical Detail Filters. First, verify that the vertical detail re-
insertion filters given in Eqs. (15.12.33) and (15.12.35) satisfy the complementarity property
of Eq. (15.12.34).

Then, plot their magnitude response |H(f)| using the same scales as in Fig. 15.12.6.

Part II

Applications

16
Digital Audio Effects

16.1 Digital Waveform Generators

It is often desired to generate various types of waveforms, such as periodic square waves,
sawtooth signals, sinusoids, and so on.

A filtering approach to generating such waveforms is to design a filter H(z) whose
impulse response h(n) is the waveform one wishes to generate. Then, sending an im-
pulse δ(n) as input will generate the desired waveform at the output.

In this approach, generating each sample by running the sample processing algo-
rithm of the filter requires a certain amount of computational overhead. A more effi-
cient approach is to precompute the samples of the waveform, store them in a table in
RAM which is usually implemented as a circular buffer, and access them from the table
whenever needed.

The period, or equivalently, the fundamental frequency of the generated waveform
is controlled either by varying the speed of cycling around the table or by accessing
a subset of the table at a fixed speed. This is the principle of the so-called wavetable
synthesis which has been used with great success in computer music applications [110–
131].

In this section, we discuss both the filtering and wavetable approaches and show
how to implement them with circular buffers.

16.1.1 Sinusoidal Generators

The above filtering approach can be used to generate a (causal) sinusoidal signal of
frequency f0 and sampled at a rate fs. Denoting the digital frequency by ω0 = 2πf0/fs,
we have the z-transform pair:

h(n)= Rn sin(ω0n)u(n), H(z)= R sinω0 z−1

1− 2R cosω0 z−1 +R2z−2
(16.1.1)

For 0 < R < 1, it corresponds to an exponentially decaying sinusoid of frequency
ω0. A pure sinusoid has R = 1. The canonical realization of this transfer function
is shown in Fig. 16.1.1. The corresponding sample processing algorithm for the input
x(n)= δ(n) and output y(n)= h(n) is:

767

768 16. DIGITAL AUDIO EFFECTS

for n = 0,1,2, . . . do:
w0 = (2R cosω0)w1 −R2w2 + δ(n)
y = (R sinω0)w1

w2 = w1

w1 = w0

y(n)

δ(n) w0

z-1

2Rcosω0 Rsin ω0

z-1

w1

w2

-R2

Fig. 16.1.1 Digital sinusoidal generator

In a similar fashion, we can generate an exponentially decaying cosinusoidal signal
of frequency ω0 with the following generator filter:

h(n)= Rn cos(ω0n)u(n), H(z)= 1−R cosω0 z−1

1− 2R cosω0 z−1 +R2z−2
(16.1.2)

The canonical realization is shown in Fig. 16.1.2; its sample processing algorithm is:

for n = 0,1,2, . . . do:
w0 = (2R cosω0)w1 −R2w2 + δ(n)
y = w0 − (R cosω0)w1

w2 = w1

w1 = w0

Example 16.1.1: A common application of sinusoidal generators is the all-digital touch-tone
phone, known as a dual-tone multi-frequency (DTMF) transmitter/receiver [105–109]. Each
key-press on the keypad generates the sum of two audible sinusoidal tones, that is, the
signal

y(n)= cos(ωLn)+ cos(ωHn)

where the two frequencies {ωL,ωH} uniquely define the key that was pressed. Figure
16.1.3 shows the pairs of frequencies associated with each key.

16.1. DIGITAL WAVEFORM GENERATORS 769

y(n)δ(n)
w0

z-1

2Rcosω0 -Rcosω0

z-1

w1

w2

-R2

Fig. 16.1.2 Digital cosinusoidal generator

The four frequencies belonging to the low-frequency group select the four rows of the
4×4 keypad,† and the four high-group frequencies select the columns. A pair {fL, fH}
with one frequency from the low and one from the high group will select a particular
key. With a typical sampling rate of fs = 8 kHz, the corresponding digital frequencies are
ωL = 2πfL/fs and ωH = 2πfH/fs.

A

1209 1336 1477 1633 Hz

697 Hz

770 Hz

852 Hz

941 Hz

1 2 3

B

C

D

4 5 6

7 8 9

* 0 #

High Group

Low
Group

Fig. 16.1.3 DTMF keypad.

The generation of the dual tone can be implemented by using two cosinusoidal generators
connected in parallel as in Fig. 16.1.4 and sending an impulse as input.

The particular values of the eight keypad frequencies have been chosen carefully so that
they do not interfere with speech. At the receiving end, the dual-tone signal y(n) must
be processed to determine which pair of frequencies {fL, fH} is present. This can be ac-
complished either by filtering y(n) through a bank of bandpass filters tuned at the eight
possible DTMF frequencies, or by computing the DFT of y(n) and determining which pairs
of frequency bins contain substantial energy.

Both approaches can be implemented with current DSP chips. We will discuss the DFT
detection method further in Chapter 10. 	

The poles of the transfer functions (16.1.1) and (16.1.2) are at the complex locations
p = Rejω0 and p∗ = Re−jω0 . The denominator of these transfer functions factors in
the form:
†The A,B,C,D keys appear on service keypads.

770 16. DIGITAL AUDIO EFFECTS

y(n)δ(n)
2cosωL -cosωL

z-1

-1

z-1

2cosωH -cosωH

z-1

-1

z-1

cos(ωLn)

cos(ωHn)

Fig. 16.1.4 DTMF tone generator.

1− 2R cosω0 z−1 +R2z−2 = (1− pz−1)(1− p∗z−1) (16.1.3)

Denoting by a and b the real and imaginary parts of the pole p = a + jb, that is,
a = R cosω0 and b = R sinω0, we have R2 = a2 + b2 and can express the common
denominator as

1− 2R cosω0 z−1 +R2z−2 = 1− 2az−1 + (a2 + b2)z−2

The cosinusoidal and sinusoidal transfer functions are expressed in terms of a and
b as follows:

H1(z) = 1− az−1

1− 2az−1 + (a2 + b2)z−2

H2(z) = bz−1

1− 2az−1 + (a2 + b2)z−2

(16.1.4)

where H1(z) corresponds to Eq. (16.1.2) and H2(z) to Eq. (16.1.1).
Forming the following complex linear combination, and replacing the denominator

by its factored form (16.1.3), and noting that the numerators combine to give (1 −
p∗z−1), with p∗ = a− jb, we obtain the pole/zero cancellation:

H1(z)+jH2(z) = 1− az−1 + jbz−1

1− 2az−1 + (a2 + b2)z−2
= 1− p∗z−1

(1− pz−1)(1− p∗z−1)

= 1

1− pz−1

16.1. DIGITAL WAVEFORM GENERATORS 771

Taking causal inverse z-transforms, we find

h1(n)+jh2(n)= pnu(n)= Rnejω0nu(n)

Writing ejω0n = cos(ω0n)+j sin(ω0n) and extracting real and imaginary parts,
gives the impulse responses:

h1(n)= Rn cos(ω0n)u(n), h2(n)= Rn sin(ω0n)u(n)

which agree with Eqs. (16.1.2) and (16.1.1), respectively.
The filter coefficients in Figs. 16.1.1 and 16.1.2 involve both the real and imaginary

parts a, b, as well as the magnitude squared R2 = a2 + b2 of the poles. In a hardware
implementation, these coefficients must be quantized to a finite number of bits. One
potential drawback is that to be quantized accurately, the coefficient a2 + b2 will need
twice as many bits as the individual coefficients a and b.

An alternative realization [1] that combines both the sinusoidal and cosinusoidal
generators is the so-called coupled form and is depicted in Fig. 16.1.5. Because only a
and b, not their squares, appear as filter coefficients, this form will not suffer from the
above quantization drawback.

WhenR = 1, it is impossible in general to find quantized coefficients a, b that satisfy
a2 + b2 = 1 exactly. In that case, one settles for R slightly less than one. There exist
filter structures with improved quantization properties when the poles are near the unit
circle [89–92].

x(n)

−b

b

y1(n)

w1(n) w2(n)
y2(n)

a

z-1

a

z-1

Fig. 16.1.5 Coupled form sine/cosine generator.

Noting that w1(n)= y1(n − 1) and w2(n)= y2(n − 1), the difference equations
describing this form are in the time and z domains:

y1(n) = ay1(n− 1)−by2(n− 1)+x(n)
y2(n) = ay2(n− 1)+by1(n− 1)

Y1(z) = az−1Y1(z)−bz−1Y2(z)+X(z)
Y2(z) = az−1Y2(z)+bz−1Y1(z)

Solving for the transfer functions H1(z)= Y1(z)/X(z) and H2(z)= Y2(z)/X(z),
we obtain Eq. (16.1.4). The sample processing algorithm that simultaneously generates
the two outputs y1 and y2 will be:

772 16. DIGITAL AUDIO EFFECTS

for each input sample x do:
y1 = aw1 − bw2 + x
y2 = aw2 + bw1

w1 = y1

w2 = y2

16.1.2 Periodic Waveform Generators

A periodic analog signal, such as a sinusoid, does not necessarily remain periodic when
sampled at a given rate fs. For example, the samples of x(t)= cos(2πft), obtained by
setting t = nT, are:

x(n)= cos(2πfnT)= cos(ωn)

where ω = 2πfT = 2πf/fs.
In order for x(n) to be periodic in the time index n with some period, say of D

samples, it is necessary that one whole period of the sinusoid fit within the D samples,
that is, at n = D, the sinusoid must cycle by one whole period. This requires that
x(D)= x(0), or,

cos(ωD)= 1

which requires that the frequency ω be such that†

ωD = 2π ⇒ ω = 2π
D

(16.1.5)

Writing ω = 2πf/fs and solving for f , we find the condition that a sampled sinusoid
of frequency f is periodic if:

f = fs
D

(16.1.6)

or, equivalently, if the sampling rate is an integral multiple of the frequency:

fs = Df (16.1.7)

These results generalize to the case of an arbitrary analog periodic signal, not just a
sinusoid. Indeed, if a signal x(t) has period TD and is sampled at a rate fs = 1/T, then
the periodicity condition x(t + TD)= x(t) implies x(nT + TD)= x(nT). In order for
the sampled signal to be periodic in n, the time nT + TD must be one of the sampling
times, that is,

nT +TD = (n+D)T
†One could also have ω = 2πc/D, where c is an integer, but this would correspond to fitting more than

one sinusoidal cycles in the D samples, that is, c cycles.

16.1. DIGITAL WAVEFORM GENERATORS 773

which requires that the period TD be an integral multiple of the sampling period T:

TD = DT (16.1.8)

Because the fundamental frequency of such a periodic signal is f = 1/TD, equation
(16.1.8) is equivalent to Eq. (16.1.6) or (16.1.7).

In this section, we consider the generation of such discrete-time periodic signals.
Because of the periodicity, it is enough to specify the signal over one period only. De-
noting the time samples over one period by bi, i = 0,1, . . . ,D− 1, we have the periodic
sequence:

h = [b0, b1, . . . , bD−1, b0, b1, . . . , bD−1, b0, b1, . . . , bD−1, . . .] (16.1.9)

Figure 16.1.6 depicts such a sequence forD = 4. The filtering approach to generating
such a periodic sequence is to think of it as the impulse response of a filter and then
excite the filter with an impulsive input. The following filter has Eq. (16.1.9) as its causal
impulse response:

H(z)= b0 + b1z−1 + b2z−2 + · · · + bD−1z−(D−1)

1− z−D
(16.1.10)

b0

b1

b2
b3 b2

b0

b1

b3 b2

b0

b1

b3 b2

b0

b1

b3

1 2 3 4 5 6 7 8 9 100

...

... n

h(n)

Fig. 16.1.6 Discrete-time periodic signal of period D = 4.

As a concrete example, consider the case D = 4 with transfer function:

H(z)= b0 + b1z−1 + b2z−2 + b3z−3

1− z−4
(16.1.11)

Its causal impulse response can be obtained by expanding the denominator using the
infinite geometric series:

H(z) = (b0 + b1z−1 + b2z−2 + b3z−3)(1+ z−4 + z−8 + · · ·)
= (b0 + b1z−1 + b2z−2 + b3z−3)·1
+ (b0 + b1z−1 + b2z−2 + b3z−3)·z−4

+ (b0 + b1z−1 + b2z−2 + b3z−3)·z−8 + · · ·

Picking out the coefficients of the powers of z−1 gives the causal periodic impulse re-
sponse sequence:

774 16. DIGITAL AUDIO EFFECTS

h = [b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, . . .] (16.1.12)

Writing

(1− z−D)H(z)= b0 + b1z−1 + · · · + bD−1z−(D−1)

and transforming it to the time domain gives the difference equation for h(n):

h(n)= h(n−D)+b0δ(n)+b1δ(n− 1)+· · · + bD−1δ(n−D+ 1)

For example, with D = 4:

h(n)= h(n− 4)+b0δ(n)+b1δ(n− 1)+b2δ(n− 2)+b3δ(n− 3) (16.1.13)

which generates Eq. (16.1.12). Indeed, iterating Eq. (16.1.13) with causal initial conditions
gives:

h(0)= b0, h(1)= b1, h(2)= b2, h(3)= b3

h(n)= h(n− 4), for n ≥ 4

The transfer function (16.1.11) can be realized in its direct or canonical forms. It is
instructive to look at the time-domain operation of these two realizations. The direct
form is depicted in Fig. 16.1.7. Note that there are D = 4 feedback delays, but only
D − 1 = 3 feed-forward ones. The corresponding sample processing algorithm will be
as follows:

for n = 0,1,2, . . . do:
v0 = δ(n)
y = w0 = w4 + b0v0 + b1v1 + b2v2 + b3v3

delay(3,v)
delay(4,w)

The following table shows the contents of the delay registers at successive sampling
instants. The v and w delays are initialized to zero. Note that the v0 column is the
impulsive input δ(n). Similarly, the v1 column represents the delayed version of v0,
that is, δ(n− 1), and v2, v3 represent δ(n− 2), δ(n− 3).

n v0 v1 v2 v3 w0 w1 w2 w3 w4 y = w0

0 1 0 0 0 b0 0 0 0 0 b0

1 0 1 0 0 b1 b0 0 0 0 b1

2 0 0 1 0 b2 b1 b0 0 0 b2

3 0 0 0 1 b3 b2 b1 b0 0 b3

4 0 0 0 0 b0 b3 b2 b1 b0 b0

5 0 0 0 0 b1 b0 b3 b2 b1 b1

6 0 0 0 0 b2 b1 b0 b3 b2 b2

7 0 0 0 0 b3 b2 b1 b0 b3 b3

8 0 0 0 0 b0 b3 b2 b1 b0 b0

(16.1.14)

16.1. DIGITAL WAVEFORM GENERATORS 775

During the first four sampling instants, n = 0,1,2,3, the initial impulse travels
through the v-delays and eventually these delays empty out. The only purpose of the
first four iterations of the algorithm is to load the w-delay registers with the values bi
of the signal. Indeed as can be seen from the table, the contents of the w-registers at
time n = 4 are the bi values loaded in reverse order :

[w1,w2,w3,w4]= [b3, b2, b1, b0]

and, in general, at time n = D the w-delays will contain the values:

wi = bD−i, i = 1,2, . . . ,D (16.1.15)

For n ≥ 4, the input part of the block diagram no longer plays a part because the v-
delays are empty, whereas the contents of thew-delays recirculate according tow0 = w4,
or w0 = wD, in general. Thus, an alternative way to formulate the sample processing
algorithm for the generation of a periodic waveform is to break the algorithm into two
parts: an initialization part

for n = 0,1, . . . ,D− 1 do:
w0 = bn
delay(D,w)

(16.1.16)

and a steady state part

repeat forever :
w0 = wD
delay(D,w)

(16.1.17)

where y = w0 is the corresponding output, as seen in Fig. 16.1.7.
Equation (16.1.16) effectively loads thew-registers with the b-values in reverse order.

Then, Eq. (16.1.17) repeatedly recirculates the delay line, producing the periodic output.

δ(n)

z-1

z-1

z-1

z-1

v1

v0

v2

y(n)

w1

b1

w0

b0

w2

b2

w3

b3

w4

z-1 z-1

v3

z-1

Fig. 16.1.7 Periodic generator in direct form.

776 16. DIGITAL AUDIO EFFECTS

The canonical realization of the transfer function (16.1.11) is shown in Fig. 16.1.8. Its
operation is now by the following sample processing algorithm:

for n = 0,1,2, . . . do:
w0 = wD + δ(n)
y = b0w0 + b1w1 + · · · + bD−1wD−1

delay(D,w)

The contents of the w-register at successive sampling instants are shown below:

n w0 w1 w2 w3 w4 y = b0w0 + b1w1 + b2w2 + b3w3

0 1 0 0 0 0 b0

1 0 1 0 0 0 b1

2 0 0 1 0 0 b2

3 0 0 0 1 0 b3

4 1 0 0 0 1 b0

5 0 1 0 0 0 b1

6 0 0 1 0 0 b2

7 0 0 0 1 0 b3

The initial impulse gets trapped into the recirculatingw-delay line, each time passing
through only one of the bi filter multipliers as it gets shifted from register to register.

δ(n)

z-1

z-1

w1

w0

w2

w3

w4

z-1

z-1

b1

b0

b2

b3

y(n)

Fig. 16.1.8 Periodic generator in canonical form.

An intuitive way of understanding the operation of the canonical form is to separate
out the common set of w-delays and think of the transfer function as the cascade of the
two filters:

H(z)= 1

1− z−4
·N(z) (16.1.18)

where N(z)= b0 + b1z−1 + b2z−2 + b3z−3. Fig. 16.1.9 shows this interpretation. The
impulse response of the first factor is a train of pulses separated by the desired period
D = 4 with D− 1 zeros in between, that is, the sequence:

16.1. DIGITAL WAVEFORM GENERATORS 777

[1,0,0,0,1,0,0,0,1,0,0,0, . . .]

Every time one of these impulses hits the FIR filter N(z), it generates the impulse
response b = [b0, b1, b2, b3], translated in time to match the time of that input impulse,
as required by time invariance. Because the duration of b is only D samples, there is no
overlap of the generated impulse responses, that is, each impulse response ends just
before the next one begins.

4 48 80 0 0

1

1-z-4

n

b2
b0

b1

b3 b2
b0

b1

b3 b2
b0

b1

b3

nn

N(z)

1 1 1 1

b = [b0, b1, b2, b3]

Fig. 16.1.9 Periodic pulse train causes periodic output.

Both the direct and canonical realizations can be implemented using circular buffers.
For example, the direct-form sample processing algorithm described by Eqs.(16.1.16)
and (16.1.17) can be written with the help of the circular version of the delay routine,
cdelay, as follows:

for n = 0,1, . . . ,D− 1 do:
∗p = bn
cdelay(D,w,&p)

(16.1.19)

and

repeat forever :
∗p = tap(D,w, p,D)
cdelay(D,w,&p)

(16.1.20)

As discussed in Chapter 4, the circular pointer must be initialized byp = w. Eq. (16.1.19)
loads the circular buffer with theDwaveform samples, and then Eq. (16.1.20) reproduces
them periodically. Alternatively, we may use the routines cdelay2 and tap2 that em-
ploy the offset index q such that p = w + q. Noting that ∗p = p[0]= w[q], we have
the generation algorithm:

for n = 0,1, . . . ,D− 1 do:
w[q]= bn
cdelay2(D,&q)

(16.1.21)

and

778 16. DIGITAL AUDIO EFFECTS

repeat forever :
w[q]= tap2(D,w, q,D)
cdelay2(D,&q)

(16.1.22)

where q must be initialized by q = 0.
These circular versions provide more efficient implementations than the direct form

because at each time instant only the current w-register pointed to by p is updated—
being loaded with the value of the last state, that is, the Dth state. By contrast, in
the linear delay-line implementation, the entire delay line must be shifted at each time
instant.

To appreciate how the circular delay line is updated, the table below shows the
contents of the vector w for the case D = 4, at successive time instants (grouped every
D+ 1 = 5 samples):

n q w0 w1 w2 w3 w4 y
0 0 ↑b0 0 0 0 0 b0

1 4 b0 0 0 0 ↑b1 b1

2 3 b0 0 0 ↑b2 b1 b2

3 2 b0 0 ↑b3 b2 b1 b3

4 1 b0 ↑b0 b3 b2 b1 b0

5 0 ↑b1 b0 b3 b2 b1 b1

6 4 b1 b0 b3 b2 ↑b2 b2

7 3 b1 b0 b3 ↑b3 b2 b3

8 2 b1 b0 ↑b0 b3 b2 b0

9 1 b1 ↑b1 b0 b3 b2 b1

10 0 ↑b2 b1 b0 b3 b2 b2

11 4 b2 b1 b0 b3 ↑b3 b3

12 3 b2 b1 b0 ↑b0 b3 b0

13 2 b2 b1 ↑b1 b0 b3 b1

14 1 b2 ↑b2 b1 b0 b3 b2

15 0 ↑b3 b2 b1 b0 b3 b3

16 4 b3 b2 b1 b0 ↑b0 b0

17 3 b3 b2 b1 ↑b1 b0 b1

18 2 b3 b2 ↑b2 b1 b0 b2

19 1 b3 ↑b3 b2 b1 b0 b3

20 0 ↑b0 b3 b2 b1 b0 b0

21 4 b0 b3 b2 b1 ↑b1 b1

22 3 b0 b3 b2 ↑b2 b1 b2

23 2 b0 b3 ↑b3 b2 b1 b3

24 1 b0 ↑b0 b3 b2 b1 b0

16.1. DIGITAL WAVEFORM GENERATORS 779

The up-arrow symbol ↑ indicates the w-register pointed to by the current value of
the output pointer p. The pointer p cycles around every D+1 = 5 samples even though
the output is periodic every D = 4 samples. Equivalently, the current w-register can be
determined by the corresponding value of the offset index q, that is, the register w[q].

In the direct form version of Eq. (16.1.14), the linear delay line recirculates once every
D = 4 samples, so that at n = 8 the state vector w is the same as at time n = 4. By
contrast, the circular delay line recirculates much more slowly, that is, every D(D+1)=
20 samples, so that the buffer w has the same contents at times n = 4 and n = 24.
In both cases, the first D = 4 samples correspond to the initialization phases of Eqs.
(16.1.16) and (16.1.19).

The following program segment illustrates the initialization and usage of the circular-
buffer generation algorithms. It is assumed that theD-dimensional array of values b[i],
i = 0,1, . . . ,D− 1, has already been defined:

double *b, *w, *p;

b = (double *) calloc(D, sizeof(double)); definition of b[n] is not shown

w = (double *) calloc(D+1, sizeof(double)); (D+1)-dimensional

p = w; initialize circular pointer

for (n=0; n<D; n++) { initialization part

*p = b[n]; fill buffer with b[n]’s
printf("%lf\n", *p); current output

cdelay(D, w, &p); update circular delay line

}

for (n=D; n<Ntot; n++) { steady state part

*p = tap(D, w, p, D); first state = last state

printf("%lf\n", *p); current output

cdelay(D, w, &p); update circular delay line

}

For comparison, we also list the linear delay-line version of Eqs. (16.1.16) and (16.1.17):

for (n=0; n<D; n++) { initialization part

w[0] = b[n]; fill buffer with b[n]’s
printf("%lf\n", w[0]); current output

delay(D, w); update linear delay line

}

for (n=D; n<Ntot; n++) { steady state part

w[0] = w[D]; first state = last state

printf("%lf\n", w[0]); current output

delay(D, w); update linear delay line

}

The spectra of double-sided periodic signals consist of sharp spectral lines at the
harmonics, which are integral multiples of the fundamental frequency.

One-sided, or causal, periodic sequences such as the sequence (16.1.9), have comb-
like spectra, as shown in Fig. 16.1.10, with dominant peaks at the harmonics.

The spectrum of (16.1.9) can be obtained by setting z = ejω = e2πjf/fs in the gener-
ating transfer function (16.1.10). Using the trigonometric identity

780 16. DIGITAL AUDIO EFFECTS

3f1 4f1 5f1 6f1 7f12f1 8f1=fs0 f1

ω1

p1

p4

p2
p3

p5
p6

p7

p0

f

|H(f)| z-plane =poles

Fig. 16.1.10 Comb-like frequency spectrum, for D = 8.

1− z−D = 1− e−jωD = e−jωD/2(ejωD/2 − e−jωD/2) = 2jejωD/2 sin
(ωD

2

)
we have

|H(ω)| = |N(ω)|
|1− e−jωD| =

|N(ω)|
2

∣∣∣∣sin
(ωD

2

)∣∣∣∣
or, replacing ω = 2πf/fs in terms of the physical frequency f :

|H(f)| = |N(f)|
2

∣∣∣∣∣sin
(πfD

fs

)∣∣∣∣∣
(16.1.23)

The peaks in the spectrum are due to the zeros of the denominator which vanishes
at the harmonics, that is,

sin
(πfD

fs

) = 0 ⇒ πfD
fs

= πm

with m an integer. Solving for f :

fm =m
fs
D
=mf1 (16.1.24)

where we denoted the fundamental frequency by f1 = fs/D.
Because the spectrum H(f) is periodic in f with period fs, we may restrict the index

m to the D values m = 0,1, . . . ,D− 1, which keep f within the Nyquist interval [0, fs).
These harmonics correspond to the poles of H(z). Indeed, solving for the zeros of the
denominator, we have

1− z−D = 0 ⇒ zD = 1

with the D solutions:

z = pm = ejωm, ωm = 2πfm
fs

= 2πm
D

, m = 0,1, . . . ,D− 1

Note that they are the Dth roots of unity on the unit circle.

16.1. DIGITAL WAVEFORM GENERATORS 781

16.1.3 Wavetable Generators

The linear and circular buffer implementations of the direct form generator both use
(D+1)-dimensional buffers w = [w0,w1, , . . . ,wD], whereas the periodic waveform has
only D samples in one period: b = [b0, b1, . . . , bD−1]. As we saw, this causes the buffer
contents to recirculate periodically.

A simpler approach is to use a buffer of length D, that is, w = [w0,w1, , . . . ,wD−1]
referred to as a wavetable and store in it a copy of one period of the desired waveform.
The periodic waveform is then generated by repeatedly cycling over the wavetable with
the aid of a circular pointer p, which always points at the current output sample.

Figure 16.1.11 shows such a wavetable for the case D = 4. Also shown are the po-
sitions of the circular pointer at successive sampling instants n, and the corresponding
values of the offset index q, such that ∗p = w[q].

pp
p

p

q=0 q=3 q=2 q=1
n=0 n=1 n=2 n=3

b0 w0

b1

w1

b2w2

b3

w3

b0

b1

b2

b3

b0

b1

b2

b3

b0

b1

b2

b3

Fig. 16.1.11 Circular pointer cycles over wavetable.

As in the previous section, the waveform samples are stored in circular reverse order.
The reverse loading of the table with the D waveform samples can be done with the
following loop, initialized at p = w:

for i = 0,1, . . . ,D− 1 do:
∗p = bi
cdelay(D− 1,w,&p)

(16.1.25)

or, in terms of the offset index q, initialized at q = 0:

for i = 0,1, . . . ,D− 1 do:
w[q]= bi
cdelay2(D− 1,&q)

(16.1.26)

Note that the only difference with Eqs. (16.1.19) and (16.1.21) is the dimension of the
buffer w, which requires the cdelay routine to have argument D−1 instead of D. Upon
exit from these initialization loops, the pointer p has wrapped around once and points
again at the beginning of the buffer, p = w or q = 0. Alternatively, the initialization of
the wavetable can be done with:

782 16. DIGITAL AUDIO EFFECTS

for i = 0,1, . . . ,D− 1 do:
w[i]= b[(D− i)%D] (16.1.27)

where the modulo operation is felt only at i = 0, giving in this case w[0]= b[D%D]=
b[0]. After the wavetable is loaded with the waveform samples, the circular pointer can
be made to cycle over the wavetable by successive calls to cdelay:

repeat forever :
output y = ∗p
cdelay(D− 1,w,&p)

(16.1.28)

Each call to cdelay circularly decrements the pointer p to point to the next entry in
the wavetable. In terms of the offset index q, we have similarly:

repeat forever :
output y = w[q]
cdelay2(D− 1,&q)

(16.1.29)

Because the waveform was loaded in reverse order, decrementing the pointer will
generate the waveform in forward order, as shown in Fig. 16.1.11.

Traditionally in the computer music literature, the wavetable is loaded in forward
order, that is, w[i]= b[i], i = 0,1, . . . ,D − 1 and the circular pointer is incremented
circularly [110,111]. In signal processing language, this corresponds to time advance
instead of time delay. We will see how to implement time advances with the help of the
generalized circular delay routine gdelay2 discussed below.

The following program segment illustrates the initialization (16.1.25) and the steady-
state operation (16.1.28):

double *b, *w, *p;

b = (double *) calloc(D, sizeof(double)); definition of b[i] is not shown

w = (double *) calloc(D, sizeof(double)); Note, w is D-dimensional

p = w; initialize circular pointer

for (i=0; i<D; i++) { initialization:

*p = b[i]; fill buffer with b[i]’s
cdelay(D-1, w, &p); decrement pointer

}

for (n=0; n<Ntot; n++) { steady state operation:

printf("%lf\n", *p); current output

cdelay(D-1, w, &p); decrement pointer

}

Often, it is desired to generate a delayed version of the periodic waveform. Instead of
loading a delayed period into a new wavetable, we can use the same wavetable, but start
cycling over it at a shifted position. For a delay ofm time units such that 0 ≤m ≤ D−1,
the starting pointer p and corresponding offset index q should be:

16.1. DIGITAL WAVEFORM GENERATORS 783

p = w+m, q =m (16.1.30)

To understand this, denote by b(n) the original periodic sequence of period D,
and let y(n)= b(n −m) be its delayed version by m units. The starting sample will
be y(0)= b(−m), but because of the periodicity, we have y(0)= b(−m)= b(D−m),
which by the reverse loading of thew-buffer is equal tow[m] according to Eq. (16.1.27).
Thus, the starting sample will be y(0)= w[m], corresponding to offset q =m. A time
advance by m units can be implemented by starting at q = −m, which wraps to the
positive value q = D−m.

For example, referring to Fig. 16.1.11, starting at position m and cycling clockwise
generates the successively delayed periodic sequences:

m = 0: [b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, . . .]

m = 1: [b3, b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, . . .]

m = 2: [b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, . . .]

m = 3: [b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, b0, . . .]

Wavetable synthesis of periodic waveforms lies at the heart of many computer music
applications and programs, such as Music V and its descendants [110–131]. Generating a
single periodic wave is not musically very interesting. However, the generated waveform
can be subjected to further operations to create more complex and interesting sounds,
such as:

• Varying its amplitude or envelope to imitate the attack and decay of various in-
struments, or for imposing tremolo-type effects.

• Varying or modulating its frequency to imitate various effects such as vibrato,
glissando, or portamento. This also leads to the popular family of FM synthesizers.

• Sending it through linear or nonlinear, time-invariant or time-varying filtering op-
erations, generically known as waveshaping operations, which modify it further.
They can be used to create models of various instruments, such as plucked strings
or drums, or to superimpose various audio effects, such as reverb, stereo imaging,
flanging, and chorusing [124–130].

• Adding together the outputs of several wavetables with different amplitudes and
frequencies to imitate additive Fourier synthesis of various sounds.

The possibilities are endless. They have been and are actively being explored by the
computer music community.

Here, we can only present some simple examples that illustrate the usage of waveta-
bles. We begin by discussing how the frequency of the generated waveform may be
changed.

Given a wavetable of length D, the period of the generated waveform is given by
Eq. (16.1.8), TD = DT, and its fundamental frequency by

784 16. DIGITAL AUDIO EFFECTS

f = fs
D

(16.1.31)

The frequency f can be changed in two ways: by varying the sampling rate fs or
changing the effective length D of the basic period. Changing the sampling rate is not
practical, especially when one is dealing with several wavetables of different frequen-
cies, although digital music synthesizers have been built based on this principle. Thus,
varying D is of more practical interest and is the preferred approach in most music syn-
thesis programs. Replacing D by a smaller length d ≤ D will increase the fundamental
frequency to:

f = fs
d

(16.1.32)

and will decrease the period to Td = dT.
For example, if d = D/2, the effective frequency is doubled f = fs/(D/2)= 2fs/D.

ReplacingD byd = D/2 is equivalent to cycling the pointerp over a subset of the circular
buffer w consisting of every other point in the buffer. Fig. 16.1.12 shows the positions
of the pointer p at successive time instants n for the case of D = 8 and d = D/2 = 4.
Skipping every other point can be accomplished by performing two calls to cdelay2 at
each time, that is, replacing Eq. (16.1.29) by:

repeat forever :
output y = w[q]
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)

(16.1.33)

pp

p

q=0 q=6 q=4 q=2
n=0 n=1 n=2 n=3

p b0 w0

w7
w6

w5 b2

w1

w4 b4

w2

b6 b7b5

b3 b1

w3

b0

b2

b4

b6 b7b5

b3 b1

b0

b2

b4

b6 b7b5

b3 b1

b0

b2

b4

b6 b7b5

b3 b1

Fig. 16.1.12 Circular pointer is decremented by 2, generating a subsequence of period 4.

The two calls to cdelay2 effectively decrement the offset index q by two, that is,
q = q − 2. The generated q values will be q = 0, q = 0 − 2, which wraps modulo-8 to
q = 6, q = 6−2 = 4, q = 4−2 = 2, and so on. Thus, the generated subsequence will be
the periodic repetition of the contents of the registers [w0,w6,w4,w2], or, as shown in
Fig. 16.1.12:

[b0, b2, b4, b6, b0, b2, b4, b6, b0, b2, b4, b6, b0, b2, b4, b6, . . .]

16.1. DIGITAL WAVEFORM GENERATORS 785

which repeats with period d = 4. It should be compared to the full wavetable sequence,
which repeats every D = 8 samples:

[b0, b1, b2, b3, b4, b5, b6, b7, b0, b1, b2, b3, b4, b5, b6, b7, . . .]

Similarly, cycling every four wavetable samples will generate the periodic subse-
quence of period d = D/4 = 8/4 = 2 and frequency f = 4fs/D:

[b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, . . .]

In Fig. 16.1.12, it corresponds to decrementing the pointer p or offset q by 4, that
is, q = q− 4, and can be implemented by inserting 4 calls to cdelay2 at each iteration:

repeat forever :
output y = w[q]
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)

(16.1.34)

Rather than making multiple calls to cdelay2, we define a generalized version of
this routine, gdelay2.c, which allows for an arbitrary real-valued shift of the pointer
index q:

/* gdelay2.c - generalized circular delay with real-valued shift */

void gdelay2(D, c, q)
int D;
double c, *q; c=shift, q=offset index

{
*q -= c; decrement by c

if (*q < 0)
*q += D+1;

if (*q > D)
*q -= D+1;

}

There are two basic differences with cdelay2. First, the offset index q is allowed to
take on real values as opposed to integer values. Second, each call decrements q by the
real-valued shift c, that is, q = q − c. The reason for allowing real values will become
clear shortly. Note that cdelay2 is a special case of gdelay2 with c = 1.0. In terms of
this routine, Eqs. (16.1.33) or (16.1.34) will read as:

repeat forever :
output y = w[q]
gdelay2(D− 1, c,&q)

(16.1.35)

with c = 2 or c = 4, respectively. The successive calls to gdelay2 in Eq. (16.1.35) update
the offset q according to the iteration:

786 16. DIGITAL AUDIO EFFECTS

qn+1 = (qn − c)%D (16.1.36)

where mod-D is used because the dimension of the circular buffer is D. Generally, we
have the following relationship between the shift c and the sub-period d:

c = D
d

(16.1.37)

which gives the number of times the sub-period d fits into the full period D, or,

d = D
c

(16.1.38)

which expresses d as a fraction of the full period D, or,

D = cd (16.1.39)

Combining Eqs. (16.1.32) and (16.1.38), gives for the frequency of the generated
subsequence:

f = fs
d
= c

fs
D

(16.1.40)

or, in terms of the digital frequency in radians/sample:

ω = 2πf
fs

= 2π
d
= 2πc

D
(16.1.41)

Equivalently, given a desired frequency f and table length D, we obtain the required
value of the shift:

c = D
f
fs
= DF (16.1.42)

where F = f/fs is the digital frequency in units of cycles per sample. It follows from
Eq. (16.1.42) that c is the number of cycles of the subsequence that are contained in the
D samples of the full wavetable.

So far, our discussion assumed that both the sub-length d and the shift c were
integers. Because of the constraint (16.1.39), such restriction would not allow too many
choices for c or d, and consequently for f . Therefore, c, d, and q are allowed to take on
real values in the definition of gdelay2.

To keep f within the symmetric Nyquist interval |f| ≤ fs/2, requires that c satisfy
the condition: |cfs/D| ≤ fs/2, or,

|c| ≤ D
2

⇒ −D
2
≤ c ≤ D

2
(16.1.43)

Negative values of c correspond to negative frequencies f . This is useful for intro-
ducing 180o phase shifts in waveforms. Any value of c in the range D/2 < c ≤ D is
wrapped modulo-D to the value c − D, which lies in the negative part of the Nyquist

16.1. DIGITAL WAVEFORM GENERATORS 787

interval (16.1.43). The wrapping c → c − D is equivalent to the frequency wrapping
f → f − fs.

As we mentioned earlier, in the computer music literature, the circular wavetable
is loaded with the waveform in forward order. Cycling over the wavetable at frequency
f = cfs/D is accomplished by incrementing the offset index q according to the iteration:

qn+1 = (qn + c)%D (16.1.44)

Such “forward” versions can be implemented easily by the routine gdelay2 by calling
it in Eq. (16.1.35) with c replaced by −c. The wrap-around tests in gdelay2 always force
q to lie in the range 0 ≤ q < D. If q is not an integer in that range, then it cannot
be an array index that defines the output buffer sample y = w[q]. However, it can
be approximated by an integer, for example, by truncating down, or truncating up, or
rounding to the nearest integer:

i = �q� (truncating down)
j = �q+ 1�%D (truncating up)
k = �q+ 0.5�%D (rounding)

(16.1.45)

The modulo-D operation is necessary to keep the index within the circular buffer
range {0,1, . . . ,D− 1}. The returned output will be in these cases:

y = w[i] (truncating down)
y = w[j] (truncating up)
y = w[k] (rounding)

(16.1.46)

For example, in the first case, Eq. (16.1.35) will be replaced by:

repeat forever :
i = �q�
output y = w[i]
gdelay2(D− 1, c,&q)

(16.1.47)

and similarly in the other cases.
Because q lies (circularly) between the integers i and j, a more accurate output can

be obtained by linearly interpolating between the wavetable values w[i] and w[j], that
is, returning the output:

y = w[i]+(q− i)(w[j]−w[i]) (16.1.48)

The geometric meaning of Eq. (16.1.48) is depicted in Fig. 16.1.13, where y lies on
the straight line connecting w[i] and w[j]. Note that j = i + 1, except when q falls in
the last integer subdivision of the [0,D) interval, that is, when D− 1 ≤ q < D. In that
case, i = D−1 and j = D%D = 0, and we must interpolate between the values w[D−1]
and w[0], as shown in Fig. 16.1.13. Equation (16.1.48) correctly accounts for this case
with j computed by Eq. (16.1.45), or equivalently by j = (i+ 1)%D.

The interpolation method produces a more accurate output than the other methods,
but at the expense of increased computation. The rounding method is somewhat more
accurate than either of the truncation methods. The differences between the methods

788 16. DIGITAL AUDIO EFFECTS

w[i]

i q
q

w[j]

i+1

y
w[D-1]

D-1 q
q

w[0]

D

y

Fig. 16.1.13 Linear interpolation between two successive buffer samples.

become unimportant as the length D of the wavetable increases. In computer music
applications typical values of D are 512–32768. The nature of the approximation error
for the truncation method and the other methods has been studied in [118–120].

The generation algorithm (16.1.47) starts producing the periodic sequence at the
beginning of the w buffer, that is, with q = 0. If a delayed version of the subsequence
is needed, we may shift the initial value of the offset q to a new starting position as
in Eq. (16.1.30). However, because q is measured in multiples of the shift c, we must
replace Eq. (16.1.30) by

q =mc =mDF (16.1.49)

Because gdelay2 decrements q, we can obtain Eq. (16.1.49) by starting with q = 0
and calling gdelay2 once with the opposite argument :

gdelay2(D− 1,−mc,&q) (16.1.50)

This expression implements both time delays (m > 0) and time advances (m < 0).
Because mc must be in the interval |mc| < D/2, it follows that the allowed values of m
are in the interval |m| < d/2. After this call, the generation algorithm Eq. (16.1.47) may
be started with the desired value of the shift c.

Example 16.1.2: The eight waveform samples:

b = [b0, b1, b2, b3, b4, b5, b6, b7]

are stored in (circular) reverse order in the 8-dimensional circular wavetable:

w = [w0,w1,w2,w3,w4,w5,w6,w7]

It is desired to generate a periodic subsequence of period d = 3. Determine this sub-
sequence when the output is obtained by the four methods of: (a) truncating down, (b)
truncating up, (c) rounding, and (d) linear interpolation.

Solution: Here, D = 8 so that the shift is c = D/d = 8/3, which is not an integer. There are
d = 3 possible values of the offset index q obtained by iterating Eq. (16.1.36):

q0 = 0

q1 = q0 − c = −8

3
≡ 8− 8

3
= 16

3
= 5

1

3

q2 = q1 − c = 16

3
− 8

3
= 8

3
= 2

2

3

16.1. DIGITAL WAVEFORM GENERATORS 789

The next q will be q3 = q2 − c = (8/3)−(8/3)= 0, and the above three values will be
repeated. Fig. 16.1.14 shows the relative locations of the three q’s with respect to the
circular buffer indices.

The three q’s can be obtained quickly by dividing the circular buffer D into d equal parts
and counting clockwise. The direction of the three q-arrows in Fig. 16.1.14 are at relative
angles ω as given by Eq. (16.1.41); here, ω = 2π/3.

w0 q0

q2

q1

w4

w5

w6

w7

w2
w3 w1

b0

b7

b6
b5

b4

b3 b2

b1

Fig. 16.1.14 Successive positions of q when d = 3.

It is seen that q1 points between the buffer samples w[5] and w[6]. If we truncate down,
then, we will output the content of w[5]= b3, and if we truncate up, w[6]= b2. Because,
q1 points nearer to w[5] than to w[6], we will output w[5]= b3, if we round to the
nearest buffer location. If we interpolate linearly between w[5] and w[6], we will output
the value:

y = w[5]+(q1 − i1)(w[6]−w[5])= b3 + 1

3
(b2 − b3)= 1

3
b2 + 2

3
b3

where i1 = �q1� = 5, and q1− i1 = 1/3. Similarly, the next offset index q2 points between
w[2] and w[3]. If we truncate down, we will output w[2]= b6, and if we truncate up,
w[3]= b5. If we round, we will output w[3]= b5 because q2 points closer to w[3] than
to w[2]. And, if we interpolate, we will output the value:

y = w[2]+(q2 − i2)(w[3]−w[2])= b6 + 2

3
(b5 − b6)= 2

3
b5 + 1

3
b6

where i2 = �q2� = 2, and q2 − i2 = 2/3.

To summarize, at successive time instants n = 0,1,2, . . . , the offset q cycles repeatedly
over the three values {q0, q1, q2}. The output associated with each q depends on the cho-
sen approximation method. For the four methods, we will generate the following period-3
sequences:

[b0, b3, b6, b0, b3, b6, . . .] (truncate down)
[b0, b2, b5, b0, b2, b5, . . .] (truncate up)
[b0, b3, b5, b0, b3, b5, . . .] (round)

and if we interpolate:

790 16. DIGITAL AUDIO EFFECTS

[b0,
1

3
b2 + 2

3
b3,

2

3
b5 + 1

3
b6, b0,

1

3
b2 + 2

3
b3,

2

3
b5 + 1

3
b6, . . .]

Had we used the computer music convention of forward loading the circular buffer and
incrementing q according to Eq. (16.1.44), we would find that the down and up truncated
sequences reverse roles, that is, the down-truncated sequence would be our up-truncated
one. 	

Example 16.1.3: Repeat Example 16.1.2 when the subsequence has period d = 3, but with an
initial delay of m = 1/2 samples.

Solution: The desired delay by m samples (in units of c) can be implemented by an initial call
to gdelay2, with an effective negative shift of −mc as in Eq. (16.1.50). This initializes the
offset index by shifting it from q0 = 0 to

q0 =mc = 1

2
· 8

3
= 4

3

The other two q’s are obtained as in Example 16.1.2:

q1 = q0 − c = 4

3
− 8

3
= −4

3
≡ 8− 4

3
= 20

3
= 6

2

3

q2 = q1 − c = 20

3
− 8

3
= 4

The three q’s are depicted in Fig. 16.1.15. The relative angle between the q-arrows is
still ω = 2πc/D, but the initial arrow for q0 is displaced by an angle ω0 = 2πm/d =
2π(mc)/D with respect to the horizontal axis. The original q’s are shown by the dashed
arrows. Note that the delay by m = 1/2 sample in units of c, rotates all the q’s by half the
original angle of 2π/d = 2π/3, that is, by π/3.

w0

q0

mc = 4/3

q1

q2 w4

w5

w6

w7

w2
w3 w1

b0

b7

b6
b5

b4

b3 b2

b1

Fig. 16.1.15 Successive positions of q with d = 3 and delay m = 1/2.

Down-truncation gives the following integer values for the q’s and corresponding buffer
entries:

[q0, q1, q2]= [1,6,4][
w[1],w[6],w[4]

] = [b7, b2, b4]

16.1. DIGITAL WAVEFORM GENERATORS 791

Up-truncation gives:

[q0, q1, q2]= [2,7,4][
w[2],w[7],w[4]

] = [b6, b1, b4]

For the rounding case, we have

[q0, q1, q2]= [1,7,4][
w[1],w[7],w[4]

] = [b7, b1, b4]

For the linear interpolation case, we have the outputs:

1 < q0 < 2 ⇒ y0 = w[1]+(q0 − 1)(w[2]−w[1])= 1

3
b6 + 2

3
b7

6 < q1 < 7 ⇒ y1 = w[6]+(q1 − 6)(w[7]−w[6])= 2

3
b1 + 1

3
b2

q2 = 4 ⇒ y2 = w[4]= b4

Thus, depending on the output method, the following period-3 delayed subsequences will
be generated:

[b7, b2, b4, b7, b2, b4, . . .] (truncate down)
[b6, b1, b4, b6, b1, b4, . . .] (truncate up)
[b7, b1, b4, b7, b1, b4, . . .] (round)
[y0, y1, y2, y0, y1, y2, . . .] (interpolate)

Thus, non-integer delays can be implemented easily. 	

The purpose of these examples was to show the mechanisms of producing subse-
quences of different periods from a fixed wavetable of a given length D.

The generation algorithm of the truncation method given in Eq. (16.1.47), as well
as the algorithms of the rounding and interpolation methods, can be programmed eas-
ily with the help of the routine gdelay2. To this end, we rewrite Eq. (16.1.47) in the
following way:

repeat forever :
i = �q�
output y = Aw[i]
gdelay2(D− 1,DF,&q)

(16.1.51)

where we introduced an amplitude scale factor A and expressed the shift c = DF in
terms of the digital frequency F = f/fs.

WithA and F as inputs to the algorithm, we can control the amplitude and frequency
of the generated waveform. The following routine wavgen.c is an implementation of
Eq. (16.1.51):

792 16. DIGITAL AUDIO EFFECTS

/* wavgen.c - wavetable generator (truncation method) */

void gdelay2();

double wavgen(D, w, A, F, q) usage: y = wavgen(D, w, A, F, &q);

int D; D = wavetable length

double *w, A, F, *q; A = amplitude, F = frequency, q = offset index

{
double y;
int i;

i = (int) (*q); truncate down

y = A * w[i];

gdelay2(D-1, D*F, q); shift c = DF

return y;
}

The following routines wavgenr and wavgeni are implementations of the rounding
and linear interpolation generator methods of Eqs. (16.1.46) and (16.1.48), with added
amplitude and frequency control:

/* wavgenr.c - wavetable generator (rounding method) */

void gdelay2();

double wavgenr(D, w, A, F, q) usage: y = wavgenr(D, w, A, F, &q);

int D; D = wavetable length

double *w, A, F, *q; A = amplitude, F = frequency, q = offset index

{
double y;
int k;

k = (int) (*q + 0.5); round

y = A * w[k];

gdelay2(D-1, D*F, q); shift c = DF

return y;
}

/* wavgeni.c - wavetable generator (interpolation method) */

void gdelay2();

double wavgeni(D, w, A, F, q) usage: y = wavgeni(D, w, A, F, &q);

int D; D = wavetable length

double *w, A, F, *q; A = amplitude, F = frequency, q = offset index

{
double y;
int i, j;

i = (int) *q; interpolate between w[i], w[j]

16.1. DIGITAL WAVEFORM GENERATORS 793

j = (i + 1) % D;

y = A * (w[i] + (*q - i) * (w[j] - w[i]));

gdelay2(D-1, D*F, q); shift c = DF

return y;
}

In computer music, such routines are known as wavetable oscillators [110,111]. They
are the workhorses of many digital music synthesis algorithms. Our C routines are mod-
eled after [111]. Figure 16.1.16 depicts such an oscillator in computer music notation.

A
y(n)

F

amp

freq
out

Fig. 16.1.16 Wavetable generator with amplitude and frequency control.

The amplitude and frequency inputs A and F do not have to be constant in time—
they can be changing from one sampling instant to the next. In general, the generated
signal will be given by:

y(n)= wavgen(D,w,A(n), F(n),&q) (16.1.52)

for n = 0,1,2, . . . , where A(n) and F(n) can themselves be generated as the outputs
of other oscillators to provide amplitude and frequency modulation.

The length-D wavetable w can be filled with any waveform, such as sinusoids, linear
combination of sinusoids of different harmonics, square, triangular, trapezoidal waves,
and so on, as long as one complete period of the desired waveform fits into the full
wavetable. Figure 16.1.17 shows one period of a square, triangular, and trapezoidal
wave.

D

i

0

1

D1 D2

D

i

0

1

D1

D1D

i

0

1

D1

D1

Fig. 16.1.17 Square, triangular, and trapezoidal waveforms.

The following C functions, sine, square, and trapez can be used to fill wavetables
with such basic waveforms.

/* sine.c - sine wavetable of length D */

#include <math.h>

double sine(D, i)

794 16. DIGITAL AUDIO EFFECTS

int D, i;
{

double pi = 4 * atan(1.0);

return sin(2 * pi * i / D);
}

/* square.c - square wavetable of length D, with D1 ones */

double square(D1, i)
int D1, i;
{

if (i < D1)
return 1;

else
return 0;

}

/* trapez.c - trapezoidal wavetable: D1 rising, D2 steady */

double trapez(D, D1, D2, i)
int D, D1, D2, i;
{

if (i < D1)
return i/(double) D1;

else
if (i < D1+D2)

return 1;
else

return (D - i)/(double) (D - D1 - D2);
}

To illustrate the usage of the wavetable generator routines, consider a wavetable w
of length D = 1000 and fill it with one period of a sinusoid. The following program
segment illustrates the reverse loading of the table using the function sine, and the
generation of five sinusoids, shown in Fig. 16.1.18. The same wavetable is used by all
sinusoids, but each is assigned its own offset index q that cycles around the wavetable
according to a given frequency.

double *w;
w = (double *) calloc(D, sizeof(double)); use: D = 1000

q1 = q2 = q3 = q4 = q5 = 0; initialize qs

for (i=0; i<D; i++) { load wavetable with a sinusoid

w[q1] = sine(D, i); may need the cast w[(int)q1]

gdelay2(D-1, 1.0, &q1);
}

gdelay2(D-1, -m*D*F2, &q4); reset q4 =mDF2

gdelay2(D-1, m*D*F2, &q5); reset q5 = −mDF2

for (n=0; n<Ntot; n++) { use: A = 1, Ntot = 1000

y1[n] = wavgen(D, w, A, F1, &q1); use: F1 = 1.0/D
y2[n] = wavgen(D, w, A, F2, &q2); use: F2 = 5.0/D

16.1. DIGITAL WAVEFORM GENERATORS 795

y3[n] = wavgen(D, w, A, F3, &q3); use: F3 = 10.5/D
y4[n] = wavgen(D, w, A, F4, &q4); use: F4 = F2

y5[n] = wavgen(D, w, A, F5, &q5); use: F5 = F2

}

Fig. 16.1.18 Waveforms generated from a common wavetable.

The signal y1(n) is the sinusoid stored in the wavetable that becomes the source of
all the other sinusoids. The first for-loop uses the offset index q1 to load the wavetable.
Upon exit from this loop, q1 has cycled back to q1 = 0. The frequency of y1(n) is one
cycle in D samples, or,

F1 = 1

D
= 0.001 cycles/sample

and the corresponding shift is c1 = DF1 = 1. The signal y2(n) is generated from the
same wavetable, but with frequency:

F2 = 5

D
= 0.005 cycles/sample

which corresponds to c2 = DF2 = 5 cycles in D samples. The wavetable is cycled over
every five of its entries. The signal y3(n) is also generated from the same wavetable,
but has frequency:

F3 = 10.5
D

= 0.0105 cycles/sample

796 16. DIGITAL AUDIO EFFECTS

which gives c3 = DF3 = 10.5, a non-integer value. The ten and a half cycles contained
in the D samples can be seen in the figure. The wavetable is cycled over every 10.5 of
its entries, and the output is obtained by the truncation method.

Finally, the last two signals y4(n) and y5(n) are the time-delayed and time-advanced
versions of y2(n) by m = 25 samples, that is, y4(n)= y2(n− 25) and y5(n)= y2(n+
25). They are right- and left-shifted relative to y2(n) by one-eighth cycle, as can be
seen in Fig. 16.1.18, because each F2-cycle contains 1/F2 = 200 samples and therefore
m = 25 corresponds to a (1/8) of a cycle.

Because they have frequency F2 and wavetable shift c2 = DF2 = 5, their effective
starting offsets will be q4 = mc2 = 25×5 = 125, and q5 = −mc2 = −125 (or, rather
q5 = 1000−125 = 855). These initial q-values are obtained by the two calls to gdelay2
preceding the generation loop, with arguments ∓mc2.

More complex waveforms can be generated by using several wavetables in combina-
tion. For example, Fig. 16.1.19 connects two wavetables together to implement ampli-
tude modulation.

A(n)

y(n)

F

Aenv wenv
wFenv

Fig. 16.1.19 Amplitude modulation.

The first generator wenv produces a time-varying envelope A(n) that becomes the
amplitude to the second generator whose wavetable w stores a copy of the desired
signal, such as a note from an instrument. The envelope shape stored in the wavetable
wenv could be triangular or trapezoidal, imitating instrument attack and decay. If we
denote the main signal stored in w by x(n), the configuration of Fig. 16.1.19 generates
the modulated signal:

y(n)= A(n)x(n)

The amplitude input to the envelope generator Aenv is a constant. Its frequency Fenv

is typically chosen such that the envelope cycles only over one cycle during the duration
Ntot of the signal, that is,

Fenv = 1

Ntot
(16.1.53)

As an example, consider the generation of a sinusoidal note of frequency F = 0.01
cycles/sample:

x(n)= sin(2πFn), n = 0,1, . . . ,Ntot − 1

with duration ofNtot = 1000 samples. The signal x(n) is to be modulated by a triangular
envelope whose attack portion is one-quarter its duration.

At a 44 kHz sampling rate, the frequency F would correspond to the 440 Hz note,
A440. Such a triangular envelope would be characteristic of a piano. Using wavetables

16.1. DIGITAL WAVEFORM GENERATORS 797

of duration D = 1000, the following program segment illustrates the loading (in reverse
order) of the wavetables with the appropriate waveforms, followed by the generation of
the triangular envelopeA(n) and the modulated sinusoid y(n). The truncation version,
wavgen, of the generator routines was used:

double *w, *wenv, q, qenv;
w = (double *) calloc(D, sizeof(double)); allocate wavetables

wenv = (double *) calloc(D, sizeof(double)); use: D = 1000

q = qenv = 0; initialize offsets

for (i=0; i<D; i++) { load wavetables:

w[q] = sine(D, i); may need the cast w[(int)q]

wenv[qenv] = trapez(D, D/4, 0, i); triangular envelope

gdelay2(D-1, 1.0, &q); or, cdelay2(D-1, &q);

gdelay2(D-1, 1.0, &qenv);
}

use: Ntot = 1000 or 2000

Fenv = 1.0 / Ntot; envelope frequency

for (n=0; n<Ntot; n++) {
A[n] = wavgen(D, wenv, Aenv, Fenv, &qenv); use: Aenv = 1.0
y[n] = wavgen(D, w, A[n], F, &q); use: F = 0.01

}

Figure 16.1.20 shows the two cases Ntot = 1000,2000. Because F = 0.01 cy-
cles/sample, there are FNtot cycles of the sinusoid in the duration of Ntot, that is,
FNtot = 0.01×1000 = 10 cycles in the first case, and FNtot = 0.01×2000 = 20 cy-
cles in the second. For visual reference, the graphs also plot the triangular envelope
A(n) and its negative, −A(n).

Fig. 16.1.20 Triangularly modulated sinusoid.

The triangular wave was generated from the trapezoidal function by setting D1 =
D/4 and D2 = 0. For both values of Ntot, the triangular envelope cycles only once, be-
cause of the choice (16.1.53) of its frequency. Note that the offset shift c corresponding
to the frequency F will be c = DF = 1000×0.01 = 10, whereas the shift for the envelope
wavetable will be cenv = DFenv = D/Ntot = 1 or 0.5 in the two cases.

798 16. DIGITAL AUDIO EFFECTS

Figure 16.1.21 shows another example, where the envelope signal was chosen to be
varying sinusoidally about a constant value:

Fig. 16.1.21 Sinusoidally modulated sinusoid.

A(n)= 1+ 0.25 cos(2πFenvn)

so that the generated waveform will be:

y(n)= A(n)x(n)= (1+ 0.25 cos(2πFenvn)
)

sin(2πFn)

The envelope frequency was chosen to be Fenv = 2/Ntot for the first graph and
Fenv = 3.5/Ntot for the second. These choices correspond to 2 and 3.5 envelope cycles
in Ntot samples. With these values of Fenv, the generation part for this example was
carried out by exactly the same for-loop as above. The initial loading of the wavetables
was carried out by:

q = qenv = 0; initialize offsets

for (i=0; i<D; i++) { load wavetables

w[q] = sine(D, i); sinusoidal signal

wenv[qenv] = 1 + 0.25 * sine(D, i); sinusoidal envelope

gdelay2(D-1, 1.0, &q); or, cdelay2(D-1, &q);

gdelay2(D-1, 1.0, &qenv);
}

In addition to amplitude modulation, we may introduce frequency modulation into
the generated waveform. Figure 16.1.22 shows this case, where the first generator pro-
duces a periodic output with amplitudeAm and frequency Fm which is added to a carrier
frequency Fc and the result becomes the frequency input to the second generator. For
example, using a sinusoidal wavetable wm will produce the frequency:

F(n)= Fc +Am sin(2πFmn) (16.1.54)

so that if the signal generator w is a unit-amplitude sinusoid, then the modulated output
will be:

16.1. DIGITAL WAVEFORM GENERATORS 799

A

y(n)

F(n)

Fc

Am
wm

w

Fm

Fig. 16.1.22 Frequency modulation.

y(n)= sin
(
2πF(n)n

)
(16.1.55)

The following program segment illustrates the generation of four types of frequency
modulated waveforms, shown in Fig. 16.1.23. The four cases can be obtained by uncom-
menting the applicable statements:

double *w, *wm;
w = (double *) calloc(D, sizeof(double));
wm = (double *) calloc(D, sizeof(double));

q = qm = 0;

for (i=0; i<D; i++) { load wavetables

w[q] = sine(D, i); signals: y1(n), y2(n), y3(n)
/* w[q] = square(D/2, i); */ signal: y4(n)

gdelay2(D-1, 1.0, &q);

wm[qm] = sine(D, i); signal: y1(n)
/* wm[qm] = 2 * square(D/2, i) - 1; */ signal: y2(n)
/* wm[qm] = trapez(D, D, 0, i); */ signals: y3(n), y4(n)

gdelay2(D-1, 1.0, &qm);
}

for (n=0; n<Ntot; n++) { use: Ntot = 1000

F[n] = Fc + wavgen(D, wm, Am, Fm, &qm);
y[n] = wavgen(D, w, A, F[n], &q); use: A = 1

}

The lengths of the two wavetables w and wm were D = 1000 and the signal duration
Ntot = 1000. The signal y1(n) was a frequency modulated sinusoid of the form of
Eq. (16.1.55) with signal parameters:

Fc = 0.02, Am = 0.5Fc, Fm = 0.003

It might be thought of as a vibrato effect. The modulation frequency has FmNtot =
3 cycles in the Ntot samples. The frequency F(n) rises and falls between the limits
Fc − Am ≤ F(n)≤ Fc + Am, or 0.5Fc ≤ F(n)≤ 1.5Fc. The quantity F(n)/Fc is also
plotted in order to help visualize the effect of increasing and decreasing frequency.

The signal y2(n) is a sinusoid whose frequency is modulated by a square wave that
switches between the values Fc + Am and Fc − Am, where again Am = 0.5Fc. The
modulating square wave has frequency of 3 cycles in 1000 samples or Fm = 0.003.
Note how the modulated signal y2(n) switches frequency more abruptly than y1(n).

800 16. DIGITAL AUDIO EFFECTS

Fig. 16.1.23 Frequency modulated waveforms.

The signal y3(n) is a sinusoid whose frequency is linearly swept between the values
Fc ≤ F(n)≤ Fc +Am, where here Am = Fc so that F(n) doubles. It might be thought
of as a portamento effect. The sawtooth generator was implemented with the function
trapez, with arguments D1 = D and D2 = 0. Its frequency was chosen to be 2 cycles
in 1000 samples, or Fm = 0.002.

Finally, the signal y4(n) is a square wave, generated by square with D1 = D/2,
whose frequency is linearly swept between Fc and 2Fc with a modulation frequency of
2 cycles in 1000 samples, or Fm = 0.002.

Complex waveforms with rich sounds can be generated by combining amplitude
and frequency modulation, as well as introducing such modulations on more than one
level, for example, amplitude and/or frequency modulation of the amplitude generator
in which Aenv and Fenv are themselves modulated by a third wavetable generator, and
so on.

16.2 Digital Audio Effects

Audio effects, such as delay, echo, reverberation, comb filtering, flanging, chorusing,
pitch shifting, stereo imaging, distortion, compression, expansion, noise gating, and
equalization, are indispensable in music production and performance [131–161,163–
173]. Some are also available for home and car audio systems.

16.2. DIGITAL AUDIO EFFECTS 801

Most of these effects are implemented using digital signal processors, which may
reside in separate modules or may be built into keyboard workstations and tone gener-
ators. A typical audio effects signal processor is shown in Fig. 16.2.1.

audio
effects
DSP

radio,
CD player,
tape player,
recording channel,
keyboard,
other instrument,
tone generator,
effects processor

amplifier/speakers,
recording channel,
mixer, or
effects processor

audio in audio out

Fig. 16.2.1 Audio effects signal processor.

The processor takes in the “dry” analog input, produced by an instrument such as
a keyboard or previously recorded on some medium, and samples it at an appropriate
audio rate, such as 44.1 kHz (or less, depending on the effect). The sampled audio
signal is then subjected to a DSP effects algorithm and the resulting processed signal is
reconstructed into analog form and sent on to the next unit in the audio chain, such as
a speaker system, a recording channel, a mixer, or another effects processor.

In all-digital recording systems, the sampling/reconstruction parts can be eliminated
and the original audio input can remain in digitized form throughout the successive
processing stages that subject it to various DSP effects or mix it with similarly processed
inputs from other recording tracks.

In this section, we discuss some basic effects, such as delays, echoes, flanging, cho-
rusing, reverberation, and dynamics processors. The design of equalization filters will
be discussed in Chapters 11 and 12.

16.2.1 Delays, Echoes, and Comb Filters

Perhaps the most basic of all effects is that of time delay because it is used as the building
block of more complicated effects such as reverb.

In a listening space such as a room or concert hall, the sound waves arriving at our
ears consist of the direct sound from the sound source as well as the waves reflected
off the walls and objects in the room, arriving with various amounts of time delay and
attenuation.

Repeated multiple reflections result in the reverberation characteristics of the lis-
tening space that we usually associate with a room, hall, cathedral, and so on.

A single reflection or echo of a signal can be implemented by the following filter,
which adds to the direct signal an attenuated and delayed copy of itself:

y(n)= x(n)+ax(n−D) (echo filter) (16.2.1)

The delay D represents the round-trip travel time from the source to a reflecting
wall and the coefficient a is a measure of the reflection and propagation losses, so that
|a| ≤ 1. The transfer function and impulse response of this filter are:

802 16. DIGITAL AUDIO EFFECTS

H(z)= 1+ az−D, h(n)= δ(n)+aδ(n−D) (16.2.2)

Its block diagram realization is shown in Fig. 16.2.2. The frequency response is
obtained from Eq. (16.2.2) by setting z = ejω:

H(ω)= 1+ ae−jωD, |H(ω)| =
√

1+ 2a cos(ωD)+a2 (16.2.3)

w0(n) s0

wD(n) sD

x(n) y(n)

a

z-D

D
n

0

1 h(n)

a

Fig. 16.2.2 Digital echo processor.

Such a filter acts as an FIR comb filter whose frequency response exhibits peaks at
multiples of the fundamental frequency f1 = fs/D. The zeros of the transfer function
H(z) are the solutions of the equation (assuming 0 < a ≤ 1):

1+ az−D = 0 ⇒ zk = ρeπj(2k+1)/D, k = 0,1, . . . ,D− 1 (16.2.4)

where ρ = a1/D. The magnitude response and the zero pattern are shown in Fig. 16.2.3,
for the caseD = 8. Ifa = 1, thenρ = 1, and the zeros lie on the unit circle corresponding
to exact zeros in the frequency response.

2π
D

2π/D
π/D

4π
D

6π
D

2π
ω

0 . . .

1+a

1-a

|H(ω)|

ρ

=zeros
unit
circle

Fig. 16.2.3 FIR comb filter, with peaks at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

At the dip frequencies ωk = (2k + 1)π/D, we have ejωkD = ejπ = −1 giving
H(ωk)= 1 − a. Between the dip frequencies, that is, at ωk = 2πk/D, we have peaks
with value H(ωk)= 1 + a, because ejωkD = 1. In units of Hz, these peak frequencies
are:

fk = k
fs
D
= kf1 , k = 0,1, . . . ,D− 1 (16.2.5)

The sample processing algorithm for this filter is given below, implemented with
both a linear and circular delay line. As we mentioned in Chapter 4, for audio signals

16.2. DIGITAL AUDIO EFFECTS 803

the delay D can be very large and therefore the circular delay line is more efficient.
Denoting the (D+1)-dimensional delay-line buffer by w = [w0,w1, . . . ,wD], we have:

for each input sample x do:
y = x+ awD
w0 = x
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
y = x+ asD
∗p = x
cdelay(D,w,&p)

Note that the quantitieswD in the linear case and sD = tap(D,w, p,D) in the circular
one represent theDth output of the tapped delay line, that is, the signal x(n−D). Comb
filters, like the above echo processor, arise whenever the direct signal is mixed with its
delayed replicas. For example, instead of adding the echo we can subtract it, obtaining
(with a > 0):

y(n)= x(n)−ax(n−D) (16.2.6)

The transfer function and frequency response are now

H(z)= 1− az−D, H(ω)= 1− ae−jωD (16.2.7)

having peaks at ωk = (2k+ 1)π/D and dips at ωk = 2πk/D, k = 0,1, . . . ,D− 1. The
magnitude response and zero pattern are shown in Fig. 16.2.4, for D = 8. Similarly, if
we add three successive echoes, we obtain the filter:

y(n)= x(n)+ax(n−D)+a2x(n− 2D)+a3x(n− 3D) (16.2.8)

Using the finite geometric series, we can express the transfer function as

H(z)= 1+ az−D + a2z−2D + a3z−3D = 1− a4z−4D

1− az−D
(16.2.9)

2π
D

2π/D

4π
D

6π
D

2π
ω

0 . . .

1+a

1-a

|H(ω)|

ρ

=zeros
unit
circle

Fig. 16.2.4 Comb filter of Eq. (16.2.6), with dips at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

It follows that H(z) vanishes at the zeros of the numerator which are not zeros of
the denominator, that is,

z4D = a4, but zD �= a

804 16. DIGITAL AUDIO EFFECTS

or, equivalently, at

zk = ρe2πjk/4D, k = 0,1, . . . ,4D− 1, but k not a multiple of 4

The filter has peaks at frequencies for which k is a multiple of 4, indeed, if k = 4m,
m = 0,1, . . . ,D− 1, then

ωk = 2πk
4D

= 2π(4m)
4D

= 2πm
D

⇒ ejωkD = 1

and the filter’s response takes on the maximum value H(ωk)= 1+ a+ a2 + a3.
The magnitude response and zero pattern are shown in Fig. 16.2.5, for D = 8. The

dips occur at the 32nd roots of unity, except at the 8th roots of unity at which there are
peaks.

2π
D

2π/D

4π
D

6π
D

2π
ω

0 . . .

|H(ω)| =zeros
unit
circle

ρ

Fig. 16.2.5 Comb filter of Eq. (16.2.8), with peaks at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

Adding up an infinite number of successive echoes imitates the reverberating nature
of a room and gives rise to an IIR comb filter :

y(n)= x(n)+ax(n−D)+a2x(n− 2D)+· · · (16.2.10)

which has impulse response:

h(n)= δ(n)+aδ(n−D)+a2δ(n− 2D)+· · · (16.2.11)

and transfer function:

H(z)= 1+ az−D + a2z−2D + · · ·

which can be summed by the geometric series into the form:

H(z)= 1

1− az−D
(plain reverberator) (16.2.12)

The I/O equation (16.2.10) can then be recast recursively as

y(n)= ay(n−D)+x(n) (16.2.13)

A block diagram realization is shown in Fig. 16.2.6. The feedback delay causes a unit
impulse input to reverberate at multiples of D, that is, at n = 0,D,2D, Such simple

16.2. DIGITAL AUDIO EFFECTS 805

recursive comb filters form the elementary building blocks of more complicated reverb
processors, and will be discussed further in Section 16.2.3.

The transfer function (16.2.12) has poles at pk = ρejωk , k = 0,1, . . . ,D − 1, where
ωk = 2πk/D and ρ = a1/D. They are spaced equally around the circle of radius ρ, as
shown in Fig. 16.2.7, for D = 8. At the pole frequencies ωk, the frequency response
develops peaks, just like the FIR comb of Fig. 16.2.3. Here, the sharpness of the peaks
depends on how close to the unit circle the radius ρ is.

x(n) y(n)

z-D

a

w0(n)s0

wD(n)sD

D 2D
n

0

1 h(n)
a

a2

...

Fig. 16.2.6 Plain reverberator.

The repetition of the echoes every D samples corresponds to the fundamental repe-
tition frequency of f1 = fs/D Hz, orω1 = 2π/D. In music performance, it is sometimes
desired to lock the frequency of the decaying echoes to some external frequency, such
as a drum beat. If f1 is known, the proper value of D can be found from D = fs/f1, or
the delay in seconds TD = DT = D/fs = 1/f1.

2π
D

2π/D

4π
D

6π
D

2π
ω

0 . . .

1/(1-a)

1/(1+a)

|H(ω)|

ρ

=poles
unit
circle

Fig. 16.2.7 IIR comb filter, with peaks at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

The sample processing algorithm for the realization of Fig. 16.2.6 can be given in
terms of a linear or circular delay-line buffer, as follows:

for each input sample x do:
y = x+ awD
w0 = y
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
y = x+ asD
∗p = y
cdelay(D,w,&p)

(16.2.14)

Note that, at each time instant, the output of the delay line is available and can be
used to compute the filter’s output y. The delay line cannot be updated until after y

806 16. DIGITAL AUDIO EFFECTS

has been computed and fed back into the input of the delay. The quantities wD and sD
represent the Dth tap output of the delay, that is, the signal y(n−D).

The effective time constant for the filter response to decay below a certain level,
say ε, can be obtained following the discussion of Section 6.3.2. At time n = mD the
impulse response has dropped to ρn = ρmD = am; therefore, the effective time constant
neff =meffD will be such that

ρneff = ameff = ε

which can be solved for meff and neff:

neff =meffD = ln ε
lna

D = ln ε
lnρ

(16.2.15)

and in seconds:

τeff = neffT = ln ε
lna

TD (16.2.16)

where T is the sampling interval, such that fs = 1/T, and TD = DT is the delayD in sec-
onds. The so-called 60 dB reverberation time constant has ε = 10−3, which corresponds
to a 60 dB attenuation of the impulse response.

16.2.2 Flanging, Chorusing, and Phasing

The value of the delayD in samples, or in seconds TD = DT, can have a drastic effect on
the perceived sound [135,136,141]. For example, if the delay is greater than about 100
milliseconds in the echo processor (16.2.1), the delayed signal can be heard as a quick
repetition, a “slap”. If the delay is less than about 10 msec, the echo blends with the
direct sound and because only certain frequencies are emphasized by the comb filter,
the resulting sound may have a hollow quality in it.

Delays can also be used to alter the stereo image of the sound source and are indis-
pensable tools in stereo mixing. For example, a delay of a few milliseconds applied to
one of the speakers can cause shifting and spreading of the stereo image. Similarly, a
mono signal applied to two speakers with such a small time delay will be perceived in
stereo.

More interesting audio effects, such as flanging and chorusing, can be created by
allowing the delay D to vary in time [135,136,141]. For example, Eq. (16.2.1) may be
replaced by:

y(n)= x(n)+ax(n− d(n)
)

(flanging processor) (16.2.17)

A flanging effect can be created by periodically varying the delay d(n) between 0 and
10 msec with a low frequency such as 1 Hz. For example, a delay varying sinusoidally
between the limits 0 ≤ d(n)≤ D will be:

d(n)= D
2

(
1− cos(2πFdn)

)
(16.2.18)

16.2. DIGITAL AUDIO EFFECTS 807

where Fd is a low frequency, in units of [cycles/sample].
Its realization is shown in Fig. 16.2.8. The peaks of the frequency response of the

resulting time-varying comb filter, occurring at multiples of fs/d, and its notches at
odd multiples of fs/2d, will sweep up and down the frequency axis resulting in the
characteristic whooshing type sound called flanging. The parameter a controls the depth
of the notches. In units of [radians/sample], the notches occur at odd multiples of π/d.

s(n)

x(n) y(n)

z-d
variable
delay d a

π
d

3π
d

2π0 . . .

1+a

1-a

|H(ω)|

ω

Fig. 16.2.8 Flanging effect, created with a periodically varying delay d(n).

In the early days, the flanging effect was created by playing the music piece simulta-
neously through two tape players and alternately slowing down each tape by manually
pressing the flange of the tape reel.

Because the variable delay d can take non-integer values within its range 0 ≤ d ≤ D,
the implementation of Eq. (16.2.17) requires the calculation of the output x(n − d) of
a delay line at such non-integer values. As we discussed in Section 16.1.3, this can be
accomplished easily by truncation, rounding or linear interpolation.

Linear interpolation is the more accurate method, and can be implemented with the
help of the following routine tapi.c, which is a generalization of the routine tap to
non-integer values of d.

/* tapi.c - interpolated tap output of a delay line */

double tap();

double tapi(D, w, p, d) usage: sd = tapi(D, w, p, d);

double *w, *p, d; d = desired non-integer delay

int D; p = circular pointer to w
{

int i, j;
double si, sj;

i = (int) d; interpolate between si and sj
j = (i+1) % (D+1); if i = D, then j = 0; otherwise, j = i+ 1

si = tap(D, w, p, i); note, si(n) = x(n− i)
sj = tap(D, w, p, j); note, sj(n) = x(n− j)

return si + (d - i) * (sj - si);
}

The input d must always be restricted to the range 0 ≤ d ≤ D. Note that if d is one
of the integers d = 0,1, . . . ,D, the routine’s output is the same as the output of tap.
The mod-(D+1) operation in the definition of j is required to keep j within the array

808 16. DIGITAL AUDIO EFFECTS

bounds 0 ≤ j ≤ D, and is effective only when d = D, in which case the output is the
content of the last register of the tapped delay line.

The following routine tapi2.c is a generalization of the routine tap2, which is im-
plemented in terms of the offset index q instead of the circular pointer p, such that
p = w+ q.

/* tapi2.c - interpolated tap output of a delay line */

double tap2();

double tapi2(D, w, q, d) usage: sd = tapi2(D, w, q, d);

double *w, d; d = desired non-integer delay

int D, q; q = circular offset index

{
int i, j;
double si, sj;

i = (int) d; interpolate between si and sj
j = (i+1) % (D+1); if i = D, then j = 0; otherwise, j = i+ 1

si = tap2(D, w, q, i); note, si(n) = x(n− i)
sj = tap2(D, w, q, j); note, sj(n) = x(n− j)

return si + (d - i) * (sj - si);
}

Linear interpolation should be adequate for low-frequency inputs, having maximum
frequency much less than the Nyquist frequency. For faster varying inputs, more accu-
rate interpolation methods can be used, designed by the methods of Chapter 14.

As an example illustrating the usage of tapi, consider the flanging of a plain sinu-
soidal signal of frequency F = 0.05 cycles/sample with length Ntot = 200 samples, so
that there are FNtot = 10 cycles in the 200 samples. The flanged signal is computed by

y(n)= 1

2

[
x(n)+x(n− d(n)

)]
(16.2.19)

with d(n) given by Eq. (16.2.18), D = 20, and Fd = 0.01 cycles/sample, so that there
are FdNtot = 2 cycles in the 200 samples.

The following program segment implements the calculation of the term s(n)= x
(
n−

d(n)
)

and y(n). A delay-line buffer of maximal dimension D+ 1 = 21 was used:

double *w, *p;
w = (double *) calloc(D+1, sizeof(double));
p = w;

for (n=0; n<Ntot; n++) {
d = 0.5 * D * (1 - cos(2 * pi * Fd * n)); time-varying delay

x = cos(2 * pi * F * n); input x(n)
s = tapi(D, w, p, d); delay-line output x(n− d)
y = 0.5 * (x + s); filter output

*p = x; delay-line input

cdelay(D, w, &p); update delay line

}

16.2. DIGITAL AUDIO EFFECTS 809

Fig. 16.2.9 Flanged sinusoidal signal.

Figure 16.2.9 shows the signals x(n), s(n)= x
(
n−d(n)), y(n), as well as the time-

varying delay d(n) normalized by D.
Recursive versions of flangers can also be used that are based on the all-pole comb

filter (16.2.13). The feedback delay D in Fig. 16.2.6 is replaced now by a variable delay
d. The resulting flanging effect tends to be somewhat more pronounced than in the FIR
case, because the sweeping comb peaks are sharper, as seen in Fig. 16.2.7.

Chorusing imitates the effect of a group of musicians playing the same piece simulta-
neously. The musicians are more or less synchronized with each other, except for small
variations in their strength and timing. These variations produce the chorus effect. A
digital implementation of chorusing is shown in Fig. 16.2.10, which imitates a chorus of
three musicians.

x(n) y(n)

a1(n)

x(n-d1(n))

x(n-d2(n))

a2(n)

delay
d1(n)

delay
d2(n)

Fig. 16.2.10 Chorus effect, with randomly varying delays and amplitudes.

The small variations in the time delays and amplitudes can be simulated by varying
them slowly and randomly [135,136]. A low-frequency random time delay d(n) in the
interval 0 ≤ d(n)≤ D may be generated by

d(n)= D
(
0.5+ v(n)

)
(16.2.20)

or, if the delay is to be restricted in the interval D1 ≤ d(n)< D2

d(n)= D1 + (D2 −D1)
(
0.5+ v(n)

)
(16.2.21)

810 16. DIGITAL AUDIO EFFECTS

The signal v(n) is a zero-mean low-frequency random signal varying between [−0.5,0.5).
It can be generated by the linearly interpolated generator routine ranl of Appendix A.2.
Given a desired rate of variation Fran cycles/sample for v(n), we obtain the period
Dran = 1/Fran of the generator ranl.

As an example, consider again the signal y(n) defined by Eq. (16.2.19), but with
d(n) varying according to Eq. (16.2.20). The input is the same sinusoid of frequency
F = 0.05 and length Ntot = 200. The frequency of the random signal v(n) was taken
to be Fran = 0.025 cycles/sample, corresponding to NtotFran = 5 random variations in
the 200 samples. The period of the periodic generator ranl was Dran = 1/Fran = 40
samples. The same program segment applies here, but with the change:

d = D * (0.5 + ranl(Dran, u, &q, &iseed));

where the routine parameters u, q, iseed are described in Appendix A.2.
Figure 16.2.11 shows the signals x(n), s(n)= x

(
n − d(n)

)
, y(n), as well as the

quantity d(n)/D.

Fig. 16.2.11 Chorusing or doubling of sinusoidal signal.

Phasing or phase shifting is a popular effect among guitarists, keyboardists, and
vocalists. It is produced by passing the sound signal through a narrow notch filter and
combining a proportion of the filter’s output with the direct sound.

The frequency of the notch is then varied in a controlled manner, for example, using
a low-frequency oscillator, or manually with a foot control. The strong phase shifts that
exist around the notch frequency combine with the phases of the direct signal and cause
phase cancellations or enhancements that sweep up and down the frequency axis.

A typical overall realization of this effect is shown in Fig. 16.2.12. Multi-notch filters
can also be used. The effect is similar to flanging, except that in flanging the sweeping
notches are equally spaced along the frequency axis, whereas in phasing the notches
can be unequally spaced and independently controlled, in terms of their location and
width.

The magnitude and phase responses of a typical single-notch filter are shown in
Fig. 16.2.13. Note that the phase response argH(ω) remains essentially zero, except in
the vicinity of the notch where it has rapid variations.

16.2. DIGITAL AUDIO EFFECTS 811

x(n) y(n)

a

variable
multi-notch
filter H(z)

direct sound

Fig. 16.2.12 Phasing effect with multi-notch filter.

In Section 6.4.3, we discussed simple methods of constructing notch filters. The
basic idea was to start with the notch polynomial N(z), whose zeros are at the desired
notch frequencies, and place poles behind these zeros inside the unit circle, at some
radial distance ρ. The resulting pole/zero notch filter was then H(z)= N(z)/N(ρ−1z).

Such designs are simple and effective, and can be used to construct the multi-notch
filter of a phase shifter. Choosing ρ to be near unity gives very narrow notches. However,
we cannot have complete and separate control of the widths of the different notches.

π
ω

0

1

1/2

|H(ω)|2

π

π

-π

ω
0

argH(ω)

Δω

ω0

ω0

3 dB

Fig. 16.2.13 Narrow notch filter causes strong phase shifts about the notch frequency.

A design method that gives precise control over the notch frequency and its 3-dB
width is the bilinear transformation method, to be discussed in detail in Chapter 12.
Using this method, a second-order single-notch filter can be designed as follows:

H(z)= b
1− 2 cosω0 z−1 + z−2

1− 2b cosω0 z−1 + (2b− 1)z−2
(16.2.22)

where the filter parameter b is expressible in terms of the 3-dB width Δω (in units of
radians per sample) as follows:

b = 1

1+ tan(Δω/2)
(16.2.23)

The Q-factor of a notch filter is another way of expressing the narrowness of the
filter. It is related to the 3-dB width and notch frequency by:

Q = ω0

Δω
⇒ Δω = ω0

Q
(16.2.24)

812 16. DIGITAL AUDIO EFFECTS

Thus, the higher the Q, the narrower the notch. The transfer function (16.2.22) is
normalized to unity gain at DC. The basic shape of H(z) is that of Fig. 16.2.13. Because
|H(ω)| is essentially flat except in the vicinity of the notch, several such filters can be
cascaded together to create a multi-notch filter, with independently controlled notches
and widths.

As an example, consider the design of a notch filter with notch frequency ω0 =
0.35π, for the two cases of Q = 3.5 and Q = 35. The corresponding 3-dB widths are in
the two cases:

Δω = ω0

Q
= 0.35π

3.5
= 0.10π and Δω = ω0

Q
= 0.35π

35
= 0.01π

The filter coefficients are then computed from Eq. (16.2.23), giving the transfer func-
tions in the two cases:

H(z) = 0.8633
1− 0.9080z−1 + z−2

1− 0.7838z−1 + 0.7265z−2
, (for Q = 3.5)

H(z) = 0.9845
1− 0.9080z−1 + z−2

1− 0.8939z−1 + 0.9691z−2
, (for Q = 35)

The magnitude squared and phase responses are shown in Fig. 16.2.14.

Fig. 16.2.14 Notch filters with ω0 = 0.35π, Q = 3.5 and Q = 35.

Given a time-varying notch frequency, say ω0(n), and a possibly time-varying width
Δω(n), the filter coefficients in Eq. (16.2.22) will also be time-varying. The time-domain
implementation of the filter can be derived using a particular realization, such as the
canonical realization. For example, if the notch frequency sweeps sinusoidally between
the values ω1 ±ω2 at a rate ωsweep, that is, ω0(n)= ω1 +ω2 sin(ωsweepn), then the
following sample processing algorithm will determine the filter coefficients on the fly
and use them to perform the filtering of the current input sample (here, Δω and b
remain fixed):

16.2. DIGITAL AUDIO EFFECTS 813

for each time instant n and input sample x do:
compute current notch ω0 =ω1 +ω2 sin(ωsweepn)
w0 = bx+ 2b cosω0 w1 − (2b− 1)w2

y = w0 − 2 cosω0 w1 +w2

w2 = w1

w1 = w0

An alternative technique for designing multi-notch phasing filters was proposed by
Smith [157]. The method uses a cascade of second-order allpass filters, each having a
phase response that looks like that of Fig. 16.2.13 and changes by 180o at the notch. If
the output of the allpass filter is added to its input, the 180o phase shifts will introduce
notches at the desired frequencies.

The three effects of flanging, chorusing, and phasing are based on simple filter struc-
tures that are changed into time-varying filters by allowing the filter coefficients or delays
to change from one sampling instant to the next.

The subject of adaptive signal processing [27] is also based on filters with time-
varying coefficients. The time dependence of the coefficients is determined by certain
design criteria that force the filter to adjust and optimize itself with respect to its inputs.
The implementation of an adaptive algorithm is obtained by augmenting the sample
processing algorithm of the filter by adding to it the part that adjusts the filter weights
from one time instant to the next [45].

Adaptive signal processing has widespread applications, such as channel equaliza-
tion, echo cancellation, noise cancellation, adaptive antenna systems, adaptive loud-
speaker equalization, adaptive system identification and control, neural networks, and
many others.

16.2.3 Digital Reverberation

The reverberation of a listening space is typically characterized by three distinct time
periods: the direct sound, the early reflections, and the late reflections [131–160], as
illustrated in Fig. 16.2.15.

The early reflections correspond to the first few reflections off the walls of the room.
As the waves continue to bounce off the walls, their density increases and they disperse,
arriving at the listener from all directions. This is the late reflection part.

The reverberation time constant is the time it takes for the room’s impulse response
to decay by 60 dB. Typical concert halls have time constants of about 1.8–2 seconds.

The sound quality of a concert hall depends on the details of its reverberation im-
pulse response, which depends on the relative locations of the sound source and the
listener. Therefore, simulating digitally the reverb characteristics of any given hall is
an almost impossible task. As a compromise, digital reverb processors attempt to sim-
ulate a typical reverberation impulse response of a hall, and give the user the option
of tweaking some of the parameters, such as the duration of the early reflections (the
predelay time), or the overall reverberation time.

Other interesting reverb effects can be accomplished digitally that are difficult or
impossible to do by analog means. For example, gated reverb is obtained by truncating

814 16. DIGITAL AUDIO EFFECTS

early
reflections

earliest
reflection

direct
sound

direct

early

late

late
reflections

t

predelay reverberation time

Fig. 16.2.15 Reverberation impulse response of a listening space.

the IIR response to an FIR one, as shown in Fig. 16.2.16, with a user-selectable gate time.
This type of reverb is very effective with snare drums [142]. Time-reversing a gated
response results in a reverse reverb that has no parallel in analog signal processing.

n n

gated reverb reverse reverb

h(n) h(n)

0 0
gate time gate time

Fig. 16.2.16 Gated and reversed reverberation responses.

The plain reverb filter shown in Fig. 16.2.6 is too simple to produce a realistic re-
verberation response. However, as suggested by Schroeder [152], it can be used as the
building block of more realistic reverb processors that exhibit the discrete early reflec-
tions and the diffuse late ones.

In most applications of DSP, we are interested in the steady state response of our
filters. Reverberation is an exception. Here, it is the transient response of a hall that gives
it its particular reverberation characteristics. The steady-state properties, however, do
have an effect on the overall perceived sound.

The peaks in the steady-state spectrum of the plain reverb filter of Eq. (16.2.12),
shown in Fig. 16.2.7, tend to accentuate those frequencies of the input signal that are
near the peak frequencies. To prevent such coloration of the input sound, Schroeder
also proposed [152] an allpass version of the plain reverberator that has a flat magnitude
response for all frequencies:

H(z)= −a+ z−D

1− az−D
(allpass reverberator) (16.2.25)

It has I/O difference equation:

16.2. DIGITAL AUDIO EFFECTS 815

y(n)= ay(n−D)−ax(n)+x(n−D) (16.2.26)

Its frequency and magnitude responses are obtained by setting z = ejω:

H(ω)= −a+ e−jωD

1− ae−jωD ⇒ |H(ω)| = 1, for all ω (16.2.27)

The magnitude response is constant in ω because the numerator and denominator
of H(ω) have the same magnitude, as can be seen from the simple identity:

| − a+ e−jωD| =
√

1− 2a cos(ωD)+a2 = |1− ae−jωD|

Although its magnitude response is flat, its transient response exhibits the same ex-
ponentially decaying pattern of echoes as the plain reverb. Indeed, the impulse response
of Eq. (16.2.25) can be obtained by splitting H(z) into the partial fraction expansion
form:

H(z)= A+ B
1− az−D

(16.2.28)

where A = −1/a and B = (1− a2)/a. Expanding the B-term into its geometric series,
gives

H(z)= (A+ B)+B(az−D + a2z−2D + a3z−3D + · · ·)

and taking inverse z-transforms leads to the impulse response:

h(n)= (A+ B)δ(n)+Baδ(n−D)+Ba2δ(n− 2D)+· · · (16.2.29)

Figure 16.2.17 shows the canonical realization of Eq. (16.2.25) realized by a common
delay z−D. It also shows the parallel realization of Eq. (16.2.28), which was Schroeder’s
original realization [152].

x(n) w0(n)

wD(n)

z-D

y(n)

a

-a

a

-1/a
y(n)

z-D

(1-a2)/a

x(n)

Fig. 16.2.17 Allpass reverberator in canonical and parallel form.

The sample processing algorithm of the canonical form, implemented with linear or
circular delay lines, is given below:

816 16. DIGITAL AUDIO EFFECTS

for each input sample x do:
w0 = x+ awD
y = −aw0 +wD
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
s0 = x+ asD
y = −as0 + sD
∗p = s0

cdelay(D,w,&p)

(16.2.30)

The circular delay versions of sample processing algorithms of the plain reverbera-
tor, Eq. (16.2.14), and the allpass reverberator, Eq. (16.2.30), can be implemented by the
following C routines plain.c and allpass.c:

/* plain.c - plain reverberator with circular delay line */

double tap();
void cdelay();

double plain(D, w, p, a, x) usage: y=plain(D,w,&p,a,x);

double *w, **p, a, x; p is passed by address

int D;
{

double y, sD;

sD = tap(D, w, *p, D); Dth tap delay output

y = x + a * sD; filter output

**p = y; delay input

cdelay(D, w, p); update delay line

return y;
}

/* allpass.c - allpass reverberator with circular delay line */

double tap();
void cdelay();

double allpass(D, w, p, a, x) usage: y=allpass(D,w,&p,a,x);

double *w, **p, a, x; p is passed by address

int D;
{

double y, s0, sD;

sD = tap(D, w, *p, D); Dth tap delay output

s0 = x + a * sD;
y = -a * s0 + sD; filter output

**p = s0; delay input

cdelay(D, w, p); update delay line

return y;
}

The linear buffer w is (D+1)-dimensional, and the circular pointer p must be ini-
tialized to p = w, before the first call. The following program segment illustrates their
usage:

16.2. DIGITAL AUDIO EFFECTS 817

double *w1, *p1;
double *w2, *p2;

w1 = (double *) calloc(D+1, sizeof(double));
w2 = (double *) calloc(D+1, sizeof(double));
p1 = w1; p2 = w2;

for (n=0; n<Ntot; n++) {
y1[n] = plain(D, w1, &p1, a, x[n]);
y2[n] = allpass(D, w2, &p2, a, x[n]);
}

The plain and allpass reverberator units can be combined to form more realistic
reverb processors. Schroeder’s reverberator [152,131,135,146,140,148] consists of sev-
eral plain units connected in parallel, which are followed by allpass units in cascade, as
shown in Fig. 16.2.18. The input signal can also have a direct connection to the output,
but this is not shown in the figure.

x(n)

x2(n)

x3(n)

x4(n)

x1(n)

x5(n) x6(n)

z-D1

z-D3

z-D4

a1

a2

a3

a4

b1

b2

b3

b4

z-D2

a5

-a5

z-D
5

y(n)-a6

a6
z-D6

Fig. 16.2.18 Schroeder’s reverb processor.

The implementation of the sample processing reverb algorithm can be carried out
with the help of the routines plain and allpass. It is assumed that each unit has
its own (Di+1)-dimensional circular delay-line buffer wi and corresponding circular
pointer pi :

818 16. DIGITAL AUDIO EFFECTS

for each input sample x do:
x1 = plain(D1,w1,&p1, a1, x)
x2 = plain(D2,w2,&p2, a2, x)
x3 = plain(D3,w3,&p3, a3, x)
x4 = plain(D4,w4,&p4, a4, x)
x5 = b1x1 + b2x2 + b3x3 + b4x4

x6 = allpass(D5,w5,&p5, a5, x5)
y = allpass(D6,w6,&p6, a6, x6)

(16.2.31)

The different delays in the six units cause the density of the reverberating echoes to
increase, generating an impulse response that exhibits the typical early and late reflec-
tion characteristics. Figure 16.2.19 shows the impulse response of the above filter for
the following choices of parameters:

D1 = 29, D2 = 37, D3 = 44, D4 = 50, D5 = 27, D6 = 31

a1 = a2 = a3 = a4 = a5 = a6 = 0.75

b1 = 1, b2 = 0.9, b3 = 0.8, b4 = 0.7

Fig. 16.2.19 Impulse response of Schroeder’s reverberator.

Another variation [146,148] of the plain reverb filter of Fig. 16.2.6 is obtained by
replacing the simple feedback multiplier a by a nontrivial lowpass filter G(z), resulting
in the transfer function:

H(z)= 1

1− z−DG(z)
(lowpass reverberator) (16.2.32)

Figure 16.2.20 shows a realization. The presence of the lowpass filter in the feedback
loop causes each echo to spread out more and more, resulting in a mellower and more
diffuse reverberation response. To see this, expand H(z) using the geometric series
formula to get:

16.2. DIGITAL AUDIO EFFECTS 819

H(z)= 1+ z−DG(z)+z−2DG2(z)+z−3DG3(z)+· · ·

giving for the impulse response h(n):

h(n)= δ(n)+g(n−D)+(g∗ g)(n− 2D)+(g∗ g∗ g)(n− 3D)+· · ·

where g(n) is the impulse response of G(z).
It follows that the first echo of the impulse response h(n) at n = D will have the

shape of impulse response g(n) the lowpass filter G(z), and will be more spread out
than just a single impulse. Similarly, the echo at n = 2D will be the impulse response
of G2(z), which is the convolution g ∗ g of g(n) with itself, and therefore it will be
even more spread out than g(n), and so on. The graphs of Fig. 16.2.22 illustrate these
remarks.

w0(n)

wD(n)

x(n)

G(z)

y(n)

u(n)

z-D

Fig. 16.2.20 Lowpass reverberator.

The feedback filterG(z) can be FIR or IIR. It is described, in general, by the following
Mth order transfer function, which also includes the FIR case:

G(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2 + · · · + bMz−M

1+ a1z−1 + a2z−2 + · · · + aMz−M
(16.2.33)

The filtering operation by G(z) can be implemented by the canonical realization
routine can. Assuming a (D+1)-dimensional circular buffer w for the delay D, and an
(M+1)-dimensional linear delay-line buffer v = [v0, v1, . . . , vM] for G(z), we can write
the sample processing algorithm of Eq. (16.2.32), as follows:

for each input sample x do:
u = can(M, a,M,b,v,wD)
y = x+ u
w0 = y
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
u = can(M, a,M,b,v, sD)
y = x+ u
∗p = y
cdelay(D,w,&p)

(16.2.34)

where the input to the filter G(z) is the Dth tap output wD or sD of the delay line. The
following routine lowpass.c is an implementation using a circular delay line for D, and
a linear delay line and the routine can for G(z).

820 16. DIGITAL AUDIO EFFECTS

/* lowpass.c - lowpass reverberator with feedback filter G(z) */

double tap(), can();
void cdelay();

double lowpass(D, w, p, M, a, b, v, x)
double *w, **p, *a, *b, *v, x; v = state vector for G(z)
int D; a,b, v are (M + 1)-dimensional

{
double y, sD;

sD = tap(D, w, *p, D); delay output is G(z) input

y = x + can(M, a, M, b, v, sD); reverb output

**p = y; delay input

cdelay(D, w, p); update delay line

return y;
}

As a simple example, consider the following first-order IIR filter [148] with transfer
function:

G(z)= b0 + b1z−1

1+ a1z−1
= 0.3+ 0.15z−1

1− 0.5z−1
(16.2.35)

and weight vectors a = [1, a1]= [1,−0.5] and b = [b0, b1]= [0.3,0.15].
The corresponding realization of the reverb processor Eq. (16.2.32) is shown in

Fig. 16.2.21. The following program segment illustrates the usage lowpass for this
example:

double *w, *p;
double v[2] = {0.0, 0.0}; G(z) states

double a[2] = {1.0, -0.5}; G(z) denominator

double b[2] = {0.3, 0.15}; G(z) numerator

w = (double *) calloc(D+1, sizeof(double));
p = w;

for (n=0; n<Ntot; n++)
y[n] = lowpass(D, w, &p, M, a, b, v, x[n]); use M = 1

Figure 16.2.22 compares the reverberation responses of the plain reverb (16.2.12),
allpass reverb (16.2.25), and lowpass reverb (16.2.32) with the loop filter of Eq. (16.2.35),
with the parameter values D = 20 and a = 0.75.

The three inputs were an impulse, a length-5 square pulse, and a length-11 triangular
pulse, that is,

x = [1]

x = [1,1,1,1,1]

x = [0,1,2,3,4,5,4,3,2,1,0]

The duration of the inputs was chosen to be less thanD so that the generated echoes
do not overlap, except for the lowpass case in which the echoes become progressively

16.2. DIGITAL AUDIO EFFECTS 821

x(n) y(n)

z-D

-a1b1

b0

w0(n)

v0(n)
u(n)

v1(n)

wD(n)

z-1

G(z)

Fig. 16.2.21 Lowpass reverberator, with first-order feedback filter.

smoother (being successively lowpass filtered) and longer, and eventually will overlap
as they decay.

Fig. 16.2.22 Comparison of plain, allpass, and lowpass reverberators.

The plain and allpass reverberators have poles that are equidistant from the origin
of the unit circle at radius ρ = a1/D, and are equally spaced around the circle at the D
root-of-unity angles ωk = 2πk/D, k = 0,1, . . . ,D− 1. Therefore, all the poles have the
same transient response time constants, as given by Eq. (16.2.15).

The reflectivity and absorptivity properties of the walls and air in a real room depend

822 16. DIGITAL AUDIO EFFECTS

on frequency, with the higher frequencies decaying faster than the lower ones.
The lowpass reverberator Eq. (16.2.32) exhibits such frequency-dependent behav-

ior. To understand it, consider the first-order example of Eq. (16.2.35). Its magnitude
response |G(ω)| is shown in Fig. 16.2.23.

2ππ
ω

0

|G(ω)| =poles
=zerosunit

circle
0.9

0.1
0.5-0.5

Fig. 16.2.23 Magnitude response of lowpass feedback filter G(z).

The magnitude response and pole locations of the lowpass reverberator (16.2.32)
are shown in Fig. 16.2.24. It can be seen that the poles are still approximately equally
spaced around the circle, but the high-frequency poles have shorter radii and hence
shorter time constants than the low-frequency ones.

2π
D

4π
D

6π
D

2π
ω

2π/D

0 . . .

|H(ω)| =poles
unit
circle

Fig. 16.2.24 Magnitude response of lowpass reverberator, for D = 8.

The pole locations of Eq. (16.2.32) are obtained as the roots of the denominator, that
is, they are the solutions of

zD = G(z)= N(z)
D(z)

(16.2.36)

For our example,D(z) has order one and therefore Eq. (16.2.36) will haveD+1 poles,
say, pi, i = 1,2, . . . ,D+ 1. Writing pi in its polar form pi = ρiejωi , we have

ρDi e
jωiD = G(pi)= |G(pi)|ej argG(pi)

Defining the phase delay of the ith pole by

di = −argG(pi)
ωi

we have

16.2. DIGITAL AUDIO EFFECTS 823

ρDi e
jωiD = |G(pi)|e−jωidi

which can be separated into the two equations:

ρDi = |G(pi)|, ejωi(D+di) = 1

and give

ρi = |G(pi)|1/D, ωi = 2πki
D+ di

(16.2.37)

for some integer ki.
Although these are coupled equations in the unknownsρi,ωi, we can see how the an-

gles ωi will be distributed around the unit circle, near the Dth roots of unity. Similarly,
assuming ρi is near 1 and replacing G(pi)� G(ejωi)= G(ωi), we have the approxima-
tion:

ρi � |G(ωi)|1/D (16.2.38)

which by the lowpass nature of G(ω) implies that ρi will be smaller for higher frequen-
cies ωi and larger for lower ones, in qualitative agreement with the exact pole locations
shown in Fig. 16.2.24. Using Eq. (16.2.15), we find for the exact and approximate ε-level
time constants, in units of the delay time TD = TD:

τi = ln ε
D lnρi

TD � ln ε
ln |G(ωi)| TD (16.2.39)

It follows from Eq. (16.2.38) that the stability of the reverb filterH(z), that is, ρi < 1,
will be guaranteed if the feedback filter is normalized such that |G(ω)| < 1, for all ω.
Regardless of the above approximation, this condition implies stability by Nyquist’s
stability criterion or Rouché’s theorem [39]. For our example of Eq. (16.2.35), we have
|G(ω)| ≤ 0.9.

Besides theD poles that are approximately equally distributed around the unit circle,
there is an extra one that essentially corresponds to the zero of the filter G(z). Indeed,
for that pole, say p, we have

pD = G(p)= N(p)
D(p)

Because p is well inside the unit circle, if D is large, then pD � 0 and therefore, it
corresponds to N(p)� 0. For our example filter, this extra pole is near the z = −0.5
zero of the numerator filter N(z)= 0.3+ 0.15z−1.

Table 16.2.1 shows for D = 8 the exact poles pi = ρiejωi of Fig. 16.2.24, their
frequencies ωi and magnitudes ρi, as well as the approximate magnitudes given by
Eq. (16.2.38), and the exact 60-dB (ε = 10−3) time constants τi.

The first D pole angles are approximately equal to the Dth root of unity angles. The
approximation of Eq. (16.2.38) works well for all but the last pole, which is the one near
the zero of N(z).

824 16. DIGITAL AUDIO EFFECTS

pi = ρiejωi ωi/π ρi |G(ωi)|1/D τi/TD

0.9888 0 0.9888 0.9869 76.594
0.7282± j0.6026 ±0.2201 0.9452 0.9412 15.314
0.1128± j0.8651 ±0.4587 0.8724 0.8715 6.326
−0.4866± j0.6303 ±0.7093 0.7962 0.8047 3.789
−0.6801 1 0.6801 0.7499 2.240
−0.5174 1 0.5174 0.7499 1.310

Table 16.2.1 Reverberator poles and time constants, for D = 8.

An alternative way to understand the frequency dependence of the time constants
is to look at the input-on and input-off transients and steady-state behavior of the filter
H(z) of Eq. (16.2.32). Fig. 16.2.25 compares the plain and lowpass reverberator transient
outputs for a sinusoid that is turned on atn = 0 and off atn = 150. The filter parameters
were D = 30, a = 0.75, and G(z) was given by Eq. (16.2.35). The frequencies of the two
sinusoids were ω = 0.2π and ω = π radians/cycle.

At the moment the input is cut off, there are D samples of the sinusoid stored in
the delay line. As these samples recirculate around the feedback loop every D samples,
they get attenuated effectively by the gain of the loop filter |G(ω)|. For the lowpass
reverberator, the loop gain is about 0.9 at low frequencies and 0.1 at high frequencies.
Thus, the low-frequency sinusoid dies out slowly, whereas the high-frequency one dies
out (and starts up) rapidly, leaving behind the slower but weaker low-frequency mode.
For the plain reverberator, both the high- and low- frequency sinusoids die out with the
same time constants.

Besides its use in reverberation effects, the lowpass reverberator filter (16.2.32) has
also been used in computer music to model and synthesize guitar string and drum
sounds [124–127]. The Karplus-Strong algorithm [124] for modeling plucked strings
uses the following FIR lowpass feedback filter:

G(z)= 1

2
(1+ z−1) (16.2.40)

A guitar-string sound is generated by simulating the plucking of the string by initially
filling the delay-line buffer w = [w0,w1, . . . ,wD] with zero-mean random numbers,
and then letting the filter run with zero input. The value D of the delay is chosen to
correspond to any desired fundamental frequency f1, that is, D = fs/f1.

The recirculating block of random numbers gets lowpass filtered during each pass
through the loop filter G(z) and loses its high-frequency content. As a result, the high
frequencies in the generated sound decay faster than the low frequencies, as is the case
for natural plucked-string sounds.

Physical modeling of instruments is an active research area in computer music.
Discrete-time models of the equations describing the physics of an instrument, such
as linear or nonlinear wave equations, can be used to generate sounds of the instrument
[124–130].

16.2. DIGITAL AUDIO EFFECTS 825

Fig. 16.2.25 Time constants of high- and low-frequency transients, for D = 30.

16.2.4 Multitap Delays

Most DSP audio effects processors have built-in a wide class of specialized multiple-
delay type effects. They can be obtained from simple low-order FIR or IIR filters by
replacing each single unit-delay z−1 by the progressively more general substitutions:

z−1 −→ z−D −→ z−D

1− az−D
−→ z−D

1− z−DG(z)
(16.2.41)

which represent a multiple delay, a ringing delay, and a lowpass ringing delay. As a first
example, consider the plain ringing delay with transfer function:

H(z)= z−D

1− az−D
(16.2.42)

Expanding in powers of z−D, we have

H(z)= z−D + az−2D + a2z−3D + · · ·

The corresponding impulse response will consist of the first delayed impulse δ(n−
D), followed by its successive echoes of exponentially diminishing strength:

h(n)= δ(n−D)+aδ(n− 2D)+a2δ(n− 3D)+· · ·

826 16. DIGITAL AUDIO EFFECTS

This impulse response and a block diagram realization of Eq. (16.2.42) are shown
in Fig. 16.2.26. This is basically the same as the plain reverberator of Fig. 16.2.6, but
with the output taken after the delay, not before it. Its sample processing algorithm is
a variation of Eq. (16.2.14):

for each input sample x do:
y = wD
w0 = x+ awD
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
y = sD
∗p = x+ asD
cdelay(D,w,&p)

D 2D 3D
n

0

1 h(n)

a
a2

x(n) y(n)

a

w0(n) wD(n)
sD

z-D

...

Fig. 16.2.26 Reverberating multi-delay.

As a second example, consider the following second-order FIR filter:

H(z)= b0 + b1z−1 + b2z−2

The replacements (16.2.41) lead to the following three multi-delay filters, which are
progressively more complicated:

H(z) = b0 + b1z−D1 + b2z−D1z−D2

H(z) = b0 + b1

[
z−D1

1− a1z−D1

]
+ b2

[
z−D1

1− a1z−D1

][
z−D2

1− a2z−D2

]

H(z) = b0 + b1

[
z−D1

1− z−D1G1(z)

]
+ b2

[
z−D1

1− z−D1G1(z)

][
z−D2

1− z−D2G2(z)

]

In the last two cases, the reverberating echoes from D1 are passed into D2 causing
it to reverberate even more densely. Figure 16.2.27 shows the realization of the third
case. Its sample processing algorithm can be stated as follows:

for each input sample x do:
y = b0x+ b1w1D + b2w2D
u2 = can(G2,w2D)
w20 = w1D + u2

delay(D2,w2)
u1 = can(G1,w1D)
w10 = x+ u1

delay(D1,w1)

16.2. DIGITAL AUDIO EFFECTS 827

x(n)

y(n)

b0 b1 b2

z
-D2z

-D1

G1(z) G2(z)

w10 w1D w20 w2D

u1 u2

Fig. 16.2.27 Multi-delay effects processor.

where the statement u2 = can(G2,w2D) denotes the generic filtering operation of the
filter G2(z) whose input is w2D, and similarly for G1(z).

Figure 16.2.28 shows the impulse response of such a multi-delay filter, computed by
the above sample processing algorithm, with forward taps and delay values:

b0 = 1, b1 = 0.8, b2 = 0.6

D1 = 30, D2 = 40

and the two cases for the feedback filters:

G1(z)= G2(z)= 0.75 (plain)

G1(z)= G2(z)= 0.3+ 0.15z−1

1− 0.5z−1
(lowpass)

The impulse response exhibits a few early reflections, followed by more dense ones,
especially in the lowpass case where successive echoes get spread and overlap more
and more with each other. Such multi-delay filters can also be used as preprocessors to
reverb units for better modeling of the early reflection part of a reverberation response
[135,146,140,153].

Fig. 16.2.28 Impulse response of plain and lowpass multi-delay.

As a third example, we can start with the simple second-order IIR filter:

H(z)= b0 + b1z−1 + b2z−2

1− a1z−1 − a2z−2

828 16. DIGITAL AUDIO EFFECTS

and replace each single delay z−1 by a multiple delay z−D, getting the transfer function:

H(z)= b0 + b1z−D1 + b2z−D1−D2

1− a1z−D1 − a2z−D1−D2
(16.2.43)

Its realization is shown in Fig. 16.2.29. It may be thought of as a multitap delay line,
tapped at delays D1 and D1 +D2. The tap outputs are sent to the overall output and
also fed back to the input of the delay line. The b0 term represents the direct sound.

x(n) y(n)

b0

b1
a1

a2 b2

z-D1

z-D2

s0(n)

s1(n)

s2(n)

Fig. 16.2.29 Multitap delay effects processor.

Its sample processing algorithm can be implemented with a circular (D1+D2)-dimensional
delay-line buffer w and pointer p, as follows:

for each input sample x do:
s1 = tap(D1 +D2,w, p,D1)
s2 = tap(D1 +D2,w, p,D1 +D2)
y = b0x+ b1s1 + b2s2

s0 = x+ a1s1 + a2s2

∗p = s0

cdelay(D1 +D2,w,&p)

One potential problem with this arrangement is that the feedback gains can render
the filter unstable, if they are taken to be too large. For example, Fig. 16.2.30 shows the
impulse response of the filter for the parameter choices

b0 = 1, b1 = 0.8, b2 = 0.6

D1 = 30, D2 = 40

and for the following two choices of feedback gains, one of which is stable and the other
unstable:

16.3. DYNAMIC RANGE CONTROL 829

Fig. 16.2.30 Impulse response of multi-tap delay line.

a1 = 0.20, a2 = 0.75 (stable)
a1 = 0.30, a2 = 0.75 (unstable)

The condition |a1|+|a2| < 1 guarantees stability by the Nyquist stability criterion or
Rouché’s theorem [39], because it ensures that |G(ω)| < 1, where G(z)= a1+a2z−D2 .

Typical DSP effects units include both types of delay effects shown in Figures 16.2.27
and 16.2.29, with five or more multiple delay segments and user-selectable feedback and
feed-forward multipliers, and delay timesDi adjustable from 0–2000 msec; for example,
see [156].

16.3 Dynamic Range Control

16.3.1 Compressors, Limiters, Expanders, and Noise Gates

Compressors, limiters, expanders, and gates have a wide variety of uses in audio sig-
nal processing [163–173]. Compressors attenuate strong signals; expanders attenuate
weak signals. Because they affect the dynamic range of signals, they are referred to as
dynamics processors.

Compressors are used mainly to decrease the dynamic range of audio signals so that
they fit into the dynamic range of the playback or broadcast system; for example, for
putting a recording on audio tape. But there are several other applications, such as
announcers “ducking” background music, “de-essing” for eliminating excessive micro-
phone sibilance, and other special effects [166].

Expanders are used for increasing the dynamic range of signals, for noise reduction,
and for various special effects, such as reducing the sustain time of instruments [166].

A typical steady-state input/output relationship for a compressor or expander is as
follows, in absolute and decibel units:

y = y0

(
x
x0

)ρ
⇒ 20 log10

(
y
y0

)
= ρ20 log10

(
x
x0

)
(16.3.1)

830 16. DIGITAL AUDIO EFFECTS

where x is here a constant input, x0 a desired threshold, and ρ defines the compression
or expansion ratio.† A compressor is effective only for x ≥ x0 and has ρ < 1, whereas
an expander is effective for x ≤ x0 and has ρ > 1. Fig. 16.3.1 shows these relationships
in dB, so that a 1 dB change in the input causes ρ dB change in the output, that is, ρ
is the slope of the input/output straight lines. The hard-knee change in slope can be
replaced by a soft-knee by quadratically interpolating between the two slope lines [170],
but we will not implement this here.

Fig. 16.3.1 Static input/output relationship of compressor or expander.

Typical practical values are ρ = 1/4–1/2 for compression, and ρ = 2–4 for expan-
sion. Limiters are extreme forms of compressors that prevent signals from exceeding
certain maximum thresholds; they have very small slope ρ� 1, for example, ρ = 1/10.

Noise gates are extreme cases of expanders that infinitely attenuate weak signals, and
therefore, can be used to remove weak background noise; they have very large slopes
ρ� 1, for example, ρ = 10.

16.3.2 Level Detectors and Gain Processors

The I/O equation (16.3.1) is appropriate only for constant signals. Writing, y = Gx, we
see that the effective gain of the compressor is a nonlinear function of the input of the
form, G = G0xρ−1. For time-varying signals, the gain must be computed from a local
average of the signal which is representative of the signal’s level.

A model of a compressor/expander is shown in Fig. 16.3.2. The level detector gen-
erates a control signal cn that controls the gain gn of the multiplier through a nonlinear
gain processor.

Depending on the type of compressor, the control signal may be (1) the instantaneous
peak value |xn|, (2) the envelope of xn, or (3) the root-mean-square value of xn. A simple
model of the envelope detector is as follows, with, 0 < λ < 1,

cn = λcn−1 + (1− λ)|xn| (level detector) (16.3.2)

The difference equation for cn acts as a rectifier followed by a simple first-order low-
pass exponentially-weighted moving average (EMA) filter. The transfer function, impulse

†The inverse quantity, R = 1/ρ, is commonly called the “compression ratio,” whereas ρ is the “slope”.

16.3. DYNAMIC RANGE CONTROL 831

Fig. 16.3.2 Compressor/expander dynamics processor.

and unit-step responses of this filter are,

H(z)= 1− λ
1− λz−1

, hn = (1− λ)λnu(n), (h∗ u)n=
(
1− λn+1)u(n) (16.3.3)

Thus the filter output responds exponentially quickly to a level change, with an
effective time constant, teff = neffTs, where neff is the number of samples to converge
to within ε of the final level, that is, 1− λneff = 1− ε, or,

λneff = ε ⇒ neff = ln ε
lnλ

⇒ λ = ε1/neff = εTs/teff (16.3.4)

and ε is a user-definable parameter, such as, ε = 0.1, 0.01, 0.001, 0.05, corresponding
respectively to the so-called 20-dB, 40-dB, 60-dB, or 95% time constants. For these par-
ticular values of ε, Eq. (16.3.4) for calculating the filter parameter λ can be written in
the approximate equivalent exponential forms,

ε = [0.1, 0.01, 0.001, 0.05]≈ [e−2.3, e−4.6, e−6.9, e−3]
λ =

[
e−2.3Ts/teff , e−4.6Ts/teff , e−6.9Ts/teff , e−3Ts/teff

] (16.3.5)

The time constant, teff, controls the time to rise or fall to a new input level. The time
to rise to a level above the threshold (where the compressor is active) is called the attack
time constant. The time to drop to a level below the threshold (where the compressor
is inactive) is called the release time. In audio applications, teff is typically specified in
milliseconds.

For λ = 0, Eq. (16.3.2) becomes an instantaneous peak detector. This case is useful
when the compressor is used as a limiter. If in Eq. (16.3.2) the absolute value |xn| is
replaced by its square, |xn|2, the control signal will track the mean-square value of the
input. In this case, the quantity

√
cn will track the RMS level of the input.

The gain processor is a nonlinear function of the control signal imitating the I/O
equation (16.3.1). For a compressor, we may define the gain function to be:

g = F(c)=

⎧⎪⎪⎨⎪⎪⎩
(
c
c0

)ρ−1

, if c ≥ c0

1, if c ≤ c0

(compressor, limiter) (16.3.6)

where c0 is a desired threshold and ρ < 1. For an expander, we have ρ > 1 and:

g = F(c)=
⎧⎪⎨⎪⎩

1, if c ≥ c0(
c
c0

)ρ−1

, if c ≤ c0
(expander, gate) (16.3.7)

832 16. DIGITAL AUDIO EFFECTS

Thus, the gain gn and the final output signal yn are computed as follows:

gn = F(cn)

yn = gnxn
(16.3.8)

Compressors/expanders are examples of adaptive signal processing systems, in which
the filter coefficients (in this case, the gainGn) are time-dependent and adapt themselves
to the nature of the input signals [45]. The level detector (16.3.2) serves as the “adapta-
tion” equation and its attack and release time constants are the “learning” time constants
of the adaptive system; the parameter λ is called the “forgetting factor” of the system.

As a simulation example, consider a sinusoid of frequency ω0 = 0.15π rads per
sample whose amplitude changes to the three values A1 = 2, A2 = 4, and A3 = 0.5
every 200 samples, as shown in Fig. 16.3.3, that is, xn = An cos(ω0n), with:

An =

⎧⎪⎪⎨⎪⎪⎩
A1 , 0 ≤ n < 200

A2 , 200 ≤ n < 400

A3 , 400 ≤ n < 600

or, more compactly,

An = A1(un − un−200)+A2(un−200 − un−400)+A3(un−400 − un−600)

A compressor is used with parameters λ = 0.9, c0 = 0.5, and ρ = 1/2 (that is, 2:1
compression ratio). The output yn is shown in Fig. 16.3.3; the control signal cn and gain
Gn in Fig. 16.3.4.

Fig. 16.3.3 Compressor input and output signals (ρ = 1/2, λ = 0.9, c0 = 0.5).

The first two sinusoids A1 and A2 lie above the threshold and get compressed. The
third one is left unaffected after the release time is elapsed. Although only the stronger
signals are attenuated, the overall reduction of the dynamic range will be perceived as
though the weaker signals also got amplified.

This property is the origin of the popular, but somewhat misleading, statement that
compressors attenuate strong signals and amplify weak ones.

16.3. DYNAMIC RANGE CONTROL 833

Fig. 16.3.4 Compressor control signal and gain (ρ = 1/2, λ = 0.9, c0 = 0.5).

Jumping between the steady-state levels A1 and A2 corresponds to a 6 dB change.
Because both levels get compressed, the output levels will differ by, 6ρ = 3 dB.

16.3.3 Attack and Release Time Constants and Gain Smoothing

A more realistic compressor system is depicted in Fig. 16.3.5 that incorporates the fol-
lowing features:

1. It can accommodate different attack and release time constants, quantified by
different filter λ-parameters, say, λa, λr .

2. The nonlinear gain, gn = F(cn), is smoothed further by a lowpass filter, which
can be taken to be either an FIR averager or another EMA filter like the detector,
resulting in the smoothed gain, Gn.

3. An overall delay D may be introduced at the output that helps reduce transient
overshoots, so that, yn = Gnxn−D.

4. Optionally, the gain-control signal cn could be calculated not from the given input
xn, but from an alternative input, referred to as a “side-chain input”, as would be
the case in “ducking” applications, or by a bandpass-filtered version of xn, as in
“de-essing” applications.

The sample-by-sample processing algorithm may be summarized as follows:

for each audio sample xn, do,
1. calculate cn, using λa and λr
2. calculate nonlinear gain, gn = F(cn)
3. calculate smoothed gain, Gn
4. calculate output, yn = Gnxn−D

(16.3.9)

These steps are outlined below. To accommodate different attack and release time
constants, Eq. (16.3.2) may be replaced by the following version which switches from

834 16. DIGITAL AUDIO EFFECTS

Fig. 16.3.5 Compressor/expander dynamics processor.

attack mode λa to release mode λr depending on the calculated level,

cn =
⎧⎪⎨⎪⎩
λacn−1 + (1− λa)|xn| , if |xn| ≥ cn−1

λr cn−1 + (1− λr)|xn| , if |xn| < cn−1

(16.3.10)

By choosing λa < λr , the attack time constant will be shorter than the release one,
allowing a quicker response at the onset of compression or expansion. Next, the gain
gn is computed from Eqs. (16.3.6) or (16.3.7), and then passed into the smoothing filter,
which may taken to be either an FIR averager or an EMA filter of the form,

Gn = 1

L
[
gn + gn−1 + · · · + gn−L+1

]
(FIR)

Gn = λGn−1 + (1− λ)gn (EMA)

(16.3.11)

The averager and EMA filters behave approximately equivalently if the parameters, L,λ,
are chosen such that:†

L ≈ 1+ λ
1− λ

� λ ≈ L− 1

L+ 1
(16.3.12)

In some implementations [164,169], the EMA smoother is chosen to have different
attack and release time constants as follows,

Gn =
⎧⎪⎨⎪⎩
λaGn−1 + (1− λa)gn , if gn ≥ gn−1

λrGn−1 + (1− λr)gn , if gn < gn−1

(16.3.13)

Figure 16.3.6 shows the output signal from the previous example and the compressor
gain using a seven-point FIR smoother, L = 7. The initial transients in Gn are caused by
the input-on transients of the smoother.

Figure 16.3.7 shows the output signal and compressor gain of a limiter, which has a
10:1 compression ratio, ρ = 1/10, and uses also a seven-point smoother. The threshold
was increased here to c0 = 1.5, so that only A2 lies above it and gets compressed.

Figure 16.3.8 shows an example of an expander, with parameters λ = 0.9, c0 = 0.5,
ρ = 2, and gain function computed by Eq. (16.3.7) and smoothed by a seven-point

†see, for example, Eq. (15.5.6)

16.3. DYNAMIC RANGE CONTROL 835

Fig. 16.3.6 Compressor output with smoothed gain (ρ = 1/2, λ = 0.9, c0 = 0.5).

Fig. 16.3.7 Limiter output with smoothed gain (ρ = 1/10, λ = 0.9, c0 = 1.5).

smoother. OnlyA3 lies below the threshold and gets attenuated. This causes the overall
dynamic range to increase. Although the expander affects only the weaker signals, the
overall increase in the dynamic range is perceived as making the stronger signals louder
and the weaker ones quieter.

Finally, Fig. 16.3.9 shows an example of a noise gate implemented as an expander
with a 10:1 expansion ratio, ρ = 10, having the same threshold as Fig. 16.3.8. It essen-
tially removes the sinusoid A3, which might correspond to unwanted noise.

16.3.4 Computer Experiments

Experiment 1

a. Consider a sinusoid x(t)= A cos(2πft). Show that its mean-square average over
one period, and its absolute average are given by:

x2(t) = 1

2
A2 , |x(t)| = 2

π
A (16.3.14)

836 16. DIGITAL AUDIO EFFECTS

Fig. 16.3.8 Expander output and gain (ρ = 2, λ = 0.9, c0 = 0.5).

Fig. 16.3.9 Noise gate output and gain (ρ = 10, λ = 0.9, c0 = 0.5).

These could be used as guides in choosing the compressor thresholds.

b. It is desired to design a digital dynamics processor based on the block diagram
of Fig. 16.3.5 that operates at an 8 kHz sampling rate and has 20-dB attack and
release time constants of 2 msec and 10 msec, respectively.

Calculate the corresponding values of the forgetting factors λa, λr , and use them
in Parts (c–g) of this project. In implementing the gain smoothing filter, choose
its FIR length L or its EMA parameter λ based on the attack value of λa.

c. Generate a 75-msec long input signal x(t) sampled at 8 kHz, consisting of three
sinusoids of the following frequencies, amplitudes, and durations,

f1 = 0.3 kHz , A1 = 2.0 , duration, 0 ≤ t < 25 msec

f2 = 0.6 kHz , A2 = 4.0 , duration, 25 ≤ t < 50 msec

f3 = 1.2 kHz , A3 = 0.5 , duration, 50 ≤ t < 75 msec

Calculate the mean-absolute values of the three levels. Plot x(t) versus t.

16.3. DYNAMIC RANGE CONTROL 837

d. Let xn denote the time samples of x(t) and use them as the input to Fig. 16.3.5.
Using the parameters, ρ = 1/3, c0 = 1, D = 0, calculate the corresponding
compressed signal yn using an FIR gain smoothing filter. Plot y(t) vs. sampled t
using the same scales as for x(t).

Moreover, in three separate graphs, plot versus t the control signal c(t), the raw
gain g(t), and its smoothed version G(t).

Notes: Do not use the built-in function filter in this part, rather, implement the
algorithm of Eq. (16.3.9) on a sample by sample basis.

Although Eqs. (16.3.6) and (16.3.7) can be combined into a one-line anonymous
vectorized MATLAB function, such function would generate NaN’s if the control
signal happened to be zero, c = 0. Therefore, it is best to write a separate function
which handles such circumstance.

e. For the same input xn, choose appropriate values for ρ, c0 such that the compres-
sor would act as a limiter that limits the f2 signal, but not f1 and f3. You may use
an FIR or EMA gain smoother in this part.

Plot the corresponding output y(t) using the same scales as for x(t), and on
separate graphs also plot the signals c(t), g(t), G(t).

For easy reference place on the y(t) graph the values of ρ, c0 that you used.

f. Next, choose appropriate values for ρ, c0 and an FIR or EMA smoother, such that
the dynamics processor would act as an expander that attenuates the f3 compo-
nent only, while leaving f1, f2 unaffected.

Plot the corresponding output y(t) using the same scales as for x(t), and on
separate graphs also plot the signals c(t), g(t), G(t).

For easy reference place on the y(t) graph the values of ρ, c0 that you used.

g. Repeat part (f) such that the dynamics processor would act as a noise gate sup-
pressing the f1 and f3 components, but not f2.

Then, repeat this part, so that now the noise gate removes only f3, but not f1, f2.

Some example graphs are depicted below.

Experiment 2 – Duckers

In this experiment, you will implement a dynamics processor acting as a “ducker”, shown
in Fig. 16.3.10. Please load the following wave files into MATLAB (music file is from Ch.9
files in Ref. [169]),

[xs,fs] = audioread(’speech.wav’); % speech signal

[xm,fs] = audioread(’music.wav’); % music signal

The signals xs(t) and xm(t) both have exactly the same duration of approximately
7 seconds, and the same sampling rate of fs = 44.1 kHz. The actual speech contained
in xs(t) is preceded and anteceded by 2 seconds of silence. Plot the signals xs(t) and

838 16. DIGITAL AUDIO EFFECTS

Fig. 16.3.10 Compressor/ducker dynamics processor.

xm(t) versus t, as well as the combined mixed signal, x(t)= xs(t)+xm(t) (not shown
in Fig. 16.3.10).

In the dynamics processor of Fig. 16.3.10, the gain G(t) to be applied to the music
signal xm(t) is controlled by the side-chain input speech signal xs(t). The scaled mu-
sic signal output is ym(t)= G(t)xm(t). The compressor parameters are chosen such
that G(t), and hence ym(t), become very small whenever the speech signal xs(t) is
present, thus, the music signal is “ducked” allowing a clearer hearing of the speech in
the combined mixed output,

y(t)= xs(t)+ym(t)= xs(t)+G(t)xm(t) (16.3.15)

Calculate the combined speech plus ducked music signal, y(t)= xs(t)+ym(t), listen
to it, and compare it with the unprocessed combined signal, x(t)= xs(t)+xm(t).

Experiment with different values of the parameters ρ, c0, λa, λr until you are satis-
fied with the ducking result (you may use an EMA gain smoother here). As a starting
point, you may want to choose c0 to be somewhere between 40–60 dB below the maxi-
mum value of xs(t) and choose the attack time constant to be a few tens of milliseconds,
and the release time constant, a few hundreds of milliseconds.

Once you are satisfied with the results, plot y(t) and ym(t) versus t, as well as the
control and gain signals, c(t), g(t),G(t).

Save your processed speech plus ducked music signal y(t) in a wave file. For your ref-
erence, the following wave files are included containing the signals, x(t)= xs(t)+xm(t),
and, ym(t) and y(t)= xs(t)+ym(t), which are also depicted in the example graphs be-
low (Fig. 16.3.17).

x(t)= xs(t)+xm(t) , ’speech+music.wav’

ym(t)= G(t)xm(t) , ’ducked music.wav’

y(t)= xs(t)+ym(t) , ’speech+ducked.wav’

16.3.5 Example Graphs

16.4 Problems

16.1 It is desired to generate the periodic sequence h = [0,1,2,0,1,2,0,1,2, . . .] of period three.
Determine the filter H(z) whose impulse response is h.

16.4. PROBLEMS 839

0 25 50 75

−4

−3

−2

−1

0

1

2

3

4

t (msec)

input signal, x(t)

f
1
 = 0.3 kHz

f
2
 = 0.6 kHz

f
3
 = 1.2 kHz

 x(t)
 envelope

Fig. 16.3.11 Input signal xn.

0 25 50 75

−4

−3

−2

−1

0

1

2

3

4

t (msec)

compressor, y(t) = G(t) x(t)

ρ = 1/3

 y(t)
 c

0

0 25 50 75
0

1

2

3

4

t (msec)

control signal, c(t)

 c(t)
 c

0

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

gain, g(t) = F(c(t))

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

smoothed gain, G(t)

Fig. 16.3.12 Compressor, ρ = 1/3, c0 = 1, using FIR smoother.

a. Realize the filter in its direct and canonical forms. Write the corresponding sample
processing algorithms for generating the periodic sequence. Crank the algorithms for
a total of 9 iterations, making a list of the values of the internal states and output of
the filter.

840 16. DIGITAL AUDIO EFFECTS

0 25 50 75

−4

−3

−2

−1

0

1

2

3

4

t (msec)

limiter, y(t) = G(t) x(t)

0 25 50 75
0

1

2

3

4

t (msec)

control signal, c(t)

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

gain, g(t) = F(c(t))

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

smoothed gain, G(t)

Fig. 16.3.13 Limiter.

b. For the direct form realization, rewrite the generation algorithm in its circular-buffer
form of Eq. (16.1.20) or (16.1.22), and initialized by Eq. (16.1.19).

Iterate the algorithm 15 times, making a table of the internal states w, the output y,
the circular pointer index q, and indicating the buffer entry that holds the current
output for each iteration. Why did we choose to iterate 15 times? Do you observe the
repetition period of the buffer entries?

16.2 Consider the filter H(z)= 1+ 2z−1 + 3z−2 − 4z−3 − 5z−4

1− z−5
. What is its periodic causal im-

pulse response? Realize the filter in its direct and canonical forms.

a. For each realization, write the corresponding sample processing algorithm for gener-
ating the periodic impulse response. Crank the algorithm for a total of 15 iterations,
making a list of the values of the internal states and output of the filter.

b. For the direct form realization, iterate the generation algorithm in its circular buffer
form, making a table as in Problem 16.1(b). How many iterations are needed before we
observe the repetition of the buffer entries?

16.3 The eight waveform samples:

b = [b0, b1, b2, b3, b4, b5, b6, b7]

16.4. PROBLEMS 841

0 25 50 75

−4

−3

−2

−1

0

1

2

3

4

t (msec)

expander, y(t) = G(t) x(t)

0 25 50 75
0

1

2

3

4

t (msec)

control signal, c(t)

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

gain, g(t) = F(c(t))

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

smoothed gain, G(t)

Fig. 16.3.14 Expander.

are stored in reverse order in the eight-dimensional circular wavetable:

w = [w0,w1,w2,w3,w4,w5,w6,w7]

It is desired to generate a periodic subsequence of period d = 5. Determine this subsequence
when the output is obtained by the four methods of: (a) truncating down, (b) truncating up,
(c) rounding, and (d) linear interpolation.

16.4 Repeat Problem 16.3 when the subsequence has period d = 6.

16.5 The waveform samples b = [1,2,3,4,5,6,7,8] are stored (in reverse order) into an eight-
dimensional circular wavetable w. It is desired to use the wavetable to generate a periodic
subsequence of period 3. Determine this subsequence when the output is obtained by the
four approximations of: (a) truncating down, (b) truncating up, (c) rounding, and (d) linear
interpolation.

16.6 Repeat Problem 16.5, for generating a subsequence of period 5. Repeat for a subsequence
of period 6.

16.7 Computer Experiment: Wavetable Generators. Using the wavetable generator wavgen, write
a C program to reproduce all the graphs of Fig. 16.1.18.

Then, repeat using the rounding and interpolation versions of the wavetable generator, wav-
genr and wavgeni. Compare the outputs of the three generator types.

842 16. DIGITAL AUDIO EFFECTS

0 25 50 75

−4

−3

−2

−1

0

1

2

3

4

t (msec)

noise gate, y(t) = G(t) x(t)

0 25 50 75
0

1

2

3

4

t (msec)

control signal, c(t)

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

gain, g(t) = F(c(t))

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

smoothed gain, G(t)

Fig. 16.3.15 Noise gate suppresing f1 and f3.

16.8 Computer Experiment: Wavetable Amplitude and Frequency Modulation. Write a program to
reproduce all the graphs of Figures 16.1.20–16.1.23.

16.9 Consider the four comb filters:

y(n)= x(n)+x(n− 8),

y(n)= x(n)−x(n− 8),

y(n)= x(n)+x(n− 8)+x(n− 16)

y(n)= x(n)−x(n− 8)+x(n− 16)

Determine their transfer functions and their impulse responses. Place their zeros on the
z-plane relative to the unit circle. Sketch their magnitude responses. How are they similar
or different? Draw their canonical realization forms using 8-fold delays z−8. Write the cor-
responding sample processing algorithms both in their linear and circular-buffer versions.

16.10 Computer Experiment: Flanging and Chorusing. Write a C program to reproduce the graphs
of Figures 16.2.9 and 16.2.11.

Repeat the chorusing experiment using the following model for the chorus processor, shown
in Fig. 16.2.10:

y(n)= 1

3

[
x(n)+a1(n)x

(
n− d1(n)

)+ a2(n)x
(
n− d2(n)

)]
where d1(n) and d2(n) are generated as in Eq. (16.2.20) by the low-frequency noise routine
ranl of Appendix A.2 using two different seeds. The amplitudes a1(n), a2(n) are also
low-frequency random numbers with unity mean.

16.4. PROBLEMS 843

0 25 50 75

−4

−3

−2

−1

0

1

2

3

4

t (msec)

noise gate, y(t) = G(t) x(t)

0 25 50 75
0

1

2

3

4

t (msec)

control signal, c(t)

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

gain, g(t) = F(c(t))

0 25 50 75
0

0.2

0.4

0.6

0.8

1

t (msec)

smoothed gain, G(t)

Fig. 16.3.16 Noise gate suppresing f3 only.

Repeat the flanging experiment using the recursive flanging processor:

y(n)= ay
(
n− d(n)

)+ x(n)

where a = 0.8. State the processing algorithm in this case, using a circular buffer for the
feedback delay line and the routine tapi to interpolate between buffer entries.

16.11 Computer Experiment: Reverberation Examples. Using the circular-buffer reverberator rou-
tines plain, allpass, lowpass, write a C program to reproduce all the graphs of Fig. 16.2.22.
[Caution: Use different circular buffers for the three reverb filters.]

16.12 Computer Experiment: Schroeder’s Reverberator. Write a C program that implements Schroeder’s
reverberator shown in Fig. 16.2.18 and uses the sample processing algorithm (16.2.31). Iter-
ate the sample processing algorithm for 0 ≤ n ≤ 500 and reproduce the impulse response
shown in Fig. 16.2.19.

16.13 Consider the lowpass reverberator shown in Fig. 16.2.21. Write explicitly all the difference
equations required for its time-domain implementation. Then, write the corresponding sam-
ple processing algorithm, with the D-fold delay implemented circularly.

16.14 Consider the lowpass reverberator H(z) of Eq. (16.2.32) with the first-order feedback filter
(16.2.35). Let pi, Ai, i = 1,2, . . . ,D+ 1 be the poles and residues of the H(z), that is,

H(z)= 1

1− z−DG(z)
=

D+1∑
i=1

Ai

1− piz−1

844 16. DIGITAL AUDIO EFFECTS

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t (sec)

speech, x
s
(t)

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t (sec)

music, x
m

(t)

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t (sec)

ducked music, y
m

(t) = G(t) x
m

(t)

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t (sec)

speech + music, x(t) = x
s
(t) + x

m
(t)

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t (sec)

speech + ducked music, y(t) = x
s
(t) + G(t) x

m
(t)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

t (sec)

control signal, c(t)

Fig. 16.3.17 Speech, music, speech+ducked music.

Assume that all pi are inside the unit circle. Note that if b1 = 0, then there are only D poles.
Suppose a sinusoid of frequency ω and duration L is applied to the input:

x(n)= ejωn(u(n)−u(n− L)
)

Show that the output signal will be given by:

16.4. PROBLEMS 845

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

t (sec)

ducking gain, g(t)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

t (sec)

smoothed gain, G(t)

Fig. 16.3.18 Control signal for ducked music, and gains.

y(n)= H(ω)ejωn(u(n)−u(n− L)
)+ D+1∑

i=1

Bipni
(
u(n)−ejωLp−Li u(n− L)

)
where Bi = piAi/(pi − ejω), i = 1,2, . . . ,D+ 1. See also Problem 6.29.

16.15 Computer Experiment: Reverberator Time Constants. Reproduce all the graphs of Figure
16.2.25 by iterating the sample processing algorithms of the plain and lowpass reverberators.
The input is defined as:

x(n)= cos(ωn)
(
u(n)−u(n− 150)

)
with ω = 0.2π and ω = π. Generate similar graphs also for the following frequencies:
ω = 0.4π, 0.6π, 0.8π, and 0.99π.

For the lowpass cases, verify that the output obtained by iterating the sample processing
algorithm agrees with (the real part of) the analytical expression given in Problem 16.14. For
this part, you will need to use MATLAB to calculate the poles pi, residuesAi, Bi, and evaluate
the expression for y(n), for 0 ≤ n ≤ 299.

16.16 Computer Experiment: Karplus-Strong String Algorithm. The Karplus-Strong algorithm for
generating plucked-string sounds [124–126] is defined by the lowpass reverberator filter of
Eq. (16.2.32) with feedback filter G(z)= (1+ z−1)/2. It was described in Section 16.2.3.

For the two delay values D = 25, 50, initialize the delay-line buffer by filling it with zero-
mean random numbers, for example, w[i]= ran(&iseed)−0.5, for i = 0,1, . . . ,D. Then, run
the sample processing algorithm (16.2.34) with zero input x(n)= 0, for 0 ≤ n ≤ 499. Plot
the resulting output signals y(n).
The harshness of the initial plucking of the string is simulated by the initial random numbers
stored in the delay line. As these random numbers recirculate the delay line, they get lowpass
filtered by G(z), thus losing their high-frequency content and resulting in a decaying signal
that is dominated basically by the frequency f1 = fs/D.

16.17 A prototypical delay effect usually built into commercial audio DSP effects processors is
given by the transfer function:

H(z)= c+ b
z−D

1− az−D

846 16. DIGITAL AUDIO EFFECTS

where c represents the direct sound path. Draw a block diagram of this filter using only
one D-fold delay z−D. Write the difference equations describing it and translate them into
a sample processing algorithm implemented with a circular buffer.

16.18 Computer Experiment: Plain and Lowpass Reverberating Delays. The basic building blocks
of many multi-delay effects are the following plain and lowpass reverberating delays:

H(z)= z−D

1− az−D
, H(z)= z−D

1− z−DG(z)

where G(z) is a lowpass feedback filter. Draw the block diagrams of these filters and write
their sample processing algorithms implementing z−D circularly. Then, translate the algo-
rithms into C routines, say plaindel.c and lpdel.c. How do they differ from the routines
plain and lowpass of Section 16.2.3?

16.19 Computer Experiment: Multi-Delay Effects. Commercial audio DSP effects processors have
built-in multi-delay effects obtained by cascading several basic reverberating delay of the
type of Problem 16.18; for example, see Ref. [156].

A typical example was shown in Fig. 16.2.27. Write a C program that implements this block
diagram. The program must make use of the two routines plaindel and lpdel that you
wrote in the previous problem.

Note, that you will need to use two circular buffers {w1, w2} and their circular pointers
{p1, p2}, for the two delays.

Using this program, and the parameter values that were used in Fig. 16.2.28, compute and
plot the outputs of the filter, for 0 ≤ n ≤ 2000, for the two inputs:

x(n)= δ(n), x(n)= u(n)−u(n− 100)

16.20 Computer Experiment: Multi-Tap Delay Effects. In the electronic music community, a multi-
tap delay is usually defined to have both feed forward and feedback paths, as well as a direct
sound path, with user-adjustable gains; for example, see Ref. [156].

Write a C routine that implements the circular-buffer version of the sample processing algo-
rithm of the multitap delay line shown in Fig. 16.2.29. The inputs to the routine should be
the current input audio sample x, the values of the forward taps {b0, b1, b2}, feedback taps
{a1, a2}, delay values {D1,D2}, and the (D1+D2)-dimensional delay-line buffer w and its
associated circular pointer p.

Using this routine, and the parameter values that were used for the stable case of Fig. 16.2.30,
compute and plot the outputs of the filter, for 0 ≤ n ≤ 1000, for the two inputs:

x(n)= δ(n), x(n)= u(n)−u(n− 200)

16.21 Show that the condition |a1|+|a2| < 1 is sufficient to guarantee the stability of the multitap
delay line filter of Eq. (16.2.43). [Hint: Work with the pole equation zD1+D2 = a1zD2 + a2.]

16.22 Stereo delay effects can be accomplished by the block diagram of Fig. 16.4.1. Two basic
delays of the type of Problem 16.18 are used in the left and right channels and are coupled by
introducing cross-feedback coefficients, such that the reverberating output of one is fed into
the input of the other; for example, see Ref. [156]. Show that the input/output relationships
can be expressed in the z-domain as:

YL(z)= HLL(z)XL(z)+HLR(z)XR(z)

YR(z)= HRL(z)XL(z)+HRR(z)XR(z)

16.4. PROBLEMS 847

xL(n)

xR(n)

yL(n)

yR(n)

bL

cL

dL

dR
bR

cR

z-L

GL(z)

z-R

GR(z)

Fig. 16.4.1 Stereo delay effects processor.

Determine the direct and cross-transfer functions HLL(z), HLR(z), HRL(z), HRR(z), in
terms of the indicated multipliers and feedback filters GL(z), GR(z). What conclusions do
you draw in the special cases: (1) dL = 0, dR �= 0; (2) dL �= 0, dR = 0; (3) dL = 0, dR = 0?

Consider the case of the plain feedback filters: GL(z)= aL, GR(z)= aR. Introduce two
delay-line buffers wL and wR for the indicated delays z−L and z−R and write the difference
equations describing the time-domain operation of the block diagram. Then, translate the
difference equations into a sample processing algorithm that transforms each input stereo
pair {xL, xR} into the corresponding output stereo pair {yL, yR}. Implement the delays cir-
cularly; therefore, you will also need to introduce two circular pointers {pL, pR}.

16.23 Computer Experiment: Stereo Delay Effects. Write a C routine that implements the stereo
sample processing algorithm of the previous problem. Using this routine, compute and plot
the left and right output signals yL(n), yR(n), for n = 0,1, . . . ,299, for the case when there
is only a left input pulse of duration 5, that is,

xL(n)= u(n)−u(n− 5), xR(n)= 0

Use L = 30 and R = 70 for the left and right delays, and the multiplier values:

aL = aR = 0.6, bL = bR = 1, cL = cR = 0, dL = dR = 0.3

Identify on your graphs the origin of the various length-5 pulses that appear in the outputs.
Next, repeat the experiment using dL = 0.3, dR = 0, so that only the left output is fed into
the right input. Again, identify the origin of the pulses in your outputs.

16.24 Computer Experiment: Compressors and Limiters. Consider the compressor and limiter pre-
sented in Figures 16.3.3—16.3.7.

a. Reproduce these graphs. Is it better to apply the smoothing filter to the output of the
gain processor f(cn), rather than to its input cn?

b. Given a sinusoid x(n)= A cos(ω0n), calculate its theoretical mean absolute value |xn|
and its rms value (|xn|2)1/2, both averaged over one period of the sinusoid.

848 16. DIGITAL AUDIO EFFECTS

Are the steady-state values of the control signal in the above graphs consistent with the
theoretical values calculated here? In your program in (a), include the numerical cal-
culation of the mean absolute values of the three output sinusoids, averaged over the
three length-200 segments. Are these averages consistent with the given compression
ratio?

c. Redo the graphs in (a), but without using any smoothing filter.

d. Repeat part (a) using a 3:1 compression ratio, ρ = 1/3 and then a 4:1 ratio.

e. Repeat part (a) using a delay of d = 40 samples in the direct signal path, as described
in Section 16.3.1. Too much of such a delay can introduce a “backward playing” quality
into the output. Can you observe this?

Repeat using a delay D = 40 in the level detector’s input (but not in the direct signal
path).

f. Repeat part (a) using a seven-point smoother, but with filter parameter λ = 0.99. Re-
peat with λ = 0.2. Do you observe the effect on the attack and release time constants.?

16.25 Computer Experiment: Expanders and Gates. Consider the expander and gate of Figures
16.3.8 and 16.3.9.

a. Redo these graphs using no additional smoothing filter, and then, redo them using a
seven-point smoother.

b. Repeat part (a) using a 3:1 expansion ratio, ρ = 3.

c. Repeat part (a) using a 2:1 expansion ratio, ρ = 2, but moving the threshold higher to
the value c0 = 1.5. What happens to the three sinusoids in this case? What happens
in the case of the noise gate?

17
High-Order Digital Parametric

Equalizers

17.1 Overview

Digital parametric audio equalizers are commonly implemented as biquadratic filters
[283–297], as we discussed them in Sec. 12.4. In some circumstances, it might be of
interest to use equalizer designs based on high-order filters. Such designs can provide
flatter passbands and sharper bandedges at the expense of higher computational cost.

In this section, based on [329], we present a family of digital equalizers and shelv-
ing filters derived from high-order Butterworth, Chebyshev, and elliptic lowpass analog
prototypes and obtain explicit design equations for the filter coefficients in terms of the
desired peak gain, peak or cut frequency, bandwidth, and bandwidth gain. We discuss
frequency-shifted transposed, normalized-lattice, and minimum roundoff-noise state-
space realization structures, as well as structures that allow the independent control
of center frequency, gain, and bandwidth. The design equations apply equally well to
ordinary lowpass, highpass, bandpass, and bandstop filters.

High-order equalizers have been considered previously by Moorer [327] who used
a conformal mapping method based on elliptic functions to map a first-order lowpass
digital shelving filter into a high-order elliptic equalizer, and by Keiler and Zölzer [328]
who obtained a fourth-order equalizer based on a second-order analog Butterworth pro-
totype. Our elliptic designs are essentially equivalent to Moorer’s, but we follow a direct
approach that closely parallels the conventional analog filter design methods and can
be applied equally well to all three filter types, Butterworth, Chebyshev, and elliptic.

We start by designing a high-order analog lowpass shelving filter that meets the given
gain and bandwidth specifications. The analog filter is then transformed into a digital
lowpass shelving filter using the bilinear transformation. Finally, the digital shelving
filter is transformed into a peaking equalizer centered at the desired peak frequency
using a lowpass-to-bandpass z-domain transformation [321,322].

One starts by designing a lowpass analog shelving equalizer filter having a magnitude
response of the form:

|H(Ω)|2 = G2 +G2
0ε2F2

N(w)
1+ ε2F2

N(w)
, w = Ω

ΩB

849

850 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

and from the zeros and poles of that expression, one determines the corresponding
analog transfer function, and then transforms that into a digital bandpass equalizer.
The quantity ΩB is an effective bandwidth frequency that corresponds to a desired
bandwidth level GB (such as the 3-dB level). The parameter ε is calculated from the
condition that FN(w)= 1 at Ω = ΩB:

G2 +G2
0ε2

1+ ε2
= G2

B ⇒ ε =
√√√√G2 −G2

B
G2
B −G2

0

Here,G is the peak or cut gain, andG0 a reference gain, typically chosen to beG0 = 1
for cascaded equalizers. All of the designs of the conventional lowpass, highpass, and
bandpass analog filters that we discussed in Sec. 13.5 correspond to the special case of
G = 1, G0 = 0.

A MATLAB toolbox of functions for the design and implementation of such paramet-
ric equalizers is available in [330], and included in ISP2e. The toolbox may also be used
to design ordinary lowpass, highpass, bandpass, and bandstop filters, as an alternative
to the methods discussed in this chapter.

17.2 General Considerations

The design specifications for the digital equalizer are the quantities {G,G0, GB, f0, Δf, fs},
that is, the peak or cut gain G, the reference gain G0 (usually set equal to unity), the
bandwidth gain GB, the peak or cut frequency f0 in Hz, the bandwidth Δf measured at
levelGB, and the sampling rate fs. These are illustrated in Fig. 17.2.1 for the Butterworth
case. In the elliptic case, an additional gain, Gs, needs to be specified, as discussed in
Section 17.4. The bandwidth is related to the left and right bandedge frequencies f1, f2

by Δf = f2−f1. It is convenient to work with the normalized digital frequencies in units
of radians per sample:

ω0 = 2πf0

fs
, Δω = 2πΔf

fs
, ω1 = 2πf1

fs
, ω2 = 2πf2

fs
(17.2.1)

The starting point of the design method is an equivalent analog lowpass shelving filter,
illustrated in Fig. 17.2.1, that has the same gain specifications as the desired equalizer,
but with peak frequency centered at Ω = 0 and bandedge frequencies at ±ΩB.

The analog filter may be transformed directly to the desired digital equalizer by the
bandpass transformation between the s and z planes [321]:

s = 1− 2 cosω0 z−1 + z−2

1− z−2
(17.2.2)

The corresponding frequency mapping between s = jΩ and z = ejω is found from
(17.2.2) to be:

Ω = cosω0 − cosω
sinω

(17.2.3)

where ω = 2πf/fs and f is the physical frequency in Hz. The requirement that the
bandedge frequencies ω1,ω2 map onto ±ΩB gives the conditions:

cosω0 − cosω1

sinω1
= −ΩB ,

cosω0 − cosω2

sinω2
= ΩB (17.2.4)

17.2. GENERAL CONSIDERATIONS 851

These may be solved for ω0 and ΩB in terms of ω1 and ω2:

ΩB = tan
(
Δω

2

)
, tan2

(
ω0

2

)
= tan

(
ω1

2

)
tan

(
ω2

2

)
(17.2.5)

where Δω =ω2 −ω1. Equivalently, we have:

cosω0 = sin(ω1 +ω2)
sinω1 + sinω2

(17.2.6)

Conversely, Eqs. (17.2.4) may be solved for ω1 and ω2 in terms of ω0 and Δω:

ejω1 = c0 + j
√
Ω2
B + s2

0

1+ jΩB
, ejω2 = c0 + j

√
Ω2
B + s2

0

1− jΩB
(17.2.7)

where Δω enters through ΩB = tan(Δω/2). Extracting the real parts of Eq. (17.2.7),
we obtain:

cosω1 =
c0 +ΩB

√
Ω2
B + s2

0

Ω2
B + 1

, cosω2 =
c0 −ΩB

√
Ω2
B + s2

0

Ω2
B + 1

(17.2.8)

where we introduced the shorthand notation c0 = cosω0 and s0 = sinω0. Eqs. (17.2.7)
have the proper limits as ω0 → 0 and ω0 → π, resulting in the cutoff frequencies
(measured at level GB) of the digital lowpass and highpass shelving equalizers:

ω0 = 0 , ω1 = 0 , ω2 = Δω, (LP shelf)

ω0 = π, ω1 = π−Δω, ω2 = π, (HP shelf)
(17.2.9)

The magnitude responses of the high-order analog lowpass shelving Butterworth,
Chebyshev, and elliptic prototype filters that we consider here are taken to be:

|Ha(Ω)|2 = Ghere2 +G2
0ε2F2

N(w)
1+ ε2F2

N(w)
(17.2.10)

Fig. 17.2.1 Specifications of high-order equalizer and the equivalent lowpass analog prototype.

852 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

where N is the analog filter order, ε is a constant, and FN(w) is a function of the
normalized frequency w = Ω/ΩB given by:

FN(w)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wN, Butterworth

CN(w), Chebyshev, type-1

1/CN(w−1), Chebyshev, type-2

cd(NuK1, k1), w = cd(uK, k), Elliptic

(17.2.11)

where CN(x) is the order-N Chebyshev polynomial, that is, CN(x)= cos(N cos−1 x),
and cd(x, k) is the Jacobian elliptic function cd with modulus k and real quarter-period
K. The parameters k and k1 are defined in Section 17.4.

We note that the definition of FN(w) for the Chebyshev-2 case is slightly differ-
ent from that of Eq. (13.1.5) because of the different normalization frequency w and
different definition of the ε parameter.

In all four cases, the function FN(w) is normalized such that FN(1)= 1. The re-
quirement that the bandwidth gain be equal to GB at the frequencies Ω = ±ΩB gives a
condition from which the constant εmay be determined. SettingΩ = ΩB in Eq. (17.2.10),
we obtain:

|Ha(ΩB)|2 = G2 +G2
0ε2

1+ ε2
= G2

B � ε =
√√√√G2 −G2

B
G2
B −G2

0
(17.2.12)

The analog transfer function Ha(s) corresponding to Eq. (17.2.10) is constructed
by finding the left-hand s-plane zeros of the numerator and denominator of (17.2.10)
and pairing them in conjugate pairs. By construction, Ha(s), and hence the equalizer
transfer function, will have minimum phase. This is a desirable property because our
designs imply that the transfer function of a cut by the same amount as a boost will be
the inverse of the corresponding boost transfer function. In terms of its s-plane zeros
and poles, Ha(s) may be written in the factored form:

Ha(s)= H0

[
1− s/z0

1− s/p0

]r L∏
i=1

[
(1− s/zi)(1− s/z∗i)
(1− s/pi)(1− s/p∗i)

]
(17.2.13)

where L is the number of analog second-order sections, related to the analog filter order
by N = 2L + r, where r = 0, if N is even, and r = 1, if N is odd. The notation [F]r

means that the factor F is present if r = 1 and absent if r = 0. The quantity H0 is the
gain at Ω = 0 (and at the peak frequency ω = ω0) and is given in terms of G or GB as
follows:

H0 =
⎧⎨⎩G, Butterworth and Chebyshev-2

GrG1−r
B , Chebyshev-1 and Elliptic

(17.2.14)

The zeros z0, zi and poles p0, pi are given below for all four filter types. We will
use Eq. (17.2.13) for the Butterworth, Chebyshev-2, and elliptic designs. For Chebyshev
type-1 designs, it is more convenient to use the following form:

Ha(s)= H∞

[
z0 − s
p0 − s

]r L∏
i=1

[
(zi − s)(z∗i − s)
(pi − s)(p∗i − s)

]
(17.2.15)

17.2. GENERAL CONSIDERATIONS 853

where H∞ is the gain at Ω = ∞ (and at ω = 0 and ω = π) given by:

H∞ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G0, Butterworth and Chebyshev-1

Gr
0G

1−r
B , Chebyshev-2

Gr
0G1−r

s , Elliptic

(17.2.16)

The conventional lowpass filters are obtained as special cases of Eqs. (17.2.10)–
(17.2.16) in the limit G0 = 0, G = 1. For realization purposes, it proves convenient
to implement the transformation (17.2.2) in two stages by first transforming the analog
lowpass shelving filter into a digital lowpass shelving filter using the ordinary bilinear
transformation, and then transforming that into the bandpass peaking equalizer. This
two-step process is expressed by writing Eq. (17.2.2) in the form [321,322]:

s = 1− ẑ−1

1+ ẑ−1
= 1− 2c0 z−1 + z−2

1− z−2
� ẑ−1 = z−1(c0 − z−1)

1− c0z−1
(17.2.17)

Such transformations have been used in the design of the biquadratic equalizer [222]
and bandpass and bandstop filters with variable characteristics [284,324,325].

Under the lowpass transformation from s to ẑ, the factored form of Eq. (17.2.13)
results in a digital lowpass shelving filter of order N that is a cascade of first- and
second-order sections in the variable ẑ. Then, the lowpass-to-bandpass transformation
from ẑ to z will yield the bandpass equalizer, centered at ω0, as a cascade of second-
and fourth-order sections in the variable z, with a net filter order of 2N.

Thus, the designed equalizer transfer function can be expressed in terms of the
variable s, or the variable ẑ, or the variable z, in the following equivalent cascaded
forms:

H(z) =
[
B00 + B01s
A00 +A01s

]r L∏
i=1

[
Bi0 + Bi1s+ Bi2s2

Ai0 +Ai1s+Ai2s2

]

=
[
b̂00 + b̂01ẑ−1

1+ â01ẑ−1

]r L∏
i=1

[
b̂i0 + b̂i1ẑ−1 + b̂i2ẑ−2

1+ âi1ẑ−1 + âi2ẑ−2

]

=
[
b00 + b01z−1 + b02z−2

1+ a01z−1 + a02z−2

]r L∏
i=1

[
bi0 + bi1z−1 + bi2z−2 + bi3z−3 + bi4z−4

1+ ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

]
(17.2.18)

When N = 1, the r-factor is identical to the conventional biquad equalizer [283–297].
For the special cases of lowpass and highpass digital shelving filters, we have c0 = ±1,
and Eq. (17.2.17) reduces to ẑ−1 = ±z−1, and the quartic sections are not applicable.

The algebraic relations among the coefficients of Eq. (17.2.18) are straightforward
and given below. For the s to ẑ−1 transformation, the first- and second-order section
coefficients are:

854 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

D0 = A00 +A01 Di = Ai0 +Ai1 +Ai2

b̂00 = B00 + B01

D0
b̂i0 = Bi0 + Bi1 + Bi2

Di

b̂01 = B00 − B01

D0
b̂i1 = 2(Bi0 − Bi2)

Di

â01 = A00 −A01

D0
b̂i2 = Bi0 − Bi1 + Bi2

Di

âi1 = 2(Ai0 −Ai2)
Di

âi2 = Ai0 −Ai1 +Ai2

Di

(17.2.19)

For the ẑ−1 to z−1 transformation, we obtain the second- and fourth-order coefficients:

b00 = b̂00 bi0 = b̂i0
b01 = c0(b̂01 − b̂00) bi1 = c0(b̂i1 − 2b̂i0)
b02 = −b̂01 bi2 = (b̂i0 − b̂i1 + b̂i2)c2

0 − b̂i1
a01 = c0(â01 − 1) bi3 = c0(b̂i1 − 2b̂i2)
a02 = −â01 bi4 = b̂i2

ai1 = c0(âi1 − 2)
ai2 = (1− âi1 + âi2)c2

0 − âi1
ai3 = c0(âi1 − 2âi2)
ai4 = âi2

(17.2.20)

17.3 Poles and Zeros

The construction of the poles and zeros of the parametric equalizer is slightly different
from the constructions of Sec. 13.5 and 13.7. The zeros and poles of the analog shelving
filter Ha(s) are constructed by by finding the roots of the numerator and denominator
of Eq. (17.2.10), that is, solving:

for the zeros: G2 +G2
0ε2F2

N(w)= 0

for the poles: 1+ ε2F2
N(w)= 0

(17.3.1)

or, equivalently,

FN(w) = ±j G
G0ε

FN(w) = ±j 1

ε

(17.3.2)

For the Butterworth case, we have, FN(w)= wN, which leads to the following left-
hand s-plane zeros and poles:

z0 = −gβg0
, zi = gβ

g0
(−si + jci) , p0 = −β , pi = β(−si + jci) (17.3.3)

17.3. POLES AND ZEROS 855

for i = 1,2, . . . , L, where we introduced the parameters:

g = G1/N, g0 = G1/N
0 , β = ε−1/NΩB = ε−1/N tan

(
Δω

2

)
(17.3.4)

si = sinφi , ci = cosφi , φi = (2i− 1)π
2N

, i = 1,2, . . . , L (17.3.5)

Eq. (17.4.1) was obtained by multiplying out the first-order zero and pole factors and
distributing the gain H0 = G = gN over the N first-order sections of Eq. (17.2.13).

For the type-1 Chebyshev case, we have, FN(w)= CN(w), and the left-hand s-plane
zeros and poles are found to be:

z0 = −ΩB sinhu , zi = jΩB cos(φi − ju)= ΩB(−si sinhu+ jci coshu)

p0 = −ΩB sinhv , pi = jΩB cos(φi − jv)= ΩB(−si sinhv+ jci coshv)
(17.3.6)

where i = 1,2, . . . , L, and si, ci,φi are the same as in Eq. (17.3.5). The quantities u, v are
given by:

eu = g−1
0 β , β =

(
Gε−1 +GB

√
1+ ε−2

)1/N

ev = α =
(
ε−1 +

√
1+ ε−2

)1/N
(17.3.7)

where g0 = G1/N
0 . The transfer function (17.4.6) was obtained by inserting (17.3.6) into

Eq. (17.2.15) and distributing the gain, H∞ = G0 = gN0 , over the N first-order sections.
For the type-2 Chebyshev case, we have, FN(w)= 1/CN(1/w), which leads to zeros

and poles that are essentially the inverses of those of Eq. (17.3.6). For i = 1,2, . . . , L, we
have:

z−1
0 = −Ω−1

B sinhu , z−1
i = jΩ−1

B cos(φi − ju)= Ω−1
B (−si sinhu+ jci coshu)

p−1
0 = −Ω−1

B sinhv , p−1
i = jΩ−1

B cos(φi − jv)= Ω−1
B (−si sinhv+ jci coshv)

(17.3.8)
where si, ci,φi are the same as in Eq. (17.3.5), and the quantities u, v are defined by:

eu = g−1β , β =
(
G0ε+GB

√
1+ ε2

)1/N

ev = α =
(
ε+

√
1+ ε2

)1/N
(17.3.9)

where g = G1/N. Inserting these into Eq. (17.2.13) and distributing the gain, H0 = G =
gN, over the N first-order sections, we obtain the analog transfer function (17.4.12).

We note that in both Chebyshev cases, the shelving zeros zi (or their inverses in
type-2) as well as the poles pi, lie on an ellipse on the s-plane, while in the Butterworth
case they lie on a circle.

In the elliptic case, we have, FN(w)= cd(uK1, k1), with, w = cd(uK, k). Assuming
initially that G �= 0 and G0 �= 0, the resulting left-hand s-plane zeros and poles of Ha(s)
in Eq. (17.2.13) are given as follows, for i = 1,2, . . . , L:

zi = jΩB cd
(
(ui − ju0)K, k

)
, pi = jΩB cd

(
(ui − jv0)K, k

)
(17.3.10)

856 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

where the ui = (2i−1)/N are the same as in Eq. (13.3.9), and u0, v0 are real-valued and
are the solutions of the equations:

sn(ju0NK1, k1)= j
G
G0ε

, sn(jv0NK1, k1)= j
1

ε
(17.3.11)

IfN is odd, there is an additional real-valued zero and pole obtained from Eq. (17.3.10)
by setting ui = 1 (which corresponds to the index i = L+ 1):

z0 = jΩB cd
(
(1− ju0)K, k

) = jΩB sn(ju0K,k)

p0 = jΩB cd
(
(1− jv0)K, k

) = jΩB sn(jv0K,k)
(17.3.12)

where we used the identity [318]: cd(K− x, k)= sn(x, k). The evaluation of the elliptic
functions cd and sn and their inverses can be carried out efficiently by means of the
Landen transformation described previously in Sec. 13.4.

Working with the normalized frequency,

wi = zi
jΩB

= cd
(
(ui − ju0)K, k

)
we may verify the root condition (17.3.2):

FN(wi) = cd
(
(ui − ju0)NK1, k1

) = cd
(
(2i− 1)K1 − ju0NK1, k1

)
= (−1)i sn(ju0NK1, k1)= ±j G

G0ε

where we used the property [318],

cd
(
(2i− 1)K1 + x, k1

) = (−1)i sn(x, k1)

which is valid for integer i. Similarly, for odd N we have

cd
(
(1− ju0)NK1, k1

) = sn(ju0NK1, k1)= jG
G0ε

The two special cases G0 = 0 and G = 0 must be treated separately because they
lead to the values z0 = ∞ and z0 = 0 in Eq. (17.3.12). When G0 = 0, Eq. (17.2.10)
implies that the zeros of Ha(s) coincide with the poles of FN(w), which were defined
in Eq. (13.3.9). Thus, the conjugate zeros are:

zi = jΩB(kζi)−1 , ζi = cd(uiK, k) (17.3.13)

The same conclusion can also be drawn by noting that when G0 = 0 the solution of
Eq. (17.3.11) is, ju0NK1 = jK′1, that is, it corresponds to a pole of the sn(x, k1) function.
But because of the degree equation, we also have, ju0K = jK′, which is a pole of the
sn(x, k) function. Therefore, z0 = ∞ and the zero factor, (1− s/z0), of Ha(s) may be
replaced by unity. The expression (17.3.10) for zi reduces to (17.3.13) for this value of
u0, provided we use the identity,

cd(x− jK′, k)= 1

k cd(x, k)

17.4. BUTTERWORTH, CHEBYSHEV, AND ELLIPTIC DESIGNS 857

WhenG = 0, the zeros ofHa(s) coincide with the zeros ofFN(w) given by Eq. (13.3.9),
but there is an extra zero at z0 = 0 for the odd-N case. The factor (1 − s/z0) of
Eq. (17.2.13) must be handled as a limiting case as G→ 0.

Using the Taylor series expansion sn(x, k)� x, which is valid for small x, it follows
that when G is small, the solution of Eq. (17.3.11) for u0, and the zero z0 of Eq. (17.3.12),
are given approximately by:

ju0NK1 � j
G
G0ε

⇒ u0 � G
G0εNK1

, z0 = jΩB sn(ju0K,k)� −ΩBu0K = − ΩBGK
G0εNK1

Because in the odd-N case the overall gain in Eq. (17.2.13) is H0 = G, it follows that
the first-order factor H0(1 − s/z0) of the transfer function will have a finite limit as
G→ 0:

H0(1− s/z0)� G+G
sG0εNK1

ΩBGK
→ s

ΩB
G0ε

NK1

K
Thus, in the odd-N case, the first-order numerator factor of Eq. (17.2.13) takes the fol-
lowing forms:

H0(1− s/z0)=

⎧⎪⎪⎨⎪⎪⎩
G(1− s/z0), if G0 �= 0, G �= 0

G, if G0 = 0, G �= 0

(s/ΩB)(G0ε)(NK1/K), if G0 �= 0, G = 0

(17.3.14)

For the even-N case, we have H0 = GB, per Eq. (17.2.14). Similarly, the conjugate
zeros zi, i = 1,2, . . . , L, are given as follows, for both even and odd N:

zi =

⎧⎪⎪⎨⎪⎪⎩
jΩB cd

(
(ui − ju0)K, k

)
, if G0 �= 0, G �= 0

jΩB(kζi)−1, if G0 = 0, G �= 0

jΩBζi, if G0 �= 0, G = 0

(17.3.15)

The case G0 = 0, G �= 0 corresponds to the conventional designs of analog lowpass
elliptic filters of Sec. 13.5. In the following sections, we present the design equations for
the coefficients of Eqs. (17.2.18) in the Butterworth, the two Chebyshev, and the elliptic
cases.

17.4 Butterworth, Chebyshev, and Elliptic Designs

Butterworth Designs

Using Eq. (17.3.3) for the Butterworth zeros and poles, we obtain the following expres-
sion for the analog transfer function (13.5.1) in the Butterworth case:

Ha(s)=
[
gβ+ g0s
β+ s

]r L∏
i=1

[
g2β2 + 2gg0siβs+ g2

0s2

β2 + 2siβs+ s2

]
(17.4.1)

where we defined the parameters:

g = G1/N, g0 = G1/N
0 , β = ε−1/NΩB = ε−1/N tan

(
Δω

2

)
(17.4.2)

858 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

si = sinφi , φi = (2i− 1)π
2N

, i = 1,2, . . . , L (17.4.3)

The parameter ε is given by Eq. (17.2.12) and ΩB by Eq. (17.2.5). Using the coefficient
transformations given above, we find the coefficients of the digital lowpass shelving
filter (17.2.18):

D0 = β+ 1 Di = β2 + 2siβ+ 1

b̂00 = (gβ+ g0)/D0 b̂i0 = (g2β2 + 2gg0siβ+ g2
0)/Di

b̂01 = (gβ− g0)/D0 b̂i1 = 2(g2β2 − g2
0)/Di

â01 = (β− 1)/D0 b̂i2 = (g2β2 − 2gg0siβ+ g2
0)/Di

âi1 = 2(β2 − 1)/Di

âi2 = (β2 − 2siβ+ 1)/Di

(17.4.4)

The coefficients of the second and fourth-order sections of the bandpass equalizer
(17.2.18) are:

D0 = β+ 1 Di = β2 + 2siβ+ 1

b00 = (g0 + gβ)/D0 bi0 = (g2β2 + 2gg0siβ+ g2
0)/Di

b01 = −2g0c0/D0 bi1 = −4c0(g2
0 + gg0siβ)/Di

b02 = (g0 − gβ)/D0 bi2 = 2
(
g2

0(1+ 2c2
0)−g2β2

)
/Di

a01 = −2c0/D0 bi3 = −4c0(g2
0 − gg0siβ)/Di

a02 = (1− β)/D0 bi4 = (g2β2 − 2gg0siβ+ g2
0)/Di

ai1 = −4c0(1+ siβ)/Di

ai2 = 2
(
1+ 2c2

0 − β2
)
/Di

ai3 = −4c0(1− siβ)/Di

ai4 = (β2 − 2siβ+ 1)/Di

(17.4.5)

When N = 1, we have g = G, g0 = G0, β = ε−1 tan(Δω/2), and the second-order
section coefficients {b00, b01, b02, a01, a02} become identical to those of the conven-
tional biquadratic equalizer, for example, in the form given in Sec. 12.4.

TheN = 2 case corresponds to the second-order shelving filters discussed in [327,295]
and used in [328] to design a fourth-order equalizer. We note also that Eqs. (17.4.1)–
(17.4.5) have the proper limits in the ordinary resonator/bandpass and notch/bandstop
cases G0 = 0, G = 1 and G0 = 1, G = 0.

Chebyshev Type-1 Designs

For the Chebyshev designs, the bandwidth Δω and gain level GB define the extent of
the equiripple passband in the type-1 case, or the onset of the equiripple stopband in
the type-2 case.

Therefore, for the type-1 case, GB must be chosen to be very close to G in order to
achieve a flat passband, and for the type-2 case, it must be very close to G0 to achieve
a flat stopband. These remarks are illustrated in Fig. 17.4.1. For the type-1 case, the

17.4. BUTTERWORTH, CHEBYSHEV, AND ELLIPTIC DESIGNS 859

resulting analog transfer function takes the form:

Ha(s)=
[
bΩB + g0s
aΩB + s

]r L∏
i=1

[
(b2 + g2

0c
2
i)Ω

2
B + 2g0bsiΩBs+ g2

0s2

(a2 + c2
i)Ω

2
B + 2asiΩBs+ s2

]
(17.4.6)

where we defined g0 = G1/N
0 and:

b = g0 sinhu = 1

2
(β− g2

0β−1) , a = sinhv = 1

2
(α−α−1) (17.4.7)

eu = g−1
0 β , β = (Gε−1 +GB

√
1+ ε−2

)1/N , ev = α = (ε−1 +
√

1+ ε−2
)1/N

(17.4.8)

si = sinφi , ci = cosφi , φi = (2i− 1)π
2N

, i = 1,2, . . . , L (17.4.9)

The choice of these parameters allows a graceful passage to the limit G0 = 0, G = 1,
which is relevant in designing ordinary lowpass and bandpass filters. The digital lowpass
shelving filter coefficients of Eq. (17.2.18) are found to be:

D0 = aΩB + 1 Di = (a2 + c2
i)Ω

2
B + 2asiΩB + 1

b̂00 = (bΩB + g0)/D0 b̂i0 =
(
(b2 + g2

0c
2
i)Ω

2
B + 2g0bsiΩB + g2

0

)
/Di

b̂01 = (bΩB − g0)/D0 b̂i1 = 2
(
(b2 + g2

0c
2
i)Ω

2
B − g2

0

)
/Di

â01 = (aΩB − 1)/D0 b̂i2 =
(
(b2 + g2

0c
2
i)Ω

2
B − 2g0bsiΩB + g2

0

)
/Di

âi1 = 2
(
(a2 + c2

i)Ω
2
B − 1

)
/Di

âi2 =
(
(a2 + c2

i)Ω
2
B − 2asiΩB + 1

)
/Di

(17.4.10)
and using Eq. (17.2.20), we obtain the bandpass equalizer coefficients:

D0 = aΩB + 1 Di = (a2 + c2
i)Ω

2
B + 2asiΩB + 1

b00 = (g0 + bΩB)/D0 bi0 =
(
(b2 + g2

0c
2
i)Ω

2
B + 2g0bsiΩB + g2

0

)
/Di

b01 = −2g0c0/D0 bi1 = −4c0(g2
0 + g0bsiΩB)/Di

b02 = (g0 − bΩB)/D0 bi2 = 2
(
g2

0(1+ 2c2
0)−(b2 + g2

0c
2
i)Ω

2
B
)
/Di

a01 = −2c0/D0 bi3 = −4c0(g2
0 − g0bsiΩB)/Di

a02 = (1− aΩB)/D0 bi4 =
(
(b2 + g2

0c
2
i)Ω

2
B − 2g0bsiΩB + g2

0

)
/Di

ai1 = −4c0(1+ asiΩB)/Di

ai2 = 2
(
1+ 2c2

0 − (a2 + c2
i)Ω

2
B
)
/Di

ai3 = −4c0(1− asiΩB)/Di

ai4 =
(
(a2 + c2

i)Ω
2
B − 2asiΩB + 1

)
/Di

(17.4.11)

Chebyshev Type-2 Designs

In the type-2 Chebyshev case, the analog shelving filter transfer function of Eq. (13.5.1),
constructed from the corresponding left-hand s-plane zeros and poles given by Eq. (17.3.8),
is found to be:

Ha(s)=
[
gΩB + bs
ΩB + as

]r L∏
i=1

[
g2Ω2

B + 2gbsiΩBs+ (b2 + g2c2
i)s2

Ω2
B + 2asiΩBs+ (a2 + c2

i)s2

]
(17.4.12)

860 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

where we set g = G1/N and defined:

b = g sinhu = 1

2
(β− g2β−1), a = sinhv = 1

2
(α−α−1) (17.4.13)

with si, ci,φi given by Eq. (17.4.9), and the quantities u, v defined by:

eu = g−1β , β = (G0ε+GB
√

1+ ε2
)1/N , ev = α = (ε+ √1+ ε2

)1/N
(17.4.14)

The form of Eq. (17.4.12) facilitates the limitG = 0,G0 = 1, which describes ordinary
notch/bandstop filters. The coefficients of the corresponding digital lowpass shelving
filter are:

D0 = ΩB + a Di = Ω2
B + 2asiΩB + a2 + c2

i

b̂00 = (gΩB + b)/D0 b̂i0 = (g2Ω2
B + 2gbsiΩB + b2 + g2c2

i)/Di

b̂01 = (gΩB − b)/D0 b̂i1 = 2(g2Ω2
B − b2 − g2c2

i)/Di

â01 = (ΩB − a)/D0 b̂i2 = (g2Ω2
B − 2gbsiΩB + b2 + g2c2

i)/Di

âi1 = 2(Ω2
B − a2 − c2

i)/Di

âi2 = (Ω2
B − 2asiΩB + a2 + c2

i)/Di

(17.4.15)

and the coefficients of the bandpass equalizer:

D0 = ΩB + a Di = Ω2
B + 2asiΩB + a2 + c2

i

b00 = (b+ gΩB)/D0 bi0 = (g2Ω2
B + 2gbsiΩB + b2 + g2c2

i)/Di

b01 = −2bc0/D0 bi1 = −4c0(b2 + g2c2
i + gbsiΩB)/Di

b02 = (b− gΩB)/D0 bi2 = 2
(
(b2 + g2c2

i)(1+ 2c2
0)−g2Ω2

B
)
/Di

a01 = −2ac0/D0 bi3 = −4c0(b2 + g2c2
i − gbsiΩB)/Di

a02 = (a−ΩB)/D0 bi4 = (g2Ω2
B − 2gbsiΩB + b2 + g2c2

i)/Di

ai1 = −4c0(a2 + c2
i + asiΩB)/Di

ai2 = 2
(
(a2 + c2

i)(1+ 2c2
0)−Ω2

B
)
/Di

ai3 = −4c0(a2 + s2
i − asiΩB)/Di

ai4 = (Ω2
B − 2asiΩB + a2 + c2

i)/Di

(17.4.16)

Fig. 17.4.1 Bandwidth specifications of Chebyshev type-1 and type-2 equalizers.

17.4. BUTTERWORTH, CHEBYSHEV, AND ELLIPTIC DESIGNS 861

We note that for both Chebyshev cases, the filter order N = 1 corresponds to the con-
ventional biquadratic equalizer.

Elliptic Designs

In this section we adapt the conventional elliptic filter design methods of Sec. 13.5 to the
equalizer problem. We follow the notational conventions and computational algorithms
of Ref. [309]. The required elliptic function moduli k, k1 may be determined in terms of
the given filter specifications by the procedure described below.

The use of the elliptic function cd (instead of usual sn) in the definition of Eq. (17.2.11)
applies to both the even and odd values of the filter orderN. The elliptic function moduli
k, k1 and the filter order N are required to satisfy the following degree equation:

N
K′

K
= K′1
K1

(17.4.17)

where K,K′ and K1, K′1 are the quarter periods corresponding to the moduli k, k1 and
defined in terms of the complete elliptic integrals [313,317,318] by K = K(k), K′ =
K(k′), K1 = K(k1), and K′1 = K(k′1), where k′, k′1 are the complementary moduli k′ =
(1− k2)1/2 and k′1 = (1− k2

1)1/2.
A consequence of the degree equation is that FN(w)= cd(NuK1, k1) is a rational

function of w = cd(uK, k) given as follows (and normalized such that FN(1)= 1):

FN(w)= [w]r
L∏
i=1

[(
w2 − ζ2

i
1−w2k2ζ2

i

)(
1− k2ζ2

i
1− ζ2

i

)]
(17.4.18)

where N = 2L+ r, and ζi and (kζi)−1 are the zeros and poles of FN(w), where:

ζi = cd(uiK, k) , ui = 2i− 1

N
, i = 1,2, . . . , L (17.4.19)

Because the elliptic designs are equiripple in both the passband and stopband, the
specifications of the equalizer must be modified by adding a gain Gs that defines the
level of the equiripple stopband. These specifications and those of the equivalent analog
lowpass shelving filter are shown in Fig. 17.4.2.

The gain GB defines the equiripple passband, which extends over the ±ΩB interval
for the shelving filter. The equiripple stopband begins at a frequency Ωs > ΩB that
defines the elliptic modulus k = ΩB/Ωs. At the normalized frequency w1 = Ωs/ΩB =
1/k, we have FN(w1)= 1/k1. Indeed, the condition that w1 = cd(uK, k)= 1/k is
satisfied with u = jK′/K, that is, cd(uK, k)= cd(jK′, k)= 1/k, which is a standard
property of the cd elliptic function [317,318]. Then, the same property and the degree
equation (17.4.17) imply that:

FN(w1)= cd(NuK1, k1)= cd(jNK1K′/K, k1)= cd(jK′1, k1)= 1/k1 (17.4.20)

Using Eq. (17.4.20), the requirement that the gain be equal to Gs at w = w1 gives the
condition:

|Ha(Ωs)|2 = G2 +G2
0ε2/k2

1

1+ ε2/k2
1

= G2
s � k1 = ε

εs
, εs =

√√√√G2 −G2
s

G2
s −G2

0
(17.4.21)

862 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

Thus, the elliptic moduli k, k1 are given as follows in terms of the shelving filter speci-
fications:

k = ΩB

Ωs
, k1 = ε

εs
(17.4.22)

Because of the degree equation, any two of the parametersN,Gs,Ωs, or equivalently,
N,k, k1, will determine the third. For the equalizer problem, it is convenient to fix N
and Gs, with Gs chosen to be very close to G0 in order to achieve a flat stopband. Then,
from the degree equation we may determine the parameter k and, hence, the value of
the stopband edge frequency Ωs.

An exact solution of the degree equation can be derived by using the property of
Eq. (17.4.20). Setting w1 = 1/k and FN(w1)= 1/k1 in Eq. (17.4.18), we obtain the
formula for k1:

k1 = kN
L∏
i=1

sn4(uiK, k) (17.4.23)

where we used the property: (1−ζ2
i)/(1− k2ζ2

i)= sn2(uiK, k). Noting the invariance
[312] of the degree equation under the substitutions k→ k′1 and k1 → k′, we also obtain
the exact solution for k in terms of N,k1, expressed via the complementary moduli
k′, k′1:

k′ = (k′1)N
L∏
i=1

sn4(uiK′1, k′1) (17.4.24)

Eqs. (17.4.23) and (17.4.24), known as the “modular equations,” were derived first by
Jacobi in his original treatise on elliptic functions [313] and have been used since in the
context of elliptic filter design [307,311,312].

The degree equation can also be solved approximately, and accurately, by working
with the nomes q,q1 corresponding to the moduli k, k1. Exponentiating Eq. (17.4.17),
we have:

q1 = qN � q = q1/N
1 (17.4.25)

where q = e−πK′/K and q1 = e−πK
′
1/K1 . Once q has been calculated from N and q1, the

Fig. 17.4.2 Design specifications of elliptic equalizer and corresponding shelving filter.

17.5. ORDER DETERMINATION 863

modulus k can be determined from the series expansion [317]:

k = 4
√
q

⎛⎜⎜⎜⎜⎜⎝
∞∑

m=0

qm(m+1)

1+ 2
∞∑

m=1

qm
2

⎞⎟⎟⎟⎟⎟⎠
2

(17.4.26)

which converges very fast. For example, keeping only the terms up to m = 7, gives a
very accurate approximation.

The shelving filter transfer function Ha(s) is constructed by Eq. (17.2.13), where the
poles p0, pi are given by Eqs. (17.3.10)–(17.3.12) and the zeros z0, zi by Eqs. (17.3.14)–
(17.3.15). The expressions for the zeros take into account the special cases G = 1, G0 =
0 and G = 0, G0 = 1.

Once Ha(s) is determined from its zeros and poles, it may be transformed to the
digital equalizer forms of Eq. (17.2.18) using the bilinear transformations. The required
coefficient transformations are given by Eqs. (17.2.19) and (17.2.20). The resulting digital
filter coefficients do not have any easily stated analytical form.

From the calculated value ofΩs = ΩB/k, the equalizer’s bandwidth,Δωs = 2πΔfs/fs,
at the stopband level Gs can be derived by inverting the relationship Ωs = tan(Δωs/2).
The left and right stopband edge frequencies can be calculated from Eq. (17.2.8) with
Ωs replacing ΩB:

cosωs1 =
c0 +Ωs

√
Ω2
s + s2

0

Ω2
s + 1

, cosωs2 =
c0 −Ωs

√
Ω2
s + s2

0

Ω2
s + 1

(17.4.27)

We note that the type-1 Chebyshev designs correspond to the limitΩs →∞,Gs → G0,
or, k = k1 = 0. In this limit, the quarter periods become K = K1 = π/2, the elliptic
function cd tends to an ordinary cosine, w = cd(uK, k)= cos(uπ/2), and the func-
tion FN(w)= cd(NuK1, k1)= cos(Nuπ/2) becomes equal to the Nth order Chebyshev
polynomial CN(w), and the ζi = cd(uiK, k)= cos(uiπ/2) become its roots.

17.5 Order Determination

We saw in the elliptic case that the orderN and the stopband levelGs were enough to fix
the rest of the design parameters, and in particular, the bandwidthΔfs atGs. Conversely,
if Δf , Δfs and the levels GB, Gs are specified independently, then, the moduli k, k1 are
fixed and may not necessarily satisfy the degree equation (17.4.17) with an integer N.
In this case, one may calculate:

N = K′1/K1

K′/K
(17.5.1)

and round it up to the next integer. Then, either k1 needs to be recalculated from
Eq. (17.4.23), or k from Eq. (17.4.24). Given that N is a decreasing function of k1 and
an increasing function of k, it follows that the resulting specifications will be slightly
improved. In the first case, k1 will slightly decrease implying that either ε decreases or
εs increases, and hence, eitherGB gets closer toG, orGs gets closer toG0. In the second

864 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

case, k will slightly increase, implying that Ωs will get smaller, resulting in a narrower
bandwidth Δfs.

A similar determination of the order N can be carried out in the Butterworth and
Chebyshev cases. One must specify a secondary bandwidth specification, such as Δfs at
Gs, as illustrated in Fig. 17.4.2. Defining the parameters k, k1 exactly as in Eq. (17.4.22),
and using the condition that FN(w1)= 1/k1 atw1 = 1/k, we obtain the following degree
equations. For the Butterworth case:

k1 = kN ⇒ N = lnk1

lnk
(17.5.2)

For the type-1 Chebyshev case, we have CN(1/k)= 1/k1, or,

cosh
(
N cosh−1(1/k)

) = 1/k1 ⇒ N = cosh−1(1/k1)
cosh−1(1/k)

(17.5.3)

For the type-2 Chebyshev case, because GB was chosen to be close to G0, the sec-
ondary bandwidth level Gs must be chosen to be very close to G, thus corresponding
to a narrower bandwidth Δfs than Δf . This implies that k = ΩB/Ωs > 1 and also
k1 = ε/εs > 1. The degree equation in this case is CN(k)= k1, or,

cosh(N cosh−1 k)= k1 ⇒ N = cosh−1 k1

cosh−1 k
(17.5.4)

The inequality εs < ε for the type-2 case can be seen from the identity:

ε2
s − ε2 = (G2

B −G2
s)(G2 −G2

0)
(G2

s −G2
0)(G

2
B −G2

0)
(17.5.5)

where for a boost, we must have G > Gs > GB > G0, and for a cut, G < Gs < GB < G0.
For the Butterworth, type-1 Chebyshev, and elliptic cases, we always have εs > ε, because
for a boost we must have G > GB > Gs > G0, and for a cut, G < GB < Gs < G0.

17.6 Bandwidth

The bandwidth levels GB and Gs may be chosen arbitrarily, as long as they satisfy the
basic inequalities (with the roles of GB and Gs reversed in the Chebyshev-2 case):

G > GB > Gs > G0 (boost)

G < GB < Gs < G0 (cut)
(17.6.1)

If the boost gain is more than 3 dB above the reference G0, one may choose GB to be
3 dB below the peak, G2

B = G2/2, or, alternatively, 3 dB above the reference, G2
B = 2G2

0.
Other choices that respect the inequalities (17.6.1) are the geometric and arithmetic
means [296]:

G2
B = GG0 , G2

B =
1

2
(G2 +G2

0) (17.6.2)

The corresponding values of ε defined by Eq. (17.2.12) are in these cases:

ε =
√

G
G0

, ε = 1 (17.6.3)

17.6. BANDWIDTH 865

A more general definition is the weighted arithmetic mean:

G2
B =

G2 +α2G2
0

1+α2
⇒ ε = α (17.6.4)

where α is an arbitrary constant. The geometric mean choice implies that a boost and
a cut by equal and opposite gains in dB will cancel exactly [292]. On the other hand, as
we discuss in the next section, the weighted arithmetic mean makes possible a general-
ization of the Regalia-Mitra realization [288] that allows the independent control of the
filter coefficients by the equalizer’s center frequency f0, bandwidth Δf , and gain G.

Regardless of the choice of GB, and for all four filter types, it can be shown that a
boost and a cut by gains G and G−1, with bandwidth levels GB and G−1

B , and with the
same center frequency and bandwidth, will cancel each other. Consider the boost and
the cut defined by the gains:

G > GB > Gs > G0 (boost)

G−1 < G−1
B < G−1

s < G−1
0 (cut)

(17.6.5)

From the definition (17.2.12), it follows that:

εcut =
√√√√G−2 −G−2

B
G−2
B −G−2

0
= G0

G

√√√√G2 −G2
B

G2
B −G2

0
= G0

G
εboost (17.6.6)

This implies that the root conditions (17.3.2) for the zeros and poles will exchange
roles, and therefore, zi,cut = pi,boost and pi,cut = zi,boost. The corresponding analog, and
hence, the digital transfer functions will become inverses of each other:

Hcut(z)= 1

Hboost(z)
(17.6.7)

The elliptic modulus k1 remains invariant under this change because the quantity
εs also changes in the same way as in Eq. (17.6.6), and therefore, the ratio ε/εs remains
unchanged.

The bandwidth Δω = ω2 −ω1 is given in linear frequency scale and enters the
design equations, for all filter types, through the quantity ΩB = tan(Δω/2). If the
bandwidth is to be specified in octaves, then it may be mapped to the linear Δω in the
following way.

Because the quantities Ωi = tan(ωi/2), i = 0,1,2, are related through Ω1Ω2 = Ω2
0,

that is, through Eq. (17.2.5), we may set Ω2 = 2B/2Ω0 and Ω1 = 2−B/2Ω0, where B plays
the role of an equivalent analog octave bandwidth. Using some trigonometric identities,
we obtain the following expression for Δω in terms of B:

ΩB = tan
(
Δω

2

)
= sinω0 sinh

(
ln 2

2
B
)

(17.6.8)

The true bandwidth in octaves is defined by b = log2(ω2/ω1), or, 2b = ω2/ω1.
Replacing ω2 = 2 arctan(Ω2)= 2 arctan(2B/2Ω0), and similarly for ω1, we obtain the
following “bandwidth equation” relating B, b, and Ω0 = tan(ω0/2) [331]:

2b = arctan(2B/2Ω0)
arctan(2−B/2Ω0)

(17.6.9)

866 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

In order to map the given octave bandwidth b to the linear one, one must solve
Eq. (17.6.9) for B and substitute it in (17.6.8). By expanding (17.6.9) to first order in b
and B, Bristow-Johnson obtained the following approximate solution [292]:

B = ω0

sinω0
b (17.6.10)

This approximation works very well for low frequencies ω0, as well as for high ω0

and narrow b. For any values of ω0 and b, Eq. (17.6.9) may be solved iteratively, with
Eq. (17.6.10) serving as the starting point. By rearranging (17.6.9) in the form 2B/2 =
Ω0/ tan

(
2−b arctan(2B/2Ω0)

)
, we obtain the following convergent iteration, initialized

at B0 = B given by (17.6.10):

2Bn+1/2 = Ω0

tan
(
2−b arctan(2Bn/2Ω0)

) , n = 0,1,2, . . . (17.6.11)

At large values of ω0 where the approximation (17.6.10) is not as good, the con-
vergence is very fast, requiring only two or three iterations; the convergence is slow at
small ω0, but then the approximation (17.6.10) is good and there is no need for the it-
eration. The calculated physical bandwidth at the nth iteration may be defined through
2bn = arctan(2Bn/2Ω0)/ arctan(2−Bn/2Ω0). The iteration error |bn−b| decreases essen-
tially exponentially with the iteration index n. This can be seen as follows. Assuming
that Bn is near the desired solution B of (17.6.9), and linearizing the recursion (17.6.11)
about B, we obtain the following solution for the errors ΔBn = Bn − B:

ΔBn = const · (−a)n , a = (2B +Ω2
0)arctan(2−B/2Ω0)

(1+ 2BΩ2
0)arctan(2B/2Ω0)

(17.6.12)

where the quantity a can be shown to be less than unity for all values of B and Ω0, and
a decreasing function of B (a � 1 at low ω0, which explains the slow convergence in
that case.) Thus, ΔBn decreases exponentially, and so does the error |bn − b|, since it
follows |ΔBn|.

Once B has been calculated from b and ω0, it may be used in (17.6.8) to obtain the
linear bandwidth Δω and, from it, the actual bandedge frequencies ω1,ω2 through
Eqs. (17.2.8), or from ω2,1 = 2 arctan(2±B/2Ω0). The calculated bandedge frequencies
will always lie within the Nyquist interval, for all values of ω0 and b. However, it must
be emphasized that, although ω1,ω2 are b-octaves apart, they will not necessarily lie
symmetrically at ±b/2 octaves about ω0, and may result in a very asymmetric band,
especially at large ω0s.

For the Chebyshev and elliptic cases, it may be desirable to be able to design the
filters based on a more standard definition of the bandwidth, such as the 3-dB width,
yet preserving the flatness of the passband and stopband controlled by the gainsGB and
Gs. This issue has been discussed in [332]. In general terms, the problem is to compute
the design bandwidth Δω at the level GB from a given bandwidth Δωb at an arbitrary
intermediate level Gb, such that G0 < Gs < Gb < GB < G. For a given order N, the
required bandwidth Δω and the design parameter ΩB can be determined from Δωb as
follows:

ΩB = tan
(
Δω

2

)
= 1

wb
tan

(
Δωb

2

)
(17.6.13)

17.7. REALIZATIONS 867

where the normalized frequency wb is is the solution of the equation:

FN(wb)= εb
ε
, εb =

√√√√G2 −G2
b

G2
b −G2

0
(17.6.14)

Eq. (17.6.14) was obtained from the equivalent magnitude condition:

G2 +G2
0ε2F2

N(wb)
1+ ε2F2

N(wb)
= G2

b (17.6.15)

The solution of (17.6.14) is straightforward. For example, for the type-1 Chebyshev
case, one may solve cosh(Nu)= εb/ε for u and then calculate wb = cosh(u). Simi-
larly, for the elliptic case, using the inverse of the cd elliptic function, one may solve
cd(NuK1, k1)= εb/ε for u and compute wb = cd(uK, k), where k1 is fixed from the
levels GB and Gs, and k is calculated from N,k1 using the degree equation. Once the
bandwidth Δω is determined, it may be used to complete the filter design. If the Gb-
bandwidth is given in octaves, then it can be converted to linear frequency scale by
applying Eqs. (17.6.8)–(17.6.11) to Δωb instead of Δω.

If the filter order N is not given, but rather both Δω,Δωb at the levels GB,Gb are
given, then, the quantities εb and wb = tan(Δωb/2)/ tan(Δω/2) are fixed and the
filter order may be determined by solving Eq. (17.6.14) for N as in Sect. 17.5. This is
straightforward for the Butterworth and Chebyshev cases.

The elliptic case is a bit more difficult because the third level Gs must also be fixed
independently. The following trial-and-error approach works well: for each successive
filter order N = 1,2, . . . , calculate k from N,k1 using the degree equation, then solve
cd(NuK1, k1)= εb/ε for u, calculate the error e = cd(uK, k)−wb, and keep the first
N for which e becomes negative (it always starts from positive values provided that
wb < εb/ε, which is easily met for practical specifications.)

If the filter is designed with the computed N and the given Δω, then the resulting
Gb-width will be slightly narrower thanΔωb. If the widthΔωb is to be matched exactly,
the resulting Δω, obtained from Eqs. (17.6.13)–(17.6.14) using the computed N, will be
slightly wider than specified.

17.7 Realizations

The digital equalizer transfer function H(z) given by Eq. (17.2.18) may be realized as
the cascade of the fourth-order sections in (17.2.18), or alternatively, as the cascade
of the frequency-shifted second-order lowpass shelving filter sections in (17.2.18), in
which each unit delay ẑ−1 is replaced by the lowpass to bandpass transformation of
Eq. (17.2.17), that is,

s = 1− ẑ−1

1+ ẑ−1
= 1− 2c0 z−1 + z−2

1− z−2
� ẑ−1 = z−1(c0 − z−1)

1− c0z−1

We consider briefly the frequency-shifted versions of the transposed, normalized-
lattice [338–340], and minimum-noise state-space [342–346] realizations of Eq. (17.2.18).

868 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

The latter two are known to have excellent numerical properties, at the expense of ef-
fectively doubling the number of filter coefficients. Such realizations may be appropri-
ate under stringent filter specifications, such as very low center frequencies or rapidly-
varying equalizer parameters [340].

The normalized lattice realization of the bandpass transformation (17.2.17) is shown
in Fig. 17.7.1. It has the expected limit (without requiring any pole/zero cancellations) in
the lowpass and highpass shelving filter casesω0 = 0 andω0 = π. Other realizations of
(17.2.17) are, of course, possible that require fewer operations, such as, for example, the
one-multiplier form of [222,325]. However, they lack the scaling and L2-normalization
properties of the normalized lattice.

Fig. 17.7.1 Normalized lattice realization of ẑ−1 = z−1(c0 − z−1)
1− c0z−1

.

The transposed (of the direct-form II) realization of the second-order sections of
Eq. (17.2.18), after each delay ẑ−1 has been replaced by Fig. 17.7.1, is shown in Fig. 17.7.2.
The figure represents the transfer function:

B(ẑ)
A(ẑ)

= b̂0 + b̂1ẑ−1 + b̂2ẑ−2

1+ â1ẑ−1 + â2ẑ−2
, ẑ−1 = (c0 − z−1)z−1

1− c0z−1
(17.7.1)

Fig. 17.7.2 Frequency-shifted transposed realization of the filter sections of Eq. (17.2.18).

The normalized lattice realization of Eq. (17.7.1) is shown in Fig. 17.7.3. The reflection
and transmission coefficients are constructed as follows [338–340]:

γ1 = â1

1+ â2
, γ2 = â2 , τ1 =

√
1− γ2

1 , τ2 =
√

1− γ2
2 (17.7.2)

17.7. REALIZATIONS 869

Fig. 17.7.3 Frequency-shifted normalized lattice realization of the sections of Eq. (17.2.18).

The ladder coefficients d0, d1, d2 are the solutions of the triangular system:⎡⎢⎣ 1 γ1 â2

0 1 â1

0 0 1

⎤⎥⎦
⎡⎢⎣ d0τ1τ2

d1τ2

d2

⎤⎥⎦ =
⎡⎢⎣ b̂0

b̂1

b̂2

⎤⎥⎦ (17.7.3)

The first-order factor of Eq. (17.2.18) is obtained by setting â2 = b̂2 = 0, or equiva-
lently, γ2 = 0, d2 = 0, and τ2 = 1, which amounts to deleting the γ2 lattice section.

Computationally, Eqs. (17.7.2) and (17.7.3) are simple to use. Explicit expressions
for the lattice filter parameters can be given in the Butterworth and Chebyshev cases.
For example, for the first-order Butterworth factor of Eq. (17.2.18), we find:

γ1 = β− 1

β+ 1
, d0 =

√
β(g+ g0)
β+ 1

, d1 = gβ− g0

β+ 1
(17.7.4)

Eq. (17.7.4) can also be used to implement the conventional biquadratic equalizer in
its lattice form. For the ith second-order Butterworth factor of (17.2.18), we have:

γ1 = β2 − 1

β2 + 1
, γ2 = β2 − 2siβ+ 1

β2 + 2siβ+ 1
(17.7.5)

d0 =
√
β(g+ g0)

[
(1− β2)(g− g0)+2siβ(g+ g0)

]
(β2 + 2siβ+ 1)

√
2si(β2 + 1)

d1 =
√

2β(g+ g0)
[
gβ(1+ βsi)−g0(β+ si)

]
(β2 + 2siβ+ 1)

√
si(β2 + 1)

d2 = g2β2 − 2gg0siβ+ g2
0

β2 + 2siβ+ 1

(17.7.6)

Optimum state-space realizations that have minimum roundoff noise under fixed-
point arithmetic, and under an L2-scaling constraint for the internal states, are well-
known [342–344]. Explicit design equations for the case of second-order sections with
complex-conjugate poles have been given by Barnes [345] and Bomar [346].

One may use such optimum realizations for each second-order section of Eq. (17.2.18),
and replace the delays ẑ−1 by Fig. 17.7.1. The resulting state-space realization of Eq. (17.7.1)

870 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

is shown in Fig. 17.7.4, where the indicated state vectors s and w are two-dimensional.
The corresponding time-domain description is:

y(n) = Cs(n)+Dx(n)
s(n+ 1) = c0

[
As(n)+Bx(n)]− s0 w(n)

w(n+ 1) = s0
[
As(n)+Bx(n)]+ c0 w(n)

(17.7.7)

Fig. 17.7.4 Frequency-shifted state-space realization of the filter sections of Eq. (17.2.18).

The ABCD parameters were given in Sec. 7.4 and are repeated in Appendix-1 of this
section. For the odd-N case, the first-order factor in ẑ−1 is described by Eq. (17.7.7) with
one-dimensional ABCD parameters.

For the special case of the ordinary biquadratic equalizer (N = 1), the first-order
factor in ẑ−1 may be regarded as a second-order factor in z−1 and realized directly in its
optimum second-order state-space form. We have derived the following explicit form
of the optimum second-order state-space parameters in this case:

y(n) = Cs(n)+Dx(n)
s(n+ 1) = As(n)+Bx(n)

(17.7.8)

where,

A = 1

1+ β

[
c0 β+ s0

β− s0 c0

]
,

B =
√

2β
1+ β

[√
1− s0

−σ√1+ s0

]

C =
√

2β(G−G0)
2(1+ β)

[
σ
√

1+ s0 , −
√

1− s0

]
,

D = G0 +Gβ
1+ β

(17.7.9)

where, β = ε−1 tan(Δω/2), and, σ = sign(c0), with the unusual convention that
sign(0)= 1 The corresponding first-order lowpass and highpass shelving filters obtained

17.8. DECOUPLED REALIZATIONS 871

in the limits ω0 = 0 and ω0 = π are described by the one-dimensional state-space pa-
rameters:

A = ±1− β
1+ β

, B = 2
√
β

1+ β
, C = ±

√
β(G−G0)

1+ β
, D = G0 +Gβ

1+ β
(17.7.10)

17.8 Decoupled Realizations

The realizations shown in Figs. 17.7.2–17.7.4 are partially decoupled in the sense that the
dependence on the center frequency ω0 resides only in the multipliers c0, s0, whereas
the dependence on the bandwidth and gain resides in the other coefficients.

For the Butterworth and the two Chebyshev cases, it is possible to generalize the
Regalia-Mitra realizations [288] in which the dependence on the bandwidth, gain, and
center frequency is completely decoupled into separate filter coefficients.

Such decoupling is possible [296] only if the bandwidth level is defined according the
weighted arithmetic mean of Eq. (17.6.4). Then, the constant ε = α is independent of the
peak gain G and hence the parameter β of Eq. (17.4.2) depends only on the bandwidth
Δω.

For the first-order factor of Eq. (17.2.18), the decoupled realization is obtained by a
rearrangement of the first-order normalized lattice filter as shown in Fig. 17.8.1, where
the coefficients d0, d1 are the solutions of the system:[

1 â1

â1 1

][
d0

d1

]
=
[
b̂0

b̂1

]
(17.8.1)

Eq. (17.8.1) is equivalent to expanding the corresponding first-order transfer function
in the form:

B(ẑ)
A(ẑ)

= b̂0 + b̂1ẑ−1

1+ â1ẑ−1
= d0 + d1

AR(ẑ)
A(ẑ)

(17.8.2)

whereAR(ẑ) is the reverse of the polynomialA(ẑ). For the Butterworth first-order filter
coefficients given by Eq. (17.4.4), we find:

γ1 = β− 1

β+ 1
, d0 = g+ g0

2
, d1 = g− g0

2
(17.8.3)

Similarly, for the type-1 Chebyshev case, we have:

γ1 = aΩB − 1

aΩB + 1
, d0 = 1

2

(
b
a
+ g0

)
, d1 = 1

2

(
b
a
− g0

)
(17.8.4)

Thus, the coefficients d0, d1 depend only on the gain, and the coefficients γ1, τ1,
only on the bandwidth. The second-order factors in Eq. (17.2.18) also admit a decoupled
realization, but at the expense of doubling the number of delays. Fig. 17.8.2 shows this
realization, where the coefficients d0, d1, d2 are the solutions of the system:⎡⎢⎣ 1 â2 1

â1 â1 2
â2 1 1

⎤⎥⎦
⎡⎢⎣ d0

d1

d2τ1τ2

⎤⎥⎦ =
⎡⎢⎣ b̂0

b̂1

b̂2

⎤⎥⎦ (17.8.5)

872 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

This is equivalent to expanding the second-order transfer function (17.7.1) in the form:

B(ẑ)
A(ẑ)

= d0 + d1
AR(ẑ)
A(ẑ)

+ d2
τ1τ2(1+ ẑ−1)2

A(ẑ)
(17.8.6)

For the ith second-order Butterworth factors of Eq. (17.4.4), we have:

d0 = 1

2
g0(g0 + g) , d1 = 1

2
g0(g0 − g) , d2 = (g2 − g2

0)

√
β(β2 + 1)

32si
(17.8.7)

with the reflection coefficients given by Eq. (17.7.5). For the type-1 Chebyshev case, we
have:

γ1 = (a2 + c2
i)Ω

2
B − 1

(a2 + c2
i)Ω

2
B + 1

, γ2 = (a2 + c2
i)Ω

2
B − 2asiΩB + 1

(a2 + c2
i)Ω

2
B + 2asiΩB + 1

d0 = 1

2
g0

(
g0 + b

a

)
, d1 = 1

2
g0

(
g0 − b

a

)
, d2 = (b2−g2

0a2)

√√√√((a2 + c2
i)Ω

2
B + 1

)
ΩB

32sia(a2 + c2
i)

Replacing the unit delays ẑ−1 by Fig. 17.7.1, and splitting the multiplier d2 into two
factors, one depending on g and the other onΩB, we obtain a realization of the equalizer
that allows the independent control of the gain, bandwidth, and center frequency. In the
Chebyshev cases, one must chooseα� 1 for type-1 andα� 1 for type-2 in Eq. (17.6.4),
in order to achieve flat passbands and stopbands, respectively.

The main limitation of such decoupled realizations is the restrictive definition of the
bandwidth level GB. Thus, the transposed, normalized-lattice, and state-space realiza-
tions are more flexible.

Fig. 17.8.1 Decoupled realization of the first-order factor of Eq. (17.2.18).

Fig. 17.8.2 Decoupled realization of the second-order factors of Eq. (17.2.18).

17.9. DESIGN EXAMPLES 873

17.9 Design Examples

Figures 17.9.1–17.9.4 show the magnitude response of the cascade of four equalizer
filters: a lowpass shelf, a boost, a cut, and a highpass shelf, designed according to the
four filter types with analog filter orders of N = 4 and N = 5. The center frequencies,
bandwidths, and boost gains (relative to G0 = 0 dB) were taken to be:

f1 = 0 kHz , Δf1 = 1 kHz , G1 = 9 dB
f2 = 4 kHz , Δf2 = 2 kHz , G2 = 12 dB
f3 = 9 kHz , Δf3 = 2 kHz , G3 = −6 dB
f4 = 20 kHz , Δf4 = 4 kHz , G4 = 6 dB

(17.9.1)

where all gains must be converted from dB to absolute units before used in the design
equations. The sampling rate was 40 kHz.

For the Butterworth case, shown in Fig. 17.9.1, the bandwidth gains were chosen to
be 3 dB below (or above, for the cut case) the peak gains, that is:

GB1 = 6 dB , GB2 = 9 dB , GB3 = −3 dB , GB4 = 3 dB (17.9.2)

The bullet dots on the graphs show the center and bandedge frequencies computed
by Eq. (17.2.8). The conventional biquad equalizers (first order for the shelves), designed
with the same specifications, are also shown in Fig. 17.9.1, both individually (dotted
lines) and as their overall cascaded response (dashed line). Because of the slow rolloffs
of the individual sections, the biquad cascaded response no longer meets the required
specifications.

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=4, Butterworth

cascaded Butterworth
cascaded biquads

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=5, Butterworth

Fig. 17.9.1 Butterworth designs.

For the type-1 Chebyshev cases, shown in Fig. 17.9.2, we have kept the same center
frequencies, bandwidths, and peak gains, but in order to achieve flat passbands, we have
chosen the bandwidth gains to be 0.01 dB below the peak gains, that is,

GB1 = 8.99 dB , GB2 = 11.99 dB , GB3 = −5.99 dB , GB4 = 5.99 dB (17.9.3)

874 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=4, Chebyshev, type−1

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=5, Chebyshev, type−1

Fig. 17.9.2 Chebyshev type-1 designs.

As a result, the passbands are very flat, but the only way to flatten the stopbands
is to increase the rolloff rate by choosing larger values of the filter order N. For the
type-2 Chebyshev cases, shown in Fig. 17.9.3, in order to achieve flat stopbands, we
have chosen the bandwidth gains to be 0.01 dB above the 0-dB reference gain G0:

GB1 = 0.01 dB , GB2 = 0.01 dB , GB3 = −0.01 dB , GB4 = 0.01 dB (17.9.4)

The bandwidths near the reference gain line have the assumed values, but the equal-
izer peaks or cuts become narrower, with their width increasing with the filter order N.
Fig. 17.9.4 shows the elliptic case, in which both the passband and stopband bandwidth
gains were chosen to be 0.01 dB below the peaks and reference, that is, denoting the
stopband gains by Gs:

GB1 = 8.99 dB , GB2 = 11.99 dB , GB3 = −5.99 dB , GB4 = 5.99 dB
Gs1 = 0.01 dB , Gs2 = 0.01 dB , Gs3 = −0.01 dB , Gs4 = 0.01 dB

(17.9.5)

The elliptic case combines the benefits of the type-1 and type-2 Chebyshev cases and
achieves both flat passbands and stopbands.

To assess the accuracy of the elliptic function computations using a fixed number
of Landen iterations, we have computed the percentage error in the overall cascaded
frequency response and found that it is less than 0.1 percent if four iterations are used
and less than 10−5 percent for five iterations, as compared to the case of maximum
precision in which the tolerance was defined to be the machine epsilon. Thus, fixing the
number of Landen iterations to five makes the implementation of the elliptic case only
slightly more complicated than the Chebyshev cases.

Fig. 17.9.5 shows the same example, but redesigned so that the Chebyshev and el-
liptic cases have the same 3-dB widths as the Butterworth case. The bandwidths listed
in Eq. (17.9.1) were taken to represent the 3-dB widths relative to the peak gains, that is,
corresponding to the levels:

Gb1 = 6 dB , Gb2 = 9 dB , Gb3 = −3 dB , Gb4 = 3 dB (17.9.6)

17.9. DESIGN EXAMPLES 875

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=4, Chebyshev, type−2

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=5, Chebyshev, type−2

Fig. 17.9.3 Chebyshev type-2 designs.

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=4, Elliptic

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N=5, Elliptic

Fig. 17.9.4 Elliptic designs.

The gains GB and Gs were still defined by Eqs. (17.9.3)–(17.9.5). The 3-dB widths
were remapped to the bandwidths at the GB design levels using Eqs. (17.6.13)–(17.6.14).
The analog filter order was N = 4.

We have compared also the performance of the canonical (direct-form-II), transposed,
normalized lattice, and state-space realizations under some extreme filter settings with
rapidly changing parameters. We used the same benchmark example discussed by
Moorer [340], and applied Butterworth, Chebyshev, and elliptic equalizers of orders
N = 1–10 designed with the following gain specifications:

Butterworth: G = 18 dB, GB = 15 dB
Chebyshev-1: G = 18 dB, GB = 17.99 dB
Chebyshev-2: G = 18 dB, GB = 0.01 dB
Elliptic: G = 18 dB, GB = 17.99 dB, Gs = 0.01 dB

For the first 1000 time samples, the center frequency and bandwidth (at level GB)

876 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N = 4, Butterworth

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N = 4, Chebyshev−1

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N = 4, Chebyshev−2

0 2 4 6 8 10 12 14 16 18 20

−6

−3

0

3

6

9

12

 f (kHz)

dB

 N = 4, Elliptic

Fig. 17.9.5 Designs with common 3-dB widths.

were fixed at 44.1 Hz and 22.05 Hz, respectively; for the next 2000 samples, the center
frequency was ramped up linearly to 441 Hz and the bandwidth to 220.5 Hz; and for
the last 1000 samples they were kept fixed at 441 Hz and 220.5 Hz, respectively. The
sampling rate was 44.1 kHz.

The input was a 4000-long vector of uniform random numbers in the range [0,1).
The resulting outputs from the four realizations are shown in Fig. 17.9.6 for the elliptic
design with N = 5. The graphs on the right column of the figure show the responses to
a step-input of amplitude equal to 0.5, which corresponds to the mean of the random
input.

The transposed realization was implemented as the cascade of the realizations of
Fig. 17.7.2. The canonical realization was the transposed of Fig. 17.7.2. The normalized-
lattice and the state-space realizations were implemented by cascading the realizations
of Figs. 17.7.3 and 17.7.4, respectively.

We observe that the transposed, lattice, and state-space realizations yield compara-
ble results. The outputs differ only during the middle period when the filter is time-
varying and the realizations are not equivalent. Consistent with Moorer’s observations
[340], the normalized lattice output is visually indistinguishable from that of the state-

17.9. DESIGN EXAMPLES 877

space case—the two output signals differing by less that 0.2 percent. As expected, the
canonical form suffers from larger oscillations during the middle period due to its un-
scaled internal states.

The results from the Butterworth and Chebyshev designs and for orders N = 1–
10 were comparable to those of Fig. 17.9.6. We have also varied the sampling rate
up to 96 kHz and/or lowered all center frequencies with similar results. We looked
specifically at the case when the initial center frequency was set to zero (a shelving
filter) for the first 1000 samples. The canonical realization tended to deteriorate as the
center frequencies got lower, resulting in large oscillations during the middle period;
but the other realizations remained robust.

We also studied the performance of the transposed realizations of the fourth-order
factors of Eq. (17.2.18) and found that they were mostly well-behaved, but deteriorated
at zero center frequencies, in fact, becoming unstable due to coefficient roundoff errors
that pushed some of the poles outside the unit circle.

As a final example, we considered the behavior of the different realizations as the
equalizer was being turned on and its gain and bandwidth were time-varying. The equal-
izer had a fixed center frequency of 400 Hz. The sampling rate was 44.1 kHz. The input
was a 3000-sample long unit-amplitude sinusoid of frequency of 400 Hz. For the first

0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

Canonical

time samples
0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

Canonical

time samples

0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

Transposed

time samples
0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

Transposed

time samples

0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

Normalized Lattice

time samples
0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

Normalized Lattice

time samples

0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

State Space

time samples
0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

State Space

time samples

Fig. 17.9.6 Response of equalizer with time-varying center frequency and bandwidth.

878 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

1000 samples, the equalizer was off; for the next 1000 samples, it was turned on with
its bandwidth changing linearly from 20 Hz to 100 Hz and its peak gain changing from
0 dB to 18 dB; for the last 1000 samples, the bandwidth was fixed at 100 Hz and the
gain at 18 dB.

0 1000 2000 3000

−8

0

8

Canonical

time samples
0 1000 2000 3000

−8

0

8

Transposed

time samples
0 1000 2000 3000

−8

0

8

Normalized Lattice

time samples

0 1000 2000 3000

−8

0

8

Canonical

time samples
0 1000 2000 3000

−8

0

8

Transposed

time samples
0 1000 2000 3000

−8

0

8

Normalized Lattice

time samples

0 1000 2000 3000

−8

0

8

Canonical

time samples
0 1000 2000 3000

−8

0

8

Transposed

time samples
0 1000 2000 3000

−8

0

8

Normalized Lattice

time samples

Fig. 17.9.7 Sinusoidal response of equalizer with time-varying gain.

Fig. 17.9.7 shows the outputs from the canonical, transposed, and normalized lattice
realizations of an elliptic design with N = 5 and stopband level Gs = 0.01 dB. The band-
width level GB was taken to be 0.01 dB below the peak gain G (when these definitions
could not be made because G was too small, we defined GB =

√
G, and Gs =

√
GB.) The

state-space realization is not shown as it always produced virtually the same output as
the lattice.

In the first row of graphs, the gain was switched on instantaneously to 18 dB (G=8
in absolute units); in the second row, it was turned on gradually in four steps that were
linearly spaced in dB between 0 and 18 dB; and in the third row, the gain was increased
continuously, varying linearly in dB. The gain curves have been superimposed on the
graphs. Similar results were observed in the Butterworth and Chebyshev cases.

The gradual turning on of the equalizer [333–336] had the beneficial effect of elim-
inating undesirable overshoots (even two intermediate steps had the same positive ef-
fect.) Although the transposed realization was somewhat more sluggish in following
the changing gain than the lattice, its lower computational cost and good numerical
behavior make it a good choice for the implementation of high-order equalizers.

We also carried out the experiments of Figs. 17.9.6 and 17.9.7 using the decoupled
realizations of Figs. 17.8.1 and 17.8.2 and found that they had virtually identical perfor-
mance as the normalized lattice.

17.10. APPENDIX-1 STATE-SPACE REALIZATIONS 879

17.10 Appendix-1 State-Space Realizations

Given the numerator and denominator coefficients of a second-order transfer function of
the form of Eq. (17.7.1) with complex-conjugate poles, the optimum minimum roundoff-
error state-space realization is constructed by the following steps [345]:

σ = − â1

2
, ω =

√
â2 − â2

1

4
, p = σ + jω

q1 = b̂1 − b̂0â1 , q2 = b̂2 − b̂0â2

αr = q1

2
, αi = −q1σ + q2

2ω
, α = αr + jαi

P = |α|
1− |p|2 , Q = Im

[
α

1− p2

]
, k =

√
P+Q
P−Q

B1 =
√
|α| −αi

P−Q
, B2 = −sign(αr)

√
|α| +αi

P+Q

C1 = αr

B1
, C2 = αr

B2

(17.10.1)

which define the ABCD state-space parameters:

A =
[

σ ωk
−ω/k σ

]
, B =

[
B1

B2

]
, C = [C1, C2] , D = b̂0 (17.10.2)

In the special case when αr = 0 and αi > 0, we have:

B1 = 0 , B2 = −
√

2|α|
P+Q

, C1 =
√

2|α|(P−Q) , C2 = 0 (17.10.3)

and in the case, αr = 0 and αi < 0 :

B1 =
√

2|α|
P−Q

, B2 = 0 , C1 = 0 , C2 = −
√

2|α|(P+Q) (17.10.4)

The condition that the poles be conjugate pairs is equivalent to the reality of the
quantity ω. This condition is guaranteed by the bilinear transformation construction
of the factors of Eq. (17.2.18). For the first-order factor of (17.2.18), we may define
B1 = (1− â2

1)1/2 and:

A =
[
−â1 0

0 0

]
, B =

[
B1

0

]
, C = [q1/B1, 0] , D = b̂0 (17.10.5)

17.11 Appendix-2 High-Order Analog Equalizer Design

The design of analog equalizers requires only some minor changes. The lowpass analog
shelving filter of Eq. (13.5.1) is designed exactly as before, but with the design param-
eter ΩB = Δω, where Δω = 2πΔf is the desired bandwidth in radians per second.

880 17. HIGH-ORDER DIGITAL PARAMETRIC EQUALIZERS

The shelving filter is transformed into an analog bandpass equalizer by the s-domain
frequency transformation:

s→ s+ ω2
0

s
(17.11.1)

whereω0 = 2πf0 is the desired center frequency in rads/second. Eq. (17.11.1) turns the
first- and second-order sections of Eq. (13.5.1) into second- and fourth-order sections in
s. The bandedge frequencies are calculated by

ω2,1 = ±Δω
2
+
(
ω2

0 +
Δω2

4

)1/2

They satisfy the relationships,

ω2
0 =ω1ω2 , Δω =ω2 −ω1

In octaves, we have,

ω1 = 2−B/2ω0 , ω2 = 2B/2ω0 , Δω = 2ω0 sinh
(
B ln(2)/2

)
For a lowpass shelving filter, one must use, ΩB = ωc, where, ωc = 2πfc, is the

cutoff frequency defined at level GB. For the highpass case, one must start the lowpass
design with, ΩB = 1/ωc, and apply the highpass transformation, s→ 1/s.

17.12 Appendix-3 MATLAB Functions

We developed a set of MATLAB functions for implementing the designs and filtering
operations discussed here. These functions, as well as the scripts used to generate all
of the examples of Sect. 17.9, may be downloaded from the author’s web page [330].
The set does not require any additional toolboxes and contains the following functions:

hpeq high-order parametric equalizer design, Sections 2–5

hpeqex0,1,2 examples illustrating the usage of hpeq

blt LP-to-BP bilinear transformation, Eqs. (17.2.17), (17.2.19)–(17.2.20)

bandedge bandedge frequencies, Eqs. (17.2.8) and (17.4.27)

hpeqord determine filter order from specifications, Eqs. (17.5.1)–(17.5.4)

octbw octave to linear bandwidth calculation, Eqs. (17.6.8)–(17.6.11)

hpeqbw bandwidth remapping, Eqs. (17.6.13)–(17.6.14)

fresp frequency response of cascaded sections, Eqs. (17.2.18)

dir2latt direct-form to normalized lattice coefficients, Eqs. (17.7.2)–(17.7.3)

dir2state direct-form to state-space parameters, Eqs. (17.10.1)–(17.10.5)

dir2decoup direct-form to decoupled realization, Eqs. (17.8.1)–(17.8.7)

transpfilt filtering in cascaded transposed form, Fig. 17.7.2

nlattfilt filtering in cascaded normalized lattice form, Fig. 17.7.3

df2filt filtering in direct-form-II realized by the transposed of Fig. 17.7.2

statefilt filtering in cascaded state-space form, Fig. 17.7.4

decoupfilt filtering in cascaded decoupled form, Figs. 17.8.1–17.8.2

stpeq state-space biquad parametric equalizer, Eq. (17.7.9)

landen Landen transformation, Eq. (13.4.1)

17.12. APPENDIX-3 MATLAB FUNCTIONS 881

cde,acde cd elliptic function and its inverse, Eqs. (13.4.6)–(13.4.7)

sne,asne sn elliptic function and its inverse, Eqs. (13.4.6)–(13.4.7)

cne,dne cn and dn elliptic functions (for real arguments)

ellipk complete elliptic integral K(k), Eq. (13.4.4)

ellipdeg exact solution of degree equation (k from N,k1), Eq. (17.4.24)

ellipdeg1 exact solution of degree equation (k1 from N,k), Eq. (17.4.23)

ellipdeg2 solution of degree equation using nomes, Eq. (17.4.26)

elliprf elliptic rational function, Eq. (17.4.18)

In addition, there are some scripts for testing the filtering algorithms of Sect. 17.7
and the convergence of the iteration (17.6.11). Moreover, the functions allow the design
of analog parametric equalizers and shelving filters:

hpeq_a

hpeqord_a

bandedge_a

hpeqbw_a

hpeqex1_a

resp_a

18
STFT and Phase Vocoder

18.1 Introduction

The DTFT is defined, in general, for an infinitely-long signal,

X(ω)=
∞∑

n=−∞
x(n)e−jωn , ω = 2πf

fs

In many practical applications, such as speech or music processing, the DTFT of such
long signal is essentially meaningless. For example, we may think of an hour-long record-
ing of a person who speaks for a while, then sings for a while, then plays some music
for a while, then speaks again. Even though the DTFT of such long signal is computable,
it would not convey useful information about the frequency content of the signal since
the nature of the signal keeps changing from speech to singing to music and so on.

A more useful quantity would be to compute the Fourier transforms of successive
short time-segments of the signal that more closely capture the changing frequency
content over time. This is the time-dependent, or, short-time Fourier transform (STFT).

In this chapter, we introduce the STFT briefly, and discuss its use as a general signal
processing system and, in particular, its application to the phase vocoder, used for time-
scale and pitch-scale modification of speech and audio signals [375–390].

18.2 Short-Time Fourier Transform

The short-time Fourier transform (STFT) is defined by dividing the input signal x(n) into
successive overlapping length-N blocks, shifted relative to each other by R samples (the
hop size), then windowing each block by an appropriate length-N window, w(n), and
taking the DTFT of each block, as show below,

882

18.2. SHORT-TIME FOURIER TRANSFORM 883

X(ω,mR)=
N−1∑
n=0

x(mR+ n)w(n)e−jωn

where R ≤ N and the N time samples within the mth segment being transformed are,

xm(n)= x(mR+ n)w(n) , n = 0,1, . . . ,N − 1

The discrete STFT is obtained by replacing the above DTFTs by N-point DFTs, that
is, evaluating them at the N DFT frequencies,

ωk = 2πk
N

, k = 0,1, . . . ,N − 1

Thus, setting, Xk,m ≡ X(ωk,mR), we define the STFT,

Xk,m =
N−1∑
n=0

x(mR+ n)w(n)e−jωkn =
N−1∑
n=0

xm(n)e−jωkn (STFT) (18.2.1)

k = 0,1, . . . ,N − 1 , m = 0,1, . . . ,M

The STFT can be visualized as an N×(M + 1)–dimensional matrix whose columns
are the N-point DFTs of the time segments, and the number of segments is M+1. Given
an input signal of length Lx, that is, x(n), n = 0,1, . . . , Lx − 1, the number of segments
can be calculated as follows, and then, prior to calculating the STFT, the signal x(n) can
be extended by padding enough zeros at its end until all frames have length N,

M = floor
(
Lx
R

)
Lext =MR+N

⇒ xext(n)=
⎧⎨⎩x(n), 0 ≤ n ≤ Lx − 1

0, Lx ≤ n ≤ Lext − 1
(18.2.2)

We will assume that this extension has been made and denote the extended signal
by x(n). Thus, the STFT matrix X can be constructed by taking the DFTs of the columns
of the matrix of frames or segments, Xframes, whose mth column represents the mth
time segment xm(n),

884 18. STFT AND PHASE VOCODER

Xframes =
[
x0, x1, . . . ,xm, . . . ,xM

]
, xm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xm(0)
...

xm(n)
...

xm(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
X = DFT(Xframes)≡

[
DFT(x0), DFT(x1), . . . , DFT(xM)

]
In MATLAB, all the DFTs can be computed with a single FFT call, acting column-wise

on the columns of Xframes,

X = fft(Xframes)=
[
fft(x0), fft(x1), . . . , fft(xM)

]
Assembling the overlapping frames into the frame matrix, Xframes, can be done con-

veniently with the help of the MATLAB function, buffer. But prior to calling the fft
function, each column of Xframes must be windowed by the chosen window function
w(n) — this operation can also be done efficiently in MATLAB, as we discuss below.

18.3 Spectrograms

The STFT can be displayed as a spectrogram, that is, plotting Xk,m (usually in dB) as a
2D intensity plot or as 3D surface plot versus the frequency index k and versus the time
frame index m, or, given a sampling rate fs = 1/Ts, plotting versus the frequency and
time variables,

fk = kfs
N

, k = 0,1, . . . ,N − 1

tm =mRTs = mR
fs

, m = 0,1, . . .M
(18.3.1)

Example 18.3.1: As an example, consider the following continuous-time signal consisting of
three segments, varying like a chirp signal over the first segement with instantaneous
frequency, ḟ (t)= f1 +αt, then consisting of a sum of two sinusoids of frequencies f2, f3

over the second segment, and finally varying again like a chirp over the third segment,

x(t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cos

(
2πf1 t +παt2

)
, 0 ≤ t ≤ T0

cos(2πf2 t)+ cos(2πf3 t) , T0 < t ≤ 2T0

cos
(
2πf1 t +παt2

)
, 2T0 < t ≤ 3T0

with parameter values and sampling rate,

T0 = 1000 sec

f1 = 1 Hz , f2 = 2 Hz , f3 = 3 Hz , α = f1

T0

Hz

sec

fs = 10 Hz , Ts = 1

fs
= 0.1 sec

18.3. SPECTROGRAMS 885

The spectrogram was be computed with the help of the ISP2e function, stftgram, discussed
in Sec. 18.11. MATLAB’s built-in function, spectrogram, can also be used. The 2D intensity
and 3D surface plots displaying the time variation of the frequency content of the signal
are shown on Fig. 18.3.1, generated by the MATLAB code,

fs = 10; Ts = 1/fs; % sampling rate
T0 = 1000; % segment period, seconds
f1 = 1; f2 = 2; f3 = 3; % frequencies, Hz
a = f1/T0; % chirp parameter, Hz/sec

x = @(t) cos(2*pi*f1*t + pi*a*t.^2) .* (t>=0 & t<T0) + ...
(cos(2*pi*f2*t) + cos(2*pi*f3*t)) .* (t>=T0 & t<2*T0) + ...
cos(2*pi*f1*t*0 + pi*a*t.^2) .* (t>=2*T0);

R = 20; N = 256; % spectrogram parameters

tn = 0 : Ts : 3*T0; % sampling times
xn = x(tn); % sampled signal

[t,f,S] = stftgram(xn,R,N,fs); % spectrogram,

% S is in dB, S = 20*log10(|X|) and normalized to unity maximum
% only the positive half of the f’s is plotted

figure; surf(t/T0,f,S,’edgecolor’,’none’); % 2D intensity plot
axis tight; view(0,90); colormap(jet);
xlabel(’{\itt / T}_0’); ylabel(’{\itf} (Hz)’);
xaxis(0,3, 0:3); yaxis(0,5, 0:5);
title(’spectrogram - 2D intensity plot’);

figure; surf(t/T0,f,S,’edgecolor’,’none’); % 3D surface plot
view(-40, 50); colormap(jet);
xlabel(’{\itt / T}_0’); ylabel(’{\itf} (Hz)’); zlabel(’dB’);
xaxis(0,3, 0:3); yaxis(0,5, 0:5); zaxis(-200,0, -200:100:0);
title(’spectrogram - 3D surface plot’);

Fig. 18.3.1 Spectrogram example.

886 18. STFT AND PHASE VOCODER

18.4 Inverse STFT and OLA Reconstruction

The inverse STFT (ISTFT) can be obtained by performing the inverse DFT, reconstructing
the mth segment,

x(mR+ n)w(n)= xm(n)= 1

N

N−1∑
k=0

Xk,mejωkn

0 ≤ n ≤ N − 1 , m = 0,1, . . . ,M

(18.4.1)

However, solving for x(mR + n) requires division by w(n), which is typically very
small near its end points, and this would cause the amplification of even a small amount
of noise that might be present. For this reason, a better reconstruction procedure is by
the overlap-add (OLA) method, that is, aligning the inverse DFTs xm(n) according to
their absolute timing, starting at n =mR for the m segment, and then adding them up,

y(n)=
∞∑

m=−∞
xm(n−mR) (ISTFT, OLA reconstruction) (18.4.2)

It can be shown [375], that for many windows and many practical choices for R,
the signal y(n) is equal to x(n) up to a constant factor that depends on the choice of
window and R.

But even if such window property, known as the constant-overlap-add (COLA) prop-
erty, is not completely valid, one can still reconstruct x(n) exactly by noting that y(n)
is related to x(n), by

y(n)= x(n)w̃(n)

where w̃(n) is the overlapped-added version of the window,

w̃(n)=
∞∑

m=−∞
w(n−mR) (18.4.3)

Thus, even if w̃(n) is not constant in n, we can still solve for x(n) by,

y(n)= x(n)w̃(n)=
∞∑

m=−∞
xm(n−mR) ⇒ x(n)=

∞∑
m=−∞

xm(n−mR)

∞∑
m=−∞

w(n−mR)
(18.4.4)

Since w̃(n) is periodic in n with period of R samples, it can be expanded in its R-point
discrete Fourier series,

w̃(n) =
∞∑

m=−∞
w(n−mR)= 1

R

R−1∑
r=0

W(ωr)ejωrn , ωr = 2πr
R

W(ωr) =
N−1∑
n=0

w(n)e−jωrn = DTFT of w(n) evaluated at ω =ωr

(18.4.5)

18.5. STFT-BASED SIGNAL PROCESSING SYSTEM 887

Thus, the condition for the COLA property is that,

W(ωr)= 0 , r = 1,2, . . . , R− 1 (18.4.6)

so that only the r = 0, or ωr = 0, term is present in Eq. (18.4.5), resulting into the
constant value,

w̃(n)= W(0)
R

See Sec. 18.11 for a demonstration of the COLA condition (18.4.6). Some windows with
a “good” COLA behavior are the Hanning and Bartlett windows [375],

Hanning: w(n)= 0.5− 0.5 cos
(

2πn
N − 1

)
, n = 0,1, . . . ,N − 1

Bartlett: w(n)= 1− |2n−N + 1|
N − 1

, n = 0,1, . . . ,N − 1

and the modified Hanning [387],

w(n)= 0.5− 0.5 cos
(

2πn
N

)
, n = 0,1, . . . ,N − 1

18.5 STFT-Based Signal Processing System

A more general signal processing system based on the STFT is depicted in Fig. 18.5.1,
which uses different hop sizesRa,Rs for the analysis and synthesis parts. The following
steps are carried out:

a. The input signal x(n) is extended to the analysis length,

La =MRa +N

as in Eq. (18.2.2), and the output signal y(n) is initialized to zero over its expected
synthesis length, Ls =MRs +N,

y(n)= 0 , n = 0,1, . . . , Ls − 1

b. The STFT Xk,m of the input x(n) is computed relative to the analysis hop size Ra,

Xk,m =
N−1∑
n=0

x(mRa + n)w(n)e−jωkn

0 ≤ k ≤ N − 1 , 0 ≤m ≤M

(18.5.1)

c. Next, Xk,m is modified according to some transformation, such as filtering, noise-
reduction, gain control, fading, or phase modification as in the phase vocoder,
resulting in an output STFT, say, Yk,m.

888 18. STFT AND PHASE VOCODER

d. Then, the inverse STFT of Yk,m is computed, and each frame is windowed by
another length-N window, which is usually the same as the analysis windoww(n),

ym(n)= w(n)· 1

N

N−1∑
k=0

Yk,mejωkn , 0 ≤ n ≤ N − 1 (18.5.2)

e. The resulting windowed segments are overlapped-added with respect to the syn-
thesis hop Rs to obtain the synthesized transformed output y(n),

y(n)=
∞∑

m=−∞
ym(n−mRs) (18.5.3)

Fig. 18.5.1 STFT signal processing system.

18.6 STFT Computation

The STFT can be computed efficiently in MATLAB with a single FFT call as follows. As-
suming that x(n) has been extended to length, La = MRa + N, then with the help
of the built-in MATLAB function buffer, the signal x(n) can be rearranged into an
N×(M + 1) matrix whose columns are the time frames, Xbuff =

[
x0 , x1 , . . . , xM

]
,

i.e., Xbuff(n,m)= xm(n).

18.6. STFT COMPUTATION 889

Then, the N-point FFT of that matrix will generate, after windowing, the FFTs of all
the columns, resulting in the STFT matrix X,

Xbuff = buffer
(
x, N, N −Ra, ’nodelay’

)
W = repmat

(
w, 1, M + 1

) = replicated window

X = fft
(
W.∗Xbuff, N

) (STFT) (18.6.1)

where w is the N-dimensional column vector of the window, wn, n = 0,1, . . . ,N − 1,

w =

⎡⎢⎢⎢⎢⎢⎣
w0

w1

...
wN−1

⎤⎥⎥⎥⎥⎥⎦
andW is its replication into anN×(M+1)matrix so that it can be multiplied point-wise
by Xbuff. The replication operation was implemented with the built-in function, repmat,
but it can also be implemented as follows, assuming w is a column vector,

W = w
(
: , ones(1,M + 1)

) =
⎡⎢⎢⎢⎢⎢⎣

w0 w0 · · · w0

w1 w1 · · · w1

...
...

...
...

wN−1 wN−1 · · · wN−1

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M+1 columns

The N − Ra argument of the buffer function indicates the amount of overlap of
successive segments, while the ’nodelay’, argument implies that the first segment
does not have any zeros padded in front of it.

Once X is computed, it may be subjected to a transformation, Y = f(X), resulting
in the output STFT matrix Y, which also has dimension N×(M + 1). Its inverse can be
carried out by a single IFFT call, resulting in the output matrix of time-frames,

Ybuff = ifft
(
Y,N

)
ym(n)= Ybuff(n,m)= nth element of mth column

(ISTFT) (18.6.2)

The ISTFT overlap-add operation of Eq. (18.4.2) may be implemented efficiently by
the following iteration that reconstructs y(n) segment-by-segment while windowing,

for m = 0,1,2, . . . ,M
for n = 0,1, . . . ,N − 1

y(mRs + n)= y(mRs + n)+ym(n)w(n)
(OLA reconstruction) (18.6.3)

where the n-loop can be vectorized and we must initialize y(n) to zero, that is, y(n)= 0,
for n = 0,1, . . . , Ls − 1, where, Ls =MRs +N.

The ISP function, ola, listed below incorporates the above steps. By default, it as-
sumes no windowing, but any pre-windowing of segments can be added easily, as seen
below.

890 18. STFT AND PHASE VOCODER

% ---

%

% y = ola(Y,R); % OLA reconstruction

%

% Y = Nx(M+1) matrix of column/frames to be overlap-added by hop size R

% R = hop size, must be 0 < R <= N, R=N (no-overlap)

%

% y = column vector of overlap-added columns

%

% notes: N = column/frame size

% M+1 = no. frames

% length(y) = L = R*M + N

%

% if each frame is to be pre-windowed before overlap, then, do,

%

% w = ... % define Nx1 vector of window samples

% W = repmat(w,1,M+1); % replicated Nx(M+1) window matrix

% y = ola(W.*Y,R); % overlap-add the windowed frames

function y = ola(Y,R)

[N,M1] = size(Y); M = M1-1;

L = R*M + N;

y = zeros(L,1); % pre-allocate

n = (1:N)’;

for m = 0:M-1

y(m*R + n) = y(m*R + n) + Y(:,m+1);

end

% ---

In summary, the complete algorithm for the STFT-based signal processing system
is as follows in MATLAB-like notation, given hop sizes Ra,Rs, and assuming the same
length-N analysis and synthesis window w(n), and extending x(n) to length La,

Xbuff = buffer
(
x, N, N −Ra, ’nodelay’

) = input time frames

W = repmat
(
w, 1, M + 1

) = replicated window

X = fft
(
W.∗Xbuff, N

) = input STFT

Y = f(X)= desired modification, output STFT

Ybuff = ifft
(
Y,N

) = output time frames

y = ola
(
W.∗Ybuff, Rs

) = OLA reconstruction with windowing

(18.6.4)

where the operation, “.∗”, denotes element-wise multiplication.

18.7. PHASE VOCODER 891

18.7 Phase Vocoder

The phase vocoder is an example of such STFT signal processing system, realized by
Eqs. (18.6.1)–(18.6.4). The transformation step, Xk,m → Yk,m, to be carried out between
Eqs. (18.6.1) and (18.6.2) is, in its simplest form, a modification of the phase of Xk,m,
while preserving its magnitude. We have in polar form,

Xk,m = |Xk,m|ejΦk,m

Yk,m = |Yk,m|ejΨk,m
(18.7.1)

where the magnitudes are preserved,

|Yk,m| = |Xk,m| (18.7.2)

and the output phases Ψk,m are computed recursively from the input phases Φk,m, as
follows,

phase modification algorithm

for k = 0,1, . . . ,N − 1,

ωk = 2πk
N

Ψk,0 = Φk,0

for m = 1,2, . . . ,M,

Δωk,m = 1

Ra
·
[
Φk,m −Φk,m−1 −Raωk

]
mod2π

ωk,m =ωk +Δωk,m

Ψk,m = Ψk,m−1 +Rsωk,m

(18.7.3)

where, the k-loop may be vectorized, and the notation,
[
x
]

mod2π , stands for the phase
unwrapping of the angle x modulo 2π, that is, adding to, or subtracting from, x enough
multiples of 2π until it lies in the standardized angle interval, −π ≤ x ≤ π. It can be
implemented easily by the vectorized anonymous MATLAB function, mod2pi(x),

mod2pi = @(x) mod(x+pi, 2*pi) - pi; % usage: y = mod2pi(x)

In summary, the complete phase vocoder algorithm is described by Eqs. (18.6.1),
(18.7.2), (18.7.3), (18.6.2), and (18.6.3), in that order. The justification of the algorithm
(18.7.3) is given in Sec. 18.9.

18.8 Time-Scale Modification

The main application of the phase vocoder is in time-scale and pitch-scale modification
of speech and audio signals. In time-scale modification, one wishes to replay an audio

892 18. STFT AND PHASE VOCODER

signal at a faster or slower speed without altering its frequency content, as for example,
in playing a piano piece faster where same keys (i.e. generated frequencies) are played,
but at a faster speed.

By choosing different hop sizes Ra,Rs, the duration of the output signal y(n) can
be made longer or shorter than that of the input x(n), depending on whether Rs > Ra
or Rs < Ra, respectively.

The purpose of the phase modification equations (18.7.2) and (18.7.3) is to preserve
the frequency content of the signal under such change in duration. We may define the
speed-up and time-stretching factors by,

r = Ra

Rs
(speed-up factor)

1

r
= Rs

Ra
(time-stretching factor)

(18.8.1)

so that Rs = Ra/r, and r > 1 corresponds to a faster rendition and shorter duration
of the signal, and r < 1, slower rendition and longer duration. If we specify Ra, r, then
we may calculate Rs by rounding, Rs = round(Ra/r), or conversely, as is preferred in
practice, if we specify, Rs, r, then, Ra = round(rRs),

Rs = round
(
Ra

r

)
, or, alternatively, Ra = round

(
rRs

)

18.9 Phase Vocoder Model

Here, we provide a simplified justification of the phase vocoder algorithm, based on the
discussion in [385]. Given a sinusoidal signal of varying amplitude and varying phase,

x(t)= A(t)ejΦ(t)

the instantaneous analog frequency is defined as the time-derivative of the phase:

Ω(t)= Φ̇(t)= dΦ(t)
dt

Considering the signal values at two nearby time instants, t and t + Δt, we may
expand the phase to first-order in Δt and approximate the phase and the instantaneous
frequency as,

Φ(t +Δt) = Φ(t)+Φ̇(t)Δt = Φ(t)+Ω(t)Δt

Ω(t +Δt) = Ω(t)
(18.9.1)

The phase vocoder is based on the implicit assumption that the signal is a sum of
such sinusoidal terms with varying amplitudes and phases,

x(t)=
∑
i
Ai(t)ejΦi(t) , Ωi(t)= Φ̇i(t) (18.9.2)

18.9. PHASE VOCODER MODEL 893

The main objective of the phase vocoder algorithm is to ensure that the instanta-
neous frequencies contained in the signal are preserved in going from the overlapped
analysis frames at hop sizeRa to the overlapped synthesis frames at hop sizeRs. Ideally,
the STFTs of the input and output frames would be:

Xk,m =
N−1∑
n=0

x(mRa + n)w(n)e−jωkn

Yk,m =
N−1∑
n=0

x(mRs + n)w(n)e−jωkn

where ωk are the DFT frequencies,

ωk = 2πk
N

, k = 0,1, . . . ,N − 1

and, we assumed that the signal x(t) was sampled at a rate fs = 1/T, so that the time
intervals that correspond to the length-N window of the mth frame are as follows, for
the analysis and synthesis cases,

tamn = (mRa + n)T = tam + nT (analysis)

tsmn = (mRs + n)T = tsm + nT (synthesis)

where, tam = mRaT, and, tsm = mRsT, are the beginning times of the mth segments. It
follows that the sampled signal for the analysis frames, x(mRs+n), would be according
to the sinusoidal model of Eq. (18.9.2),

x(tam + nT)=
∑
i
Ai(tam + nT)ejΦi(t

a
m+nT)

Assuming a small enough sampling interval T, we may expand the signal phases
using the approximation of Eq. (18.9.1). Assuming also that the signal amplitudes vary
slowly across each windowed frame, we obtain the following approximations, over the
length-N window of the mth frame,

Ai(tam + nT)≈ Ai(tam) , 0 ≤ n ≤ N − 1

Φi(tam + nT)= Φi(tam)+(nT)Ωi(tam)

Defining the digital instantaneous frequencies in [rads/sample],

ωi(tam)= Ωi(tam)T

then, the phase approximations can be written as,

Φi(tam + nT)= Φi(tam)+nωi(tam)

so that the signal can be approximated as follows within the mth frame,

x(tam + nT)≈
∑
i
Ai(tam)ejΦi(t

a
m)+jnωi(tam) (18.9.3)

894 18. STFT AND PHASE VOCODER

Inserting Eq. (18.9.3) into the analysis STFT, we have,

Xk,m =
N−1∑
n=0

x(mRa + n)w(n)e−jωkn

=
N−1∑
n=0

∑
i
Ai(tam)ejΦi(t

a
m)+jnωi(tam) w(n)e−jωkn

=
∑
i
Ai(tam)ejΦi(t

a
m)

N−1∑
n=0

ejnωi(tam)e−jnωk w(n)

where the summation over n is recognized to be the frequency-shifted DTFT of the
window w(n),

Ŵ(ω)=
N−1∑
n=0

e−jωnw(n)= DTFT of w(n)

Ŵ
(
ωk −ωi(tam)

) = N−1∑
n=0

ejnωi(tam)e−jnωk w(n)

Because we always assume that the windoww(n) is real-valued and symmetric about
its middle, it follows that its DTFT can be factored into a real and even function of ω,
and a phase part corresponding to a delay by (N − 1)/2 samples,

Ŵ(ω)=W(ω)e−jω(N−1)/2 , W(ω)=W(−ω)= real-valued

for example, we have for the rectangular window,

Ŵ(ω)= sin(ωN/2)
sin(ω/2)

e−jω(N−1)/2

It follows that the STFT of the analysis frames will be,

Xk,m =
∑
i
Ai(tam)ejΦi(t

a
m) W

(
ωi(tam)−ωk

)
ej[ωi(tam)−ωk](N−1)/2 (18.9.4)

For large N, the function W(ω) is highly concentrated about ω = 0, and therefore,
only that sinusoidal term i whose instantaneous frequency ωi(tam) falls within the kth
DFT bin, that is, ωi(tam)≈ ωk, will effectively contribute to the above sum. Therefore,
we can keep approximately only the i = k term,

Xk,m ≈ Ak(tam)ejΦk(t
a
m) W

(
ωk(tam)−ωk

)
ej[ωk(tam)−ωk](N−1)/2 (18.9.5)

In this expression, the frequency, ωk(tam), is not equal to ωk but it is nearby, i.e.,
we can introduce a deviation from ωk to be determined,

ωk,m ≡ωk(tam)=ωk +Δωk,m (18.9.6)

In order to obtain the phase of the STFT, that is, in polar form,

18.9. PHASE VOCODER MODEL 895

Xk,m = |Xk,m|ejΦk,m

we observe that Eq. (18.9.5) is already separated into real factors and phases, so that up
to multiples of 2π we must have,

Φk,m = Φk(tam)+
[
ωk(tam)−ωk

]
(N − 1)/2 (18.9.7)

Our objective, eventually, is to determine the instantaneous frequencies, ωk(tam),
from the computed STFT phases Φk,m. To do so, we consider how these phases change
from frame to frame, i.e., in going from time, tam−1 = (m−1)RaT, to time, tam =mRaT.
But since, we have,

tam = tam−1 +RaT

we may use the approximate expansion of Eq. (18.9.1) to write,

Φk(tam)= Φk(tam−1 +RaT)≈ Φk(tam−1)+RaTΩk(tam) , or,

Φk(tam)≈ Φk(tam−1)+Raωk(tam)

and also from Eq. (18.9.1), we have approximately, ωk(tam−1)=ωk(tam), so that,

Φk,m = Φk(tam)+
[
ωk(tam)−ωk

]
(N − 1)/2

= Φk(tam−1)+Raωk(tam)+
[
ωk(tam)−ωk

]
(N − 1)/2

= Φk(tam−1)+
[
ωk(tam−1)−ωk

]
(N − 1)/2+Raωk(tam)

= Φk,m−1 +Raωk(tam) , or,

Φk,m = Φk,m−1 +Raωk(tam)

Φk,m = Φk,m−1 +Ra(ωk +Δωk,m)

thus, up to multiples of 2π,

Φk,m = Φk,m−1 +Ra
(
ωk +Δωk,m

)
RaΔωk,m = Φk,m −Φk,m−1 +Raωk

(18.9.8)

In a similar fashion, we can show that the synthesis STFTs,

Yk,m = |Yk,m|ejΨk,m

will satisfy similar recursions which will ensure that the instantaneous frequencies are
preserved:

Ψk,m = Ψk,m−1 +Rs
(
ωk +Δωk,m

)
(18.9.9)

896 18. STFT AND PHASE VOCODER

Therefore, if we can solve Eq. (18.9.8) for Δωk,m, we can reconstruct the output
STFTs recursively. To solve for, Δωk,m, we note that in the equation,

RaΔωk,m = Φk,m −Φk,m−1 +Raωk

the right-hand side, being a phase, is defined up to a multiple of 2π. Thus, phase-
unwrapping it modulo-2π to fall within the standard interval [−π,π], we obtain,

RaΔωkm =
[
Φk,m −Φk,m−1 −Raωk

]
mod2π

thus,

Δωk,m = 1

Ra
·
[
Φk,m −Φk,m−1 −Raωk

]
mod2π

(18.9.10)

Putting all the above steps together, we arrive at the phase modification algorithm
(18.7.3).

18.10 Pitch-Scale Modification

Pitch shifting refers to scaling all frequencies by a factor r, that is, replacing, f → rf ,
without altering the duration of the signal, as for example in playing a piano piece an
octave higher. This is not the same as frequency translation in which all frequencies are
shifted by a fixed amount, f → f + f0.

If we have an audio signal x(n) recorded at a sampling rate fs and we replay it a rate
that is r times faster, f ′s = rfs, then both the duration and the pitch will be altered, with
the duration becoming r times shorter, and the pitch becoming r times higher—this is
known as the “chipmunk” effect, used for example in children’s cartoons.

In order to perform pitch shifting without changing the duration of the signal, we
may combine a phase vocoder time-scale modification with a resampling operation. In
other words, we may “chipmunk” the signal and then correct its duration with a phase
vocoder.

For example, suppose r > 1, and we resample x(n) at the rate fs/r, and play it back
at fs/r, then it would sound like the original, but if we play it back at fs = r · fs/r,
then it would have a pitch r times higher but it will also have r times shorter duration.
Thus, if we follow this operation with a phase vocoder with a time-stretching factor r,
or equivalently, speed-up factor 1/r, we would restore the original duration, while not
affecting the already pitch-shifted frequencies.

Alternatively, we may reverse these operations. First we apply a phase vocoder with
speed-up factor of 1/r or stretching factor r. Now the signal will have r times longer
duration, but its pitch will not have shifted if played at rate fs. If we now resample this
at the rate fs/r and played it a rate fs/r, it would sound the same as that longer version,
but if we play it back at fs = r · fs/r, it will be pitch-shifted by a factor of r, and its
duration will be scaled down by a factor of r to the original duration.

The two alternative approaches are depicted below in Fig. 18.10.1, where it is advan-
tageous to apply the top version when r > 1, and the bottom, when r < 1.

18.11. COMPUTER EXPERIMENTS 897

Fig. 18.10.1 Pitch shifting by a factor of r.

18.11 Computer Experiments

Phase Vocoder Design

Write a MATLAB function, phvoc, to implement a phase vocoder, with syntax,

y = phvoc(x, r, Ra, N);

% x = input audio signal

% r = speed-up factor

% Ra = analysis hop size, synthesis hop size Rs = round(Ra/r)

% N = FFT frame length

%

% y = output signal

It must be structured to implement Eqs. (18.6.1), (18.7.2), (18.7.3), (18.6.2), and
(18.6.3), and must consist internally of the following three parts, which call three sub-
functions, stft, phmap, istft,

X = stft(x,Ra,N); % STFT of input

Y = phmap(X,r,Ra,N); % phase remapping

y = istft(Y,Rs,N); % ISTFT/OLA

These subfunctions can be embedded inside phvoc, or reside in separate M-files. In
the phase vocoder context, the Hanning window is preferred for both the analysis and
synthesis parts. It is defined as follows for length N,

w(n)= 0.5− 0.5 cos
(

2πn
N − 1

)
, n = 0,1, . . . ,N − 1

Your stft can be implemented using Eq. (18.6.1), or, alternatively, you can use a
for-loop that runs over the overlapping frames, i.e.,

n = 1:N; % relative frame indices
for m=0:M

ta = m*Ra; % beginning of m-th frame
X(m+1,:) = fft(w.*x(ta+n), N); % w,x(ta+n) must be length-N rows

end

898 18. STFT AND PHASE VOCODER

Your istft can be done with a similar loop, i.e.,

n = 1:N; % relative frame indices
for m=0:M

ts = m*Rs; % beginning of m-th frame
ym = w.*real(ifft(Y(m+1,:))); % IDFT of m-th frame & window
y(ts + tN) = y(ts + tN) + ym; % overlap-add

end

a. To test your function, load in your main program an audio file of your choice, sam-
pled at 44.1 kHz, and save a 10-second portion of one channel that includes both
music and vocals, and process it through your function phvoc for the following
values of the speed-up factor, r = 1.4 and r = 0.7, corresponding to playing the
signal 40% faster, or, 30% slower, respectively,

r = 1.4;

[x,FS] = audioread(’your_audio_file’);

% x = save a 10-sec portion that includes music and vocals

y = phvoc(x,r,Ra,N); % experiment with different Ra,N

audiowrite(’phvoc.wav’, [x, zeros(1,FS), y], FS);

% save ’phvoc.wav’ as part of your report

For each r, concatenate the input and the output, separated by 1-sec delay, and
save the result in a wave file, or, if you wish, you may create a single wave file that
concatenates the input and the outputs for the two values of r.

b. Repeat part (a) for the speed-up factor r = 0.7.

Pitch-Scale Modification

For this part, please write a MATLAB function, pitchmod, that performs pitch-scale
modification by a factor r. For simplicity, you may realize it by the top alternative
shown in Fig. 18.10.1, for both cases, r > 1 and r < 1. The function should have usage:

y = pitchmod(x, r, Ra, N)

% x = input audio signal

% r = pitch scaling factor

% Ra = analysis hop

% N = FFT frame length

%

% y = output signal

To implement the resampling operation, you may use the built-in MATLAB function,
resample, which requires r to be a rational number, r = p/q, where p,q are integers. We
may approximate r or 1/r in such rational form using the built-in function, rat. Thus,
your MATLAB function, pitchmod could be structured to do the following:

18.11. COMPUTER EXPERIMENTS 899

% [p,q] = rat(1/r);

% pass p,q into resample

% pass output of resample into phvoc

a. To test your function, load the included wave file, flute2.wav, with the command,

[x,FS] = audioread(’flute2.wav’); x = x(:,1).’;

and send it through your pitchmod function using parameters r = 2, Ra = 256,
N = 2048. Concatenate the pitch-shifted output y(n) with the input x(n) and
save it in a wave file to become part of your report,

audiowrite(’pitchmod.wav’, [x, zeros(1,FS), y], FS);

To hear the pitch-shifted result, run the command,

soundsc([x, zeros(1,FS), y], FS);

To see the pitch-shifted result, compute a 4096-point FFT of x(n) and plot its
(normalized to unity maximum) spectrum |X(f)| over the frequency range, 0 ≤
f ≤ 1800 Hz, and observe that it is dominated by harmonics of a fundamental.
Determine the frequency in Hz of the fundamental harmonic. What key does it
correspond to on an ABC musical scale?

[Note: MATLAB’s FFT function will truncate the signal to length 4096 before
computing the spectrum, but that is good enough here to demonstrate the pitch-
shifting property.]

Repeat the spectrum plot for the pitch-shifted output y(n), and also, determine
the frequency of its fundamental harmonic, which should be. roughly equal to
r times the original one. Compare the two spectrum plots and note how the
pitch-shifted one is essentially a scaled version of the original one by a factor of
r. Generate also the spectrograms of the full length signals x(n) and y(n), as
described in the Appendix. Some example graphs are shown in Sec. 18.11.

b. Repeat all the questions of part (a) for the scale factor, r = 1/2.

c. In order to visualize the operations depicted in Fig. 18.10.1, load the attached
MAT file, x4.mat, which consists of a four-millisecond portion of the above flute
waveform, sampled at a rate of 44.1 kHz. The following command loads that
signal in the variable x4,

load x4.mat

Plot this signal versus time in the range 0 ≤ t ≤ 4 msec using a stem plot.

Then, resample this signal at the rate fs/r with r = 2, and plot it again versus
0 ≤ t ≤ 4. You will observe that it looks like the original, except the spacing
between the time samples is r times larger.

900 18. STFT AND PHASE VOCODER

Next, replay this resampled signal at the rate, fs = r ·fs/r, and plot it again versus
0 ≤ t ≤ 4. This is the “chipmunked” version of the original.

Finally, pass the latter signal into your phvoc function with a time-stretching fac-
tor r, or speed-up factor 1/r, and plot the result again versus 0 ≤ t ≤ 4. Because
of the short lengths of the signals, use the following parameters for the vocoder,
Ra = 4 and N = 32.

Note how the resulting signal has the same 4-msec length as the original, but it
appears to be varying r times faster.

Some example graphs are included in Sec. 18.11.

COLA Property

In this part, the objective is to check the COLA property. Consider the Hanning window
with length N = 128 and its overlapped version with M = 10, defined by,

w̃(n)=
M∑

m=0

w(n−mR) (18.11.1)

and the following values of the hop size R,

R = N
2
,

3N
8

,
N
3
,

N
4

For each value of R, calculate and plot w̃(n) over 0 ≤ n ≤ 800, and moreover,
calculate and plot the magnitude of the correspondingR-point DFT based on Eq. (18.4.5),
normalized to unity maximum. Again, some example graphs are included in Sec. 18.11.

Do-It-Yourself Spectrogram

You can use your STFT function to do your own version of a spectrogram. The follow-
ing code segment illustrates the procedure on the flute waveform example. All three
spectrograms shown at the end were produced in a similar fashion.

R = 256; % hop size

N = 2048; % FFT length

[x,fs] = audioread(’flute2.wav’); x = x(:,1).’;

X = stft(x,R,N).’; % X assumed to have size Nx(M+1)

M = size(X,2) - 1;

k = 0:N/2; % positive half of Nyquist interval

f = k*fs/N; % 0 <= f <= fs/2

t = (0:M)*R/fs; % M+1 time frames, hop interval R*Ts = R/fs

Xmag = abs(X(k+1,:)); % extract positive-frequency half

Xmag = Xmag/max(max(Xmag)); % normalize to unity maximum

18.11. COMPUTER EXPERIMENTS 901

S = 20*log10(Xmag); % dB

surf(t,f,S,’edgecolor’,’none’); % spectrogram, t horizontal, f vertical

colormap(jet); colorbar;

axis tight; view(0,90);

xlabel(’{\itt} (sec)’);

ylabel(’{\itf} (Hz)’);

ylim([0,1800]); % show range 0 <= f <= 1800 Hz

Example Graphs

For the flute2.wav DTFT spectrum and spectrogram

0 400 800 1200 1600
0

0.2

0.4

0.6

0.8

1

f (Hz)

|X
(f

)|

original spectrum

0 400 800 1200 1600
0

0.2

0.4

0.6

0.8

1

f (Hz)

|Y
(f

)|

pitch−shifted spectrum, r = 2

902 18. STFT AND PHASE VOCODER

0 400 800 1200 1600
0

0.2

0.4

0.6

0.8

1

f (Hz)

|Y
(f

)|

pitch−shifted spectrum, r = 1/2

For the resampled versions of the x4.mat portion of the flute2.wav waveform

0 1 2 3 4

−1

0

1

t (msec)

original at rate f
s

0 1 2 3 4

−1

0

1

t (msec)

resampled at rate f
s
/r, r = 2

18.11. COMPUTER EXPERIMENTS 903

0 1 2 3 4

−1

0

1

t (msec)

resampled at f
s
/r, replayed at f

s

0 1 2 3 4

−1

0

1

t (msec)

phase vocoder, time−streched by factor r = 2

For illustrating the COLA property

0 200 400 600 800
0

1

2

3

n

window overlap−add, R = N/2

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

DFT index, k

R−point DFT, W(k)

0 200 400 600 800
0

1

2

3

n

window overlap−add, R = 3N/8

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

DFT index, k

R−point DFT, W(k)

904 18. STFT AND PHASE VOCODER

0 200 400 600 800
0

1

2

3

n

window overlap−add, R = N/3

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

DFT index, k

R−point DFT, W(k)

0 200 400 600 800
0

1

2

3

n

window overlap−add, R = N/4

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

DFT index, k

R−point DFT, W(k)

19
DCT, MDCT, and Data Compression

19.1 DCT and MDCT Compression Systems

Like the DFT, the discrete cosine transform (DCT) belongs to the family of discrete orthog-
onal transforms and is widely used for image and audio compression. It was originally
proposed in [394] and has been studied very extensively. For example, the JPEG image
compression standard is based on the DCT.

The modified DCT (MDCT) is not quite an orthogonal transform, but through the
use of the related time-domain aliasing cancellation (TDAC) property, it shares the same
remarkable data compression properties as the DCT. The discrete wavelet transform
(DWT) and its variants also are used in data compression, for example, the JPEG-2000
image compression system has replaced the original DCT-based JPEG standard. We
present an introduction to the DWT in Chap. 20.

In this Chapter, we study the data compression properties of the DCT, implement a
DCT compression system in MATLAB, and apply it to audio and image data. In addition,
a compression system based on the MDCT and its inverse (IMDCT) is studied and imple-
mented in MATLAB, including the related TDAC property, which is key in most current
audio compression systems, such as MP3, AAC, WMA, Vorbis, and others. Some re-
lated references on this material are, [391–412]. A unified discussion of several discrete
orthogonal transforms may be found in [396].

The DCT takes as input a length-N real-valued signal vector, x, assumed here to be a
column, and produces a length-N real-valued vector of DCT values, C, while the inverse
DCT reverses the process, recovering the original signal vector,

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xN−1

⎤⎥⎥⎥⎥⎥⎦ DCT−→ C =

⎡⎢⎢⎢⎢⎢⎣
C0

C1

...
CN−1

⎤⎥⎥⎥⎥⎥⎦ IDCT−→ x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xN−1

⎤⎥⎥⎥⎥⎥⎦ (19.1.1)

In a typical DCT-based data compression system, a large fraction (e.g., 80-90%) of
the DCT coefficients Ck are dropped, retaining only a few of the most significant ones,
which are then quantized for storage or transmission. The signal recovered from the

905

906 19. DCT, MDCT, AND DATA COMPRESSION

few retained DCT coefficients—while not identically equal to the original one—is close
enough to the original to be perceptually indistinguishable from it.

Such process is referred to as lossy compression since the recovered signal is slightly
different from the original one as, for example, in MP3 audio or JPEG images. In audio
and image applications, the DCT coefficient quantization process takes into account the
psychophysical properties of the hearing or visual system, and is beyond the scope of
this chapter.

Fig. 19.1.1 shows a simplified DCT compression system [391] in which a long input
signal is divided into contiguous length-N blocks or frames, the N-point DCT of each
frame is computed and compressed, then, the corresponding inverse DCTs of the frames
are computed and the recovered signal blocks are concatenated together to form the
output signal.

Fig. 19.1.1 DCT data compression system.

To avoid possible artifacts that may be introduced by the blocking process, a more
refined MDCT-based approach divides the input signal into overlapping blocks.

Fig. 19.1.2 shows a typical MDCT-based compression system that divides the input
into blocks that are 50% overlapping, then windows each block, and calculates its MDCT,
compresses the MDCT coefficients, and takes the inverse MDCT, windows the resulting
blocks again, and finally overlaps and adds the results.

The window functions must be chosen properly, that is, satisfying the so-called
Princen-Bradley conditions, so that the overlap/add operation correctly implements the
time-domain aliasing cancellation (TDAC) property that allows the faithful reconstruc-
tion of the input signal.

MDCT-based compression systems are used in current audio compression formats,
such as AAC and WMA. In Sec. 19.6, we discuss the implementation of such a system in
MATLAB.

19.2. DISCRETE COSINE TRANSFORM 907

Fig. 19.1.2 MDCT/TDAC signal compression system.

19.2 Discrete Cosine Transform

There exist eight versions of the DCT, see Ref. [392], but the type-2 is the most widely
used and is the default version in MATLAB’s dct function,† and can be implemented
efficiently using an FFT. With reference to Eq. (19.1.1), the type-2 DCT is defined as
follows,

Ck =
N−1∑
n=0

xn cos
(
πk
N

(
n+ 1

2

))
, k = 0,1, . . . ,N − 1 (DCT) (19.2.1)

and its inverse,

xn = 1

N
C0 + 2

N

N−1∑
k=1

Ck cos
(
πk
N

(
n+ 1

2

))
, n = 0,1, . . . ,N − 1 (IDCT) (19.2.2)

The DCT pair satisfies the following Parseval-like identity,

N−1∑
n=0

x2
n =

1

N

[
C2

0 + 2
N−1∑
k=1

C2
k

]
(Parseval) (19.2.3)

†recent versions of MATLAB include the first four DCT types

908 19. DCT, MDCT, AND DATA COMPRESSION

In MATLAB, and other literature, a normalized version of the DCT coefficients is
used, defined as follows, where δk denotes the Kronecker delta,

Dk = 1

sk
Ck , where sk =

√
N
2

(
δk + 1

)
, k = 0,1, . . . ,N − 1 (19.2.4)

so that,

s0 =
√
N , sk =

√
N
2
, k = 1,2, . . . ,N − 1

D0 =
√

1

N
C0 , Dk =

√
2

N
Ck , k = 1,2, . . . ,N − 1

With this definition, Eqs. (19.2.1)–(19.2.3) read as follows,

Dk = 1

sk

N−1∑
n=0

xn cos
(
πk
N

(
n+ 1

2

))
, k = 0,1, . . . ,N − 1 (DCT) (19.2.5)

xn =
N−1∑
k=0

Dk
1

sk
cos

(
πk
N

(
n+ 1

2

))
, n = 0,1, . . . ,N − 1 (IDCT) (19.2.6)

N−1∑
n=0

x2
n =

N−1∑
k=0

D2
k (Parseval) (19.2.7)

The above relationships can be understood more simply by expressing them in ma-
trix form. Let us define the N ×N matrix of DCT coefficients by its kn matrix element,

Bkn = cos
(
πk
N

(
n+ 1

2

))
,

k = 0,1, . . . ,N − 1
n = 0,1, . . . ,N − 1

(19.2.8)

Then, with reference to the column vectors of Eq. (19.1.1), the forward DCT and its
inverse can be written in matrix form as follows,

C = Bx ⇒ x = B−1C

Define the diagonal matrix of the scale factors sk,

S = diag
(
[s0, s1, . . . , sN−1]

) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

s0 0 0 · · · 0
0 s1 0 · · · 0
0 0 s2 · · · 0
...

...
...

. . .
...

0 0 0 · · · sN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Then, it can be shown that the matrix B satisfies the following orthogonality-like

property from which its inverse can be determined,

BBT = S2 = diag
(
[s2

0, s
2
1, . . . , s

2
N−1]

)
B−1 = BTS−2 = BT diag

(
[s−2

0 , s−2
1 , . . . , s−2

N−1]
) (19.2.9)

19.2. DISCRETE COSINE TRANSFORM 909

Thus, the forward and inverse DCTs can be written in the following matrix forms,
which are exactly equivalent to Eqs. (19.2.1) and (19.2.2), and also to (19.2.5) and (19.2.6)
since, D = S−1 C,

C = Bx

x = BTS−2 C
⇒

D = S−1Bx = Ax

x = BTS−1 D = ATD
(19.2.10)

where we defined the rescaled DCT matrix,

A = S−1B (19.2.11)

which is orthogonal, that is,

AAT = IN ⇒ A−1 = AT (19.2.12)

Indeed, we have from Eq. (19.2.9),

AAT = S−1BBTS−1 = S−1S2S−1 = IN

The normalized DCT matrix A can be computed for any N by the following one-line
anonymous MATLAB function:

A = @(N) sqrt(2/N) * [ones(1,N)/sqrt(2); cos(pi*(1:N-1)’*((0:N-1)+1/2)/N)];

Although the above matrix formulation is very efficient in MATLAB for moderate
sizes (i.e., N ≤ 1024), there is an even faster implementation based on computing the
N-point DCT vector C from a related 2N-point FFT. The computational steps are sum-
marized as follows.† Define the extended signal and DCT column vectors of length-2N
obtained by appending to x its reversed version, and similarly, appending its negative
reversed version to the DCT,

y = [x0, x1, . . . , xN−1, xN−1, . . . , x1, x0]T

Cext = [C0, C1, . . . , CN−2, CN−1,0,−CN−1,−CN−2, . . . ,−C1]T
(19.2.13)

Then, it can be shown that the 2N-point DFT of y is related to the vector Cext by,

Yk = 2ejπk/2NCext
k , k = 0,1, . . . ,2N − 1 , or,

Cext
k = 1

2
e−jπk/2NYk , k = 0,1, . . . ,2N − 1

(19.2.14)

where we have the 2N-point DFT pair,

Yk =
2N−1∑
n=0

yne−2πjk/2N , k = 0,1, . . . ,2N − 1

yn = 1

2N

2N−1∑
n=0

Yke2πjk/2N , n = 0,1, . . . ,2N − 1

†See, for example, Problem 10.26 in Chap. 10.

910 19. DCT, MDCT, AND DATA COMPRESSION

This leads to the following efficient computational algorithm for the forward DCT:

(a) extend the data vector x to y as in Eq. (19.2.13)

(b) compute the FFT of y, that is, Yk, k = 0,1, . . . ,2N − 1

(c) construct the extended Cext
k vector as in Eq. (19.2.14), and

(d) retain the first N elements, Ck = Cext
k , k = 0,1, . . . ,N − 1

(e) renormalize the result, Dk = Ck/sk, k = 0,1, . . . ,N − 1

(19.2.15)

For the inverse DCT, the above steps are entirely reversible, that is, starting with Dk,
k = 0,1, . . . ,N−1, first undo the normalization scale factors, Ck = skDk, then form the
length-2N extended vector Cext

k as in Eq. (19.2.13), and evaluate the DFT values Yk as in
Eq. (19.2.14), then, perform an inverse 2N-point FFT to recover y and retain its the first
N elements, xn = yn, n = 0,1, . . . ,N − 1.

19.3 DCT Compression System

To clarify the operations shown in Fig. 19.1.1, and the possible methods of compressing
the DCT coefficients, we discuss a small example, implemented in MATLAB. Define a
length-40 signal, shown below in Fig. 19.3.1, and divided it up in 4 frames of length
N = 10, with the help of the buffer function, and compute the DCT of all frames,†

L = 40; t = (0:L-1)/L; %
x = sin(10*t.^2) + 2*t; % length L=40

N = 10; % frame length
X = buffer(x,N); % 10x4 matrix of frames
D = dct(X); % 10x4 matrix of DCT coefficients

% X D
% --
% 0 1.0851 1.5985 0.8883 1.2623 4.9797 2.6349 6.5811
% 0.0562 1.2362 1.4259 1.2766 -0.9433 -0.7086 1.2451 -1.2616
% 0.1250 1.3833 1.2163 1.7165 0.1282 -0.3166 0.4891 -1.4116
% 0.2062 1.5205 0.9861 2.1495 DCT -0.0959 -0.0124 -0.0916 0.1412
% 0.2998 1.6408 0.7575 2.5086 ==> 0.0286 -0.0736 0.1147 -0.2160
% 0.4056 1.7365 0.5577 2.7305 -0.0310 -0.0039 -0.0281 0.0275
% 0.5231 1.7996 0.4164 2.7699 0.0108 -0.0280 0.0432 -0.0768
% 0.6515 1.8224 0.3622 2.6134 -0.0125 -0.0016 -0.0111 0.0097
% 0.7894 1.7986 0.4175 2.2892 0.0041 -0.0106 0.0163 -0.0286
% 0.9349 1.7241 0.5943 1.8686 -0.0035 -0.0004 -0.0031 0.0026

We consider two methods of compression. In method-1, we pick a compression
factor, r < 1, which defines the number of DCT coefficients to be kept from each length-
N frame,

Nr = round(rN) , ractual = Nr

N
(19.3.1)

then, sort the absolute values of the DCT coefficients in each column in descending
order, and keep the highest Nr of them, setting the rest of the coefficients to zero.

†like the fft function, the dct function computes at once the DCT of all the columns of the input.

19.3. DCT COMPRESSION SYSTEM 911

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

t

method−1, N = 10, r = 0.4

 original
 recovered

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

t

method−2, N = 10, r
thr

 = 0.014

 original
 recovered

Fig. 19.3.1 Original and compressed signals, with method-1 (left) and method-2.

Because of the rounding process, the actual realized compression factor, ractual, may
be slightly different from r. The sorting and construction of the new DCT coefficient
matrix could be done as follows,

M = size(D,2); % no. of frames
Nr = round(r*N); % no. of kept coefficients per frame
[~, Ir] = sort(abs(D),’descend’); % sort column-wise, descending order
Ir = Ir(1:Nr,:); % Ir = Nr x M matrix of sorting indices
C = zeros(size(D)); % kept DCT coefficients
for m = 1:M % rebuild DCT from the kept coefficients

Dr(:,m) = D(Ir(:,m),m); % Dr = Nr x M matrix, sorted coefficients
C(Ir(:,m),m) = Dr(:,m); % C = new DCT coefficients

end

In a storage/retrieval or transmitting/receiving system, one would store or transmit
both the index and coefficient matrices, Ir,Dr , in order to be able to re-position the kept
coefficients in their original order [391], therefore, the compression factor would be, 2r,
in this case. For example, with, r = 0.4, we have the sorted coefficients and sorting
indices,

% Ir | Dr
% ------------|--------------------------------------
% 1 1 1 1 | 1.2623 4.9797 2.6349 6.5811
% 2 2 2 3 | -0.9433 -0.7086 1.2451 -1.4116
% 3 3 3 2 | 0.1282 -0.3166 0.4891 -1.2616
% 4 5 5 5 | -0.0959 -0.0736 0.1147 -0.2160

In method-2, we pick a threshold factor, rthr < 1, which defines a threshold value
Dthr for the DCT coefficients below which the coefficients are discarded, and construct
a new DCT matrix that only has coefficients such that, |D| ≥ Dthr, where,

Dthr = rthr · |D|max (19.3.2)

This method can be implemented by the example code:

912 19. DCT, MDCT, AND DATA COMPRESSION

Dthr = r_thr * max(max(abs(D))); % DCT threshold
I = find(abs(D) < Dthr); % indices of DCT coeffs to be zeroed
C = D; % start with C = D
C(I) = 0; % discard coefficients below Dthr
r_actual = 1-length(I)/(N*M); % realized compression factor

Applying the two methods to the DCT matrix D of the above example, we obtain the
following new DCT matrices C, where we used, r = 0.4, for method-1, and, rthr = 0.014,
for method-2 (chosen such that both methods achieve the same actual compression
ratio, ractual = 0.4.)

% method-1 C | method-2 C
% ------------------------------------|-----------------------------------
% 1.2623 4.9797 2.6349 6.5811 | 1.2623 4.9797 2.6349 6.5811
% -0.9433 -0.7086 1.2451 -1.2616 | -0.9433 -0.7086 1.2451 -1.2616
% 0.1282 -0.3166 0.4891 -1.4116 | 0.1282 -0.3166 0.4891 -1.4116
% -0.0959 0 0 0 | -0.0959 0 0 0.1412
% 0 -0.0736 0.1147 -0.2160 | 0 0 0.1147 -0.2160
% 0 0 0 0 | 0 0 0 0
% 0 0 0 0 | 0 0 0 0
% 0 0 0 0 | 0 0 0 0
% 0 0 0 0 | 0 0 0 0
% 0 0 0 0 | 0 0 0 0

We note that for method-1 there are, Nr = rN = 0.4 · 10 = 4, coefficients per
frame, but that number is variable in method-2 for which the computed threshold was,
Dthr = rthr|D|max = 0.014 · 6.5811 = 0.0921, with all coefficients with magnitudes less
than that set to zero.

The actual compression factor, representing the fraction non-zero DCT coefficients,
was the same in the two cases. The final reconstructed output was obtained by per-
forming an inverse DCT on C and concatenating the resulting frames, with the results
plotted in Fig. 19.3.1,

Y = idct(C); % IDCT of all frames
y = Y(:); % concatenate frames
y = y(1:L); % make x,y lengths equal (in case buffer had extended X)

plot(t,x,’r-’, t,y,’b.’);

The approach also works with images, using a 2D-DCT (which is equivalent to taking
the 1D-DCT of each column followed by the 1D-DCT of each row of the image). For
example, the following MATLAB code based on the MATLAB documentation of the dct2
function [393] compresses an image with an effective 40% compression ratio,

X = imread(’cameraman.tif’); % read image, 256x256 matrix
D = dct2(X); % compute its 2D-DCT

Dmax = max(max(abs(D))); % Dmax = 30393.4687
Dth = 10; % select a threshold
rth = Dth/Dmax; % with threshold factor,

% rth = 3.2902e-04
C = D;
C(abs(D)< Dth) = 0; % compressed DCT

19.4. MDCT AND TIME-DOMAIN ALIASING CANCELLATION 913

ra = length(find(C))/prod(size(C)) % actual compression ratio,
% ra = 26617/65536 = 0.4061

Y = idct2(C); % inverse 2D-DCT

figure; imshowpair(X,Y,’montage’) % display images side by side

Fig. 19.3.2 Original and compressed images.

The JPEG image compression standard uses similar DCT operations, but applied
to 8x8 sub-blocks of the image, and employing a standardized quantization scheme
[398,399]. JPEG has been replaced by JPEG2000, which uses wavelet compression [401,402].

19.4 MDCT and Time-Domain Aliasing Cancellation

The modified DCT (MDCT) is not quite an orthogonal or invertible transform as it trans-
forms a length-2N data block into a length-N vector of MDCT coefficients, while the
inverse MDCT (IMDCT) transforms the length-N vector of MDCT coefficients back to a
length-2N data block, which is not quite equal to the original block.

However, because the MDCT is used in blocks that are 50% overlapping, the recon-
struction error introduced in one block is cancelled by the error introduced by the next
block—a property referred to as time-domain aliasing cancellation (TDAC)—so that the
original signal is reconstructed correctly.

914 19. DCT, MDCT, AND DATA COMPRESSION

See Refs. [403]–[410] for a review of the properties of the MDCT and its fast imple-
mentation. Here, we consider only its matrix formulation, which is fast enough for our
purposes.

The N-point MDCT Dk of a 2N-point signal xn, and the corresponding 2N-point
inverse MDCT yn are defined as follows,

(MDCT): Dk =
2N−1∑
n=0

xn cos
(
π
N

(
k+ 1

2

)(
n+ 1

2 + 1
2N

))
, k = 0,1, . . . ,N − 1

(IMDCT): yn = 1

N

N−1∑
k=0

Dk cos
(
π
N

(
k+ 1

2

)(
n+ 1

2 + 1
2N

))
, n = 0,1, . . . ,2N − 1

(19.4.1)
The precise relationship of the reconstructed signal block yn to the original one xn

is given below, being expressed more simply by splitting the input and reconstructed
length-2N blocks into their upper and lower length-N sub-blocks,

x =
⎡⎣ a

b

⎤⎦ MDCT−→ D
IMDCT−→ y =

⎡⎣ 1
2(a− aR)
1
2(b+ bR)

⎤⎦ (19.4.2)

where aR,bR denote the reversed vectors, e.g., for N = 4,

a =

⎡⎢⎢⎢⎣
a0

a1

a2

a3

⎤⎥⎥⎥⎦ ⇒ aR =

⎡⎢⎢⎢⎣
a3

a2

a1

a0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a0

a1

a2

a3

⎤⎥⎥⎥⎦ = Ja

where, defining the N ×N reversing matrix J having ones along its anti-diagonal line,
one may think of aR as the result of the matrix operation, aR = Ja. Thus, introducing
also the N ×N identity matrix I, one may write Eq. (19.4.2) as,

x =
⎡⎣ a

b

⎤⎦ MDCT−→ D
IMDCT−→ y =

⎡⎣ 1
2(I − J)a
1
2(I + J)b

⎤⎦ =
⎡⎣ 1

2(I − J) 0

0 1
2(I + J)

⎤⎦⎡⎣ a

b

⎤⎦
(19.4.3)

Pictorially, we have for one block,

19.4. MDCT AND TIME-DOMAIN ALIASING CANCELLATION 915

Applying this property to two blocks that are 50% overlapping, we observe that if
the overlapping reconstructed blocks are added, the second half of the first block is
corrected by the first half of the second block, recovering the overlapping portion of the
original blocks, that is,

1

2
(b+ bR)+1

2
(b− bR)= b (19.4.4)

This is precisely the time-domain aliasing cancellation (TDAC) property.

Dab = MDCT(xab)

Dbc = MDCT(xbc)

yab = IMDCT(Dab)

ybc = IMDCT(Dbc)

For a long signal that is split into several such 50% overlapping blocks, as shown in
Fig. 19.1.2, the entire signal is recovered correctly, with the exception of the first and
last length-N portions that are not overlapping—these can be fixed by padding N zeros
at the beginning and end of the original signal prior to MDCT processing. Alternatively,
the last and first N outputs can be replaced by NaN’s or by the original input samples.

The fundamental result of Eq. (19.4.3) can be derived by considering the matrix
formulation of the MDCT/IMDCT. Let us define theN×2N MDCT transformation matrix
by its kn matrix element,

Fkn = cos
(
π
N

(
k+ 1

2

)(
n+ 1

2 + 1
2N

))
,

k = 0,1, . . . ,N − 1

n = 0,1, . . . ,2N − 1
(19.4.5)

Then, the MDCT and IMDCT transformations (19.4.1) can be expressed in matrix form,

D = Fx

y = 1

N
FTD

⇒ y = 1

N
FTFx (19.4.6)

We may split F into its two N × N submatrices, F = [A,B], defined by their matrix
elements,

916 19. DCT, MDCT, AND DATA COMPRESSION

Akn = Fkn = cos
(
π
N

(
k+ 1

2

)(
n+ 1

2 + 1
2N

))
Bkn = Fk,n+N = cos

(
π
N

(
k+ 1

2

)(
n+ 1

2 + 3
2N

)) with
k = 0,1, . . . ,N − 1

n = 0,1, . . . ,N − 1

(19.4.7)
Then, it can be shown that the submatrices A,B satisfy the relationships,

1

N
ATA = 1

2
(I − J)

1

N
BTB = 1

2
(I + J)

ATB = BTA = 0

(19.4.8)

And, these imply Eq. (19.4.3) because,

1

N
FTF = 1

N

[
AT

BT

]
[A,B]= 1

N

[
ATA ATB

BTA BTB

]
=
⎡⎣ 1

2(I − J) 0

0 1
2(I + J)

⎤⎦

19.5 Princen-Bradley Windows

As depicted in Fig. 19.1.2, each frame of length-2N of the input and reconstructed output
is windowed with a length-2N window in order to reduce the blocking effects near the
endpoints of the frames. Such windows are chosen to be symmetric about their middle
with their second length-N half being the reversed version of their first half,

ŵ = [w0,w1, . . . ,wN−1︸ ︷︷ ︸
w

,wN−1, . . . ,w1,w0︸ ︷︷ ︸
wR

]

and moreover, in order to preserve the TDAC property, the windows must satisfy the fol-
lowing so-called Princen-Bradley condition expressed in terms of the length-2N window
ŵn, or, in terms of its half portion, wn, for, n = 0,1, . . . ,N − 1,

ŵ2
n + ŵ2

n+N = 2 ⇒ w2
n +w2

N−1−n = 2 (19.5.1)

Define the diagonal matrices of the windows,

Ŵ = diag
(
ŵ
) = [W 0

0 WR

]
, W = diag

(
w
)
, WR = diag

(
wR

) = JWJ

for example, for N = 4, and w = [w0,w1,w2,w3], we have,

19.5. PRINCEN-BRADLEY WINDOWS 917

W =

⎡⎢⎢⎢⎣
w0 0 0 0
0 w1 0 0
0 0 w2 0
0 0 0 w3

⎤⎥⎥⎥⎦

WR =

⎡⎢⎢⎢⎣
w3 0 0 0
0 w2 0 0
0 0 w1 0
0 0 0 w0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
w0 0 0 0
0 w1 0 0
0 0 w2 0
0 0 0 w3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦
Then, the windowing operation on a length-2N block, assumed to be a column, can

be expressed as a matrix multiplication by the diagonal window matrices,

x =
[

a
b

]
⇒ Ŵx =

[
Wa
WRb

]
The combined operations of windowing an input block, computing its MDCT fol-

lowed by an IMDCT, and windowing the result with the same window are as follows,

x
window−→ Ŵx =

[
Wa
WRb

]
MDCT/IMDCT−→

⎡⎣ 1
2(Wa−WRaR)
1
2(WRb+WbR)

⎤⎦ = y

window−→ Ŵy =
⎡⎣ 1

2(W
2 a−WWRaR)

1
2(W

2
Rb+WRWbR)

⎤⎦
where we made use of the properties, WR = JWJ and J2 = I, which imply,

(Wa)R = JWa = JWJJa =WRaR

(WRb)R = JWRb = J2WJb =WbR

When two 50% overlapping blocks are subjected to these operations and added, then
the overlapping portions (i.e., second half of the first block and first half of the second)
will combine as in Eq. (19.4.4), resulting in,

1

2
(W2

Rb+WRWbR)+1

2
(W2 b−WWRbR)= 1

2
(W2 +W2

R)b (19.5.2)

where bR term is cancelled because the diagonal matrices W,WR commute. Thus, in or-
der to guarantee the TDAC property, the W matrix must satisfy the following condition,
which is equivalent to the Princen-Bradley condition of Eq. (19.5.1),

1

2
(W2 +W2

R)= I (19.5.3)

A couple of window examples that satisfy this property are as follows, with the first
being used in MP3 and MPEG-2 AAC formats, and the second in Vorbis [410],

(sine): ŵn =
√

2 sin
(
π

2N

(
n+ 1

2

))
, n = 0,1, . . . ,2N − 1

(vorbis): ŵn =
√

2 sin
[
π
2

sin2
(
π

2N

(
n+ 1

2

))]
, n = 0,1, . . . ,2N − 1

(19.5.4)

918 19. DCT, MDCT, AND DATA COMPRESSION

A more general procedure for constructing such windows, which is discussed in
[409], begins with a typical length-(N + 1) window, say, fk, k = 0,1, . . . ,N, that is
symmetric about its middle (i.e., about 1

2N), such as a Kaiser or a Hamming window,
and constructs the first length-N half of the ŵn window by forming the square-root of
the cumulative sum of fk,

ŵn = wn =
⎡⎣2

S

n∑
k=0

fk

⎤⎦1/2

, n = 0,1, . . . ,N − 1 , where S ≡
N∑
k=0

fk (19.5.5)

then, the second length-N half is taken to be the reversed version of wn, obtained by
replacing n by N − 1− n in Eq. (19.5.5),

ŵn+N = wN−1−n =
⎡⎣2

S

N−1−n∑
m=0

fm

⎤⎦1/2

=
⎡⎣2

S

N∑
k=n+1

fN−k

⎤⎦1/2

, n = 0,1, . . . ,N − 1

where we changed summation variables from m to N − k. Exploiting the assumed
symmetry of the fk window, i.e., fN−k = fk, we obtain,

ŵn+N = wN−1−n =
⎡⎣2

S

N∑
k=n+1

fk

⎤⎦1/2

, n = 0,1, . . . ,N − 1 (19.5.6)

Together Eqs. (19.5.5) and (19.5.6) define a length-2N window that satisfies the Princen-
Bradley condition (19.5.1), indeed,

ŵ2
n + ŵ2

n+N =
2

S

⎡⎣ n∑
k=0

fk +
N∑

k=n+1

fk

⎤⎦ = 2

S

⎡⎣ N∑
k=0

fk

⎤⎦ = 2

S
S = 2

An example of such window is the so-called Kaiser-Bessel derived (KBD) window,
which is used in AAC and Dolby AC-3 formats—it is generated by the above procedure
from an ordinary Kaiser window of length (N + 1) and shape parameter β,†

fk = I0

⎛⎝β
√

1−
(
k−N/2

N/2

)2
⎞⎠ , k = 0,1, . . . ,N (19.5.7)

Similarly, a Hamming window would have,‡

fk = 0.54− 0.46 cos
(

2πk
N

)
, k = 0,1, . . . ,N (19.5.8)

19.6 Derivations and Computer Experiments

Derivations

1. Using the finite geometric series, prove the following identity valid for any integer
N and real-valued parameter α,

N−1∑
n=0

cos
(
α
N

(
n+ 1

2

))
= sinα

2 sin
(
α

2N

) (19.6.1)

†the usual I0(β) denominator is not necessary since fk gets rescaled by S.
‡A Kaiser window with β = 5.2 is good approximation to Hamming window.

19.6. DERIVATIONS AND COMPUTER EXPERIMENTS 919

Hints: Note the following,

N−1∑
n=0

zn = zN − 1

z− 1

cosθ = Re
[
ejθ

]
ejθ − 1 = 2jejθ/2 sin(θ/2)

sin(α)= 2 sin(α/2)cos(α/2)

Moreover, show the special limiting values, for α = 2πNm, with arbitrary integer
m,

N−1∑
n=0

cos
(
α
N

(
n+ 1

2

))∣∣∣∣∣∣
a=2πNm

= sinα

2 sin
(
α

2N

)
∣∣∣∣∣∣∣∣
a=2πNm

= N(−1)m (19.6.2)

Then, show the following identity for real α,β,

N−1∑
n=0

cos
(
α
N

(
n+ 1

2

))
cos

(
β
N

(
n+ 1

2

))
= sin(α+ β)

4 sin
(
α+ β

2N

) + sin(α− β)

4 sin
(
α− β

2N

)
(19.6.3)

2. To prove the matrix equation (19.2.9) for the DCT matrix B, work with the km
matrix element (BBT)km, and using the identities of the previous question show
that,

(BBT)km=
N−1∑
n=0

BknBmn = N
2

[
δ(k+m)+δ(k−m)

]
,

k = 0,1, . . . ,N − 1
m = 0,1, . . . ,N − 1

(19.6.4)

Then, explain why this is equivalent to,

(BBT)km= s2
kδ(k−m) ,

k = 0,1, . . . ,N − 1
m = 0,1, . . . ,N − 1

(19.6.5)

3. Consider the N×N MDCT matrices A,B defined in Eq. (19.4.7). In order to prove
the relationships (19.4.8), use the results of Eqs. (19.6.1)–(19.6.3) to show the fol-
lowing expressions for the matrix elements,

1

N
(ATA)nm = 1

2

[
δ(n−m)−δ(n+m−N + 1)

]
1

N
(BTB)nm = 1

2

[
δ(n−m)+δ(n+m−N + 1)

]
(ATB)nm = 0

(19.6.6)

920 19. DCT, MDCT, AND DATA COMPRESSION

for n = 0,1, . . . ,N−1, and, m = 0,1, . . . ,N−1. Explain why the matrix elements
of the N ×N reversing matrix J are,

Jnm = δ(n+m−N + 1) , n,m = 0,1, . . . ,N − 1

Finally, explain why Eqs. (19.6.6) are equivalent to Eqs. (19.4.8).

Computer Experiment – Fast DCT and IDCT functions

Write two MATLAB functions, dctf and idctf, that implement the fast DCT algorithm
listed in Eq. (19.2.15), with usage,

D = dctf(X); % forward DCT

X = idctf(D); % inverse DCT

% X = NxM matrix of frames

% D = NxM matrix of DCT coefficients

where the DCT is performed on each column of the N ×M input matrix of signal
frames, with the mth column of D holding the DCT of the mth column of X. Internally,
your functions must contain a single FFT/IFFT call that handles all the frames at once.
For this purpose, you may use the built-in FFT/IFFT functions that act column-wise.

Create a test M-file that tests your functions on a 1024× 100 random matrix X and
compares the results, as well as the computational speed, with the built-in functions,
dct and idct. In addition, your test file should compare the results and speed of the
computations implemented via the DCT matrix A using the anonymous MATLAB func-
tion A(N) defined in Sec. 19.2. In that case, the DCT and IDCTs of all the frames can
be computed simply by the single commands, D = AX and X = ATD.

Computer Experiment – DCT compression system

Write a MATLAB function, dctcompr, that implements the compression scheme depicted
in Fig. 19.1.1 that incorporates the two compression methods outlined in Sec. 19.3, with
usage,

[y,ra] = dctcompr(x,N,r,method);

% x = signal to be compressed

% N = frame length

% r = compression ratio or threshold factor (r<1)

% method = 1,2, compression method, default is 1

%

% y = compressed signal, same length as x

% ra = actual compression ratio achieved

In this function, you may use either the dct/idct built-in functions, or your own fast
versions from the previous question. The function should put together the following
operations,

19.6. DERIVATIONS AND COMPUTER EXPERIMENTS 921

X = buffer(x ,N)
D = dct(X)
C = f(D, r)= method 1 or 2

Y = idct(C)
y = concatenate Y columns

(19.6.7)

Write an M-file that tests your function on the example of Sec. 19.3, and, moreover,
it applies the function to a short audio signal, e.g., of duration of 3-4 sec, sampled at
44.1 kHz. Run your program with smaller and smaller values of r (for method 1) until
you can hear audible distortions. Include your test file and description of your results
with your report.

Computer Experiment – DCT Basis Functions

The inverse DCT of Eq. (19.2.6) expresses a length-N signal xn as a linear combination
of N co-sinusoidal basis functions, that is,

xn =
N−1∑
k=0

DkFk(n) , n = 0,1, . . . ,N − 1 (19.6.8)

where the basis functions Fk(n) are defined as follows, for k = 0,1, . . . ,N − 1,

Fk(n)= 1

sk
cos

(
πk
N

(
n+ 1

2

))
, n = 0,1, . . . ,N − 1 (19.6.9)

To gain an understanding of what these functions look like, compute and plot all of
them for the cases N = 8 and N = 16. You may plot them as staircase plots for clarity,
as shown in Fig. 19.6.1 at the end.

Computer Experiment – Princen-Bradley Windows

Write a MATLAB function, pbwin.m, that generates the three types of Princen-Bradley
windows mentioned in Sec. 19.5, namely, sine, vorbis, and KBD windows. It should have
usage:

% w = pbwin(N,type,beta);

%

% N = window half-length

% type = 0,1,2,3, for rectangular, sine, vorbis, KBD

% beta = Kaiser shape parameter when type=3

%

% w = length-2N window, column vector

To help you debug your functions, here are their values for N = 4 and β = 5, see
also Fig. 19.6.2 at the end,

922 19. DCT, MDCT, AND DATA COMPRESSION

% sine vorbis KBD

% ----------------------------

% 0.2759 0.0845 0.1836

% 0.7857 0.6591 0.7356

% 1.1759 1.2512 1.2078

% 1.3870 1.4117 1.4023

% 1.3870 1.4117 1.4023

% 1.1759 1.2512 1.2078

% 0.7857 0.6591 0.7356

% 0.2759 0.0845 0.1836

and for each, we can verify the Princen-Bradley condition,

% w(1:N).^2 + w(N+1:2*N).^2

%

% ans =

% 2.0000

% 2.0000

% 2.0000

% 2.0000

Computer Experiment – MDCT and IMDCT Functions

Write two functions, mdct and imdct, that implement the forward and inverse MDCT
transformations defined in Eq. (19.4.1), with usage:

D = mdct(X); % forward MDCT

Y = imdct(D); % inverse MDCT

% X = (2N)xM matrix of frames

%

% D = NxM matrix of MDCT coefficients

%

% Y = (2N)xM matrix of frames

You may use the matrix form of Eq. (19.4.6), so that the MDCTs and IMDCTs of a
(2N)×M matrix of frames, X, would be simply,

D = FX , Y = 1

N
FTD

where the (2N)×N matrix F is given by Eq. (19.4.5), and should be constructed in a
fully vectorized way, i.e., no loops.

Computer Experiment – MDCT/TDAC compression system

Write a MATLAB function, mdctcompr, that uses your functions mdct, imdct, pbwin,
and implements the MDCT/TDAC compression scheme depicted in Fig. 19.1.2. It must
have usage,

19.6. DERIVATIONS AND COMPUTER EXPERIMENTS 923

[y,ra] = mdctcompr(x,N,rth,win,beta);

% x = signal to be compressed

% N = MDCT length, frame length = 2*N

% rth = compression threshold, rth<1, (rth=0 for no compression)

% win = 0,1,2,3, for rectangular, sine, vorbis, KBD windows

% beta = Kaiser shape parameter when win = 3

%

% y = compressed signal

% ra = actual compression ratio achieved

Your function must incorporate the following operations,

X = buffer(x ,2N,N,‘nodelay’) % create 50% overlapping frames

w = pbwin(N,win, β) % length-2N window (column)

W = repmat(w,1,M) % replicate window, M = number of frames

D = mdct(W.∗X) % MDCT of windowed frames

C = f(D, rthr) % compress MDCT using threshold method

Y =W.∗ imdct(C) % inverse MDCT followed by windowing

y = ola(Y,N) % overlap/add frames

y = y
(
1 : length(x)

)
% make x,y lengths equal

(19.6.10)
For simplicity, use only the threshold compression method (i.e., method-2 of Sec. 19.3)

that discards all MDCT coefficients that are below a threshold, i.e., |D| < rthr · |D|max.
The OLA operation is the same as the one that we considered in the phase vocoder

case, except here we must use frames of length 2N and hop size of N samples. As a
reminder, given the (2N)×M output frame matrix Y, the following partially vectorized
loop will reconstruct the signal y from Y,

N = size(Y,1)/2; % Y has size 2N x M

M = size(Y,2); % number of frames

L = N*M + N; % length of y, before made equal to length(x)

y = zeros(L,1); % pre-allocate y

n = (1:2*N)’; % work with column vectors

for m = 0:M-1

y(m*N + n) = y(m*N + n) + Y(:,m+1);

end

Please carry out the following experiments:

1. Test your function on the same audio file that you used for the DCT case, but
adjust the threshold rthr in order to achieve an actual compression ratio of about
ra = 0.15–0.20.

924 19. DCT, MDCT, AND DATA COMPRESSION

2. Consider 100 samples of the same signal example of Sec. 19.3,

t = 0:0.01:0.99; % 100 time instants in the interval [0,1)
x = sin(10*t.^2) + 2*t; % signal samples

Using the parameters N = 20, rthr = 0.005, and a KBD window with shape pa-
rameter β = 15, calculate the compressed output signal y and the achieved com-
pression ratio ra, and plot both x and y versus t on the same graph. The TDAC
property will be effective for the entire length of the signal but for the first N and
last N output samples.

Repeat by using the higher threshold, rthr = 0.05, which means less accuracy since
more DCT coefficients are thrown out. See some example graphs in Fig. 19.6.3 at
the end that also show the overlapping frames.

3. To help you debug your mdctcompr function and to visualize the TDAC property,
consider the following length-28 signal,

x = (1:28)’;

Using N = 4 and a KBD window with β = 6, divide x into six 50% overlapping
frames of length 2N = 8, then window each frame, perform its MDCT followed
immediately by an IMDCT, and window again each output frame. List column-
wise the input x, as well as the windowed/IMDCTs, and overlap-add all columns
to obtain the final reconstructed output, y, displayed in the last column, which
should agree exactly with x except for the first 4 and last 4 outputs.

19.6. DERIVATIONS AND COMPUTER EXPERIMENTS 925

% x y1 y2 y3 y4 y5 y6 y

% --

% 1 -0.34 0 0 0 0 0 -0.34

% 2 -0.80 0 0 0 0 0 -0.80

% 3 1.39 0 0 0 0 0 1.39

% 4 3.88 0 0 0 0 0 3.88

% 5 5.65 -0.65 0 0 0 0 5

% 6 7.53 -1.53 0 0 0 0 6

% 7 4.34 2.66 0 0 0 0 7

% 8 0.49 7.51 0 0 0 0 8

% 9 0 9.97 -0.97 0 0 0 9

% 10 0 12.27 -2.27 0 0 0 10

% 11 0 7.07 3.93 0 0 0 11

% 12 0 0.86 11.14 0 0 0 12

% 13 0 0 14.28 -1.28 0 0 13

% 14 0 0 17.00 -3.00 0 0 14

% 15 0 0 9.80 5.20 0 0 15

% 16 0 0 1.24 14.76 0 0 16

% 17 0 0 0 18.59 -1.59 0 17

% 18 0 0 0 21.73 -3.73 0 18

% 19 0 0 0 12.53 6.47 0 19

% 20 0 0 0 1.61 18.39 0 20

% 21 0 0 0 0 22.91 -1.91 21

% 22 0 0 0 0 26.46 -4.46 22

% 23 0 0 0 0 15.26 7.74 23

% 24 0 0 0 0 1.99 22.01 24

% 25 0 0 0 0 0 27.22 27.22

% 26 0 0 0 0 0 31.20 31.20

% 27 0 0 0 0 0 17.99 17.99

% 28 0 0 0 0 0 2.36 2.36

926 19. DCT, MDCT, AND DATA COMPRESSION

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

Fig. 19.6.1 DCT basis functions, N = 24.

19.6. DERIVATIONS AND COMPUTER EXPERIMENTS 927

0 32 64 96 128 160 192 224 256
0

0.5

1

1.5

n

Princen−Bradley windows, 2N = 256, β = 20

 sine
 vorbis
 KBD

Fig. 19.6.2 Princen-Bradley windows.

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

t

2N = 40, r
thr

 = 0.005, r
a
 = 0.225

 original
 compressed

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

t

2N = 40, r
thr

 = 0.050, r
a
 = 0.150

 original
 compressed

Fig. 19.6.3 MDCT/TDAC compression example with KBD window and four overlapping frames.

20
Discrete Wavelet Transforms

Over the past two decades, wavelets have become useful signal processing tools for sig-
nal representation, compression, and denoising [413–581]. There exist several books on
the subject [413–434], and several tutorial reviews [435–456]. The theory of wavelets
and multiresolution analysis is by now very mature [457–509] and has been applied
to a remarkably diverse range of applications, such as image compression and cod-
ing, JPEG2000 standard, FBI fingerprint compression, audio signals, numerical analy-
sis and solution of integral equations, electromagnetics, biomedical engineering, astro-
physics, turbulence, chemistry, infrared spectroscopy, power engineering, economics
and finance, bioinformatics, characterization of long-memory and fractional processes,
and statistics with regression and denoising applications [510–581].

In this chapter,† we present a short review of wavelet concepts, such as multires-
olution analysis, dilation equations, scaling and wavelet filters, filter banks, discrete
wavelet transforms in matrix and convolutional forms, wavelet denoising, and undeci-
mated wavelet transforms. Our discussion emphasizes computational aspects.

20.1 Multiresolution Analysis

Wavelet multiresolution analysis expands a time signal into components representing
different scales—from a coarser to a finer resolution. Each term in the expansion cap-
tures the signal details at a particular scale level. The expansion is defined in terms of a
sequence of nested closed subspaces Vj of the space L2R of square integrable functions
on the real line R:

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2R (20.1.1)

The space Vj approximates a signal at a scale j with a resolution of 2−j time units.
Roughly speaking, if T0 is the sampling time interval in subspace V0, then the sampling
interval in Vj will be Tj = 2−jT0, which is coarser if j < 0, and finer if j > 0. The union

†adapted from the author’s book on Applied Optimum Signal Processing [45]

928

20.1. MULTIRESOLUTION ANALYSIS 929

of the Vj subspaces is the entire L2R space, and their intersection, the zero function:

lim
j→∞

Vj =
∞⋃

j=−∞
Vj = L2R , lim

j→−∞
Vj =

∞⋂
j=−∞

Vj = {0} (20.1.2)

The spaces Vj have a special structure, being defined as the linear spans of the
scaled and translated replicas of a single function φ(t), called the scaling function, or
the father wavelet, which can be of compact support. The scaled/translated replicas of
φ(t) are defined for any integers j, n by:

φjn(t)= 2j/2φ(2jt − n) (20.1.3)

The functions φjn(t) are orthonormal for each fixed j, and form a basis of Vj. The
orthonormality condition is defined with respect to the L2R inner product:†

(φjn,φjm)=
∫∞
−∞

φjn(t)φjm(t)dt = δnm (20.1.4)

The factor 2j/2 in Eq. (20.1.3) serves to preserve the unit norm ofφjn for each j. Con-
ditions (20.1.1)–(20.1.4) are strong constraints and it is remarkable that such functions
φ(t) exist other than the simple Haar function defined to be unity over 0 ≤ t ≤ 1 and
zero otherwise. Fig. 20.1.1 shows three examples, the Haar, and the Daubechies D2 and
D3 cases, all of which have compact support (the support of D2 is 3 time units and that
of D3, 5 units). The figure also shows a related function ψ(t) derived from φ(t), called
the wavelet function, or the mother wavelet.

Fig. 20.1.1 Haar, Daubechies D2 and D3 scaling and wavelet functions φ(t),ψ(t).

Fig. 20.1.2 shows the scaled versions of the scaling and wavelet functions (for the
D2 case). Each successive copy φ(t),φ(2t),φ(22t),φ(23t), etc., is compressed by a
factor of two relative to the previous one, so that for higher and higher values of j, the
basis function φ(2jt) is capable of capturing smaller and smaller signal details.

†In this chapter, all time signals are assumed to be real-valued.

930 20. DISCRETE WAVELET TRANSFORMS

The projection of an arbitrary signal f(t)∈ L2R onto the subspace Vj is defined by
the following expansion in the φjn basis:

fj(t)=
∑
n
cjnφjn(t)=

∑
n
cjn 2j/2φ(2jt − n) (20.1.5)

with coefficients following from the orthonormality of φjn(t):

cjn = (fj,φjn)= (f,φjn)=
∫∞
−∞

f(t)φjn(t)dt =
∫∞
−∞

f(t)2j/2φ(2jt − n)dt (20.1.6)

Fig. 20.1.2 Daubechies D2 functions φ(t),ψ(t) and their compressed versions.

The projection fj(t) can be thought of as an approximation of f(t) at scale j with
time resolution of 2−j. Because Vi ⊂ Vj for i ≤ j, the signal fj(t) incorporates informa-
tion about f(t) from all coarser resolutions (cf. Eq. (20.2.8)).

The significance of the wavelet function ψ(t) is that the orthogonal complement V⊥j
of Vj with respect to L2R is actually spanned by the scaled and translated versions of
ψ, that is, ψin(t)= 2i/2ψ(2it − n) for i ≥ j, which are orthogonal to φjn(t), and are
also mutually orthonormal,

(φjn,ψim)= 0 , i ≥ j , (ψin,ψi′n′)= δii′δnn′ (20.1.7)

Thus, we have the direct sum L2R = Vj⊕V⊥j , resulting in the decomposition of f(t)
into two orthogonal parts:

f(t)= fj(t)+wj(t) , fj(t)∈ Vj , wj(t)∈ V⊥j , fj(t)⊥ wj(t) (20.1.8)

The component wj(t) is referred to as the “detail,” and incorporates the details of
f(t) at all the higher resolution levels i ≥ j, or finer time scales 2−i ≤ 2−j. It admits the
ψ-basis expansion:

wj(t)=
∑
i≥j

∑
n
dinψin(t)=

∑
i≥j

∑
n
din2i/2ψ(2it − n) (20.1.9)

20.1. MULTIRESOLUTION ANALYSIS 931

with detail coefficients din = (wj,ψin)= (f,ψin). In summary, one form of the mul-
tiresolution decomposition is,

f(t)= fj(t)+wj(t)=
∑
n
cjnφjn(t)+

∞∑
i=j

∑
n
dinψin(t) (20.1.10)

Another form is obtained in the limit j → −∞. Since V−∞ = {0}, we have f−∞(t)= 0,
and we obtain the representation of f(t) purely in terms of the wavelet basis ψin(t):

f(t)=
∞∑

i=−∞

∑
n
dinψin(t) , din =

∫∞
−∞

f(t)ψin(t)dt (20.1.11)

Yet another, and most practical, version of the multiresolution decomposition is
obtained by noting that V∞ = L2R. We may assume then that our working signal f(t)
belongs to some VJ for a sufficiently large value of J, representing the highest desired
resolution, or finest scale. Since f(t)∈ VJ, it follows from the decomposition f(t)=
fJ(t)+wJ(t) that wJ(t)= 0, which implies that din = 0 for i ≥ J, and therefore,

f(t)= fJ(t)=
∑
n
cJnφJn(t) (20.1.12)

Combining this with Eq. (20.1.10) applied at some lower resolution j < J, we obtain
the two alternative forms (cf. Eq. (20.2.10)):

f(t)=
∑
n
cJnφJn(t)=

∑
n
cjnφjn(t)+

J−1∑
i=j

∑
n
dinψin(t)= fj(t)+wj(t) (20.1.13)

The mapping of the expansion coefficients from level J to levels j through J − 1,

cJn →
{
cjn ; din, j ≤ i ≤ J − 1

}
(20.1.14)

is essentially the discrete wavelet transform (DWT). For sufficiently large J, the coeffi-
cients cJn can be taken to be the time samples of f(t), sampled at the rate fs = 2J, or
sampling time interval TJ = 2−J. To see this, we note that the function 2Jφ(2Jt − n)
tends to a Dirac delta function for large J (see [413] for a proof), so that,

2Jφ(2Jt − n)≈ 2Jδ(2Jt − n)= δ(t − n2−J) (20.1.15)

Therefore, 2J/2φ(2Jt − n)≈ 2−J/2δ(t − n2−J), and Eq. (20.1.6) gives,

cJn ≈
∫∞
−∞

f(t)2−J/2δ(t − n2−J)Φ0dt = 2−J/2 f(n2−J) (20.1.16)

In practice, we may ignore the factor 2−J/2 and set simply cJn = f(n2−J)= f(nTJ).
The coefficients cJn serve as the input to the discrete wavelet transform. The approxi-
mation of cJn by the time samples is usually adequate, although there exist more precise
ways to initialize the transform.

932 20. DISCRETE WAVELET TRANSFORMS

Example 20.1.1: An example of the decomposition (20.1.13) is shown in Fig. 20.1.3 using the
Haar basis. The original signal (dotted line) is defined by sampling the following discon-
tinuous function at N = 28 = 256 equally spaced points over the interval 0 ≤ t ≤ 1,

f(t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin(4πt), 0 ≤ t < 0.25

sin(2πt), 0.25 ≤ t < 0.75

sin(4πt), 0.75 ≤ t < 1

(20.1.17)

Thus, the highest resolution level is J = log2 N = 8. The upper graphs show the compo-
nents fj(t),wj(t) for the lower resolution level of j = 5. The bottom graphs correspond
to j = 6. As j increases, the step-function approximation becomes more accurate and
captures better the two sharp breaks of the original signal. For each j, the sums of the left
and right graphs make up the original signal.

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 6

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 6

Fig. 20.1.3 Haar-basis projections fj(t),wj(t) from scale J = 8 to scales j = 5,6.

Fig. 20.1.4 shows the case of using the Daubechies D3 wavelet basis for the same signal
(20.1.17). The following MATLAB code generates the top graphs in the two figures:

J = 8; N = 2^J;
t1 = (0:N/4-1)’/N; t2 = (N/4:3*N/4-1)’/N; t3 = (3*N/4:N-1)’/N;
t = [t1; t2; t3];
y = [sin(4*pi*t1); sin(2*pi*t2); sin(4*pi*t3)]; % define signal

h = daub(1); % use h=daub(3) for Fig. 20.1.4

j = 5; Y = dwtdec(y,h,j); % DWT decomposition to level j
fj = Y(:,1); wj = sum(Y(:,2:end),2); % approximation fj(t) and detail wj(t)

20.2. DILATION EQUATIONS 933

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 5

0 0.25 0.5 0.75 1

−1

0

1

t

projection fj(t) at scale j = 6

0 0.25 0.5 0.75 1

−1

0

1

t

detail wj(t) at scale j = 6

Fig. 20.1.4 Daubechies–D3 projections fj(t),wj(t) from scale J = 8 to scales j = 5,6.

figure; plot(t,fj, t,y,’:’); figure; plot(t,wj); % left, right graphs

The function dwtdec is explained in Sec. 20.5, but we mention here that its output Y is
an N×(J−j+1) matrix whose first column holds the projection fj(t), and the sum of its
other columns are the detail wj(t). 	

20.2 Dilation Equations

The subspaces Vj have even more interesting structure than described so far. Since
V0 ⊂ V1, it follows that the scaling function φ(t)∈ V0 can be expanded in the basis
φ1n(t)= 21/2φ(2t−n) that spans V1, that is, there must exist coefficients hn such that

φ(t)=
∑
n
hn 21/2φ(2t − n) (dilation equation) (20.2.1)

which is known as the dilation or refinement equation. The coefficients hn are given by:

hn = (φ,φ1n)= 21/2
∫∞
−∞

φ(t)φ(2t − n)dt (20.2.2)

Moreover, the wavelet function ψ(t) and its translates ψ0n = ψ(t − n) form an
orthonormal basis for the orthogonal complement of V0 relative to V1, that is, the space

934 20. DISCRETE WAVELET TRANSFORMS

W0 = V1 \V0, so that we have the direct-sum decomposition:

V0 ⊕W0 = V1 (20.2.3)

The space W0 is referred to as the “detail” subspace. Because ψ(t)∈ W0 ⊂ V1, it
also can be expanded in the φ1n(t) basis, as in Eq. (20.2.1),

ψ(t)=
∑
n
gn 21/2φ(2t − n) (20.2.4)

In a similar fashion, we have the decomposition Vj ⊕Wj = Vj+1, for all j, with Wj
being spanned by the scaled/translated ψ-basis, ψjn(t)= 2j/2ψ(2jt − n). The dilation
equations can also be written with respect to the φjn,ψjn bases. For example,

φjk(t)= 2j/2φ(2jt − k)=
∑
m
hm2(j+1)/2φ(2j+1t − 2k−m)=

∑
m
hmφj+1,m+2k(t)

and similarly for ψjk(t). Thus, we obtain the alternative forms,

φjk(t) =
∑
m
hmφj+1,m+2k(t)=

∑
n
hn−2kφj+1,n(t)

ψjk(t) =
∑
m
gmφj+1,m+2k(t)=

∑
n
gn−2kφj+1,n(t)

(20.2.5)

Using the orthogonality property (φj+1,n,φj+1,m)= δnm, we have the inner products,

hn−2k = (φjk,φj+1,n)

gn−2k = (ψjk,φj+1,n)
(20.2.6)

Also, because φj+1,n(t) is a basis for Vj+1 = Vj ⊕Wj, it may be expanded into its
two orthogonal parts belonging to the subspaces Vj and Wj, which are in turn spanned
by φjk and ψjk, that is,

φj+1,n =
∑
k
(φj+1,n,φjk)φjk +

∑
k
(φj+1,n,ψjk)ψjk

Using (20.2.6), we may rewrite this as,

φj+1,n(t)=
∑
k
hn−2kφjk(t)+

∑
k
gn−2kψjk(t) (20.2.7)

Eqs. (20.2.5)–(20.2.7) are the essential tools for deriving Mallat’s pyramidal multires-
olution algorithm for the discrete wavelet transform.

The various decompositions discussed in Sec. 20.1 can be understood in the geomet-
ric language of subspaces. For example, starting at level j and repeating the direct-sum
decomposition, and using V−∞ = {0}, we obtain the representation of the subspace Vj,

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1 = · · · =
j−1⊕
i=−∞

Wi (20.2.8)

20.2. DILATION EQUATIONS 935

which states that Vj incorporates the details of all coarser resolutions. Similarly, in-
creasing j and using V∞ = L2R, we obtain the subspace interpretation of Eq. (20.1.10),

Vj+1 = Vj ⊕Wj

Vj+2 = Vj+1 ⊕Wj+1 = Vj ⊕Wj ⊕Wj+1

Vj+3 = Vj+2 ⊕Wj+2 = Vj ⊕Wj ⊕Wj+1 ⊕Wj+2

· · ·
L2R = Vj ⊕

(
Wj ⊕Wj+1 ⊕Wj+2 ⊕ · · ·

) = Vj ⊕V⊥j

(20.2.9)

which explains the remark that the term wj(t) in (20.1.10) incorporates all the higher-
level details. Finally, going from level j < J to level J − 1, we obtain the geometric
interpretation of Eq. (20.1.13),

VJ = Vj⊕
(
Wj ⊕Wj+1 ⊕ · · · ⊕WJ−1

)
, j < J (20.2.10)

The coefficients hn define a lowpass filter H(z)=∑n hnz−n called the scaling filter.
Similarly, gn define a highpass filterG(z), the wavelet filter. The coefficientshn, gn must
satisfy certain orthogonality relations, discussed below, that follow from the dilation
equations (20.2.5).

The filters hn, gn can be IIR or FIR, but the FIR ones are of more practical interest,
and lead to functionsφ(t),ψ(t) of compact support. Daubechies [413] has constructed
several families of such FIR filters: the minimum-phase family or daublets, the least-
asymmetric family or symmlets, and coiflets. The MATLAB function daub incorporates
these three families:

h = daub(K,type); % Daubechies scaling filters - daublets, symmlets, coiflets

h = daub(K,1) = Daublets K = 1,2,3,4,5,6,7,8,9,10, denoted as DK (D1 = Haar)
h = daub(K,2) = Symmlets K = 4,5,6,7,8,9,10, denoted as SK
h = daub(K,3) = Coiflets K = 1,2,3,4,5
h = daub(K) = equivalent to daub(K,1)

Daublets (minimum phase) have length = 2K and K vanishing moments for ψ(t).
Symmlets (least asymmetric) have length = 2K and K vanishing moments for ψ(t).
Coiflets have length = 6K and 2K vanishing moments for ψ(t), and 2K-1 for φ(t).

for coiflets, h(n) is indexed over -2K <= n <= 4K-1

all filters have norm(h) = 1 and sum(h) =
√

2

For example, the scaling filters for the Haar, and daublet D2 and D3 cases, whose
φ(t),ψ(t) functions were shown in Fig. 20.1.1, are obtained from the MATLAB calls:

h = daub(1) ⇒ h = [0.7071 0.7071]
h = daub(2) ⇒ h = [0.4830 0.8365 0.2241 -0.1294]
h = daub(3) ⇒ h = [0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352]

The filters hn can be taken to be causal, i.e., hn, 0 ≤ n ≤ M, where M is the filter
order, which is odd for the above three families, with M = 2K − 1 for daublets and
symmlets, and M = 6K − 1 for coiflets (these are defined to be slightly anticausal, over

936 20. DISCRETE WAVELET TRANSFORMS

−2K ≤ n ≤ 4K − 1). The parameter K is related to certain flatness constraints or
moment constraints for hn at the Nyquist frequency ω = π.

The filters gn are defined to be the conjugate or quadrature mirror filters to hn, that
is, gn = (−1)nhRn , where hRn = hM−n, n = 0,1, . . . ,M is the reversed version of hn.

In the z-domain, we have HR(z)= z−MH(z−1), while multiplication by (−1)n is
equivalent to the substitution z → −z, therefore, G(z)= HR(−z)= (−z)−MH(−z−1).
In the frequency domain, this reads:

G(ω)= e−jM(ω+π)H∗(ω+π) � gn = (−1)nhM−n , 0 ≤ n ≤M (20.2.11)

with the frequency-responses defined by:

G(ω)=
M∑
n=0

gne−jωn , H(ω)=
M∑
n=0

hne−jωn (20.2.12)

The function cmf implements this definition:

g = cmf(h); % conjugate mirror filter

For example, if h = [h0, h1, h2, h3], then, g = [h3,−h2, h1,−h0], e.g., we have for
the daublet D2:

h = daub(2) = [0.4830 0.8365 0.2241 -0.1294]
g = cmf(h) = [-0.1294 -0.2241 0.8365 -0.4830]

Fig. 20.2.1 shows the magnitude responses of the Haar, DaubechiesD2, and Symmlet
S6 scaling and wavelet filters.

For all scaling filters, the DC gain of H(ω), and the Nyquist gain of G(ω), are equal
to
√

2 because of the conditions (which are a consequence of the dilation equation):

H(0) =
M∑
n=0

hn =
√

2

G(π) =
M∑
n=0

(−1)ngn =
M∑
n=0

hM−n = H(0)= √2

(20.2.13)

The dilation equations can be expressed in the frequency domain as follows:

Φ(ω) = 2−1/2H(2−1ω)Φ(2−1ω)

Ψ(ω) = 2−1/2G(2−1ω)Φ(2−1ω)
(20.2.14)

where Φ(ω),Ψ(ω) are the Fourier transforms:

Φ(ω)=
∫∞
−∞

φ(t)e−jωt dt , Ψ(ω)=
∫∞
−∞

ψ(t)e−jωt dt (20.2.15)

In fact, setting ω = 0 in the first of (20.2.14) and assuming that Φ(0)�= 0, we imme-
diately obtain the gain conditions (20.2.13). The iteration of Eqs. (20.2.14) leads to the

20.2. DILATION EQUATIONS 937

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω / π

|
H

(ω
)|

,
|G

(ω
)|

lowpass and highpass filters

 Haar
 D2
 S6

Fig. 20.2.1 Haar, Daubechies D2, and Symmlet S6 scaling and wavelet filters.

infinite product expressions:

Φ(ω) = Φ(0)
∞∏
j=1

[
2−1/2H(2−jω)

]

Ψ(ω) = Φ(0)
[

2−1/2G(2−1ω)
] ∞∏
j=2

[
2−1/2H(2−jω)

] (20.2.16)

We show later that Φ(0) can be chosen to be unity, Φ(0)= 1. As an example,
Fig. 20.2.2 shows the normalized magnitude spectra |Φ(ω)| and |Ψ(ω)|, where the
infinite products were replaced by a finite number of factors up to a maximum j ≤ J
chosen such that the next factor J + 1 would add a negligible difference to the answer.
For Fig. 20.2.2, an accuracy of 0.001 percent was achieved with the values of J = 7 and
J = 5 for the left and right graphs, respectively. The following MATLAB code illustrates
the generation of the left graph:

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ω / π

Daubechies− D2

 |Φ(ω)|
 |Ψ(ω)|

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ω / π

Symmlet− S6

 |Φ(ω)|
 |Ψ(ω)|

Fig. 20.2.2 Fourier transforms Φ(ω),Ψ(ω) of scaling and wavelet functions φ(t),ψ(t).

938 20. DISCRETE WAVELET TRANSFORMS

epsilon = 1e-5; Jmax = 30; % percent error = 100ε
f = linspace(0,10,513); w = pi*f; % frequency range in units of π
h = daub(2)/sqrt(2); g = cmf(h); % normalize hn such that H(0) = 1.

% use h=daub(6,2)/sqrt(2) for right graph

Phi0 = abs(freqz(h,1,w/2)); % initialize recursions at |H(ω/2)|, |G(ω/2)|
Psi0 = abs(freqz(g,1,w/2));

for J = 2:Jmax,
Phi = Phi0 .* abs(freqz(h,1,w/2^J)); % update by the factor |H(2−Jω)|
Psi = Psi0 .* abs(freqz(h,1,w/2^J));
if norm(Phi-Phi0) < norm(Phi0) * epsilon, J, break; end % stopping J
Phi0 = Phi;
Psi0 = Psi;

end

figure; plot(f,Phi, f,Psi,’--’);

We observe from the graphs that Φ(ω) has zeros atω = 2πm for non-zero integers
m. This is justified in the next section. Similarly, Ψ(ω) vanishes at ω = 2πm for even
m, including zero.

Given the filters hn, gn, the dilation equations (20.2.1) and (20.2.4) can be solved iter-
atively for the functions φ(t),ψ(t) by the so-called cascade algorithm, which amounts
to the iterations,

φ(r+1)(t) =
∑
n
hn 21/2φ(r)(2t − n)

ψ(r+1)(t) =
∑
n
gn 21/2φ(r)(2t − n)

(20.2.17)

for r = 0,1,2, . . . , starting with some simple initial choice, such as φ(0)(t)= 1. The
iteration converges quickly for all the scaling filters incorporated into the function daub.
The algorithm can be cast as a convolutional operation with the so-called à trous† filters
generated from the scaling filter. First, we note that if hn, gn have order M, and are
defined over 0 ≤ n ≤M, then the dilation equations imply that φ(t) and ψ(t) will have
compact support over 0 ≤ t ≤ M. Thus, we may evaluate the rth iterate φ(r)(t) at the
equally-spaced points, t = 2−rn, for 0 ≤ n ≤ M2r , spanning the support interval. To
this end, we define the discrete-time signals of the sampled φ(r)(t):

f(r)(n)= 2−r/2φ(r)(2−rn) (20.2.18)

where 2−r/2 is a convenient normalization factor. It follows then from Eq. (20.2.17) that

2−(r+1)/2φ(r+1)(2−(r+1)n)=
∑
m
hm 2−r/2φ(r)(2−rn−m) , or,

f(r+1)(n)=
∑
m
hm f(r)(n− 2rm)=

∑
k
h[r](k)f(r)(n− k) (20.2.19)

where we defined the à trous filter corresponding to the interpolation factor 2r by

h[r](k)=
∑
m
hmδ(k− 2rm) (20.2.20)

†“a trous” means “with holes” in French.

20.3. WAVELET FILTER PROPERTIES 939

which is the original filterhn with (2r−1) zeros inserted between thehn samples, so that
its z-transform and frequency response are H[r](z)= H(z2r) and H[r](ω)= H(2rω).

Thus, Eq. (20.2.19) can be interpreted as the convolution of the rth iterate with the
rth à trous filter. The recursion can be iterated for r = 0,1,2, . . . , J, for sufficiently large
J (typically, J = 10 works well.) The MATLAB function casc implements this algorithm:

[phi,psi,t] = casc(h,J,phi0); % cascade algorithm

where t is the vector of final evaluation points t = 2−Jn, 0 ≤ n ≤M2J. For example, the
Daubechies D2 functions φ(t),ψ(t) shown in Fig. 20.1.1 can be computed and plotted
by the following code:

h = daub(2); J = 10; phi0 = 1;

[phi,psi,t] = casc(h,J,phi0);

figure; plot(t,phi, t,psi,’--’);

The scaling function output phi is normalized to unit L2-norm, and the wavelet
output psi is commensurately normalized. The following MATLAB code fragment from
casc illustrates the construction method:

phi0=1;
for r=0:J-1,

phi = conv(phi, upr(h,r));
end

where the function upr constructs the à trous filter h[r](k) by upsampling hn by a factor
of 2r . This function can also be implemented using the MATLAB’s built-in function
upsample. For example, if h = [h0, h1, h2, h3], then for r = 2, the à trous filter will be,

h[r] = upr(h, r)= upsample(h,2r)= [h0,0,0,0, h1,0,0,0, h2,0,0,0, h3,0,0,0]

20.3 Wavelet Filter Properties

The scaling and wavelet filters hn, gn must satisfy certain necessary constraints which
are a consequence of the orthogonality of the scaling and wavelet basis functions. Using
the property (φj+1,n, φj+1,m)= δnm, it follows from Eq. (20.2.5) that,

(φj0,φjk)=
(∑
n
hnφj+1,n,

∑
m
hm−2kφj+1,m

) = ∑
n,m

hnhm−2k(φj+1,n, φj+1,m)=
∑
n
hnhn−2k

Similarly, we find,

(ψj0,ψjk) =
(∑
n
gnφj+1,n,

∑
m
gm−2kφj+1,m

) =∑
n
gngn−2k

(φj0,ψjk) =
(∑
n
hnφj+1,n,

∑
m
gm−2kφj+1,m

) =∑
n
hngn−2k

940 20. DISCRETE WAVELET TRANSFORMS

But (φj0,φjk)= (ψj0,ψjk)= δk and (φj0,ψjk)= 0, therefore hn, gn must satisfy
the orthogonality properties: ∑

n
hnhn−2k = δk∑

n
gngn−2k = δk∑

n
hngn−2k = 0

(20.3.1)

These may also be expressed in the frequency domain. We will make use of the
following cross-correlation identities that are valid for any two filters hn, gn and their
frequency responses H(ω),G(ω):∑

n
hngn−k � H(ω)G∗(ω)

(−1)k
∑
n
hngn−k � H(ω+π)G∗(ω+π)

[
1+ (−1)k

]∑
n
hngn−k � H(ω)G∗(ω)+H(ω+π)G∗(ω+π)

(20.3.2)

where the second follows from the “modulation” property of Fourier transforms, and
the third, by adding the first two. We note next that Eqs. (20.3.1) can be written in the
following equivalent manner obtained by replacing 2k by any k, even or odd:[

1+ (−1)k
]∑

n
hnhn−k = 2δk

[
1+ (−1)k

]∑
n
gngn−k = 2δk

[
1+ (−1)k

]∑
n
hngn−k = 0

(20.3.3)

Taking the Fourier transforms of both sides of (20.3.3) and using the transform prop-
erties (20.3.2), we obtain the frequency-domain equivalent conditions to Eqs. (20.3.1):

|H(ω)|2 + |H(ω+π)|2 = 2

|G(ω)|2 + |G(ω+π)|2 = 2

H(ω)G∗(ω)+H(ω+π)G∗(ω+π)= 0

(20.3.4)

The conjugate mirror filter choice (20.2.11) forG(ω) automatically satisfies the third
of Eqs. (20.3.4). Indeed, using the 2π-periodicity of H(ω), we have,

G∗(ω) = ejM(ω+π)H(ω+π)

G∗(ω+π) = ejM(ω+2π)H(ω+ 2π)= ejMωH(ω)

so that,

H(ω)G∗(ω)+H(ω+π)G∗(ω+π)= ejMωH(ω)H(ω+π)
[
ejMπ + 1

]
= 0

20.3. WAVELET FILTER PROPERTIES 941

where ejMπ = −1, because M was assumed to be odd. With this choice of G(ω), the
first of (20.3.4) can be written in the following form, which will be used later on to derive
the undecimated wavelet transform:

1

2

[
H∗(ω)H(ω)+G∗(ω)G(ω)

] = 1 (20.3.5)

Settingω = 0 in the first of Eqs. (20.3.4), and using the DC gain constraintH(0)= √2,
we find immediately that H(π)= 0, that is, the scaling filter must have a zero at the
Nyquist frequency ω = π. Since

H(π)=
∑
n
(−1)nhn =

∑
n=even

hn −
∑

n=odd

hn ,

it follows in conjunction with the DC condition that:

∑
n=even

hn =
∑

n=odd

hn = 1√
2

(20.3.6)

The correlation constraints and the DC gain condition,∑
n
hnhn−2k = δk ,

∑
n
hn =

√
2, (20.3.7)

provide only N/2+1 equations, where N is the (even) length of the filter hn. Therefore,
one has N/2 − 1 additional degrees of freedom to specify the scaling filters uniquely.
For example, Daubechies’ minimum-phase DK filters have length N = 2K and K zeros
at Nyquist. These zeros translate into K equivalent moment constraints, or derivative
flatness constraints at Nyquist:

N−1∑
n=0

(−1)nnihn = 0 �
diH(ω)
dωi

∣∣∣∣∣
ω=π

= 0 , i = 0,1, . . . , K − 1 (20.3.8)

The i = 0 case is already a consequence of the correlation constraint, therefore, this
leaves K − 1 additional conditions, which together with the K + 1 equations (20.3.7),
determines the N = 2K coefficients hn uniquely. The construction method may be
found in [413]. As an example, we work out the three cases D1,D2,D3 explicitly. The
Haar D1 case corresponds to K = 1 or N = 2K = 2, so that h = [h0, h1] must satisfy:

h2
0 + h2

1 = 1 , h0 + h1 =
√

2 (20.3.9)

with (lowpass) solution h0 = h1 = 1/
√

2. For the Daubechies D2 case, we have K = 2
and N = 2K = 4, so that h = [h0, h1, h2, h3] must satisfy,

h2
0 + h2

1 + h2
2 + h2

3 = 1

h0 + h2 = 1√
2
, h1 + h3 = 1√

2

− h1 + 2h2 − 3h3 = 0

(20.3.10)

942 20. DISCRETE WAVELET TRANSFORMS

where the third is the Nyquist moment constraint with i = 1, and the middle two are
equivalent to the DC gain and the h0h2 + h1h3 = 0 correlation constraint; indeed, this
follows from the identity:(

h0 + h2 − 1√
2

)2

+
(
h1 + h3 − 1√

2

)2

=

= 1+ (h2
0 + h2

1 + h2
2 + h2

3)−
√

2(h0 + h1 + h2 + h3)+2(h0h2 + h1h3)

Solving the three linear ones for h1, h2, h3 in terms of h0 and inserting them in the
first one, we obtain the quadratic equation for h0, with solutions:

4h2
0 −

√
2h0 − 1

4
= 0 ⇒ h0 = 1±√3

4
√

2

The “+” choice leads to the following minimum-phase filter (the “−” choice leads to the
reverse of that, which has maximum phase):

h = [h0, h1, h2, h3] = 1

4
√

2

[
1+√3 , 3+√3 , 3−√3 , 1−√3

]
= [0.4830 , 0.8365 , 0.2241 , −0.1294]

(20.3.11)

The corresponding transfer function H(z) has a double zero at Nyquist z = −1 and
one inside the unit circle at z = 2−√3. In fact, H(z) factors as follows:

H(z)= h0(1+ z−1)2(1− (2−√3)z−1)

For the D3 case corresponding to K = 3, we have the following two quadratic equa-
tions and four linear ones that must be satisfied by the filter h = [h0, h1, h2, h3, h4, h5]:

h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 = 1 , h0h4 + h1h5 = 0

h0 + h2 + h4 = 1/
√

2 , h1 + h3 + h5 = 1/
√

2

− h1 + 2h2 − 3h3 + 4h4 − 5h5 = 0

− h1 + 22h2 − 32h3 + 42h4 − 52h5 = 0

(20.3.12)

where the last two correspond to the values i = 1,2 in (20.3.8), and we have omitted
the correlation constraint h0h2 + h1h3 + h2h4 + h3h5 = 0 as it is obtainable from
Eqs. (20.3.12). Solving the linear ones for h2, h3, h4, h5 in terms of h0, h1, we find,

h2 = −4h0 + 2h1 +
√

2/8

h3 = −2h0 + 3
√

2/8

h4 = 3h0 − 2h1 + 3
√

2/8

h5 = 2h0 − h1 +
√

2/8

(20.3.13)

Inserting these into the first two of Eqs. (20.3.12), we obtain the quadratic system:

34h2
0 − (32h1 −

√
2/4)h0 + 10h2

1 − 5
√

2h1/4− 3/8 = 0

h2
1 −

√
2h1/8− 3h2

0 − 3
√

2h0/8 = 0
(20.3.14)

20.3. WAVELET FILTER PROPERTIES 943

Solving the second for h1 in terms of h0, we find:

h1 = 1

16

[√
2+

√
768h2

0 + 96
√

2h0 + 2
]

(20.3.15)

and inserting this into the first of (20.3.14), we obtain:

64h2
0 + 2

√
2h0 − 2h0

√
768h2

0 + 96
√

2h0 + 2− 3

8
= 0

or, the equivalent quartic equation:

1024h4
0 − 128

√
2h3

0 − 48h2
0 −

3
√

2

2
h0 + 9

64
= 0 (20.3.16)

which has two real solutions and two complex-conjugate ones. Of the real solutions, the
one that leads to a minimum-phase filter h is

h0 =
√

2

32

[
1+√10+

√
5+ 2

√
10
]

(20.3.17)

With this solution for h0, Eqs. (20.3.15) and (20.3.13) lead to the desired minimum-
phase filter. Its transfer function H(z) factors as:

H(z)= h0+h1z−1+h2z−2+h3z−3+h4z−4+h5z−5 = h0(1+z−1)3(1−z1z−1)(1−z∗1 z−1)

where z1 is the following zero lying inside the unit circle:

z1 =
√

10− 1+ j
√

2
√

10− 5

1+√10+
√

5+ 2
√

10
⇒ |z1| =

√
6

1+√10+
√

5+ 2
√

10
= 0.3254 (20.3.18)

Finally, we mention that the K flatness constraints (20.3.8) at ω = π for H(ω) are
equivalent to K flatness constraints for the wavelet filter G(ω) at DC, that is,

diG(ω)
dωi

∣∣∣∣∣
ω=0

= 0 , i = 0,1, . . . , K − 1 (20.3.19)

In turn, these are equivalent to the K vanishing moment constraints for the wavelet
function ψ(t), that is, ∫∞

−∞
tiψ(t)dt = 0 , i = 0,1, . . . , K − 1 (20.3.20)

The equivalence between (20.3.19) and (20.3.20) is easily established by differentiat-
ing the dilation equation (20.2.14) for Ψ(ω) with respect to ω and setting ω = 0.

Because the DK filters have minimum phase by construction, their energy is concen-
trated at earlier times and their shape is very asymmetric. Daubechies’ other two families
of scaling and wavelet filters, the “least asymmetric” symmlets, and the coiflets, have a
more symmetric shape. They are discussed in detail in [413].

944 20. DISCRETE WAVELET TRANSFORMS

Another consequence of the orthonormality of the φ and ψ bases can be stated in
terms of the Fourier transforms Φ(ω) and Ψ(ω) as identities in ω:

∞∑
m=−∞

∣∣Φ(ω+ 2πm)
∣∣2 =

∞∑
m=−∞

∣∣Ψ(ω+ 2πm)
∣∣2 = 1

∞∑
m=−∞

Φ(ω+ 2πm)Ψ∗(ω+ 2πm)= 0

(20.3.21)

These follow by applying Parseval’s identity to the cross-correlation inner products
of the φ and ψ bases. For example, we have,

δk = (φj0,φjk)= (φ00,φ0k)=
∫∞
−∞

φ(t)φ(t − k)dt = 1

2π

∫∞
−∞

∣∣Φ(ω)
∣∣2ejωk dω

= 1

2π

∫ π

−π

[∞∑
m=−∞

∣∣Φ(ω+ 2πm)
∣∣2

]
ejωk dω

where the last expression was obtained by noting that because k is an integer, the ex-
ponential ejωk is periodic in ω with period 2π, which allowed us to fold the infinite
integration range into the [−π,π] range. But this result is simply the inverse DTFT of
the first of Eqs. (20.3.21). The other results are shown in a similar fashion using the
inner products (ψj0,ψjk)= δk and (φj0,ψjk)= 0.

It can be easily argued from Eqs. (20.2.16) that Φ(2πm)= 0 for all non-zero integers
m. Indeed, setting m = 2p(2q+ 1) for some integers p ≥ 0, q ≥ 0, it follows that after
p iterations, an H-factor will appear such that H

(
(2q + 1)π)

) = H(π)= 0. Setting
ω = 0 in the first of Eqs. (20.3.21) and using this property, it follows that |Φ(0)|2 = 1.
Thus, up to a sign, we may set:

Φ(0)=
∫∞
−∞

φ(t)dt = 1 (20.3.22)

20.4 Multiresolution and Filter Banks

We saw in Eq. (20.1.12) that a signal belonging to a higher-resolution subspace can be
expanded in terms of its lower-resolution components. If J and J0 are the highest and
lowest resolutions of interest, then for a signal f(t)∈ VJ, the multiresolution expansion
will have the form:

f(t)=
∑
n
cJnφJn(t)=

∑
k
cJ0kφJ0k(t)+

J−1∑
j=J0

∑
k
djkψjk(t) (20.4.1)

with the various terms corresponding to the direct-sum decomposition:

VJ = VJ0 ⊕
(
WJ0 ⊕WJ0+1 ⊕ · · · ⊕WJ−1

)
(20.4.2)

The choice of J, J0 is dictated by the application at hand. Typically, we start with a
signal f(t) sampled atN = 2J samples that are equally-spaced over the signal’s duration.
The duration interval can always be normalized to be 0 ≤ t ≤ 1 so that the sample

20.4. MULTIRESOLUTION AND FILTER BANKS 945

spacing is 2−J. The lowest level is J0 = 0 corresponding to sample spacing 2−J0 = 1,
that is, one sample in the interval 0 ≤ t ≤ 1. One does not need to choose J0 = 0; any
value 0 ≤ J0 ≤ J − 1 could be used.

The lower-level expansion coefficients {cJ0k;djk, J0 ≤ j ≤ J − 1} can be computed
from those of the highest level cJn by Mallat’s multiresolution algorithm [469], which
establishes a connection between multiresolution analysis and filter banks.

The algorithm successively computes the coefficients at each level from those of
the level just above. It is based on establishing the relationship between the expansion
coefficients for the decomposition Vj+1 = Vj ⊕Wj and iterating it over J0 ≤ j ≤ J − 1.
An arbitrary element f(t) of Vj+1 can be expanded in two ways:

f(t)=
∑
n
cj+1,nφj+1,n(t)︸ ︷︷ ︸

Vj+1

=
∑
k
cjkφjk(t)︸ ︷︷ ︸

Vj

+
∑
k
djkψjk(t)︸ ︷︷ ︸

Wj

(20.4.3)

The right-hand side coefficients are:

cjk = (f,φjk)=
(∑

n
cj+1,nφj+1,n,φjk

)
=
∑
n
cj+1,n(φj+1,n,φjk)

djk = (f,ψjk)=
(∑

n
cj+1,nφj+1,n,ψjk

)
=
∑
n
cj+1,n(φj+1,n,ψjk)

which become, using Eq. (20.2.6),

cjk =
∑
n
hn−2kcj+1,n

djk =
∑
n
gn−2kcj+1,n

(analysis) (20.4.4)

for j = J−1, J−2, . . . , J0, initialized at cJn = f(tn), n = 0,1, . . . ,2J−1, with tn = n2−J,
that is, the 2J samples of f(t) in the interval 0 ≤ t ≤ 1. Conversely, the coefficients
cj+1,n can be reconstructed from cjk, djk:

cj+1,n = (f,φj+1,n)=
⎛⎝∑

k
cjkφjk +

∑
k
djkψjk , φj+1,n

⎞⎠
=
∑
k
cjk(φjk,φj+1,n)+

∑
k
djk(ψjk,φj+1,n)

or,

cj+1,n =
∑
k
hn−2kcjk +

∑
k
gn−2kdjk (synthesis) (20.4.5)

for j = J0, J0 + 1, . . . , J − 1. To see the filter bank interpretation of these results, let
us define the time-reversed filters h̄n = h−n and ḡn = g−n, and the downsampling and

946 20. DISCRETE WAVELET TRANSFORMS

upsampling operations by a factor of two [418]:

ydown(n)= x(2n)

yup(n)=
∑
k
x(k)δ(n− 2k)=

⎧⎨⎩x(k), if n = 2k
0, otherwise

(20.4.6)

and pictorially,

The downsampling operation decreases the sampling rate by a factor of two by keep-
ing only the even-index samples of the input. The upsampling operation increases the
sampling rate by a factor of two by inserting a zero between successive input samples.
It is the same as the “à trous” operation for filters that we encountered earlier.

With these definitions, the analysis algorithm (20.4.4) is seen to be equivalent to
convolving with the time-reversed filters, followed by downsampling. Symbolically,

cjk =
∑
n
h̄2k−ncj+1,n =

(
h̄∗ cj+1

)
(2k)

djk =
∑
n
ḡ2k−ncj+1,n =

(
ḡ∗ cj+1

)
(2k)

⇒
cj =

(
h̄∗ cj+1

)
down

dj =
(
ḡ∗ cj+1

)
down

(20.4.7)

Similarly, the synthesis algorithm (20.4.5) is equivalent to upsampling the signals
cjk and djk by two and then filtering them through hn, gn,

cj+1,n =
∑
k
hn−2kcjk +

∑
k
gn−2kdjk =

∑
m
hn−mc

up
jm +

∑
m
gn−md

up
jm (20.4.8)

where cup
jm =

∑
k cjkδ(m− 2k). Symbolically,

cj+1 = h∗ c
up
j + g∗ d

up
j (20.4.9)

Fig. 20.4.1 shows a block diagram realization of the analysis and synthesis equations
(20.4.7) and (20.4.9) in terms of a so-called tree-structured iterated filter bank.

In the figure, we used J = 3 and J0 = 0. Each stage of the analysis bank produces
the coefficients at the next coarser level. Similarly, the synthesis bank starts with the
coarsest level and successively reconstructs the higher levels.

The time-reversed filters h̄n, ḡn are still lowpass and highpass, indeed, their fre-
quency responses are H̄(ω)= H∗(ω) and Ḡ(ω)= G∗(ω). Therefore, at the first
analysis stage, the input signal c3 is split into the low- and high-frequency parts c2, d2

representing, respectively, a smoother trend and a more irregular detail. At the second
stage, the smooth trend c2 is split again into a low and high frequency part, c1, d1, and
so on. The subband frequency operation of the filter bank can be understood by looking
at the spectra of the signals at the successive output stages.

20.4. MULTIRESOLUTION AND FILTER BANKS 947

Fig. 20.4.1 Analysis and synthesis filter bank.

Because successive stages operate at different sampling rates, it is best to character-
ize the spectra using a common frequency axis, for example, the physical frequency f .
The spectrum of a discrete-time signal x(n) sampled at a rate fs is defined by,

X(f)=
∑
n
x(n)e−jωn =

∑
n
x(n)e−2πjfn/fs (20.4.10)

where ω = 2πf/fs is the digital frequency in radians/sample. We will use the notation
X(f, fs) whenever it is necessary to indicate the dependence on fs explicitly.

Just like the sampling of a continuous-time signal causes the periodic replication of
its spectrum at multiples of the sampling rate, the operation of downsampling causes
the periodic replication of the input spectrum at multiples of the downsampled rate. It
is a general result that for a downsampling ratio by a factor L, and input and output
rates of fs and fdown

s = fs/L, the downsampled signal ydown(n)= x(nL) will have the
following replicated spectrum at multiples of fdown

s :

Ydown(f)= 1

L

L−1∑
m=0

X(f −mfdown
s) (20.4.11)

where according to (20.4.10),

Ydown(f)=
∑
n
ydown(n)e−2πjfn/fdown

s =
∑
n
x(nL)e−2πjfnL/fs (20.4.12)

In particular, for downsampling by L = 2, we have fdown
s = fs/2 and

Ydown(f)= 1

2

[
X(f)+X(f − fdown

s)
]
=
∑
n
x(2n)e−2πjf2n/fs (20.4.13)

If fs is the sampling rate at the input stage for the signal c3 of the analysis bank,
then the rates for the signals c2, c1, c0 will be fs/2, fs/4, fs/8, respectively. Fig. 20.4.2
shows the corresponding spectra, including the effect of filtering and downsampling.

948 20. DISCRETE WAVELET TRANSFORMS

Fig. 20.4.2 Spectra of the signals c3, c2, c1, c0 at successive stages of the analysis bank of
Fig. 20.4.1.

For clarity, we took H̄(f) to be an ideal lowpass filter with cutoff frequency equal
to half the Nyquist frequency, that is, fs/4. Starting at the top left with the input spec-
trum C3(f), which is replicated at multiples of fs, the first lowpass filtering operation
produces the spectrum at the upper right. According to Eq. (20.4.13), downsampling
will replicate this spectrum at multiples of fdown

s = fs/2, thereby filling the gaps created
by the ideal filter, and resulting in the spectrum C2(f) shown on the left graph of the
second row. The sampling rate at that stage is now fs/2.

The second lowpass filtering operation of the signal c2 indicated on Fig. 20.4.1 will
be by the filter H̄(f, fs/2) which is equal to H̄(2f , fs) if referred to the original sampling
rate fs; indeed, we have,

H̄(f, fs/2)=
∑
n
h̄ne−2πjfn/(fs/2) =

∑
n
h̄ne−2πjf2n/fs = H̄(2f , fs) (20.4.14)

The filter H̄(2f , fs) is the twice-compressed version of H̄(f, fs), and still has an
ideal shape but with cutoff frequency fs/8. The result of the second filtering operation
is shown on the right graph of the second row. The lowpass-filtered replicas are at
multiples of fs/2, and after the next downsampling operation, they will be replicated at
multiples of fs/4 resulting in the spectrum C1(f) of the signal c1 shown on the left of
the third row. At the new sampling rate fs/4, the third-stage lowpass filter will be:

H̄(f, fs/4)= H̄(2f , fs/2)= H̄(4f , fs) (20.4.15)

which is the four-times compressed version of that at rate fs, or twice-compressed of
that of the previous stage. Its cutoff is now at fs/16. The result of filtering by H̄(4f , fs) is

20.5. DISCRETE WAVELET TRANSFORM 949

shown on the right of the third row, and its downsampled version replicated at multiples
of fs/8 is shown on the bottom left as the spectrum C0(f).

Thus, the output spectra C2(f),C1(f),C0(f) capture the frequency content of the
original signal in the corresponding successive subbands, each subband having half the
passband of the previous one (often referred to as an octave filter bank.)

The bottom-right graph shows an equivalent way of obtaining the same final output
C0(f), namely, by first filtering by the combined filter,

H̄(f, fs) H̄(2f , fs) H̄(4f , fs)= H̄(f, fs) H̄(f, fs/2) H̄(f, fs/4)

running at the original rate fs, and then dropping the rate all at once by a factor of
23 = 8, which will cause a replication at multiples of fs/8. This point of view is justified
by applying the standard multirate identity depicted below [418]:

Fig. 20.4.3 shows the successive application of this identity to the three stages of
Fig. 20.4.1 until all the downsamplers are pushed to the right-most end and all the filters
to the left-most end. The corresponding sampling rates are indicated at the outputs of
the downsamplers.

Fig. 20.4.3 Equivalent realizations of the lowpass portion of the analysis bank of Fig. 20.4.1.

For non-ideal filters H̄(f), Ḡ(f), such as the scaling and wavelet filters, the down-
sampling replication property (20.4.13) will cause aliasing. However, because of Eq. (20.3.4),
the filter bank satisfies the so-called pefect reconstruction property, which allows the
aliasing to be canceled at the reconstruction, synthesis, stage.

20.5 Discrete Wavelet Transform

We summarize the analysis and synthesis algorithms:

cj−1 =
(
h̄∗ cj

)
down

dj−1 =
(
ḡ∗ cj

)
down

j = J, J−1, . . . , J0 + 1 (20.5.1)

cj = h∗ c
up
j−1 + g∗ d

up
j−1 j = J0+1, J0+2, . . . , J (20.5.2)

950 20. DISCRETE WAVELET TRANSFORMS

The discrete wavelet transform (DWT) consists of the coefficients generated by the
analysis algorithm. The DWT can be defined for each resolution level. Starting with
an input signal vector x = [x0, x1, . . . , xN−1]T, where N = 2J, the DWTs at successive
stages are defined as the following sets of coefficients:

x = cJ → [cJ−1,dJ−1], (level J−1)
→ [cJ−2,dJ−2,dJ−1], (level J−2)
→ [cJ−3,dJ−3,dJ−2,dJ−1], (level J−3)

...
→ [cJ0 ,dJ0 ,dJ0+1, . . . ,dJ−1], (level J0)

(20.5.3)

Starting with the coefficients at any level, the inverse discrete wavelet transform
(IDWT) applies the synthesis algorithm to reconstruct the original signal x.

In practice, there are as many variants of the DWT as there are ways to implement
the filtering operations in (20.5.1)–(20.5.2), such as deciding on how to deal with the
filter transients (the edge effects), realizing convolution in a matrix form, periodizing or
symmetrizing the signals or not, and so on.

There exist several commercial implementations in MATLAB, Mathematica, Maple,
and S+, incorporating the many variants, as well as several freely available packages in
MATLAB, C++, and R [582–596].

In this section, we consider only the periodized version implemented both in matrix
form and in filtering form using circular convolutions. Given a (possibly infinite) signal
x(n), we define its “modulo-N reduction” [2] as its periodic extension with period N:

x̃(n)=
∞∑

p=−∞
x(n+ pN) (20.5.4)

The signal x̃(n) is periodic with period N, and therefore, we only need to know it
over one period, 0 ≤ n ≤ N− 1. It is characterized by the property that it has the same
N-point DFT as the signal x(n), that is,

X(ωk)=
∞∑

n=−∞
x(n)e−jωkn =

N−1∑
n=0

x̃(n)e−jωkn (20.5.5)

where ωk are the DFT frequencies ωk = 2πk/N, k = 0,1, . . . ,N − 1. The signal x̃(n)
can be visualized as dividing the original signal x(n) into contiguous blocks of length
N, then aligning them in time, and adding them up. This operation is referred to as
“mod-N wrapping” and is depicted in Fig. 20.5.1 for a signal x(n) of length 4N.

The MATLAB function modwrap implements this operation. Its argument can be a
row or column vector, or a matrix. For the matrix case, it wraps each column modulo N:

Y = modwrap(X,N); % mod-N reduction of a matrix

For example, we have for the signal x = [1,2,3,4,5,6,7,8] and N = 3,

20.5. DISCRETE WAVELET TRANSFORM 951

Fig. 20.5.1 Modulo-N reduction or wrapping.

Circular convolution is defined as the modulo-N reduction of ordinary linear convo-
lution, that is,

y = h∗ x ⇒ ycirc = ỹ =3h∗ x (20.5.6)

or more explicitly,

y(n)=
∑
m
h(m)x(n−m) ⇒ ỹ(n)=

∑
p
y(n+ pN)

Its MATLAB implementation is straightforward with the help of the function mod-
wrap, for example,

y = modwrap(conv(h,x), N);

This code has been incorporated into the function circonv, with usage:

y = circonv(h,x,N); % mod-N circular convolution

For example, we have the outputs for N = 8:

Circular convolution can also be implemented in the frequency domain by computing
the N-point DFTs of the signals h,x, multiplying them pointwise together, and perform-
ing an inverse N-point DFT. Symbolically,

ycirc = ỹ =3h∗ x = IDFT
[
DFT(h)·DFT(x)

]
(20.5.7)

or, explicitly,

ỹ(n)= 1

N

N−1∑
k=0

H(ωk)X(ωk)ejωkn (20.5.8)

where H(ωk),X(ωk) are N-point DFTs as in Eq. (20.5.5). The following MATLAB code
illustrates the implementation of the above example in the frequency and time domains:

952 20. DISCRETE WAVELET TRANSFORMS

h = [1 2 3 2 1];
x = [1 2 3 4 5 6 7 8];
H = fft(h,8); X = fft(x,8); % calculate 8-point DFTs

Y = H.*X; % point-wise multiplication of the DFTs

ytilde = ifft(Y,8); % inverse DFT generates ỹ = [55,48,33,26,27,36,45,54]
ytilde = circonv(h,x,8); % time-domain calculation

The frequency method (20.5.7) becomes efficient if FFTs are used in the right-hand
side. However, for our DWT functions, we have used the time-domain implementations,
which are equally efficient because the typical wavelet filter lengths are fairly short.
The convolutional operations in Eqs. (20.5.1) and (20.5.2) can now be replaced by their
circular versions, denoted symbolically,

cj−1 =
(
circonv(h̄, cj)

)
down

dj−1 =
(
circonv(ḡ, cj)

)
down

j = J, J−1, . . . , J0 + 1

cj = circonv(h, cup
j−1)+circonv(g, cup

j−1) j = J0+1, J0+2, . . . , J

(20.5.9)

DWT in Matrix Form

The convolutional operation y = h∗ x can be represented in matrix form:

y = Hx

where H is the convolution matrix of the filter hn, defined by its matrix elements:

Hnm = hn−m

The convolution matrix corresponding to the time-reversed filter h̄n = h−n is given
by the transposed matrix

H̄ = HT

because H̄nm = h̄n−m = hm−n = Hmn. Thus, in matrix notation, the typical convo-
lutional and down- and up-sampling operations being performed at the analysis and
synthesis stages have the forms:

y = (HTx)down , y = Hxup (20.5.10)

Moreover, replacing the linear convolutions by circular ones amounts to replac-
ing the convolutional matrices by their mod-N wrapped versions obtained by reduc-
ing their columns modulo-N, where N is the length of the input vector x. Denoting
H̃ = modwrap(H,N), then the circular version of (20.5.10) would read:

ỹ = (H̃Tx)down , ỹ = H̃xup (20.5.11)

The reduced matrix H̃ will have size N×N, and after downsampling, the output
ỹ = (H̃Tx)down will have size N/2. Similarly, in the operation ỹ = H̃xup, the upsampled
vector xup will have length N, as will the output ỹ. Before upsampling, the input x had

20.5. DISCRETE WAVELET TRANSFORM 953

length N/2. Because every other entry of xup is zero, the matrix operation H̃xup can
be simplified by replacing H̃ by its “downsampled” version H̃down obtained by keeping
every other column, and acting on the original vector x, that is, H̃xup = H̃downx. The
matrix elements of Hdown, before they are wrapped modulo-N, are (Hdown)nk= hn−2k.

To clarify these remarks, we look at some examples. Consider a length-6 filter, such
as D3 or a Coiflet-1 filter, h = [h0, h1, h2, h3, h4, h5]T and take N = 8. If the length-4
signal vector x = [x0, x2, x4, x6]T is upsampled by a factor of two, it will become the
length-8 vector xup = [x0,0, x2,0, x4,0, x6,0]T. Before wrapping them modulo-8, the
convolution matrices H,Hdown generate the following equivalent outputs:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0 0 0 0
h1 h0 0 0 0 0 0 0
h2 h1 h0 0 0 0 0 0
h3 h2 h1 h0 0 0 0 0
h4 h3 h2 h1 h0 0 0 0
h5 h4 h3 h2 h1 h0 0 0
0 h5 h4 h3 h2 h1 h0 0
0 0 h5 h4 h3 h2 h1 h0

0 0 0 h5 h4 h3 h2 h1

0 0 0 0 h5 h4 h3 h2

0 0 0 0 0 h5 h4 h3

0 0 0 0 0 0 h5 h4

0 0 0 0 0 0 0 h5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

0
x2

0
x4

0
x6

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0
h1 0 0 0
h2 h0 0 0
h3 h1 0 0
h4 h2 h0 0
h5 h3 h1 0
0 h4 h2 h0

0 h5 h3 h1

0 0 h4 h2

0 0 h5 h3

0 0 0 h4

0 0 0 h5

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x0

x2

x4

x6

⎤⎥⎥⎥⎦

or, y = Hxup = Hdownx. The circular convolution output can be obtained by either
wrapping y modulo-8 or by wrapping H,Hdown columnwise:

ỹ = H̃xup = H̃downx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 h4 h2

h1 0 h5 h3

h2 h0 0 h4

h3 h1 0 h5

h4 h2 h0 0
h5 h3 h1 0
0 h4 h2 h0

0 h5 h3 h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x0

x2

x4

x6

⎤⎥⎥⎥⎦ (20.5.12)

Similarly, in the analysis operation ỹ = (H̃Tx)down, downsampling amounts to keep-
ing every other row of the matrix H̃T, which is H̃T

down. For example, for the length-8 signal
x = [x0, x1, x2, x3, x4, x5, x6, x7]T, the corresponding operation will be:

ỹ = (H̃Tx)down= H̃T
downx =

⎡⎢⎢⎢⎣
h0 h1 h2 h3 h4 h5 0 0
0 0 h0 h1 h2 h3 h4 h5

h4 h5 0 0 h0 h1 h2 h3

h2 h3 h4 h5 0 0 h0 h1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20.5.13)

954 20. DISCRETE WAVELET TRANSFORMS

The wrapped/downsampled convolution matrix H̃down can be calculated very simply
in MATLAB, using, for example, the built-in convolution matrix function convmtx and
the function modwrap:

H = convmtx(h(:), N); % ordinary convolution matrix with N columns, h entered as column

H = H(:, 1:2:N); % downsampled convolution matrix

H = modwrap(H, N); % wrapped column-wise modulo-N

Because h is fairly short and N typically large, the convolution matrix H can be
defined as sparse. This can be accomplished by replacing convmtx by the function
convmat, which we encountered before in Sec. 23.10. Similar convolution matrices G̃down

can be constructed for the conjugate mirror filter gn. The function dwtmat constructs
both matrices for any scaling filter h and signal length N using convmat:

[H,G] = dwtmat(h,N); % sparse DWT matrices

The output matricesH,G are defined as sparse and have dimensionN×(N/2). They
represent the matrices H̃down, G̃down.

We can now state the precise form of the matrix version of the periodized DWT
algorithm. Given a signal (column) vector x of lengthN = 2J, we define the DWT matrices
Hj,Gj at level j with dimension Nj×(Nj/2), where Nj = 2j, by

[Hj,Gj]= dwtmat(h,Nj) , J0 + 1 ≤ j ≤ J (20.5.14)

Then, the analysis and synthesis algorithms are as follows, initialized with cJ = x,

(DWT)
cj−1 = HT

j cj

dj−1 = GT
j cj

j = J, J−1, . . . , J0 + 1

(IDWT) cj = Hj cj−1 +Gj dj−1 j = J0+1, J0+2, . . . , J

(20.5.15)

The column vector cj has dimensionNj = 2j, while the vectors cj−1,dj−1 have dimen-
sion half of that, Nj−1 = Nj/2 = 2j−1. The computations for the forward and inverse
transforms are illustrated in Fig. 20.5.2. The discrete wavelet transform of x to level J0

is the concatenation of the coefficient vectors:

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

dJ0

dJ0+1

...
dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (DWT) (20.5.16)

Its total dimension is N = 2J, as can be verified easily,

2J0 + 2J0 + (2J0+1 + · · · + 2J−1)= 2J

20.5. DISCRETE WAVELET TRANSFORM 955

Fig. 20.5.2 Forward and inverse DWT in matrix form.

At each level j, the Nj×Nj matrix Uj = [Hj,Gj] is an orthogonal matrix, as required
by the consistency of the analysis and synthesis steps:[

cj−1

dj−1

]
=
[
HT
j

GT
j

]
cj � cj = Hj cj−1 +Gj dj−1 = [Hj,Gj]

[
cj−1

dj−1

]

implying the conditions UT
j Uj = UjUT

j = INj , or,

[
HT
j

GT
j

]
[Hj,Gj]= [Hj,Gj]

[
HT
j

GT
j

]
= INj

which are equivalent to the orthogonality conditions:

HT
j Hj = GT

j Gj = INj/2 , HT
j Gj = 0 , HjHT

j +GjGT
j = INj (20.5.17)

These follow from the scaling filter orthogonality properties (20.3.1). To see the
mechanics by which this happens, consider again our length-6 filter hn and the corre-
sponding CMF filter gn defined by [g0, g1, g2, g3, g4, g5]= [h5,−h4, h3,−h2, h1,−h0].
Let us also define the cross-correlation quantities:

Rk =
∑
n
hnhn−2k ⇒

⎧⎪⎪⎨⎪⎪⎩
R0 = h2

0 + h2
1 + h2

2 + h2
3 + h2

4 + h2
5

R1 = h5h3 + h4h2 + h3h1 + h2h0

R2 = h5h1 + h4h0

(20.5.18)

From Eq. (20.3.1), we have Rk = δk, but let us not assume this just yet, but rather
treat hn as an arbitrary filter and gn as the corresponding CMF filter. Then, starting with
level J = 3, the wavelet matrices Hj at j = 3,2,1, will be:

956 20. DISCRETE WAVELET TRANSFORMS

H3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 h4 h2

h1 0 h5 h3

h2 h0 0 h4

h3 h1 0 h5

h4 h2 h0 0
h5 h3 h1 0
0 h4 h2 h0

0 h5 h3 h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H2 =

⎡⎢⎢⎢⎣
h0 + h4 h2

h1 + h5 h3

h2 h0 + h4

h3 h1 + h5

⎤⎥⎥⎥⎦
H1 =

[
h0 + h2 + h4

h1 + h3 + h5

] (20.5.19)

with similar definitions for Gj, j = 3,2,1. By explicit multiplication, we can verify:

HT
3 H3 = GT

3G3 =

⎡⎢⎢⎢⎣
R0 R1 2R2 R1

R1 R0 R1 2R2

2R2 R1 R0 R1

R1 2R2 R1 R0

⎤⎥⎥⎥⎦ , HT
3 G3 = 0

H3HT
3 +G3GT

3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0 0 R1 0 2R2 0 R1 0
0 R0 0 R1 0 2R2 0 R1

R1 0 R0 0 R1 0 2R2 0
0 R1 0 R0 0 R1 0 2R2

2R2 0 R1 0 R0 0 R1 0
0 2R2 0 R1 0 R0 0 R1

R1 0 2R2 0 R1 0 R0 0
0 R1 0 2R2 0 R1 0 R0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similarly, we have,

HT
2 H2 = GT

2G2 =
[
R0 + 2R2 2R1

2R1 R0 + 2R2

]
, HT

2 G2 = 0

H2HT
2 +G2GT

2 =

⎡⎢⎢⎢⎣
R0 + 2R2 0 2R1 0

0 R0 + 2R2 0 2R1

2R1 0 R0 + 2R2 0
0 2R1 0 R0 + 2R2

⎤⎥⎥⎥⎦
HT

1 H1 = GT
1G1 = R0 + 2R1 + 2R2 , HT

1 G1 = 0

H1HT
1 +G1GT

1 =
[
R0 + 2R1 + 2R2 0

0 R0 + 2R1 + 2R2

]
Setting R0 = 1 and R1 = R2 = 0 in all of the above, we verify the orthogonality

properties (20.5.17) at all levels j = 3,2,1. We note that the matrix Hj−1 can be derived
very simply from Hj by keeping only the first Nj−1/2 = Nj/4 columns and wrapping
them modulo-Nj−1, that is, in MATLAB notation:

Hj−1 = modwrap
(
Hj(: , 1 : Nj−1/2), Nj−1

)
, j = J, J−1, . . . , J0 + 1 (20.5.20)

and similarly for Gj−1. This simple operation has been incorporated into the function
dwtwrap, with usage:

20.5. DISCRETE WAVELET TRANSFORM 957

H_lower = dwtwrap(H); % wrap a DWT matrix into a lower one

This is evident in Eq. (20.5.19), where H2 is derivable from H3, and H1 from H2.
Because the successive DWT matrices Hj,Gj have different dimensions, 2j×2j−1, it is
convenient to use a cell array to store them in MATLAB. The function dwtcell constructs
and stores them in sparse form:

F = dwtcell(h,N); % cell array of sparse DWT matrices

with the conventions Hj = F{1, j} and Gj = F{2, j}, for J0 + 1 ≤ j ≤ J, where N is the
highest dimension. The function fwtm implements the analysis algorithm in (20.5.15).
Its inputs are the signal vector x, the cell array F, and the lowest desired level J0,

w = fwtm(x,F,J0); % fast wavelet transform in matrix form

The vector w is as in Eq. (20.5.16). If J0 is omitted, it defaults to J0 = 0. Once the cell
array F is created, the function fwtm is extremely fast, even faster than the convolution-
based function fwt discussed below. The function ifwtm implements the inverse DWT
synthesis algorithm in (20.5.15),

x = ifwtm(w,F,J0); % inverse fast wavelet transform in matrix form

An example is the following MATLAB code using the D3 scaling filter:

x = [1 2 3 4 5 6 7 8];
h = daub(3); % h = [0.3327, 0.8069, 0.4599, −0.1350, −0.0854, 0.0352]
F = dwtcell(h,8); % construct cell array of DWT matrices

w = fwtm(x,F,0); % w = [12.7279, −1.4794, −4.4090, 2.2467, 0, 0, −3.7938, 0.9653]
x = ifwtm(w,F,0); % returns x = [1, 2, 3, 4, 5, 6, 7, 8]

% similarly, for J0 = 1,2,3, we find,

w = fwtm(x,F,1); % w = [7.9539, 10.0461, −4.409, 2.2467, 0, 0, −3.7938, 0.9653]
w = fwtm(x,F,2); % w = [2.5702, 5.3986, 8.6288, 8.8583, 0, 0, −3.7938, 0.9653]
w = fwtm(x,F,3); % w = [1, 2, 3, 4, 5, 6, 7, 8] = x, as expected since J = 3

These outputs can be understood by looking at the individual matrix operations.
Defining, c3 = x = [1,2,3,4,5,6,7,8]T, and the level-3 matrices H3, G3, obtained from
the call, [H3, G3]= dwtmat(h,8),

H3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3327 0 −0.0854 0.4599
0.8069 0 0.0352 −0.1350
0.4599 0.3327 0 −0.0854
−0.1350 0.8069 0 0.0352
−0.0854 0.4599 0.3327 0

0.0352 −0.1350 0.8069 0
0 −0.0854 0.4599 0.3327
0 0.0352 −0.1350 0.8069

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0352 0 0.8069 −0.1350
0.0854 0 −0.3327 −0.4599
−0.1350 0.0352 0 0.8069
−0.4599 0.0854 0 −0.3327

0.8069 −0.1350 0.0352 0
−0.3327 −0.4599 0.0854 0

0 0.8069 −0.1350 0.0352
0 −0.3327 −0.4599 0.0854

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
we calculate the level-2 coefficient vectors c2,d2, and the level-2 DWT,

c2 = HT
3 c3 =

⎡⎢⎢⎢⎣
2.5702
5.3986
8.6288
8.8583

⎤⎥⎥⎥⎦ , d2 = GT
3 c3 =

⎡⎢⎢⎢⎣
0
0

−3.7938
0.9653

⎤⎥⎥⎥⎦ , w =
[

c2

d2

]

958 20. DISCRETE WAVELET TRANSFORMS

which agrees with the above MATLAB output of fwtm(x,F,2). Then, from the matrices
H2, G2, obtained from [H2, G2]= dwtmat(h,4), or, from H2 = dwtwrap(H3),

H2 =

⎡⎢⎢⎢⎣
0.2472 0.4599
0.8421 −0.1350
0.4599 0.2472
−0.1350 0.8421

⎤⎥⎥⎥⎦ , G2 =

⎡⎢⎢⎢⎣
0.8421 −0.1350
−0.2472 −0.4599
−0.1350 0.8421
−0.4599 −0.2472

⎤⎥⎥⎥⎦
we calculate the level-1 coefficient vectors c1,d1, and the level-1 DWT,

c1 = HT
2 c2 =

[
7.9539

10.0461

]
, d1 = GT

2 c2 =
[
−4.4090

2.2467

]
, w =

⎡⎢⎣ c1

d1

d2

⎤⎥⎦
which agrees with the above MATLAB output of fwtm(x,F,1). Finally, from the matrices
H1, G1, obtained from [H1, G1]= dwtmat(h,2), or, from H1 = dwtwrap(H2),

H1 =
[

0.7071
0.7071

]
, G1 =

[
0.7071
−0.7071

]

we find the level-0 coefficient vectors c0,d0, and the level-0 DWT,

c0 = HT
1 c1 = 12.7279 , d0 = GT

1 c1 = −1.4794 , w =

⎡⎢⎢⎢⎣
c0

d0

d1

d2

⎤⎥⎥⎥⎦
Orthogonal DWT Transformation

The mapping of a length-N signal vector x to the length-N vector w of wavelet coeffi-
cients given in Eq. (20.5.16) is equivalent to an orthogonal matrix transformation, say,
w = WTx, with inverse x = Ww, such that WTW = WWT = IN. The overall N×N ma-
trix W depends on the stopping level J0 and can be constructed in terms of the matrices
Hj,Gj of the successive stages of the analysis or synthesis algorithms. For example, we
have for N = 23, and J0 = 2,1,0,

W = [H3, G3]

W = [H3[H2, G2], G3
] = [H3H2, H3G2, G3]

W = [H3H2[H1, G1], H3G2, G3
] = [H3H2H1, H3H2G1, H3G2, G3]

We verify the reconstruction of x from w starting at J0 = 0,

[H3H2H1, H3H2G1, H3G2, G3]

⎡⎢⎢⎢⎣
c0

d0

d1

d2

⎤⎥⎥⎥⎦ =
⎧⎪⎪⎨⎪⎪⎩

H3H2(H1c0 +G1d0)+H3G2d1 +G3d2 =
H3(H2c1 +G2d1)+G3d2 =
H3c2 +G3d2 = c3 = x

20.5. DISCRETE WAVELET TRANSFORM 959

The construction of W can be carried out with the following very simple recursive
algorithm, stated in MATLAB notation,

W = IN , (N = 2J)
for j = J, J−1, . . . , J0 + 1,

W(: , 1 : 2j)=W(: , 1 : 2j)[Hj,Gj]
(20.5.21)

The algorithm updates the first 2j columns ofW at each level j. The MATLAB function
fwtmat implements (20.5.21) and constructs W as a sparse matrix:

W = fwtmat(h,N,J0); % overall DWT orthogonal matrix

As an example, for the D3 scaling filter and N = 8 and lowest level J0 = 0, we find:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3536 −0.3806 0.0802 −0.2306 0.0352 0 0.8069 −0.1350
0.3536 −0.0227 0.7368 −0.0459 0.0854 0 −0.3327 −0.4599
0.3536 0.2197 0.3443 −0.1940 −0.1350 0.0352 0 0.8069
0.3536 0.5535 −0.3294 −0.3616 −0.4599 0.0854 0 −0.3327
0.3536 0.3806 −0.2306 0.0802 0.8069 −0.1350 0.0352 0
0.3536 0.0227 −0.0459 0.7368 −0.3327 −0.4599 0.0854 0
0.3536 −0.2197 −0.1940 0.3443 0 0.8069 −0.1350 0.0352
0.3536 −0.5535 −0.3616 −0.3294 0 −0.3327 −0.4599 0.0854

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which generates the same DWT as the example above:

x = [1 2 3 4 5 6 7 8]’; h = daub(3); W = fwtmat(h,8,0);
w = W’*x; % gives w = [12.7279, −1.4794, −4.4090, 2.2467, 0, 0, −3.7938, 0.9653]T

The matrix W becomes more and more sparse as N increases. Its sparsity pattern
is illustrated in Fig. 20.5.3, for the case of the D3 scaling filter and dimensions N = 64
and N = 512. The graphs were generated by the MATLAB code:

h = daub(3); N = 64; W = fwtmat(h,N,0); spy(W); percent_nonzero = 100*nnz(W)/N^2

The percentages of nonzero entries were 30.5 % for N = 64, and 6.7 % for N = 512.

0 64

0

64

N = 64

0 512

0

512

N = 512

Fig. 20.5.3 Sparsity patterns of DWT matrices.

960 20. DISCRETE WAVELET TRANSFORMS

DWT in Convolutional Form

Next, we look at the detailed implementation of Eq. (20.5.9) using filtering by circular
convolution. For practical implementation, we must replace the time-reversed filters
h̄n, ḡn of the analysis algorithm by their reversed versions, which are delayed by the
filter order M to make them causal, that is, hRn = h̄n−M = hM−n, or in the z-domain
HR(z)= z−MH̄(z)= z−MH(z−1).

In order to get the same output as the matrix implementation, we must compensate
for such a delay by advancing the input by the same amount. In other words, filtering by
H̄(z) is equivalent to advancing the input and then filtering by HR(z). In the z-domain,

Y(z)= H̄(z)X(z)= zMHR(z)X(z)= HR(z)
[
zMX(z)

]
With these changes, Eq. (20.5.9) now reads,

advance(cj,M)
cj−1 =

(
circonv(hR, cj)

)
down

dj−1 =
(
circonv(gR, cj)

)
down

j = J, J−1, . . . , J0 + 1

cj = circonv(h, cup
j−1)+circonv(g, cup

j−1) j = J0+1, J0+2, . . . , J

(20.5.22)

The concrete MATLAB implementation for computing the forward DWT is:

g = cmf(h); % conjugate mirror of h

hR = flip(h); % reversed h

gR = flip(g);
M = length(h) - 1; % filter order

c = x(:); % initial smooth, x has length 2J

w = []; % DWT coefficient vector

for j=J:-1:J0+1, % loop from finest down to coarsest level

c = advance(c, M); % length(c) = 2j

d = dn2(circonv(gR, c, 2^j)); % convolve circularly and downsample

c = dn2(circonv(hR, c, 2^j));
w = [d; w]; % prepend detail d to previous details

end

w = [c; w]; % prepend last smooth

The function advance actually performs a circular time-advance modulo the length
of its argument vector. The function dn2 performs downsampling by a factor of two.
The results of each loop calculation are appended into the DWT vector w. Similarly, the
inverse DWT can be calculated by the loop:

w = w(:); % work columnwise

c = wcoeff(w,J0); % coarsest smooth at level J0

for j=J0+1:J,
d = wcoeff(w,J0,j-1); % get detail at level j−1

c = circonv(h, up2(c), 2^j) + circonv(g, up2(d), 2^j); % output c is 2j-dimensional

end
x = c; % reconstructed x

20.5. DISCRETE WAVELET TRANSFORM 961

Here, the function wcoeff(w,J0,j-1) extracts the subvector dj−1 from the wavelet
transform vector w, and the function up2 upsamples by a factor of two.

The MATLAB functions fwt and ifwt incorporate the above code segments to realize
the convolutional forms of the DWT and IDWT:

w = fwt(x,h,J0); % fast wavelet transform

x = ifwt(w,h,J0); % inverse fast wavelet transform

Some examples are,

x = [1 2 3 4 5 6 7 8];
h = daub(3);
w = fwt(x,h,0); % w = [12.7279, −1.4794, −4.4090, 2.2467, 0, 0, −3.7938, 0.9653]
x = ifwt(w,h,0); % returns x = [1, 2, 3, 4, 5, 6, 7, 8]
w = fwt(x,h,1); % w = [7.9539, 10.0461, −4.409, 2.2467, 0, 0, −3.7938, 0.9653]
w = fwt(x,h,2); % w = [2.5702, 5.3986, 8.6288, 8.8583, 0, 0, −3.7938, 0.9653]
w = fwt(x,h,3); % w = [1, 2, 3, 4, 5, 6, 7, 8] = x, as expected

A second optional output of fwt (and fwtm) is the N×(J−J0+1) matrix V whose
columns are the sub-blocks of w according to their resolution,

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

dJ0

dJ0+1

...
dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ⇒ V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0 0 0 · · · 0
0 dJ0 0 · · · 0
0 0 dJ0+1 · · · 0
...

...
...

. . .
...

0 0 0 · · · dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (20.5.23)

It is obtained by the calls,

[w,V] = fwt(x,h,J0);

[w,V] = fwtm(x,F,J0);

The computations in fwt are very efficient, resulting in an O(N) algorithm, or more
precisely, O(MN), where M is the filter order. By contrast, the FFT is an O(N log2 N)
algorithm. However, because of their sparsity, the matrix versions are just as efficient
if the sparse wavelet matrices are precomputed.

We mentioned earlier that there are several different implementations of the DWT.
Different packages may produce different answers, sometimes only differing by a sign or
a cyclic permutation within each level. For example, we obtained the following answers
for the above example (x = [1,2,3,4,5,6,7,8] with D3 and J0 = 0) from the packages:

w = [12.7279,−1.4794,−4.4090, 2.2467, 0.0000, 0.0000,−3.7938, 0.9653]= fwt - ours
w = [12.7279, 1.4794, 4.4090,−2.2467, 3.7938,−0.9653, 0.0000, 0.0000]= Wavelab850, Ref. [584]
w = [12.7279,−1.4794,−4.4090, 2.2467,−3.7938, 0.9653, 0.0000, 0.0000]= Wavethresh, Ref. [588]
w = [12.7279, 1.4794,−2.2467, 4.4090,−0.9653, 3.7938, 0.0000, 0.0000]= WMTSA, Ref. [592]
w = [12.7279,−1.4794, 2.2467,−4.4090, 0.9653, 0.0000, 0.0000,−3.7938]= Uvi-Wave, Ref. [593]
w = [12.7279, 1.4794, 4.4090,−2.2467, 0.0000, 0.0000, 3.7938,−0.9653]= Getz, Ref. [594]
w = [12.7279,−1.4794,−4.4090, 2.2467, 0.0000, 0.0000,−3.7938, 0.9653]= Wavekit, Ref. [595]

962 20. DISCRETE WAVELET TRANSFORMS

20.6 Multiresolution Decomposition

The multiresolution decomposition defined in Eq. (20.1.13), with coarsest level J0, which
was illustrated by Example 20.1.1, and implemented by the function dwtdec,

f(t)=
∑
n
cJnφJn(t)=

∑
n
cJ0nφJ0n(t)+

J−1∑
j=J0

∑
n
djnψjn(t), (20.6.1)

can be given a vectorial interpretation. Let x be the N = 2J dimensional vector of time
samples of the function f(t) at the finest level J, and let W be the orthogonal DWT
matrix down to level J0, with corresponding DWT, w =WTx, and inverse x =Ww.

Writing the DWT w in the partitioned form of Eq. (20.5.23), we may write x as the
sum of multiresolution components, corresponding to the terms of (20.6.1), with each
term representing the part of x arising from a particular level j with all the other levels
having zero coefficients:

x =W

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

dJ0

dJ0+1

...
dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =W

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cJ0

0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦+W

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
dJ0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦+W

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
dJ0+1

...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦+ · · · +W

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

dJ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= xJ0 + (

x̄J0 + x̄J0+1 + · · · + x̄J−1
)︸ ︷︷ ︸

x⊥J0

= xJ0 + x⊥J0

(20.6.2)

The terms xJ0 ,x
⊥
J0

represent the two parts of x lying in the subspaces VJ0 and V⊥J0
.

The individual terms of x⊥J0
= x̄J0 + x̄J0+1 + · · · + x̄J−1 contain all the details for levels

J0 ≤ j ≤ J − 1. The various components are mutually orthogonal, as follows from the
property WWT = I, and the non-overlapping of the sub-blocks of w,

xTJ0
x̄j = 0, J0 ≤ j ≤ J − 1

x̄Ti x̄j = 0, J0 ≤ i, j ≤ J − 1 , i �= j
(20.6.3)

For the “diagonal” terms, we obtain the norms, again following from WWT = I,

‖xJ0‖2 = ‖cJ0‖2 , ‖x̄j‖2 = ‖dj‖2 , J0 ≤ j ≤ J − 1 (20.6.4)

where ‖x‖2 = xTx, which lead to the sum,

‖x‖2 = ‖xJ0‖2 +
J−1∑
j=J0

‖x̄j‖2 = ‖cJ0‖2 +
J−1∑
j=J0

‖dj‖2 = ‖w‖2 (20.6.5)

The N×(J−J0+1) matrix X = [
xJ0 , x̄J0 , x̄J0+1 · · · x̄J−1

]
incorporates the individ-

ual orthogonal columns and is produced as the output of the MATLAB function dwtdec,

20.7. WAVELET DENOISING 963

X = dwtdec(x,h,J0); % DWT decomposition into orthogonal multiresolution components

In fact, X is the product X = WV, where V is the DWT-component matrix given in
(20.5.23). As an example of dwtdec, we have for x = [1,2,3,4,5,6,7,8]T and D3,

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6
7
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279
−1.4794
−4.4090

2.2467
0
0

−3.7938
0.9653

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.5000 0.5631 −0.8716 −3.1915
4.5000 0.0337 −3.3518 0.8181
4.5000 −0.3251 −1.9538 0.7789
4.5000 −0.8188 0.6399 −0.3211
4.5000 −0.5631 1.1967 −0.1336
4.5000 −0.0337 1.8578 −0.3241
4.5000 0.3251 1.6287 0.5462
4.5000 0.8188 0.8541 1.8271

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
generated with the MATLAB code and test,

h = daub(3); x = [1 2 3 4 5 6 7 8]’; X = dwtdec(x,h,0);
[w,V] = fwt(x,h,0); W = fwtmat(h,8,0); norm(X-W*V)

20.7 Wavelet Denoising

Figure 20.7.1 shows some wavelet denoising examples consisting of the same four sig-
nals (bumps, blocks, heavisine, doppler) that we discussed in Sec. 23.19 under local
polynomial modeling with adaptive variable bandwidth. These examples have served as
benchmarks in the wavelet denoising literature [569–572].

Fig. 20.7.1 should be compared with Figs. 23.19.1–23.19.4. It should be evident that
the results are comparable, with, perhaps, local polynomial modeling doing a bit better.
The MATLAB codes generating the noisy signals were given in Sec. 23.19. The following
code segment illustrates the generation of the upper row of graphs and demonstrates
the use of the denoising function wdenoise:

F = inline(’1./(1 + abs(x)).^4’); % bumps function

N = 2048; t = (0:N-1)’/N; x = zeros(size(t)); % normalize time to 0 ≤ t ≤ 1

t0 = [10 13 15 23 25 40 44 65 76 78 81]/100; % signal parameters

a = [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
w = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:length(a), % construct noise-free signal

x = x + a(i) * F((t-t0(i))/w(i));
end

seed=2009; randn(’state’,seed); v = randn(size(t)); % generate noise

y = x + v; % noisy signal with SNR, σx/σv = 7

h = daub(8,2); J0=5; type=1; % use Symmlet-8 and soft thresholding

xd = wdenoise(y,h,J0,type); % wavelet denoising

figure; plot(t,y,’-’); figure; plot(t,x,’-’); figure; plot(t,xd,’r-’); % top row

964 20. DISCRETE WAVELET TRANSFORMS

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noisy signal

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noise free

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

denoised

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noise free

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

denoised

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

denoised

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

denoised

Fig. 20.7.1 Wavelet denoising.

The main idea in wavelet denoising is to (a) perform a DWT on the noisy signal down
to some lower resolution level , (b) modify the wavelet detail coefficients by reducing
them to zero if they fall below a certain threshold, and (c) perform an inverse DWT to
obtain the denoised signal. The procedure is depicted below:

x
DWT−→ w

thresh−→ wthr
IDWT−→ xthr

Given a wavelet coefficientd, we denote the thresholding operation bydthr = f(d,λ),

20.7. WAVELET DENOISING 965

where λ is threshold. There are various thresholding functions, but the two simplest
ones are the so-called hard and soft thresholding, defined with the help of the unit-step
function u(x) as follows:

dthr = f(d,λ)= du(|d| − λ) (hard)

dthr = f(d,λ)= sign(d)(|d| − λ)u
(|d| − λ

)
(soft)

(20.7.1)

or, equivalently,

dhard
thr =

⎧⎨⎩d , |d| ≥ λ
0 , |d| < λ

, dsoft
thr =

⎧⎨⎩d− sign(d)λ , |d| ≥ λ
0 , |d| < λ

If the wavelet transform starts at level J (input length N = 2J) and proceeds down
to level J0, the wavelet transform coefficients will be w = {cJ0n ; djn , J0 ≤ j ≤ J − 1}.
The thresholding operation is applied only to the detail coefficients djn, replacing them
by their thresholded values, with a possibly level-dependent threshold λj, that is,

dthr
jn = f(djn, λj) (20.7.2)

The simplest possibility is to use the same threshold for all levels. Donoho & John-
stone [569] suggest the following “universal” threshold,

λ = σ
√

2 log2 N (universal threshold) (20.7.3)

where σ2 is the variance of the additive noise in the data. Since σ is not known, it can
be estimated from the wavelet detail coefficients dJ−1 at level J−1, which for a smooth
desired signal are presumably dominated mostly by the noise component. The vector
d ≡ dJ−1 has length N/2 = 2J−1 and one may estimate σ by using either the standard
deviation of d, or its mean-absolute-deviation (MAD), that is,

σ̂ = std(d) , σ̂ = mad(d)
0.6745

= median
(∣∣d−median(d)

∣∣)
0.6745

(20.7.4)

where the factor 0.6745 arises from the implicit assumption that d is a vector of zero-
mean independent normally-distributed components (for a zero-mean, unit-variance,
gaussian random variable x, one has the relationship, median(|x|)= 0.6745).

Donoho & Johnstone’s [569] so-called VisuShrink method uses the universal thresh-
old with the MAD estimate of σ and soft thresholding. The MATLAB function wdenoise
implements the VisuShrink procedure, but also allows the use of hard thresholding:

y = wdenoise(x,h,J0,type); % wavelet denoising

It is possible to derive the soft thresholding rule, as well as some of the other rules,
from a regularized optimization point of view. Let y and w = WTy be the noisy data
vector and its DWT, and let x̂ and ŵ =WTŷ be the sought estimate and its DWT of the
desired signal component x in the noisy signal model y = x + v. An estimation crite-
rion similar to the smoothing spline and reproducing kernel criteria that we considered
earlier is the following performance index,

J = ‖y− x̂‖2 + P(x̂)= min

966 20. DISCRETE WAVELET TRANSFORMS

where the first term is the L2-norm and the second, a positive penalty term. Since
the DWT matrix W is orthogonal the first term can be written in terms of the DWTs
‖y − x̂‖2 = ‖w − ŵ‖2. Therefore, with a redefinition of P, we may replace the above
criterion with one that is formulated in the wavelet domain:

J = ‖w− ŵ‖2 + P(ŵ)

= ‖cJ0 − ĉJ0‖2 +
J−1∑
j=J0

‖dj − d̂j‖2 + P(d̂J0 , . . . , d̂J−1)= min
(20.7.5)

where in the second expression, we used the component representation (20.5.23), and we
assumed that P depends only on the wavelet detail coefficients. The following particular
choice of P using the L1 norm leads to the soft thresholding rule:

J = ‖cJ0 − ĉJ0‖2 +
J−1∑
j=J0

Nj−1∑
n=0

‖djn − d̂jn‖2 + 2λ
J−1∑
j=J0

Nj−1∑
n=0

|d̂jn| = min (20.7.6)

where Nj = 2j is the dimension of the vector dj. The minimization with respect to cJ0

gives ĉJ0 = cJ0 . Since the djn terms are decoupled, their minimization can be carried on
a typical such term, that is, with the simple scalar criterion:

J = |d− d̂|2 + 2λ|d̂| = min (20.7.7)

whose solution is the soft-thresholding rule,

d̂ =
⎧⎨⎩d− sign(d)λ , |d| ≥ λ

0 , |d| < λ
(20.7.8)

Other variants of wavelet thresholding and other applications and uses of wavelets
in statistics can be found in Refs. [567–581].

20.8 Undecimated Wavelet Transform

In this section, we discuss the undecimated wavelet transform (UWT), also known as the
stationary, redundant, maximum-overlap, translation- or shift-invariant wavelet trans-
form [496–509]. It has certain advantages over the conventional DWT exhibiting, for
example, better performance in denoising applications. Its minor disadvantage is that
it generates N log2 N wavelet coefficients instead of N, and its computational cost is
O(N log2 N) instead of O(N).

The essential feature of the wavelet transform is the property that successive stages
of the analysis filter bank in Fig. 20.4.1 probe the frequency content of the input signal
at successively lower frequency bands.

This property was depicted in Fig. 20.4.2 in which the output spectrum after three
stages, shown at the bottom two graphs, was the result of filtering by the cascaded filter
H̄(ω)H̄(2ω)H̄(4ω), where ω = 2πf/fs, with fs being the sampling rate at the finest
scale. This frequency property is preserved whether the output is undecimated, as in

20.8. UNDECIMATED WAVELET TRANSFORM 967

the bottom right graph of Fig. 20.4.2, or decimated as in the left bottom graph. The
reason for downsampling the outputs after each splitting stage is to keep constant the
total number of samples produced by the two filters.

Fig. 20.8.1 shows the analysis bank redrawn to emphasize this frequency property.
In the middle graph, all downsamplers are pushed to the overall outputs, and in the
bottom graph, the downsamplers have been removed altogether.

Fig. 20.8.1 Decimated and undecimated filter banks.

The bottom graph effectively implements the undecimated wavelet transform. The
individual stages no longer have the orthogonality properties of the usual DWT, such
as Eqs. (20.5.17). However, perfect reconstruction can still be achieved by using the
property (20.3.5) for the scaling and wavelet filters:

1

2

[
H̄(ω)H(ω)+Ḡ(ω)G(ω)

] = 1 (20.8.1)

where H̄(ω)= H∗(ω) denotes the frequency response of the time-reversed filter h̄n.
This relationship admits a block diagram realization as shown in Fig. 20.8.2.

Fig. 20.8.2 Analysis and synthesis of single stage.

Because it is an identity in ω, the same relationship and block diagram will still
be valid for the filter pairs H(2ω),G(2ω) and H(4ω),G(4ω) leading to an overall
analysis and synthesis filter bank with perfect reconstruction as shown in Fig. 20.8.3.

968 20. DISCRETE WAVELET TRANSFORMS

Fig. 20.8.3 Analysis and synthesis filter banks for the UWT.

Thus, it is possible with undecimated filtering operations to achieve (a) the desirable
subband filter characteristics of the DWT, and (b) perfect reconstruction. To make the
algorithm more concrete, first we recall that the filter with frequency response H(2rω)
is the à trous filter defined in Eq. (20.2.20), that is,

h[r](k)=
∑
n
h(n)δ(k− 2rn) � H[r](ω)= H(2rω) (20.8.2)

Then, denoting the successive analysis bank output signals by aj(n), bj(n), we ob-
tain the following analysis and synthesis algorithm written in convolutional form:

aj−1 = h̄
[J−j] ∗ aj

bj−1 = ḡ[J−j] ∗ aj
J ≥ j ≥ J0 + 1, (analysis)

aj = 1

2

[
h[J−j] ∗ aj−1 + g[J−j] ∗ bj−1

]
J0 + 1 ≤ j ≤ J, (synthesis)

(20.8.3)

where J, J0 are the finest and coarsest desired resolution levels, and we must initialize
the analysis algorithm by the overall input aJ(n)= x(n). Different à trous filters are
used in each stage, unlike the DWT that uses the same filters h,g. The correctness of the
algorithm can be verified by writing Eqs. (20.8.3) in the frequency domain and applying
the identity (20.8.1).

To make the algorithm practical we may use mod-N circular convolutions, where
N = 2J is the length of the input signal block x. The à trous filters h[r],g[r] can be
represented by N×N matrices Hr,Gr , which are the ordinary convolution matrices of

h[r],g[r] reduced modulo-N column-wise. Similarly, the time-reversed filters h̄
[r], ḡ[r]

will be represented by the transposed matrices HT
r ,GT

r . The construction of these ma-
trices is straightforward, for example,

h = h(:); g = cmf(h); % h,g filters

hr = upr(h,r); gr = upr(g,r); % upsample by 2r

Hr = convmtx(hr, N); Gr = convmtx(gr, N); % ordinary convolution matrices

Hr = modwrap(Hr, N); Gr = modwrap(Gr, N); % wrapped mod-N column-wise

These steps have been incorporated into the function uwtmat, except the function
convmat is used in place of convmtx to make the matrices sparse:

20.8. UNDECIMATED WAVELET TRANSFORM 969

[Hr,Gr] = uwtmat(h,N,r); % undecimated wavelet transform matrices

The matrices Hr,Gr satisfy the matrix version of Eq. (20.8.1):

1

2

[
HrHT

r +GrGT
r

]
= IN (20.8.4)

The concrete matrix realization of the UWT can be stated then as follows:

aj−1 = HT
J−j aj

bj−1 = GT
J−j aj

J ≥ j ≥ J0 + 1, (analysis)

aj = 1

2

[
HJ−j aj−1 +GJ−j bj−1

]
J0 + 1 ≤ j ≤ J, (synthesis)

(20.8.5)

where all the vectors are N-dimensional, initialized at aJ = x. The algorithm is illus-
trated in Fig. 20.8.4. The UWT is the N×(J−J0+1) matrix U defined column-wise by:

U = [aJ0 , bJ0 , bJ0+1, . . . , bJ−1] (UWT) (20.8.6)

Fig. 20.8.4 Undecimated wavelet transform.

The MATLAB functions uwtm and iuwtm implement the algorithms in Eq. (20.8.5):

U = uwtm(x,h,J0); % UWT in matrix form

x = iuwtm(U,h); % inverse UWT in matrix form

An example is as follows:

h = daub(3); x = [1 2 3 4 5 6 7 8]’;
J0=0; U = uwtm(x,h,J0); % or, set J0 = 1 and J0 = 2

xinv = iuwtm(U,h); norm(x-xinv)

970 20. DISCRETE WAVELET TRANSFORMS

which generates, for J0 = 2,1,0,

U = uwtm(x,h,2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.5702 0
3.9844 0
5.3986 0
6.5310 2.6614
8.6288 −3.7938

11.1231 −0.1147
8.8583 0.9653
3.8173 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [a2,b2]

U = uwtm(x,h,1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.9539 −4.4090 0
11.0848 −1.5166 0
12.3278 0.0351 0
12.1992 0.4022 2.6614
10.0461 2.2467 −3.7938
6.9152 4.8818 −0.1147
5.6722 2.1272 0.9653
5.8008 −3.7674 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [a1,b1,b2]

U = uwtm(x,h,0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279 −1.4794 −4.4090 0
12.7279 2.9484 −1.5166 0
12.7279 4.7063 0.0351 0
12.7279 4.5243 0.4022 2.6614
12.7279 1.4794 2.2467 −3.7938
12.7279 −2.9484 4.8818 −0.1147
12.7279 −4.7063 2.1272 0.9653
12.7279 −4.5243 −3.7674 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [a0,b0,b1,b2]

(20.8.7)

The functions uwtm and iuwtm are somewhat slow because they generate the required
matrices Hr,Gr on the fly at each stage. Of course, it would be possible to precompute
the matrices and save them in a cell or a three-dimensional array as was done in the
function fwtm. The functions uwt and iuwt are much faster versions that produce the
same results and are implemented using circular convolutions:

U = uwt(x,h,J0); % UWT in convolutional form

x = iuwt(U,h); % inverse UWT

The following MATLAB code shows a possible implementation of the analysis part:

M=length(h)-1;
g=cmf(h); hR=flip(h); gR=flip(g); % construct reversed filters

a = x; % x is N = 2J dimensional column vector

for r=0:J-J0-1, % à trous interpolation factor is 2r , level j = J − r
a = advance(a, 2^r*M); % establishes equivalence with matrix form

hRr = upr(hR,r); % reversed filters upsampled by 2r

gRr = upr(gR,r);
b = circonv(gRr,a,N); % modulo-N circular convolution

a = circonv(hRr,a,N);
U = [b,U]; % accumulate the columns of U

end
U = [a,U];

20.8. UNDECIMATED WAVELET TRANSFORM 971

The time-advancing operation is necessary to compensate for the use of the reversed
filters rather than the time-reversed ones. Although this algorithm works, it is wasteful
because the à trous filters h[r] have length 2r(M + 1) consisting mostly of zeros and
only (M+1) nonzero coefficients, where M is the filter order of h. The computational
cost of the indicated circular convolution operations is of the order of 2r(M + 1)N. It
is possible to restructure these operations so that only the nonzero filter coefficients
are used, thereby reducing the computational cost to (M + 1)N. Ordinary and mod-N
circular convolution by the à trous filter (20.8.2) can be written as follows:

y(n) =
∑
k
h[r](k)x(n− k)=

∑
m
hmx(n− 2rm)

ỹ(n)mod-N =
∑
p
y(n+ pN)=

∑
p,m

hmx(n+ pN − 2rm)

We assume that N = 2J and that the à trous factor is such that r ≤ J, so that we
may write N = 2rL, where L = 2J−r . Thus, a length-N block can be divided into 2r

sub-blocks of length L. We show below that the mod-N circular convolution can be
replaced by 2r mod-L circular convolutions. The total computational cost reduces then
to 2rL(M+ 1)= N(M+ 1). Setting n = 2ri+ k, with 0 ≤ k ≤ 2r − 1, we may define the
k-th sub-block input and output signals:

xk(i)= x(2ri+ k) , yk(i)= y(2ri+ k) , 0 ≤ k ≤ 2r − 1

It follows then that yk(i) is the convolution of xk(i) with the original filter hm, and
that the mod-N circular convolution output can be obtained by mod-L reduction:

yk(i)= y(2ri+ k) =
∑
m
hmx(2ri+ k− 2rm)=

∑
m
hmxk(i−m)

ỹ(2ri+ k)mod-N =
∑
p,m

hmx(2ri+ k+ 2rpL− 2rm)=
∑
p,m

hmxk(i+ pL−m)

=
∑
p
yk(i+ pL)= ỹk(i)mod-L

These operations have been incorporated into the MATLAB function convat,

y = convat(h,x,r); % convolution à trous

which is equivalent to the mod-N operation, where N is the length of x:

y = circonv(upr(h,r),x,N);

The essential part of the function uwt is then,

M=length(h)-1;
g=cmf(h); hR=flip(h); gR=flip(g); % construct reversed filters

a = x; % x is N = 2J dimensional column vector

for r=0:J-J0-1, % à trous interpolation factor is 2r , level j = J − r
a = advance(a, 2^r*M); % establishes equivalence with matrix form

b = convat(gR, a, r); % convolution à trous

a = convat(hR, a, r);
U = [b,U]; % accumulate the columns of U

end
U = [a,U];

972 20. DISCRETE WAVELET TRANSFORMS

Because all stages of the analysis and synthesis filter banks in Fig. 20.8.3 operate
at the same sampling rate, the UWT satisfies a time-invariance property, in the sense
that a time-delay in the input will cause the same delay in the outputs from all stages.
Hence, the alternative name “stationary” or “translation-invariant” wavelet transform.
Such time-invariance property is not shared by the ordinary DWT.

As an example, the DWTs and UWTs of a signal and its circularly-delayed version by
three time units are as follows, using the D3 scaling filter and coarsest level J0 = 0:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6
7
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279
−1.4794
−4.4090

2.2467
0
0

−3.7938
0.9653

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279 −1.4794 −4.4090 0
12.7279 2.9484 −1.5166 0
12.7279 4.7063 0.0351 0
12.7279 4.5243 0.4022 2.6614
12.7279 1.4794 2.2467 −3.7938
12.7279 −2.9484 4.8818 −0.1147
12.7279 −4.7063 2.1272 0.9653
12.7279 −4.5243 −3.7674 0.2818

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
7
8
1
2
3
4
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279
−2.9484

4.8818
−1.5166
−0.1147

0.2818
0

2.6614

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.7279 −2.9484 4.8818 −0.1147
12.7279 −4.7063 2.1272 0.9653
12.7279 −4.5243 −3.7674 0.2818
12.7279 −1.4794 −4.4090 0
12.7279 2.9484 −1.5166 0
12.7279 4.7063 0.0351 0
12.7279 4.5243 0.4022 2.6614
12.7279 1.4794 2.2467 −3.7938

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We note that every column of U gets delayed circularly by three time units.

Multiresolution Decomposition with the UWT

The synthesis filter bank or the synthesis algorithm for the UWT can be viewed as a
system with J−J0+1 inputs, i.e., the columns of U = [aJ0 , bJ0 , bJ0+1, . . . , bJ−1], and
one output, the signal x. The UWT multiresolution decomposition resolves x into com-
ponents arising from the individual inputs when the other inputs are zero:

U = [aJ0 , bJ0 , bJ0+1, . . . , bJ−1]
IUWT−→ x

= [aJ0 , 0, 0, . . . , 0] IUWT−→ xJ0

+ [0, bJ0 , 0, . . . , 0] IUWT−→ x̄J0

+ [0, 0, bJ0+1, . . . , 0] IUWT−→ x̄J0+1

.
+ [0, 0, 0, . . . , bJ−1]

IUWT−→ x̄J−1

so that we have the sum,

x = xJ0 + x̄J0 + x̄J0+1 + · · · + x̄J−1 (20.8.8)

20.8. UNDECIMATED WAVELET TRANSFORM 973

This is similar to the DWT decomposition (20.6.2), with each term reflecting a dif-
ferent resolution level, except that the terms are not mutually orthogonal. The MATLAB
function uwtdec implements this decomposition:

X = uwtdec(x,h,J0); % UWT multiresolution decomposition

where X consists of the columns, X = [xJ0 , x̄J0 , x̄J0+1, . . . , x̄J−1].
Fig. 20.8.5 shows an application to the monthly housing starts from January 1988

to April 2009 (i.e., 256 months), using the symmlet S8 scaling filter and going down to
resolution level J0 = 5. This a subset of the dataset that we used repeatedly in Ch.9 of
[45].

1989 1994 1999 2004 2009

40

80

120

160

200

UWT smooth component, xJ0

year
1989 1994 1999 2004 2009

−30

0

30
UWT detail component, x̄J0

year

1989 1994 1999 2004 2009
−30

0

30
UWT detail component, x̄J0+1

year
1989 1994 1999 2004 2009

−30

0

30
UWT detail component, x̄J0+2

year

Fig. 20.8.5 UWT decomposition of monthly housing data, using S8 with J = 8 and J0 = 5.

The upper left graph shows the smooth component arising from the UWT coefficients
aJ0 . The remaining graphs arise from the detail coefficients. bj, J0 ≤ j ≤ J − 1. The
sum of the four components is equal to the original data (dotted line in the upper-left
graph.) The following MATLAB code generates the four graphs:

Y = loadfile(’newhouse.dat’); % data file in OSP toolbox

y = Y(349:end,1); % selects Jan.88 - Apr.09 = 256 months

t = taxis(y,12,1988)’; % adjust time axis

974 20. DISCRETE WAVELET TRANSFORMS

h=daub(8,2); J0=5; % symmlet S8, note N = 256 = 28 ⇒ J = 8

X = uwtdec(y,h,J0); % UWT decomposition, try also X = dwtdec(y,h,J0)

figure; plot(t,y,’:’, t,X(:,1), ’-’); % upper left graph

figure; plot(t,X(:,2)); % upper right

figure; plot(t,X(:,3)); figure; plot(t,X(:,4)); % lower graphs

See Fig. 20.9.1 for an alternative way of plotting the UWT (or DWT) decomposition
and the UWT (or DWT) wavelet coefficients using the function plotdec.

Wavelet Denoising with the UWT

The application of the UWT to denoising applications follows the same approach as
the DWT. The detail columns bj of U get thresholded by a possibly level-dependent
threshold and the inverse UWT is constructed. The procedure is depicted below:

x
UWT−→ U = [aJ0 , bJ0 , . . . , bJ−1]

thresh−→ Uthr = [aJ0 , bthr
J0
, . . . , bthr

J−1]
IUWT−→ xthr

The MATLAB function wduwt implements this denoising procedure using the univer-
sal threshold (20.7.3) and soft or hard thresholding:

y = wduwt(x,h,J0,type); % wavelet denoising with UWT

Fig. 20.8.6 shows the same denoising example as that in Fig. 20.7.1, but denoised
using the UWT. The following MATLAB code generates the top-row graphs:

F = inline(’1./(1 + abs(x)).^4’); % bumps function

N = 2048; t = (0:N-1)’/N; x = zeros(size(t)); % normalize time to 0 ≤ t ≤ 1

t0 = [10 13 15 23 25 40 44 65 76 78 81]/100; % signal parameters

a = [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
w = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:length(a), % construct noise-free signal

x = x + a(i) * F((t-t0(i))/w(i));
end

seed=2009; randn(’state’,seed); v = randn(size(t)); % generate noise

y = x + v; % noisy signal with SNR, σx/σv = 7

h = daub(8,2); J0=5; type=1; % use Symmlet-8 and soft thresholding

xd = wduwt(y,h,J0,type); % wavelet denoising using the UWT

figure; plot(t,y,’-’); figure; plot(t,x,’-’); figure; plot(t,xd,’r-’); % top row

Comparing Figs. 20.7.1 and 20.8.6, we note that the UWT outperforms the DWT, an
observation that has been made repeatedly in the denoising literature.

20.9. MATLAB FUNCTIONS 975

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noisy signal

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noise free

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

denoised

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noise free

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

denoised

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

denoised

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

denoised

Fig. 20.8.6 Wavelet denoising with the UWT.

20.9 MATLAB Functions

We summarize the MATLAB functions that we discussed in this chapter, and give few
more details about plotdec that can be used to plot wavelet decompositions and wavelet
coefficients.

Wavelet functions

--

976 20. DISCRETE WAVELET TRANSFORMS

advance - circular time-advance (left-shift) of a vector

casc - cascade algorithm for φ and ψ wavelet functions

circonv - circular convolution

cmf - conjugate mirror of a filter

convat - convolution à trous

convmat - sparse convolution matrix

daub - Daubechies scaling filters (daublets, symmlets, coiflets)

dn2 - downsample by a factor of 2

dwtcell - create cell array of sparse discrete wavelet transform matrices

dwtdec - DWT decomposition into orthogonal multiresolution components

dwtmat - discrete wavelet transform matrices - sparse

dwtmat2 - discrete wavelet transform matrices - nonsparse

dwtwrap - wrap a DWT matrix into a lower DWT matrix

flip - flip a column, a row, or both

fwt - fast wavelet transform using convolution and downsampling

fwtm - fast wavelet transform in matrix form

fwtmat - overall DWT orthogonal matrix

ifwt - inverse fast wavelet transform - convolutional form

ifwtm - inverse fast wavelet transform - matrix form

iuwt - inverse undecimated wavelet transform - convolutional form

iuwtm - inverse undecimated wavelet transform - matrix form

modwrap - wrap matrix column-wise mod-N

phinit - eigenvector initialization of scaling function φ

plotdec - plot DWT/UWT decomposition or DWT/UWT coefficients

up2 - upsample a vector by factor of 2

upr - upsample a vector by factor of 2^r

uwt - undecimated wavelet transform - convolutional form

uwtdec - UWT multiresolution decomposition

uwtm - undecimated wavelet transform - matrix form

uwtmat - undecimated wavelet transform matrices - sparse

uwtmat2 - undecimated wavelet transform matrices - nonsparse

w2V - wavelet vector to wavelet matrix

wcoeff - extract wavelet coefficients from DWT at given level

wdenoise - Donoho & Johnstone’s VisuShrink denoising procedure

wduwt - wavelet denoising with undecimated wavelet transform

wthr - soft/hard level-dependent wavelet thresholding

--

The function plotdec allows a compact display of a DWT or UWT decomposition,
or the display of the DWT/UWT wavelet smooth and detail coefficients:

plotdec(X,type,lin,Jmax); % plot DWT/UWT decomposition or DWT/UWT coefficients

with inputs:

X = N×(J−J0+1) matrix of DWT/UWT decomposition signals or DWT/UWT coefficients, N = 2J

type = ’xs’,’xd’,’ws’,’wd’ (x=decomposition, w=wavelet coeffs, s=include smooth, d=details only)

Jmax = highest resolution level to plot, Jmax ≤ J − 1, minimum is determined from J0 = J + 1− size(X,2)
lin = ’l’,’s’ for line or stem plot

See the help for this function for several usage examples. Fig. 20.9.1 shows an alter-
native plot of the UWT decomposition of Fig. 20.8.5, showing only the detail components,

20.10. PROBLEMS 977

including a plot of the UWT wavelet coefficients. The MATLAB code used to generate
the four graphs was as follows:

h=daub(8,2); J0=5;
Y = loadfile(’newhouse.dat’); % load housing data - file in OSP toolbox

y = Y(349:end,1); % selects Jan.88 - Apr.09 = 256 months

Xdwt = dwtdec(y,h,J0); % DWT decomposition

[w,V] = fwt(y,h,J0); % DWT coefficients

Xuwt = uwtdec(y,h,J0); % UWT decomposition

U = uwt(y,h,J0); % UWT coefficients

figure; plotdec(Xdwt,’xd’); figure; plotdec(V,’wd’); % upper graphs

figure; plotdec(Xuwt,’xd’); figure; plotdec(U,’wd’); % lower graphs

0 0.25 0.5 0.75 1

5

6

7

le
ve

ls

time

DWT decomposition

0 64 128 192 256

5

6

7

le
ve

ls

DWT index

DWT detail coefficients

0 0.25 0.5 0.75 1

5

6

7

le
ve

ls

time

UWT decomposition

0 64 128 192 256

5

6

7

le
ve

ls

UWT index

UWT detail coefficients

Fig. 20.9.1 UWT/DWT decompositions and wavelet coefficients of housing data.

20.10 Problems

20.1 An alternative way of determining the Daubechies D2 scaling filter is to assume that its
transfer function has the form (with K = 2 zeros at Nyquist):

H(z)= h0(1+ z−1)2(1− z1z−1)

978 20. DISCRETE WAVELET TRANSFORMS

Show that z1 must the be a solution of the quadratic equation z2 − 4z + 1 = 0. Pick that
solution that has |z1| < 1 and verify that the resulting filter H(z) meets all the design
constraints (20.3.10).

20.2 To determining the Daubechies D3 scaling filter assume that its its transfer function has the
following form with K = 3 zeros at Nyquist:

H(z)= h0(1+ z−1)3
(
1− (a+ jb)z−1

)(
1− (a− jb)z−1

)
including a complex zero z1 = a+ jb, constrained such that |z1| < 1. Show that the design
constraints (20.3.12) imply that b is given by

b =
√
a+ a3 − 3a2

3− a

and that a is obtained as the following solution of the quartic equation:

12a4 − 72a3 + 152a2 − 132a+ 27 = 0 ⇒ a = 3

2
− 1

6

√
15+ 12

√
10

Verify that the zero z1 = a + jb coincides with that in Eq. (20.3.18). By expanding H(z),
express the filter coefficients hn in terms of a,b, and normalize them to add up to

√
2.

20.3 Prove the downsampling replication property (20.4.11) by working backwards, that is, start
from the Fourier transform expression and show that

1

L

L−1∑
m=0

X(f −mfdown
s)=

∑
k
s(k)x(k)e−2πjfk/fs =

∑
n
x(nL)e−2πjfnL/fs = Ydown(f)

where s(k) is the periodic “sampling function” with the following representations:

s(k)= 1

L

L−1∑
m=0

e−2πjkm/L = 1

L
1− e−2πjk

1− e−2πjk/L =
∑
n
δ(k− nL)

Moreover, show that the above representations are nothing but the inverse L-point DFT of
the DFT of one period of the periodic pulse train:

s(k)= [. . . ,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

,1,0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

, . . .]=
∑
n
δ(k− nL)

20.4 Show that the solution to the optimization problem (20.7.7) is the soft-thresholding rule of
Eq. (20.7.8).

20.5 Study the “Tikhonov regularizer” wavelet thresholding function:

dthr = f(d,λ, a)= d
|d|a

|d|a + λa
, a > 0, λ > 0

21
Discretization Methods

In this chapter, we consider the numerical solution of the differential equations describ-
ing linear time-invariant continuous-time systems, by converting their analog transfer
functions into digital ones and implementing them in MATLAB as difference equations,
and comparing their output with that of the built-in function lsim, as well as showing
how to take into account the specified initial conditions of the continuous-time system.
The following discretization schemes are considered:

(i) forward Euler

(ii) backward Euler

(iii) trapezoidal, also known as bilinear or Tustin transformation

(iv) zero-order hold

(v) first-order hold

We begin with a short review of continuous-time systems, then, we summarize the dis-
cretization procedures for first-order and second-order systems. The built-in functions
c2dm and c2d can also be used to convert a continuous-time system to an equivalent
discrete-time one, however, they do not include the forward and backward Euler meth-
ods. But they do include the trapezoidal (Tustin) and zero-order hold (the default) and
first-order hold methods.

The function lsim is used for simulating the behavior of continuous-time systems,
but it cannot be used to actually replace the continuous-time system by an equivalent
discrete-time one that can then be implemented digitally, for example, on a digital signal
processor. Moreover, lsim, and MATLAB in general, process signals on a block basis and
are not so well-suited for real-time processing. However, once the equivalent discrete-
time transfer function is available, it can easily be implemented in real-time.

21.1 Continuous-Time Systems

As in the discrete-time case, linear time-invariant (LTI) continuous-time systems [597]
are characterized by an impulse response function, h(t), such that the input/output
equation is given by continuous-time convolution,

979

980 21. DISCRETIZATION METHODS

y(t)=
∫∞
−∞

h(t′)x(t − t′)dt′ , x(t)−→ H −→y(t) (21.1.1)

We will assume that both the impulse response h(t) and the input signal x(t) are
causal (i.e., right-sided) functions of time, so that the operation (21.1.1) is restricted to
non-negative times, where we also implicitly assumed zero initial conditions (ICs) for
the output (non-zero ICs are discussed below),

y(t)=
∫∞

0
h(t − t′)x(t′)dt′ , t ≥ 0 (21.1.2)

Essentially all practical continuous-time LTI systems are a subset of the above, and
are described by linear constant-coefficient differential equations (LCCDEs) derived from
a physical description of the system. This implies that the impulse response h(t) will
also satisfy an LCCDE, but with an impulsive input, x(t)= δ(t).

As an example, consider a second-order LTI system described by a second-order dif-
ferential equation of the following form, and its corresponding transfer function H(s),

x(t)−→ H −→y(t)
ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t)

H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2

(21.1.3)

where we took Laplace transforms of both sides of the differential equation using the
formal mapping, s ↔ d/dt, assuming zero ICs, and defined H(s) as the ratio of the
Laplace transform of the output to the Laplace transform of the input,

(s2 + a1s+ a2)Y(s)= (b0s2 + b1s+ b2)X(s) ⇒ H(s)= Y(s)
X(s)

= b0s2 + b1s+ b2

s2 + a1s+ a2

and used the simplified dot-notation for the time derivatives,

ḟ (t)= df(t)
dt

, f̈(t)= d2f(t)
dt2

, etc.

Similarly, a first-order LTI system is characterized by the following first-order dif-
ferential equation and transfer function,

ẏ(t)+a1y(t)= b0ẋ(t)+b1x(t)

H(s)= Y(s)
X(s)

= b0s+ b1

s+ a1

(21.1.4)

The stability and causality of the continuous-time system requires that the poles of
its transfer function, H(s), lie in the left-hand s-plane. We will assume this is the cases
in our examples in this chapter.

The differential equation (21.1.3) is to be solved for y(t) with a given input x(t) and
given initial conditions, y(0−), ẏ(0−), specified at t = 0−. Alternatively, as is done in the

21.2. MAPPING OF INITIAL CONDITIONS 981

classical method of solving differential equations, one can specify the initial conditions,
y(0+), ẏ(0+), at time t = 0+.

For the first-order case of Eq. (21.1.4), the initial condition at t = 0− is the single
number y(0−), or equivalently at t = 0+, the number, y(0+).

For simple types of inputs, such as unit-steps, ramps, finite pulses, exponentials, or
sinusoids, the solutions of the differential equations can be obtained analytically by a
variety of methods, for example,

(a) using Laplace transforms with the given input x(t) and given ICs at t = 0−

(b) using Laplace transforms assuming zero input but with the given ICs at t = 0−,
and adding to that the convolutional solution of Eq. (21.1.2)

(c) using the classical method with initial conditions at t = 0+, implemented for ex-
ample using the dsolve function of MATLAB’s symbolic toolbox, or, alternatively,
by adding a homogeneous part to an appropriate forced-response part and fixing
the homogeneous terms using the t = 0+ conditions

For more complicated and arbitrary inputs, the LCCDEs can be solved numerically by,

(a) using MATLAB’s built-in lsim function

(b) converting the continuous-time differential equation into a discrete-time differ-
ence equation using some sort of discretization scheme, such as zero-order-hold,
forward or backward Euler, or bilinear/trapezoidal transformation, and then iter-
ating it numerically (lsim uses either a zero- or a first-order hold by default).

21.2 Mapping of Initial Conditions

The mapping between the two sets of conditions at t = 0− to those at t = 0+ is as
follows, up to order 3,

y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0 ẋ(0+)+(b1 − a1b0)x(0+)

ÿ(0+) = ÿ(0−)+b0 ẍ(0+)+(b1 − a1b0)ẋ(0+)+
(
b2 − a2b0 − a1(b1 − a1b0)

)
x(0+)

(21.2.1)
These assume that the input signal x(t) is causal and that it does not have any

impulsive delta-function terms, like δ(t), but it may be discontinuous at t = 0. For first-
order systems only the first equation in (21.2.1) is needed, for second-order systems,
only the first two are needed, and for third-order, all three are needed. For a proof, see
Appendix Sec. 21.18.

The general solution of the differential equations for a given causal input x(t) and
subject to the given initial conditions can be decomposed as a sum of two types of terms,
depending on which set of ICs one uses,

y(t) = yzi(t)︸ ︷︷ ︸
zero-input
IC(0−)�= 0

+ yzs(t)︸ ︷︷ ︸
zero-state
IC(0−)= 0
h(t)∗x(t)

= yhomog(t)︸ ︷︷ ︸
homogeneous

IC(0+)�= 0

+ yf(t)︸ ︷︷ ︸
forced response

easy to guess

(21.2.2)

982 21. DISCRETIZATION METHODS

The zero-input/zero-state decomposition uses the initial conditions at t = 0−, and
each term separately, or both simultaneously, can be determined by Laplace transform
methods. The relevant MATLAB functions are, laplace, solve, partfrac, ilaplace.

The zero-state term, yzs(t), can also be obtained by convolving the system’s impulse
response h(t) with the input signal x(t), that is, by the operation, yzs(t)= h(t)∗x(t),
but that is generally less convenient than the Laplace method.

The homogeneous/forced-response decomposition uses the ICs at t = 0+. It is equiv-
alent to the classical method of solution and can be implemented in MATLAB with the
function dsolve, which requires the conditions at t = 0+. Both decompositions are spe-
cial cases of the more general, but not unique, decomposition into a homogeneous part
and a particular solution,

y(t)= yhomog(t)︸ ︷︷ ︸
homogeneous

+ ypart(t)︸ ︷︷ ︸
particular

(21.2.3)

The homogeneous part in Eq. (21.2.2) or (21.2.3) is expressible as a linear combination
of the so-called characteristic modes of the system (corresponding to the system poles
on the s-plane), with coefficients fixed by the initial conditions at t = 0+. This approach
is illustrated by examples below.

Since convolution in the time-domain becomes multiplication in the s-domain, the
Laplace transform of the zero-state component will be,

yzs(t)= h(t)∗x(t) � Yzs(s)= H(s)X(s) (21.2.4)

Thus, the Laplace transform of the total solution will be as follows, with the part
Yzi(s) incorporating the initial conditions at t = 0−,

y(t)= yzi(t)+yzs(t) � Y(s)= Yzi(s)+Yzs(s)= Yzi(s)+H(s)X(s) (21.2.5)

Eq. (21.2.1) can also be applied separately to the zero-input and zero-state parts.
By definition, the zero-input component, yzi(t), is the solution of Eq. (21.1.3) when the
input is zero, x(t)= 0. Also by definition, the zero-state component, yzs(t), is the
solution of (21.1.3) with the given input x(t), but subject to zero initial conditions at
t = 0−. It follows that the initial conditions of yzi(t) are the same as those of the total
solution y(t), indeed,

y(0−)= yzi(0−)+yzs(0−)= yzi(0−)+0 = yzi(0−)

and similarly for the other conditions. Thus, the conditions (21.2.1) for yzi(t) will be,
after setting x(t)= 0,

yzi(0+) = yzi(0−)= y(0−)

ẏzi(0+) = ẏzi(0−)= ẏ(0−)

ÿzi(0+) = ÿzi(0−)= ÿ(0−)

(21.2.6)

We note that here there is no distinction between t = 0− and t = 0+, and moreover,
the conditions for yzi(t) match those of the total solution y(t). The yzi(t) component

21.3. FORCED RESPONSE 983

can be determined either by Laplace or by the dsolve method both using the same initial
conditions at t = 0−. For the zero-state component, Eq. (21.2.1) becomes,

yzs(0−) = 0 , yzs(0+)= b0x(0+)

ẏzs(0−) = 0 , ẏzs(0+)= b0 ẋ(0+)+(b1 − a1b0)x(0+)

ÿzs(0−) = 0 , ÿzs(0+)= b0 ẍ(0+)+(b1 − a1b0)ẋ(0+)+
(
b2 − a2b0 − a1(b1 − a1b0)

)
x(0+)

(21.2.7)

It follows that the zero-state component yzs(t) can be determined by three methods:

(i) convolution, yzs(t)= h(t)∗x(t)
(ii) Laplace method applied to the zero initial conditions at t = 0− of Eq. (21.2.7)

(iii) dsolve method applied to the t = 0+ conditions of Eq. (21.2.7).

21.3 Forced Response

In the decomposition of Eq. (21.2.2), the form of the forced response term, yf(t), can be
guessed easily in simple cases of the driving input.† Consider a 1st order, or 2nd order,
filter with real-valued coefficients and with poles p1, or p1, p2 with p1 �= p2, that lie in
the left-hand s-plane,

H(s)= b0s+ b1

s+ a1
≡ b0s+ b1

s− p1
, H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2
≡ b0s2 + b1s+ b2

(s− p1)(s− p2)

Then, the forced response will have the following forms for exponential, sinusoidal,
step, ramp, or quadratic input signals,

x(t) yf(t) input type

ept Bept exponential , p �= pi , B = H(p)

epit Bi tepit exponential , p = pi, Bi = lim
s=pi

[
(s− pi)H(s)

]
ejΩ0t H(Ω0)ejΩ0t sinusoidal , H(Ω0)= H(s)

∣∣
s=jΩ0

cos(Ω0t) Re
[
H(Ω0)ejΩ0t

]
sinusoidal

sin(Ω0t) Im
[
H(Ω0)ejΩ0t

]
sinusoidal

A0 B0 constant , B0 = A0H(0)

A0 +A1 t B0 + B1 t linear

A0 +A1 t +A2 t2 B0 + B1 t + B2 t2 quadratic

In the last three polynomial cases, one inserts the polynomial form of yf(t) into
the differential equation and matches like powers of t, for example, for the 2nd order
system and 2nd order polynomial input, we have,

yf(t) = B0 + B1 t + B2 t2

x(t) = A0 +A1 t +A2 t2
⇒

†B. P. Lathi, Linear Systems & Signals, 2nd ed., Oxford University Press, 2005.

984 21. DISCRETIZATION METHODS

ÿf + a1 ẏf + a2yf = 2B2 + a1(B1 + 2B2t)+a2(B0 + B1 t + B2 t2)

b0 ẍ+ b1 ẋ+ b2x = b02A2 + b1(A1 + 2A2t)+b2(A0 +A1 t +A2 t2)

and equating the two right-hand sides and matching like powers of t gives three equa-
tions in the three unknowns B0, B1, B2 to be solved in terms of A0,A1,A2.

21.4 Solution Procedures

For simplicity, we consider a 1st order, or a 2nd order filter with real-valued coefficients,
with poles at p1, or at p1, p2 with p1 �= p2, that lie in the left-hand s-plane,

(1st order): H(s)= b0s+ b1

s+ a1
≡ b0s+ b1

s− p1

(2nd order): H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2
≡ b0s2 + b1s+ b2

(s− p1)(s− p2)

(21.4.1)

and corresponding differential equations,

(1st order): ẏ + a1y = b0ẋ+ b1x

(2nd order): ÿ + a1ẏ + a2y = b0ẍ+ b1ẋ+ b2x
(21.4.2)

The problem is to solve Eqs. (21.4.2) for a given causal input signal x(t) and specified
initial conditions, y(0−) in the 1st order case, or, y(0−), ẏ(0−) in the 2nd order one.

In the Laplace method, we take Laplace transforms of both sides of Eqs. (21.4.2)
incorporating the initial conditions at t = 0−,

(1st order):[
sY(s)−y(0−)]+ a1Y(s)= b0sX(s)+b1X(s)

(2nd order):[
s2Y(s)−sy(0−)−ẏ(0−)]+ a1

[
sY(s)−y(0−)]+ a2Y(s)= b0s2X(s)+b1sX(s)+b2X(s)

and solve for the Laplace transform of the output Y(s),

(1st order): Y(s)= y(0−)
s+ a1︸ ︷︷ ︸

zero-input

+
(
b0s+ b1

s+ a1

)
X(s)︸ ︷︷ ︸

zero-state

(2nd order): Y(s)= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2︸ ︷︷ ︸

zero-input

+
(
b0s2 + b1s+ b2

s2 + a1s+ a2

)
X(s)︸ ︷︷ ︸

zero-state

(21.4.3)

with the first term representing the zero-input part, and the second, the zero-state part.
The time-domain solution y(t) is then obtained by inverting the Laplace transforms in
Eq. (21.4.3) using partial fraction techniques.

In the classical method, we first transform the ICs at t = 0− to the ICs at t = 0+

using the mappings of Eq. (21.2.7). Then pick a particular solution of the differential

21.5. STEADY-STATE SINUSOIDAL RESPONSE 985

equations (21.4.2), typically, a forced solution yf(t) using the table on the previous page
as a guide. The general solution is then obtained by adding to yf(t) a homogeneous
solution consisting of a sum of characteristic modes,

(1st order): y(t)= c1ep1t + yf(t)

(2nd order): y(t)= c1ep1t + c2ep2t + yf(t)
(21.4.4)

and fix the coefficients c1, c2 by imposing the t = 0+ initial conditions, i.e.,

(1st order): y(0+)= c1 + yf(0+)

(2nd order):

⎧⎨⎩y(0+)= c1 + c2 + yf(0+)
ẏ(0+)= c1p1 + c2p2 + ẏf (0+)

21.5 Steady-State Sinusoidal Response

For the special case of a causal sinusoidal input, we can find the complete (zero-state)
solution as the sum of the forced term and the transients arising from the filter poles.
Consider a 2nd order filter with distinct poles p1, p2, and a complex sinusoidal input,

H(s)= b0s2 + b1s+ b2

(s− p1)(s− p2)
, x(t)= ejΩ0tu(t) ⇒ X(s)= 1

s− jΩ0

then, the zero-state output will have Laplace transform,

Y(s)= H(s)X(s)= b0s2 + b1s+ b2

(s− p1)(s− p2)(s− jΩ0)

which can be expanded in partial fractions in the form,

Y(s)= b0s2 + b1s+ b2

(s− p1)(s− p2)(s− jΩ0)
= H(Ω0)

s− jΩ0︸ ︷︷ ︸
forced response

+ R1

s− p1
+ R2

s− p2︸ ︷︷ ︸
transients

(21.5.1)

with, H(Ω0)= H(s)
∣∣
s=jΩ0

, and inverted into the time domain,

y(t)= H(Ω0)ejΩ0t︸ ︷︷ ︸
steady-state

+R1ep1t +R2ep2t︸ ︷︷ ︸
transients

, t ≥ 0 (21.5.2)

The first term represents the steady-state sinusoidal response, and the last two
terms, the transients which decay exponentially.

To find R1, R2, one must carry out the above partial fraction expansion on Y(s),
which can be facilitated by the use of the function residue applied on Y(s), or by the
use of the symbolic toolbox functions laplace and partfrac.

If the input were real-valued, that is, either, cos(Ω0t)u(t), or, sin(Ω0t)u(t), then
(assuming that the filter coefficients are real), the solution is obtained by extracting the
real or the imaginary parts of the solution in Eq. (21.5.2).

986 21. DISCRETIZATION METHODS

21.6 Continuous-Time Example

Consider the following linear system,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) (21.6.1)

driven by the causal input,
x(t)= 10e−3tu(t)

and subject to the initial conditions at t = 0−,

y(0−)= 0 , ẏ(0−)= −5

a. Determine the transfer function H(s) of this system, and determine analytically
(i.e., by hand) its partial fraction expansion (PFE). Then, determine the PFE again
using MATLAB’s residue function, and alternatively, using the partfrac function
of the symbolic toolbox.

b. Using inverse Laplace transforms, determine analytically the impulse response
h(t) of this system. Then, determine it again using MATLAB’s symbolic toolbox.

c. Using Laplace transforms, determine analytically the zero-input response, yzi, sub-
ject to the given initial conditions. Then, determine it again by working exclusively
in the time domain and expressing it as a linear combination of characteristic
modes, and fixing the expansion coefficients from the initial conditions. Finally,
determine the solution again with MATLAB’s symbolic toolbox, using the ilaplace
function and, alternatively, the dsolve function.

d. For the given input x(t), determine the zero-state response by analytically per-
forming the convolution operation, y(t)= h(t)∗x(t).

e. Determine the above zero-state response analytically using Laplace transforms.
Then, determine it again with MATLAB’s symbolic toolbox, using the ilaplace func-
tion and, alternatively, the dsolve function.

f. For the given input and initial conditions, determine the full solution of Eq. (21.6.1)
consisting of the sum of the zero-input and zero-state responses found above.
Then, determine it again analytically using Laplace transforms and carrying out
the partial fraction expansions by hand. Then, determine the full solution again
using the function ilaplace of the symbolic toolbox.

g. Given the above initial conditions, y(0−)= 0, ẏ(0−)= −5, what are the corre-
sponding initial conditions at t = 0+, that is, y(0+), ẏ(0+)? Using the conditions
at t = 0+, re-derive the full solution of part (g), using the “classical method” de-
scribed in Section 2.5 of the text. Then, derive it again with the symbolic toolbox
and the function dsolve.

h. Using the built-in function lsim, compute the output y(t) that corresponds to the
given input x(t) and initial conditions, y(0−)= 0, ẏ(0−)= −5, and plot it over
the time interval 0 ≤ t ≤ 6. This is a bit tricky since the initial conditions are
non-zero.

21.6. CONTINUOUS-TIME EXAMPLE 987

Solution

a. Taking Laplace transforms of both sides of Eq. (21.6.1) with no initial conditions,
we have,

s2Y(s)+3sY(s)+2Y(s)= sX(s) ⇒ H(s)= Y(s)
X(s)

= s
s2 + 3s+ 2

For the PFE, we have,

H(s)= s
s2 + 3s+ 2

= s
(s+ 2)(s+ 1)

= A
s+ 2

+ B
s+ 1

where

A = s
s+ 1

∣∣∣∣
s=−2

= −2

−2+ 1
= 2 , B = s

s+ 2

∣∣∣∣
s=−1

= −1

−1+ 2
= −1

so that

H(s)= s
s2 + 3s+ 2

= s
(s+ 2)(s+ 1)

= 2

s+ 2
− 1

s+ 1
(21.6.2)

Using the residue function we find,

num = [1,0]; den = [1,3,2];
[r,p] = residue(num,den)

% r =
% 2
% -1
% p =
% -2
% -1

where the residues r1, r2 are the same as A,B. Using the symbolic toolbox and
the function partfrac, we obtain the same PFE result,

syms s
H = s/(s^2+3*s+2);
H = partfrac(H); % H = 2/(s + 2) - 1/(s + 1)

b. Inverting the PFE in Eq. (21.6.2), we find,

h(t)= 2e−2tu(t)−e−tu(t)

where we used the basic transform pair,

e−atu(t) ←→ 1

s+ a

Using the symbolic toolbox, we obtain the same,

988 21. DISCRETIZATION METHODS

syms s
H = s/(s^2+3*s+2);
h = ilaplace(H) % h = 2*exp(-2*t) - exp(-t)

c. Let us solve this for arbitrary initial conditions, y(0−)= y0 and ẏ(0−)= ẏ0, and
at the end set y0 = 0 and ẏ0 = −5. The differential equation (21.6.1) with x(t)= 0
transforms in the s-domain into,

ÿ(t)+3ẏ(t)+2y(t)= 0 ⇒ s2Y(s)−sy0 − ẏ0 + 3
(
sY(s)−y0

)+ 2Y(s)= 0

Solving for Y(s) and performing its partial fraction expansion, we have,

Y(s)= sy0 + ẏ0 + 3y0

s2 + 3s+ 2
= sy0 + ẏ0 + 3y0

(s+ 1)(s+ 2)
= ẏ0 + 2y0

s+ 1
− ẏ0 + y0

s+ 2

which gives the zero-input response in the time domain,

yzi(t)= (ẏ0 + 2y0)e−t − (ẏ0 + y0)e−2t , t ≥ 0 (21.6.3)

and in the specific case of y0 = 0 and ẏ0 = −5,

yzi(t)= −5e−t + 5e−2t , t ≥ 0 (21.6.4)

An alternative approach is to work in the time-domain and express y(t) and its
derivative as a linear combination of characteristic modes, and fix the expansion
coefficients from the initial conditions, that is, set

y(t)= c1e−t + c2e−2t

ẏ(t)= −c1e−t − 2c2e−2t

and at t = 0−, impose the conditions,

y(0−)= c1 + c2 = y0

ẏ(0−)= −c1 − 2c2 = ẏ0
⇒ c1 = ẏ0 + 2y0

c2 = −ẏ0 − y0

which results in the same answer as in Eq. (21.6.3). The same expression is ob-
tained using the ilaplace function of the symbolic toolbox, where y0,dy0 stand
for the constants y0, ẏ0,

syms s y0 dy0 Y
Y = solve(s^2*Y-s*y0-dy0 + 3*(s*Y-y0)+2*Y==0,Y)
Y = partfrac(Y,s) % Y = (dy0 + 2*y0)/(s + 1) - (dy0 + y0)/(s + 2)
yzi = ilaplace(Y) % yzi = exp(-t)*(dy0 + 2*y0) - exp(-2*t)*(dy0 + y0)

Alternatively, we can use the dsolve function,

syms y0 dy0
yzi = dsolve(’D2y + 3*Dy+ 2*y = 0’, ’y(0)=y0’, ’Dy(0)=dy0’)

21.6. CONTINUOUS-TIME EXAMPLE 989

d. The convolutional expression for the zero-state output is,

yzs(t)=
∫∞
−∞

h(t′)x(t − t′)dt′ (21.6.5)

Because the input x(t)= 10e−3tu(t) is causal, the range of its argument in Eq. (21.6.5)
must be restricted to, t − t′ ≥ 0. Similarly, because h(t′) is causal, its argument
must be t′ ≥ 0. Combining the two inequalities, we have,

t − t′ ≥ 0
t′ ≥ 0

⇒ t ≥ 0
0 ≤ t′ ≤ t

Thus, yzs(t) must also be causal, and for t ≥ 0, the integral in (21.6.5) simplifies
into,

yzs(t) =
∫ t

0
h(t′)x(t − t′)dt′ =

∫ t

0
(2e−2t′ − e−t

′
)10e−3(t−t′)dt′

= 10e−3t
∫ t

0
(2e−2t′ − e−t

′
)e3t′dt′ = 10e−3t

∫ t

0
(2et

′ − e2t′)dt′

= 10e−3t
[

2(et − 1)−1

2
(e2t − 1)

]
= −5e−t + 20e−2t − 15e−3t

thus,

yzs(t)=
[−5e−t + 20e−2t − 15e−3t]u(t) (21.6.6)

The integration can also be performed with the int function of the symbolic tool-
box,

syms t tau
x = 10*exp(-3*(t-tau));
h = 2*exp(-2*tau) - exp(-tau);
yzs = int(h*x, tau, 0, t) % yzs = 20*exp(-2*t) - 5*exp(-t) - 15*exp(-
3*t)

e. The Laplace transform of the input x(t)= 10e−3tu(t) is, X(s)= 10/(s + 3). It
follows that the transform of the zero-state output will be,

Y(s)= H(s)X(s)= s
s2 + 3s+ 2

· 10

s+ 3
= 10s
(s+ 1)(s+ 2)(s+ 3)

with PFE,

Y(s)= 10s
(s+ 1)(s+ 2)(s+ 3)

= A
s+ 1

+ B
s+ 2

+ C
s+ 3

where,

A = (s+ 1)Y(s)
∣∣∣∣
s=−1

= 10s
(s+ 2)(s+ 3)

∣∣∣∣
s=−1

= 10(−1)
(−1+ 2)(−1+ 3)

= −5

B = (s+ 2)Y(s)
∣∣∣∣
s=−2

= 10s
(s+ 1)(s+ 3)

∣∣∣∣
s=−2

= 10(−2)
(−2+ 1)(−2+ 3)

= 20

C = (s+ 3)Y(s)
∣∣∣∣
s=−3

= 10s
(s+ 1)(s+ 2)

∣∣∣∣
s=−3

= 10(−3)
(−3+ 1)(−3+ 2)

= −15

990 21. DISCRETIZATION METHODS

Inverting the Laplace transform Y(s), we obtain the time-domain zero-state re-
sponse, which agrees with that of Eq. (21.6.6),

yzs(t)=
[−5e−t + 20e−2t − 15e−3t]u(t)

The PFE residues can also be obtained by the function residue, where the outputs
r1, r2, r3 correspond to C,B,A, respectively,

[r,p] = residue([10,0], conv([1 3 2],[1 3]))

% r =
% -15.0000
% 20.0000
% -5.0000
% p =
% -3.0000
% -2.0000
% -1.0000

The indicated convolution operation, conv([1 3 2],[1 3]), results in the coef-
ficients, [1, 6, 11, 6], and effectively multiplies the polynomials,

(s2 + 3s+ 2)(s+ 3)= s3 + 6s2 + 11s+ 6

The PFE and the Laplace inversions can also be accomplished with the symbolic
toolbox,

syms s
H = s/(s^2+3*s+2);
X = 10/(s+3);
Y = H*X; % Y = 10*s/((s + 3)*(s^2 + 3*s + 2))
Y = partfrac(Y) % Y = 20/(s + 2) - 5/(s + 1) - 15/(s + 3)
yzs = ilaplace(Y) % yzs = 20*exp(-2*t) - 5*exp(-t) - 15*exp(-3*t)

For t ≥ 0, we obtain from the above solution,

yzs(t)= −5e−t + 20e−2t − 15e−3t

ẏzs(t)= 5e−t − 40e−2t + 45e−3t ⇒ yzs(0+)= −5+ 20− 15 = 0

ẏzs(0+)= 5− 40+ 45 = 10

The term, “zero-state” solution refers to zero initial conditions at time t = 0−.
As we see above, at t = 0+ the initial conditions are not zero. See part (h) for
more discussion on this issue, and on how to predict the conditions at t = 0+

from those at t = 0−. The symbolic toolbox solution using the function ilaplace
requires the t = 0− conditions, whereas the solution using dsolve, requires the
t = 0+ conditions.

In the present case, since we just found yzs(0+)= 0, ẏzs(0+)= 10, we can apply
the dsolve function, noting that ẋ(t)= −3 · 10e−3t for t ≥ 0+,

syms t yzs(t)
yzs = dsolve(’D2y+3*Dy+2*y = 10*(-3)*exp(-3*t)’, ’y(0)=0’, ’Dy(0)=10’)

21.6. CONTINUOUS-TIME EXAMPLE 991

which results in the same solution as that of Eq. (21.6.6).

f. Adding up the zero-input and zero-state solutions of Eqs. (21.6.3) and (21.6.6),
and combining like exponential terms, we obtain the total solution of Eq. (21.6.1),
which meets the arbitrary initial conditions, y(0−)= y0, ẏ(0−)= ẏ0,

y(t)= (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t − 15e−3t , t ≥ 0+ (21.6.7)

and for the particular values, y(0−)= 0, ẏ(0−)= −5,

y(t)= −10e−t + 25e−2t − 15e−3t , t ≥ 0+ (21.6.8)

The first two terms depend only on the characteristic modes e−t, e−2t, and are
referred to as the “natural response” or “homogeneous solution”, whereas the last
term depends only on the input x(t)= 10e−3t and is referred to as the “particular
solution” or “forced response”,

y(t)= (ẏ0 + 2y0 − 5)e−t + (20− y0 − ẏ0)e−2t︸ ︷︷ ︸
homogeneous

−15e−3t︸ ︷︷ ︸
forced

The factor −15 in the forced response can be predicted in advance using the
following result: Given a system with transfer function H(s) and an exponential
causal input x(t)= Ae−at, then the forced response output is simply, yforced(t)=
AH(−a)e−at, where H(−a) is the transfer function H(s) evaluated at s = −a(
assuming that s = −a is not a pole of H(s)

)
. Thus, in our example,

yforced(t)= 10H(−3)e−3t = 10 · s
s2 + 3s+ 2

∣∣∣∣
s=−3

e−3t = −15e−3t

Next, we derive the total solution using Laplace transforms and partial fraction
expansions. The approach is similar to that of part (d), except here the right-hand
sides are not zero. For the case of arbitrary initial conditions, y(0−)= y0 and
ẏ(0−)= ẏ0, the transform of the differential equation (21.6.1) is,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ s2Y(s)−sy0−ẏ0+3
(
sY(s)−y0

)+2Y(s)= sX(s)

where the transform of ẋ(t) was, sX(s)−x(0−)= sX(s), since x(0−)= 0 because
x(t) is causal. Solving for Y(s), and replacing X(s)= 10/(s+ 3), we obtain,

Y(s) = sy0 + ẏ0 + 3y0 + sX(s)
s2 + 3s+ 2

= (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s2 + 3s+ 2)(s+ 3)

= (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 2)(s+ 3)

= A
s+ 1

+ B
s+ 2

+ C
s+ 3

= ẏ0 + 2y0 − 5

s+ 1
+ 20− y0 − ẏ0

s+ 2
− 15

s+ 3

(21.6.9)

992 21. DISCRETIZATION METHODS

where we may verify easily,

A = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 2)(s+ 3)

∣∣∣∣
s=−1

= ẏ0 + 2y0 − 5

B = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 3)

∣∣∣∣
s=−2

= 20− y0 − ẏ0

C = (sy0 + ẏ0 + 3y0)(s+ 3)+10s
(s+ 1)(s+ 2)

∣∣∣∣
s=−3

= −15

It follows that the inverse Laplace transform of Eq. (21.6.9) is as in Eq. (21.6.7).
The same partial fraction expansion and inverse transform can be obtained easily
by the symbolic toolbox,

syms s y0 dy0 Y
X = 10/(s+3);
Y = solve(s^2*Y-s*y0-dy0 + 3*(s*Y-y0) + 2*Y == s*X, Y)
Y = partfrac(Y,s) % Y = (dy0+2*y0-5)/(s + 1) + (20-dy0-y0)/(s + 2) - 15/(s + 3)
y = ilaplace(Y) % y = exp(-t)*(dy0+2*y0-5) + exp(-2*t)*(20-dy0-y0) - 15*exp(-
3*t)

g. We recall that for a second-order system of the form,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t) ⇒ H(s)= b0s2 + b1s+ b2

s2 + a1s+ a2

and for a causal input x(t) that does not have any δ(t) terms at t = 0, the mapping
between the initial conditions at t = 0− and those at t = 0+ is given by,

y(0+) = y(0−)+b0x(0+)

ẏ(0+) = ẏ(0−)+b0ẋ(0+)+(b1 − b0a1)x(0+)
(21.6.10)

For our particular system, we have, [b0, b1, b2]= [0,1,0], so that Eqs. (21.6.10)
become,

y(0+) = y(0−)

ẏ(0+) = ẏ(0−)+x(0+)
(21.6.11)

Thus, for the input x(t)= 10e−3tu(t), and initial conditions y0, ẏ0 at t = 0−, we
have,

y(0+) = y0

ẏ(0+) = ẏ0 + 10
(21.6.12)

These are the conditions that must be used in applying the classical method, or
the dsolve function. In the classical method, we construct the solution as the sum
of a particular solution and a general homogeneous solution. For the particular
solution, we may take the forced response, which in our example is, yforced(t)=

21.6. CONTINUOUS-TIME EXAMPLE 993

−15e−3t. For the homogeneous solution we form a linear combination of the
characteristic modes e−t, e−2t. Thus,

y(t)= c1e−t + c2e−2t − 15e−3t

ẏ(t)= −c1e−t − 2c2e−2t + 45e−3t (classical method)

for t ≥ 0. Imposing the t = 0+ conditions (21.6.12), we have,

y(0+)= c1 + c2 − 15 = y0

ẏ(0+)= −c1 − 2c2 + 45 = ẏ0 + 10
⇒ c1 = ẏ0 + 2y0 − 5

c2 = 20− ẏ0 − y0

Thus, we obtain the same solution as that in Eq. (21.6.7), for t ≥ 0+,

y(t)= c1e−t+ c2e−2t−15e−3t = (ẏ0+2y0−5)e−t+ (20−y0− ẏ0)e−2t−15e−3t

Finally, the same solution can be obtained with the dsolve function applied with
the initial conditions at t = 0+ of Eq. (21.6.12),

syms t y0 dy0 y(t)
dy = diff(y,t); ddy = diff(dy,t);
x = 10*exp(-3*t); dx = diff(x,t);
y = dsolve(ddy + 3*dy + 2*y == dx, y(0) == y0, dy(0) == dy0+10)

h. Suppose that one naively tries to use the function lsim to compute the system
output for the given input. This can be done simply by the MATLAB code,

t = linspace(0,6,601); % desired range of t’s
x = 10*exp(-3*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
y = lsim(H,x,t); % assumes zero initial conditions

This code, however, will generate only the zero-state part, yzs(t), of the correct
answer. The function lsim can handle initial conditions, but those are for state-
space realizations only. If the initial conditions are specified in terms of the output
y(t) and its derivatives, then one must map these initial conditions to the proper
state-vector initial conditions to be used in lsim.

Such mapping can be accomplished by the so-called observability matrix (we’ll
discuss it at a later date). The built-in function obsv allows one to perform such
mapping and thus, use lsim with any desired initial conditions at t = 0−. The
following MATLAB code illustrates the procedure.

y0 = 0; dy0 = -5; % given initial conditions at t=0-
t = linspace(0,6,601); % desired time range
x = 10*exp(-3*t); % input signal
s = tf(’s’); % transfer function variable
H = s/(s^2+3*s+2); % transfer function object - class(H) is tf
S = ss(H); % S is state-space model of H - class(S) is ss
yi = [y0; dy0]; % vector of initial conditions with respect to y
si = obsv(S) \ yi; % map yi to initial state-vector si
y = lsim(S,x,t,si); % run model S with initial state si
yzs = lsim(S,x,t); % run model S with zero initial state si=0
plot(t,y, t,yzs,’--’); % compare the nonzero-state and zero-state outputs

994 21. DISCRETIZATION METHODS

The computed outputs are shown on the right graph below. Those on the left
graph are the exact responses derived in Eqs. (21.6.6) and (21.6.7) . They are
virtually indistinguishable from the numerically computed ones using lsim.

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
exact

t

y(
t)

 total
 zero−state
 zero−input

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
lsim

t

y(
t)

 total
 zero−state
 zero−input

21.7 Discretization Schemes – Summary

Here, we consider the numerical solution of the differential equations describing linear
time-invariant continuous-time (CT) systems, by replacing their analog transfer func-
tion by an approximately equivalent discrete-time (DT) transfer function, which can be
implemented by difference equations.

We summarize the steps of obtaining the DT transfer function for the five most used
discretization methods: forward-Euler, backward-Euler, trapezoidal, zero-order hold,
and first-order hold. We also discuss how to take into account the initial conditions of
the CT system that are typically specified at time, t = 0−.

For a second-order CT system with differential equation and analog s-domain trans-
fer function, Ha(s),

ÿ(t)+A1 ẏ(t)+A2y(t)= B0 ẍ(t)+B1 ẋ(t)+B2x(t)

Ha(s)= B0s2 + B1s+ B2

s2 +A1s+A2

(CT system) (21.7.1)

the approximately equivalent DT system will be described by a second-order difference
equation and a discrete-time z-domain transfer function, Hd(z),

yn + a1yn−1 + a2yn−2 = b0xn + b1xn−1 + b2xn−2

Hd(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

(DT system) (21.7.2)

where yn is an approximation to the value of y(t) at the sampling instant, tn = nT,
where T is a small time increment, and xn is the measured value of the input at, t = tn,
that is, for, n = 0,1,2, . . . ,

21.7. DISCRETIZATION SCHEMES – SUMMARY 995

yn ≈ y(tn)= y(nT)

xn = x(tn)= x(nT)

The relationship between the DT coefficients, {b0, b1, b2, a1, a2}, and the CT coef-
ficients, {B0, B1, B2,A1,A2}, depends on the value of T and the chosen discretization
scheme. The difference equation (21.7.2) can be iterated by writing it in the form,

for n = 0,1,2, . . . ,

yn = −a1yn−1 − a2yn−2 + b0xn + b1xn−1 + b2xn−2

(21.7.3)

where the two previously computed outputs, yn−2, yn−1, are used compute the current
one, yn. For example, we have explicitly for n = 0,1,2,3,

y0 = −a1y−1 − a2y−2 + b0x0 + b1x−1 + b2x−2

y1 = −a1y0 − a2y−1 + b0x1 + b1x0 + b2x−1

y2 = −a1y1 − a2y0 + b0x2 + b1x1 + b2x0

y3 = −a1y2 − a2y1 + b0x3 + b1x2 + b2x1 , and so on,

To get the iteration going, we need to know the two initial values y−1, y−2. The values
of x−1, x−2 can be taken to be zero since we always assume a causal input. Because the
given initial conditions y(0−), ẏ(0−) of the differential equation are specified at t = 0−,
and T is small, we may choose these starting values as follows,

y−1 ≈ y(0−)

y−2 ≈ y(0−)−Tẏ(0−) (21.7.4)

The second one may be justified by the following approximation of the derivative,

ẏ(0−)≈ y(−T)−y(−2T)
T

≈ y−1 − y−2

T
⇒ y−2 ≈ y−1 −Tẏ(0−)

For a third-order CT system with initial conditions,
{
y(0−), ẏ(0−), ÿ(0−)

}
, we would

need three initial values,
{
y−1, y−2, y−3

}
, for the equivalent third-order difference equa-

tion. The first two,
{
y−1, y−2

}
, are obtained from Eq. (21.7.4), while the third one can be

solved from the approximation of the second derivative,

ÿ(0−)≈ y−1 − 2y−2 + y−3

T2
= y(0−)−2

(
y(0−)−Tẏ(0−))+ y−3

T2
, or,

y−3 = T2 ÿ(0−)−2Tẏ(0−)+y(0−) (21.7.5)

Similarly, for a first-order system we have the differential and corresponding difference
equations,

ẏ(t)+A1y(t)= B0 ẋ(t)+B1x(t) ⇒ Ha(s)= B0s+ B1

s+A1

yn + a1yn−1 = b0xn + b1xn−1 ⇒ Hd(z)= b0 + b1z−1

1+ a1z−1

(21.7.6)

996 21. DISCRETIZATION METHODS

and iterated in the following form,

for n = 0,1,2, . . . ,

yn = −a1yn−1 + b0xn + b1xn−1

(21.7.7)

where now only the starting value y−1 is needed, and we may choose it as in Eq. (21.7.4),

y−1 ≈ y(0−) (21.7.8)

21.8 Forward / Backward Euler, and Trapezoidal Rules

These methods can be implemented simply by replacing the s variable in the CT transfer
function, Ha(s), by a function of the form, s = f(z), mapping the s to the z plane,
resulting in the DT transfer function,

Hd(z)= Ha(z)
∣∣∣∣
s=f(z)

(21.8.1)

The three cases of the forward-Euler, backward-Euler, and trapezoidal rules, can be
handled in a unified way by the following choice of mapping function, s = f(z),

s = f(z)= 1− z−1

p+ qz−1
⇒ Hd(z)= Ha(s)

∣∣∣∣
s= 1−z−1

p+qz−1

= Ha

(
1− z−1

p+ qz−1

)
(21.8.2)

where the parameters p,q are defined as follows in the three cases, in terms of the
discretization time step T,

forward Euler: p = 0 , q = T ⇒ s = 1

T
(z− 1)

backward Euler: p = T , q = 0 ⇒ s = 1

T
(1− z−1)

trapezoidal/bilinear/Tustin: p = q = 1

2
T ⇒ s = 2

T
1− z−1

1+ z−1

(21.8.3)

their justification of Eqs. (21.8.3) is discussed below in Sec. 21.12. The mapping be-
tween the coefficients {b0, b1, b2, a1, a2} and {B0, B1, B2,A1,A2} is obtained from the
algebraic relationship,

B0s2 + B1s+ B2

s2 +A1s+A2

∣∣∣∣∣
s= 1−z−1

p+qz−1

=
B0

(
1− z−1

p+ qz−1

)2

+ B1

(
1− z−1

p+ qz−1

)
+ B2(

1− z−1

p+ qz−1

)2

+A1

(
1− z−1

p+ qz−1

)
+A2

= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

The algebra can be carried out quickly with MATLAB’s symbolic toolbox,

21.9. ZERO-ORDER AND FIRST-ORDER HOLDS 997

syms B0 B1 B2 A1 A2 s z p q
H = (B0*s^2 + B1*s + B2)/(s^2 + A1*s + A2);
Hd = collect(subs(H,s,(1-z)/(p+q*z)))

and we obtain the following relationships that depend on the choices of p,q,

b0 = B0 + B1p+ B2p2

1+A1p+A2p2

b1 = B1(q− p)−2B0 + 2B2pq
1+A1p+A2p2

, b2 = B0 − B1q+ B2q2

1+A1p+A2p2

a1 = A1(q− p)−2+ 2A2pq
1+A1p+A2p2

, a2 = 1−A1q+A2q2

1+A1p+A2p2

(21.8.4)

For the first-order case, we define similarly,

b0 + b1z−1

1+ a1z−1
= B0s+ B1

s+A1

∣∣∣∣
s= 1−z−1

p+qz−1

which leads to,

b0 = B0 + B1p
1+A1p

, b1 = B1q− B0

1+A1p
, a1 = A1q− 1

1+A1p
(21.8.5)

21.9 Zero-Order and First-Order Holds

The justification of the zero-order hold (ZOH) procedure will be discussed below in
Sec. 21.14. The corresponding discrete-time transfer function is defined by,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
(zero-order hold) (21.9.1)

whereZ[G(s)] denotes the z-transform ofG(s), a notation and operation to be clarified
below. This formula leads to the following computational steps.

Step 1: Start with the analog transfer function Ha(s), then form Ha(s)/s, and expand
it in partial fractions. For example, for a first-order transfer function we have,

Ha(s)= B0s+ B1

s+ p1
⇒ Ha(s)

s
= B0s+ B1

s(s+ p1)
= R0

s
+ R1

s+ p1
(21.9.2)

with residues,

R0 = B1

p1
, R1 = B0 − B1p1

p1
(21.9.3)

Similarly, for a second-order transfer function with distinct poles (p1 �= p2),
we obtain,

Ha(s) = B0s2 + B1s+ B2

(s+ p1)(s+ p2)
⇒

Ha(s)
s

= B0s2 + B1s+ B2

s(s+ p1)(s+ p2)
= R0

s
+ R1

s+ p1
+ R2

s+ p2

(21.9.4)

998 21. DISCRETIZATION METHODS

where the residues are given by,

R0 = B2

p1p2
, R1 = B0p2

1 − B1p1 + B2

p1(p1 − p2)
, R2 = B0p2

2 − B1p2 + B2

p2(p2 − p1)
(21.9.5)

while for the case of a double-pole, (p1 = p2), we have,

Ha(s) = B0s2 + B1s+ B2

(s+ p1)2
⇒

Ha(s)
s

= B0s2 + B1s+ B2

s(s+ p1)2
= R0

s
+ R1

s+ p1
+ R2

(s+ p2)2

(21.9.6)

with residues,

R0 = B2

p2
1
, R1 = B0p2

1 − B2

p2
1

, R2 = −B0p2
1 − B1p1 + B2

p1
(21.9.7)

Step 2: Next, replace single- and double-pole terms as follows in terms of z (applicable
also when p1 = 0),

1

s+ p1
⇒ 1

1− e−p1Tz−1

1

(s+ p1)2
⇒ Tz−1

(1− e−p1Tz−1)2

(21.9.8)

Step 3: After making these replacements, multiply by an overall factor of (1− z−1) to
obtain the final DT transfer function. Thus, for the first-order case, we have,

Hd(z) = (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1

]

= R0 + R1(1− z−1)
1− e−p1Tz−1

≡ b0 + b1z−1

1+ a1z−1

(21.9.9)

where, with R0, R1 given by Eq. (21.9.3),

b0 = R0 +R1 , b1 = −
(
R1 + e−p1TR0

)
, a1 = −e−p1T (21.9.10)

Similarly, the second-order case with distinct poles gives,

Hd(z) = (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1
+ R2

1− e−p2Tz−1

]

≡ b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

(21.9.11)

where, with R0, R1, R2 given by Eq. (21.9.5),

b0 = R0 +R1 +R2 = B0

b1 = −R1 −R2 −R1e−p2T −R2e−p1T −R0(e−p1T + e−p2T)

b2 = R1e−p2T +R2e−p1T +R0e−p1Te−p2T

a1 = −e−p1T − e−p2T , a2 = e−p1Te−p2T

(21.9.12)

21.10. SAMPLE-BY-SAMPLE PROCESSING 999

Lastly, for the case of a double-pole, we have,

Hd(z) = (1− z−1)
[

R0

1− z−1
+ R1

1− e−p1Tz−1
+ R2Tz−1

(1− e−p2Tz−1)2

]

≡ b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

(21.9.13)

where, with R0, R1, R2 given by Eq. (21.9.7),

b0 = R0 +R1 = B0

b1 = (R2T − 2R0 −R1)e−p1T −R1

b2 = (R1 −R2T +R0e−p1T)e−p1T

a1 = −2e−p1T , a2 = e−2p1T

(21.9.14)

First-Order Hold

The first-order hold (FOH) is given as follows, to which the same substitutions given in
step-2 are to be applied,

Hd(z)= (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
(first-order hold) (21.9.15)

It is justified in Sec. 21.16.

21.10 Sample-by-Sample Processing

Real-time digital processing means the processing of a sampled input signal on a sample-
by-sample basis. Each arriving input sample is subjected to a series of computational
steps (referred to as the sample processing algorithm) that calculate the current output
sample. These computations must be completed within the sampling time interval T
that separates incoming time samples.

Modern DSPs are extremely fast and can easily perform hundreds or even thousands
of such operations between samples. For example, for a typical hi-fi audio signal sam-
pled at a rate of 40 kHz (40,000 samples/sec), the time interval between samples is
T = 1/40000 sec = 25 μsec. A modern DSP has an instruction time of about 1 nsec
for performing a typical multiplication or addition. Therefore, during the interval of
T = 25 μsec = 25,000 nsec, it can perform, 25,000 basic instructions, which are more
than enough for typical audio processing.

Discrete-time transfer functions of the type of Eq. (21.7.2), as well as higher order
ones, can be implemented in real time using different, but mathematically equivalent,
block diagram realizations—each block diagram representing the computational steps of
a particular sample processing algorithm. We discussed realizations in Chap. 7. Here,
we review briefly three standard realizations: the direct, canonical, and transposed, and
their state-space versions, illustrating them with a second-order transfer function,

Hd(z)= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(21.10.1)

1000 21. DISCRETIZATION METHODS

The direct-form realization (also known as direct-form-1, or, DF-1) attempts to di-
rectly realize the right-hand side terms of the corresponding difference equation (21.7.3)
relating x(n) and y(n),

y(n)= −a1y(n− 1)−a2y(n− 2)+b0x(n)+b1x(n− 1)+b2x(n− 2)

We do not wish to use any arrays because, for real-time processing, the input and
output signals can have infinite length. But we do need to keep track of the two previ-
ously computed output samples, y(n − 1), y(n − 2), and the two previously available
input samples, x(n − 1), x(n − 2). To this end, let us use the following notation for
these delayed signals,

v1(n)= x(n− 1)
v2(n)= x(n− 2)= v1(n− 1)
w1(n)= y(n− 1)
w2(n)= y(n− 2)= w1(n− 1)

They may be referred to as the internal “states” of the filter. Then, the difference
equation can be written as a sum of terms, all occurring at the same instant n,

y(n)= −a1w1(n)−a2w2(n)+b0x(n)+b1v1(n)+b2v2(n)

Once the current output y(n) is calculated, the states can be updated to the values
that they must have at the next time instant, n + 1. From their definition, we see that
their next values are,

v1(n+ 1)= x(n)
v2(n+ 1)= x(n− 1)= v1(n)
w1(n+ 1)= y(n)
w2(n+ 1)= y(n− 1)= w1(n)

The figure below shows this realization and its sample processing algorithm, where
the input delays hold the signals v1(n), v2(n) and the output delays hold,w1(n),w2(n),

21.10. SAMPLE-BY-SAMPLE PROCESSING 1001

initialize w1,w2, v1, v2

for each input sample x, do,

y = −a1w1 − a2w2 + b0x+ b1v1 + b2v2

w2 = w1

w1 = y
v2 = v1

v1 = x

(21.10.2)

The operations of updating the contents of the w2,w1 delays must be done in the
indicated order, and similarly for v2, v1. Although the direct form is a straightforward
realization (also having fairly robust numerical properties in terms of overflows and
coefficient quantization), it requires twice as many delays as they may be necessary.
The canonical and transposed realizations use only two delays (for a 2nd order filter),
but at the expense of introducing some auxiliary signals—however, the total number of
multiplication operations remain the same for all three realizations.

The canonical realization (also known as direct-form-2, DF-2, or, controller-canonical-
form) is shown below together with its sample processing algorithm.

initialize w1,w2

for each input sample x, do,

w0 = −a1w1 − a2w2 + x
y = b0w0 + b1w1 + b2w2

w2 = w1

w1 = w0

(21.10.3)

It uses the auxiliary signalw0(n) that runs between the input and output adders and
is neither x(n) nor y(n). It must be computed first at the left adder, and its value then
passed to the right adder to compute y(n). The signals w1(n) and w2(n) are simply
delayed versions of w0(n) and therefore, must be updated to the next time instant as
follows,

w2(n)= w0(n− 2)
w1(n)= w0(n− 1) ⇒ w2(n)= w1(n− 1)

w1(n)= w0(n− 1) ⇒ w2(n+ 1)= w1(n)
w1(n+ 1)= w0(n)

Thus, the realization is described by the following system of first-order difference
equations from which the above sample processing algorithm is derived, where the in-

1002 21. DISCRETIZATION METHODS

dicated computational order (i.e., updating w2 first, and w1, second) matters only when
stating the sample processing algorithm because the values of w1,w2 are overwritten
from one sampling instant to the next,

w0(n)= −a1w1(n)−a2w2(n)+x(n)
y(n)= b0w0(n)+b1w1(n)+b2w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= w0(n)

(canonical realization) (21.10.4)

The transposed realization (also known as the observer-canonical form) is shown
below together with its sample processing algorithm.

initialize v1, v2

for each input sample x, do,

y = b0x+ v1

v1 = b1x− a1y + v2

v2 = b2x− a2y

(21.10.5)

The contents of the two delay registers, v1(n), v2(n), are the internal states . Since
the corresponding inputs to the delays must be the next values, v1(n+1), v2(n+2), it
follows that this realization is described by the following system of first-order difference
equations,

y(n)= b0x(n)+v1(n)

v1(n+ 1)= b1x(n)−a1y(n)+v2(n)

v2(n+ 1)= b2x(n)−a2y(n)

(transposed realization) (21.10.6)

Every realization has a transposed version obtained by the following transposition rules:

• replace adders by nodes

• replace nodes by adders

21.10. SAMPLE-BY-SAMPLE PROCESSING 1003

• reverse all flows

• exchange input with output

In this sense, the above transposed realization is recognized to be the transposed
version of the canonical form. The canonical realization is perhaps the most widely used
realization, however, it can often suffer from overflows and coefficient quantization ef-
fects. It has the advantage that it can be implemented in DSP hardware using circular
delay-line buffers which reduce the number of operations per time update. The trans-
posed realization is fairly robust in terms of overflows and coefficient quantization, and
is used by MATLAB’s built-in function filter.

State-Space Realizations

Block diagram realizations can also be cast in state-space form with the contents of the
delays that appear in the block diagram chosen to represent the internal states of the
realization.

A so-called ABCD state-space realization has the following standard form, written
as a system of first-order difference equations,

s(n+ 1) = As(n)+Bx(n)
y(n) = Cs(n)+Dx(n)

(ABCD state-space realization) (21.10.7)

where the state vector s(n) and the matrices A,B,C,D have appropriate dimensions.
The corresponding sample processing algorithm for computing the output sample and
updating the state vector can be stated as follows, where the operations must be done
in the indicated order,

initialize s, then,
for each input sample x, do,

y = Cs+Dx , output
s = As+ Bx , next state

(ABCD sample processing algorithm) (21.10.8)

For example, the state vectors for the canonical and transposed realizations of our
2nd order example are the two-dimensional vectors chosen as the contents of the two
delay registers that appear in their respective block diagrams, that is,

s(n)=
[
w1(n)
w2(n)

]
= canonical , s(n)=

[
v1(n)
v2(n)

]
= transposed (21.10.9)

The corresponding A,B,C,D matrices have dimensions, 2×2, 2×1, 1×2, and 1×1,
respectively, and are given as follows in the two cases,

(canonical): A =
[
−a1 −a2

1 0

]
, B =

[
1
0

]
, C = [c1, c2] , D = b0

(transposed): A =
[
−a1 1
−a2 0

]
, B =

[
c1

c2

]
, C = [1, 0] , D = b0

(21.10.10)

1004 21. DISCRETIZATION METHODS

where we defined the parameters,

c1 = b1 − b0a1

c2 = b2 − b0a2

Using the state-vector definition in Eq. (21.10.9), we may derive the state-space form
of the transposed realization by rewriting Eq. (21.10.6) in the following way,

y(n) = b0x(n)+v1(n)

v1(n+ 1) = b1x(n)−a1y(n)+v2(n)= b1x(n)−a1
[
b0x(n)+v1(n)

]+ v2(n)

v2(n+ 1) = b2x(n)−a2y(n)= b2x(n)−a2
[
b0x(n)+v1(n)

]
or,

v1(n+ 1) = −a1v1(n)+v2(n)+(b1 − b0a1)x(n)= −a1v1(n)+v2(n)+c1 x(n)

v2(n+ 1) = −a2v1(n)+(b2 − b0a2)x(n)= −a2v1(n)+c2x(n)

y(n) = v1(n)+b0x(n)

or, reassembled in ABCD form,[
v1(n+ 1)
v2(n+ 1)

]
=
[
−a1 1
−a2 0

][
v1(n)
v2(n)

]
+
[
c1

c2

]
x(n)

y(n) = [1 , 0
][v1(n)

v2(n)

]
+ b0x(n)

Similarly, we have for the canonical form,

w1(n+ 1) = w0(n)= −a1w1(n)−a2w2(n)+x(n)
w2(n+ 1) = w1(n)

y(n) = b0w0(n)+b1w1(n)+b2w2(n)

= b0
[−a1w1(n)−a2w2(n)+x(n)

]+ b1w1(n)+b2w2(n)

= (b1 − b0a1)w1(n)+(b2 − b0a2)w2(n)+b0x(n)

= c1w1(n)+c2w2(n)+b0x(n)

or, in ABCD form,[
w1(n+ 1)
w2(n+ 1)

]
=
[
−a1 −a2

1 0

][
w1(n)
w2(n)

]
+
[

1
0

]
x(n)

y(n) = [c1, c2
][w1(n)

w2(n)

]
+ b0x(n)

Note that the ABCD parameters of the canonical and transposed cases are related
to each other by the following mappings, which actually apply more generally to all

21.10. SAMPLE-BY-SAMPLE PROCESSING 1005

transposed realizations and are effectively equivalent to the four transposition rules
mentioned above,

A −→ AT

B −→ CT

C −→ BT

D −→ D

(transposition mapping) (21.10.11)

In terms of the ABCD state-space parameters, the transfer function of the discrete-
time system can be obtained by taking z-transforms of both sides of Eqs. (21.10.7) and
eliminating the state variable,

zS(z) = AS(z)+BX(z)
Y(z) = CS(z)+DX(z)

⇒
S(z) = (zI −A)−1BX(z)

Y(z) = C(zI −A)−1BX(z)+DX(z) , or,

Hd(z)= Y(z)
X(z)

= C(zI −A)−1B+D (21.10.12)

where I denotes the identity matrix. We note that the mapping (21.10.11) leaves (21.10.12)
invariant. The corresponding impulse response is obtained by inverting Eq. (21.10.12)
causally,

hd(n)= CAn−1Bu(n− 1)+Dδ(n) (21.10.13)

We demonstrate Eq. (21.10.12) explicitly for the canonical realization with parameters
given by Eq. (21.10.10),

zI −A =
[
z 0
0 z

]
−
[
−a1 −a2

1 0

]
=
[
z+ a1 −a2

−1 z

]

det(zI −A) = z2 + a1z+ a2

(zI −A)−1 = 1

det(zI −A)

[
z a2

1 z+ a1

]
= 1

z2 + a1z+ a2

[
z a2

1 z+ a1

]

C(zI −A)−1B = 1

z2 + a1z+ a2

[
c1, c2

][z a2

1 z+ a1

][
1
0

]
= c1z+ c2

z2 + a1z+ a2

Hd(z) = C(zI −A)−1B+D = c1z+ c2

z2 + a1z+ a2
+ b0

= (b1 − b0a1)z+ (b2 − b0a2)
z2 + a1z+ a2

+ b0 = b0z2 + b1z+ b2

z2 + a1z+ a2

= b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2

MATLAB’s built-in function, tf2ss, maps a transfer function defined by numerator
and denominator coefficients, num,den, to an ABCD state space form that is by default
the canonical realization,

[A,B,C,D] = tf2ss(num,den); % canonical state-space form

1006 21. DISCRETIZATION METHODS

For example, for our 2nd orderHd(z), it generates the parameters of the canonical form
in Eq. (21.10.10),

num = [b0,b1,b2];

den = [1,a1,a2];

[A,B,C,D] = tf2ss(num,den); % canonical state-space form

21.11 Initialization Procedures

The sample processing algorithms (21.10.2)–(21.10.5) as well as (21.10.8) require that
the internal states (i.e., the contents of the delay registers) be properly initialized. Nor-
mally, they are initialized to zero, a choice that corresponds to the so-called “‘zero-state”
output. However, since the discrete-time systems discussed in this chapter are meant
to represent, and numerically solve, continuous-time systems with arbitrary initial con-
ditions specified at t = 0− or t = 0+, we need to be able to incorporate such conditions
into the discrete case.

We discuss here only the 2nd order case, but the methods can easily be extended to
any order. For the case of the direct-form realization, we already discussed in Eqs. (21.7.3)
and (21.7.4) how to approximate the two initial output samples, y−2, y−1, at sampled
times, n = −2, and, n = −1, in terms of given initial values, y(0−), ẏ(0−), specified at,
t = 0−, for the differential equation, that is,

y−1 ≈ y(0−)

y−2 ≈ y(0−)−Tẏ(0−) (21.11.1)

Recalling that,w1(n)= y(n−1), w2(n)= y(n−2), we have,w1(0)= y(−1), w2(0)=
y(−2). Thus, the following initial values must be used in the direct-form algorithm
(21.10.2), with the iteration starting at n = 0, and assuming a causal input xn,

w1(0)= y−1 = y(0−)

w2(0)= y−2 = y(0−)−Tẏ(0−)
v1(0)= x−1 = 0 , causal input

v2(0)= x−2 = 0

(21.11.2)

In the other realizations, however, the internal states,wi(n) or vi(n), are not directly
related to y(n) and therefore, Eq. (21.11.1) cannot be used directly. Since any realization
can be mapped into a state-space form, the following procedure can be used (for 2nd or-
der systems) to map the values, y−2, y−1, to the initial value, s(0), of the two-dimensional
state vector s(n). Given an ABCD realization (21.10.7), we apply Eqs. (21.10.7) at n = −2
and n = −1, assuming a causal input, i.e., x−2 = x−1 = 0,

y−2 = Cs(−2)+Dx−2 = Cs(−2)

s(−1) = As(−2)+Bx−2 = As(−2)

y−1 = Cs(−1)+Dx−1 = Cs(−1)= CAs(−2)

s(0) = As(−1)+Bx−1 = As(−1)= A2 s(−2)

21.11. INITIALIZATION PROCEDURES 1007

or, arranging, y−2, y−1, into a column,[
y−2

y−1

]
=
[
C
CA

]
s(−2)≡ Fs(−2)

s(0) = A2 s(−2)

(21.11.3)

where we defined the so-called “observability” matrix, which is a 2×2 matrix in the 2nd
order case,†

F =
[
C
CA

]
(observability matrix) (21.11.4)

The types of 2nd order systems that are of interest in practice are so-called “observ-
able” systems‡ and are characterized by the property that their observability matrix F
is invertible, i.e., the inverse F−1 exists. This allows Eq. (21.11.3) to be solved for s(−2)
which is then used to calculate s(0),

s(−2)= F−1

[
y−2

y−1

]
⇒ s(0)= A2 s(−2)= A2F−1

[
y−2

y−1

]

Thus, given the approximate initial output values (21.11.1), we calculate the initial state
vector s(0) by,

s(0)= A2F−1

[
y−2

y−1

]
= A2F−1

[
y(0−)−Tẏ(0−)

y(0−)

]
(21.11.5)

The sample processing algorithm (21.10.8) is then iterated starting at n = 0. The
examples below clarify these operations. The observability matrix can be computed
with MATLAB’s built-in function, obsv, or with the more specialized function, obsmat,
placed on the ISP2e toolbox, that allows its calculation for either the canonical or the
transposed realizations. The two functions have usage,

F = obsv(A,C); % based on a given ABCD state-space form

F = obsmat(num,den,type); % type = ’c’, ’t’, for canonical or transposed

For our 2nd order example, we may derive the overall transformation matrix A2F−1 in

†for an Mth order case, F is an M ×M matrix defined as F = [C; CA; CA2; · · · CAM−1
]

‡https://en.wikipedia.org/wiki/Observability

1008 21. DISCRETIZATION METHODS

analytical form. For the canonical realization, we have,

C = [c1, c2
]
, CA = [c1, c2

][−a1 −a2

1 0

]
= [−a1c1 + c2 , −a2c1

]
F =

[
C
CA

]
=
[

c1 c2

−a1c1 + c2 −a2c1

]

F−1 = 1

a1c1c2 − a2c2
1 − c2

2

[
−a2c1 −c2

a1c1 − c2 c1

]

A2 =
[
−a1 −a2

1 0

][
−a1 −a2

1 0

]
=
[
a2

1 − a2 a1a2

−a1 −a2

]

A2F−1 =
[
a2

1 − a2 a1a2

−a1 −a2

]
1

a1c1c2 − a2c2
1 − c2

2

[
−a2c1 −c2

a1c1 − c2 c1

]
, or,

A2F−1 = 1

a1c1c2 − a2c2
1 − c2

2

[
c1a2

2 − a1a2c2 a1a2c1 + a2c2 − a2
1c2

a2c2 a1c2 − a2c1

]
(canonical)

(21.11.6)
The transposed case is simpler,

C = [1 , 0
]
, CA = [1 , 0

][−a1 1
−a2 0

]
= [−a1 , 1

]
F =

[
C
CA

]
=
[

1 0
−a1 1

]
⇒ F−1 =

[
1 0
a1 1

]

A2 =
[
−a1 1
−a2 0

][
−a1 1
−a2 0

]
=
[
a2

1 − a2 −a1

a1a2 −a2

]

A2F−1 =
[
a2

1 − a2 −a1

a1a2 −a2

][
1 0
a1 1

]
, or,

A2F−1 =
[
−a2 −a1

0 −a2

]
(transposed) (21.11.7)

There are similar initialization issues in the continuous-time case. The MATLAB
function lsim for simulating a CT system assumes by default zero initial values. For
non-zero values one must use the observability matrix to map these values to those for
the internal state required by lsim, e.g., see part-(h) of the example of Sec. 21.6.

Example

In the example of Sec. 21.6, we considered the following linear system,

ÿ(t)+3ẏ(t)+2y(t)= ẋ(t) ⇒ Ha(s)= s
s2 + 3s+ 2

(21.11.8)

21.11. INITIALIZATION PROCEDURES 1009

driven by the input, x(t)= 10e−3tu(t), and subject to the initial conditions at t = 0−,

y(0−)= 0 , ẏ(0−)= −5

Using Laplace and dsolve methods, we found the following exact solutions for the
zero-input, zero-state, and total responses, for t ≥ 0,

yzi(t) = −5e−t + 5e−2t

yzs(t) = −5e−t + 20e−2t − 15e−3t

y(t) = yzi(t)+yzs(t)= −10e−t + 25e−2t − 15e−3t

(21.11.9)

Here, we wish to solve the above system numerically by converting it to a discrete-
time system and compare the numerical zero-input, zero-state, and total response so-
lutions to those obtained using lsim and to the exact ones of Eq. (21.11.9).

a. Determine explicit expressions for the discrete-time coefficients [b0, b1, b2] and
[a1, a2] of the approximating difference equation using both the pq and the zero-
older hold discretization schemes of Eqs. (21.8.4) and (21.9.12).

b. Using a sampling time T = 0.01, evaluate the coefficient expressions of part (a)
for the trapezoidal case. Then, using the sample processing algorithm of the
canonical form Eq. (21.10.3), compute the output signals, yzi(t), yzs(t), y(t), by
applying the appropriate input and initial conditions, and compare these outputs
with the exact and lsim outputs.

c. Repeat part (b), using the zero-order hold discretization method and implement
the discrete-time filter using the transposed sample processing algorithm (21.10.5).
In addition, compare the outputs computed by (21.10.5) with those computed us-
ing the built-in function filter, which also uses the transposed form.

Solution

a. The analog transfer function coefficients are [B0, B1, B2]= [0,1,0], and [A1,A2]=
[3,2]. It follows from Eq. (21.8.4),

b0 = p
1+ 3p+ 2p2

, b1 = q− p
1+ 3p+ 2p2

, b2 = − q
1+ 3p+ 2p2

a1 = 3(q− p)−2+ 4pq
1+ 3p+ 2p2

, a2 = 1− 3q+ 2q2

1+ 3p+ 2p2

(21.11.10)

and in particular, for the trapezoidal case with, p = q = T/2,

b0 = T
T2 + 3T + 2

, b1 = 0 , b2 = − T
T2 + 3T + 2

a1 = 2T2 − 4

T2 + 3T + 2
, a2 = T2 − 3T + 2

T2 + 3T + 2

(21.11.11)

1010 21. DISCRETIZATION METHODS

Similarly for the ZOH case, we find,

b0 = 0 , b1 = (e−T − e−2T) , b2 = −(e−T − e−2T)

a1 = −(e−T + e−2T) , a2 = e−3T
(21.11.12)

b. Evaluating Eq. (21.11.11) for T = 0.01, we find the coefficients and corresponding
discrete-time transfer function,

[b0, b1, b2]= [0.0049, 0, −0.0049] , [a1, a2]= [−1.9702, 0.9704]

Hd(z)= 0.0049 − 0.0049z−2

1− 1.9702z−1 + 0.9704z−2

c. Similarly, Eq. (21.11.12) gives,

[b0, b1, b2]= [0, 0.0099, −0.0099] , [a1, a2]= [−1.9702, 0.9704]

Hd(z)= 0.0099z−1 − 0.0099z−2

1− 1.9702z−1 + 0.9704z−2

The following MATLAB code illustrates all the numerical computations — the four
graphs at the end are visually indistinguishable.

y0 = 0; doty0 = -5; % initial conditions at t=0-

x = @(t) 10*exp(-3*t).*(t>=0); % input signal

T = 0.01; % sampling time interval
t = 0:T:6; % sampled times, t=n*T

yzi = -5*exp(-t) + 5*exp(-2*t); % exact zero-input,
yzs = -5*exp(-t) + 20*exp(-2*t) - 15*exp(-3*t); % exact zero-state
ye = -10*exp(-t) + 25*exp(-2*t) - 15*exp(-3*t); % exact total

figure; plot(t,ye,’b-’, t,yzs,’r--’, t,yzi,’g--’)
title(’exact’); % plot exact outputs
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

xt = x(t); % input signal samples
s = tf(’s’); % transfer function variable, class tf
H = s/(s^2+3*s+2); % transfer function object, class tf
S = ss(H); % S is canonical state-space model of H, class ss
F = obsv(S); % observability matrix for CT canonical

% F = obsmat([0 1 0], [1 3 2], ’c’); % alternative calculation of F

yi = [y0; doty0]; % initial conditions with respect to y
si = F \ yi; % initial state-vector, here, si = [0; 2.5]

% run LSIM on state model S
ya = lsim(S,xt,t,si); % approximate total output with non-zero ICs, si
yazs = lsim(S,xt,t); % approximate zero-state output with zero ICs, si=0

21.11. INITIALIZATION PROCEDURES 1011

yazi = lsim(S,0*xt,t,si); % approximate zero-input output with non-zero ICs, si

figure; plot(t,ya,’b-’, t,yazs,’r--’, t,yazi,’g--’)
title(’lsim’); % plot LSIM outputs
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

Err = [norm(ya-ye’)/norm(ye)*100, ... 2% percent errors, exact vs. LSIM
norm(yazs-yzs’)/norm(yzs)*100, ...
norm(yazi-yzi’)/norm(yzi)*100] % Err = [0.0047, 0.0075, 0]

% part (b) - trapezoidal case --

b0 = T/(T^2 + 3*T + 2); % trapezoidal coefficients
b1 = 0;
b2 = -T/(T^2 + 3*T + 2);
a1 = 2*(T^2 - 2)/(T^2 + 3*T + 2);
a2 = (T^2 - 3*T + 2)/(T^2 + 3*T + 2);

b = [b0,b1,b2];
a = [1, a1,a2];

num2str([b;a], ’ %1.8f’) % print with more decimals

% 0.00492587 0.00000000 -0.00492587
% 1.00000000 -1.97024777 0.97044481

% canonical-form -- zero-state response yc_zs(n)

w1 = 0; w2 = 0; % initial values
for n=0:length(t)-1 % iterate canonical form

w0 = -a1*w1 - a2*w2 + x(n*T);
yczs(n+1) = b0*w0 + b1*w1 + b2*w2;
w2 = w1;
w1 = w0;

end

% canonical-form -- total response yc(n)

A = tf2ss(b,a); % state matrix for canonical form
F = obsmat(b,a,’c’); % observability matrix for canonical
si = A*A*inv(F)*[y0-T*doty0; y0]; % initial state vector
w1 = si(1); w2 = si(2); % initial values
for n=0:length(t)-1 % iterate canonical form

w0 = -a1*w1 - a2*w2 + x(n*T);
yc(n+1) = b0*w0 + b1*w1 + b2*w2;
w2 = w1;
w1 = w0;

end

% canonical-form -- zero-input response yc_zi(n)

A = tf2ss(b,a);
F = obsmat(b,a,’c’);
si = A*A*inv(F)*[y0-T*doty0; y0];
w1 = si(1); w2 = si(2); % initial values

1012 21. DISCRETIZATION METHODS

for n=0:length(t)-1 % iterate canonical form
w0 = -a1*w1 - a2*w2 + 0*x(n*T); % note, input has been zeroed
yczi(n+1) = b0*w0 + b1*w1 + b2*w2;
w2 = w1;
w1 = w0;

end

figure; plot(t,yc,’b-’, t,yczs,’r--’, t,yczi,’g--’); % plot trapezoidal outputs
title(’trapezoidal - canonical form’);
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total output’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

Ec = [norm(yc-ye)/norm(ye)*100, ... % percent errors, exact vs. trapezoidal
norm(yczs-yzs)/norm(yzs)*100, ...
norm(yczi-yzi)/norm(yzi)*100] % Ec = [1.4988 2.2483 2.0495]

% part (c) - zero-order hold case --

b0 = 0; % ZOH coefficients
b1 = exp(-T)-exp(-2*T);
b2 = -exp(-T)+exp(-2*T);
a1 = -exp(-T)-exp(-2*T);
a2 = exp(-3*T);

b = [b0,b1,b2];
a = [1, a1,a2];

num2str([b;a], ’ %1.8f’) % print with more decimals

% 0.00000000 0.00985116 -0.00985116
% 1.00000000 -1.97024851 0.97044553

% transposed-form -- zero-state response ytzs(n)

v1 = 0; v2 = 0; % initial values
for n=0:length(t)-1 % iterate transposed form

ytzs(n+1) = b0*x(n*T) + v1;
v1 = b1*x(n*T) - a1*ytzs(n+1) + v2;
v2 = b2*x(n*T) - a2*ytzs(n+1);

end

yfzs = filter(b,a,x(t)); % output using FILTER with zero initial conditions

% transposed-form -- total response yt(n)

A = tf2ss(b,a).’; % state matrix for transposed form
F = obsmat(b,a,’t’); % observability matrix for transposed
si = A*A*inv(F)*[y0-T*doty0; y0]; % initial state vector for transposed form
v1 = si(1); v2 = si(2); % initial values
for n=0:length(t)-1 % iterate transposed form

yt(n+1) = b0*x(n*T) + v1;
v1 = b1*x(n*T) - a1*yt(n+1) + v2;
v2 = b2*x(n*T) - a2*yt(n+1);

end

yf = filter(b,a,x(t),si); % output using FILTER with initial conditions

21.11. INITIALIZATION PROCEDURES 1013

% transposed-form -- zero-input response ytzi(n)

A = tf2ss(b,a).’; % A = transposed of canonical case
F = obsmat(b,a,’t’);
si = A*A*inv(F)*[y0-T*doty0; y0]; % initial state vector
v1 = si(1); v2 = si(2); % initial values
for n=0:length(t)-1 % iterate transposed form

ytzi(n+1) = b0*x(n*T)*0 + v1; % zero input
v1 = b1*x(n*T)*0 - a1*ytzi(n+1) + v2;
v2 = b2*x(n*T)*0 - a2*ytzi(n+1);

end

yfzi = filter(b,a,x(t)*0,si); % output using FILTER with initial conditions

figure; plot(t,yt,’b-’, t,ytzs,’r--’, t,ytzi,’g--’) % plot ZOH outputs
title(’zero-order hold - transposed form’)
xlabel(’\itt’); ylabel(’{\ity}({\itt})’);
legend(’ total output’, ’ zero-state’, ’ zero-input’, ’location’,’ne’)
xaxis(0,6,0:6); yaxis(-1.5,1.5, -1.5:0.5:1.5);

Et = [norm(yt-ye)/norm(ye)*100, ... % percent errors, exact vs. ZOH
norm(ytzs-yzs)/norm(yzs)*100, ...
norm(ytzi-yzi)/norm(yzi)*100] % Et = [2.0645 1.5151 2.0464]

Ef = [norm(yt-yf)/norm(yf)*100, ... % percent errors, transposed vs. FILTER
norm(ytzs-yfzs)/norm(yfzs)*100,...
norm(ytzi-yfzi)/norm(yfzi)*100] % Ef = [8.12e-12, 3.34e-12, 0]

% for completeness, we also include the calculation using the direct form
% ---
% direct-form -- total response yd(n)
% w1 = y0; % initialize w1,w2
% w2 = y0-T*doty0;
% v1 = 0; % initialize v,v2, where x(t) is causal
% v2 = 0;
% for n=0:length(t)-1
% yd(n+1) = -a1*w1 - a2*w2 + b0*x(n*T) + b1*v1 + b2*v2; % difference equation
% w2 = w1; % time updates
% w1 = yd(n+1);
% v2 = v1;
% v1 = x(n*T);
% end
%
% norm(yd-yf)*100/norm(yf) % percentage error with respect to FILTER = 4.4434e-12

1014 21. DISCRETIZATION METHODS

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
exact

t

y(
t)

 total
 zero−state
 zero−input

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
lsim

t

y(
t)

 total
 zero−state
 zero−input

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
trapezoidal − canonical form

t

y(
t)

 total output
 zero−state
 zero−input

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
zero−order hold − transposed form

t

y(
t)

 total output
 zero−state
 zero−input

21.12 Forward / Backward Euler, and Trapezoidal Rules

The forward/backward Euler and trapezoidal discretization rules given in Eqs. (21.8.2)
and (21.8.3) can be understood intuitively by considering the simple case of an integrator
system, that is, one whose input/output differential equation and solution are,

ẏ(t)= x(t) ⇒ y(t)= y(0−)+
∫ t

0−
x(t′)dt′ , t ≥ 0− (21.12.1)

Given a discretization time-step T, then by subtracting the values of y(t) at the two
successive time instants, tn = nT, and, tn−1 = (n− 1)T, we obtain from Eq. (21.12.1),

y(tn)−y(tn−1)=
∫ tn

tn−1

x(t)dt (21.12.2)

which represents the area under the curve x(t) over the subinterval [tn−1, tn]. The three
discretization rules arise by approximating this area in three slightly different ways, as
shown below.

21.13. IDEAL SAMPLING, STARRED LAPLACE TRANSFORM, Z-TRANSFORM 1015

In the forward Euler case, the area is approximated by the rectangle of base T and
height equal to the left sample x(tn−1), extrapolated forward. In the backward Euler
case, the right sample x(tn) is extrapolated backward, defining a rectangular area of
baseT. In the trapezoidal case, the two points x(tn−1), x(tn) are connected by a straight
line forming a trapezoid of base T (its area is the average of the heights times the base).
Thus, the three approximations lead to the difference equations,

forward Euler: y(tn)−y(tn−1)= T · x(tn−1)

backward Euler: y(tn)−y(tn−1)= T · x(tn)

trapezoidal: y(tn)−y(tn−1)= T · x(tn−1)+x(tn)
2

And, introducing the p,q definitions of Eq. (21.8.3), the above may be written in a unified
compact way,

yn − yn−1 = pxn + qxn−1 (21.12.3)

where we denoted x(tn) by xn and similarly for yn. In the z-domain this leads to the
discrete-time transfer function,

Hd(z)= Y(z)
X(z)

= p+ qz−1

1− z−1
(21.12.4)

and if we compare it with the original continuous-time transfer function of the integra-
tor, that is,

Ha(s)= Y(s)
X(s)

= 1

s
(21.12.5)

we obtain the identification of the s variable in terms of z as given by Eq. (21.8.2), in the
sense that Eq. (21.12.4) acts as if it were the integrator (21.12.5),

1

s
= p+ qz−1

1− z−1
⇒ s = 1− z−1

p+ qz−1
(21.12.6)

21.13 Ideal Sampling, Starred Laplace Transform, z-Transform

An ideal sampler, depicted below, represents the periodic measurement of a continuous-
time signal whereby a switch closes periodically , say every T seconds driven by a sam-
pling clock, and capturing the time samples, x(nT), of the analog signal.

1016 21. DISCRETIZATION METHODS

Because such ideal switch closes and opens instantaneously, the duration of each
sample will be zero, thus, the resulting sampled signal, denoted here by x∗(t),† can be
viewed as a continuous-time signal consisting of a sum of delta-function pulses, each
weighted by the corresponding sample values, and with zero values between samples,

x∗(t)=
∑
n
x(nT)δ(t − nT)= ideally-sampled signal (21.13.1)

Assuming a causal signal x(t), the above summation can be restricted to n ≥ 0.
The Laplace transform of the ideally sampled signal x∗(t) is referred to as the starred
Laplace transform,‡

X∗(s)=
∫∞

0−
x∗(t)e−stdt =

∫∞
0−

∑
n≥0

x(nT)δ(t−nT)e−stdt =
∑
n≥0

x(nT)
∫∞

0−
δ(t−nT)e−stdt

or,

X∗(s)=
∑
n≥0

x(nT)e−nsT = starred Laplace transform (21.13.2)

With the replacement, z = esT, Eq. (21.13.2) is recognized as the z-transform of the
sequence x(nT),

X(z)= X∗(s)
∣∣∣∣
z=esT

=
∑
n≥0

x(nT)z−n = z-transform (21.13.3)

Often, the following abused notation is used for this z-transform, X(z)= Z[X(s)],
referred to as the z-transform of a Laplace transform, that is,

X(z)= Z[X(s)] = X∗(s)
∣∣∣∣
z=esT

=
∑
n≥0

x(nT)z−n (21.13.4)

which actually consists of the following series of steps going from X(s) to X(z), first,
perform an inverse Laplace transform on X(s) to get the analog time signal x(t), then,

†A notation not to be confused with complex conjugation
‡A notation used primarily in the control systems literature

21.13. IDEAL SAMPLING, STARRED LAPLACE TRANSFORM, Z-TRANSFORM 1017

sample x(t) at the sampling instants tn = nT to obtain the sampled signal x(nT), and
finally, perform a z-transform,

X(s) L−1−→ x(t) sample−→ x(nT) Z−→ X(z)=
∑
n≥0

x(nT)z−n (21.13.5)

and these can be combined into the more accurate but awkward notation,

X(z)= Z
[
L−1[X(s)]∣∣∣∣

sampled

]
(21.13.6)

We note also that if the sampled signal x∗(t) is further filtered by an analog system
with transfer function Ga(s) and impulse response ga(t), then, if the analog output
is (synchronously) sampled at the same rate, the overall system can be thought of a
discrete-time system with transfer function, Gd(z)= Z

[
Ga(s)

]
, and impulse response,

gd(n)= ga(nT), as depicted below,

Indeed, we have the following relationships, assuming causal system and input,

Y(s)= Ga(s)X∗(s)

y(t)=
∫∞

0−
ga(t − t′)x∗(t′)dt′ =

∑
m≥0

ga(t −mT)x(mT)

y(nT)=
∑
m≥0

ga(nT −mT)x(mT) ⇒ gd(n)= ga(nT)

Y∗(s)= [Ga(s)X∗(s)
]∗ = G∗a (s)X∗(s) ⇒ Gd(z)= Z

[
Ga(s)

]
Y(z)= Gd(z)X(z)

(21.13.7)

where the indicated factorization,
[
Ga(s)X∗(s)

]∗ = G∗a (s)X∗(s), is valid because one
of the factors is already starred.† We will use the results of Eq. (21.13.7) in another set
discussing digital control systems.

Finally, we note that another way to justify the discretization mappings of Eq. (21.12.6)
is to replace the exact relationship, z = esT, with an approximate one based on the fol-

†we note the properties that, in general,
[
G1G2

]∗ �= G∗1 G∗2 , but,
[
G1G∗2

]∗ = G∗1 G∗2

1018 21. DISCRETIZATION METHODS

lowing small-x Taylor series expansions of the exponential, that is,

ex ≈ 1+ x

ex = 1

e−x
≈ 1

1− x

ex = ex/2

e−x/2
≈ 1+ x/2

1− x/2

It follows that since T is small, we may make the same approximations,

z = esT ≈ 1+ sT ⇒ s = 1

T
(z− 1) forward Euler

z = esT = 1

e−sT
≈ 1

1− sT
⇒ s = 1

T
(1− z−1) backward Euler

z = esT = esT/2

e−sT/2
≈ 1+ sT/2

1− sT/2
⇒ s = 2

T
1− z−1

1+ z−1
trapezoidal

21.14 Zero-Order Hold

Here, we discuss briefly the three-step design procedure of the zero-order hold dis-
cretization scheme resulting in Eq. (21.9.1),

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
(zero-order hold) (21.14.1)

where the notation, Gd(z)= Z
[
G(s)

]
, was defined above, that is,

Gd(z)= Z
[
G(s)

] = G∗(s)
∣∣∣∣
z=esT

=
∑
n≥0

g(nT)z−n (21.14.2)

G(s) L−1−→ g(t) sample−→ g(nT) Z−→ Gd(z)=
∑
n≥0

g(nT)z−n (21.14.3)

Gd(z)= Z
[
L−1[G(s)]∣∣∣∣

sampled

]
(21.14.4)

Let us assume that the given (stable and causal) continuous-time system has a proper†

transfer functionHa(s) withM distinct poles lying in the left-hand s-plane, and assume
that its partial-fraction expansion (PFE) has already been made in the form,

Ha(s)= R0 +
M∑
i=1

Ri

s+ pi
(21.14.5)

with Re(pi)> 0, so that the corresponding causal impulse response is,

ha(t)= R0δ(t)+
M∑
i=1

Rie−pitu(t) (21.14.6)

†i.e., the degree of its numerator is at most equal to that of its denominator

21.14. ZERO-ORDER HOLD 1019

Then, the zero-state output due to a causal input x(t) will be, for t ≥ 0,

y(t)=
∫ t

0−
ha(t−t′)x(t′)dt′ =

∫ t

0−

[
R0δ(t−t′)+

M∑
i=1

Rie−pi(t−t
′)u(t−t′)]x(t′)dt′ , or,

y(t)= R0x(t)+
M∑
i=1

Ri e−pit
∫ t

0
epit

′
x(t′)dt′︸ ︷︷ ︸

yi(t)

= R0x(t)+
M∑
i=1

Riyi(t) (21.14.7)

It follows from the definition of the partial output yi(t) after evaluating it at the
two successive time instants tn = nT and tn−1 = (n− 1)T, that it will satisfy the exact
relationship,

yi(tn)−e−piT yi(tn−1)= e−pitn
∫ tn

tn−1

epit
′
x(t′)dt′ (21.14.8)

The zero-order hold approximation consists of holding the value of x(t′) constant at
x(tn−1) over the small time interval [tn−1, tn], that is, replacing x(t′)≈ x(tn−1) within
the integral (21.14.8). The t′ integration then can be done explicitly,

e−pitn
∫ tn

tn−1

epit
′
dt′ = e−pitn

epitn − epitn−1

pi
= 1− e−pi(tn−tn−1)

pi
= 1− e−piT

pi

where we used tn − tn−1 = T. We obtain then the zero-order hold approximation of the
exact equation (21.14.8),

yi(tn)−e−piT yi(tn−1)= 1− e−piT

pi
x(tn−1) (21.14.9)

and taking z-transforms of both sides, we find,

Yi(z)−e−piTz−1Yi(z)= 1− e−piT

pi
z−1X(z) , or,

Yi(z)= 1− e−piT

pi
z−1

1− e−piTz−1
X(z)

which can be written as an identity in z in the form,

Yi(z)= 1− e−piT

pi
z−1

1− e−piTz−1
X(z)= 1

pi

[
1− 1− z−1

1− e−piTz−1

]
X(z) (21.14.10)

Sampling Eq. (21.14.7) at t = tn, then taking z-transforms, and using Eq. (21.14.10),
we find the overall discrete-time transfer function that incorporates the zero-order hold
approximation,

1020 21. DISCRETIZATION METHODS

y(tn)= R0x(tn)+
M∑
i=1

Riyi(tn)

Y(z)= R0X(z)+
M∑
i=1

RiYi(z)= R0X(z)+
M∑
i=1

Ri

pi

[
1− 1− z−1

1− e−piTz−1

]
X(z)

Hd(z)= Y(z)
X(z)

= R0 +
M∑
i=1

Ri

pi

(
1− e−piT

)
z−1

1− e−piTz−1

Hd(z)= R0 +
M∑
i=1

Ri

pi

[
1− 1− z−1

1− e−piTz−1

]

Hd(z)=
(
R0 +

M∑
i=1

Ri

pi

)
−

M∑
i=1

Ri

pi
1− z−1

1− e−piTz−1
, or,

Hd(z)= R0 +
M∑
i=1

Ri

pi

(
1− e−piT

)
z−1

1− e−piTz−1
=
(
R0 +

M∑
i=1

Ri

pi

)
−

M∑
i=1

Ri

pi
1− z−1

1− e−piTz−1

(21.14.11)
with discrete-time impulse response, for n ≥ 0,

hd(n)= R0δ[n]+
M∑
i=1

Ri

pi

(
1− e−piT

)
e−piT(n−1)u[n− 1] (21.14.12)

Next, we demonstrate that Eq. (21.14.11) is identical to Eq. (21.14.1) and that steps
1–3 can be used to obtain it. To this end, we form, G(s)= Ha(s)/s, and perform its PFE,
and follow the progression of steps shown in Eq. (21.14.3),

G(s) = Ha(s)
s

= R0

s
+

M∑
i=1

Ri

s(s+ pi)
= R0

s
+

M∑
i=1

Ri

pi

[
1

s
− 1

s+ pi

]

g(t) = R0u(t)+
M∑
i=1

Ri

pi

[
u(t)−e−pit u(t)]

g(tn) = R0u(tn)+
M∑
i=1

Ri

pi

[
u(tn)−e−piTnu(tn)

]

Gd(z) =
∞∑
n=0

g(tn)z−n = R0

1− z−1
+

M∑
i=1

Ri

pi

[
1

1− z−1
− 1

1− e−piT z−1

]
, or

Gd(z)=
(
R0 +

M∑
i=1

Ri

pi

)
1

1− z−1
−

M∑
i=1

Ri

pi
1

1− e−piTz−1
(21.14.13)

21.14. ZERO-ORDER HOLD 1021

where to be more precise, by tn = nT we shall mean t+n = nT+0 = limε→0+(nT + ε),
that is, evaluating the time samples g(tn) from the right side (the causal side), so that
u(tn) becomes equal to the discrete-time unit-step u[n].

Next, by multiplying Gd(z) by the factor (1−z−1), we obtain the final discrete-time
transfer function, which agrees with (21.14.11),

(1− z−1)Gd(z)=
(
R0 +

M∑
i=1

Ri

pi

)
−

M∑
i=1

Ri

pi
1− z−1

1− e−piTz−1
= Hd(z)

Comparing G(s) and Gd(z) we observe that we are effectively making the substitu-
tions of Eq. (21.9.8), in step-3 of the construction procedure,

G(s) = R0

s
+

M∑
i=1

Ri

pi

[
1

s
− 1

s+ pi

]
⇓

Gd(z) = R0

1− z−1
+

M∑
i=1

Ri

pi

[
1

1− z−1
− 1

1− e−piT z−1

]

An alternative and faster way of showing Eqs. (21.14.11) and (21.14.12) is to work
directly with Eq. (21.14.1) and rewrite it in the form,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
= Z [F(s)] , F(s)= 1− e−sT

s
Ha(s)

which, in the time-domain, means that the discrete-time samples hd(n) will be,

hd(n)= f(t+n) (21.14.14)

After using the differentiation and delay properties of Laplace transforms, we find
from the definition of F(s),

sF(s)= Ha(s)−e−sTHa(s) ⇒ ḟ (t)= ha(t)−ha(t −T)

where a term f(0−)was dropped because of the assumed causality of ha(t). Integrating
this relationship and dropping another constant of integration for the same reason, we
find,

f(t)=
∫ t

t−T
ha(t′)dt′ (21.14.15)

The same result follows by noting that, f(t)= g(t)−g(t − T), where g(t) is the
inverse Laplace transform of, G(s)= Ha(s)/s, which by the integration property of
Laplace transforms is,

g(t)=
∫ t

0−
ha(t′)dt′ ⇒ f(t)=

∫ t

0−
ha(t′)dt′ −

∫ t−T

0−
ha(t′)dt′ =

∫ t

t−T
ha(t′)dt′

Thus, evaluating Eq. (21.14.14) at t = nT, or rather, at t+n , we have, for n ≥ 0,

hd(n)= f(t+n)=
∫ t+n

t+n−T
ha(t′)dt′ (zero-order hold) (21.14.16)

1022 21. DISCRETIZATION METHODS

Next, we apply Eqs. (21.14.15)–(21.14.16) to the given analog system of Eq. (21.14.5)
whose impulse response is given by Eq. (21.14.6), assuming t ≥ 0+,

f(t) =
∫ t

t−T
ha(t′)dt′ =

∫ t

t−T

⎡⎣R0δ(t′)+
M∑
i=1

Rie−pit
′
u(t′)

⎤⎦dt′

= R0

∫ t

t−T
δ(t′)dt′ +

M∑
i=1

Ri
e−pi max(0,t−T) − e−pit

pi

where because of the unit-step u(t′), the lower limit of integration in the summation
terms was constrained to be both, t − T < t′ and 0 < t′, or, max(0, t − T)< t′. The
R0 term vanishes if t ≥ T+, or n ≥ 1, and is equal to R0 if t = 0+. Similarly, the
summation terms vanish at t = 0. Thus, based on these properties, we eventually
obtain the following expression, which is precisely Eq. (21.14.12),

hd(n)= f(t+n)= R0δ[n]+
M∑
i=1

Ri

pi

(
1− e−piT

)
e−piT(n−1) u[n− 1] (21.14.17)

Staircase Reconstructor and Zero-Order Hold

Another useful way to understand the zero-order hold operation is to view it as a stair-
case reconstruction filter, or, as a sample & hold operation or as a D/A conversion opera-
tion, as shown below. It takes as input an ideally sampled signal x∗(t) and reconstructs
it back into analog form by filling the time gaps between samples by holding each sample
constant for a duration of T seconds.

It may be thought of as the filtering the sampled signal x∗(t) by an analog filter
whose impulse response is a (causal) rectangular pulse of duration of T seconds,

gzoh(t)= u(t)−u(t −T) ⇒ Gzoh(s)= 1− e−sT

s
(21.14.18)

so that the staircase output becomes, for a causal input,

xzoh(t) =
∫∞

0−
x∗(t′)gzoh(t − t′)dt′ =

∫∞
0−

[∑
n≥0

x(nT)δ(t′ − nT)
]
gzoh(t − t′)dt′

=
∑
n≥0

x(nT)gzoh(t − nT)=
∑
n≥0

x(nT)
[
u(t − nT)−u(t − nT −T)

]
(21.14.19)

The zero-order hold discretization formula (21.14.1) follows if the staircase-reconstructed
signal xzoh(t) is filtered further by the analog filter Ha(s), as shown below, followed by
the sampling of the resulting analog output.

21.15. STEP INVARIANCE AND IMPULSE INVARIANCE 1023

The indicated filtering operations can be expressed using Laplace transforms as
follows, followed by extracting starred Laplace transforms, and replacing those by z-
transforms. Noting that the quantity, (1 − e−sT), is already starred (at samples t = 0
and t = T only), we have,

Y(s) = Ha(s)Xzoh(s)= Ha(s)Gzoh(s)X∗(s)=
(
1− e−sT

)
X∗(s)

Ha(s)
s

Y∗(s) =
[(

1− e−sT
)
X∗(s)

Ha(s)
s

]∗
= (1− e−sT

)
X∗(s)

[
Ha(s)
s

]∗
Y(z) = (1− z−1)·Z

[
Ha(s)
s

]
X(z)= Hd(z)X(z)

(21.14.20)

The last equation following from the second one by setting z = esT and using
Eq. (21.13.4). Such filtering viewpoint is very useful in considering the discretization
of feedback control systems and will be discussed further in Chap. 22.

21.15 Step Invariance and Impulse Invariance

There is yet another viewpoint of the zero-order hold that is intuitive. Writing Eq. (21.14.1)
in the more accurate form,

Hd(z)= (1− z−1)·Z
[
L−1

[
Ha(s)
s

]∣∣∣∣
sampled

]
(21.15.1)

then, dividing by the factor, (1−z−1), and taking inverse z-transforms, we may re-write
Eq. (21.15.1) in the equivalent form,

Z−1
[
Hd(z)
1− z−1

]
= L−1

[
Ha(s)
s

]∣∣∣∣∣∣
sampled

(step invariance) (21.15.2)

Since the Laplace transform of a unit-step u(t) is 1/s, it follows that the quantity
Ha(s)/s will be the Laplace transform of the output of Ha(s) when the input is u(t),
i.e., the step response of the filter Ha(s). Similarly, Hd(z)/(1−z−1) is the z-transform
of the step-response of the discrete-time system Hd(z).

1024 21. DISCRETIZATION METHODS

Therefore, Eq. (21.15.2) states that, in the time domain, the step response of the
discrete-time filter Hd(z) must match the sampled version of the step response of the
continuous-time filter Ha(s), a property referred to as step invariance.

Impulse invariance is another simple method of discretization by requiring that the
impulse response of the discrete-time system Hd(z) match the sampled version of the
impulse response of the continuous-time system.

It can be derived as a further approximation of the zero-order hold when the sam-
pling interval T is small. A simple derivation, is to take the small-T limit of the quantity,

1− e−sT

s
≈ 1− (1− sT)

s
= T

which leads to the approximation of the zero-order hold,

Hd(z)= Z
[(

1− e−sT
) Ha(s)

s

]
≈ Z[THa(s)

]
or, in the time domain,

hd(n)≈ Tha(nT) (impulse invariance) (21.15.3)

The same result can also be obtained by approximating the integral in Eq. (21.14.16) as
follows,

hd(n)=
∫ nT

nT−T
ha(t′)dt′ ≈ Tha(nT)

A slightly better approximation results if we use the trapezoidal approximation to the
integral,

hd(n)=
∫ nT

nT−T
ha(t′)dt′ ≈ T

ha(nT)+ha(nT −T)
2

(21.15.4)

This expression also fixes a small issue with the conventional impulse invariance
method (21.15.3) at n = 0, which gives, assuming a causal ha(t),

hd(0)= T
2
ha(0+)

This leads to a corrected version† of the impulse invariance method, for n ≥ 0,

hd(n)≈ Tha(nT)−δ[n] T
2
ha(0+) (impulse invariance) (21.15.5)

We will not have any further use of the impulse invariance method, since the bilinear
and zero-order hold discretization methods are adequate for our purposes in this book.

†R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 3/e, Wiley, New York, 1987; L. B. Jackson, “A
Correction to Impulse Invariance,” IEEE Signal Processing Letters, 7, 273 (2000); W. F. G. Mecklenbräuker,
“Remarks on and Correction to the Impulse Invariant Method for the Design of IIR Digital Filters,” Signal
Processing, 80, 1687 (2000).

21.16. FIRST-ORDER HOLD 1025

21.16 First-Order Hold

The first-order hold has a discrete-time transfer function similar to Eq. (21.14.1),

Hd(z)= (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
(first-order hold) (21.16.1)

It is actually a modified version of the standard first-order hold, called a triangular
hold, and also used by MATLAB’s built-in function c2d. Under the same assumptions of
distinct poles as for the zero-order hold, the exact equations Eq. (21.14.5)–(21.14.8) are
still valid, that is, for t ≥ 0,

Ha(s) = R0 +
M∑
i=1

Ri

s+ pi
, Re(pi)> 0

y(t) = R0x(t)+
M∑
i=1

Riyi(t)

(21.16.2)

with the partial output yi(t) satisfying,

yi(tn)−e−piT yi(tn−1)= e−pitn
∫ tn

tn−1

epit
′
x(t′)dt′ (21.16.3)

where in the zero-order hold case, x(t′)was approximated by x(tn−1)within the interval,
[tn−1, tn]. By contrast, the first-order hold approximation replaces x(t′) by the more
accurate approximation of a straight line connecting the points x(tn−1) and x(tn),

x(t′)≈ x(tn−1)+x(tn)−x(tn−1)
T

(t′ − tn−1) , tn−1 ≤ t′ ≤ tn

The integral (21.16.3) can then be done exactly, resulting in the following difference
equation, and its z-transform,

yi(tn)−e−piT yi(tn−1)= 1

Tp2
i

[(
e−piT + piT − 1

)
x(tn)+

(
1− e−piT − piTe−piT

)
x(tn−1)

]

Yi(z)= 1

Tp2
i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT
)
z−1

1− e−piTz−1
X(z) (21.16.4)

Thus, the overall output and discrete-time transfer function will be,

Y(z) = R0X(z)+
M∑
i=1

RiYi(z)

= R0X(z)+
M∑
i=1

Ri

Tp2
i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT
)
z−1

1− e−piTz−1
X(z)

Hd(z) = Y(z)
X(z)

= R0 +
M∑
i=1

Ri

Tp2
i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT
)
z−1

1− e−piTz−1
, or,

1026 21. DISCRETIZATION METHODS

Hd(z)= R0 +
M∑
i=1

Ri

Tp2
i

(
e−piT + piT − 1

)+ (1− e−piT − piTe−piT
)
z−1

1− e−piTz−1
(21.16.5)

Next, we show the Eq. (21.16.5) is identical to (21.16.1) under the substitutions of Eq. (21.9.8),

1

s+ p1
⇒ 1

1− e−p1Tz−1

1

(s+ p1)2
⇒ Tz−1

(1− e−p1Tz−1)2

and

1

s
⇒ 1

1− z−1

1

s2
⇒ Tz−1

(1− z−1)2

(21.16.6)

For the given Ha(s) in Eq. (21.16.2), we have,

Ha(s)
s2

= R0

s2
+

M∑
i=1

Ri

s2(s+ pi)
= R0

s2
+

M∑
i=1

Ri

p2
i

[
1

s+ pi
− 1

s
+ pi
s2

]

and making the substitutions (21.16.6), we find the corresponding z-transform,

Z
[
Ha(s)
s2

]
= R0 Tz−1

(1− z−1)2
+

M∑
i=1

Ri

p2
i

[
1

1− e−p1Tz−1
− 1

1− z−1
+ piTz−1

(1− z−1)2

]

Thus, according to Eq. (21.14.1), we must have,

Hd(z)= (1− z−1)2

Tz−1
·Z
[
Ha(s)
s2

]
= R0+

M∑
i=1

Ri

Tp2
i
·z·

[
(1− z−1)2

1− e−p1Tz−1
− (1− z−1)+piTz−1

]

which is easily shown to be identically equal to Eq. (21.16.5).

Zero-Order and First-Order Hold of an Integrator

We note also that the zero-order hold approximation of a simple integrator is equivalent
to the forward Euler rule, whereas its first-order hold approximation is equivalent to the
trapezoidal rule. Indeed, for the zero-order hold, we substitute, Ha(s)= 1/s, for the
transfer function of the integrator,

Hd(z)= (1− z−1)·Z
[
Ha(s)
s

]
= (1− z−1)·Z

[
1

s2

]
= (1− z−1)· Tz−1

(1− z−1)2
= T
z− 1

while for the first-order hold we have,

Hd(z) = (1− z−1)2

Tz−1
· Z

[
Ha(s)
s2

]
= (1− z−1)2

Tz−1
· Z

[
1

s3

]

= (1− z−1)2

Tz−1
· T

2z−1(1+ z−1)
2(1− z−1)3

= T
2

1+ z−1

1− z−1

where we used the transformations,

1

s2

L−1−→ tu(t) sample−→ nTu(nT) Z−→ Z
[

1

s2

]
= Tz−1

(1− z−1)2

1

s3

L−1−→ 1

2
t2u(t) sample−→ 1

2
(nT)2u(nT) Z−→ Z

[
1

s3

]
= T2z−1(1+ z−1)

2(1− z−1)3

21.17. RAMP INVARIANCE 1027

21.17 Ramp Invariance

We note finally, that Eq. (21.16.1) can be rearranged as follows to obtain the so-called
ramp invariance property, which states that the time-domain ramp response of the
discrete-time system Hd(z) must match the sampled version of the ramp response of
the continuous-time system,

Z−1

[
Tz−1

(1− z−1)2
Hd(z)

]
= L−1

[
Ha(s)
s2

]∣∣∣∣∣∣
sampled

(ramp invariance) (21.17.1)

This follows by realizing that 1/s2 is the Laplace transform of the ramp input, tu(t),
and that Tz−1/(1−z−1)2 is the z-transform of the discrete-time ramp input, nTu(nT).

21.18 Appendix

Proof of Eq. (21.2.1) Using Laplace Transforms

We will prove only the second-order case, the other cases being similar. The initial value
theorem of Laplace transforms states that for the Laplace transform pair, y(t)←→ Y(s),
and initial conditions y(0−), ẏ(0−), we have the limits,

y(0+) = lim
s→∞

[
sY(s)

]
ẏ(0+) = lim

s→∞

[
s
[
sY(s)−y(0−)]]

where the second one follows from the first by noting that
[
sY(s)−y(0−)] is the Laplace

transform of ẏ(t). The solution of the differential equation (21.1.3) for an arbitrary
causal input x(t), subject to the initial conditions, y(0−), ẏ(0−), can be expressed in
the s-domain in the following form,

ÿ(t)+a1ẏ(t)+a2y(t)= b0ẍ(t)+b1ẋ(t)+b2x(t) ⇒[
s2Y(s)−sy(0−)−ẏ(0−)]+ a1

[
sY(s)−y(0−)]+ a2Y(s)= (b0s2 + b1s+ b2)X(s) ⇒

Y(s)= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2

+
[
b0s2 + b1s+ b2

s2 + a1s+ a2

]
X(s)

= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2

+
[
b0 + (b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
X(s)

after a long-division step. Thus,

Y(s)= (s+ a1)y(0−)+ẏ(0−)
s2 + a1s+ a2

+ b0X(s)+
[
(b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
X(s)

(21.18.1)
multiplying by s, we have,

sY(s)= s(s+ a1)y(0−)+sẏ(0−)
s2 + a1s+ a2

+ b0 sX(s)+
[
(b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
sX(s)

1028 21. DISCRETIZATION METHODS

Taking the limit as s→∞, we have,

lim
s→∞

[
sY(s)

] =
= lim

s→∞

[
s(s+ a1)y(0−)+sẏ(0−)

s2 + a1s+ a2
+ b0 sX(s)+

[
(b1 − a1b0)s+ (b2 − a2b0)

s2 + a1s+ a2

]
sX(s)

]
= y(0−)+b0x(0+)

where we assumed that the limit x(0+)= lims→∞
[
sX(s)

]
exists, and for the same reason,

we also dropped the limit of the last term. This verifies the y(0+) part of Eq. (21.2.1).
For the ẏ(0+) part, it follows from Eq. (21.18.1) that,

s
[
sY(s)−y(0−)] =
= s2 ẏ(0−)−sa2y(0−)

s2 + a1s+ a2
+ b0 s2X(s)+

[
(b1 − a1b0)s2 + (b2 − a2b0)s

s2 + a1s+ a2

][
sX(s)

]
Assuming that the limits, x(0+)= lims→∞

[
sX(s)

]
, and, ẋ(0+)= lims→∞

[
s2X(s)

]
,

both exist, it follows that the limit of the first term will be ẏ(0−), the limit of the second
term, b0 ẋ(0+), and the limit of the third term, (b1 − a1b0)x(0+). Thus, we have,

ẏ(0+)= lim
s→∞

[
s
[
sY(s)−y(0−)]] = ẏ(0−)+b0 ẋ(0+)+(b1 − a1b0)x(0+)

Proof of Eq. (21.2.1) Using State-Space Realizations

Perhaps the most straightforward proof of Eq. (21.2.1) is by using state-space realiza-
tions. For example, for a 3d order filter, the so-called controller/canonical state space
form is described in terms of a 3-dimensional state vector, v(t)= [v1(t), v2(t), v3(t)

]T
that satisfies the matrix equations,

dv(t)
dt

= Av(t)+Bx(t)

y(t) = Cv(t)+Dx(t)
(21.18.2)

where A,B,C,D are defined by,

A =
⎡⎢⎣−a1 −a2 −a3

1 0 0
0 1 0

⎤⎥⎦ , B =
⎡⎢⎣ 1

0
0

⎤⎥⎦
C = [b1 − b0a1, b2 − b0a2, b3 − b0a3] , D = b0

(21.18.3)

in terms of the transfer function coefficients,

H(s)= b0s3 + b1s2 + b2s+ b3

s3 + a1s2 + a2s+ a3

By integrating Eq. (21.18.2) over the interval [0−,0+] and assuming that x(t) has no
delta-function terms, we find that v(t) is continuous at t = 0,

v(0+)= v(0−) (21.18.4)

21.19. MATLAB FUNCTION – C2D2 1029

Differentiating y(t) twice, and substituting, v̇ = Av+ Bx, we find,

y(t) = Cv(t)+Dx(t)
ẏ(t) = C v̇(t)+Dẋ(t)= CAv(t)+CBx(t)+Dẋ(t)
ÿ(t) = CA v̇(t)+CBẋ(t)+Dẍ = CA2 v(t)+CABx(t)+CBẋ(t)+Dẍ(t)

Evaluating these across the interval [0−,0+] and using Eq. (21.18.4), and the causality
conditions, x(0−)= ẋ(0−)= ẍ(0−)= 0, we find,

y(0+)−y(0−) = Dx(0+)

ẏ(0+)−ẏ(0−) = CBx(0+)+Dẋ(0+)
ÿ(0+)−ÿ(0−) = CABx(0+)+CBẋ(0+)+Dẍ(0+)

(21.18.5)

Using Eq. (21.18.3), we recognize that these are exactly equivalent to Eq. (21.2.1), indeed,

CAB = [b1 − b0a1, b2 − b0a2, b3 − b0a3]

⎡⎢⎣−a1 −a2 −a3

1 0 0
0 1 0

⎤⎥⎦
⎡⎢⎣ 1

0
0

⎤⎥⎦ =
= b2 − b0a2 − a1(b1 − b0a1)

CB = [b1 − b0a1, b2 − b0a2, b3 − b0a3]

⎡⎢⎣ 1
0
0

⎤⎥⎦ = b1 − b0a1

D = b0

21.19 MATLAB function – c2d2

The supplied MATLAB function c2d2 in the ISP2e toolbox is a simple alternative to
the built-in function c2d for converting a first-order or second-order CT system to a
DT system. Its inputs are the analog transfer function coefficients, B = [B0, B1, B2],
A = [1,A1,A2], the time-step T, and the discretization method, and its outputs are the
numerator and denominator coefficients of the discrete system, b = [b0, b1, b2], and,
a = [1, a1, a2], for example,

B = [2,1,1];

A = [1,4,3];

T = 0.01;

[b,a] = c2d2(B,A,T,’tr’); % trapezoidal (default)

[b,a] = c2d2(B,A,T,’fe’); % forward Euler

[b,a] = c2d2(B,A,T,’be’); % backward Euler

[b,a] = c2d2(B,A,T,’zoh’); % zero-order hold

22
Control Systems

In this chapter, we present a short introduction to feedback control systems [597–609],
focusing mainly on PID controllers, which are widely used in industrial applications. We
also discuss digital control systems and present several application examples, including
a nonliner one.

22.1 Feedback Control Systems

Control systems are used to force the output of a physical system—referred to as the
“plant”—to follow a particular prescribed reference input.

For example, in the cruise control of a car, airplane, or ship, the controller forces the
car to move at a preset speed, or in the tracking of a target by a rotating radar antenna,
the controller generates the appropriate torques to the antenna forcing it to track the
moving target, or in the control of a thermostat, the controller turns the furnace on or
off for periods of time, so that the temperature follows a prescribed setting.

A physical plant to be controlled can usually be modeled as a continuous-time system
with a particular input, f(t), that can be controlled, plus a possible disturbance input,
fdist(t), due to various types of disturbances, such as, for example, wind gusts in the
cruise control example or in the antenna tracking case. A typical plant is shown below,
assuming that it is represented as an LTI system with a transfer function G(s),

(22.1.1)

Control systems are usually implemented in feedback form, feeding back from the
plant output y(t) to the plant input f(t) through a controller, winch can be implemented
either as an analog or a digital system.

A typical feedback control system is shown in Fig. 22.1.1, in which the output y(t) is
fed back and subtracted from a desired reference input r(t) that the plant is supposed
to follow, and the resulting error signal, e(t)= r(t)−y(t), is fed into a controller with
transfer function Gc(s), designed to generate the appropriate input f(t) to the plant.

1030

22.1. FEEDBACK CONTROL SYSTEMS 1031

Fig. 22.1.1 Typical feedback control system.

An alternative feedback arrangement, shown in Fig. 22.1.2, is to place the controller
in the feedback path, instead of the feed-forward path. Below we will look at examples
of both arrangements.

Fig. 22.1.2 Alternative feedback arrangement.

In most of the examples presented in this chapter, we will assume that both the
plant G(s) and the controller Gc(s) are LTI systems. For the feedback system shown in
Fig. 22.1.1, the so-called closed-loop transfer function is the transfer function H(s) from
the reference input r(t) to the plant output y(t). There is also a disturbance transfer
function Hdist(s) from the disturbance input, fdist(t), to the output y(t), therefore,
because there are two inputs and one output, the overall transfer relationships from the
two inputs R(s), Fdist(s) to the two outputs Y(s) and error E(s) are as follows:

Y(s) = H(s)R(s)+Hdist(s)Fdist(s)

E(s) = Herr(s)R(s)−Hdist(s)Fdist(s)
(22.1.2)

where, since E(s)= R(s)−Y(s), it is straightforward to show that,

H(s) = Gc(s)G(s)
1+Gc(s)G(s)

= closed-loop transfer function

Herr(s) = 1−H(s)= 1

1+Gc(s)G(s)
= error transfer function

Hdist(s) = G(s)
1+Gc(s)G(s)

= disturbance transfer function

(22.1.3)

1032 22. CONTROL SYSTEMS

22.2 PID Control

There are many choices for the controller transfer function Gc(s). However, for our
purposes in this chapter, we will consider the so-called proportional-integral-derivative
(PID) controller, which is an effective and very widely used industrial controller. Its
transfer function has the form.

Gc(s)= kp + ki
s
+ kds (PID controller) (22.2.1)

The parameters, kp, ki, kd, are to be chosen to optimize the performance of the
control system in terms of its speed of response and its ability to track various types of
reference inputs, such as step functions or ramps. Generally, we have following guidance
regarding their choices, to be illustrated by examples later on,

• Increasing kp will decrease the rise time but increase the overshoot.

• Increasing ki will increase the overshoot and the settling time and decrease the
rise time.

• ki must be nonzero in order to guarantee zero steady-state error, i.e., e(t)→ 0,
for both step and ramp inputs.

• Increasing kd will decrease the overshoot and the settling time.

The steady-state tracking error due to a particular reference input r(t) can be cal-
culated with the help of the final-value theorem of Laplace transforms, that is,

lim
t→∞e(t)= lim

s→0

[
sE(s)

] = lim
s→0

[
sHerr(s)R(s)

] = lim
s→0

[
sR(s)

1+Gc(s)G(s)

]
(22.2.2)

For a step input r(t)= u(t), or a ramp input r(t)= tu(t), we have R(s)= 1/s, or
R(s)= 1/s2, respectively, and for these Eq. (22.2.2) reads,

step input: lim
t→∞e(t)= lim

s→0

[
sR(s)

1+Gc(s)G(s)

]
= lim

s→0

[
s

s+G(s)(kps+ ki + kds2)

]

ramp input: lim
t→∞e(t)= lim

s→0

[
sR(s)

1+Gc(s)G(s)

]
= lim

s→0

[
1

s+G(s)(kps+ ki + kds2)

]

Whether the steady-state tracking error e(t) tends to zero depends, of course, on
the particular choice of G(s). However, these expressions suggest that at least ki must
be non-zero. This will be observed in some examples below.

22.3 Digital Control Systems

In a digital control system, the controller portion of the feedback system of Fig. 22.1.1
is replaced by a digital transfer function Gc(z), as shown below in Fig. 22.3.1.

The digital controller is operating at a sampling time interval T, or sampling rate
fs = 1/T. The sampled output f(nT) of the controller must be passed through an A/D

22.3. DIGITAL CONTROL SYSTEMS 1033

Fig. 22.3.1 Typical digital control system.

converter resulting into a continuous-time signal f(t) that drives the physical plant.
In turn, the continuous-time output y(t) of the plant is fed back through a D/A con-
verter operating at the same sampling time interval T, and the resulting sampled signal
y(nT) is compared with the sampled version r(nT) of he reference input, generating
the sampled input e(nT) to the digital controller.

The A/D converter can be modeled as a zero-order hold transfer function Gzoh(s),
while the D/A can be replaced by a sampler. By replacing all signals by their sam-
pled versions, including the disturbance signal, one may think of the entire system as
discrete-time system. In the Laplace domain, the sampled signals are represented by
their corresponding starred Laplace transforms.

Fig. 22.3.2 Equivalent discrete-time control system.

The overall equivalent discrete-time system is shown in Fig. 22.3.2, in which the
digital transfer function has been replaced by a analog one,Gc(s), whose starred Laplace
transform is such that, Gc(z)= G∗c (s)

∣∣
z=esT . The corresponding z-domain transfer

functions of the feedback system are obtained as follows:

Gzoh(s)= 1− e−sT

s

Y(s)= G(s)
[
Gzoh(s)F∗(s)+F∗dist(s)

]
F(s)= Gc(s)E∗(s)= Gc(s)

[
R∗(s)−Y∗(s)]

and taking the starred-Laplace transforms,†

Y∗(s) = [G(s)Gzoh(s)
]∗F∗(s)+G∗(s)F∗dist(s)

F∗(s) = G∗c (s)
[
R∗(s)−Y∗(s)]

†using the properties that, in general,
[
G1G2

]∗ �= G∗1 G∗2 , but,
[
G1G∗2

]∗ = G∗1 G∗2

1034 22. CONTROL SYSTEMS

Denoting, Gd(z)=
[
G(s)Gzoh(s)

]∗
, and, G(z)= G∗(s), Y(z)= Y∗(s), etc., we may

rewrite the above as,
Y(z) = Gd(z)F(z)+G(z)Fdist(z)

F(z) = Gc(z)
[
R(z)−Y(z)]

which leads to the feedback discrete-time transfer functions:

Y(z) = Hd(z)R(z)+Hdist(z)Fdist(z)

E(z) = Herr(z)R(z)−Hdist(z)Fdist(z)
(22.3.1)

with,

Hd(z) = Gc(z)Gd(z)
1+Gc(z)Gd(z)

= closed-loop

Herr(z) = Gc(z)Gd(z)
1+Gc(z)Gd(z)

= error

Hdist(z) = G(z)
1+Gc(z)Gd(z)

= disturbance

(22.3.2)

where the discrete-time transfer functions Gd(z),G(z) are defined by,

Gd(z) = Z
[
Gzoh(s)G(s)

] = [Gzoh(s)G(s)
]∗∣∣∣∣

z=esT

G(z) = Z[G(s)] = G∗(s)
∣∣∣∣
z=esT

(22.3.3)

Eqs. (22.3.2) are the discrete-time versions of Eqs. (22.1.3). The overall equivalent
digital control system, incorporating these transfer functions, and operating on the sam-
pled signals, is shown in Fig. 22.3.3.

Fig. 22.3.3 Digital control system.

Finally, we note that for digital PID control, we may start with a standard analog
PID controller Gc(s) and replace the integrator part by the trapezoidal rule, and the
differentiation part by the backward Euler rule, that is, we define Gc(z) in this case,

Gc(s) = kp + ki
s
+ kds = analog PID controller

⇓
Gc(z) = kp + kiT

2

(
1+ z−1

1− z−1

)
+ kd

T
(1− z−1)= digital PID controller

(22.3.4)

22.4. EXAMPLES 1035

22.4 Examples

22.4.1 Cruise Control

A car’s motion in the presence of linear drag and under the influence of the engine’s
accelerating force F(t), or acceleration, f(t)= F(t)/m, is described by the first-order
linear system for the velocity v(t), and the corresponding transfer functionG(s), where
the term, αv(t), represents a drag force taken to be proportional to the velocity, and α
is a drag coefficient,

dv(t)
dt

= f(t)−αv(t) ⇒ G(s)= V(s)
F(s)

= 1

s+α
(22.4.1)

In a cruise control system, depicted below, a controlling system generates the appro-
priate throttle/acceleration input signal f(t) to the car’s dynamics that causes the car
to reach a prescribed reference speed, as set by the driver. The actual speed, denoted
in the figure by y(t), is fed back and subtracted from the desired reference speed r(t),
and the resulting error signal, e(t)= r(t)−y(t), is used by the controller to generate
the appropriate acceleration f(t).

We saw that the closed-loop transfer function for such system, from the overall ref-
erence input r(t) to the final output y(t), and ignoring the disturbance input, is given
in terms of the car’s and controller’s transfer functions G(s) and Gc(s) by,

H(s)= Y(s)
R(s)

= Gc(s)G(s)
1+Gc(s)G(s)

(22.4.2)

Instead of using a full PID controller of the form,

Gc(s)= kp + ki
s
+ kds (PID controller) (22.4.3)

we will use a PI controller defined by,

Gc(s)= kp + ki
s

(PI controller) (22.4.4)

The figure below shows the closed-loop responses when the reference speed is set
to 40 mph for a period 0 ≤ t ≤ 4, and then is reset to a new value of 60 mph when t > 4,
for the two sets of PI parameters, kp = 2 , ki = 2, and, kp = 2 ki = 4.5.

1036 22. CONTROL SYSTEMS

0 1 2 3 4 5 6 7 8
0

20

40

60

80

t

y(
t)

step response, a = 1, k
p
 = 2, k

i
 = 2

 speed settings, r(t)
 actual speed, y(t)

0 1 2 3 4 5 6 7 8
0

20

40

60

80

t

y(
t)

step response, a = 1, k
p
 = 2, k

i
 = 4.5

 speed settings, r(t)
 actual speed, y(t)

In both cases, the output reaches the desired reference values after the transients
caused by the sudden changes in the reference settings die out. In the right graph, the
speed of response is shorter but at the expense of an overshoot.

Typically, increasing the PI parameter ki decreases the rise time but increases the
overshoot. Inserting Eqs. (22.4.1) and (22.4.4) into (22.4.2), we find the closed-loop trans-
fer function, as well as the error transfer function,

H(s)= Gc(s)G(s)
1+Gc(s)G(s)

= kps+ ki
s2 + (kp +α)s+ ki

Herr(s)= 1−H(s)= 1

1+Gc(s)G(s)
= s(s+α)
s2 + (kp +α)s+ ki

(22.4.5)

The unit-step response is obtained by setting r(t)= u(t), or, R(s)= 1/s, and com-
puting an inverse Laplace transform with the help of partial fraction expansions,

Y(s)= H(s)R(s)= H(s)
s

⇒ y(t)= ilaplace
(
Y(s)

)
For the two cases in the above figure, we find for, kp = 2 , ki = 2,

H(s) = 2s+ 2

s2 + 3s+ 2
= 2(s+ 1)
(s+ 1)(s+ 2)

= 2

s+ 2

Y(s) = H(s)
s

= 2

s(s+ 2
= 1

s
− 1

s+ 2

y(t) = 1− e−2t , t ≥ 0

while for, kp = 2 , ki = 4.5, we have,

H(s) = 2s+ 4.5
s2 + 3s+ 4.5

Y(s) = H(s)
s

= 1

s
− s+ 1

s2 + 3s+ 4.5
= 1

s
−
[1

6(3− j)
s+ 1.5+ 1.5j

+
1
6(3+ j)

s+ 1.5− 1.5j

]

y(t) = 1− 2 Re
[

1

6
(3− j) e−1.5t e−1.5jt

]
= 1− 1

3
e−1.5t[3 cos(1.5t)− sin(1.5t)

]
The MATLAB code used to generate the above graphs was as follows,

22.4. EXAMPLES 1037

a = 1; kp = 2; ki = 4.5; % for left graph, use ki = 2

t = linspace(0,8,2401); % time range

s = tf(’s’); % tf class
G = 1/(s+a); % car’s transfer function
Gc = kp + ki/s; % PI controller

H = minreal(Gc*G/(1+Gc*G)); % closed-loop, minreal() removes common factors
% H = feedback(Gc*G,1); % alternative construction of H

T1 = 4; % switch time
v1 = 40; v2 = 60; % reference speeds

r = v1*(t<=T1) + v2*(t>T1); % reference input r(t)

y = lsim(H, r, t); % computed output y(t)

figure; plot(t,r,’r--’, t,y,’b-’);
legend(’ speed settings, r(t)’, ’ actual speed, y(t)’, ’location’,’se’)

We note also that the final steady-state error for the step response is zero for both
choices of ki, indeed, we have from Eq. (22.2.2), with R(s)= 1/s,

lim
t→∞e(t)= lim

s→0

[
sHerr(s)R(s)

] = lim
s→0

[
s(s+α)

s2 + (kp +α)s+ ki

]
=

22.4.2 Radar Tracking Antenna

Consider a dish antenna sitting on a rotating base that can be rotated azimuthally by a
drive motor to track a flying aircraft. The dynamics of the rotating structure is described
by the equations:

Jθ̈(t)= −βθ̇(t)+N(t)+Ndist(t)

whereθ(t) is the azimuthal angle,N(t) is the torque applied by the drive motor,Ndist(t)
is a torque due to disturbances such as wind gusts or steady wind noise, J is the moment
of inertia of the structure, and β is a frictional constant that quantifies an opposing
frictional torque that is proportional to the angular velocity θ̇.

It is desired to design a control system that generates an appropriate torque N(t)
such that the angle θ(t) will follow a desired reference angle θref(t), that is,

θ(t) −→ θref(t)

For example, if one wishes to point the antenna towards a given fixed angle θ1, then,
θref(t)= θ1u(t). To point initially towards θ1 and t0 seconds later to point towards θ2,
one would choose, θref(t)= θ1u(t)+(θ2 − θ1)u(t − t0).

Similarly, to track a uniformly moving aircraft, one would choose the ramp function
θref(t)=ω0 tu(t), or, more correctly, θref(t)= arctan

(
ω0 t

)
u(t).

By some redefinitions, the above system can be replaced by the following standard-
ized form where the output y(t) represents θ(t), and f(t), fdist(t) represent the torque
inputs N(t),Ndist(t),

ÿ(t)= −aẏ(t)+f(t)+fdist(t) � Y(s)= G(s)
[
F(s)+Fdist(s)

]
(22.4.6)

1038 22. CONTROL SYSTEMS

where the system transfer function is,

G(s)= 1

s(s+ a)
(22.4.7)

The control system is implemented as the feedback system shown below,

where the overall reference input r(t) represents the desired reference angle θref(t),
and the controller Gc(s) is designed to generate the appropriate torque input f(t) to
make the system follow the reference input, i.e., y(t)→ r(t), or for the tracking error
signal, e(t)= r(t)−y(t)→ 0.

In this example, we design a PID controller and experiment with its settings, and also
investigate its tracking ability and its robustness in the presence of disturbance inputs.
The PID controller has the transfer function:

Gc(s)= kp + ki
s
+ kds (PID controller) (22.4.8)

Following the discussion of Sec. 22.1, we can show that the overall transfer rela-
tionships from the two inputs R(s), Fdist(s) to the two outputs Y(s) and E(s) are as
follows:

Y(s) = H(s)R(s)+Hdist(s)Fdist(s)

E(s) = Herr(s)R(s)−Hdist(s)Fdist(s)
(22.4.9)

where for the PID case in particular,

H(s) = Gc(s)G(s)
1+Gc(s)G(s)

= kds2 + kps+ ki
s3 + (a+ kd)s2 + kps+ ki

= closed-loop

Herr(s) = 1

1+Gc(s)G(s)
= s2(s+ a)
s3 + (a+ kd)s2 + kps+ ki

= error

Hdist(s) = G(s)
1+Gc(s)G(s)

= s
s3 + (a+ kd)s2 + kps+ ki

= disturbance

(22.4.10)

The steady-state tracking error due to a particular reference input r(t) is found to be,

lim
t→∞e(t)= lim

s→0

[
sHerr(s)R(s)

] = lim
s→0

[
s3(s+ a)R(s)

s3 + (a+ kd)s2 + kps+ ki

]
(22.4.11)

For a step input, r(t)= u(t), or for a ramp input, r(t)= tu(t), we have, R(s)= 1/s,
or,R(s)= 1/s2, respectively, and for these choices, Eq. (22.4.11) implies that the tracking
error will be zero provided ki �= 0.

22.4. EXAMPLES 1039

The corresponding digital control system, depicted in Figs. 22.3.1–22.3.3, is char-
acterized by the discrete-time transfer functions, Gd(z),G(z), defined in Eq. (22.3.3),
which turn out to be in the present example,

Gd(z)= Z
[
Gzoh(s)G(s)

] = (aT + e−aT − 1)z−1 + (1− e−aT − aTe−aT)z−2

a2(1− z−1)(1− e−aTz−1)

G(z)= Z[G(s)] = (1− e−aT)z−1

a(1− z−1)(1− e−aTz−1)

(22.4.12)

and for Gc(z), we may use the digital PID approximation given by Eq. (22.3.4),

Gc(z)= kp + kiT
2

(
1+ z−1

1− z−1

)
+ kd

T
(1− z−1)= discrete PID controller (22.4.13)

Computer Experiments

With the above background information, please carry out the following experiments.

(a) Starting with the parameter values,

a = 2, kp = 10, ki = 5, kd = 3 (22.4.14)

construct the transfer function objects for the systemG(s), controllerGc(s), closed-
loop feedback system H(s), tracking error Herr(s), and disturbance transfer func-
tion Hdist(s), using, for example, the MATLAB code:

a = 2; kp = 10; ki = 5; kd = 3;
s = tf(’s’);
G = 1/(s*(s+a));
Gc = kp + ki/s + kd*s;
H = minreal(Gc*G/(1+Gc*G));
Herr = minreal(1/(1+Gc*G));
Hdist = minreal(G/(1+Gc*G));

where the minreal function removes any possible common factors from the numer-
ator and denominator transfer functions, resulting in a minimal realization—this
happens for example in the case ki = 0 in which some s factors can be canceled.

First, determine the poles of the closed-loop transfer function H(s) and from the
pole lying closest to the imaginary axis on the s-plane, calculate the 40-dB time con-
stant of H(s). Note that the poles can be determined by using the function roots or
pzmap, e.g.,

p = roots(H.den{1}); % H.den{1} is the vector of denominator coefficients of H(s)
p = pzmap(H);

Next, define t as a vector of 1001 equally-spaced time samples spanning the interval
0 ≤ t ≤ 20. Using the lsim function, calculate and plot the unit-step response of
H(s) over this time range. Is the observed transient time consistent with the 40-dB
time constant? You may find it useful to define the unit-step function as,

1040 22. CONTROL SYSTEMS

u = @(t) double(t>=0);

Then, increase the PID parameters by doubling their values one at a time, and plot
the corresponding step responses, and comment on the effect of such changes.

(b) For the parameter values defined in Eq. (22.4.14), and for the same time range as in
part (a), generate the following four reference input signals describing the typical
reference angle situations mentioned in the introduction.

r(t) = u(t)+u(t − 10) (switches from r = 1 to r = 2 at t = 10)

r(t) = 0.1 t u(t) (uniformly moving aircraft)

r(t) = arctan(0.1 t)u(t) (uniformly moving with correct angle)

r(t) =

⎧⎪⎪⎨⎪⎪⎩
0.04 t , 0 ≤ t ≤ 10

−2+ 0.69 t − 0.07 t2 + 0.0025 t3 , 10 ≤ t ≤ 14 (accelerating)
0.8+ 0.2 (t − 14) , 14 ≤ t ≤ 20

(22.4.15)

The fourth case, emulates a situation where the aircraft is moving at constant speed
until t = 10 and then between t = 10 and t = 14, it accelerates to a new speed. The
expression between 10 ≤ t ≤ 14 is the cubic Hermite interpolation polynomial that
interpolates smoothly between the two speeds.

For each of the four r(t) inputs, compute the corresponding output y(t) of the
closed-loop system H, using the function lsim, as follows

y = lsim(H,r,t);

On the same graph, plot both y(t) and r(t) with different linestyles, observing
whether the controlled system is capable of following the desired input reference
setting. On a separate graph, plot the tracking error signal e(t) versus t.

For the particular case of the ramp input, r(t)= 0.1tu(t), set temporarily ki = 0,
and recompute and plot the system output y(t) and error e(t), noting that the
steady-state error e(t) is no longer zero, although the slope of the output does
follow the slope of the reference input. After this part, set ki back to its non-zero
value.

(c) Because of the difficulty in implementing the derivative term kds of the PID con-
troller, the following modified variant is often used:

Gc(s)= kp + ki
s
+ kds
τs+ 1

(22.4.16)

where τ is a very small quantity. In this case, show that the closed-loop transfer
function becomes,

H(s)= (kd + τkp)s2 + (kp + τki)s+ ki
τs4 + (τa+ 1)s3 + (a+ kd + τkp)s2 + (kp + τki)s+ ki

(22.4.17)

22.4. EXAMPLES 1041

Set τ = 0.05 and use the PID parameters of Eq. (22.4.14).

Determine the transfer functionHf(s) from the overall input r(t) to the controller’s
torque output f(t) and for all four choices of r(t) of Eq. (22.4.15), compute the
torque f(t) and plot it versus t.† This will give you a sense of the actual input being
applied to the controlled system G(s) that causes it to follow the reference input
r(t). Set τ = 0 after this part is complete.

(d) Here, you will investigate how the controlled system responds to a disturbance. Con-
sider two types of disturbances, one imitating a wind gust lasting for a brief period
of time, say, 4 ≤ t ≤ 6, and the other imitating steady wind noise. They can be gen-
erated by the following MATLAB code, for the same length-1001 vector of t’s that
you defined in part (a),

fdist = 2*(u(t-4)-u(t-6)); % wind gust

% wind noise
seed=2016; rng(seed); % initialize random number generator
fdist = randn(size(t)); % zero-mean, unit-variance noise

For each type of disturbance, compute the corresponding system output using the
disturbance transfer function Hdist, and add it to the previously obtained output
from each of the four reference signals r(t) to get the total system output:

ydist = lsim(Hdist,fdist,t);
y = lsim(H,r,t);
ytot = y + ydist;

For each of the resulting eight cases (2 disturbances × 4 reference signals), plot the
signals ytot(t) and r(t) on the same graph, observing how the system recovers (or
not) from the disturbance.

(e) Next, you will study the behavior of the discrete PID control system, described by
Eqs. (22.4.10) – (22.4.13). For this part, you may ignore the disturbance input. A
reasonable initial choice for the discretization sampling time interval Ts is to choose
it to be a small fraction of the effective time constant of the closed-loop system
H. The time constant is the inverse of the smallest damping constant and can be
obtained with the help of the function pzmap:

p = pzmap(H); % poles of H
teff = 1/abs(max(real(p))); % effective time constant
Ts = teff/20; % initial choice of Ts

The zero-order hold discretization of the system G(s) is given by Eq. (22.4.12), but
it can also be obtained using the c2d function:

T = Ts; % to be changed later to T = Ts/2, 2*Ts, 3*Ts
Gd = c2d(G,T); % ZOH discretization by default

†MATLAB will complain if you tried to do this part with τ = 0.

1042 22. CONTROL SYSTEMS

The discrete PID controller Gc(z) of Eq. (22.4.13) and the discrete feedback transfer
function Hd(z) can be constructed by the code:

z = tf(’z’);
Gc = kp + ki*T*(z+1)/(z-1)/2 + kd*(z-1)/z/T;
Hd = feedback(Gc*Gd,1);

The time vector t must now be resampled at multiples of the chosen interval T, that
is, tn = nT, and in order for it to span the interval 0 ≤ t ≤ 20, we must redefine:

tn = 0:T:20;

Using this new vector of t’s, construct the discrete-time reference inputs:

rn = u(tn)+2u(tn − 10)

rn = 0.1 tn

rn = arctan
(
0.1 tn

)
and compute the output yn of the discrete closed-loop system:

yn = lsim(Hd,rn);
% yn = filter(Hd.num{1}, Hd.den{1}, rn); % alternative evaluation of yn

On the same graph, plot yn versus the sampled time tn, together with the output y(t)
of the continuous-time system computed in the previous parts using the original
length-1001 time vector t, that is,

figure; plot(tn,yn,’r-’, t,y,’b-’);

Compare the outputs of the discrete and continuous time systems.

(f) Repeat part (e) using the alternative choices of the interval T:

T = 1

2
Ts , T = 2Ts , T = 3Ts

And discuss the improvement or deterioration of the expected response.

22.4. EXAMPLES 1043

Typical Graphs

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y(
t)

step response, k
p
=10, k

i
=5, k

d
=3

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t
y(

t)

step response, k
p
=10, k

i
=10, k

d
=3

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
tracking step changes

t

y(
t)

 y(t)
 r(t)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
tracking error

t

e(
t)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
ramp tracking

t

y(
t)

 y(t)
 r(t)

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1
tracking error

t

e(
t)

1044 22. CONTROL SYSTEMS

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
ramp tracking with correct angle

t

y(
t)

 y(t)
 r(t)

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1
tracking error

t

e(
t)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
accelerating case

t

y(
t)

 y(t)
 r(t)

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1
tracking error

t

e(
t)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

ramp tracking, k
i
=0

t

y(
t)

 y(t)
 r(t)

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

tracking error, k
i
=0

t

e(
t)

22.4. EXAMPLES 1045

0 2 4 6 8 10 12 14 16 18 20
−20

0

20

40

60

80
torque f(t) −− step changes

t

f
(t

)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5
torque f(t) −− ramp tracking

t

f
(t

)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5
torque f(t) −− ramp with correct angle

t

f
(t

)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5
torque f(t) −− accelerating case

t

f
(t

)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind gust −− step changes

t

y(
t)

 y(t)
 r(t)
 f

dist

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind noise −− step changes

t

y(
t)

 y(t)
 r(t)

1046 22. CONTROL SYSTEMS

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind gust −− ramp

t

y(
t)

 y(t)
 r(t)
 f

dist

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind noise −− ramp

t

y(
t)

 y(t)
 r(t)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind gust −− ramp with correct angle

t

y(
t)

 y(t)
 r(t)
 f

dist

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind noise −− ramp with correct angle

t

y(
t)

 y(t)
 r(t)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind gust −− accelerating

t

y(
t)

 y(t)
 r(t)
 f

dist

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
wind noise −− accelerating

t

y(
t)

 y(t)
 r(t)

22.4. EXAMPLES 1047

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

discrete PID − step tracking, T = T
s

t

y(
t)

 input
 digital
 analog

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

discrete PID − step tracking, T = 0.5T
s

t

y(
t)

 input
 digital
 analog

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

discrete PID − step tracking, T = 2T
s

t

y(
t)

 input
 digital
 analog

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

discrete PID − step tracking, T = 3T
s

t

y(
t)

 input
 digital
 analog

1048 22. CONTROL SYSTEMS

22.4.3 Inverted Pendulum

The inverted pendulum provides a simple model for many applications, such as walking
and standing of humans and upright animals, walking robots, rockets during liftoff, sta-
bilizing tall buildings, transporting large vertical objects, and the Segway self-balancing
two-wheeled vehicle [610–619].

The inverted pendulum, depicted below, consists of a mass m concentrated at the
end of a (weightless) rod of length L whose other end is connected to a frictionless pivot
hinge on a cart moving with acceleration ẍ(t). By controlling ẍ(t), the pendulum can
remain stable in its upside-down position.

The picture on the right shows the pendulum in a coordinate frame in which the cart
is at rest and the mass is subjected to the negative acceleration,−ẍ(t). That acceleration
together with gravity g, projected along a direction perpendicular to the rod, induce a
net torque, τ =mL(g sinθ− ẍ cosθ), that tends to rotate the pendulum. The resulting
equation of motion is,

mL2 θ̈ = τ =mL(g sinθ− ẍ cosθ) ⇒ θ̈ = g
L

sinθ− ẍ
L

cosθ (22.4.18)

For small deviations θ from the vertical, Eq. (22.4.18) can be linearized by making
the small-angle approximations, sinθ ≈ θ, and, cosθ ≈ 1− 1

2θ
2 ≈ 1, resulting in,

θ̈ =ω2
0 θ−

ẍ
L
, ω0 =

√
g
L

(22.4.19)

where ω0 is the natural frequency of oscillation of a pendulum in its stable hanging-
down position. In the absence of ẍ, Eq. (22.4.19) is unstable since its solution is a linear
combination of the normal modes, eω0t, e−ω0t, the first of which is unstable for t → +∞.
The transfer function of the LTI system (22.4.19) from the input x(t) to the output θ(t),
is obtained using Laplace transforms,

G(s)= − s2/L
s2 −ω2

0
(22.4.20)

The instability of the system is also evident from Eq. (22.4.20) by noting that G(s)
has poles at s = ω0 and s = −ω0, the first of which lies in the right-half s-plane. The
system can be stabilized by feeding back the output signal θ(t) through a properly
chosen controller Gc(s), as shown below.

22.4. EXAMPLES 1049

In this example, we will use a PID controller of the following PI form [597], where L
is a common factor introduced for convenience that multiplies both kp, ki,

Gc(s)= kpL+ kiL
s

(22.4.21)

The closed-loop transfer function from x(t) to θ(t), as well as the transfer function
from x(t) to the pendulum’s effective input e(t), are given by,

H(s) = Θ(s)
X(s)

= G(s)
1+Gc(s)G(s)

= s2/L
(kp − 1)s2 + ki s+ω2

0

He(s) = E(s)
X(s)

= 1

1+Gc(s)G(s)
= − s2 −ω2

0

(kp − 1)s2 + ki s+ω2
0

(22.4.22)

By proper selection of the PI gains kp, ki, the above transfer functions can stabilized
with their poles lying strictly in the left-hand s-plane. For example, in order to place
the closed-loop poles at the negative-real locations, s = −α1 and s = −α2, with α1,α2

arbitrary positive numbers, one can determine the gains kp, ki by requiring the identity
in s,

(kp − 1)s2 + ki s+ω2
0 ≡ (kp − 1)(s+α1)(s+α2)

which leads to the following solution for kp, ki in terms of the given α1,α2,

kp = 1+ ω2
0

α1α2

ki =ω2
0

(
1

α1
+ 1

α2

) (22.4.23)

With these choices for kp, ki, the transfer functions (22.4.22) read,

H(s) = α1α2

Lω2
0

s2

(s+α1)(s+α2)

He(s) = −α1α2

ω2
0

s2 −ω2
0

(s+α1)(s+α2)

(22.4.24)

1050 22. CONTROL SYSTEMS

Computer Experiments

(a) Assuming α1 �= α2, show that the angle response θ(t), and the effective input e(t),
due to a sudden unit-step shift in position, x(t)= x0u(t), are given as follows, for
t ≥ 0,

θ(t) = x0α1α2

Lω2
0(α1 −α2)

[
α1e−α1t −α2e−α2t

]
e(t) = x0 − x0

ω2
0(α1 −α2)

[
α2(α2

1 −ω2
0)e−α1t −α1(α2

2 −ω2
0)e−α2t

] (22.4.25)

so that the pendulum angle θ(t) asymptotically tends to the vertical position, θ = 0,
while the effective input e(t) becomes a unit-step, like the x(t) input.

(b) For α1 �= α2, show that the angle response θ(t), and the effective input e(t), due
to a uniformly moving cart, x(t)= v0 tu(t), are given as follows, for t ≥ 0,

θ(t) = v0α1α2

Lω2
0(α1 −α2)

[
e−α2t − e−α1t

]

e(t) = v0 t − v0(α1 +α2)
α1α2

+
v0

[
α2

2(α
2
1 −ω2

0)e−α1t −α2
1(α

2
2 −ω2

0)e−α2t
]

α1α2ω2
0(α1 −α2)

(22.4.26)

so that, again, θ(t) stabilizes at the vertical θ = 0 position, while e(t) follows the
uniformly moving input x(t) up to a delay.

(c) For α1 �= α2, and a uniformly accelerating cart, x(t)= 1
2a0t2u(t), show that the

angle response θ(t), and the effective input e(t), are given as follows, for t ≥ 0,

θ(t) = θ0 + θ0

α1 −α2

[
α2e−α1t −α1e−α2t

]

e(t) = 1

2
a0 t2 − v1 t + x1 −

a0

[
α3

2(α
2
1 −ω2

0)e−α1t −α3
1(α

2
2 −ω2

0)e−α2t
]

α2
1α

2
2ω

2
0(α1 −α2)

θ0 = a0

g
, v1 = a0(α1 +α2)

α1α2
, x1 = a0

(
1

α2
1
+ 1

α2
2
+ 1

α1α2
− 1

ω2
0

)
(22.4.27)

We note that asymptotically, θ(t)→ θ0, so that the equilibrium angle is slightly off
the vertical. This can be understood from the acceleration diagram above in which
the torque becomes zero when the acceleration due to gravity and that due to ẍ = a0

cancel each other, which happens at an angle θ0 such that,

g sinθ0 − ẍ cosθ0 = 0 ⇒ tanθ0 = ẍ
g
= a0

g

or, using the small-angle approximation, tanθ0 ≈ θ0, we have, θ0 = a0/g.

22.4. EXAMPLES 1051

(d) With α1 �= α2, suppose that the cart is moving back and forth sinusoidally with a
frequency ω, that is, x(t)= A sin(ωt)u(t), then we expect that in the steady state,
the inverted pendulum will also be oscillating with the same frequency about the
vertical position θ = 0. Noting that, sin(ωt)= Im

[
ejωt], show that in this case the

angle θ(t) is given by the following expression, where the last two terms of θ(t)
represent the transients and the first term, the steady state,

x(t) = A sin(ωt)= A Im
[
ejωt]

θ(t) = Aα1α2

Lω2
0

Im
[
Rejωt +R1e−α1t +R2e−α2t

]

R = (iω)2

(α1 + jω)(α2 + jω)

R1 = α2
1

(α1 −α2)(α1 + jω)

R2 = α2
2

(α2 −α1)(α2 + jω)

(22.4.28)

(e) Repeat parts (a–d) when α1,α2 are equal, say, α1 = α2 ≡ α > 0.

(f) Consider the following numerical values,

ω0 = 1 , L = 1 , α1 = 3 , α2 = 2

x0 = 0.5 , v0 = 1 , a0 = 1 , A = 1 , ω = 2

Calculate the values of the PI gains kp, ki.

Calculate and plot the signals θ(t), e(t) for the four cases (a–d) using the exact
formulas Eq. (22.4.25)–(22.4.28), over the time interval, 0 ≤ t ≤ 10, with a time step
of T = 0.01.

Moreover, using the transfer functions of Eq. (22.4.24), calculate the same signals
θ(t), e(t) using the built-in function, lsim, and verify that they are essentially the
same as the exact ones.

In the sinusoidal case, observe how the effective input e(t) to the pendulum os-
cillates with a phase difference of 180o with respect to θ(t), that is, when the cart
swings to the left, the pendulum swings to the right, and conversely — see last graph.

Typical Graphs

1052 22. CONTROL SYSTEMS

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

t

θ(t) output, unit−step input

0 1 2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

t

e(t), unit−step input

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

t

θ(t) output, ramp input

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

t

e(t), ramp input

 e(t)
 input

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

t

θ(t) output, accelerated input

 θ∞ = 1

 θ(t)

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

t

e(t), accelerated input

 e(t)
 input

22.4. EXAMPLES 1053

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

t

sinusoidal input

 θ(t)
 e(t)
 x(t)

The typical MATLAB code for part (e), using LSIM, is as follows.

w0 = 1; L = 1; a1 = 3; a2 = 2;
x0 = 1/2; v0 = 1; a0 = 1; A = 1; w = 2;
g = L*w0^2;

kp = 1 + w0^2/a1/a2;
ki = w0^2*(1/a1+1/a2);

s = tf(’s’); % class tf
G = -s^2/L/(s^2-w0^2); % open-loop transfer function
Gc = kp*L + ki*L/s; % PI controller
H = G/(1+Gc*G); % closed-loop, can also do, H = feedback(G,Gc);
He = 1/(1+Gc*G); % equivalently, He = feedback(1,Gc*G);

t = linspace(0,10,1001); % time-step, T = 10/1000 = 0.01

x = x0*ones(size(t)); % unit-step input
% x = v0*t; % ramp input, uncomment as necessary
% x = 1/2*a0*t.^2; % uniform acceleration
% x = A*sin(w*t); % sinusoidal input

y = lsim(H,x,t); % closed-loop output, theta(t)
e = lsim(He,x,t); % effective input, e(t)

figure; plot(t,y,’b-’);
figure; plot(t,e,’r-’);

The above graphs don’t display the LSIM outputs because they are virtually identical to
the exact ones.

22.4.4 Thermostat Model

A typical home furnace supplies an amount of heat that increases the air temperature
of a room by R0 = 20 oF per hour. The time rate of change of the room temperature is

1054 22. CONTROL SYSTEMS

governed by Newton’s law of cooling:†

dT(t)
dt

= −k[T(t)−Text(t)
]+R(t) (22.4.29)

where T(t) is the room temperature at time t, Text(t) is the external temperature, k is
a measure of the loss of heat through the walls, and R(t) is the rate of temperature in-
crease per hour supplied by the furnace (like the R0 above.) A block diagram realization
of Eq. (22.4.29) is shown below. It is similar to that of the previous example, but with
an extra feedback loop for calculating the control signal R(t).

A typical home thermostat can be programmed to several temperature settings dur-
ing the day. Here, we will assume two settings, a higher temperature setting TH for the
first 12 hours of a day, and a lower setting TL for the second 12 hours. Thus, the control
temperature of the thermostat is defined by the time function:

Tc(t)=
⎧⎨⎩TH , if mod(t,24)< 12

TL , if mod(t,24)≥ 12
(22.4.30)

where the modulo operation, mod(t,24), reduces the time t modulo 24, i.e., it finds the
remainder of the division of t by 24, so that it is always in the range 0 ≤ mod(t,24)< 24.

If the room temperature falls below the prescribed control temperature (TH or TL),
the thermostat turns the furnace on until the control temperature is reached and then
it turns the furnace off. This can be modeled into Eq. (22.4.29) by choosing the control
signal R(t) as follows:

R(t)=
⎧⎨⎩R0 , if T(t)< Tc(t)

0 , if T(t)≥ Tc(t)
(22.4.31)

BecauseR(t) depends onT(t) in a nonlinear manner, Eq. (22.4.29) can only be solved
numerically. To this end, time is discretized in small equal-step increments, tn = nΔt,
n = 1,2,3, . . . , where Δt is a small step size. The time-derivative in Eq. (22.4.29) can be
approximated as a ratio of differences, resulting in the following difference equation:

T(tn+1)−T(tn)
Δt

= −k[T(tn)−Text(tn)
]+R(tn)

Using the simplified notation T(n) to denote T(tn),‡ and similarly for R(tn) and
Tc(tn), this difference equation can be rearranged into:

†For a more realistic version, see the paper by P. S. Sansgiry and C. C. Edwards, “A Home Heating Model
for Calculus Students,” Coll. Math. J., 27, 395 (1996).
‡n is a MATLAB index, and T(n), a MATLAB array.

22.4. EXAMPLES 1055

T(n+ 1)= T(n)−kΔt [T(n)−Text(n)
]+ΔtR(n) , n ≥ 1 (22.4.32)

where

R(n)=
⎧⎨⎩R0 , if T(n)< Tc(n)

0 , if T(n)≥ Tc(n)
(22.4.33)

with

Tc(n)=
⎧⎨⎩TH , if mod(tn,24)< 12

TL , if mod(tn,24)≥ 12
(22.4.34)

The initial value in Eq. (22.4.32) will be assumed given, i.e., T(1)= T0. For the
external temperature, we will assume a simple sinusoidal model with 24-hr periodicity:

Text(n)= A− B cos
(

2πtn
24

)
(22.4.35)

Consider the following realistic numerical values:

A = 40 oF , B = 10 oF

k = 0.35 hr−1 , R0 = 20 oF /hr

TH = 70 oF , TL = 60 oF , T0 = 35 oF

Define the time vector tn to span a 48-hr period and sampled every 3 seconds:

Tmax = 48; Dt = 3/3600; % units of hours
tn = Dt:Dt:Tmax;

a. Use a for-loop to calculate the control signal Tc(n) and plot it versus tn. Within the
same for-loop, calculate also the actual room temperature T(n), and on separate
graph plot it versus tn together with the external temperature Text(n).

Observe the initial transients starting from T0, and the ability of the thermostat
system to follow the prescribed high/low settings, switching between the two at
every 12-hr period.

b. Repeat the calculation and plotting of T(n) using the value k = 0.25, corresponding
to a well-insulated house, and then using k = 0.50 for a poorly insulated one.

c. For the case k = 0.35, assume that there is a power failure at time tf = 18 and that
from then on the furnace stops operating. Calculate and plot the room temperature
and observe how it eventually follows the external temperature variations (with some
lag.)

1056 22. CONTROL SYSTEMS

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80

temperature control signal T
c
(t)

t (hours)

de
gr

ee
s

(o F
)

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80
room temperature T(t), k = 0.35

t (hours)

de
gr

ee
s

(o F
)

 T(t)
 T

ext
(t)

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80
room temperature T(t), k = 0.5

t (hours)

de
gr

ee
s

(o F
)

 T(t)
 T

ext
(t)

0 6 12 18 24 30 36 42 48
20

30

40

50

60

70

80

room temperature T(t), t
f
 = 18

t (hours)

de
gr

ee
s

(o F
)

 T(t)
 T

ext
(t)

The essential MATLAB code for this problem is listed below:

A = 40; B = 10;
T0 = 35;
TH = 70; TL = 60;
R0 = 20;

Tmax = 48; % hours
Dt = 3/3600; % 3 sec in units of hours
t = Dt:Dt:Tmax; % units of hours

Te = A - B*cos(pi*t/12); % external temperature

Tc = TH*(mod(t,24)<12) + TL*(mod(t,24)>=12); % control temperature
% control, R(n) = R0*(T(n)<Tc(n))

figure; plot(t,Tc,’b-’);
xlabel(’t (hours)’); ylabel(’degrees (^oF)’);
title(’temperature control signal T_c(t)’);
yaxis(20,80,20:10:80); xaxis(0,48,0:6:48); grid on;

for k = [0.35, 0.25, 0.50] % generate graphs for three values of k
T(1) = T0;
for n=1:length(t)-1

R = R0*(T(n)<Tc(n)); % control signal
T(n+1) = T(n) - k*Dt*(T(n)-Te(n)) + Dt*R;

end

22.4. EXAMPLES 1057

figure; plot(t,T,’b-’, t,Te,’r--’);
xlabel(’t (hours)’); ylabel(’degrees (^oF)’);
title([’room temperature T(t), k = ’,num2str(k)]);
yaxis(20,80,20:10:80); xaxis(0,48,0:6:48); grid on;

end

k = 0.35;
t_f = 18; % control signal is non-zero only for t(n)<=tf

T(1) = T0;
for n=1:length(t)-1

R = R0*(T(n)<Tc(n) & t(n)<=t_f); % control signal
T(n+1) = T(n) - k*Dt*(T(n)-Te(n)) + Dt*R;

end

figure; plot(t,T,’b-’, t,Te,’r--’);
xlabel(’t (hours)’); ylabel(’degrees (^oF)’);
title([’room temperature T(t), t_f = ’,num2str(t_f)]);
yaxis(20,80,20:10:80); xaxis(0,48,0:6:48); grid on;

23
Local Polynomial Filters

23.1 Introduction

We mentioned in Sec. 15.5 that there are limits to the applicability of the plain FIR
averager filter—in order to achieve a high degree of noise reduction, its length N may
be required to be so large that the filter’s passband becomes smaller than the signal
bandwidth, causing the removal of useful high frequencies from the desired signal.

In other words, in its attempt to smooth out the noise vn, the filter begins to smooth
out the desired signal xn to an unacceptable degree. For example, if xn contains some
short-duration peaks, corresponding to the higher frequencies present in xn, and the
filter’s length N is longer than the duration of the peaks, the filter will tend to smooth
the peaks too much, broadening them and reducing their height.

In this chapter,† we discuss local polynomial smoothing filters [620–683] which are
generalizations of the FIR averager filter that can preserve better the higher frequency
content of the desired signal, at the expense of not removing as much noise as the
averager. They can be characterized in three equivalent ways:

1. They are the optimal lowpass filters that minimize the NRR, subject to additional con-
straints than the DC unity-gain condition (15.5.1)—the constraints being equivalent
to the requirement that polynomial input signals go through the filter unchanged.

2. They are the optimal filters that minimize the NRR whose frequency responseH(ω)
satisfies certain flatness constraints at DC.

3. They are the filters that optimally fit, in a least-squares sense, a set of data points to
polynomials of different degrees.

Local polynomial smoothing (LPSM) filters have a long history and have been redis-
covered repeatedly in different contexts. They were originally derived in 1866 by the
Italian astronomer Schiaparelli [620] who formulated the problem as the minimization
of the NRR subject to polynomial-preserving constraints and derived the filters in com-
plete generality, discussing also the case of even-length filters. They were rederived in
1871 by De Forest [649] who generalized them further to include the case of “minimum-
roughness” or minimum-Rs filters. Subsequently, they were rediscovered many times

†adapted from the author’s book on Applied Optimum Signal Processing [45]

1058

23.2. LOCAL POLYNOMIAL FITTING 1059

and used extensively in actuarial applications, for example, by Gram, Hardy, Sheppard,
Henderson, and others. See Refs. [652–659] for the development and history of these
filters. In the actuarial context, smoothing is referred to as the process of “graduation.”
They were revived again in the 1960s by Savitzky and Golay [626] and have been applied
widely in chemistry and spectroscopy [626–637] known in that context as Savitzky-Golay
filters. They, and their minimum-Rs versions [649–683] known typically as Henderson
filters, are used routinely for trend extraction in financial, business, and census applica-
tions.

Some recent incarnations also include predictive FIR interpolation, differentiation,
fractional-delay, and maximally-flat filters [736–771], and applications to the represen-
tation of speech and images in terms of orthogonal-polynomial moments [721–734].

The least-squares polynomial fitting approach also has a long history. Chebyshev
[688] derived in 1864 the discrete Chebyshev orthogonal polynomials,‡ also known as
Gram polynomials, which provide convenient and computationally efficient bases for
the solution of the least-squares problem and the design of local polynomial filters.
Several applications and reviews of the discrete Chebyshev orthogonal polynomials may
be found in [688–735]. The minimum-Rs Henderson filters also admit similar efficient
representations in terms of the Hahn orthogonal polynomials, a special case of which
are the discrete Chebyshev polynomials. We discuss Henderson filters in Sec. 23.12 and
orthogonal polynomial bases in Sec. 23.13.

23.2 Local Polynomial Fitting

We begin with the least-squares polynomial fitting approach. We assume that the signal
model for the observations is:

yn = xn + vn

where vn is white noise and xn is a smooth signal to be estimated. Fig. 23.2.1 shows five
noisy signal samples [y−2, y−1, y0, y1, y2] positioned symmetrically about the origin.
Later on, we will shift them to an arbitrary position along the time axis. Polynomial
smoothing of the five samples is equivalent to replacing them by the values that lie on
smooth polynomial curves drawn between the noisy samples. In Fig. 23.2.1, we consider
fitting the five data to a constant signal, a linear signal, and a quadratic signal.

The corresponding smoothed values are given by the 0th, 1st, and 2nd degree poly-
nomials defined for m = −2,−1,0,1,2:

ŷm = c0 (constant)

ŷm = c0 + c1m (linear)

ŷm = c0 + c1m+ c2m2 (quadratic)

(23.2.1)

For each choice of the polynomial order, the coefficients ci must be determined
optimally such that the corresponding polynomial curve best fits the given data. This
can be accomplished by a least-squares fit, which chooses the ci that minimize the total

‡not to be confused with the ordinary Chebyshev polynomials.

1060 23. LOCAL POLYNOMIAL FILTERS

Fig. 23.2.1 Data smoothing with polynomials of degrees d = 0,1,2.

mean-square error. For example, in the quadratic case, we have the performance index:

J =
2∑

m=−2

e2
m =

2∑
m=−2

(
ym − (c0 + c1m+ c2m2)

)2 = min (23.2.2)

where the fitting errors are defined as

em = ym − ŷm = ym − (c0 + c1m+ c2m2), m = −2,−1,0,1,2

It proves convenient to express Eqs. (23.2.1) and (23.2.2) in a vectorial form, which
generalizes to higher polynomial orders and to more than five data points. We define
the five-dimensional vectors of data, estimates, and errors:

y =

⎡⎢⎢⎢⎢⎢⎢⎣
y−2

y−1

y0

y1

y2

⎤⎥⎥⎥⎥⎥⎥⎦ , ŷ =

⎡⎢⎢⎢⎢⎢⎢⎣
ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤⎥⎥⎥⎥⎥⎥⎦ , e =

⎡⎢⎢⎢⎢⎢⎢⎣
e−2

e−1

e0

e1

e2

⎤⎥⎥⎥⎥⎥⎥⎦ = y− ŷ

Similarly, we define the five-dimensional polynomial basis vectors s0, s1, s2, whose
components are:

s0(m)= 1, s1(m)=m, s2(m)=m2, −2 ≤m ≤ 2

Vectorially, we have:

s0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ , s1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−2
−1

0
1
2

⎤⎥⎥⎥⎥⎥⎥⎦ , s2 =

⎡⎢⎢⎢⎢⎢⎢⎣
4
1
0
1
4

⎤⎥⎥⎥⎥⎥⎥⎦ (23.2.3)

In this notation, we may write the third of Eq. (23.2.1) vectorially:

ŷ = c0

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦+ c1

⎡⎢⎢⎢⎢⎢⎢⎣
−2
−1

0
1
2

⎤⎥⎥⎥⎥⎥⎥⎦+ c2

⎡⎢⎢⎢⎢⎢⎢⎣
4
1
0
1
4

⎤⎥⎥⎥⎥⎥⎥⎦ = c0s0 + c1s1 + c2s2

23.2. LOCAL POLYNOMIAL FITTING 1061

Therefore,

ŷ = c0s0 + c1s1 + c2s2 = [s0, s1, s2]

⎡⎢⎣ c0

c1

c2

⎤⎥⎦ ≡ Sc (23.2.4)

The 5×3 basis matrix S has as columns the three basis vectors s0, s1, s2. It is given
explicitly as follows:

S = [s0, s1, s2]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦ (23.2.5)

Writing e = y − ŷ = y − Sc, we can express the performance index (23.2.2) as the
dot product:

J = eTe = (y− Sc)T(y− Sc)= min (23.2.6)

To minimize this expression with respect to c, we set the gradient ∂J/∂c to zero:

∂J
∂c

= −2STe = −2ST
(
y− Sc

) = −2
(
STy− STSc

) = 0 (23.2.7)

Therefore, the minimization condition gives the so-called orthogonality equations
and the equivalent normal equations:

∂J
∂c

= 0 � STe = 0 � STSc = STy (23.2.8)

with optimal solution:
c = (STS)−1STy ≡ GTy (23.2.9)

where we defined the 5×3 matrix G by

G = S(STS)−1 (23.2.10)

We note that the solution (23.2.9) is none other than the unique least-squares solution
of the full-rank overdetermined linear system Sc = y†, c = S+y, where S+ = (STS)−1ST

is the corresponding pseudoinverse. Inserting the optimal coefficients c into Eq. (23.2.4),
we find the smoothed values:†

ŷ = Sc = SGTy = S(STS)−1STy ≡ BTy (23.2.11)

where we defined the 5×5 matrix B by

B = BT = SGT = GST = S(STS)−1ST (23.2.12)

†see for example by [45]
†although B is symmetric, we prefer to write ŷ = BTy, which generalizes to the non-symmetric case of

minimum-roughness filters of Sec. 23.12.

1062 23. LOCAL POLYNOMIAL FILTERS

The symmetric 3×3 matrix F = STS, which appears in the expressions for G and
B, has matrix elements that are the dot products of the basis vectors, that is, the ijth
matrix element is Fij = (STS)ij= sTi sj. Indeed, using Eq. (23.2.5), we find:

F = STS =
⎡⎢⎣ sT0

sT1
sT2

⎤⎥⎦ [s0, s1, s2]=
⎡⎢⎣ sT0 s0 sT0 s1 sT0 s2

sT1 s0 sT1 s1 sT1 s2

sT2 s0 sT2 s1 sT2 s2

⎤⎥⎦ (23.2.13)

Using Eq. (23.2.5), we calculate F and its inverse F−1:

F =
⎡⎢⎣ 5 0 10

0 10 0
10 0 34

⎤⎥⎦ , F−1 = 1

35

⎡⎢⎣ 17 0 −5
0 3.5 0
−5 0 2.5

⎤⎥⎦ (23.2.14)

Then, we calculate the 5×3 matrix G = S(STS)−1= SF−1:

G = SF−1 = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 17 0 −5

0 3.5 0
−5 0 2.5

⎤⎥⎦ or,

G = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ [g0, g1, g2] (23.2.15)

As we see below, the three columns of G have useful interpretations as differentia-
tion filters. Next, using Eq. (23.2.12), we calculate the 5×5 matrix B:

B = GST = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4

⎤⎥⎦ or,

B = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5
−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ [b−2, b−1, b0, b1, b2] (23.2.16)

Because B is symmetric, its rows are the same as its columns. Thus, we can write it
either in column-wise or row-wise form:

B = [b−2, b−1, b0, b1, b2]=

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2

bT−1

bT0
bT1
bT2

⎤⎥⎥⎥⎥⎥⎥⎦ = BT

23.2. LOCAL POLYNOMIAL FITTING 1063

The five columns or rows of B are the LPSM filters of length 5 and polynomial order
2. The corresponding smoothed values ŷ can be expressed component-wise in terms of
these filters, as follows:⎡⎢⎢⎢⎢⎢⎢⎣

ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤⎥⎥⎥⎥⎥⎥⎦ = ŷ = BTy =

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2

bT−1

bT0
bT1
bT2

⎤⎥⎥⎥⎥⎥⎥⎦y =

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2y
bT−1y
bT0 y
bT1 y
bT2 y

⎤⎥⎥⎥⎥⎥⎥⎦
or, for m = −2,−1,0,1,2:

ŷm = bTmy (23.2.17)

and more explicitly,⎡⎢⎢⎢⎢⎢⎢⎣
ŷ−2

ŷ−1

ŷ0

ŷ1

ŷ2

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5

−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y−2

y−1

y0

y1

y2

⎤⎥⎥⎥⎥⎥⎥⎦ (23.2.18)

Thus, the mth filter bm dotted into the data vector y generates the mth smoothed
data sample. In a similar fashion, we can express the polynomial coefficients ci as dot
products. Using the solution Eq. (23.2.9), we have⎡⎢⎣ c0

c1

c2

⎤⎥⎦ = c = GTy =
⎡⎢⎣ gT0

gT1
gT2

⎤⎥⎦y =
⎡⎢⎣ gT0 y

gT1 y
gT2 y

⎤⎥⎦
or, explicitly,

⎡⎢⎣ c0

c1

c2

⎤⎥⎦ = 1

35

⎡⎢⎣−3 12 17 12 −3
−7 −3.5 0 3.5 7

5 −2.5 −5 −2.5 5

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
y−2

y−1

y0

y1

y2

⎤⎥⎥⎥⎥⎥⎥⎦ (23.2.19)

Thus, the coefficients ci can be expressed as the dot products of the columns of G
with the data vector y:

ci = gTi y, i = 0,1,2 (23.2.20)

Of the five columns of B, the middle one, b0, is the most important because it
smooths the value y0, which is symmetrically placed with respect to the other samples
in y, as shown in Fig. 23.2.1.

In smoothing a long block of data, the filter b0 is used during the steady-state period,
whereas the other columns of B are used only during the input-on and input-off tran-
sients. We will refer to b0 and the other columns of B as the steady-state and transient
LPSM filters.

Setting m = 0 into Eq. (23.2.1), we note that the middle smoothed value ŷ0 is equal
to the polynomial coefficient c0. Using Eqs. (23.2.17) and (23.2.20), we find: ŷ0 = c0 =

1064 23. LOCAL POLYNOMIAL FILTERS

bT0 y = gT0 y (the middle column of B and the first column of G are always the same,
b0 = g0.)

To express (23.2.18) as a true filtering operation acting on an input sequence yn, we
shift the group of five samples to be centered around the nth time instant, that is, we
make the substitution:

[y−2, y−1, y0, y1, y2] −→ [yn−2, yn−1, yn, yn+1, yn+2]

The corresponding five smoothed values will be then:⎡⎢⎢⎢⎢⎢⎢⎣
ŷn−2

ŷn−1

ŷn
ŷn+1

ŷn+2

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5
−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
yn−2

yn−1

yn
yn+1

yn+2

⎤⎥⎥⎥⎥⎥⎥⎦ (23.2.21)

In particular, the middle sample yn is smoothed by the filter b0:

x̂n = 1

35

(−3yn−2 + 12yn−1 + 17yn + 12yn+1 − 3yn+2
)

(23.2.22)

where, in accordance with our assumed model of noisy observations yn = xn + vn, we
denoted ŷn by x̂n, i.e., the estimated value of xn.

The other estimated values {ŷn+m , m = ±1,±2}, are not used for smoothing, ex-
cept, as we see later, at the beginning and end of the signal block yn. They may be used,
however, for prediction and interpolation.

The filter (23.2.22) corresponds to fitting every group of five samples {yn−2, yn−1,
yn, yn+1, yn+2} to a quadratic polynomial and replacing the middle sample yn by its
smoothed value x̂n. It is a lowpass filter and is normalized to unity gain at DC, because
its coefficients add up to one.

Its NRR is the sum of the squared filter coefficients. It can be proved in general that
the NRR of any steady-state filter b0 is equal to the middle value of its impulse response,
that is, the coefficient b0(0). Therefore,

R = bT0 b0 =
2∑

m=−2

b0(m)2= b0(0)= 17

35
= 17/7

5
= 2.43

5
= 0.49

By comparison, the length-5 FIR averager operating on the same five samples is:

x̂n = 1

5

(
yn−2 + yn−1 + yn + yn+1 + yn+2

)
(23.2.23)

with R = 1/N = 1/5. Thus, the length-5 quadratic-polynomial filter performs 2.43
times worse in reducing noise than the FIR averager. However, the higher-order polyno-
mial filters have other advantages to be discussed later.

We saw that the coefficient c0 represents the smoothed value of y0 at m = 0. Simi-
larly, the coefficient c1 represents the slope, the derivative, of y0 at m = 0. Indeed, we
have from Eq. (23.2.1) by differentiating and setting m = 0:

˙̂y0 =
dŷm
dm

∣∣∣∣
0
= c1 , ¨̂y0 =

d2ŷm
dm2

∣∣∣∣∣
0

= 2c2

23.2. LOCAL POLYNOMIAL FITTING 1065

Thus, c1 and 2c2 represent the polynomial estimates of the first and second deriva-
tives at m = 0. Using Eq. (23.2.20) we can express them in terms of the second and third
columns of the matrix G:

˙̂y0 = c1 = gT1 y

¨̂y0 = 2c2 = 2gT2 y
(23.2.24)

Shifting these to the nth time sample, and denoting them by ˆ̇xn and ˆ̈xn, we find the
length-5 local polynomial filters for estimating the first and second derivatives of xn:

ˆ̇xn = 1

35

(−7yn−2 − 3.5yn−1 + 3.5yn+1 + 7yn+2
)

ˆ̈xn = 2

35

(
5yn−2 − 2.5yn−1 − 5yn − 2.5yn+1 + 5yn+2

) (23.2.25)

The above designs can be generalized in a straightforward manner to an arbitrary
degree d of the fitted polynomial and to an arbitrary length N of the data vector y. We
require only that d ≤ N − 1, a restriction to be clarified later. Assuming that N is odd,
say, N = 2M+1, the five-dimensional data vector y = [y−2, y−1, y0, y1, y2]T is replaced
by an N-dimensional one, having M points on either side of y0:

y = [y−M, . . . , y−1, y0, y1, . . . , yM]T (23.2.26)

The N data samples in y are then fitted by a polynomial of degree d:

ŷm = c0 + c1m+ · · · + cdmd, −M ≤m ≤M (23.2.27)

In this case, there are d+1 polynomial basis vectors si, i = 0,1, . . . , d, defined to
have components:

si(m)=mi, −M ≤m ≤M (23.2.28)

The corresponding N×(d+1) basis matrix S is defined to have the si as columns:

S = [s0, s1, . . . , sd] (23.2.29)

The smoothed values (23.2.27) can be written in the vector form:

ŷ =
d∑
i=0

cisi = [s0, s1, . . . , sd]

⎡⎢⎢⎢⎢⎢⎣
c0

c1

...
cd

⎤⎥⎥⎥⎥⎥⎦ = Sc (23.2.30)

The design steps for the LPSM filters can be summarized then as follows:

F = STS � Fij = sTi sj, i, j = 0,1, . . . , d

G = SF−1 ≡ [g0,g1, . . . ,gd]

B = GST = SF−1ST ≡ [b−M, . . . ,b0, . . . ,bM]

(23.2.31)

1066 23. LOCAL POLYNOMIAL FILTERS

The corresponding coefficient vector c and smoothed data vector ŷ will be:

c = GTy � ci = gTi y, i = 0,1, . . . , d

ŷ = BTy � ŷm = bTmy, −M ≤m ≤M
(23.2.32)

The middle smoothed value ŷ0 is given in terms of the middle LPSM filter b0:

ŷ0 = bT0 y =
M∑

k=−M
b0(k)yk

The N-dimensional vector y = [y−M, . . . , y−1, y0, y1, . . . , yM]T can be shifted to the
nth time instant by the replacement:

[y−M, . . . , y−1, y0, y1, . . . , yM] −→ [yn−M, . . . , yn−1, yn, yn+1, . . . , yn+M]

The resulting length-N, order-d, LPSM filter for smoothing a noisy sequence yn will
be, in its steady-state form (denoting again x̂n = ŷn):

x̂n = ŷn =
M∑

k=−M
b0(k)yn+k =

M∑
k=−M

b0(−k)yn−k (23.2.33)

The second equation expresses the output in convolutional form.† Because the filter
b0 is symmetric about its middle, we can replace b0(−k)= b0(k). The non-central
estimated values are obtained from the bm filters:

ŷn+m =
M∑

k=−M
bm(k)yn+k =

M∑
k=−M

bRm(k)yn−k , −M ≤m ≤M (23.2.34)

These filters satisfy the symmetry property bRm(k)= bm(−k)= b−m(k) and can be
used for prediction, as we discuss later.

The d+1 columns of the N×(d+1)-dimensional matrix G give the LPSM differen-
tiation filters, for derivatives of orders i = 0,1, . . . , d. It follows by differentiating
Eq. (23.2.27) i times and setting m = 0:

ŷ(i)0 = diŷm
dmi

∣∣∣∣∣
0

= i! ci = i! gTi y

Shifting these to time n, gives the differentiation convolutional filtering equations:

x̂(i)n = i!
M∑

m=−M
gRi (m)yn−m, i = 0,1, . . . , d (23.2.35)

where, gRi (m)= gi(−m) and as in Eq. (23.2.33), we reversed the order of writing the
terms, but here the filters gi are not necessarily symmetric (actually, they are symmetric
for even i, and antisymmetric for odd i.)
†We use the notation bR to denote the reverse of a double-sided filter b, that is, bR(k)= b(−k).

23.2. LOCAL POLYNOMIAL FITTING 1067

Example 23.2.1: We construct the length-5 LPSM filters for the cases d = 0 and d = 1. For
d = 0, corresponding to the constant ŷm = c0 in Eq. (23.2.1), there is only one basis vector s0

defined in Eq. (23.2.3). The basis matrix S = [s0] will have just one column, and the matrix
F will be the scalar

F = STS = sT0 s0 = [1,1,1,1,1]

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ = 5

The matrix G will then be

G = SF−1 = 1

5
s0 = 1

5
[1,1,1,1,1]T

resulting in the LPSM matrix B:

B = GST = 1

5
s0sT0 =

1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ [1,1,1,1,1]=
1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, the steady-state LPSM filter is the length-5 averager:

b0 = 1

5
[1,1,1,1,1]T

For the case d = 1, corresponding to the linear fit ŷm = c0 + c1m, we have the two basis
vectors s0 and s1, given in Eq. (23.2.3). We calculate the matrices S, F, and F−1:

S = [s0, s1]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2
1 −1
1 0
1 1
1 2

⎤⎥⎥⎥⎥⎥⎥⎦ , F = STS =
[

5 0
0 10

]
, F−1 = 1

5

[
1 0
0 0.5

]

This gives for G and B:

G = SF−1 = 1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1
1 −0.5
1 0
1 0.5
1 1

⎤⎥⎥⎥⎥⎥⎥⎦ , B = GST = 1

5

⎡⎢⎢⎢⎢⎢⎢⎣
3 2 1 0 −1
2 1.5 1 0.5 0
1 1 1 1 1
0 0.5 1 1.5 2
−1 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, the steady-state LPSM filter b0 is still equal to the length-5 FIR averager. It is a general
property of LPSM filters, that the filter b0 is the same for successive polynomial orders, that
is, for d = 0,1, d = 2,3, d = 4,5, and so on. However, the transient LPSM filters are different.

	

Example 23.2.2: Here, we construct the LPSM filters of length N = 5 and order d = 3. The
smoothed estimates are given by the cubic polynomial:

ŷm = c0 + c1m+ c2m2 + c3m3

1068 23. LOCAL POLYNOMIAL FILTERS

There is an additional basis vector s3 with components s3(m)= m3. Therefore, the basis
matrix S is:

S = [s0, s1, s2, s3]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4 −8
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ F = STS =

⎡⎢⎢⎢⎣
5 0 10 0
0 10 0 34

10 0 34 0
0 34 0 130

⎤⎥⎥⎥⎦

Because of the checkerboard pattern of this matrix, its inverse can be obtained from the
inverses of the two 2×2 interlaced submatrices:[

5 10
10 34

]−1

= 1

70

[
34 −10

−10 5

]
,
[

10 34
34 130

]−1

= 1

144

[
130 −34
−34 10

]

Interlacing these inverses, we obtain:

F−1 =

⎡⎢⎢⎢⎣
34/70 0 −10/70 0

0 130/144 0 −34/144
−10/70 0 5/70 0

0 −34/144 0 10/144

⎤⎥⎥⎥⎦
Then, we compute the derivative filter matrix G:

G = SF−1 = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 35/12 5 −35/12
12 −70/3 −2.5 35/6
17 0 −5 0
12 70/3 −2.5 −35/6
−3 −35/12 5 35/12

⎤⎥⎥⎥⎥⎥⎥⎦
and the LPSM matrix B:

B = SGT = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
34.5 2 −3 2 −0.5

2 27 12 −8 2
−3 12 17 12 −3

2 −8 12 27 2
−0.5 2 −3 2 34.5

⎤⎥⎥⎥⎥⎥⎥⎦
As mentioned above, the steady-state LPSM filter b0 is the same as that of case d = 2. But,
the transient and differentiation filters are different. 	

23.3 Exact Design Equations

In practice, the most common values of d are 0,1,2,3,4. For these ds and arbitrary filter
lengths N, the LPSM matrix B can be constructed in closed form; see references [620–
683], as well as the extensive tables in [638]. Denoting the inverse of the (d+1)×(d+1)
matrix F = STS by Φ = F−1, we can write

B = SF−1ST = SΦST =
d∑
i=0

d∑
j=0

sis
T
j Φij (23.3.1)

23.3. EXACT DESIGN EQUATIONS 1069

which gives for the mkth matrix element

Bmk =
d∑
i=0

d∑
j=0

si(m)sj(k)Φij =
d∑
i=0

d∑
j=0

mikjΦij , −M ≤m,k ≤M (23.3.2)

Because of symmetry, Bmk = Bkm, these matrix elements represent the kth compo-
nent of the LPSM filter bm or the mth component of the filter bk, that is,

Bmk = Bkm = bm(k)= bk(m)=
d∑
i=0

d∑
j=0

mikjΦij (23.3.3)

The matrix Φ can be determined easily for the cases 0 ≤ d ≤ 4. The matrix F is a
Hankel matrix, that is, having the same entries along each antidiagonal line. Therefore,
its matrix elements Fij depend only on the sum i+ j of the indices. To see this, we write
Fij as the inner product:

Fij = (STS)ij= sTi sj =
M∑

m=−M
si(m)sj(m)=

M∑
m=−M

mi+j , or,

Fij =
M∑

m=−M
mi+j ≡ Fi+j , 0 ≤ i, j ≤ d (23.3.4)

Note that because of the symmetric limits of summation, Fi+j will be zero whenever
i+ j is odd. This leads to the checkerboard pattern of alternating zeros in F that we saw
in the above examples. Also, because d ≤ 4, the only values of i + j that we need are:
i+ j = 0,2,4,6,8. For those, the summations over m can be done in closed form:

F0 =
M∑

m=−M
m0 = N = 2M + 1

F2 =
M∑

m=−M
m2 = 1

3
M(M + 1)(2M + 1)

F4 =
M∑

m=−M
m4 = 1

5
(3M2 + 3M − 1)F2

F6 =
M∑

m=−M
m6 = 1

7
(3M4 + 6M3 − 3M + 1)F2

F8 =
M∑

m=−M
m8 = 1

15
(5M6 + 15M5 + 5M4 − 15M3 −M2 + 9M − 3)F2

(23.3.5)

We can express F in terms of these definitions for various values of d. For example,
for d = 0,1,2,3, the F matrices are:

[F0] ,
[
F0 0
0 F2

]
,

⎡⎢⎣ F0 0 F2

0 F2 0
F2 0 F4

⎤⎥⎦ ,
⎡⎢⎢⎢⎣
F0 0 F2 0
0 F2 0 F4

F2 0 F4 0
0 F4 0 F6

⎤⎥⎥⎥⎦

1070 23. LOCAL POLYNOMIAL FILTERS

The corresponding inverse matricesΦ = F−1 are obtained by interlacing the inverses
of the checkerboard submatrices, as in Example 23.2.2. For d = 0,1,2, we have for Φ:

[1/F0] ,
[

1/F0 0
0 1/F2

]
,

⎡⎢⎣ F4/D4 0 −F2/D4

0 1/F2 0
−F2/D4 0 F0/D4

⎤⎥⎦ ,
and for d = 3:

Φ = F−1 =

⎡⎢⎢⎢⎣
F4/D4 0 −F2/D4 0

0 F6/D8 0 −F4/D8

−F2/D4 0 F0/D4 0
0 −F4/D8 0 F2/D8

⎤⎥⎥⎥⎦
where the D4 and D8 are determinants of the interlaced submatrices:

D4 = F0F4 − F2
2 =

1

45
M(M + 1)(2M + 1)(2M + 3)(4M2 − 1)

D8 = F2F6 − F2
4 =

3

35
M(M + 2)(M2 − 1)D4

(23.3.6)

Inserting the above expressions for Φ into Eq. (23.3.3), we determine the correspond-
ing LPSM filters. For d = 0, we find for −M ≤m,k ≤M:

bm(k)= Bmk = 1

F0
= 1

N
(23.3.7)

For d = 1:

bm(k)= Bmk = 1

F0
+ mk

F2
(23.3.8)

For d = 2:

bm(k)= Bmk = F4

D4
+ 1

F2
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2 (23.3.9)

For d = 3:

bm(k)= Bmk = F4

D4
+ F6

D8
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3

(23.3.10)

23.3. EXACT DESIGN EQUATIONS 1071

The required ratios are given explicitly as follows:

F4

D4
= 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

F2

D4
= 15

(2M + 3)(4M2 − 1)

F0

D4
= 45

M(M + 1)(2M + 3)(4M2 − 1)

F6

D8
= 25(3M4 + 6M3 − 3M + 1)
M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

F4

D8
= 35(3M2 + 3M − 1)
M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

F2

D8
= 175

M(M + 2)(M2 − 1)(2M + 3)(4M2 − 1)

(23.3.11)

In a similar fashion, we also find for the case d = 4:

bm(k)= Bmk =D12

D
+ F6

D8
mk− D10

D
(m2 + k2)+E8

D
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3 + D8

D
(m4 + k4)

− D6

D
(m2k4 + k2m4)+D4

D
m4k4

(23.3.12)

where
D6 = F0F6 − F2F4

D10 = F2F8 − F4F6

D = F0D12 − F2D10 + F4D8

E8 = F0F8 − F2
4

D12 = F4F8 − F2
6 (23.3.13)

These are given explicitly as follows:

D6 = 1

7
(6M2 + 6M − 5)D4

D10 = 1

21
M(M + 2)(M2 − 1)(2M2 + 2M − 3)D4

E8 = 1

5
(4M4 + 8M3 − 4M2 − 8M + 1)D4

D12 = 1

735
M(M + 2)(M2 − 1)(15M4 + 30M3 − 35M2 − 50M + 12)D4

D = 4

11025
M(M + 2)(M2 − 1)(2M + 5)(4M2 − 9)(4M2 − 1)D4

(23.3.14)

1072 23. LOCAL POLYNOMIAL FILTERS

and the required ratios are:

D12

D
= 15(15M4 + 30M3 − 35M2 − 50M + 12)

4(2M + 5)(4M2 − 1)(4M2 − 9)

D10

D
= 525(2M2 + 2M − 3)

4(2M + 5)(4M2 − 1)(4M2 − 9)

E8

D
= 2205(4M4 + 8M3 − 4M2 − 8M + 5)

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

D8

D
= 945

4(2M + 5)(4M2 − 1)(4M2 − 9)

D6

D
= 1575(6M2 + 6M − 5)

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

D4

D
= 11025

4M(M + 2)(M2 − 1)(2M + 5)(4M2 − 1)(4M2 − 9)

(23.3.15)

In this case, the matrix F and its two interlaced submatrices are:

F =

⎡⎢⎢⎢⎢⎢⎢⎣
F0 0 F2 0 F4

0 F2 0 F4 0
F2 0 F4 0 F6

0 F4 0 F6 0
F4 0 F6 0 F8

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎣ F0 F2 F4

F2 F4 F6

F4 F6 F8

⎤⎥⎦ , [
F2 F4

F4 F6

]

Its inverse—obtained by interlacing the inverses of these two submatrices—can be
expressed in terms of the determinant quantities of Eq. (23.3.13):

Φ = F−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
D12/D 0 −D10/D 0 D8/D

0 F6/D8 0 −F4/D8 0
−D10/D 0 E8/D 0 −D6/D

0 −F4/D8 0 F2/D8 0
D8/D 0 −D6/D 0 D4/D

⎤⎥⎥⎥⎥⎥⎥⎦
Eqs. (23.3.5)–(23.3.15) provide closed-form expressions for the LPSM filters bm(k)

of orders d = 0,1,2,3,4. Setting m = 0, we obtain the explicit forms of the steady-state
filters b0(k), −M ≤ k ≤M. For d = 0,1:

b0(k)= 1

2M + 1
(23.3.16)

for d = 2,3:

b0(k)= 3(3M2 + 3M − 1− 5k2)
(2M + 3)(4M2 − 1)

(23.3.17)

and for d = 4,5:

b0(k)= 15
(
15M4 + 30M3 − 35M2 − 50M + 12− 35(2M2 + 2M − 3)k2 + 63k4

)
4(2M + 5)(4M2 − 1)(4M2 − 9)

(23.3.18)

23.4. GEOMETRIC INTERPRETATION 1073

Example 23.3.1: Determine the quadratic/cubic LPSM filters of lengths N = 5,7,9. Using
(23.3.17) with M = 2,3,4, we find (for −M ≤ k ≤M):

b0(k)= 17− 5k2

35
= 1

35
[−3,12,17,12,−3]

b0(k)= 7− k2

21
= 1

21
[−2,3,6,7,6,3,−2]

b0(k)= 59− 5k2

231
= 1

231
[−21,14,39,54,59,54,39,14,−21]

where the coefficients have been reduced to integers as much as possible. 	

Example 23.3.2: Determine the quartic and quintic LPSM filters of length N = 7,9. Using
Eq. (23.3.18) with M = 3,4, we find:

b0(k)= 131− 61.25k2 + 5.25k4

231
= 1

231
[5,−30,75,131,75,−30,5]

b0(k)= 179− 46.25k2 + 2.25k4

429
= 1

429
[15,−55,30,135,179,135,30,−55,15]

23.4 Geometric Interpretation

The LPSM filters admit a nice geometric interpretation, which is standard in least-squares
problems. Let Y be the vector space of the N-dimensional real-valued vectors y, that
is, the space RN, and let S be the (d+1)-dimensional subspace spanned by all linear
combinations of the basis vectors si, i = 0,1, . . . , d.

Thus, the matrix S = [s0, s1, . . . , sd] is a (non-orthogonal) basis of the subspace S.
The smoothed vector ŷ, being a linear combination of the si, belongs to the subspace S.
Moreover, because of the orthogonality equations (23.2.8), ŷ is orthogonal to the error
vector e:

ŷTe = (Sc)Te = cTSTe = 0

Then, the equation e = y− ŷ can be rewritten as the orthogonal decomposition:

y = ŷ+ e (23.4.1)

which expresses y as a sum of a part that belongs to the subspace S and a part that
belongs to the orthogonal complement subspace S⊥. The decomposition is unique and
represents the direct sum decomposition of the full vector space Y:

Y = S⊕ S⊥

This geometric interpretation requires that the dimension of the subspace S not
exceed the dimension of the full space Y, that is, d + 1 ≤ N. The component ŷ that
lies in S is the projection of y onto S. The matrix B in Eq. (23.2.11) is the corresponding
projection matrix. As such, it will be symmetric, BT = B, and idempotent :

B2 = B (23.4.2)

1074 23. LOCAL POLYNOMIAL FILTERS

The proof is straightforward:

B2 = (SF−1ST
)(
SF−1ST

) = SF−1(STS)F−1ST = SF−1ST = B

The matrix (I−B), where I is the N-dimensional identity matrix, is also a projection
matrix, projecting onto the orthogonal subspace S⊥. Thus, the error vector e belonging
to S⊥ can be obtained from y by the projection:

e = y− ŷ = (I − B)y

Because (I−B) is also idempotent and symmetric, (I−B)2= (I−B), we obtain for
the minimized value of the performance index J of Eq. (23.2.6):

Jmin = eTe = yT(I − B)2y = yT(I − B)y = yTy− yTBy (23.4.3)

23.5 Orthogonal Polynomial Bases

Computationally, the non-orthogonal basis S = [s0, s1, . . . , sd] is not the most conve-
nient one. The Gram-Schmidt orthogonalization process may be applied to the columns
of S to obtain an orthogonal basis. This procedure amounts to performing the QR-
factorization† on S, that is,

S = QR (23.5.1)

where Q is an N×(d+1) matrix with orthonormal columns, that is, QTQ = I, and R is
a (d+1)×(d+1) non-singular upper-triangular matrix.

The columns of Q = [q0,q1, . . . ,qd], correspond to the (orthonormalized) discrete
Chebyshev or Gram polynomials qi(n), i = 0,1, . . . , d, constructed from the monomial
basis si(n)= ni by the Gram-Schmidt process. Noting that STS = RT(QTQ)R = RTR,
the design of the filter matrices B,G can be formulated more efficiently as follows:

F = STS = RTR

G = SF−1 = QR−T

B = SF−1ST = QQT

(23.5.2)

which lead to the explicit construction of the differentiation and LPSM filters in terms
of the Chebyshev polynomials qi(n):

gi =
i∑

j=0

qj (R−1)ij ⇒ gi(n)=
i∑

j=0

qj(n) (R−1)ij

B =
d∑
i=0

qi q
T
i ⇒ bm(k)= Bkm =

d∑
i=0

qi(k)qi(m)

(23.5.3)

The expression for bm(k) can be simplified further using the Christoffel-Darboux
identity for orthogonal polynomials. We discuss these matters further in Sec. 23.13. The
MATLAB function lpsm implements (23.5.2). Its inputs are N,d and its outputs B,G:

†see [45].

23.6. POLYNOMIAL PREDICTIVE AND INTERPOLATION FILTERS 1075

[B,G] = lpsm(N,d); % local polynomial smoothing and differentiation filter design

The function constructs the basis matrix Swith the help of the function lpbasis and
carries out its QR-factorization with the help of the built-in function qr. The following
code fragment illustrates the computational steps:

S = lpbasis(N,d); % construct polynomial basis
[Q,R] = qr(S, 0); % economy form, R is (d+1)x(d+1) upper triangular
G = Q/R’; % differentiation filters
B = Q*Q’; % smoothing filters

23.6 Polynomial Predictive and Interpolation Filters

The case d + 1 = N or d = N − 1 is of special interest, corresponding to ordinary
polynomial Lagrange interpolation. Indeed, in this case, the basis matrix S becomes a
square non-singular N×N matrix with an ordinary inverse S−1, which implies that B
becomes the identity matrix,

B = S(STS)−1ST = S(S−1S−T)ST = I

or, equivalently, the subspace S becomes the full space Y. The optimal polynomial of
degree d = N− 1 fits through all the sample points of the N-dimensional vector y, that
is, e = 0 or ŷ = y = Sc, with solution c = S−1y, and interpolates between those samples.
This polynomial is defined for any independent variable t by:

ŷt =
N−1∑
i=0

citi = cTu t = yTS−Tu t ≡ yTb t =
M∑

k=−M
bt(k)yk (23.6.1)

where we set,

u t =

⎡⎢⎢⎢⎢⎢⎣
1
t
...
tN−1

⎤⎥⎥⎥⎥⎥⎦ , b t = S−Tu t ⇒ bt(k)=
N−1∑
i=0

(S−1)ik ti (23.6.2)

The polynomials bt(k) of degree (N−1) in t are the ordinary Lagrange interpolation
polynomials, interpolating through the points yk. To see this, we note that at each
discrete value of t, say t =m with −M ≤m ≤M, we have:

bm(k)=
N−1∑
i=0

(S−1)ik mi =
N−1∑
i=0

(S−1)ik Smi = (SS−1)mk= Imk = δ(m− k) (23.6.3)

so that the polynomial passes through the signal values at the sampling instants:

ŷt
∣∣
t=m =

M∑
k=−M

bm(k)yk =
M∑

k=−M
δ(m− k)yk = ym

1076 23. LOCAL POLYNOMIAL FILTERS

It is straightforward to show using the property (23.6.3) that bt(k) is given by the
usual Lagrange interpolation formula:

bt(k)=
M∏

m=−M
m�=k

(
t −m
k−m

)
, −M ≤ k ≤M (23.6.4)

Indeed, Eq. (23.6.4) states that the (2M) roots of bt(k) are the points t = m, for
−M ≤ m ≤ M and m �= k, which fixes the polynomial up to a constant. That constant
is determined by the condition bk(k)= 1.

Example 23.6.1: For N = 5 and d = N − 1 = 4, the fourth degree Lagrange polynomials,
constructed from Eq. (23.6.4), can be expanded in powers of t :⎡⎢⎢⎢⎢⎢⎢⎣

bt(−2)
bt(−1)
bt(0)
bt(1)
bt(2)

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

24

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 −1 −2 1
0 −16 16 4 −4

24 0 −30 0 6
0 16 16 −4 −4
0 −2 −1 2 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
t1

t2

t3

t4

⎤⎥⎥⎥⎥⎥⎥⎦
The coefficient matrix is recognized as the inverse transposed of the basis matrix S:

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4 −8 16
1 −1 1 −1 1
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ S−T = 1

24

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 −1 −2 1
0 −16 16 4 −4

24 0 −30 0 6
0 16 16 −4 −4
0 −2 −1 2 1

⎤⎥⎥⎥⎥⎥⎥⎦
which verifies Eq. (23.6.2). 	

We note that bt(k) can be written in the following analytical form, which shows the
relation of the Lagrange interpolation filter to the ideal sinc-interpolation filter:

bt(k)= Γ(M + 1+ t)Γ(M + 1− t)
Γ(M + 1+ k)Γ(M + 1− k)

· sin
(
π(t − k)

)
π(t − k)

(23.6.5)

Some alternative expressions are as follows:

bt(k)= (−1)M+k
2M∑

m=M+k

(
M + t
m

)(
m

M + k

)
(−1)m (23.6.6)

bt(k)= (−1)M+1−kΓ(M + 1− t)
(t − k)Γ(−M − t)Γ(M + 1+ k)Γ(M + 1− k)

(23.6.7)

and since the bt(k) sum up to one, we also have [740]:

bt(k)=
⎡⎣ M∑
n=−M

bt(n)
bt(k)

⎤⎦−1

=
⎡⎣ M∑
n=−M

(−1)k−n
(M + k)! (M − k)!
(M + n)! (M − n)!

t − k
t − n

⎤⎦−1

(23.6.8)

23.6. POLYNOMIAL PREDICTIVE AND INTERPOLATION FILTERS 1077

For polynomial ordersd < N−1, one can still interpolate approximately and smoothly
between the samples ym. In this case, using c = GTy = (STS)−1STy, we have:

ŷt =
d∑
i=0

citi = cTu t = yTGu t ≡ yTb t =
M∑

k=−M
bt(k)yk (23.6.9)

where now

u t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
t1

t2

...
td

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , b t = Gu t = S(STS)−1u t ⇒ bt(k)=
d∑
i=0

Gki ti (23.6.10)

and shifting the origin k = 0 to the arbitrary time instant n, we obtain the interpolation
formula for a shift t relative to the time instant n:

ŷn+t =
M∑

k=−M
bt(k)yn+k =

M∑
k=−M

bRt (k)yn−k (23.6.11)

where bRt (k)= bt(−k). Such formulas can also be used for prediction by choosing
t > M so that n+ t > n+M, that is, it lies beyond the end of the filter range.

We can obtain closed-form expressions for the interpolation filters bt(k) for d =
0,1,2,3,4 and arbitrary M, by replacing in Eqs. (23.3.7)–(23.3.12) the variable m in
bm(k) by the variable t. For example, for d = 1,2,3,4, we have, respectively:

bt(k) = 1

F0
+ tk
F2

bt(k) = F4

D4
+ 1

F2
tk− F2

D4
(t2 + k2)+ F0

D4
t2k2

bt(k) = F4

D4
+ F6

D8
tk− F2

D4
(t2 + k2)+ F0

D4
t2k2 − F4

D8
(kt3 + tk3)+ F2

D8
t3k3

bt(k) = D12

D
+ F6

D8
tk− D10

D
(t2 + k2)+E8

D
t2k2 − F4

D8
(kt3 + tk3)

+ F2

D8
t3k3 + D8

D
(t4 + k4)−D6

D
(t2k4 + k2t4)+D4

D
t4k4

(23.6.12)

where the required coefficient ratios are given by Eqs. (23.3.11) and (23.3.15). The inter-
polation filter (23.6.10) may be written in terms of the columns of G = [g0,g1, . . . ,gd]:

bt(k)=
d∑
i=0

Gkiti =
d∑
i=0

gi(k)ti ⇒ b t =
d∑
i=0

giti (23.6.13)

1078 23. LOCAL POLYNOMIAL FILTERS

23.7 Farrow Realization Structures

This representation admits a convenient realization, known as a Farrow structure, which
allows the changing of the parameter t on the fly without having to redesign the filter.
It is essentially a block-diagram realization of Eq. (23.6.13) written in nested form using
Hörner’s rule. For example, if d = 3, we have

b t = g0 + g1t + g2t2 + g3t3 = ((g3t + g2)t + g1

)
t + g0 (23.7.1)

Fig. 23.7.1 shows this realization where we replaced gi by their reversed versions gRi ,
which appear in the convolutional filtering equations. The parameter t appears only in
the lower multipliers and can be independently controlled.

Fig. 23.7.1 Farrow structure for interpolating or predictive FIR filter.

The filtering equation (23.6.11) can also be written in a causal manner by setting
t =M + τ and defining the causal filter, where N = 2M + 1:

hτ(k)= bM+τ(M − k) , k = 0,1, . . . ,N − 1 (23.7.2)

Replacing n→ n−M and k→ k−M, Eq. (23.6.11) is transformed into a causal filter-
ing operation that predicts the future sample yn+τ from the present and past samples
yn−k, k = 0,1, . . . ,N − 1. The mapping of the time indices is explained in Fig. 23.7.2.
The resulting filtering operation reads:

ŷn+τ =
N−1∑
k=0

hτ(k)yn−k , τ ≥ 0 (23.7.3)

Fig. 23.7.2 Double-sided and causal predictive FIR filters, with n′ = n−M and t =M + τ.

Since τ is any real number, the notation n+τ corresponds to the actual time instant
(n+τ)T in seconds, where T is the sampling time interval. The filter h−τ(k) may also
be used for implementing a fractional delay as opposed to prediction, that is,

23.7. FARROW REALIZATION STRUCTURES 1079

ŷn−τ =
N−1∑
k=0

h−τ(k)yn−k (fractional delay) (23.7.4)

The filters bt(k) and hτ(k) satisfy the following polynomial-preserving moment
constraints (being equivalent to STb t = u t), where i = 0,1, . . . , d:

M∑
k=−M

kibt(k)= ti ⇒
N−1∑
k=0

kihτ(k)= (−τ)i ,
N−1∑
k=0

kih−τ(k)= τi (23.7.5)

These constraints imply that Eqs. (23.7.3) and (23.7.4) are exact for polynomials of
degree r ≤ d. For any such polynomial P(n), we have:

N−1∑
k=0

h−τ(k)P(n− k)= P(n− τ) (23.7.6)

For example, we have for the monomial P(n)= nr with r ≤ d:

N−1∑
k=0

h−τ(k)(n− k)r=
N−1∑
k=0

h−τ(k)
r∑
i=0

(
r
i

)
nr−i(−1)iki

=
r∑
i=0

(
r
i

)
nr−i(−1)i

N−1∑
k=0

kih−τ(k)=
r∑
i=0

(
r
i

)
nr−i(−1)iτi = (n− τ)r

It is in the sense of Eq. (23.7.6) that we may think of the transfer function of the filter
h−τ(k) as approximating the ideal fractional delay z−τ:

N−1∑
k=0

h−τ(k)z−k � z−τ (23.7.7)

Further insight into the nature of the approximation (23.7.7) can be gained by con-
sidering the Lagrange interpolation case, d = N − 1. From the definition of h−τ(k)=
bM−τ(M − k) and Eqs. (23.6.4) and (23.6.6), we obtain, for k = 0,1, . . . ,N − 1:

h−τ(k)=
N−1∏
i=0
i�=k

(
τ− i
k− i

)
=

N−1∑
i=N−1−k

(
N−1−τ

i

)(
i

N−1−k

)
(−1)i−(N−1−k) (23.7.8)

The z-transform of h−τ(k) is then,

N−1∑
k=0

h−τ(k)z−k =
N−1∑
k=0

N−1∑
i=N−1−k

(
N−1−τ

i

)(
i

N−1−k

)
(−1)i−(N−1−k)z−k

= z−(N−1)
N−1∑
i=0

N−1∑
k=N−1−i

(
N−1−τ

i

)(
i

N−1−k

)
(−1)i−(N−1−k)zN−1−k

1080 23. LOCAL POLYNOMIAL FILTERS

Changing summation variables and using the binomial expansion of (z−1)i, we obtain,

N−1∑
k=0

h−τ(k)z−k = z−(N−1)
N−1∑
i=0

m∑
j=0

(
N−1−τ

i

)(
i
j

)
(−1)i−jzj

= z−(N−1)
N−1∑
i=0

(
N−1−τ

i

)
(z− 1)i

(23.7.9)

Applying the binomial identity,

(1+ x)α=
∞∑

m=0

(
α
i

)
xi (23.7.10)

with x = z− 1 and α = N − 1− τ, we have,

zN−1−τ = (1+ z− 1)N−1−τ=
∞∑
i=0

(
N−1−τ

i

)
(z− 1)i (23.7.11)

We recognize the sum in Eq. (23.7.9) to be the firstN terms of (23.7.11). Thus, taking
that sum to approximately represent zN−1−τ, we have,

N−1∑
k=0

h−τ(k)z−k � z−(N−1) zN−1−τ = z−τ (23.7.12)

This approximation becomes exact whenever τ is an integer, say τ = m, with m =
0,1, . . . ,N−1. Indeed in this case, the summation range 0 ≤ i ≤ N−1 in Eq. (23.7.9) can
be restricted to 0 ≤ i ≤ N−1−m because the binomial coefficient vanishes whenever its
(integer) arguments satisfy N − 1−m < i ≤ N − 1. We then have an ordinary binomial
expansion for an integer power:

N−1∑
k=0

h−m(k)z−k = z−(N−1)
N−1−m∑
i=0

(
N−1−m

i

)
(z−1)i= z−(N−1)(1+z−1)N−1−m= z−m

which implies the expected result h−m(k)= δ(k−m). Eq. (23.7.9) is equivalent to New-
ton’s forward interpolation formula. To see this, let us introduce the forward difference
operator Δ = z− 1, or, Δfn = fn+1 − fn, and apply (23.7.9) in the time domain:

ŷn−τ =
N−1∑
k=0

h−τ(k)yn−k =
N−1∑
i=0

(
N−1−τ

i

)
Δiyn−(N−1) (23.7.13)

This interpolates between the points [yn−(N−1), . . . , yn−1, yn]with τmeasured back-
wards from the end-point yn. We may measure the interpolation distance forward from
the first point yn−(N−1) by defining x = N−1−τ. Then, Eq. (23.7.13) reads,

ŷn−(N−1)+x =
N−1∑
i=0

(
x
i

)
Δiyn−(N−1) (23.7.14)

23.7. FARROW REALIZATION STRUCTURES 1081

and setting n = N − 1 so that the data range is [y0, y1, . . . , yN−1], we obtain the usual
way of writing Newton’s polynomial interpolation formula:

ŷx =
N−1∑
i=0

(
x
i

)
Δiy0 =

N−1∑
i=0

x(x− 1)· · · (x− i+ 1)
i!

Δiy0 (23.7.15)

We note also that Eq. (23.7.8) is valid for either even or odd values of N. For N =
2,3,4, we obtain for the corresponding filter coefficients:

[
h−τ(0)
h−τ(1)

]
=
[

1− τ
τ

]
,

⎡⎢⎣ h−τ(0)h−τ(1)
h−τ(2)

⎤⎥⎦ = 1

2

⎡⎢⎣ (τ− 1)(τ− 2)
−2τ(τ− 2)

τ(τ− 1)

⎤⎥⎦
⎡⎢⎢⎢⎣
h−τ(0)
h−τ(1)
h−τ(2)
h−τ(3)

⎤⎥⎥⎥⎦ = 1

6

⎡⎢⎢⎢⎣
−(τ− 1)(τ− 2)(τ− 3)

3τ(τ− 2)(τ− 3)
−3τ(τ− 1)(τ− 3)

τ(τ− 1)(τ− 2)

⎤⎥⎥⎥⎦
(23.7.16)

and the corresponding interpolation formulas:

ŷn−τ = (1− τ)yn + τyn−1

ŷn−τ = 1

2
(τ− 1)(τ− 2)yn − τ(τ− 2)yn−1 + 1

2
τ(τ− 1)yn−2

ŷn−τ = −1

6
(τ− 1)(τ− 2)(τ− 3)yn + 1

2
τ(τ− 2)(τ− 3)yn−1

− 1

2
τ(τ− 1)(τ− 3)yn−2 + 1

6
τ(τ− 1)(τ− 2)yn−3

(23.7.17)

Example 23.7.1: Fig. 23.7.3 shows in the top row an example of a Lagrange fractional-delay
filter with N = 3 and polynomial order d = N − 1 = 2 for the delay values τ = m/10,
m = 1,2, . . . ,10.

The bottom row is the case N = 5 and d = N − 1 = 4 with delays τ extending over the
interval 0 ≤ τ ≤ 2. This filter interpolates between the samples [yn−4, yn−3, yn−2, yn−1, yn].
The chosen range of τ’s spans the gaps between [yn−2, yn−1, yn]. For the subrange 0 ≤ τ ≤ 1
which spans [yn−1, yn], the magnitude response is greater than one, while it is less than one
for the more central range 1 ≤ τ ≤ 2 which spans [yn−2, yn−1]. The following MATLAB code
segment illustrates the generation of the upper two graphs:

f = linspace(0,1,1001); w= pi*f; % frequencies 0 ≤ω ≤ π
N=3; d=N-1; M = floor(N/2); % d = N−1 for Lagrange interpolation

Hmag = []; Hdel = [];
for m=1:10,

tau = m/10; % desired delays

h = flip(lpinterp(N,d,M-tau)); % lpinterp is discussed in Sec. 23.9

H = freqz(h,1,w);
Hmag = [Hmag; 10*log10(abs(H))]; % magnitude responses in dB

Delay = -angle(H)./w; Delay(1) = tau;
Hdel = [Hdel; Delay]; % phase delays

1082 23. LOCAL POLYNOMIAL FILTERS

0 0.2 0.4 0.6 0.8 1
−6

−3

0

ω /π

m
ag

n
it

u
de

 (
dB

)

Fractional− Delay Filters, N = 3, d = 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fractional− Delay Filters, N = 3, d = 2

ω /π

ph
as

e
de

la
y

0 0.2 0.4 0.6 0.8 1
−6

−3

0

3

ω /π

m
ag

n
it

u
de

 (
dB

)

Fractional− Delay Filters, N = 5, d = 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Fractional− Delay Filters, N = 5, d = 4

ω /π

ph
as

e
de

la
y

Fig. 23.7.3 Lagrange fractional-delay filters with N = 3.

end

figure; plot(f,Hmag); figure; plot(f,Hdel);

The filters were calculated with the function lpinterp (from Sec. 23.9) with arguments d =
N−1, t =M − τ, with reversed output to account for the definition h−τ(k)= bM−τ(M − k).

In both cases, we observe that the useful bandwidth of operation, within which both the
phase delays have the correct values and the magnitude response is near unity, is fairly
narrow extending to about ω = 0.2π, or f = fs/10 in units of the sampling rate fs. 	

References [736–757] contain further information on predictive FIR and fractional-
delay filters. See also [758–771] for alternative implementations of fractional delay
using maximally-flat and allpass filters. Ref. [746] provides a nice review of various
approaches to the fractional-delay problem.

23.8 Minimum Variance Filters

Next we discuss the equivalence of the least-square polynomial fitting approach to the
minimization of the NRR subject to linear moment constraints. In the actuarial context,

23.8. MINIMUM VARIANCE FILTERS 1083

such designs are referred to as “minimum R0” or “minimum variance” filters, as op-
posed to the “minimum Rs” or “minimum roughness” filters— the nomenclature being
explained in Sec. 23.12.

The projection properties of B may be used to calculate the NRR. For example, the
property mentioned previously that the NRR of the filter b0 is the equal to the middle
value b0(0) follows from Eq. (23.4.2). Using the symmetry of B, we have

BT = B = B2 = BTB

Taking matrix elements, we have Bkm = (BT)mk= (BTB)mk. But, Bkm is the kth
component of the mth column bm. Using a similar argument as in Eq. (23.2.13), we also
have (BTB)mk= bTmbk. Therefore,

bTmbk = bm(k)

For k =m, we have the diagonal elements of BTB = B:

R = bTmbm = bm(m) (23.8.1)

These are recognized as the NRRs of the filters bm. In particular, for m = 0, we have
R = bT0 b0 = b0(0). Setting k = 0 in Eqs. (23.3.16)–(23.3.18), we find that the NRRs of
the cases d = 0,1, d = 2,3, and d = 4,5 are given by the coefficient ratios 1/F0, F4/D4,
and D12/D. Therefore:

(d = 0,1) R = 1

N

(d = 2,3) R = 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

(d = 4,5) R = 15(15M4 + 30M3 − 35M2 − 50M + 12)
4(2M + 5)(4M2 − 1)(4M2 − 9)

(23.8.2)

In the limit of large N or M, we have the approximate asymptotic expressions:

(d = 0,1) R = 1

N

(d = 2,3) R � 9/4

N
= 2.25

N

(d = 4,5) R � 225/64

N
= 3.52

N

(23.8.3)

Thus, the noise reductions achieved by the quadratic/cubic and quartic/quintic cases
are 2.25 and 3.52 times worse than that of the plain FIR averager of the same length N.
Another consequence of the projection nature of B is:

BTS = S, STB = ST (23.8.4)

Indeed, BTS = BS = S(STS)−1STS = S. Column-wise the first equation states that:

BT[s0, s1, . . . , sd]= [s0, s1, . . . , sd] ⇒ BTsi = si, i = 0,1, . . . , d

1084 23. LOCAL POLYNOMIAL FILTERS

Thus, the basis vectors si remain invariant under projection, but that is to be ex-
pected because they already lie in S. In fact, any other linear combination of them, such
as Eq. (23.2.30), remains invariant under B, that is, BTŷ = ŷ.

This property answers the question: When are the smoothed values equal to the
original ones, ŷ = y, or, equivalently, when is the error zero, e = 0? Because e = y−BTy,
the error will be zero if and only if BTy = y, which means that y already lies in S, that is,
it is a linear combination of si. This implies that the samples ym are already dth order
polynomial functions of m, as in Eq. (23.2.27).

The second equation in (23.8.4) implies certain constraints on the filters bm, which
can be used to develop an alternative approach to the LPSM filter design problem in
terms of minimizing the NRR subject to constraints. To see this, we write the (d+1)×N
transposed matrix ST column-wise:

ST = [u−M, . . . ,u−1,u0,u1, . . . ,uM] (23.8.5)

For example, in the N = 5, d = 2 case, we have:

ST =
⎡⎢⎣ 1 1 1 1 1
−2 −1 0 1 2

4 1 0 1 4

⎤⎥⎦ ≡ [u−2, u−1, u0, u1, u2]

It is easily verified that the mth column um is simply

um =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
m
m2

...
md

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , −M ≤m ≤M (23.8.6)

which is the same as u t at t = m, in terms of the definition (23.6.10). Using B = GST,
we can express the LPSM filters bm in terms of um, as follows:

[b−M, . . . ,b−1,b0,b1, . . . ,bM]= B = GST = G[u−M, . . . ,u−1,u0,u1, . . . ,uM]

which implies:
bm = Gum = SF−1um (23.8.7)

Multiplying by ST, we find STbm = STSF−1um = um, or,

STbm = um ⇒

⎡⎢⎢⎢⎢⎢⎣
sT0 bm
sT1 bm

...
sTdbm

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1
m
...
md

⎤⎥⎥⎥⎥⎥⎦ (23.8.8)

These relationships are the column-wise equivalent of STB = ST. Thus, each LPSM
filter bm satisfies (d+1) linear constraints:

sTi bm =mi, i = 0,1, . . . , d (23.8.9)

23.8. MINIMUM VARIANCE FILTERS 1085

Writing the dot products explicitly, we have equivalently:

M∑
n=−M

nibm(n)=mi , i = 0,1, . . . , d (23.8.10)

In particular, for the steady-state LPSM filter b0, we have u0 = [1,0,0, . . . ,0]T, with
ith component δ(i). Therefore, the constraint STb0 = u0 reads component-wise:

M∑
n=−M

nib0(n)= δ(i), i = 0,1, . . . , d (23.8.11)

For i = 0, this is the usual DC constraint:

M∑
n=−M

b0(n)= 1 (23.8.12)

and for i = 1,2, . . . , d:
M∑

n=−M
nib0(n)= 0 (23.8.13)

The quantity in the left-hand side of Eq. (23.8.11) is called the ith moment of the
impulse response b0(n). Because of the symmetric limits of summation over n and the
symmetry of b0(n) about its middle, the moments (23.8.13) will be zero for odd i, and
therefore are not extra constraints. However, for even i, they are nontrivial constraints.

These moments are related to the derivatives of the frequency response at ω = 0.
Indeed, defining,

B0(ω)=
M∑

n=−M
b0(n)e−jωn

and differentiating it i times, we have:

jiB(i)0 (ω)= ji
diB0(ω)
dωi =

M∑
n=−M

nib0(n)e−jωn

Setting ω = 0, we obtain:

jiB(i)0 (0)= ji
diB0(ω)
dωi

∣∣∣∣∣
ω=0

=
M∑

n=−M
nib0(n) (23.8.14)

Thus, the moment constraints (23.8.12) and (23.8.13) are equivalent to the DC con-
straint and the flatness constraints on the frequency response at ω = 0:

B0(0)= 1, B(i)0 (0)= 0, i = 1,2, . . . , d (23.8.15)

The larger the d, the more derivatives vanish at ω = 0, and the flatter the response
B0(ω) becomes. This effectively increases the cutoff frequency of the lowpass filter—
letting through more noise, but at the same time preserving more of the higher frequen-
cies in the desired signal.

1086 23. LOCAL POLYNOMIAL FILTERS

Figure 23.8.1 shows the magnitude response |B0(ω)| for the cases N = 7,15 and
d = 0,2,4. The quadratic filters are flatter at DC than the plain FIR averager because
of the extra constraint B′′0 (0)= 0. Similarly, the quartic filters are even flatter because

they satisfy two flatness conditions: B′′0 (0)= B(4)0 (0)= 0. The cutoff frequencies are
approximately doubled and tripled in the cases d = 2 and d = 4, as compared to d = 0.

0 0.5 1
0

0.5

1

ω in units of π

|
B

0
(ω

)|

Magnitude Response, N = 7

 d = 0,1
 d = 2,3
 d = 4,5

0 0.5 1
0

0.5

1

ω in units of π

|
B

0
(ω

)|

Magnitude Response, N = 15

 d = 0,1
 d = 2,3
 d = 4,5

Fig. 23.8.1 LPSM filters of lengths N = 7,15, and orders d = 0,2,4.

A direct consequence of the moment constraints (23.8.11) is that the moments of
the input signal y(n) are preserved by the filtering operation (23.2.33), that is,

∑
n
nix̂(n)=

∑
n
niy(n), i = 0,1, . . . , d (23.8.16)

This can be proved easily working in the frequency domain. Differentiating the
filtering equation X̂(ω)= B0(ω)Y(ω) i times, and using the product rules of differ-
entiation, we obtain:

X̂(i)(ω)=
i∑

j=0

(
i
j

)
B(j)0 (ω)Y(i−j)(ω)

Setting ω = 0 and using the moment constraints satisfied by the filter, B(j)0 (0)=
δ(j), we observe that only the j = 0 term will contribute to the above sum, giving:

X̂(i)(0)= B0(0)Y(i)(0)= Y(i)(0), i = 0,1, . . . , d

which implies Eq. (23.8.16), by virtue of Eq. (23.8.14) as applied to x(n) and y(n).
The preservation of moments is a useful property in applications, such as spectro-

scopic analysis or ECG processing, in which the desired signal has one or more sharp
peaks, whose widths must be preserved by the smoothing operation. In particular, the
second moment corresponding to i = 2 in Eq. (23.8.16) is a measure of the square of the
width [626–636,640,642,762].

The above moment constraints can be used in a direct way to design the LPSM filters.
We consider first the more general problem of designing an optimum length-N filter that

23.8. MINIMUM VARIANCE FILTERS 1087

minimizes the NRR subject to d+ 1 arbitrary moment constraints. That is, minimize

R = bTb =
M∑

n=−M
b(n)2= min (23.8.17)

subject to the d+ 1 constraints, with a given u = [u0, u1, . . . , ud]T:

sTi b =
M∑

n=−M
nib(n)= ui, i = 0,1, . . . , d ⇒ STb = u (23.8.18)

The minimization of Eq. (23.8.17) subject to (23.8.18) can be carried out with the
help of Lagrange multipliers, that is, adding the constraint terms to the performance
index:

J = bTb+ 2
d∑
i=0

λi(ui − sTi b)= bTb+ 2λλλT(u− STb) (23.8.19)

The gradient of J with respect to the unknown filter b is:

∂J
∂b

= 2b− 2Sλλλ

Setting the gradient to zero, and solving for b gives:

b = Sλλλ = [s0, s1, . . . , sd]

⎡⎢⎢⎢⎢⎢⎣
λ0

λ1

...
λd

⎤⎥⎥⎥⎥⎥⎦ =
d∑
i=0

λisi

Component-wise this means that b(n) has the polynomial form:

b(n)=
d∑
i=0

λisi(n)=
d∑
i=0

λini, −M ≤ n ≤M

The Lagrange multiplier vector λλλ is determined by imposing the desired constraint:

u = STb = STSλλλ = Fλλλ ⇒ λλλ = F−1u

resulting in the optimum b:

b = Sλλλ = SF−1u = S(STS)−1u = Gu (23.8.20)

Since the solution minimizes the norm bTb, it is recognized to be the minimum-norm
solution of the (d+1)×N full-rank under-determined linear system STb = u, which can
be obtained by the pseudoinverse of ST, that is, b = (ST)+u, (ST)+= S(STS)−1. In
MATLAB, we can simply write b = pinv(ST)u.

Comparing this solution with Eqs. (23.8.7) and (23.8.8), we conclude that the LPSM
filters bm can be thought of as the optimum filters that have minimum NRR with con-
straint vectors u = um, that is, the minimization problems,

R = bTmbm = min , subject to STbm = um (23.8.21)

1088 23. LOCAL POLYNOMIAL FILTERS

have solutions,
bm = SF−1um = Gum , −M ≤m ≤M (23.8.22)

and putting these together as the columns of B, we obtain Eq. (23.2.31):

B = [. . . ,bm, . . .]= G[. . . ,um, . . .]= GST = SF−1ST (23.8.23)

In particular, the steady-state LPSM filter b0 minimizes the NRR with the constraint
vector u = u0 = [1,0, . . . ,0]T. This was precisely the problem first formulated and
solved using Lagrange multipliers by Schiaparelli [620].

Similarly, the interpolating filter b t = Gu t of Eq. (23.6.10) can be thought of as the
solution of the constrained minimization problem:

R = bTb = min , subject to STb = u t , where u t = [1, t, t2, . . . , td]T

23.9 Predictive Differentiation Filters

Going back to the polynomial fit of Eq. (23.6.9), that is,

ŷt =
d∑
i=0

citi = cTu t = yTGu t = yTb t , where b t = Gu t , (23.9.1)

we recall that the differentiation filters (23.2.24) were derived by differentiating (23.9.1)
at t = 0, and therefore, they correspond to the center of the data vector y:

ŷt
∣∣
t=0 = c0 = bT0 y = gT0 y

˙̂yt
∣∣
t=0 = c1 = gT1 y

¨̂yt
∣∣
t=0 = 2c2 = gT2 y , etc.,

The first derivative at an arbitrary value of t is given by:

˙̂yt = yTḃ t , ḃ t = Gu̇ t

where the differentiation operation can be expressed as matrix multiplication:

u t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
t
t2

...
td

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ⇒ u̇ t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2t
...
dtd−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · d 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
t
t2

...
td−1

td

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡ Du t (23.9.2)

where D is the (d+1)×(d+1) matrix with the sequence of numbers {1,2, . . . , d} along
its first subdiagonal and zeros everywhere else. Such a matrix can be constructed triv-
ially in MATLAB, for example, by:

D = diag(1:d, -1);

23.9. PREDICTIVE DIFFERENTIATION FILTERS 1089

It follows that the first-order differentiation filter is ḃ t = GDu t. In particular, the
differentiation filter at the sample point t = m is ḃm = GDum and the corresponding
estimated derivative:

˙̂ym = ḃ
T
my = uTmDTGTy , −M ≤m ≤M (23.9.3)

Stacking these together into a column vector, we obtain:

˙̂y = SDTGTy = ḂTy , where Ḃ = GDST = SF−1DST (23.9.4)

so that Ḃ has the ḃm as columns. Higher-order derivatives correspond to higher powers
of the matrix D, for example, ü t = D2u t, and so on, with the highest non-trivial power
beingDd, becauseDd+1 = 0, or equivalently, because the elements of u t are monomials
up to td. Therefore, the order-i differentiation matrix will be:

B(i) = SF−1DiST , i = 0,1, . . . , d (23.9.5)

Centering the data vector y at time n and denoting the m-th column of B(i) by b(i)m ,
we obtain the filtering equation for the i-th estimated derivative:

ŷ(i)n+m =
M∑

k=−M
b(i)m (k)yn+k =

M∑
k=−M

b(i)m (−k)yn−k (23.9.6)

We note that at the data-vector center m = 0, we have b(i)0 = gi. For arbitrary t, we

have b(i)t = GDiu t and we obtain the estimated/interpolated derivative:

ŷ(i)n+t =
M∑

k=−M
b(i)t (k)yn+k =

M∑
k=−M

b(i)t (−k)yn−k (23.9.7)

As in Eq. (23.7.2), the redefinition h(i)τ (k)= b(i)M+τ(M − k) will result into a causal
version of the predictive differentiator filter, with Eq. (23.9.7) transforming into:

ŷ(i)n+τ =
N−1∑
k=0

h(i)τ (k)yn−k (causal predictive differentiator) (23.9.8)

One can easily obtain closed-form expressions for the differentiation filters b(i)t (k)
for d = 0,1,2,3,4 and arbitrary M, by replacing the variable m in Eqs. (23.3.7)–(23.3.12)
by the variable t and differentiating i-times with respect to t. For example, for d = 1,2,3,
4, we differentiate Eqs. (23.6.12) once to get the first derivative:

1090 23. LOCAL POLYNOMIAL FILTERS

ḃt(k) = k
F2

ḃt(k) = 1

F2
k− F2

D4
(2t)+ F0

D4
(2tk2)

ḃt(k) = F6

D8
k− F2

D4
(2t)+ F0

D4
(2tk2)− F4

D8
(3t2k+ k3)+ F2

D8
(3t2k3)

ḃt(k) = F6

D8
k− D10

D
(2t)+E8

D
(2tk2)− F4

D8
(k3t2 + k3)

+ F2

D8
(3t2k3)+D8

D
(4t3)−D6

D
(2tk4 + k24t3)+D4

D
(4t3k4)

(23.9.9)

For the causal versions, we have for d = 1:

hτ(k) = 1

F0
+ (M + τ)(M − k)

F2
= M(M + 1)+3(M + τ)(M − k)

M(M + 1)(2M + 1)

ḣτ(k) = M − k
F2

= 3(M − k)
M(M + 1)(2M + 1)

(23.9.10)

where k = 0,1, . . . ,N − 1. We note that ḣτ can be obtained by differentiating hτ with
respect to τ. The derivative filter is independent of τ because it corresponds to fitting
a first-order polynomial. For d = 2, we have similarly,

hτ(k) = F4

D4
+ 1

F2
(M + τ)(M − k)− F2

D4

(
(M + τ)2+(M − k)2)+ F0

D4
(M + τ)2(M − k)2

ḣτ(k) = 1

F2
(M − k)− F2

D4
2(M + τ)+ F0

D4
2(M + τ)(M − k)2

(23.9.11)
where, we recall from Eq. (23.3.11),

F4

D4
= 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

,
F2

D4
= 15

(2M + 3)(4M2 − 1)

F0

D4
= 45

M(M + 1)(2M + 3)(4M2 − 1)
,

1

F2
= 3

M(M + 1)(2M + 1)

Example 23.9.1: For the case N = 5, d = 2, we had found in Eqs. (23.2.5) and (23.2.16) that:

S = [s0, s1, s2]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦ , G = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦

23.9. PREDICTIVE DIFFERENTIATION FILTERS 1091

The corresponding first- and second-order differentiation matrices will be:

Ḃ = GD1ST = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−27 −17 −7 3 13
6.5 1.5 −3.5 −8.5 −13.5
20 10 0 −10 −20

13.5 8.5 3.5 −1.5 −6.5
−13 −3 7 17 27

⎤⎥⎥⎥⎥⎥⎥⎦ , D1 =
⎡⎢⎣ 0 0 0

1 0 0
0 2 0

⎤⎥⎦

B̈ = GD2ST = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
10 10 10 10 10
−5 −5 −5 −5 −5
−10 −10 −10 −10 −10
−5 −5 −5 −5 −5
10 10 10 10 10

⎤⎥⎥⎥⎥⎥⎥⎦ , D2 =
⎡⎢⎣ 0 0 0

0 0 0
2 0 0

⎤⎥⎦

The central columns agree with Eq. (23.2.25). The interpolating smoothing and first-order
differentiation filters are given by:

b t = Gu t = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 1
t
t2

⎤⎥⎦ = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3− 7t + 5t2

12− 3.5t − 2.5t2

17− 5t2

12+ 3.5t − 2.5t2

−3+ 7t + 5t2

⎤⎥⎥⎥⎥⎥⎥⎦

ḃ t = GDu t = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 0 0 0

1 0 0
0 2 0

⎤⎥⎦
⎡⎢⎣ 1
t
t2

⎤⎥⎦ = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−7+ 10t
−3.5− 5t
−10t

3.5− 5t
7+ 10t

⎤⎥⎥⎥⎥⎥⎥⎦
where ḃ t can be obtained either by the indicated matrix multiplication or by simply differen-
tiating b t with respect to t. 	

The MATLAB function lpdiff implements the design of the differentiation matrices:

B = lpdiff(N,d,i); % differentiation filters

Like lpsm, it carries out a Gram-Schmidt QR-transformation on the monomial basis
S and constructs the B(i) by:

S = QR , QTQ = I, R = upper triangular

G = S(STS)−1= QR−T

B(i) = GDiST = Q(R−TDiRT)QT

The predictive/interpolating differentiation filters b(i)t are the minimum-norm solu-
tion of the under-determined linear system STb = Diu t, or, equivalently the solution
of the constrained minimization problem:

R = bTb = min , subject to STb = Diu t

The MATLAB function lpinterp implements the design of predictive and interpo-
lating differentiation filters, essentially carrying out the operation b = pinv(ST)Diu t:

1092 23. LOCAL POLYNOMIAL FILTERS

b = lpinterp(N,d,t,i); % local polynomial interpolation and differentiation filters

The case i = 0 corresponds to the predictive interpolation filters of Sec. 23.6. For
the integer values t =m, −M ≤m ≤M, the filter b agrees with the columns of B(i).

Example 23.9.2: Fig. 23.9.1 illustrates the performance of the local polynomial differentiation
filters on noiseless and noisy signals.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

noiseless signal

t
0 2 4 6 8 10

−0.5

0

0.5
differentiated signal

t

 true derivative
 estimated

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

noisy signal

t
0 2 4 6 8 10

−0.5

0

0.5
differentiated signal

t

 true
 differenced
 estimated

Fig. 23.9.1 Differentiating noisy signals.

The noiseless signal is a raised cosine s(t)= 0.5−0.5 cos(ωt), with 0 ≤ t ≤ T andω = 2π/T,
so that it spans one cycle. Choosing a sampling time interval Δt = T/L, we can construct a
noisy signal sampled at time instants tn = nΔt = nT/L, n = 0,1, . . . , L, by adding zero-mean
white gaussian noise vn of variance, say σ2, so that the noisy observations are:

yn = s(tn)+vn , n = 0,1, . . . , L

The first derivative of s(t) is ṡ(t)= 0.5ω sin(ωt) and its samples, ṡ(tn)= 0.5ω sin(ωtn).
The upper-left graph shows s(tn) versus tn, with T = 10 and L = 50. The upper-right
graph shows ṡ(tn) (dashed line) together with the estimated derivative (solid line) of the
original signal s(tn) filtered through an LPSM differentiation filter designed with N = 31
and polynomial order d = 3. The output of the filter is divided by Δt in order to adjust its
dimensions.

23.10. FILTERING IMPLEMENTATIONS 1093

The bottom-left graph shows the noisy signal yn. In the bottom-right graph, the output (solid
line) of the same differentiation filter applied to the noisy signal yn is compared with the
true noiseless differentiated signal ṡn, as well as to the differenced signal diff(y)/Δt. The
following MATLAB code illustrates the generation of the bottom-right graph:

T = 10; L = 50; Dt =T/L; w = 2*pi/T; sigma = 0.1;
t = 0:Dt:T;
s = 0.5 - 0.5*cos(w*t); % noiseless signal

seed=100; randn(’state’,seed);
y = s + sigma * randn(1,length(s)); % noisy signal

N = 31; d = 3; B1 = lpdiff(N,d,1); % first-order differentiation filter

sd = 0.5*w*sin(w*t); % derivative of s(t)
xd = lpfilt(B1,s)/Dt; % estimated derivative of s(t)
x1 = lpfilt(B1,y)/Dt; % estimated derivative from the noisy signal

yd = diff(y)/Dt; td = t(2:end); % differenced signal estimates the derivative

plot(t,sd,’--’, td,yd,’:’, t,x1,’-’);

The differencing operation amplifies the noise and renders the estimated derivative useless,
whereas the local-polynomial derivative is fairly accurate. The filtering operation is carried
out by the function lpfilt, which is explained in the next section. 	

23.10 Filtering Implementations

In smoothing a length-L signal block yn, n = 0,1, . . . , L − 1, with a double-sided filter
hm, −M ≤m ≤M, the output signal x̂n is given by the convolutional form:

x̂n =
min(n,M)∑

m=max(−M,n−L+1)
hmyn−m , −M ≤ n ≤ L+M − 1 (23.10.1)

The length of x̂n is L+2M, and the first 2M and last 2M output samples correspond
to the input-on and input-off transients, while the central L − 2M points, M ≤ n ≤
L−M−1, correspond to the steady-state output computed from the steady-state version
of Eq. (23.10.1):

x̂n =
M∑

m=−M
hmyn−m , M ≤ n ≤ L−M − 1 (23.10.2)

The range of the output index n and the limits of summation in (23.10.1) are deter-
mined from the inequalities −M ≤m ≤M and 0 ≤ n−m ≤ L−1 that must be satisfied
by the indices of hm and yn−m. However, only the subrange {x̂n , 0 ≤ n ≤ L− 1} is of
interest since these output samples represent the smoothed values of the corresponding
input samples {yn , n = 0,1, . . . , L− 1}. This is illustrated in Fig. 23.10.1.

The first and last M samples in the subrange 0 ≤ n ≤ L − 1 are still parts of the
input-on and input-off transients. To clarify these remarks, we consider the case L = 8,
M = 2. The full output (23.10.1) may be represented by the usual convolution matrix of
the filter acting on the input signal block:

1094 23. LOCAL POLYNOMIAL FILTERS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂−2

x̂−1

. . .
x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

. . .
x̂8

x̂9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−2 0 0 0 0 0 0 0
h−1 h−2 0 0 0 0 0 0
. .
h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

. .
0 0 0 0 0 0 h2 h1

0 0 0 0 0 0 0 h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 23.10.1 Input and output signal blocks from a double-sided filter.

This matrix can be constructed in MATLAB with the built-in function convmtx, or
with its sparse version convmat, or with the function datamat, the latter two being part
of the OSP toolbox. Defining h = [h−M, . . . , h0, . . . , hM]T, we have the syntax:

H = convmtx(h,L); % built-in convolution matrix

H = convmat(h,L); % sparse version of convmtx

H = datamat(h,L-1); % used extensively in [45]

23.10. FILTERING IMPLEMENTATIONS 1095

Dropping the first and last two outputs, we obtain the outputs in the subrange 0 ≤ n ≤ 7:

x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ Hy (23.10.3)

The first two and last two of these outputs are still transient and are being com-
puted with only a subset of the filter coefficients, and therefore, may not adequately
represent the corresponding smoothed values. This so-called “end-point problem” has
been addressed repeatedly with a number of solutions.

One method that is widely used by the government to process census and business-
cycle data (e.g., the X12-ARIMA method) is to backcast and forecast M estimated values
at the beginning and end of the length-L input block, so that yn is now defined over
−M ≤ n ≤ L− 1+M, and the desired output samples over the subrange 0 ≤ n ≤ L− 1
will be steady-state outputs being computed with the full filter.

Another method is to use different filters for the first M and last M outputs. For
example, one can take the outputs ŷn+m of the LPSM filters bm(k) to estimate the initial
and final M transients, while using the central filter b0(k) for the steady-state outputs.
Indeed, the first time index when one can use the steady-state filter b0(k) is n =M:

x̂M = ŷM =
M∑

k=−M
b0(k)yM+k

Instead of calculating the previous output x̂M−1 using the transient version of b0(k),

x̂M−1 =
M∑

k=−(M−1)
b0(k)yM−1+k

one could estimate x̂M−1 using ŷM+m with m = −1, that is, using b−1(k), and using
b−2(k), b−3(k), . . . , b−M(k) for the other initial M outputs:

x̂M−1 = ŷM−1 =
M∑

k=−M
b−1(k)yM+k

x̂M−2 = ŷM−2 =
M∑

k=−M
b−2(k)yM+k

...

x̂0 = ŷM−M =
M∑

k=−M
b−M(k)yM+k

(23.10.4)

1096 23. LOCAL POLYNOMIAL FILTERS

Similarly, one can use the filters bm(k) for m = 1,2, . . . ,M to calculate the last
M smoothed outputs, starting with the last steady-state output at n = L − 1 −M and
proceeding to the end n = L− 1:

x̂L−M = ŷL−1−M+1 =
M∑

k=−M
b1(k)yL−1−M+k

x̂L−M+1 = ŷL−1−M+2 =
M∑

k=−M
b2(k)yL−1−M+k

...

x̂L−1 = ŷL−1−M+M =
M∑

k=−M
bM(k)yL−1−M+k

(23.10.5)

The following example illustrates the computational steps for the input-on, steady,
and input-off output samples, where we denoted bm,k = bm(k) for simplicity:

x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−2,−2 b−2,−1 b−2,0 b−2,1 b−2,2 0 0 0
b−1,−2 b−1,−1 b−1,0 b−1,1 b−1,2 0 0 0
. .
b0,−2 b0,−1 b0,0 b0,1 b0,2 0 0 0
0 b0,−2 b0,−1 b0,0 b0,1 b0,2 0 0
0 0 b0,−2 b0,−1 b0,0 b0,1 b0,2 0
0 0 0 b0,−2 b0,−1 b0,0 b0,1 b0,2
. .
0 0 0 b1,−2 b1,−1 b1,0 b1,1 b1,2
0 0 0 b2,−2 b2,−1 b2,0 b2,1 b2,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hy

In particular, for N = 5 and d = 2, the convolutional filtering matrix will be:

x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂0

x̂1

. . .
x̂2

x̂3

x̂4

x̂5

. . .
x̂6

x̂7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

35

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

31 9 −3 −5 3 0 0 0
9 13 12 6 −5 0 0 0

. .
−3 12 17 12 −3 0 0 0

0 −3 12 17 12 −3 0 0
0 0 −3 12 17 12 −3 0
0 0 0 −3 12 17 12 −3

. .
0 0 0 −5 6 12 13 9
0 0 0 3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hy

with entries obtained from the matrix B of Eq. (23.2.16):

B = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3
9 13 12 6 −5
−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦ = [b−2, b−1, b0, b1, b2]

More generally, given any smoothing (or differentiation) matrix B whose central col-
umn contains the (reversed) steady-state filter, and its other columns, the (reversed)

23.10. FILTERING IMPLEMENTATIONS 1097

filters to be used for the initial and final transients, one can uniquely construct the
corresponding L×L convolutional matrix H for filtering a length-L block of data y.

The procedure is straightforward. First construct the ordinary full (L+2M)×L con-
volution matrix for the central filter, then delete its first M and last M rows, and finally,
replace the first M and last M rows of the result by the transient filters.

The following MATLAB code segment illustrates the procedure, where the matrix B
is assumed to have size N×N, with N = 2M + 1, with the central column being the
reversed steady-state filter and the other columns, the reversed transient filters:

H = convmat(flip(B(:,M+1)), L); % ordinary (L+2M)×L convolution matrix

H = H(M+1:L+M,:); % extract the L×L convolution submatrix

H(1:M, 1:N) = B(:,1:M)’; % redefine upper-left M×L corner

H(L-M+1:L, L-N+1:L) = B(:,M+2:N)’; % redefine lower-right M×L corner

The function flip reverses the central column of B because convmat expects as
input the actual filter, not its reverse. The above steps have been incorporated into the
function lpmat with syntax:

H = lpmat(B,L); % local polynomial filter matrix of size L×L

Once the L×L matrix H is constructed, the actual filtering of a length-L input block
y is straightforward, that is, x̂ = Hy, and efficient because H is defined as sparse.

An alternative way to structure the filtering operation is to directly use Eqs. (23.10.4)
and (23.10.5) for the transient parts and the following equation for the steady part:

x̂n =
M∑

k=−M
b0(k)yn+k , M ≤ n ≤ L− 1−M (23.10.6)

The following MATLAB code illustrates this approach:

y = B(:,1:M)’ * x(1:N); % first M transient outputs

for n = M+1:L-M, % middle L−2M steady-state outputs

y = [y; B(:,M+1)’ * x(n-M:n+M)]; % filtered by central column of B
end
y = [y; B(:,M+2:N)’ * x(L-N+1:L)]; % last M transient outputs

These steps are implemented in the MATLAB function lpfilt2. A faster version
is the function lpfilt, which uses MATLAB’s built-in filtering functions. Thus, three
possible ways of computing the filtered output x̂ given a smoothing matrix B are as
follows (assuming that y is a length-L column vector):

x_hat = lpmat(B,L)*y; % use L×L convolution matrix constructed from B

x_hat = lpfilt2(B,y); % use directly the filtering equations (23.10.4)–(23.10.6)

x_hat = lpfilt(B,y); % fast version using the function filtdbl

The function lpfilt internally calls the function filtdbl, which uses the built-in
function conv to implement the FIR filtering by the steady-state double-sided central
filter. The following code segment shows the essential part of lpfilt:

x_hat = filtdbl(flip(B(:,M+1)), y); % filter with the central column of B
x_hat(1:M) = B(:,1:M)’ * y(1:N); % correct the first M transient outputs

x_hat(end-M+1:end) = B(:,M+2:N)’ * y(end-N+1:end); % correct the last M transient outputs

1098 23. LOCAL POLYNOMIAL FILTERS

where the function filtdbl has usage:

y = filtdbl(h,x); % filtering by double-sided FIR filter

The function filtdbl is essentially the ordinary convolution of the length-(2M+1)
filter h and the length-L signal x, with the first M and last M output points discarded.
The result is equivalent to that obtained using the convolution submatrix, as for example,
in Eq. (23.10.3). We note, in particular, that the B matrix that gives rise to (23.10.3) is:

B =

⎡⎢⎢⎢⎢⎢⎢⎣
h0 h1 h2 0 0
h−1 h0 h1 h2 0
h−2 h−1 h0 h1 h2

0 h−2 h−1 h0 h1

0 0 h−2 h−1 h0

⎤⎥⎥⎥⎥⎥⎥⎦
and contains the reversed filter h in the central column and the transient subfilters in
the other columns.

There are other methods of handling the end-point problem, most notably Mus-
grave’s minimum-revision method that uses end-point asymmetric filters constructed
from a given central filter h. It is discussed in detail in [45]. Here, we note that the out-
put of this method is a B matrix, which can be passed directly into the filtering function
lpfilt. The MATLAB function minrev implements Musgrave’s method:

B = minrev(h,R); % Musgrave’s minimum revision asymmetric filters

whereR is a scalar parameter. The method is widely used in the X-11 method of seasonal
adjustment and trend extraction.

Example 23.10.1: Schiaparelli was the first one to systematically pose and solve the minimum-
NRR filtering problem. He gave the solution to many specific cases, such as filter lengths
N = 5–13, and polynomial orders d = 3,4.

Here, we reproduce the example from Schiaparelli’s paper on smoothing lunar observations,
the signal yn being a measure of the moon’s influence on atmospheric effects. Fig. 23.10.2
shows 30 noisy observations (one for each lunar day) and their smoothed versions produced
with an LPSM filter of length N = 13 and polynomial order d = 3 on the left, and d = 4 on
the right (Schiaparelli’s case).

The central filters for the d = 3 and d = 4 cases are:

b0 = 1

143

[−11, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, −11
]

b0 = 1

2431

[
110, −198, −135, 110, 390, 600, 677, 600, 390, 110, −135, −198, 110

]
The following program segment illustrates the computations:

Y = loadfile(’schiaparelli.dat’); % data file available in the ISP & OSP toolboxes

n = Y(:,1); y = Y(:,2); % extract n and yn from the columns of Y

N=13; d=3; M=floor(N/2); % filter length and polynomial order

B = lpsm(N,d); % construct LPSM matrix B
x = lpfilt(B,y); % filter noisy observations

b0 = B(:,M+1); % middle column of B
x0 = filtdbl(b0,y); % filter with b0 only

plot(n,y,’.’, n,x,’-’, n,x0,’--’);

23.10. FILTERING IMPLEMENTATIONS 1099

1 10 20 30

0.4

0.5

0.6

N = 13, d = 3

days, n

 noisy data
 smoothed
 with transients

1 10 20 30

0.4

0.5

0.6

N = 13, d = 4

days, n

 noisy data
 smoothed

Fig. 23.10.2 Schiaparelli’s smoothing example.

where the function loadfile extracts only the numerical data from the data file. In the
left graph, we have also added the result of filtering with the steady-state filter b0, which
illustrates the end-point problem. The two filtered curves differ only in their first 6 and last
6 points. 	

Example 23.10.2: Global Warming Trends. Fig. 23.10.3 shows the annual average temperature
anomalies (i.e., the differences with respect to the average of the period 1961–90) over the
period 1856–2005 in the northern hemisphere. The data are available from the web site:
https://crudata.uea.ac.uk/cru/data/crutem2/.

Five trend extraction methods are compared. In the upper left, a local polynomial smoothing
filter was used of length N = 65 and polynomial order d = 3. The following MATLAB code
illustrates the generation of that graph:

Y = loadfile(’tavenh2v.dat’); % data file available in the ISP & OSP toolboxes

n = Y(:,1); y = Y(:,14); % extract n and yn from Y

N = 65; d = 3; B = lpsm(N,d); % design the LPSM matrix B
x = lpfilt(B,y); % smooth the data vector y

figure; plot(n,y,’:’, n,x,’-’);

In the upper-right graph, a minimum-roughness, or minimum-Rs, Henderson filter was used
with length N = 65, polynomial order d = 3, and smoothing order s = 2. Such filters are
discussed in Sec. 23.12. The resulting trend is noticeably smoother than that of the LPSM
filter on the upper-left.

The middle-left graph uses the SVD signal enhancement method [45], with embedding or-
der M = 10 and rank r = 2, with K = 40 iterations. The middle-right graph uses the
Whittaker-Henderson smoothing method, discussed in Sec. 26.2, with smoothing order s = 2
and smoothing parameter λ = 104.

The lower left and right graphs use the Whittaker-Henderson method with the L1 criterion
with differentiation orders s = 2 and s = 3 and smoothing parameter λ = 10, implemented
with the CVX package.† The s = 2 case represents the smoothed signal in piece-wise linear
form, and the s = 3 case, in piece-wise parabolic form. This is further discussed in Sec. 26.7.

†http://cvxr.com/cvx/

1100 23. LOCAL POLYNOMIAL FILTERS

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

LPSM filter, N = 65, d = 3

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

LPRS filter, N = 65, d = 3, s = 2

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

SVD enhancement, M = 10, r = 2

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Whittaker− Henderson smoothing

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Whittaker− Henderson with L1, s = 2

 actual
 L

1
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Whittaker− Henderson with L1, s = 3

 actual
 L

1
 trend

Fig. 23.10.3 Temperature trends determined by five methods.

The following MATLAB code segment illustrates the computation of the corresponding smoothed
signals for these four methods:

N=65; d=3; s=2; x = lpfilt(lprs(N,d,s), y); % minimum-Rs Henderson filter

M=10; r=2; K=40; x = svdenh(y,M,r,K); % SVD enhancement method

la = 10000; s=2; x = whsm(y,la,s); % Whittaker-Henderson smoothing

23.10. FILTERING IMPLEMENTATIONS 1101

s = 2; la = 10; N = length(y); % Whittaker-Henderson with L1

D = diff(eye(N),s); % s-fold differentiation matrix

cvx_begin % use CVX package

variable x(N)
minimize(sum_square(y-x) + la * norm(D*x,1))

cvx_end

All methods adequately handle the end-point problem. Repeating the same filtering operation
several times results in even smoother trend signals. For example, Fig. 23.10.4 shows the
result of repeating the filtering operation two additional times. The following MATLAB code
illustrates the generation of the left graph:

N = 65; d=3; B = lpsm(N,d); x = y;
for i=1:3, x = lpfilt(B,x); end
figure; plot(n,y,’:’, n,x,’-’);

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

LPSM filter, repeated twice

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

Henderson filter, repeated twice

 actual
 trend

Fig. 23.10.4 Filtering repeated two additional times.

For the steady-state filters B0(ω), filtering a total of K times is equivalent to an overall filter[
B0(ω)

]K
, an operation which makes a flat passband even flatter and a small stopband even

smaller. The properties of iterated smoothing by local polynomial filters has been studied by
De Forest, Schoenberg, and Greville [651,667,670].

Fig. 23.10.5 shows the estimated derivatives (solid line) of the temperature signal obtained by
filtering it with the LPSM derivative filters, and compares them with the ordinary differencing
operation, diff(y), in MATLAB notation. Clearly, differencing is simply too noisy to give any
usable results.

The upper two graphs compute the first derivative of the input by ˙̂x = lpfilt(B1, y) with the
differentiator matrix obtained from B1 = lpdiff(N,d, i) with N = 65 and i = 1, and with
d = 1 in the upper-left, and d = 2 in the upper-right graph. During the two periods of almost
linear growth from 1910–1940 and 1970-2005, the derivative signal becomes an almost flat
positive constant (i.e., the slope). During the other periods, the temperature signal has a very
slow upward or downward trend and the derivative signal is almost zero.

We note the flat end-points in the case d = 1, which are due to the fact that the asymmetric
derivative filters are the same at the end-points ranges as shown in the first equation of

1102 23. LOCAL POLYNOMIAL FILTERS

(23.9.9). The case d = 2 estimates the end-point derivatives better and possibly indicates a
faster than linear growth in recent years.

The lower-left graph uses a minimum-Rs derivative filter withN = 65, d = 2, and smoothness
order s = 3, resulting in a noticeably smoother estimated derivative than the LPSM case (the
W input in lpdiff is discussed in the next section.) Finally, the lower-right graph shows
the second derivative computed with the filter B2 = lpdiff(N,d, i) with i = 2, and compares
it with the second difference signal, diff

(
diff(y)

)
, which is even more noisy than the first

difference. The following MATLAB code illustrates the computations:

d=1; i=1; B1 = lpdiff(N,d,i); % LPSM differentiation filters

plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % upper-left graph

d=2; i=1; B1 = lpdiff(N,d,i);
plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % upper-right graph

s=3; W = diag(hend(N,s)); % Henderson weighting matrix

d=2; i=1; B1 = lpdiff(N,d,i,W); % LPRS differentiation filters

plot(n, lpfilt(B1,y), n(2:end), diff(y),’:’); % lower-left graph

d=2; i=2; B2 = lpdiff(N,d,i); % second derivative filters

plot(n, lpfilt(B2,y), n(3:end), diff(y,2),’:’); % lower-right graph

The second derivative is essentially zero, being consistent with piecewise linear trends. Deriva-
tive signals can also be estimated for the SVD and Whittaker-Henderson methods. Since the
outputs x̂n of these methods are smooth signals, the corresponding derivatives can be simply
computed as the difference signals, diff(x̂n), with comparable results as the local polynomial
methods. 	

23.11 Minimum Roughness Weighted Polynomial Filters

The design of the LPSM filters was based on a least-squares criterion, such as (23.2.2),
where all error terms were equally weighted within the filter’s window:

J =
M∑

m=−M
e2
m =

M∑
m=−M

(ym − ŷm)2=
M∑

m=−M

⎛⎝ym − d∑
i=0

cimi

⎞⎠2

= min

This can be generalized by using unequal positive weights, wm, −M ≤m ≤M:

J =
M∑

m=−M
wme2

m =
M∑

m=−M
wm

⎛⎝ym − d∑
i=0

cimi

⎞⎠2

= min (23.11.1)

Introducing the diagonal matrix W = diag
(
[w−M, . . . ,w0, . . . ,wM]

)
, we may write

Eq. (23.11.1) compactly as:

J = eTWe = (y− Sc)TW(y− Sc)= min (23.11.2)

where y, S, c have the same meaning as in Eqs. (23.2.26)–(23.2.30). Differentiating with
respect to c gives the orthogonality and normal equations:

STWe = STW(y− Sc)= 0 � (STWS)c = STWy (23.11.3)

23.11. MINIMUM ROUGHNESS WEIGHTED POLYNOMIAL FILTERS 1103

1850 1900 1950 2000

−0.1

0

0.1

years

fi
rs

t
de

ri
va

ti
ve

N = 65, d = 1, i = 1

 B = lpdiff(N,d,i)
 diff(y,1)

1850 1900 1950 2000

−0.1

0

0.1

years

fi
rs

t
de

ri
va

ti
ve

N = 65, d = 2, i = 1

 B = lpdiff(N,d,i)
 diff(y,1)

1850 1900 1950 2000

−0.1

0

0.1

years

fi
rs

t
de

ri
va

ti
ve

N = 65, d = 1, i = 1, s = 3

 B = lpdiff(N,d,i,W)
 diff(y,1)

1850 1900 1950 2000

−0.1

0

0.1

years

se
co

n
d

de
ri

va
ti

ve
N = 65, d = 2, i = 2

 B = lpdiff(N,d,i)
 diff(y,2)

Fig. 23.10.5 Differentiated temperature signal.

with solution for c and the estimate ŷ = Sc:

c = (STWS)−1STWy = GTy

ŷ = Sc = S(STWS)−1STWy = BTy
(23.11.4)

where we defined

G =WS(STWS)−1

B = GST =WS(STWS)−1ST
(23.11.5)

The matrix B satisfies the following properties:

STB = ST

BT =W−1BW

BWBT = BW =WBT
(23.11.6)

The first implies the usual polynomial-preserving moment constraints STbm = um,
for −M ≤ m ≤ M, where bm is the mth column of B. The second shows that B is no

1104 23. LOCAL POLYNOMIAL FILTERS

longer symmetric, and the third may be used to simplify the minimized value of the
performance index. Indeed, using the orthogonality property, we obtain:

Jmin = eTWe = yTWy− yTBWy− yTWBTy+ yTBWBTy = yTWy− yTBWy

A fourth property follows if we assume that the weights wm are symmetric about
their middle, wm = w−m, or more generally if W is assumed to be positive-definite,
symmetric, and centro-symmetric, which implies that it remains invariant under reversal
of its rows and its columns. The centro-symmetric property can be stated concisely as
JW = WJ, where J is the column-reversing matrix consisting of ones along its anti-
diagonal, that is, the reverse of a column vector is bR = Jb. Under this assumption on
W, it can be shown that B is also centro-symmetric:

JB = BJ ⇒ bRm = b−m , −M ≤m ≤M (23.11.7)

This can be derived by noting that reversing the basis vector si simply multiplies it
by the phase factor (−1)i, so that JS = SΩ, where Ω is the diagonal matrix of phase
factors (−1)i, i = 0,1, . . . , d. This then implies Eq. (23.11.7). Similarly one can show
that JG = GΩ, so that the reverse of each differentiation filter is gRi = (−1)igi.

The filtering equations (23.2.33) and (23.2.34) retain their form. Among the possi-
ble weighting matrices W, we are interested in those such that the polynomial fitting
problem (23.11.2) has an equivalent characterization as the minimization of the NRR
subject to the polynomial-preserving constraints STbm = um. To this end, we consider
the constrained minimization of a generalized or “prefiltered” NRR:

R = bTVb = min , subject to STb = u (23.11.8)

for a given (d+1)-dimensional vector u. The N×N matrix V, where N = 2M+1,
is assumed to be strictly positive-definite, symmetric, and Toeplitz. We may write
component-wise:

R =
M∑

n,m=−M
b(n)Vn−mb(m)= 1

2π

∫ π

−π
|B(ω)|2V(ω)dω (23.11.9)

where we set Vnm = Vn−m because of the Toeplitz property, and introduced the corre-
sponding DTFTs:

B(ω)=
M∑

n=−M
b(n)e−jωn , V(ω)=

∞∑
k=−∞

Vke−jωk (23.11.10)

One way to guarantee a positive-definiteV is to takeV(ω) to be the power spectrum
of a given filter, say, D(ω), that is, choose V(ω)= |D(ω)|2, so that R will be the
ordinary NRR of the cascaded filter F(ω)= D(ω)B(ω) or F(z)= D(z)B(z):

R = 1

2π

∫ π

−π
|B(ω)|2V(ω)dω = 1

2π

∫ π

−π
|B(ω)D(ω)|2dω (23.11.11)

23.11. MINIMUM ROUGHNESS WEIGHTED POLYNOMIAL FILTERS 1105

The minimum-Rs or minimum-roughness filters discussed in Sec. 23.12 correspond
to the choice D(z)= (1− z−1)s, for some integer s. For a general V and u, the solution
of the problem (23.11.8) is obtained by introducing a Lagrange multiplier vector λλλ:

J = bTVb+ 2λλλT(u− STb)= min

leading to the solution:

λλλ = (STV−1S)−1u

b = V−1Sλλλ = V−1S(STV−1S)−1u
(23.11.12)

If we choose um = [1,m,m2, . . . ,md]T as the constraint vectors and put together
the resulting solutions as the columns of a matrix B, then,

B = [· · ·bm · · ·]= V−1S(STV−1S)−1[· · ·um · · ·]

or, because ST = [· · ·um · · ·],

B = V−1S(STV−1S)−1ST (23.11.13)

This solution appears to be different from the solution (23.11.5) of the least-squares
problem, B = WS(STWS)−1ST. Can the two solutions be the same? The trivial choice
V = W = I corresponds to the LPSM filters. The choice V = W−1 is not acceptable
because with V assumed Toeplitz, and W assumed diagonal, it would imply that all
the weights are equal, which is again the LPSM case. A condition that guarantees the
equivalence is the following [707,683]:

VWS = SC ⇒ WS = V−1SC (23.11.14)

where C is an invertible (d+1)×(d+1) matrix. Indeed, then STWS = STV−1SC, and,

G =WS(STWS)−1= V−1S(STV−1S)−1 (23.11.15)

so that
B =WS(STWS)−1ST = V−1S(STV−1S)−1ST (23.11.16)

For the minimum-Rs filters, the particular choices for W,V do indeed satisfy condi-
tion (23.11.14) with an upper-triangular matrixC. With the equivalence of the polynomial-
fitting and minimum-NRR approaches at hand, we can also derive the corresponding
predictive/interpolating differentiation filters. Choosing u = Diu t as the constraint
vector in (23.11.12), we obtain,

b(i)t = V−1S(STV−1S)−1Diu t =WS(STWS)−1Diu t (23.11.17)

and at the sample values t = m, −M ≤ m ≤ M, or, at u t = um, we obtain the differen-
tiation matrix having the b(i)m as columns, B(i) = [· · ·b(i)m · · ·]:

B(i) =WS(STWS)−1DiST = V−1S(STV−1S)−1DiST (23.11.18)

1106 23. LOCAL POLYNOMIAL FILTERS

Computationally, it is best to orthogonalize the basis S. Let W = UTU be the
Cholesky factorization of the positive-definite symmetric matrix W, where U is an N×N
upper-triangular factor. Then, performing the QR-factorization on theN×(d+1)matrix
US, the above computations become:

W = UTU

US = Q0R0 , with QT
0 Q0 = I , R0 = (d+1)×(d+1) upper-triangular

B = UTQ0QT
0 U−T

B(i) = UTQ0(R−T0 DiRT
0)Q

T
0 U−T

b(i)t = UTQ0R−T0 Diu t
(23.11.19)

The MATLAB functions lpsm, lpdiff, lpinterp have the weighting matrix W as an
additional input, which if omitted defaults to W = I. They implement Eqs. (23.11.19)
and their full usage is:

[B,G] = lpsm(N,d,W);

B = lpdiff(N,d,i,W);

b = lpinterp(N,d,t,i,W);

The factorizations in Eq. (23.11.19) lead naturally to a related implementation in
terms of discrete polynomials that are orthogonal with respect to the weighted inner
product:

aTWb =
M∑

m=−M
wm a(m)b(m) (23.11.20)

Such polynomials may be constructed from the monomials si(m)=mi, i = 0,1, . . . , d
via Gram-Schmidt orthogonalization applied with respect to the above inner product.
The result of orthogonalizing the basis S = [s0, s1, . . . , sd] isQ = [q0,q1, . . . ,qd]whose
columns qi(m) are polynomials of order i in the variable m that are mutually orthogo-
nal, that is, up to an overall normalization:

qTi Wqj = δijDi , i, j = 0,1, . . . , d ⇒ QTWQ = D (23.11.21)

whereD = diag([D0,D1, . . . ,Dd]) is the diagonal matrix of the (positive) normalization
factors Di. These factors can be selected to be unity if so desired. For the minimum-
roughness filters, these polynomials are special cases of the Hahn orthogonal polyno-
mials, whose properties are discussed in Sec. 23.13. For unity weights wm = 1, the
polynomials reduce to the discrete Chebyshev/Gram polynomials.

Numerically, these polynomials can be constructed from the factorization (23.11.19).
Since D is positive-definite, we may define D1/2 = diag([D1/2

0 ,D1/2
1 , . . . ,D1/2

d]) to be its
square root. Then we construct Q,R in terms of the factors U,Q0, R0:

Q = U−1Q0D1/2 , R = D−1/2R0 (23.11.22)

where R is still upper-triangular. Then, we have QTWQ = D and

QR = U−1Q0D1/2D−1/2R0 = U−1Q0R0 = U−1US = S

23.11. MINIMUM ROUGHNESS WEIGHTED POLYNOMIAL FILTERS 1107

which is equivalent to the Gram-Schmidt orthogonalization of the basis S, and leads to
the following equivalent representation of Eq. (23.11.19):

S = QR , with QTWQ = D, R = (d+1)×(d+1) upper-triangular

B =WQD−1QT

B(i) =WQD−1(R−TDiRT)QT

b(i)t =WQD−1R−TDiu t

(23.11.23)

Since Q = [q0,q1, . . . ,qd], the matrix B can be expressed as,

B =WQD−1QT =W
d∑
r=0

D−1
r qrq

T
r (23.11.24)

and for diagonal W, we have component-wise:

bm(k)= Bkm = wk

d∑
r=0

qr(k)qr(m)
Dr

−M ≤m,k ≤M (23.11.25)

The sum in (23.11.25) can be simplified further using the Christoffel-Darboux iden-
tity discussed in Sec. 23.13. The polynomial predictive interpolation filters b(i)t can also
be expressed in a similar summation form:

b(i)t (k)= wk

d∑
r=0

qr(k)q
(i)
r (t)

Dr
(23.11.26)

where q(i)r (t) is the ith derivative of the polynomial qr(t) obtained from qr(m) by
replacing the discrete variable m by t. This can be justified as follows. The mth rows
of the matrices S and Q are the (d+1)-dimensional vectors:

uTm = [s0(m), s1(m), . . . , sd(m)]= [1,m, . . . ,md]

pTm = [q0(m), q1(m), . . . , qd(m)]
(23.11.27)

and since S = QR, they are related by uTm = pTmR. Replacing m by t preserves this
relationship, so that uTt = pTt R, or,

u t = RTp t , where p t = [q0(t), q1(t), . . . , qd(t)]T (23.11.28)

Differentiating i times, we obtain

Diu t = u(i)t = RTp(i)t ⇒ p(i)t = R−TDiu t (23.11.29)

and therefore b(i)t from Eq. (23.11.23) can be written in the following form, which implies
Eq. (23.11.26):

b(i)t =WQD−1p(i)t (23.11.30)

1108 23. LOCAL POLYNOMIAL FILTERS

As in the case of the LPSM filters, for the special case d = N − 1, the interpolation
filters correspond to Lagrange interpolation. In this case Q becomes an invertible N×N
matrix satisfying the weighted unitarity property QTWQ = D, which implies

Q−1 = D−1QTW (23.11.31)

from which we obtain the completeness property:

QD−1QT =W−1 (23.11.32)

which shows that B = I. Similarly, using WQD−1 = Q−T, we obtain from (23.11.23) the
usual Lagrange interpolation polynomials:

b t =WQD−1R−Tu t = Q−TR−Tu t = S−Tu t (23.11.33)

With d = N−1, the matrixQ is an orthogonal basis for the full spaceRN. One of the
applications of Eq. (23.11.31) is the representation of signals, such as images or speech
in terms of orthogonal-polynomial moments [721–734].

Given an N-dimensional signal block y, such as a row in a scanned image, we define
the N-dimensional vector of moments with respect to the polynomials Q,

μμμ = D−1QTWy ⇒ μr = 1

Dr

M∑
n=−M

qr(n)wnyn , r = 0,1, . . . ,N − 1 (23.11.34)

Because of Eq. (23.11.31), we have μμμ = Q−1y, which allows the reconstruction of y
from its moments:

y = Qμμμ ⇒ yn =
N−1∑
r=0

qr(n)μr , −M ≤ n ≤M (23.11.35)

23.12 Henderson Filters

All the results of the previous section find a concrete realization in the minimum-Rs

filters that we discuss here. Consider the order-s backward difference filter and its
impulse response defined by:

Ds(z)= (1− z−1)s � ds(k)= (−1)k
(
s
k

)
, k = 0,1, . . . , s (23.12.1)

This follows from the binomial expansion:

(1− z−1)s=
s∑

k=0

(−1)k
(
s
k

)
z−k (23.12.2)

The operation of the filter Ds(z) on a signal fn, with output gn, is usually denoted
in terms of the backward difference operator ∇fn = fn − fn−1 as follows:

gn = ∇sfn =
s∑

k=0

ds(k)fn−k =
s∑

k=0

(−1)k
(
s
k

)
fn−k (23.12.3)

23.12. HENDERSON FILTERS 1109

If the signal fn is restricted over the range −M ≤ n ≤ M, then because 0 ≤ k ≤ s
and −M ≤ n− k ≤M, the above equation can be written in the more precise form:

gn = ∇sfn =
min(s,n+M)∑

k=max(0,n−M)
(−1)k

(
s
k

)
fn−k , −M ≤ n ≤M + s (23.12.4)

Eq. (23.12.4) gives the full convolutional output gn = (ds ∗ f)n, while (23.12.3) is
the corresponding steady-state output, obtained by restricting the output index n to
the range −M + s ≤ n ≤ M. Defining the (N+s)-dimensional output vector g and
N-dimensional input vector f, where N = 2M + 1,

g = [g−M, . . . , gM, . . . , gM+s]T , f = [f−M, . . . , fM]T ,

we may write the full filtering equation (23.12.4) in matrix form:

g = Dsf (23.12.5)

where Ds is the full (N+s)×N convolutional matrix of the filter ds(k) defined by its
matrix elements:

(Ds)nm= ds(n−m) , −M ≤ n ≤M + s, −M ≤m ≤M (23.12.6)

and subject to the restriction that only the values 0 ≤ n−m ≤ s will result in a non-zero
matrix element. The MATLAB functions binom and diffmat allow the calculation of the
binomial coefficients ds(k) and the convolution matrix Ds:

d = binom(s,k); % binomial coefficients ds(k)

D = diffmat(s,N); % (N+s)×N difference convolution matrix

For example, the convolution matrix for N = 7 and s = 3 is:

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
−3 1 0 0 0 0 0

3 −3 1 0 0 0 0
−1 3 −3 1 0 0 0

0 −1 3 −3 1 0 0
0 0 −1 3 −3 1 0
0 0 0 −1 3 −3 1
0 0 0 0 −1 3 −3
0 0 0 0 0 −1 3
0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The function diffmat is simply a call to convmat:

D = convmat(binom(s),N);

A minimum-Rs filter B(z) is defined to minimize the NRR of the cascaded filter
F(z)= Ds(z)B(z) subject to the d+1 linear constraints STb = u, for a given constraint
vector u, where b denotes the impulse response of B(z) assumed to be double-sided,
that is, bn, −M ≤ n ≤M.

1110 23. LOCAL POLYNOMIAL FILTERS

Fig. 23.12.1 Design and smoothing by minimum-Rs filter.

The actual smoothing of data is carried out by the filter B(z) itself, whereas the filter
F(z) is used to design B(z). This is depicted in Fig. 23.12.1 in which the filtered output
is x̂n, and the output of F(z) is the differenced signal ∇sx̂n whose mean-square value
may be taken as a measure of smoothness to be minimized.

Letting fn = ∇sbn be the impulse response of the filter F(z), or in matrix form
f = Dsb, the corresponding cascaded NRR will be:

Rs = fTf =
M+s∑
n=−M

f2
n =

M+s∑
n=−M

(∇sbn
)2 = 1

2π

∫ π

−π
|Ds(ω)B(ω)|2 dω

Since fTf = bT(DT
s Ds)b, we can state the design condition of the minimum-Rs filters as

Rs =
M+s∑
n=−M

(∇sbn
)2 = bT(DT

s Ds)b = min , subject to STb = u (23.12.7)

This has exactly the same form as Eq. (23.11.8) withV = DT
s Ds. The minimization of

Rs justifies the name “minimum-Rs ” filters. The minimum-R0 LPSM filters of Sec. 23.8
correspond to s = 0. In the actuarial literature, the following criterion is used instead,
which differs from Rs by a normalization factor:

Rs = bT(DT
s Ds)b

dTs ds
= Rs

dTs ds
= min (23.12.8)

where Rs is referred as the “smoothing coefficient”, ds is the impulse response vector
of the filter Ds(z), and dTs ds is the NRR of Ds(z). Using a binomial identity (a special
case of (23.12.13) for k = 0), we have,

dTs ds =
s∑

m=0

d2
s(m)=

s∑
m=0

(
s
m

)2

=
(

2s
s

)
(23.12.9)

The criterion (23.12.7) provides a measure of smoothness. To see this, let x̂n be the
result of filtering an arbitrary stationary signal yn through the filter B(z). If Syy(ω)
is the power spectrum of yn , then the power spectra of the filtered output x̂n and
of the differenced output ∇sx̂n will be |B(ω)|2Syy(ω) and |Ds(ω)B(ω)|2Syy(ω),
respectively. Therefore, the mean-square value of ∇sx̂n will be:

E
[(∇sx̂n

)2] = 1

2π

∫ π

−π
|Ds(ω)B(ω)|2Syy(ω)dω (23.12.10)

23.12. HENDERSON FILTERS 1111

If yn is white noise of variance σ2, or if we assume that Syy(ω) is bounded from
above by a constant, such as Syy(ω)≤ σ2, then we obtain:

E
[(∇sx̂n

)2] ≤ 1

2π

∫ π

−π
|Ds(ω)B(ω)|2σ2 dω =Rsσ2 (23.12.11)

For white noise, Syy(ω)= σ2, Eq. (23.12.11) becomes an equality. Thus, minimizing

Rs will minimize E
[(∇sx̂n

)2]
and tend to result in a smoother filtered signal x̂n. This

property justifies the term “minimum-roughness” filters.
The choice s = 2 is preferred in smoothing financial and business-cycle data, and is

used also by the related method of the Whittaker-Henderson or Hodrick-Prescott filter.
The choice s = 3 is standard in the actuarial literature. The choice s = 4 is not common
but it was used by De Forest [649–652] who was the first to formulate and solve the
minimum-Rs problem in 1871. Others, like Hardy and Henderson have considered the
minimum-R3 problem, while Sheppard [660] solved the minimum-Rs problem in general.

Henderson [663] was the first to show the equivalence between the NRR minimiza-
tion problem (23.12.7) withV = DT

s Ds and the weighted least-squares polynomial fitting
problem (23.11.1) using the so-called Henderson weights wm. Therefore, the minimum-
Rs filters are often referred to as Henderson filters. They are used widely in seasonal-
adjustment, census, and business-cycle extraction applications. We discuss this equiv-
alence next, following essentially Henderson’s method.

The elements of the N×N matrix V = DT
s Ds are (DT

s Ds)nm= Vnm = Vn−m, where
Vk is the autocorrelation function of the power spectrum V(ω)= |Ds(ω)|2. Working
in the z-domain, we have the spectral density:

V(z)= Ds(z)Ds(z−1)= (1− z−1)s(1− z)s= (−1)szs(1− z−1)2s (23.12.12)

which shows that V(z) effectively acts as the (2s)-difference operation ∇2s. Taking
inverse z-transforms of both sides of (23.12.12), we obtain:

Vk =
min(s,k+s)∑
m=max(0,k)

ds(m)ds(m− k)= (−1)sd2s(k+ s) , −s ≤ k ≤ s (23.12.13)

or, explicitly in terms of the definition of ds:

Vk = (−1)k
min(s,k+s)∑
m=max(0,k)

(
s
m

)(
s

m− k

)
= (−1)k

(
2s
s+ k

)
, −s ≤ k ≤ s (23.12.14)

or,

Vk = (−1)k
(2s)!

(s+ k)! (s− k)!
, −s ≤ k ≤ s (23.12.15)

The V matrix is a banded Toeplitz matrix with bandwidth ±s, whose central row or
central column consist of the numbers Vk, −s ≤ k ≤ s, with V0 positioned at the center
of the matrix. As an example,

1112 23. LOCAL POLYNOMIAL FILTERS

V = DT
3D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 −15 6 −1 0 0 0
−15 20 −15 6 −1 0 0

6 −15 20 −15 6 −1 0
−1 6 −15 20 −15 6 −1

0 −1 6 −15 20 −15 6
0 0 −1 6 −15 20 −15
0 0 0 −1 6 −15 20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with central column or central row:

Vk = {−1, 6, −15, 20, −15, 6, −1} for k = {−2,−1,0,1,2}

To understand the action of V as the difference operator ∇2s, let f be an N dimen-
sional vector indexed for −M ≤m ≤M , and form the output N-dimensional vector:

g = Vf ⇒ gn =
M∑

m=−M
Vn−mfm , −M ≤ n ≤M (23.12.16)

where n−m is further restricted such that −s ≤ n−m ≤ s. Next, consider an extended
version of f obtained by padding s zeros in front and s zeros at the end, so that the
extended vector f ext will be indexed over, −(M + s)≤m ≤ (M + s):

f ext = [0, . . . ,0︸ ︷︷ ︸
s

, f−M, . . . , f0, . . . , fM, 0, . . . ,0︸ ︷︷ ︸
s

]T
Then, the summation in Eq. (23.12.16) can be extended as,

gn =
M+s∑

m=−M−s
Vn−m f ext

m , −M ≤ n ≤M (23.12.17)

But because of the restriction−s ≤ n−m ≤ s, the above summation can be restricted
to be over n− s ≤m ≤ n+ s, which is a subrange of the range −(M+ s)≤m ≤ (M+ s)
because we assumed −M ≤ n ≤M. Thus, we may write:

gn =
n+s∑

m=−n−s
Vn−m f ext

m , −M ≤ n ≤M

or, changing to k = n−m,

gn =
s∑

k=−s
Vk f ext

n−k = (−1)s
s∑

k=−s
d2s(s+ k)f ext

n−k = (−1)s
2s∑
i=0

d2s(i)f ext
n+s−i (23.12.18)

but that is precisely the ∇2s operator:

gn = (−1)s∇2sf ext
n+s , −M ≤ n ≤M (23.12.19)

23.12. HENDERSON FILTERS 1113

If f ext
m is a polynomial of degree (2s + i), then the (2s)-differencing operation will

result into a polynomial of degree i. Suppose that we start with the weighted monomial:

fm = wmmi , −M ≤m ≤M (23.12.20)

where the weighting function wm is itself a polynomial of degree 2s, then in order for
the extended vector f ext

m to vanish over M < |m| ≤ M + s, the function wm must have
zeros at these points, that is,

wm = 0 , for m = ±(M + 1),±(M + 2), . . . ,±(M + s)

This condition fixes wm uniquely, up to a normalization constant:

wm =
s∏
i=1

[
(M + i)2−m2] (Henderson weights) (23.12.21)

These are called Henderson weights. Because the extended signal f ext
m is a polynomial

of degree (2s+ i), it follows that the signal gn will be a polynomial of degree i.
Defining the N×N diagonal matrix W = diag

(
[w−M, . . . ,w0, . . . ,wM]

)
, we can write

(23.12.20) vectorially in terms of the monomial basis vector si as f = Wsi. We showed
that the matrix operation g = Vf = VWsi results into a polynomial of degree i, which
therefore can be expanded as a linear combination of the monomials s0, s1, . . . , si up to
order i, that is,

VWsi =
i∑

j=0

sjCji (23.12.22)

for appropriate coefficients Cji, which may thought of as the matrix elements of an
upper-triangular matrix. Applying this result to each basis vector of S = [s0, s1, . . . , sd]
up to order d, it follows that

VWS = SC , C = (d+1)×(d+1) upper-triangular (23.12.23)

But, this is exactly the condition (23.11.14). Thus, we have shown the equivalence of
the NRR minimization problem (23.12.7) withV = DT

s Ds and the weighted least-squares
polynomial fitting problem (23.11.1) with the Henderson weights wm. The rest of the
results of Sec. 23.11 then carry through unchanged.

The MATLAB function lprs implements the design. It constructs the W matrix from
the Henderson weights and passes it into the function lpsm:

[B,G] = lprs(N,d,s); % local polynomial minimum-Rs filters

The Henderson weights wm, −M ≤m ≤M are calculated by the function hend:

w = hend(N,s); % Henderson weights

In the next section, we derive closed-form expressions for the Henderson filters using
Hahn orthogonal polynomials. Analytical expressions can also be derived working with

1114 23. LOCAL POLYNOMIAL FILTERS

the non-orthogonal monomial basis S. It follows from B = WS(STWS)−1ST that the
kth component of the mth filter will be:

bm(k)= Bkm = wk

d∑
i,j=0

kimjΦij = wk uTkΦum (23.12.24)

where uk = [1, k, k2, . . . , kd]T and Φ is the inverse of the Hankel matrix F = STWS
whose matrix elements are the weighted inner products:

Fij = (STWS)ij= sTi Wsj =
M∑

m=−M
wmmi+j ≡ Fi+j , i, j = 0,1, . . . , d (23.12.25)

Except for the factor wk and the different values of Φij the expressions are similar to
those of the LPSM filters of Sec. 23.3. The matrix Φ has a similar checkerboard structure.
For example, we have for the commonly used case d = 3 and s = 3:

bm(k)= wk
[
1, k, k2, k3]

⎡⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
m
m2

m3

⎤⎥⎥⎥⎦ (23.12.26)

where
wk =

[
(M + 1)2−k2][(M + 2)2−k2][(M + 3)2−k2] (23.12.27)

and

F =

⎡⎢⎢⎢⎣
F0 0 F2 0
0 F2 0 F4

F2 0 F4 0
0 F4 0 F6

⎤⎥⎥⎥⎦ ⇒ Φ = F−1 =

⎡⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤⎥⎥⎥⎦
where we obtain from the checkerboard submatrices:[

Φ00 Φ02

Φ20 Φ22

]
=
[
F0 F2

F2 F4

]−1

,
[
Φ11 Φ13

Φ31 Φ33

]
=
[
F2 F4

F4 F6

]−1

(23.12.28)

The corresponding F-factors for s = 3 are:

F0 = 2

35
(2M + 7)(2M + 5)(2M + 3)(2M + 1)(M + 3)(M + 2)(M + 1)

F2 = 1

9
M(M + 4)F0

F4 = 1

11
(3M2 + 12M − 4)F2

F6 = 1

143
(15M4 + 120M3 + 180M2 − 240M + 68)F2

23.12. HENDERSON FILTERS 1115

which give rise to the matrix elements of Φ:

Φ00 = 315(3M2 + 12M − 4)/D1

Φ02 = −3465/D1

Φ22 = 31185/D1

Φ11 = 1155(15M4 + 120M3 + 180M2 − 240M + 68)/D2

Φ13 = −15015(3M2 + 12M − 4)/D2

Φ33 = 165165/D2

with the denominator factors:

D1 = 8(2M + 9)(2M + 7)(2M + 5)(2M + 3)(M + 3)(M + 2)(M + 1)(4M2 − 1)

D2 = 8M(M − 1)(M + 4)(M + 5)D1

In particular, setting m = 0 we find the central filter b0(k), which for the case d = 3
and s = 3, is referred to as “Henderson’s ideal formula:”

b0(k)= wk(Φ00 + k2Φ02)

or, with wk =
[
(M+1)2−k2

][
(M+2)2−k2

][
(M+3)2−k2

]
:

b0(k)= 315
(
3M2 + 12M − 4− 11k2

)
wk

8(2M+9)(2M+7)(2M+5)(2M+3)(M+3)(M+2)(M+1)(4M2−1)
(23.12.29)

The corresponding predictive/interpolating differentiation filters b(i)t (k) are given
by a similar expression:

b(i)t (k)= wkuTkΦDiu t (23.12.30)

or, explicitly, for the d = s = 3 case and differentiation order i = 0,1,2,3:

b(i)t (k)= wk
[
1, k, k2, k3]

⎡⎢⎢⎢⎣
Φ00 0 Φ02 0
0 Φ11 0 Φ13

Φ20 0 Φ22 0
0 Φ31 0 Φ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⎤⎥⎥⎥⎦
i ⎡⎢⎢⎢⎣

1
t
t2

t3

⎤⎥⎥⎥⎦
(23.12.31)

Example 23.12.1: USD/Euro exchange rate. Consider four methods of smoothing the USD/Euro
foreign exchange rate for the years 1999-08. The monthly data are available from the web
site: http://research.stlouisfed.org/fred2/series/EXUSEU

The upper-left graph in Fig. 23.12.2 shows the smoothing by an LPSM filter of length N = 19
and polynomial order d = 3. In the upper-right graph a minimum-Rs Henderson filter was
used with N = 19, d = 3, and smoothness order s = 3.

The middle-left graph uses the SVD signal enhancement method with embedding orderM = 8
and rank r = 2.

The middle-right graph uses the Whittaker-Henderson, or Hodrick-Prescott filter with smooth-
ing parameter λ = 100 and smoothness order s = 3.

1116 23. LOCAL POLYNOMIAL FILTERS

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 LPSM filter, N = 19, d = 3

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 LPRS filter, N = 19, d = 3, s = 3

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 SVD enhancement, M = 8, r = 2

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 Whittaker− Henderson, λ = 100, s = 3

monthly

 actual
 smoothed

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 WH with L1, λ = 1, s = 2

monthly

 actual
 L

1
 trend

1999 2001 2003 2005 2007 2009
0.8

1

1.2

1.4

1.6
 WH with L1, λ = 1, s = 3

monthly

 actual
 L

1
 trend

Fig. 23.12.2 Smoothing of USD/Euro exchange rate.

The lower left and right graphs use the Whittaker-Henderson regularization filter with the
L1 criterion with differentiation orders s = 2 and s = 3 and smoothing parameter λ = 1,
implemented with the CVX package.†. The s = 2 case represents the smoothed signal in
piece-wise linear form. The L1 case is discussed further in Sec. 26.7.

†http://cvxr.com/cvx/

23.12. HENDERSON FILTERS 1117

The following MATLAB code illustrates the generation of the four graphs:

Y = loadfile(’exuseu.dat’); % data file available in the OSP toolbox

y = Y(:,4); t = taxis(y,12,1999); % extract signal yn from data file

% the function taxis defines the t-axis

N=19; d=3; x1 = lpfilt(lpsm(N,d),y); % LPSM filter

s=3; x2 = lpfilt(lprs(N,d,s),y); % LPRS filter

M=8; r=2; x3 = svdenh(y,M,r); % SVD enhancement

la=100; s=3; x4 = whsm(y,la,s); % Whittaker-Henderson

s = 2; la = 1; N = length(y); % Whittaker-Henderson with L1 criterion

D = diff(eye(N),s); % for x6, use s = 3

cvx_begin % use CVX package to solve the L1 problem

variable x5(N)
minimize(sum_square(y-x5) + la * norm(D*x5,1))

cvx_end

figure; plot(t,y,’.’, t,x1,’-’); figure; plot(t,y,’.’, t,x2,’-’);
figure; plot(t,y,’.’, t,x3,’-’); figure; plot(t,y,’.’, t,x4,’-’);
figure; plot(t,y,’.’, t,x5,’-’); figure; plot(t,y,’.’, t,x6,’-’);

All methods have comparable performance and can handle the end-point problem. 	

The computational procedures implemented into the function lprs were outlined
in Eq. (23.11.19). The related orthogonalized basis Q defined in Eq. (23.11.23) will be
realized in terms of the Hahn orthogonal polynomials.

A direct consequence of upper-triangular nature of the matrix C in Eq. (23.12.23) is
that the basis Q becomes an eigenvector basis for the matrix VW [707,683]. To see this,
substitute S = QR into (23.12.23),

VWQR = QRC ⇒ VWQ = QΛ, Λ = RCR−1 (23.12.32)

Multiplying both sides by QTW and using the property QTWQ = D, we obtain:

QTWVWQ = QTWQΛ = DΛ (23.12.33)

Because R and C are both upper-triangular, so will be Λ and DΛ. But the left-hand
side of (23.12.33) is a symmetric matrix, and so must be the right-hand side DΛ. This
requires that DΛ and hence Λ be a diagonal matrix, e.g., Λ = diag

(
[λ0, λ1, . . . , λd]

)
.

This means that the rth column of Q is an eigenvector:

VWqr = λrqr , r = 0,1, . . . , d (23.12.34)

Choosing d = N−1 would produce all the eigenvectors of VW. In this case, we have
Q−1 = D−1QTW and we obtain the decomposition:

VW = QΛQ−1 = QΛD−1QTW ⇒ V = Q(ΛD−1)QT

We also find for the inverse of V = DT
s Ds:

V−1 =WQΛ−1D−1QTW

1118 23. LOCAL POLYNOMIAL FILTERS

There exist [677–679] similar and efficient ways to calculate V−1 = (DT
s Ds)−1. The

eigenvalues λr can be shown to be [707]:

λr = (2s+ r)!
r!

=
2s∏
i=1

(r + i) , r = 0,1, . . . , d (23.12.35)

As we see in the next section, the rth column qr(n) of Q is a Hahn polynomial of
degree r in n, and hence Wqr , or component-wise, wnqr(n), will be a polynomial of
degree 2s+r. Moreover, because of the zeros of wn, the polynomial fn = wnqr(n) can
be extended to be over the range −M − s ≤ n ≤M + s. Using the same reasoning as in
Eq. (23.12.19), it follows that (23.12.34) can be written as

(−1)s∇2sf ext
n+s = λrqr(n) , −M ≤ n ≤M

Since this is valid as an identity in n, it is enough to match the highest powers of n
from both sides, that is, nr . Thus, on the two sides we have

f ext
n+s = wn+sqr(n+ s)= (−1)s[(n+ s)2s+· · ·]︸ ︷︷ ︸

wn+s

[arr(n+ s)r+· · ·]︸ ︷︷ ︸
qr(n+s)

, or,

(−1)sf ext
n+s = arrn2s+r + · · · , and also, qr(n)= arrnr + · · ·

where arr is the highest coefficient of qr(n) and the dots indicate lower powers of n.
Dropping the arr constant, the eigenvector condition then becomes:

∇2s[n2s+r + · · ·]= λr[nr + · · ·]

Each operation of ∇ on ni lowers the power by one, that is, ∇(ni)= i ni−1 + · · · ,
∇2(ni)= i(i− 1)ni−2 + · · · , ∇3(ni)= i(i− 1)(i− 2)ni−3 + · · · , etc. Thus, we have:

∇2s[n2s+r + · · ·]= (2s+ r)(2s+ r − 1)(2s+ r − 2)· · · (r + 1)nr + · · ·

which yields Eq. (23.12.35).

23.13 Hahn Orthogonal Polynomials

Starting with Chebyshev [688], the discrete Chebyshev/Gram polynomials have been
used repeatedly in the least-squares polynomial fitting problem, LPSM filter design, and
other applications [688–735]. Bromba and Ziegler [707] were the first to establish a simi-
lar connection between the Hahn orthogonal polynomials and the minimum-Rs problem.
For a review of the Hahn polynomials, see Karlin and McGregor [697].

The Hahn polynomials Qr(x) of a discrete variable x = 0,1,2, . . . ,N− 1 and orders
r ≤ N − 1 satisfy a weighted orthogonality property of the form:

N−1∑
x=0

w(x)Qr(x)Qm(x)= Drδrm , r,m = 0,1, . . . ,N − 1

23.13. HAHN ORTHOGONAL POLYNOMIALS 1119

where the weighting function w(x) depends on two parameters α,β and is defined up
to a normalization constant as follows:

w(x)= (α+ x)!
x!

· (β+N − 1− x)!
(N − 1− x)!

, x = 0,1, . . . ,N − 1 (23.13.1)

The length N can be even or odd, but here we will consider only the odd case and
set as usual N = 2M + 1. The interval [0,N − 1] can be mapped onto the symmetric
interval [−M,M] by making the change of variables x = n +M, with −M ≤ n ≤ M.
Then, the weighting function becomes,

w(n)= (α+M + n)!
(M + n)!

· (β+M − n)!
(M − n)!

, −M ≤ n ≤M (23.13.2)

Defining qr(n)= Qr(x)
∣∣
x=n+M, the orthogonality property now reads:

M∑
n=−M

w(n)qr(n)qm(n)= Drδrm , r,m = 0,1, . . . ,N − 1 (23.13.3)

The minimum-Rs problem corresponds to the particular choice α = β = s. In this
case, the weighting function w(n) reduces to the Henderson weights of Eq. (23.12.21):

w(n)= (s+M + n)!
(M + n)!

· (s+M − n)!
(M − n)!

=
s∏
i=1

(M + n+ i)·
s∏
i=1

(M − n+ i) , or,

w(n)=
s∏
i=1

[
(M + i)2−n2] , −M ≤ n ≤M (23.13.4)

For s = 0, the weights reduce to w(n)= 1 corresponding to the discrete Cheby-
shev/Gram polynomials. Because the weights are unity, the Chebyshev/Gram polyno-
mials can be regarded as discrete-time versions of the Legendre polynomials. In fact,
they tend to the latter in the limit N →∞ [717]. Similarly, the Hahn polynomials may be
regarded as discrete versions of the Jacobi polynomials. At the opposite limit, s → ∞,
the Hahn polynomials tend to the Krawtchouk polynomials [717], which are discrete ver-
sions of the Hermite polynomials [714]. We review Krawtchouk polynomials and their
application to the design of maximally flat filters in Sec. 23.14.

In general, the Hahn polynomials are given in terms of the hypergeometric function

3F2(a1, a2, a3;b1, b2;z). For α = β = s, they take the following explicit form:

qr(n)= Qr(x)=
r∑

k=0

ark x[k]
∣∣∣∣
x=n+M

=
r∑

k=0

ark (n+M)[k] , −M ≤ n ≤M (23.13.5)

where x[k] denotes the falling-factorial power,

x[k] = x(x− 1)· · · (x− k+ 1)= x!

(x− k)!
= Γ(x+ 1)
Γ(x− k+ 1)

(23.13.6)

1120 23. LOCAL POLYNOMIAL FILTERS

The polynomial coefficients are:

ark = (−1)k
k∏

m=1

[
(r −m+ 1)(2s+ r +m)

(N −m)(s+m)m

]
, k = 0,1, . . . , r (23.13.7)

where ar0 = 1. Expanding the product we have:

ark = (−1)kr(r − 1)· · · (r − k+ 1)·(2s+ r + 1)(2s+ r + 2)· · · (2s+ r + k)
(N − 1)(N − 2)· · · (N − k)·(s+ 1)(s+ 2)· · · (s+ k)·k!

(23.13.8)
The polynomials satisfy the symmetry property ,

qr(−n)= (−1)rqr(n) (23.13.9)

The orthogonality property (23.13.3) is satisfied with the following values of Dr :

Dr = (s!)2

(2M)!
· r! (2M − r)!

(2M)!
· (2s+ r + 1)(2s+ r + 2)· · · (2s+ r +N)

2s+ 2r + 1
(23.13.10)

For minimum-Rs filter design with polynomial order d ≤ N−1, only polynomials up
to order d are needed, that is, qr(n), r = 0,1, . . . , d. Arranging these as the columns of
the N×(d+1) matrix Q = [q0,q1, . . . ,qd], the orthogonality property can be expressed
as QTWQ = D, where D = diag

(
[D0,D1, . . . ,Dd]

)
.

The relationship to the monomial basis S = [s0, s1, . . . , sd] is through an upper-
triangular invertible matrix R, that is, S = QR. This can be justified by noting that
the power series of qr(n) in n is a linear combination of the monomials si(n)= ni for
i = 0,1, . . . , r. In fact, R can be easily constructed from the Hahn coefficients ark and
the Stirling numbers.

Thus, the construction of the minimum-Rs filters outlined in Eq. (23.11.23) is explic-
itly realized by the Hahn polynomial basis matrix Q:

B =WQD−1QT (23.13.11)

or, component-wise,

bm(n)= Bnm = w(n)
d∑
r=0

qr(n)qr(m)
Dr

, −M ≤ n,m ≤M (23.13.12)

A more direct derivation of (23.13.11) is to perform the local polynomial fit in the
Q-basis. The desired degree-d polynomial can be expanded in the linear combination:

ŷm =
d∑
i=0

cimi =
d∑
r=0

arqr(m) ⇒ ŷ = Sc = Qa

Then, minimize the weighted performance index with respect to a:

J = (y−Qa)TW(y−Qa)= min

23.13. HAHN ORTHOGONAL POLYNOMIALS 1121

Using the condition QTWQ = D, the solution leads to the same B:

a = D−1QTWy ⇒ ŷ = Qa = QD−1QTWy = BTy (23.13.13)

The computation of the basisQ is facilitated by the following MATLAB functions. We
note first that the falling factorial powers are related to ordinary powers by the Stirling
numbers of the first and second kind:

x[k] =
k∑
i=0

S1(k, i)xi � xk =
k∑
i=0

S2(k, i)x[i] (23.13.14)

These numbers may be arranged into lower-triangular matrices S1 and S2, which are
inverses of each other. For example, we have for k = 0,1,2,3:⎡⎢⎢⎢⎣

x[0]

x[1]

x[2]

x[3]

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ �

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x[0]

x[1]

x[2]

x[3]

⎤⎥⎥⎥⎦

S1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1

⎤⎥⎥⎥⎦ , S2 = S−1
1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

⎤⎥⎥⎥⎦
The MATLAB function stirling generates these matrices up to a desired order:

S = stirling(d,kind); % Stirling numbers up to order d of kind = 1,2

A polynomial can be expressed in falling factorial powers or in ordinary powers. The
corresponding coefficient vectors are related by the Stirling numbers:

P(x)=
d∑

k=0

akx[k] =
d∑
i=0

cixi ⇒ c = ST1 a , a = ST2 c

The function polval allows the evaluation of a polynomial in falling (or rising) fac-
torial powers or in ordinary powers at any vector of x values:

P = polval(a,z,type); % polynomial evaluation in factorial powers

The functions hahncoeff, hahnpol, and hahnbasis allow the calculation of the
Hahn coefficients (23.13.7), the evaluation of the polynomial Qr(x) at any vector of x’s,
and the construction of the Hahn basis Q = [q0,q1, . . . ,qd]:

[a,c] = hahncoeff(N,r,s); % Hahn polynomial coefficients ark
Q = hahnpol(N,r,s,x); % evaluate Hahn polynomial Qr(x)

[Q,D,L] = hahnbasis(N,d,s); % Hahn basis Q = [q0,q1, . . . ,qd]

1122 23. LOCAL POLYNOMIAL FILTERS

Like all orthogonal polynomials, the Hahn polynomials satisfy a three-term recur-
rence relation of the form:

nqr(n)= αrqr+1(n)+βrqr(n)+γrqr−1(n) (23.13.15)

that starts with r = 0 and q−1(n)= 0 and ends at r = N − 2. The recurrence relation
is a direct consequence of the property (which follows from (23.13.3)) that the order-r
polynomial qr(n) is orthogonal to every polynomial of degree strictly less than r. Let
us denote the weighted inner product by

(a, b)=
M∑

n=−M
w(n)a(n)b(n) (23.13.16)

Then, since the polynomial nqr(n) has degree r+1, it can be expanded as a linear
combination of the polynomials qi(n) up to degree r+1:

nqr(n)=
r+1∑
i=0

ciqi(n)

The coefficients are determined using the orthogonality property by

(nqr, qi)=
r+1∑
j=0

cj(qj, qi)=
r+1∑
j=0

cjDiδij = Dici ⇒ ci = (nqr, qi)
Di

(23.13.17)

This implies that ci = 0 for i ≤ r − 2, therefore, only the terms i = r+1, r, r−1 will
survive, which is the recurrence relation. Indeed, we note that (nqr, qi)= (qr, nqi) and
that nqi(n) has degree (i+ 1). Therefore, as long as i+ 1 < r, or, i ≤ r − 2, this inner
product will be zero. It follows from (23.13.17) that:

αr = (nqr, qr+1)
Dr+1

, βr = (nqr, qr)
Dr

, γr = (nqr, qr−1)
Dr−1

(23.13.18)

Because the weights w(n) are symmetric, w(n)= w(−n), and the polynomials sat-
isfy, qr(−n)= (−1)rqr(n), it follows immediately that βr = 0. The coefficient γr can
be related to αr−1 by noting that

αr−1 = (nqr−1, qr)
Dr

= (nqr, qr−1)
Dr

⇒ (nqr, qr−1)= Drαr−1 , and hence,

γr = (nqr, qr−1)
Dr−1

= Drαr−1

Dr−1
(23.13.19)

Moreover,αr is related to the leading coefficients arr of the qr(n) polynomial. From
the definition (23.13.5), we can write

qr(n)= arrnr + pr−1(n) , qr+1(n)= ar+1,r+1nr+1 + pr(n)

where pr−1(n) and pr(n) are polynomials of degree r−1 and r, respectively. Since
Dr+1 = (qr+1, qr+1), we have,

αr = (nqr, qr+1)
(qr+1, qr+1)

= (arrnr+1 + npr−1, qr+1)
(ar+1,r+1nr+1 + pr, qr+1)

= arr(nr+1, qr+1)
ar+1,r+1(nr+1, qr+1)

= arr
ar+1,r+1

23.13. HAHN ORTHOGONAL POLYNOMIALS 1123

where we used the orthogonality of qr+1(n) with npr−1(n) and pr(n), both of which
have order r. Thus,

αr = arr
ar+1,r+1

(23.13.20)

Using Eqs. (23.13.7) and (23.13.10), the expressions for αr and γr simplify into:

αr = −(2M − r)(2s+ r + 1)
2(2s+ 2r + 1)

, γr = −r(2M + 2s+ r + 1)
2(2s+ 2r + 1)

(23.13.21)

These satisfy the constraint αr + γr = −M, which follows from the recurrence
relation and the conditions qr(−M)= ar0 = 1 for all r. Next, we derive the Christoffel-
Darboux identity which allows the simplification of the sum in (23.13.12). Settingβr = 0,
replacing γr = αr−1Dr/Dr−1 and dividing by Dr , the recurrence relation reads:

nqr(n)
Dr

= αr

Dr
qr+1(n)+αr−1

Dr−1
qr−1(n) (23.13.22)

Multiplying by qr(m), interchanging the roles of n,m, and subtracting, we obtain:

nqr(n)qr(m)
Dr

= αr

Dr
qr+1(n)qr(m)+αr−1

Dr−1
qr−1(n)qr(m)

mqr(m)qr(n)
Dr

= αr

Dr
qr+1(m)qr(n)+αr−1

Dr−1
qr−1(m)qr(n)

(n−m)qr(n)qr(m)
Dr

= αr

Dr

[
qr+1(n)qr(m)−qr(n)qr+1(m)

]−
− αr−1

Dr−1

[
qr(n)qr−1(m)−qr−1(n)qr(m)

]
Summing up over r, and using q−1(n)= 0, the successive terms on the right-hand

side cancel except for the last one, resulting in the Christoffel-Darboux identity:

(n−m)
d∑
r=0

qr(n)qr(m)
Dr

= αd

Dd

[
qd+1(n)qd(m)−qd(n)qd+1(m)

]
, or,

d∑
r=0

qr(n)qr(m)
Dr

= αd

Dd

qd+1(n)qd(m)−qd(n)qd+1(m)
n−m

(23.13.23)

Using this identity into the filter equations (23.13.12), we find

bm(n)= w(n)
αd

Dd

qd+1(n)qd(m)−qd(n)qd+1(m)
n−m

(23.13.24)

This is valid for −M ≤ n,m ≤ M and for orders 0 ≤ d ≤ N−2. At n = m, the
numerator vanishes, so that the numerator and denominator have a common factor
n −m, which cancels resulting in a polynomial of degree d in n and m. In particular,
the central Henderson filters are:

b0(n)= w(n)
αd

Dd

qd+1(n)qd(0)−qd(n)qd+1(0)
n

(23.13.25)

1124 23. LOCAL POLYNOMIAL FILTERS

where either qd(0) or qd+1(0) is zero depending on whether d is odd or even. In fact
for the two successive values d = 2r and d = 2r+1, while the asymmetric filters bm(n)
are different, the central filters are the same and given by:

b0(n)= α2r

D2r
q2r(0)

q2r+1(n)
n

= −α2r+1

D2r+1
q2r+2(0)

q2r+1(n)
n

(23.13.26)

the equality of the coefficients following by setting d = 2r+1 andn = 0 in Eq. (23.13.22).
Next, we derive explicit formulas for some specific cases. The first few Hahn poly-

nomials of orders d = 0,1,2,3,4,5 and arbitrary M and s are, for −M ≤ n ≤M:

q0(n) = 1

q1(n) = − n
M

q2(n) = (2s+3)n2 −M(M+s+1)
M(2M−1)(s+ 1)

q3(n) = −(2s+5)n3 − [3M2 + (s+1)(3M−1)
]
n

M(M−1)(2M−1)(s+1)

q4(n) = (2s+5)(2s+7)n4 − (2s+5)
(
6M2 + 6(s+1)M − 4s−5

)
n2

M(M−1)(2M−1)(2M−3)(s+1)(s+2)

+ 3M(M−1)(s+M+1)(s+M+2)
M(M−1)(2M−1)(2M−3)(s+1)(s+2)

q5(n) = −(2s+7)(2s+9)n5 − 5(2s+7)
(
2M2 + 2(s+1)M − 2s−3

)
n3

M(M−1)(M−2)(2M−1)(2M−3)(s+1)(s+2)

−
[
15M4 + 30(s+1)M3 + 5(3s3+s−7)M2 − (s+1)(s+2)(25M−6)

]
n

M(M−1)(M−2)(2M−1)(2M−3)(s+1)(s+2)
(23.13.27)

They are normalized such that qr(−M)= 1. Setting s = 0, we obtain the correspond-
ing discrete Chebyshev/Gram polynomials:

q0(n) = 1

q1(n) = − n
M

q2(n) = 3n2 −M(M+1)
M(2M−1)

q3(n) = −5n3 − (3M2+3M−1)n
M(M−1)(2M−1)

q4(n) = 35n4 − 5(6M2+6M−5)n2 + 3M(M2−1)(M+2)
2M(M−1)(2M−1)(2M−3)

q5(n) = −63n5 − 35(2M2+2M−3)n3 + (15M4+30M3−35M2−50M+12)n
2M(M−1)(M−2)(2M−1)(2M−3)

(23.13.28)

23.13. HAHN ORTHOGONAL POLYNOMIALS 1125

The central Henderson filters for the cases d = 0,1, d = 2,3, and d = 4,5 are as
follows for general M and s. For d = 0,1:

b0(n)= (2s+ 1)! (2M)!
(s!)2 (2M + 2s+ 1)!

w(n) (23.13.29)

where w(n) is given by Eq. (23.13.4). For d = 2,3, we have:

b0(n)= (M+s+1)(2s+3)! (2M)!
(
3M2 + (s+1)(3M−1)−(2s+5)n2

)
(2M−1)(s!)2 (2M+2s+3)!

w(n) (23.13.30)

This generalizes Henderson’s ideal formula (23.12.29) to arbitrary s. For s = 1,2, it
simplifies into:

s = 1, b0(n) = 15(3M2 + 6M − 2− 7n2)w1(n)
2(M + 1)(2M + 3)(2M + 5)(4M2 − 1)

s = 2, b0(n) = 105(M2 + 3M − 1− 3n2)w2(n)
2(M + 1)(M + 2)(2M + 3)(2M + 5)(2M + 7)(4M2 − 1)

where w1(n) and w2(n) correspond to (23.13.4) with s = 1 and s = 2. The case s = 0
is, of course, the same as Eq. (23.3.17). For the case d = 4,5, we find:

b0(n) = (M+s+1)(M+s+2)(2s+ 5)! (2M)!
2(2M−1)(2M−3)

(
(s+ 2)!

)2(2M+2s+5)!
·w(n)·

·
[
(2s+7)(2s+9)n4 − 5(2s+7)

(
2M2 + 2(s+1)M − 2s−3

)
n2 +

+ 15M4 + 30(s+1)M3 + 5(3s2+s−7)M2 + (s+1)(s+2)(25M−6)
]

(23.13.31)
Eqs. (23.13.29)–(23.13.31), as well as the case d = 6,7, have been implemented into

the MATLAB function lprs2, with usage:

b0 = lprs2(N,d,s); % exact forms of the Henderson filters b0(n) for 0 ≤ d ≤ 6

The asymmetric interpolation filters bt(n) can be obtained by replacing the discrete
variable m by t in Eqs. (23.13.12) and (23.13.24):

bt(n)= w(n)
d∑
r=0

qr(n)qr(t)
Dr

= w(n)
αd

Dd

qd+1(n)qd(t)−qd(n)qd+1(t)
n− t

(23.13.32)

Some specific cases are as follows. For d = 0, we have:

bt(n)= (2s+ 1)! (2M)!
(s!)2 (2M + 2s+ 1)!

w(n) (23.13.33)

For d = 1,

bt(n)= 4(2s+ 1)! (2M−1)!
(s!)2 (2M+2s+2)!

w(n)
[
M2 + (s+1)M + (2s+3)nt

]
(23.13.34)

1126 23. LOCAL POLYNOMIAL FILTERS

For d = 2:

bt(n) = 4(2s+1)! (2M−1)!
(s!)2 (2M+2s+2)!

w(n)
[
M(M+s+1)

[
3M2 + 3(s+1)M − s−1

]
+ (s+1)(2M−1)(2M+2s+3)nt −M(M+s+1)(2s+5)(n2 + t2)

+ (s+1)(2M−1)(2M+2s+3)n2t2
] (23.13.35)

The corresponding predictive differentiation filters are obtained by differentiating
with respect to t.

The above closed-form expressions were obtained with the following simple Maple
procedures that define the Hahn coefficients ark, the Hahn polynomials qr(n) and their
norms Dr , and the interpolation filters bt(n):

factpow := proc(x,k) product((x-m), m=0..k-1); end proc;

a := proc(M,r,s,k)
(-1)^k * product((r-m+1)*(2*s+r+m)/(2*M+1-m)/(s+m)/m, m=1..k);

end proc;

Q := proc(M,r,s,n) if r=0 then 1; else
sum(a(M,r,s,k)*factpow(n+M,k), k=0..r);

end if; end proc;

Dr := proc(M,r,s) GAMMA(s+1)^2 * GAMMA(r+1) * GAMMA(2*M+1-r)
* product(2*s+r+i, i=1..(2*M+1)) / GAMMA(2*M+1)^2 / (2*s+2*r+1);

end proc;

B := proc(M,d,s,n,t)
sum(Q(M,r,s,n)/Dr(M,r,s)*Q(M,r,s,t), r=0..d);

end proc;

where factpow defines the falling-factorial powers, and it is understood that the result
from the procedure B(M,d,s,n,t) must be multiplied by the Henderson weights w(n).

There are other useful choices for the weighting function w(n), such as binomial,
which are similar to gaussian weights and lead to the Krawtchouk orthogonal poly-
nomials, or exponentially decaying w(n)= λn, with n ≥ 0 and 0 < λ < 1, leading
to the discrete Laguerre polynomials [719,720] and exponential smoothers. However,
these choices do not have an equivalent minimum-NRR characterization. Even so, the
smoothing filters are efficiently computed in the orthogonal polynomial basis by:

B =WS(STWS)−1ST =WQD−1QT , QTWQ = D (23.13.36)

23.14 Maximally-Flat Filters

Greville [668] has shown that in the limit s → ∞ the minimum-Rs filters tend to maxi-
mally flat FIR filters that satisfy the usual flatness constraints at dc, that is,B(i)(ω)

∣∣
ω=0 =

δ(i), for i = 0,1, . . . , d, but also have monotonically decreasing magnitude responses
and satisfy (2M−d) additional flatness constraints at the Nyquist frequency, ω = π.
They are identical to the well-known maximally flat filters introduced by Herrmann [758].

23.14. MAXIMALLY-FLAT FILTERS 1127

Bromba and Ziegler [707,762] have shown that their impulse responses are given in terms
of the Krawtchouk orthogonal polynomials [693,714,717]. Meer and Weiss [724] have
derived the corresponding differentiation filters based on the Krawtchouk polynomials
for application to images. Here, we look briefly at these properties.

The Krawtchouk polynomials are characterized by a parameter p such that 0 < p < 1
and are defined over the symmetric interval −M ≤ n ≤M by [717]

q̄r(n)=
r∑

k=0

(−1)kr(r − 1)· · · (r − k+ 1)p−k

(N − 1)(N − 2)· · · (N − k)·k!
(n+M)[k] (23.14.1)

where N = 2M + 1 and r = 0,1, . . . ,N − 1. They satisfy the orthogonality property,

M∑
n=−M

w̄(n)q̄r(n)q̄m(n)= D̄rδrm (23.14.2)

with the following binomial weighting function and norms, where q = 1− p:

w̄(n) =
(

2M
M + n

)
pM+nqM−n = (2M)!

22M(M + n)! (M − n)!
pM+nqM−n

D̄r = r! (2M − r)!
(2M)!

qr

pr

(23.14.3)

In the limit s→∞, the Hahn polynomials tend to the special Krawtchouk polynomials
with the parameter p = q = 1/2. To see this, we note that the Hahn polynomials are
normalized such that qr(−M)= 1, and we expect that they would have a straightforward
limit as s→∞. Indeed, it is evident that the limit of the Hahn coefficients (23.13.8) is

ārk = lim
s→∞ark =

(−1)kr(r − 1)· · · (r − k+ 1)·2k
(N − 1)(N − 2)· · · (N − k)·k!

(23.14.4)

and therefore, the Hahn polynomials will tend to

q̄r(n)=
r∑

k=0

(−1)kr(r − 1)· · · (r − k+ 1)·2k
(N − 1)(N − 2)· · · (N − k)·k!

(n+M)[k] (23.14.5)

which are recognized as a special case of (23.14.1) with p = 1/2. The Henderson weights
(23.13.4) and norms (23.13.10) diverge as s → ∞, but we may normalize them by a
common factor, such as s2M(s!)2, so that they will converge. The limits of the rescaled
weights and norms are:

w̄(n) = lim
s→∞

[
(2M)!w(n)
22Ms2M(s!)2

]
= lim

s→∞

[
(2M)! (s+M + n)! (s+M − n)!
22Ms2M(s!)2 (M + n)! (M − n)!

]

D̄r = lim
s→∞

[
(2M)!Dr

22Ms2M(s!)2

]

= lim
s→∞

[
r! (2M − r)!

(2M)!
· (2s+ r + 1)(2s+ r + 2)· · · (2s+ r +N)

22Ms2M(2s+ 2r + 1)

]

1128 23. LOCAL POLYNOMIAL FILTERS

They are easily seen to lead to Eqs. (23.14.3) with p = 1/2, that is,

w̄(n) = 1

22M

(
2M

M + n

)
= (2M)!

22M(M + n)! (M − n)!

D̄r = r! (2M − r)!
(2M)!

(23.14.6)

The first few of the Krawtchouk polynomials are:

q̄0(n) = 1

q̄1(n) = − n
M

q̄2(n) = 2n2 −M
M(2M−1)

q̄3(n) = − 2n3 − (3M−1)n
M(M−1)(2M−1)

q̄4(n) = 4n4 − (12M−8)n2 + 3M(M−1)
M(M−1)(2M−1)(2M−3)

q̄5(n) = −4n5 − 20(M−1)n3 + (15M2−25M+6)n
M(M−1)(M−2)(2M−1)(2M−3)

(23.14.7)

These polynomials satisfy the three-term recurrence relation:

nq̄r(n)= ᾱrq̄r+1(n)+γ̄rq̄r−1(n) , ᾱr = −2M − r
2

, γ̄r = −r
2

(23.14.8)

with the coefficients ᾱr, γ̄r obtained from Eq. (23.13.21) in the limit s → ∞. The three-
term relations lead to the usual Christoffel-Darboux identity from which we may obtain
the asymmetric predictive filters:

b̄t(n)= w̄(n)
d∑
r=0

q̄r(n)q̄r(t)
D̄r

= w̄(n)
ᾱd

D̄d

q̄d+1(n)q̄d(t)−q̄d(n)q̄d+1(t)
n− t

(23.14.9)

Differentiation with respect to t gives the corresponding predictive differentiation
filters. Some examples are as follows. For d = 0 and d = 1, we have, respectively

b̄t(n)= w̄(n) , b̄t(n)= w̄(n)
2nt +M

M
(23.14.10)

For d = 2, the smoothing and first-order differentiation filters are:

b̄t(n) = w̄(n)
4n2t2 − 2M(n2 + t2)+2(2M−1)nt +M(3M−1)

M(2M−1)

˙̄bt(n) = w̄(n)
2(2M−1)n− 4Mt + 8n2t

M(2M−1)

(23.14.11)

and setting t = 0, the central filters simplify into:

23.14. MAXIMALLY-FLAT FILTERS 1129

b̄0(n)= w̄(n)
3M − 1− 2n2

2M − 1
, ˙̄b0(n)= w̄(n)

2n
M

(23.14.12)

For d = 3, we have:

b̄t(n) = w̄(n)
3M(M−1)(2M−1)

[
8n3t3 − 4(3M−1)(n3t + nt3)+12(M−1)n2t2

− 6M(M−1)(n2 + t2)+(30M2−30M+8)nt − 3M(M−1)(3M−1)
]
(23.14.13)

As expected, setting t = 0 produces the same result as the d = 2 case. Numerically,
the smoothing and differentiation filters can be calculated by passing the Krawtchouk
weights w̄(n) into the functions lpsm, lpdiff, and lpinterp:

W = diag(hend(N,inf)); % Krawtchouk weights

B = lpsm(N,d,W); % smoothing filters

Bi = lpdiff(N,d,i,W); % i-th derivative filters

b = lpinterp(N,d,t,i,W); % interpolation filters bt

The function hend(N, s), with s = ∞, calculates the Krawtchouk weights of Eq. (23.14.6).
In turn, the filter matrices B or B(i) may be passed into the filtering function lpfilt.
Alternatively, one can call lprs with s = ∞:

B = lprs(N,d,inf); % LPRS with Krawtchouk weights, maximally-flat filters

It is well-known [668,758–771] that the maximally-flat FIR filters of lengthN = 2M+1
and polynomial order d = 2r + 1 have frequency responses given by the following
equivalent expressions:

B0(ω) =
r∑
i=0

(
M
i

)
xi(1− x)M−i= 1−

M∑
i=r+1

(
M
i

)
xi(1− x)M−i

= (1− x)M−r
r∑
i=0

(
M−r+i−1

i

)
xi , where x = sin2

(
ω
2

) (23.14.14)

Near ω � 0 and near ω � π, the second and third expressions have the following
expansions that exhibit the desired flatness constraints [707]:

ω � 0 ⇒ B0(ω) � 1− (const.)ω2r+2 = 1− (const.)ωd+1

ω � π ⇒ B0(ω) � (const.)(ω−π)2M−2r= (const.)(ω−π)2M−d+1
(23.14.15)

The first implies the flatness constraints at dc, B(i)0 (0)= δ(i), for i = 0,1, . . . , d, and

the second, the flatness constraints at Nyquist, B(i)0 (π)= 0, for i = 0,1, . . . ,2M−d.

Example 23.14.1: For d = 2 or r = 1, the z-transform of b0(n) in Eq. (23.14.12) can be calcu-
lated explicitly resulting in:

B0(z)=
[
(1+ z−1)(1+ z)

4

]M−1
1

4

[
2(M + 1)−(M − 1)(z+ z−1)

]

1130 23. LOCAL POLYNOMIAL FILTERS

With z = ejω we may write

x = sin2
(
ω
2

)
= (1− z−1)(1− z)

4
= 2− z− z−1

4
⇒ z+ z−1

4
= 1

2
− x

1− x = cos2
(
ω
2

)
= (1+ z−1)(1+ z)

4

Thus, we may express B0(z) in terms of the variable x:

B0(z)= (1− x)M−1
[
1+ (M − 1)x

]
which corresponds to Eq. (23.14.14) for r = 1. 	

Example 23.14.2: Fig. 23.14.1 shows the frequency responses B0(ω) for the values N = 13,
r = 2, (d = 4,5), and the smoothness parameter values: s = 3, s = 6, s = 9, and s = ∞.

Because b0(n) is symmetric about n = 0, the quantities B0(ω) are real-valued. In the limit
s→∞, the response becomes positive and monotonically decreasing. The following MATLAB
code illustrates the generation of the bottom two graphs and verifies Eq. (23.14.14):

N=13; r=2; d = 2*r+1; M = floor(N/2);

B = lprs(N,d,9); b9 = B(:,M+1); % LPRS filter with s = 9

B = lprs(N,d,inf); binf = B(:,M+1); % LPRS with Krawtchouk weights

f = linspace(0,1,1001); w = pi*f; x = sin(w/2).^2;
B9 = real(exp(j*w*M) .* freqz(b9,1,w)); % frequency responses

Binf = real(exp(j*w*M) .* freqz(binf,1,w));

Bth = 0;
for i=0:r,

Bth = Bth + nchoosek(M,i) * x.^i .* (1-x).^(M-i); % Eq. (23.14.14)

end

norm(Bth-Binf) % compare Eq. (23.14.14) with output of LPSM

figure; plot(f,B9); figure; plot(f,Binf);

The calls to lprs and lpsm return the full smoothing matrices B from which the central
column b0 is extracted.

The frequency response function freqz expects its filter argument to be causal. The factor
ejωM compensates for that, corresponding to a time-advance by M units. 	

Finally, we note that the Krawtchouk binomial weighting function w̄(n) tends to a
gaussian for large M, which is a consequence of the De Moivre-Laplace theorem,

w̄(n)= (2M)!
22M(M + n)! (M − n)!

� 1√
πM

e−n
2/M , −M ≤ n ≤M (23.14.16)

In fact, the two sides of (23.14.16) are virtually indistinguishable for M ≥ 10.

23.15. MISSING DATA AND OUTLIERS 1131

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = 3

ω in units of π

B
0(

ω
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = 6

ω in units of π

B
0(

ω
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = 9

ω in units of π

B
0(

ω
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N = 13, r = 2, s = ∞

ω in units of π

B
0(

ω
)

Fig. 23.14.1 Frequency responses of minimum-Rs and maximally-flat filters.

23.15 Missing Data and Outliers

The presence of outliers in the observed signal can cause large distortions in the smoothed
signal. The left graph of Fig. 23.15.1 shows what can happen. The two vertical lines indi-
cate the region in which there are four strong outliers, which cause the smoothed curve
to deviate drastically from the desired signal.

One possible solution [637,749] is to ignore the outliers and estimate the smoothed
values from the surrounding available samples using a filter window that spans the out-
lier region. The same procedure can be used if some data samples are missing. Once
the outliers or missing values have been interpolated, one can apply the weighted LPSM
filters as usual. The right graph in Fig. 23.15.1 shows the four adjusted interpolated
samples. The resulting smoothed signal now estimates the desired signal more accu-
rately.

This solution can be implemented by replacing the outliers or the missing data by
zeros (or, any other values), and assign zero weights to them in the least-squares poly-
nomial fitting problem.

Given a long observed signal yn, n = 0,1, . . . , L−1, let us assume that in the vicinity
of n = n0 there is an outlier or missing sample at the time instant n0+m, where m lies

1132 23. LOCAL POLYNOMIAL FILTERS

0 25 50

0

0.5

1

1.5
Noisy Signal with Outliers

time samples, t

 filter span

outliers

 desired
 smoothed
 noisy

0 25 50

0

0.5

1

1.5
Smoothed with Adjusted Outliers

time samples, t

 filter span desired
 smoothed
 noisy
 adjusted

Fig. 23.15.1 Smoothing with missing data or outliers.

in the interval −M ≤m ≤M, as shown in Fig. 23.15.2. Several outliers or missing data
may be present, not necessarily adjacent to each other, each being characterized by a
similar index m.

Fig. 23.15.2 Missing sample or outlier and the data window used for estimating it.

The outlier samples yn0+m can be replaced by zeros and their estimated values,
ŷn0+m, can be calculated from the surrounding samples using a filter of length N =
2M+1. The corresponding least-squares polynomial-fitting problem is defined by

J =
M∑

m=−M
pmwm

⎛⎝yn0+m −
d∑
i=0

cimi

⎞⎠2

= min (23.15.1)

where wm are the usual Henderson weights and the pm are zero at the indices for the
missing data, and unity otherwise. Let y = [yn0−M, . . . , yn0 , . . . , yn0+M]T, and denote
by W,P the corresponding diagonal matrices of the weights wm,pm. Then, (23.15.1)
reads:

J = (y− Sc)TPW(y− Sc)= min, (23.15.2)

leading to the orthogonality conditions and the solution for c:

STWP(y− Sc)= 0 ⇒ c = (STPWS)−1STWPy (23.15.3)

23.15. MISSING DATA AND OUTLIERS 1133

where we assumed that STPWS is invertible.† The estimated samples will be:

ŷ = Sc = S(STPWS)−1STWPy = BTy (23.15.4)

with the filter matrix,
B = PWS(STPWS)−1ST (23.15.5)

We note that P is a projection matrix (PT = P and P2 = P) and commutes with W,
PW = WP, because both are diagonal. Defining Q = I − P to be the complementary
projection matrix, the estimated signal can be decomposed in two parts: ŷ = Pŷ+Qŷ,
with Qŷ being the part that contains the estimated missing values or adjusted outliers.

The quantity Py represents the samples that are being used to make the estimates,
whereasQy corresponds to the missing samples and can be set to zero or to an arbitrary
vector Qyarb, in other words, we may replace y by Py + Qyarb without affecting the
solution of Eq. (23.15.4). This so because P(Py+Qyarb)= Py.

Once the estimated missing values have been obtained, we may replace Qyarb by
Qŷ and recompute the ordinary W-weighted least-squares estimate from the adjusted
vector Py+Qŷ. This produces the same ŷ as in (23.15.4). Indeed, one can show that,

ŷ = S(STPWS)−1STWPy = S(STWS)−1STW(Py+Qŷ) (23.15.6)

To see this, start with the orthogonality equation (23.15.3), and replace Pŷ = ŷ−Qŷ:

STWP(y− ŷ)= 0 ⇒ STWPy = STWPŷ = STW(ŷ−Qŷ) , or,

STW(Py+Qŷ)= STWŷ = STWS(STPWS)−1WPy

from which Eq. (23.15.6) follows by multiplying both sides by S(STWS)−1. The MATLAB
function lpmissing implements the calculation of B in (23.15.5):

B = lpmissing(N,d,m,s); % filter matrix for missing data

The following MATLAB code illustrates the generation of Fig. 23.15.1:

t = (0:50)’; x0 = (1-cos(2*pi*t/50))/2; % desired signal

seed=2005; randn(’state’,seed);
y = x0 + 0.1 * randn(51,1); % noisy signal

n0 = 25; m = [-1 0 1 3]; % four outlier indices relative to n0

y(n0+m+1) = 0; % four outlier or missing values

N= 13; d = 2; s = 0; M=(N-1)/2; % filter specs

x = lpfilt(lprs(N,d,s),y); % distorted smoothed signal

B = lpmissing(N,d,m,s); % missing-data filter B

yhat = B’*y(n0-M+1:n0+M+1); % apply B to the block n0−M ≤ n ≤ n0+M
ynew = y; ynew(n0+m+1) = yhat(M+1+m); % new signal with interpolated outlier values

xnew = lpfilt(lprs(N,d,s),ynew); % recompute smoothed signal

figure; plot(t,x0,’--’, t,y,’o’, t,x,’-’); % left graph

figure; plot(t,x0,’--’, t,y,’o’, t,xnew,’-’); % right graph

hold on; plot(n0+m,yhat(M+1+m),’.’);

†This requires that the number of outliers within the data window be at most N − d− 1.

1134 23. LOCAL POLYNOMIAL FILTERS

The above method of introducing zero weights at the outlier locations can be auto-
mated and applied to the entire signal. Taking a cue from Cleveland’s LOESS method
[776] discussed in the next section, we may apply the following procedure.

Given a length-L signal yn, n = 0,1, . . . , L − 1, with L ≥ N, an LPSM or LPRS filter
with design parameters N,d, s can be applied to yn to get a preliminary estimate of the
smoothed signal x̂n, and compute the error residuals en = yn − x̂n, that is,

B = lprs(N,d, s)

x̂ = lpfilt(B,y)

e = y− x̂

(23.15.7)

From the error residual e, one may compute a set of “robustness” weights rn by
using the median of |en| as a normalization factor in the bisquare function:

μ = median
(|en|) , rn =W

(
en
Kμ

)
, n = 0,1, . . . , L− 1 (23.15.8)

where K is a constant such as K = 2–6, and W(u) is the bisquare function,

W(u)=
⎧⎨⎩(1− u2)2, if |u| ≤ 1

0, otherwise
(23.15.9)

If a residual en deviates too far from the median, that is, |en| > Kμ, then the ro-
bustness weight rn is set to zero. A new estimate x̂n can be calculated at each time n
by defining the diagonal matrix P in terms of the robustness weights in the neighbor-
hood of n, and then calculating the estimate using the c0 component of the vector c in
Eq. (23.15.3), that is,

Pn = diag
(
[rn−M, . . . , rn, . . . , rn+M]

)
x̂n = c0 = uT0 (STPnWS)−1STWPny(n)

(23.15.10)

where u0 = [1,0, . . . ,0]T and y(n)= [yn−M, . . . , yn, . . . , yn+M]T. Eq. (23.15.10) may be
used for M ≤ n ≤ L− 1−M. For 0 ≤ n < M and L− 1−M < n ≤ L− 1 the values of
x̂n can be obtained from the first M and last M outputs of ŷ in (23.15.4) applied to the
first and last length-N data vectors and robustness weights:

y = [y0, y1, . . . , yN−1]T , P = diag
(
[r0, r1, . . . , rN−1]

)
y = [yL−N, yL−N+1, . . . , yL−1]T , P = diag

(
[rL−N, rL−N+1, . . . , rL−1]

)
From the new estimates x̂n, one can compute the new residuals en = yn − x̂n, and

repeat the procedure of Eqs. (23.15.8)–(23.15.10) a few more times. A total of 3–4 it-
erations is typically adequate. The MATLAB function rlpfilt implements the above
steps:

[x,r] = rlpfilt(y,N,d,s,Nit) % robust local polynomial filtering

23.15. MISSING DATA AND OUTLIERS 1135

Its outputs are the estimated signal x̂n and the robustness weights rn. The median
scaling factor K is an additional optional input, which otherwise defaults to K = 6.

If the residuals en are gaussian-distributed with varianceσ2, then μ = 0.6745σ. The
default value K = 6 (Cleveland [776]) corresponds to allowing through 99.99 percent of
the residuals. Other possible values are K = √

6 = 2.44 (Loader [808]) and K = 4
allowing respectively 90 and 99 percent of the values.

Fig. 23.15.3 shows the effect of increasing the number of robustness iterations. It
is the same example as that in Fig. 23.15.1, but we have added another four outliers in
the vicinity of n = 10. The upper-left graph corresponds to ordinary filtering without
any robustness weights. One observes the successive improvement of the estimate as
the number of iterations increases.

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 0

time samples, t

outliers

outliers

 desired
 smoothed
 noisy

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 1

time samples, t

 desired
 smoothed
 noisy
 adjusted

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 2

time samples, t

 desired
 smoothed
 noisy
 adjusted

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Robust smoothing, Nit = 4

time samples, t

 desired
 smoothed
 noisy
 adjusted

Fig. 23.15.3 Robust smoothing with outliers.

The following MATLAB code illustrates the generation of the lower-right graph. The
signal yn is generated exactly as in the previous example; the outlier values are then
introduced around n = 10 and n = 25:

n1=10; n2=25; m = [-1 0 1 3]; % outlier indices relative to n1 and n2

y(n1+m+1)=1; y(n2+m+1)=0; % outlier values

Nit=4; K=4; x = rlpfilt(y,N,d,s,Nit,K); % robust LP filtering

1136 23. LOCAL POLYNOMIAL FILTERS

plot(t,x0,’--’, t,y,’o’, t,x,’-’, n1+m,x(n1+m+1),’.’, n2+m,x(n2+m+1),’.’);

23.16 Weighted Local Polynomial Modeling

The methods of weighted least-squares local polynomial modeling and robust filtering
can be generalized to unequally-spaced data in a straightforward fashion. Such methods
provide enough flexibility to model a wide variety of data, including surfaces, and have
been explored widely in recent years [772–815]. For equally-spaced data, the weighted
performance index centered at time n was:

Jn =
M∑

m=−M

(
yn+m − p(m)

)2w(m)= min , p(m)=
d∑
r=0

cimr (23.16.1)

The value of the fitted polynomial p(m) at m = 0 represents the smoothed estimate
of yn, that is, x̂n = c0 = p(0). Changing summation indices to k = n+m, Eq. (23.16.1)
may be written in the form:

Jn =
n+M∑

k=n−M

(
yk − p(k− n)

)2w(k− n)= min , p(k− n)=
d∑
r=0

ci(k− n)r (23.16.2)

For a set of N unequally-spaced observations
{
tk, y(tk)

}
, k = 0,1, . . . ,N − 1, we

wish to interpolate smoothly at some time instant t, not necessarily coinciding with one
of the observation times tk, but lying in the interval t0 ≤ t ≤ tN−1. A generalization
of the performance index (23.16.2) is to introduce a t-dependent window bandwidth ht,
and use only the observations that lie within that window, |tk − t| ≤ ht, to perform the
polynomial fit:

Jt =
∑

|tk−t|≤ht

(
y(tk)−p(tk− t)

)2w(tk− t)= min , p(tk− t)=
d∑
r=0

cr(tk− t)r (23.16.3)

The estimated/interpolated value at t will be x̂t = c0 = p(0), and the estimated first
derivative, ˆ̇xt = c1 = ṗ(0), and so on for the higher derivatives, with r! cr representing
the rth derivative. As illustrated in Fig. 23.16.1, the fitted polynomial,

p(x− t)=
d∑
r=0

cr(x− t)r , t − ht ≤ x ≤ t + ht

is local in the sense that it fits the observations only within the local window [t−ht, t+ht].
The quantity ŷk = p(tk − t) represents the estimated value of the kth observation yk
within that window.

The weighting function w(tk − t) is chosen to have bandwidth ±ht. This can be
accomplished by using a functionW(u) with finite support over the standardized range
−1 ≤ u ≤ 1, and setting u = (tk − t)/ht:

w(tk − t)=W
(
tk − t
ht

)
(23.16.4)

23.16. WEIGHTED LOCAL POLYNOMIAL MODELING 1137

Fig. 23.16.1 Local polynomial modeling.

Some typical choices for W(u) are as follows [808]:

1. Tricube, W(u)= (1− |u|3)3

2. Bisquare, W(u)= (1− u2)2

3. Triweight, W(u)= (1− u2)3

4. Epanechnikov, W(u)= 1− u2

5. Gaussian, W(u)= e−α2u2/2

6. Exponential, W(u)= e−α|u|

7. Rectangular, W(u)= 1

(23.16.5)

where all types have support |u| ≤ 1 and vanish for |u| > 1. A typical value for α in
the gaussian and exponential cases is α = 2.5. The curve shown in Fig. 23.16.1 is the
tricube function; because it vanishes at u = ±1, the observations that fall exactly at the
edges of the window do not contribute to the fit. The MATLAB function locw generates
the above functions at any vector of values of u:

W = locw(u,type); % local polynomial weighting functions W(u)

where type takes the values 1–7 as listed in Eq. (23.16.5). The bisquare, triweight, and
Epanechnikov functions are special cases of the more general W(u)= (1− u2)s, which
may be thought of as the large-M limit of the Henderson weights; in the limit s → ∞
they tend to a gaussian, as in the Krawtchouk case. The various window functions are
depicted in Fig. 23.16.2.

Because of the assumed finite extent of the windows, the summation in Eq. (23.16.3)
can be extended to run over all N observations, as is often done in the literature:

Jt =
N−1∑
k=0

(
y(tk)−p(tk − t)

)2w(tk − t)= min , p(tk − t)=
d∑
r=0

cr(tk − t)r (23.16.6)

We prefer the form of Eq. (23.16.3) because it emphasizes the local nature of the
fitting window. Let Nt be the number of observations that fall within the interval [t −
ht, t + ht]. We may cast the performance index (23.16.3) in a compact matrix form by
defining the Nt×1 vector of observations yt, the Nt×(d+1) basis matrix St, and the

1138 23. LOCAL POLYNOMIAL FILTERS

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Window Functions

u

W
(u

)

 tricube
 bisquare
 triweight
 epanechnikov
 gaussian
 exponential

Fig. 23.16.2 Window functions.

Nt×Nt diagonal matrix of weights by

yt = [· · · , y(tk), · · ·]T , for t − ht ≤ tk ≤ t + ht

St =

⎡⎢⎢⎢⎣
...

...
...

...
1 (tk − t) · · · (tk − t)r · · · (tk − t)d
...

...
...

...

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

...
uT(tk − t)

...

⎤⎥⎥⎥⎦
Wt = diag

(
[· · · ,w(tk − t), · · ·])

(23.16.7)

where uT(tk− t) is the k-th row of St, defined in terms of the (d+1)-dimensional vector
uT(τ)= [1, τ, τ2, . . . , τd]. For example, if t−ht < t3 < t4 < t5 < t6 < t+ht, thenNt = 4
and for a polynomial order d = 2, we have:

yt =

⎡⎢⎢⎢⎣
y(t3)
y(t4)
y(t5)
y(t6)

⎤⎥⎥⎥⎦ , St =

⎡⎢⎢⎢⎣
1 (t3 − t) (t3 − t)2

1 (t4 − t) (t4 − t)2

1 (t5 − t) (t5 − t)2

1 (t6 − t) (t6 − t)2

⎤⎥⎥⎥⎦

Wt =

⎡⎢⎢⎢⎣
w(t3 − t) 0 0 0

0 w(t4 − t) 0 0
0 0 w(t5 − t) 0
0 0 0 w(t6 − t)

⎤⎥⎥⎥⎦
With these definitions, Eq. (23.16.3) can be written as

Jt = (yt − Stc)TWt(yt − Stc)= min (23.16.8)

with solution for the coefficient vector c = [c0, c1, . . . , cd]T:

c = (STt WtSt)−1STt Wtyt (23.16.9)

23.16. WEIGHTED LOCAL POLYNOMIAL MODELING 1139

The quantity ŷt = Stc represents the polynomial estimate of the local observation
vector yt. It can be written as

ŷt = BTt yt , Bt =WtSt(STt WtSt)−1STt (23.16.10)

where the Nt×Nt matrix Bt generalizes (23.11.5), and satisfies a similar polynomial-
preserving property as (23.11.6),

BTt St = St (23.16.11)

Defining the usual (d+1)-dimensional unit vector u0 = [1,0, . . . ,0]T, we obtain the
estimated value at time t by x̂t = c0 = uT0 c, and the first derivative by ˆ̇xt = c1 = uT1 c,
where u1 = [0,1,0, . . . ,0]T,

x̂t = uT0 (STt WtSt)−1STt Wtyt

ˆ̇xt = uT1 (STt WtSt)−1STt Wtyt
(23.16.12)

Thus, the effective estimation weights are:

h(t)=WtSt(STt WtSt)−1u0 , x̂t = hT(t)yt (23.16.13)

Component-wise, we can write:

x̂t = hT(t)yt =
∑

|tk−t|≤ht
hk(t)yk (23.16.14)

where yk = y(tk) and

hk(t)= w(tk − t)uT(tk − t)(STt WtSt)−1u0 (23.16.15)

We note that u0,u1 are related to the vector u(τ) and its derivative by u0 = u(0)
and u1 = u̇(0). We also have,

STt WtSt =
∑

|tk−t|≤ht
u(tk − t)uT(tk − t)w(tk − t) (23.16.16)

or, component-wise,

(STt WtSt)ij=
∑

|tk−t|≤ht
(tk − t)i+j w(tk − t) , i, j = 0,1, . . . , d (23.16.17)

The solution is particularly easy in the special cases d = 0, corresponding to local
constant fitting, and d = 1, corresponding to local linear fits. The case d = 0 leads to the
so-called kernel smoothing approach first proposed by Nadaraya and Watson [772,773].
In this case u(τ)= [1] and we find:

STt WtSt =
∑

|tk−t|≤ht
w(tk − t) , hk(t)= w(tk − t)∑

|tk−t|≤ht
w(tk − t)

1140 23. LOCAL POLYNOMIAL FILTERS

x̂t =
∑

|tk−t|≤ht
hk(t)yk =

∑
|tk−t|≤ht

w(tk − t)yk∑
|tk−t|≤ht

w(tk − t)
(kernel smoothing) (23.16.18)

For d = 1, we have u(τ)= [1, τ]T, and we obtain

STt WtSt =
∑

|tk−t|≤ht

[
1 (tk − t)

(tk − t) (tk − t)2

]
w(tk − t)≡

[
s0(t) s1(t)
s1(t) s2(t)

]

(STt WtSt)−1= 1

s0(t)s2(t)−s2
1(t)

[
s2(t) −s1(t)
−s1(t) s0(t)

]

which gives for the filter weights hk(t):

hk(t)= w(tk − t)
s2(t)−(tk − t)s1(t)
s0(t)s2(t)−s2

1(t)
(locally linear fits) (23.16.19)

In general, the invertibility of STt WtSt requires that Nt ≥ d+1. The QR factorization
can be used to implement the above computations efficiently. If the weight function
W(u) vanishes at the end-points u = ±1, as in the tricube case, then the window interval
must exclude those end-points. In other words, the diagonal entries of Wt are assumed
to be strictly positive. DefiningU to be the diagonal square root factor ofWt and carrying
out the QR factorization of the matrix USt, we obtain the efficient algorithm:

U = sqrt(Wt) , U is diagonal so that UT = U and Wt = UTU = U2

USt = QR , QTQ = Id+1 , R = (d+1)×(d+1) upper-triangular

c = R−1QTUyt

(23.16.20)

The above steps are equivalent to reducing the problem to an ordinary unweighted
least-squares problem, that is, c is recognized to be the unique least-squares solution of
the full-rank, overdetermined, Nt×(d+1)-dimensional system (USt)c = Uyt. Indeed,†

that c is given by:

c = [(USt)T(USt)]−1(USt)T(Uyt)= (STt WtSt)−1STt Wtyt (23.16.21)

where
[
(USt)T(USt)

]−1(USt)T is the pseudoinverse of USt. The corresponding per-
formance indices are equivalent:

Jt = (yt − Stc)TWt(yt − Stc)= ‖Uyt −UStc‖2 = min

In MATLAB the least-squares solution (23.16.21) can be obtained by the backslash
operation: c = (USt)\(Uyt). The construction of the quantities yt, St,Wt is straight-
forward. Given the column vectors of observation times and observations,

tobs = [t0, t1, . . . , tN−1]T , yobs =
[
y(t0), y(t1), . . . , y(tN−1)

]T
(23.16.22)

we may determine, with the help of locw, the column vector of indices k for which tk
lies in the local window, and then carry out the procedure (23.16.21):

†see Ref. [45]

23.16. WEIGHTED LOCAL POLYNOMIAL MODELING 1141

w = locw((tobs - t)/h_t, type); % weights of all observation times relative to a given t and ht
k = find(w); % column vector of indices of nonzero weights within window

yt = yobs(k); % column vector of corresponding local observations yt
Wt = diag(w(k)); % diagonal matrix of nonzero local weights Wt
St = [];
for r=0:d,

St = [St, (tobs(k) - t).^r]; % construct local polynomial basis St column-wise

end
U = sqrt(Wt); % diagonal square root of Wt
c = (U*St)\(U*yt); % least-squares solution

Most of the w’s obtained from the first line of code are zero, except for those tk that
lie within the local window t±ht. The second line, k = find(w), finds the latter. These
steps have been incorporated into the MATLAB function locpol:

[xhat,C] = locpol(tobs,yobs,t,h,d,type); % local polynomial modeling

where tobs,yobs are as in (23.16.22), t,h are L-dimensional vectors of times and band-
widths at which to carry out the fit, and d,type are the polynomial order and window
type, with default values d = 1, type = 1. The output xhat is the L-dimensional vector
of estimates x̂t, and C is an L×(d+1) matrix, whose ith row is the vector [c0, c1, . . . , cd]
of polynomial coefficients corresponding to the ith fitting time and bandwidth t(i), h(i).
Thus, the first column of C is the same as xhat, while the second column contains the
first derivatives. Separating the first column of C into xhat is done only for convenience
in using the function.

The choice of the bandwidth ht is an important consideration that influences the
quality of the estimate x̂t. Too large an ht will oversmooth the signal but reduce the
noise (i.e., increasing bias but lowering variance), and too small an ht will undersmooth
the signal and not reduce the noise as much (i.e., reducing bias and increasing variance).

Two simple bandwidth choices are the fixed and the nearest-neighbor bandwidths.
In the fixed case, one chooses the same bandwidth at each fitting time, that is, ht = h, for
all t. In the nearest-neighbor case, one chooses a fixed number, sayK, of observations to
lie within each local window, whereK is a fraction of the total number of observationsN,
that is,K = �αN�, truncated to an integer, whereα ≤ 1. Typical values areα = 0.2–0.8.
Given K, one calculates the distances of all the observation times from t, that is, |tk− t|,
k = 0,1, . . . ,N − 1, then sorts them in increasing order, and picks ht to be the Kth
shortest distance, and therefore, there will be K observations satisfying |tk− t| ≤ ht. In
summary, the fixed case selects ht = h but with varying Nt, and the nearest-neighbor
case selects varying ht but with fixed Nt = K.

The MATLAB function locband may be used to calculate the bandwidths ht at each
t, using either the fixed method, or the nearest-neighbor method:

h = locband(tobs,t,alpha,h0); % bandwidth for local polynomial regression

where if α = 0, the fixed bandwidth h0 is selected, and if 0 < α < 1, the K-nearest
bandwidths are selected, where t is a length-L vector of fitting times.

Example 23.16.1: As an example, consider the following 16 observation times tobs, and 5 fitting
times t, and choose α = 0.25 so that K = αN = 0.25×16 = 4:

tobs = [0.5, 0.8, 1.1, 1.2, 1.8, 2.4, 2.5, 3.4, 3.5, 3.7, 4.0, 4.2, 4.9, 5.0, 5.1, 6.2]

t = [0.5, 1.5, 2.9, 3.6, 5.1]

1142 23. LOCAL POLYNOMIAL FILTERS

then one finds the corresponding bandwidths for each of the five t’s

h = locband(tobs,t,0.25,0) = [0.7, 0.7, 0.6, 0.6, 0.9]

and the corresponding local intervals, each containing K = 4 observation times:

ht t − ht t t + ht included tks

0.7 −0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2
0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8
0.6 2.3 2.9 3.5 2.4, 2.5, 3.4, 3.5
0.6 3.5 4.1 4.7 3.5, 3.7, 4.0, 4.2
0.9 4.2 5.1 6.0 4.2, 4.9, 5.0, 5.1

By contrast, had we chosen a fixed bandwidth, say h = 0.7 (the average of the above five),
then the corresponding intervals and included observation times would have been:

ht t − ht t t + ht included tks

0.7 −0.2 0.5 1.2 0.5, 0.8, 1.1, 1.2
0.7 0.8 1.5 2.2 0.8, 1.1, 1.2, 1.8
0.7 2.2 2.9 3.6 2.4, 2.5, 3.4, 3.5
0.7 2.9 3.6 4.3 3.4, 3.5, 3.7, 4.0, 4.2
0.7 4.4 5.1 5.8 4.9, 5.0, 5.1

where now the number Nt of included observations depends on t. As can be seen from this
example, both the nearest-neighbor and fixed bandwidth choices adapt well at the end-points
of the available observations. 	

Choosing t to be one of the observation times, t = ti, Eq. (23.16.12) can be written
in the simplified notation:

x̂i = uT0 (S
T
i WiSi)−1STi Wiyi ≡ hTi yi , hTi = uT0 (S

T
i WiSi)−1STi Wi (23.16.23)

where x̂i, Si,Wi,yi are the quantities x̂t, St,Wt,yt evaluated at t = ti. Component-wise,

x̂i =
∑

|tj−ti|≤hi
uT0 (S

T
i WiSi)−1u(tj − ti)w(tj − ti)yj =

∑
|tj−ti|≤hi

Hij yj (23.16.24)

where the matrix elements Hij are,

Hij = hj(ti)= uT0 (S
T
i WiSi)−1u(tj − ti)w(tj − ti) (23.16.25)

Similarly, one may express STi WiSi and STi Wiyi as,

STi WiSi =
∑

|tj−ti|≤hi
u(tj − ti)uT(tj − ti)w(tj − ti)

STi Wiyi =
∑

|tj−ti|≤hi
u(tj − ti)w(tj − ti)yj

(23.16.26)

Because the factor w(tj − ti) vanishes outside the local window ti ±hi, the summa-
tions in (23.16.24) and (23.16.26) over tj can be extended to run over all N observations.

23.17. BANDWIDTH SELECTION WITH CV AND GCV 1143

Defining theN-dimensional vectors x̂ = [x̂0, x̂1, . . . , x̂N−1]T and y = [y0, y1, . . . , yN−1]T,
we may write (23.16.24) in the compact matrix form:

x̂ = Hy (23.16.27)

The filtering matrix H is also known as the “hat” matrix or the “smoothing” matrix.
Its diagonal elements Hii play a special role in bandwidth selection, where w0 = w(0),†

Hii = hi(ti)= w0 uT0 (S
T
i WiSi)−1 u0 (23.16.28)

23.17 Bandwidth Selection with CV and GCV

There exist various automatic schemes for choosing the bandwidth. Such schemes may
at best be used as guidelines. Ultimately, one must rely on one’s judgment in making
the final choice.

A popular bandwidth selection method is the so-called cross-validation criterion that
selects the bandwidth h that minimizes the sum of squared prediction errors:

CV(h)= 1

N

N−1∑
i=0

(yi − x̂−i)
2= min (23.17.1)

where x̂−i is the estimate or prediction of the sample xi = x(ti) obtained by deleting the
ith observation yi and basing the estimation on the remaining observations, where we
are assuming the usual additive-noise model y(ti)= x(ti)+v(ti)with x(ti) representing
the desired signal to be extracted from y(ti). We show below that the predicted estimate
x̂−i is related to the estimate x̂i based on all observations by the relationship:

x̂−i =
x̂i −Hii yi

1−Hii
(23.17.2)

where Hii is given by (23.16.28). It follows from (23.17.2) that the corresponding esti-
mation errors will be related by:

yi − x̂−i =
yi − x̂i
1−Hii

(23.17.3)

and therefore, the CV index can be expressed as:

CV(h)= 1

N

N−1∑
i=0

(yi − x̂−i)
2= 1

N

N−1∑
i=0

(
yi − x̂i
1−Hii

)2

= min (23.17.4)

A related selection criterion is based on the generalized cross-validation index, which
replaces Hii by its average over i, that is,

GCV(h)= 1

N

N−1∑
i=0

(
yi − x̂i
1− H̄

)2

= min , H̄ = 1

N

N−1∑
i=0

Hii = 1

N
tr(H) (23.17.5)

†w0 = 1 for all the windows in Eq. (23.16.5), but any other normalization can be used.

1144 23. LOCAL POLYNOMIAL FILTERS

If the bandwidth is to be selected by the nearest-neighbor method, then, the CV
and GCV indices may be regarded as functions of the fractional parameter α and min-
imized. Similarly, one could consider minimizing with respect to the polynomial order
d, although in practice d is usually chosen to be 1 or 2.

Eq. (23.17.2) can be shown as follows. If the tj = ti observation is deleted from
Eq. (23.16.23), the corresponding optimum polynomial coefficients and optimum esti-
mate will be given by

c− = (STi WiSi)−1− (STi Wiyi)− , x̂−i = uT0 c−

where the minus subscripts indicate that the tj = ti terms are to be omitted. It follows
from Eq. (23.16.26) that

STi WiSi = (STi WiSi)−+w0u0uT0

STi Wiyi = (STi Wiyi)−+w0u0yi
(23.17.6)

and then,
c− =

[
STi WiSi −w0u0uT0]−1[STi Wiyi −w0u0yi

]
(23.17.7)

Setting Fi = STi WiSi and noting that c = F−1
i STi Wiyi or STi Wiyi = Fic, we may write,

c− =
[
Fi −w0u0uT0]−1[Fi c−w0u0yi

]
Using the matrix inversion lemma, we have,

[
Fi −w0u0uT0]−1= F−1

i + w0F−1
i u0uT0F

−1
i

1−w0uT0F
−1
i u0

(23.17.8)

Noting that Hii = w0uT0F
−1
i u0, we obtain,

c− =
[
F−1
i + w0F−1

i u0uT0F
−1
i

1−Hii

][
Fi c−w0u0yi

]
=
[
I + w0F−1

i u0uT0
1−Hii

][
c−w0F−1

i u0yi
]

= c−w0F−1
i u0yi + w0F−1

i u0
[
uT0 c−w0uT0F

−1
i u0yi

]
1−Hii

and since x̂i = uT0 c, we find,

c− = c−w0F−1
i u0yi + w0F−1

i u0
[
x̂i −Hiiyi

]
1−Hii

= c+w0F−1
i u0

x̂i − yi
1−Hii

from which we find for x̂−i = uT0 c−,

x̂−i = x̂i + Hii(x̂i − yi)
1−Hii

= x̂i −Hiiyi
1−Hii

(23.17.9)

In practice, the CV and GCV indices are evaluated over a certain range of the smooth-
ing parameter h or α to look for a minimum. The MATLAB function locgcv evaluates
these indices at any vector of parameter values:

23.18. LOCAL POLYNOMIAL INTERPOLATION 1145

[GCV,CV] = locgcv(tobs,yobs,d,type,b,btype); % CV and GCV evaluation

where type is the window type, b is either a vector of hs or a vector of αs at which
to evaluate CV and GCV, and the string btype takes the values ’f’ or ’nn’ specifying
whether the parameter vector b corresponds to a fixed or nearest-neighbor bandwidth.

23.18 Local Polynomial Interpolation

The primary advantage of local polynomial modeling is its flexibility and ease of smooth-
ing unequally-spaced data. Its main disadvantage is the potentially high computational
cost, that is, the calculations (23.16.12) must be performed for each t, and generally a
dense set of such t’s might be required in order to get a visually smooth curve.

One way to cut down the cost is to evaluate the smoothed values x̂t at a less dense
grid of ts, and then interpolate smoothly between the computed points. This is akin
to what plotting programs do by connecting the dots by straight-line segments (linearly
interpolating)—the result being a visually continuous curve. But here, we can do better
than just connecting the dots because we have available the slopes at each grid point.
These slopes are contained in the second column of the fitting matrix C resulting from
locpol, assuming of course that d ≥ 1.

Consider two time instants t1, t2 at which the fitted signal values are a1, a2 with
corresponding slopes b1, b2, as shown below. The lowest-degree polynomial P(t) inter-
polating between the two points t1, t2 that matches the fitted values and their slopes at
t1 and t2 is a cubic polynomial—the method being known as cubic Hermite interpolation.
The four polynomial coefficients are fixed uniquely by the four conditions:

P(t1) = a1 , Ṗ(t1)= b1

P(t2) = a2 , Ṗ(t2)= b2

which result into the cubic polynomial, where T = t2 − t1,

P(t)=
(
t − t2
T

)2 [
a1 + (Tb1 + 2a1)

(
t − t1
T

)]

+
(
t − t1
T

)2 [
a2 + (Tb2 − 2a2)

(
t − t2
T

)] (23.18.1)

For local-polynomial orders d ≥ 1, we use Eq. (23.18.1) to interpolate at a denser
grid of points between the less dense grid of fitted points. For the special case, d = 0,
the slopes are not available and we can only use linear interpolation, that is,

P(t)= a1 + (a2 − a1)
(
t − t1
T

)
(23.18.2)

The MATLAB function locval takes the output matrix C from locpol corresponding
to a grid of fitting points t, and computes the interpolated points ygrid at the denser grid
of points tgrid:

1146 23. LOCAL POLYNOMIAL FILTERS

ygrid = locval(C,t,tgrid); % interpolating local polynomial fits

The auxiliary function locgrid helps establish a uniform grid between the t points:

tgrid = locgrid(t, Ngrid); % uniform grid with respect to t

which is simply a shorthand for,

tgrid = linspace(min(t), max(t), Ngrid);

Example 23.18.1: The motorcycle acceleration dataset [815] has served as a benchmark in
many studies of local polynomial modeling and spline smoothing. The ordinate represents
head acceleration (in units of g) during impact, and the abscissa is the time (in msec).

Fig. 23.18.1 shows a plot of the GCV index as a function of the nearest-neighbor fractional
parameter α on the left, and as a function of the fixed bandwidth h on the right, for the two
polynomial orders d = 1,2.

0.1 0.2 0.3 0.4 0.5
300

400

500

600

700

800
GCV score

NN parameter, α

 d = 1
 d = 2

2 4 6 8 10
300

400

500

600

700

800
GCV score

bandwidth, h

 d = 1
 d = 2

Fig. 23.18.1 GCV score for nearest-neighbor (left) and fixed bandwidths (right).

The “optimal” values of these parameters that minimize the GCV (and indicated by dots on
the graphs) are as follows, where the subscripts indicate the value of d:

α1 = 0.16 , α2 = 0.33 , h1 = 3.9 , h2 = 7.8

The graphs (for d = 1) were produced by the MATLAB code:

Y = loadfile(’mcyc.dat’); % file included in the OSP toolbox

tobs = Y(:,1); yobs = Y(:,2); % 133 data points

alpha = linspace(0.1, 0.5, 51); % vary over 0.1 ≤ α ≤ 0.5

d=1; type=1;
gcv = locgcv(tobs,yobs,d,type,alpha,’nn’); % GCV as function of α
[F,i] = min(gcv); alpha1 = alpha(i); % minimum at α = α1

figure; plot(alpha,gcv); % left graph

h = linspace(2, 10, 51); % vary over 2 ≤ h ≤ 10

gcv = locgcv(tobs,yobs,d,type,h,’f’); % GCV as function of h
[F,i] = min(gcv); h1 = h(i); % minimum at h = h1

23.18. LOCAL POLYNOMIAL INTERPOLATION 1147

Fig. 23.18.2 shows the local polynomial fits corresponding to the above optimal parameter
values. The left graph shows the nearest-neighbor cases for d = 1,2, and the right graph, the
fixed bandwidth cases. The tricube window was used (type=1).

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 d = 1
 d = 2

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 d = 1
 d = 2

Fig. 23.18.2 Nearest-neighbor (left) and fixed bandwidths (right).

In all cases, the actual fitting was performed at 100 equally-spaced points t within the ob-
servation range tobs and were connected by straight-line segments by the plotting program,
instead of being interpolated by locval. Continuing with the above MATLAB code, the graphs
were generated by

t = locgrid(tobs,101); % equally-spaced fitting times

h = locband(tobs, t, alpha1, 0); % NN bandwidths at each t
x1 = locpol(tobs,yobs,t,h,1,type); % fit at times t with d = 1

h = locband(tobs, t, alpha2, 0);
x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % left graph

h = locband(tobs, t, 0, h1); % fixed bandwidths at each t
x1 = locpol(tobs,yobs,t,h,1,type); % fit at times t with d = 1

h = locband(tobs, t, 0, h2);
x2 = locpol(tobs,yobs,t,h,2,type); % fit at times t with d = 2

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % right graph

Fig. 23.18.3 demonstrates the Hermite interpolation procedure. The fitting times are 20
equally-spaced points spanning the observation interval tobs. The 20 fitted points are then
interpolated at 100 equally-spaced points over tobs. The interpolated curves are essentially
identical to those fitted earlier at 100 points.

The polynomial order was d = 1 and the bandwidth parameters were α1 = 0.21 for the left
graph and h1 = 4.4 for the right one. The left graph was generated by the code segment:

tf = locgrid(tobs,21); % fitting times

1148 23. LOCAL POLYNOMIAL FILTERS

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 fit points
 interpolated

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
motorcycle acceleration

t (msec)

 data
 fit points
 interpolated

Fig. 23.18.3 Nearest-neighbor (left) and fixed bandwidths (right).

h = locband(tobs, tf, alpha1, 0); % NN bandwidths at tf

[xf,C] = locpol(tobs,yobs,tf,h,1,type); % fitted values and derivatives

tint = locgrid(tf,101); % interpolation times

xint = locval(C, tf, tint); % interpolated values

figure; plot(tobs,yobs,’.’, tf,xf,’o’, tint,xint,’-’);

Example 23.18.2: The ethanol dataset [814] is also a benchmark example for smoothing tech-
niques. The ordinate NOx represents nitric oxide concentrations in the engine exhaust gases,
and the abscissaE is the equivalence ratio, which is a measure of the richness of the ethanol/air
mixture.

The GCV and CV bandwidth selection criteria tend sometimes to result in undersmoothed
signals. This can be seen in Fig. 23.18.4 in which the GCV criterion for fixed bandwidth
selects the values h1 = 0.039 and h2 = 0.058, for orders d = 1,2.

0.02 0.04 0.06 0.08
0

0.1

0.2

0.3
GCV score

bandwidth, h

 d = 1
 d = 2

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, h1 = 0.038, h2 = 0.058

E

N
O

x

 data
 d = 1
 d = 2

Fig. 23.18.4 GCV and local polynomial fits with d = 1,2.

As can be seen, the resulting fits are jagged, and can benefit form increasing the fitting band-
width somewhat. The minima of the GCV plot are fairly broad and any neighboring values of

23.18. LOCAL POLYNOMIAL INTERPOLATION 1149

the bandwidth would be just as good in terms of the GCV value. A similar effect happens in
this example for the nearest-neighbor bandwidth method, in which the GCV criterion selects
the value α = 0.19 corresponding to jagged graph (not shown). Fig. 23.18.5 shows the fits
when the fixed bandwidth is increased to h = 0.08 and the nearest-neighbor one to α = 0.3.
The resulting fits are much smoother.

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, d = 1, h = 0.08

E

N
O

x

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, d = 1, α = 0.3

E

N
O

x

Fig. 23.18.5 Fits with fixed (left) and nearest-neighbor (right) bandwidths.

The MATLAB code for generating the graphs of Fig. 23.18.4 is as follows:

Y = loadfile(’ethanol.dat’); % file available in OSP toolbox

tobs = Y(:,1); yobs = Y(:,2); % data

t = locgrid(tobs,101); % uniform grid of 101 fitting points

h = linspace(0.02, 0.08, 41); % vary h over 0.02 ≤ h ≤ 0.08

gcv1 = locgcv(tobs,yobs,1,1,h,’f’); % GCV as function of h
gcv2 = locgcv(tobs,yobs,2,1,h,’f’);

figure; plot(h,gcv1,’-’, h,gcv2,’--’); % left graph

h = locband(tobs, t, 0, h1); % fixed bandwidths at t
x1 = locpol(tobs,yobs,t,h,1,1); % fit with d = 1 and tricube window

h = locband(tobs, t, 0, h2);
x2 = locpol(tobs,yobs,t,h,2,1); % fit with d = 2 and tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-’, t,x2,’--’); % right graph

The MATLAB code for generating Fig. 23.18.5 is as follows:

h0 = 0.08; h = locband(tobs, t, 0, h0); % fixed bandwidth case

x1 = locpol(tobs,yobs,t,h,1,1); % order d = 1, tricube window

figure; plot(tobs,yobs,’.’, t,x1,’-’); % left graph

alpha = 0.3; h = locband(tobs, t, alpha, 0); % nearest-neighbor bandwidth case

x1 = locpol(tobs,yobs,t,h,1,1); x1 = C(:,1); % order d = 1, tricube windowm
figure; plot(tobs,yobs,’.’, t,x1,’-’); % right graph

1150 23. LOCAL POLYNOMIAL FILTERS

Fig. 23.18.6 shows a fit at 10 fitting points and interpolated over 101 points. The fitting
parameters are as in the right graph of Fig. 23.18.5. The following code generates Fig. 23.18.6:

tf = locgrid(tobs,10); % fitting points

alpha = 0.3; h = locband(tobs, tf, alpha, 0); % nearest-neighbor bandwidths

[xf,C] = locpol(tobs,yobs,tf,h,1,1); % order 1, tricube window

ti = locgrid(tf,101); yi = locval(C,tf,ti); % interpolated points

figure; plot(tobs,yobs,’.’, ti,yi,’-’, tf,xf,’o’);

0.6 0.8 1 1.2
0

1

2

3

4

5
ethanol data, d = 1, α = 0.3

E

N
O

x

 data
 interp
 fitted

Fig. 23.18.6 Interpolated fits.

23.19 Variable and Adaptive Bandwidth

The issue of selecting the right bandwidth has been studied extensively, with approaches
ranging from finding an optimum bandwidth that minimizes a selection criterion such as
the GCV to using a locally-adaptive criterion that allows the bandwidth to automatically
adapt to the local nature of the signal with different bandwidths being used in different
parts of the signal [772–815].

There is no selection criterion that is universally successful or universally agreed
upon and one must use one’s judgment and visual inspection to decide how much
smoothing is satisfactory. The basic idea is always to reduce the bandwidth in regions
where the curvature of the signal is high in order not to oversmooth.

The function locpol can accept a different bandwidth ht for each fitting time t. As
we saw in the above examples, the function locband generates such bandwidths for
input to locpol. However, locband generates either fixed or or nearest-neighbor band-
widths and is not adaptive to the local nature of the signal. One could manually, divide
the range of the signal in non-overlapping regions and use a different fixed bandwidth
in each region. In some cases, as in the Doppler example below, this is possible but in
other cases a more automatic way of adapting is desirable.

A naive, but as we see in the examples below, quite effective way is to estimate the
curvature, sayκt, of the signal and define the bandwidth in terms of a suitable decreasing

23.19. VARIABLE AND ADAPTIVE BANDWIDTH 1151

function ht = f(κt). We may define the curvature in terms of the estimate of the second
derivative of the signal and normalize it to its maximum value:

κt = |ˆ̈xt|
max
t
|ˆ̈xt| (23.19.1)

The second derivative ˆ̈xt can be estimated by performing a local polynomial fit with
polynomial order d ≥ 2 using a fixed bandwidth h0 or a nearest-neighbor bandwidth α.
If one could determine a bandwidth range [hmin, hmax] such that hmax would provide
an appropriate amount of smoothing in certain parts of the signal and hmin would be
appropriate in regions where the signal appears to have larger curvature, then one may
choose hmin ≤ h0 ≤ hmax, with h0 = hmax as an initial trial value. An ad hoc but very
simple choice for the bandwidth function f(κt) then could be

ht = hmax

(
hmin

hmax

)κt
(23.19.2)

Other simple choices are possible, for example,

ht = hmaxhmin

hmin + (hmax − hmin)κ
p
t

for some power p. Since κt varies in 0 ≤ κt ≤ 1, these choices interpolate between hmax

at κt = 0 when the curvature is small, and hmin at κt = 1 when the curvature is large.
We illustrate the use of (23.19.2) with the three examples in Figs. 23.19.1–23.19.3,

and we make a different bandwidth choice for Fig. 23.19.4. All four examples have
been used as benchmarks in studying wavelet denoising methods [569] and we will be
discussing them again in that context in Sec. 20.7.

In all cases, we use a second-order polynomial to determine the curvature, and then
perform a locally linear fit (d = 1) using the variable bandwidth. Fig. 23.19.1 illustrates
the test function “bumps” defined by

s(t)=
11∑
i=1

ai[
1+ |t − ti|/wi

]4 , 0 ≤ t ≤ 1

with the parameter values:

ti = [10,13,15,23,25,40,44,65,76,78,81]/100

ai = [40,50,30,40,50,42,21,43,31,51,42]·1.0523

wi = [5,5,6,10,10,30,10,10,5,8,5]/1000

The function s(t) is sampled at N = 2048 equally-spaced points tn in the interval
[0,1) and zero-mean white gaussian noise of variance σ2 = 1 is added so that the noisy
signal is yn = sn+vn, where sn = s(tn). The factor 1.0523 in the amplitudes ai ensures
that the signal-to-noise ratio has the standard benchmark value σs/σv = 7, where σs
is the standard deviation of sn, that is, σs = std(s). The bandwidth range is defined
by hmax = 0.01 and hmin = 0.00025. The value for hmax was chosen so that the flat
portions of the signal between peaks are adequately smoothed.

1152 23. LOCAL POLYNOMIAL FILTERS

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noise free

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

adaptive bandwidth, ht /hmax

Fig. 23.19.1 Bumps function.

The curvature κt, estimated using the bandwidth h0 = hmax, is shown in the upper
right graph. The corresponding variable bandwidth ht derived from Eq. (23.19.2) is
shown in the bottom-right graph. The bottom-left graph shows the resulting local linear
fit using the variable bandwidth ht, while the bottom-middle graph shows the fit using
the fixed bandwidth hmax. Although hmax is adequate for smoothing the valleys of the
signal, it is too large for the peaks and results in broadened peaks of reduced heights. On
the other hand, the variable bandwidth preserves the peaks fairly well, while achieving
comparable smoothing of the valleys. The MATLAB code for this example was as follows:

N=2048; t=linspace(0,1,N); s=zeros(size(t));
F = inline(’1./(1 + abs(t)).^4’); % bumps function

ti = [10 13 15 23 25 40 44 65 76 78 81]/100;
ai = [40,50,30,40,50,42,21,43,31,51,42] * 1.0523;
wi = [5,5,6,10,10,30,10,10,5,8,5]/1000;

for i=1:length(ai), % construct signal

s = s + ai(i)*F((t-ti(i))/wi(i));
end

hmax=10e-3; hmin=2.5e-4; h0=hmax; % bandwidth limits

seed=2009; randn(’state’,seed); % noisy signal

y = s + randn(size(t));

d=2; type=1; % fit with d = 2 and tricube window

[x,C] = locpol(t,y,t,h0,d,type); % using fixed bandwidth h0

kt = abs(C(:,3)); kt = kt/max(kt); % curvature, κt
ht = hmax * (hmin/hmax).^kt; % bandwidth, ht

23.19. VARIABLE AND ADAPTIVE BANDWIDTH 1153

d=1; type=1; % fit with d = 1

xv = locpol(t,y,t,ht,d,type); % use variable bandwidth ht
xf = locpol(t,y,t,h0,d,type); % use fixed bandwidth h0

figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs

figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs

Fig. 23.19.2 shows the “blocks” function defined by

s(t)=
11∑
i=1

aiF(t − ti) , F(t)= 1

2
(1+ sign t) , 0 ≤ t ≤ 1

with the same delays ti as above and amplitudes:

ai = [40,−50,30,−40,50,−42,21,43,−31,21,−42]·0.3655

The noisy signal is yn = sn + vn with zero-mean unit-variance white noise. The
amplitude factor 0.3655 in ai is adjusted to give the same SNR as above, std(s)/σ = 7.
The MATLAB code generating the six graphs is identical to the above, except for the part
that defines the signal and the bandwidth limits hmax = 0.03 and hmin = 0.0015:

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noise free

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

adaptive bandwidth, ht /hmax

Fig. 23.19.2 Blocks function.

N=2048; t=linspace(0,1,N); s=zeros(size(t));

ti = [10 13 15 23 25 40 44 65 76 78 81]/100;
ai = [40,-50,30,-40,50,-42,21,43,-31,21,-42] * 0.3655;

1154 23. LOCAL POLYNOMIAL FILTERS

for i=1:length(ai),
s = s + ai(i) * (1 + sign(t - ti(i)))/2; % blocks signal

end

hmax=0.03; hmin=0.0015; h0=hmax; % bandwidth limits

We observe that the flat parts of the signal are smoothed equally well by the variable
and fixed bandwidth choices, but in the fixed case, the edges are smoothed too much.
The “HeaviSine” signal shown in Fig. 23.19.3 is defined by

s(t)= [4 sin(4πt)−sign(t − 0.3)−sign(0.72− t)
] · 2.357 , 0 ≤ t ≤ 1

where the factor 2.357 is adjusted to give std(s)= 7. The graphs shown in Fig. 23.19.3
are again generated by the identical MATLAB code, except for the parts defining the
signal and bandwidths:

s = (4*sin(4*pi*t)-sign(t-0.3)-sign(0.72-t))*2.357; % HeaviSine signal

hmax=0.035; hmin=0.0035; h0=hmax; % bandwidth limits

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

adaptive bandwidth, ht /hmax

Fig. 23.19.3 HeaviSine function.

We note that the curvature κt is significantly large—and the bandwidth ht is signif-
icantly small—only near the discontinuity points. The fixed bandwidth case smoothes
the discontinuities too much, whereas the variable bandwidth tends to preserve them
while reducing the noise equally well in the rest of the signal.

In the “doppler” example shown in Fig. 23.19.4, noticing that the curvature κt is
significantly large only in the range 0 ≤ t ≤ 0.2, we have followed a simpler strategy to
define a variable bandwidth (although the choice (23.19.2) still works well). We took a

23.19. VARIABLE AND ADAPTIVE BANDWIDTH 1155

fixed but small bandwidth over the range 0 ≤ t ≤ 0.2 and transitioned gradually to a
larger bandwidth for 0.2 ≤ t ≤ 1. The signal is defined by

s(t)= 24
√
t(1− t) sin

(
2.1π

t + 0.05

)
, 0 ≤ t ≤ 1

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noise free

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

noisy signal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

curvature, κt

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

smoothed with adaptive bandwidth

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

smoothed with fixed bandwidth, hmax

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

variable bandwidth, ht /hmax

Fig. 23.19.4 Doppler function.

The auxiliary unit-step function ustep was used to define the two-step bandwidth
with a given rise time. The MATLAB code generating the six graphs was as follows:

N = 2048; t = linspace(0,1,N);

s = 24*sqrt(t.*(1-t)) .* sin(2.1*pi./(t+0.05)); % doppler signal

seed=2009; randn(’state’,seed); % noisy signal

y = s + randn(size(t));

hmax=0.02; hmin=0.002; h0=hmax; % bandwidth limits

d=2; type=1; % fit with d = 2 and tricube window

[x,C] = locpol(t,y,t,h0,d,type); % using fixed bandwidth h0

kt = abs(C(:,3)); kt = kt/max(kt); % curvature, κt
ht = hmin + (hmax-hmin) * ustep(t-0.2, 0.1); % two-step bandwidth, ht

% ustep is in the OSP toolbox

d=1; type=1;
xv = locpol(t,y,t,ht,d,type); % fixed bandwidth h0

xf = locpol(t,y,t,h0,d,type); % fixed bandwidth h0

figure; plot(t,s); figure; plot(t,y); figure; plot(t,kt); % upper graphs

figure; plot(t,xv); figure; plot(t,xf); figure; plot(t,ht/hmax); % lower graphs

1156 23. LOCAL POLYNOMIAL FILTERS

The local polynomial fitting results from these four benchmark examples are very
comparable with the wavelet denoising approach discussed in Sec. 20.7.

23.20 Repeated Observations

Until now we had implicitly assumed that the observations were unique, that is, one
observation y(tk) at each time tk. However, in experimental data one often has repeated
observations at a given tk, all of which are listed as part of the data set. This is in fact
true of both the motorcycle and the ethanol data sets. For example, in the motorcycle
data, we have six repeated observations at t = 14.6,

k tk yk
...

...
...

22 14.6 −13.3
23 14.6 −5.4
24 14.6 −5.4
25 14.6 −9.3
26 14.6 −16.0
27 14.6 −22.8

...
...

...

and there other similar instances within the data set. In fact, among the 133 given
observations, only 94 correspond to unique observation times.

To handle repeated observations one possibility is to simply keep one and ignore the
rest—but which one? A better possibility is to allow all of them to be part of the least-
squares performance index. It is easy to see that this is equivalent to replacing each
group of repeated observations by their average and modifying the weighting function
by the corresponding multiplicity of the group.

Let nk denote the multiplicity of the observations at time tk, that is, let yi(tk), i =
1,2, . . . , nk be the observation values that are given at the unique observation time tk.
Then, the performance index (23.16.3) must be modified to include all of the yi(tk):

Jt =
∑

|tk−t|≤ht

nk∑
i=1

[
yi(tk)−uT(tk − t)c

]2w(tk − t)= min (23.20.1)

Setting the gradient with respect to c to zero, gives the normal equations:

∑
|tk−t|≤ht

nk∑
i=1

w(tk − t)u(tk − t)uT(tk − t) c =
∑

|tk−t|≤ht
w(tk − t)u(tk − t)

nk∑
i=1

yi(tk)

Defining the average of the nk observations,

ȳ(tk)= 1

nk

nk∑
i=1

yi(tk)

23.21. LOESS SMOOTHING 1157

and noting that the left-hand side has no dependence on i, we obtain:∑
|tk−t|≤ht

nkw(tk−t)u(tk−t)uT(tk−t)c =
∑

|tk−t|≤ht
nkw(tk−t)u(tk−t)ȳ(tk) (23.20.2)

This is recognized to be the solution of an equivalent least-squares local polyno-
mial fitting problem in which each unique tk is weighted by nkwk(tk − t) with the kth
observation replaced by the average ȳ(tk), that is,

J̄t =
∑

|tk−t|≤ht

[
ȳ(tk)−uT(tk − t)c

]2nkw(tk − t)= min (23.20.3)

Internally, the function locpol calls the function avobs, which takes in the raw data
tobs,yobs and determines the unique observation times ta, averaged observations ya,
and their multiplicities na:

[ta,ya,na] = avobs(tobs,yobs); % average repeated observations

For example, if

tobs = [1 1 1 3 3 5 5 3 4 7 9 9 9 9];
yobs = [20 22 21 11 12 13 15 19 21 25 28 29 31 32];

the function first sorts the ts in increasing order,

tobs = [1 1 1 3 3 3 4 5 5 7 9 9 9 9];
yobs = [20 21 22 11 12 19 21 13 15 25 28 29 31 32];

and then returns the output,

ta = [1 3 4 5 7 9];
ya = [21 14 21 14 25 30];
na = [3 3 1 2 1 4];

23.21 Loess Smoothing

Loess, which is a shorthand for local regression, is a method proposed by Cleveland
[776] for handling data with outliers. A version of it was discussed in Sec. 23.15. The
method carries out a local polynomial regression using a nearest-neighbor bandwidth
and the tricube window function, and then uses the resulting error residuals to iteratively
readjust the window weights giving less importance to the outliers.

The method is described as follows [776]. Given theN-dimensional vectors of obser-
vation times and observations tobs, yobs, the nearest-neighbor bandwidth parameter α,
and the polynomial order d, the method begins by performing a preliminary fit to all the
observation times. For example, in the notation of the locband and locpol functions:

h = locband(tobs, tobs,α,0); (find local bandwidths at tobs)

x̂ = locpol(tobs, yobs, tobs, h, d,1); (perform fit at all tobs)
(23.21.1)

1158 23. LOCAL POLYNOMIAL FILTERS

where the last argument of locpol designates the use of the tricube window. From the
resulting N-dimensional signal x̂k, k = 0,1, . . . ,N − 1, we calculate the corresponding
error residuals ek and use their median to calculate “robustness” weights rk:

ek = yk − x̂k , k = 0,1, . . . ,N − 1

μ = median
0≤k≤N−1

(|ek|)
rk =W

(
ek
6μ

) (23.21.2)

where W(u) is the bisquare function defined in (23.16.5). The local polynomial fitting
is now repeated at all observation points tobs, but instead of using the weights w(tk −
tobs) for the kth observation’s contribution to the fit, one uses the modified weights
rkw(tk − tobs). The new residuals are then computed as in (23.21.2) and the process
is repeated a few more times or until convergence (i.e., until the estimated signal x̂k no
longer changes).

After the final iteration resulting in the final values of the rks, one can carry out the
fit at any other time point t, but again using weights rkw(tk− t) for the contribution of
the kth observation, that is, the weight matrix Wt in Eq. (23.16.7) is replaced by

Wt = diag
([· · · , rkw(tk − t), · · ·])

The MATLAB function loess implements these steps:

[xhat,C] = loess(tobs,yobs,t,alpha,d,Nit); % Loess smoothing

where t are the final fitting times and xhat and C have the same meaning as in locpol.
This function is similar in spirit to the robust local polynomial filtering function rlpfilt
that was discussed in Sec. 23.15.

Example 23.21.1: Fig. 23.21.1 shows the same example as that of Fig. 23.15.3, with nearest-
neighbor bandwidth parameter α = 0.4 and an order-2 polynomial. The graphs show the
results of Nit = 0,2,4,6 iterations—the first one corresponding to ordinary fitting with no
robustness iterations. The MATLAB code for the top two graphs was:

t = (0:50); x0 = (1 - cos(2*pi*t/50))/2; % desired signal

seed=2005; randn(’state’,seed);
y = x0 + 0.1 * randn(size(x0)); % noisy signal

m = [-1 0 1 3]; % outlier indices

n0=25; y(n0+m+1) = 0; % outlier values

n1=10; y(n1+m+1) = 1;

alpha=0.4; d=2; % bandwidth parameter and polynomial order

Nit=0; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % left graph

Nit=2; x = loess(t,y,t,alpha,d,Nit); % loess fit at t
figure; plot(t,x0,’--’, t,y,’.’, t,x,’-’); % right graph

The loess fit was performed at all t. We observe how successive iterations gradually diminish
the distorting influence of the outliers. 	

23.22. PROBLEMS 1159

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 0

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 2

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 4

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5
Loess smoothing, Nit = 6

time samples, t

outliers

outliers

 desired
 noisy
 smoothed

Fig. 23.21.1 Loess smoothing with d = 2, α = 0.4, and different iterations.

23.22 Problems

23.1 Using binomial identities, prove the equivalence of the three expressions in Eq. (23.14.14)
for the maximally-flat filters. Then, show Eq. (23.14.15) and determine the proportionality
constants indicated as (const.).

23.2 Prove the matrix inversion lemma identity (23.17.8). Using this identity, show that

Hii = H−
ii

1+H−
ii
, where H−

ii = w0uT0 F
−
i u0 , F−i = (STi WiSi)−

then, argue that 0 ≤ Hii ≤ 1.

24
Exponential Moving Average Filters

24.1 Mean Tracking

In this chapter,† we discuss exponential moving average (EMA) filters, also known as
exponentially-weighted moving average (EWMA) filters. They are simple, effective, re-
cursive smoothing filters that can be applied to real-time data. By contrast, the local
polynomial modeling approach is typically applied off-line to a block of signal samples
that have already been collected.

The EMA filter is used routinely to track stock market data and in forecasting appli-
cations such as inventory control where, despite its simplicity, it is highly competitive
with other more sophisticated forecasting methods [816–863].

We have already encountered it in Sec. 15.2 and compared it to the plain FIR averager.
Here, we view it as a special case of a weighted local polynomial smoothing problem
using a causal window and exponential weights, and discuss some of its generalizations.
Both the EMA smoother and the FIR averager are applied to data that are assumed to
have the typical form:

yn = an + vn (24.1.1)

where an is a low-frequency trend component, representing an average or estimate of
the local level of the signal, and vn a random, zero-mean, broadband component, such
as white noise. If an is a deterministic signal, then by taking expectations of both sides
we see that an represents the mean value of yn, that is, an = E[yn]. If yn is stationary,
then an is a constant, independent of n.

The output of either the FIR or the EMA filter tracks the signal an. To see how such
filters arise in the context of estimating the mean level of a signal, consider first the
stationary case. The mean m = E[yn] minimizes the following variance performance
index:

J = E
[
(yn − a)2] = min ⇒ aopt =m = E[yn] (24.1.2)

with minimized value Jmin = σ2
y . This result is obtained by setting the gradient with

respect to a to zero:
∂a
∂J = −2E[yn − a]= 0 (24.1.3)

†adapted from the author’s book on Applied Optimum Signal Processing [45]

1160

24.1. MEAN TRACKING 1161

In general, given a theoretical performance index J, one must replace it in practice
by an experimental one, say Ĵ, expressible in terms of the actual available data. The
minimization of Ĵ provides then estimates of the parameters or signals to be estimated.

Depending on the index Ĵ, the estimates may be calculated in a block processing
manner using an entire block of data, or, on a sample-by-sample basis with the estimate
being updated in real time in response to each new data sample. All adaptive filtering
algorithms follow the latter approach.

We illustrate these ideas with the help of the simple performance index (24.1.2). Four
possible practical definitions for Ĵ that imitate (24.1.2) are:

Ĵ =
L−1∑
n=0

(yn − â)2= min (24.1.4a)

Ĵ =
n∑

k=0

(yk − â)2= min (24.1.4b)

Ĵ =
n∑

k=n−N+1

(yk − â)2= min (24.1.4c)

Ĵ =
n∑

k=0

λn−k(yk − â)2= min (24.1.4d)

The first assumes a length-L block of data [y0, y1, . . . , yL−1]. The last three are
suitable for real-time implementations, where n denotes the current time. The second
and fourth use the first n+1 data [y0, y1, . . . , yn], while the third uses a length-N sliding
window [yn−N+1, . . . , yn−1, yn]. The third choice leads to the FIR averager, also known
as the simple moving average (SMA), and the fourth, to the exponential smoother, or,
exponential moving average (EMA), where we require that the exponential “forgetting
factor” λ be in the range 0 < λ < 1. These time ranges are depicted below.

In order for the Ĵs to be unbiased estimates of J, the above expressions should
have been divided by the sum of their respective weights, namely, the quantities L,

1162 24. EXPONENTIAL MOVING AVERAGE FILTERS

(n+1), N, and (1+λ+· · ·+λn), respectively. However, such factors do not affect the
minimization solutions, which are easily found to be:

â = y0 + y1 + · · · + yL−1

L
(24.1.5a)

ân = y0 + y1 + · · · + yn
n+ 1

(24.1.5b)

ân = yn + yn−1 + · · · + yn−N+1

N
(24.1.5c)

ân = yn + λyn−1 + λ2yn−2 + · · ·λny0

1+ λ+ λ2 + · · · + λn
(24.1.5d)

We have tacked on a subscript n to the last three to emphasize their dependence
of their performance index on the current time instant n. Eqs. (24.1.4c) and (24.1.5c)
tentatively assume that n ≥ N − 1; for 0 ≤ n < N − 1, one should use the running
average (24.1.4b) and (24.1.5b). Initialization issues are discussed further in Sections
24.6 and 25.6.

All four estimates are unbiased estimators of the true mean m. Their quality as esti-
mators can be judged by their variances, which are (assuming that yn −m are mutually
independent):

σ2
â = E

[
(â−m)2] = σ2

y

L
(24.1.6a)

σ2
ân = E

[
(ân −m)2] = σ2

y

n+ 1
(24.1.6b)

σ2
ân = E

[
(ân −m)2] = σ2

y

N
(24.1.6c)

σ2
ân = E

[
(ân −m)2] = σ2

y
1− λ
1+ λ

· 1+ λn+1

1− λn+1
(24.1.6d)

The first two, corresponding to ordinary sample averaging, are asymptotically con-
sistent estimators having variances that tend to zero as L → ∞ or n → ∞. The last two
are not consistent. However, their variances can be made as small as desired by proper
choice of the parameters N or λ.

The exponential smoothing filter may also be derived from a different point of view.
The estimates (24.1.5) are the exact least-squares solutions of the indices (24.1.4). An
alternative to using the exact solutions is to derive an LMS (least-mean-square) type of
adaptive algorithm which minimizes the performance index iteratively using a steepest-
descent algorithm that replaces the theoretical gradient (24.1.3) by an “instantaneous”
one in which the expectation instruction is ignored:

∂a
∂J = −2E[yn − a] −→ ∂̂a

∂J = −2
[
yn − ân−1

]
(24.1.7)

The LMS algorithm then updates the previous estimate by adding a correction in the
direction of the negative gradient using a small positive adaptation parameter μ:

Δa = −μ ∂̂a
∂J , ân = ân−1 +Δa (24.1.8)

24.1. MEAN TRACKING 1163

The resulting difference equation is identical to that of the steady-state exponential
smoother (see Eq. (24.1.11) below),

ân = ân−1 + 2μ(yn − ân−1)

In adaptive filtering applications, the use of the exponentially discounted type of
performance index (24.1.4d) leads to the so-called recursive least-squares (RLS) adaptive
filters, which are in general different from the LMS adaptive filters. They happened to
coincide in this particular example because of the simplicity of the problem.

The sample mean estimators (24.1.5a) and (24.1.5b) are geared to stationary data,
whereas (24.1.5c) and (24.1.5d) can track nonstationary changes in the statistics of yn.
If yn is nonstationary, then its mean an = E[yn] would be varying with n and a good
estimate should be able to track it well and efficiently. To see the problems that arise
in using the sample mean estimators in the nonstationary case, let us cast Eqs. (24.1.5b)
and (24.1.5d) in recursive form. Both can be written as follows:

ân = (1−αn)ân−1 +αnyn = ân−1 +αn(yn − ân−1) (24.1.9)

where the gain parameter αn is given by

αn = 1

n+ 1
, αn = 1

1+ λ+ · · · + λn
= 1− λ

1− λn+1
(24.1.10)

for (24.1.5b) and (24.1.5d), respectively. The last side of Eq. (24.1.9) is written in a so-
called “predictor/corrector” Kalman filter form, where the first term ân−1 is a tentative
prediction of ân and the second term is the correction obtained by multiplying the
“prediction error” (yn − ân−1) by a positive gain factor αn. This term always corrects
in the right direction, that is, if ân−1 overestimates/underestimates yn then the error
tends to be negative/positive reducing/increasing the value of ân−1.

There is a dramatic difference between the two estimators. For the sample mean,
the gainαn = 1/(n+1) tends to zero rapidly with increasing n. For stationary data, the
estimate ân will converge quickly to the true mean. Once n is fairly large, the correction
term becomes essentially unimportant because the gain is so small. If after converging
to the true mean the statistics of yn were to suddenly change with a new value of the
mean, the sample-mean estimator ân would have a very hard time responding to such
a change and converging to the new value because the new changes are communicated
only through the already very small correction term.

On the other hand, for the exponential smoother case (24.1.5d), the gain tends to a
constant for large n, that is, αn → α = 1 − λ. Therefore, the correction term remains
finite and can communicate the changes in the statistics. The price one pays for that
is that the estimator is not consistent. Asymptotically, the estimator (24.1.5d) becomes
the ordinary exponential smoothing filter described by the difference equation,

ân = λân−1 +αyn = ân−1 +α(yn − ân−1) (24.1.11)

Its transfer function and asymptotic variance are:

H(z)= α
1− λz−1

, σ2
ân = E

[
(ân −m)2] = σ2

y
1− λ
1+ λ

(24.1.12)

1164 24. EXPONENTIAL MOVING AVERAGE FILTERS

The quantity σ2
ân/σ

2
y is the NRR of this filter. The differences in the behavior of

the sample-mean and exponential smoother can be understood by inspecting the corre-
sponding performance indices, which may be written in an expanded form:

Ĵ = (yn − â)2+(yn−1 − â)2+(yn−2 − â)2+· · · + (y0 − â)2

Ĵ = (yn − â)2+λ(yn−1 − â)2+λ2(yn−2 − â)2+· · · + λn(y0 − â)2
(24.1.13)

The first index weighs all terms equally, as it should for stationary data. The second
index emphasizes the terms arising from the most recent observation yn and exponen-
tially forgets, or discounts, the earlier observations and thus can respond more quickly
to new changes. Even though the second index appears to have an ever increasing num-
ber of terms, in reality, the effective number of terms that are significant is finite and
can be estimated by the formula:

n̄ =

∞∑
n=0

nλn

∞∑
n=0

λn
= λ

1− λ
(24.1.14)

This expression is only a guideline and other possibilities exist. For example, one
can define n̄ to be the effective time constant of the filter:

λn̄ = ε ⇒ n̄ = ln ε
lnλ

� ln(ε−1)
1− λ

, for λ � 1 (24.1.15)

where ε is a small user-specified parameter such as ε = 0.01. The sliding window esti-
mator (24.1.5c) is recognized as a length-N FIR averaging filter of the type we considered
in Sec. 15.5. It also can track a nonstationary signal at the expense of not being a consis-
tent estimator. Requiring that it achieve the same variance as the exponential smoother
gives the conditions:

1

N
σ2
y =

1− λ
1+ λ

σ2
y ⇒ λ = N − 1

N + 1
⇒ α = 1− λ = 2

N + 1
(24.1.16)

Such conditions are routinely used to set the parameters of FIR and exponential
smoothing filters in inventory control applications and in tracking stock market data. A
similar weighted average as in Eq. (24.1.14) can be defined for any filter by:

n̄ =

∑
n
nhn∑

n
hn

(effective filter lag) (24.1.17)

where hn is the filter’s impulse response. Eq. (24.1.17) may also be expressed in terms
of the filter’s transfer function H(z)= ∑n hnz−n and its derivative H′(z)= dH(z)/dz
evaluated at DC, that is, at z = 1:

n̄ = − H′(z)
H(z)

∣∣∣∣
z=1

(effective filter lag) (24.1.18)

24.1. MEAN TRACKING 1165

Alternatively, n̄ is recognized as the filter’s group delay at DC, that is, given the
frequency response H(ω)=∑n hne−jωn = |H(ω)|ej argH(ω), we have (Problem 24.1):

n̄ = − d
dω

argH(ω)
∣∣∣∣
ω=0

(group delay at DC) (24.1.19)

The exponential smoother is a special case of (24.1.17) with hn = αλnu(n), where
u(n) is the unit-step function. We may apply this definition also to the FIR averager
filter that has hn = 1/N, for n = 0,1, . . . ,N − 1,

n̄ = 1

N

N−1∑
n=0

n = N − 1

2

The FIR averager can be mapped into an “equivalent” exponential smoother by equat-
ing the n̄ lags of the two filters, that is,

n̄ = N − 1

2
= λ

1− λ
(24.1.20)

This condition is exactly equivalent to condition (24.1.16) arising from matching the
NRRs of the two filters. The two equations,

E
[
(ân −m)2] = 1− λ

1+ λ
σ2
y =

1

N
σ2
y , n̄ = λ

1− λ
= N − 1

2
(24.1.21)

capture the main tradeoff between variance and speed in using an exponential smoother
or an equivalent FIR averager, that is, the closer λ is to unity or the larger the N, the
smaller the variance and the better the estimate, but the longer the transients and the
slower the speed of response.

We summarize the difference equations for the exact exponential smoother (24.1.5d)
and the steady-state one (24.1.11),

ân = λ− λn+1

1− λn+1
ân−1 + α

1− λn+1
yn = ân−1 + α

1− λn+1
(yn − ân−1)

ân = λân−1 +αyn = ân−1 +α(yn − ân−1)
(24.1.22)

Clearly, the second is obtained in the large-n limit of the first, but in practice the
steady one is often used from the start at n = 0 because of its simplicity.

To start the recursions at n = 0, one needs to specify the initial value â−1. For
the exact smoother, â−1 can have an arbitrary value because its coefficient vanishes at
n = 0. This gives for the first smoothed value â0 = 0 · â−1 + 1 · y0 = y0. For the steady
smoother it would make sense to also require that â0 = y0, which would imply that
â−1 = y0 because then

â0 = λâ−1 +αy0 = λy0 +αy0 = y0

There are other reasonable ways of choosing â−1, for example one could take it to
be the average of a few initial values of yn. The convolutional solution of the steady
smoother with arbitrary nonzero initial conditions is obtained by convolving the filter’s

1166 24. EXPONENTIAL MOVING AVERAGE FILTERS

impulse responseαλnu(n)with the causal input yn plus adding a transient term arising
from the initial value:

ân = α
n∑

k=0

λn−kyk + λn+1â−1 (24.1.23)

The influence of the initial value disappears exponentially.

Example 24.1.1: Fig. 24.1.1 illustrates the ability of the sample mean and the exponential
smoother to track a sudden level change.

0 500 1000 1500 2000

−1

0

1

2

3

non−stationary signal, yn

n
0 500 1000 1500 2000

0

0.5

1

1.5

2
sample mean, mn

n

0 500 1000 1500 2000
0

0.5

1

1.5

2
exponential smoother, λ = 0.98

n
0 500 1000 1500 2000

0

0.5

1

1.5

2
exponential smoother, λ = 0.995

n

 EMA
 FIR

Fig. 24.1.1 Mean tracking with sample mean, exponential smoother, and FIR averager.

The first 1000 samples of the signal yn depicted on the upper-left graph are independent
gaussian samples of mean and variance m1 = 1, σ1 = 1. The last 1000 samples are gaussian
samples with m2 = 1.5 and σ2 = 0.5.

The upper-right graph shows the sample mean computed recursively using (24.1.9) withαn =
1/(n+1) and initialized at â−1 = 0 (although the initial value does not matter since α0 = 1).
We observe that the sample mean converges very fast to the first value of m1 = 1, with its
fluctuations becoming smaller and smaller because of its decreasing variance (24.1.6b). But
it is extremely slow responding to the sudden change in the mean.

The bottom two graphs show the steady-state exponential smoother initialized at â−1 = 0
with the two values of the forgetting factor λ = 0.98 and λ = 0.995. For the smaller λ

24.1. MEAN TRACKING 1167

the convergence is quick both at the beginning and after the change, but the fluctuations
quantified by (24.1.21) remain finite and do not improve even after convergence. For the
larger λ, the fluctuations are smaller, but the learning time constant is longer. In the bottom-
right graph, we have also added the equivalent FIR averager with N related to λ by (24.1.16),
which gives N = 399. Its learning speed and fluctuations are comparable to those of the
exponential smoother. 	

Example 24.1.2: Fig. 24.1.2 shows the daily Dow-Jones Industrial Average (DJIA) from Oct. 1,
2007 to Dec. 31, 2009. In the left graph an exponential smoothing filter is used with λ = 0.9.
In the right graph, an FIR averager with an equivalent length of N = (1+ λ)/(1− λ)= 19 is
used. The data were obtained from http://finance.yahoo.com.

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with λ = 0.9

 smoothed
 data

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

equivalent FIR with N = 19

 smoothed
 data

Fig. 24.1.2 Dow-Jones industrial average from 10-Oct-2007 to 31-Dec-2009.

The following code fragment generates the two graphs:

Y = loadfile(’dow-oct07-dec09.dat’); % data file in OSP toolbox

y = Y(:,4)/1000; % extract closing prices

n = (0:length(y)-1);

la = 0.9; al = 1-la;
s0 = la*y(1); % s0 is the initial state

m = filter(al, [1,-la], y, s0); % filter with initial state

% m = stema(y,0,la, y(1)); % equivalent calculation

figure; plot(n,m,’-’, n,y,’:’);

N = round((1+la)/(1-la));
h = ones(N,1)/N; % FIR averager

x = filter(h,1,y);

figure; plot(n(N:end),x(N:end),’-’, n,y,’:’); % discard first N−1 outputs

The initial value was set such that to get â0 = y0 for the EMA. The built-in function filter

allows one to specify the initial state. Because filter uses the transposed realization, in
order to have â0 = y0, the initial state must be chosen as sin = λy0. This follows from the
sample processing algorithm of the transposed realization for the EMA filter (24.1.12), which

1168 24. EXPONENTIAL MOVING AVERAGE FILTERS

reads as follows where s is the state:

for each input sample y do:
â = s+αy
s = λâ

or
ân = sn +αyn
sn+1 = λân

Thus, in order for the first pass to give â0 = y0, the initial state must be such that s0 =
â0−αy0 = λy0. The FIR averager was run with zero initial conditions and therefore, the first
N − 1 outputs were discarded as transients. After n ≥ N, the EMA and the FIR outputs are
comparable since they have the same n̄. 	

Example 24.1.3: It is evident by inspecting the graphs of the previous example that both the
EMA and the FIR filter outputs are lagging behind the data signal. To see this lag more clearly,
consider a noiseless signal consisting of three straight-line segments defined by,

sn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
20+ 0.8n, 0 ≤ n < 75

80− 0.3(n− 75), 75 ≤ n < 225

35+ 0.4(n− 225), 225 ≤ n ≤ 300

Fig. 24.1.3 shows the corresponding output from an EMA with λ = 0.9 and an equivalent FIR
averager with N = 19 as in the previous example. The dashed line is the signal sn and the
solid lines, the corresponding filter outputs.

0 75 150 225 300
0

20

40

60

80

100

n

EMA with λ = 0.9

0 75 150 225 300
0

20

40

60

80

100

n

equivalent FIR with N = 19

Fig. 24.1.3 Lag introduced by EMA and FIR averager filters.

The EMA was run with initial value â−1 = s0 = 20. The FIR filter was run with zero initial
conditions, and therefore, its first N−1 outputs are transients. The amount of delay intro-
duced by the filters is exactly equal to the quantity n̄ of Eq. (24.1.20). 	

The delay n̄ is a consequence of the causality of the filters. Symmetric non-causal

filters, such as the LPSM or LPRS filters, do not introduce a delay, that is, n̄ = 0.
To see how such a delay arises, consider an arbitrary causal filter hn and a causal

input that is a linear function of time, xn = a + bn, for n ≥ 0. The corresponding
convolutional output will be:

yn =
n∑

k=0

hkxn−k =
n∑

k=0

hk
[
a+ b(n− k)

] = (a+ bn)
n∑

k=0

hk − b
n∑

k=0

khk

24.2. FORECASTING AND STATE-SPACE MODELS 1169

For large n, we may replace the upper limit of the summations by k = ∞,

yn = (a+ bn)
∞∑
k=0

hk − b
∞∑
k=0

khk = (a+ bn)
∞∑
k=0

hk − bn̄
∞∑
k=0

hk =
[
a+ b(n− n̄)

] ∞∑
k=0

hk

where we used the definition (24.1.17) for n̄. For filters that have unity gain at DC, the
sum of the filter coefficients is unity, and we obtain,

yn = a+ b(n− n̄)= xn−n̄ (24.1.24)

Such delays are of concern in a number of applications, such as the real-time mon-
itoring of financial data. For FIR filters, the problem of designing noise reducing filters
with a prescribed amount of delay n̄ has already been discussed in Sec. 23.9. However,
we discuss it a bit further in Sec. 24.10 and 25.2 emphasizing its use in stock mar-
ket trading. The delay n̄ can also be controlled by the use of higher-order exponential
smoothing discussed in Sec. 24.5.

24.2 Forecasting and State-Space Models

We make a few remarks on the use of the first-order exponential smoother as a forecast-
ing tool. As we already mentioned, the quantity ân−1 can be viewed as a prediction of
yn based on the past observations {y0, y1, . . . , yn−1}. To emphasize this interpretation,
let us denote it by ŷn/n−1 = ân−1, and the corresponding prediction or forecast error by
en/n−1 = yn − ŷn/n−1. Then, the steady exponential smoother can be written as,

ŷn+1/n = ŷn/n−1 +αen/n−1 = ŷn/n−1 +α(yn − ŷn/n−1) (24.2.1)

If the prediction is to be optimal, then the prediction error en/n−1 must be a white
noise signal, called the innovations of the sequence yn and denoted by εn = en/n−1. It
represents that part of yn that cannot be predicted from its past. This interpretation
implies a certain innovations signal model for yn. We may derive it by working with
z-transforms. In the z-domain, Eq. (24.2.1) reads,

zŶ(z)= Ŷ(z)+αE(z)= Ŷ(z)+α(Y(z)−Ŷ(z)) = λŶ(z)+αY(z) (24.2.2)

Therefore, the transfer functions from Y(z) to Ŷ(z) and from Y(z) to E(z) are,

Ŷ(z)=
(

αz−1

1− λz−1

)
Y(z) , E(z)=

(
1− z−1

1− λz−1

)
Y(z) (24.2.3)

In the time domain, using the notation ∇yn = yn − yn−1, we may write the latter as

∇yn = εn − λεn−1 (24.2.4)

Thus, yn is an integrated ARMA process, ARIMA(0,1,1), or more simply an integrated
MA process, IMA(1,1). In other words, if yn is such a process, then the exponential
smoother forecast ŷn/n−1 is optimal in the mean-square sense [826].

1170 24. EXPONENTIAL MOVING AVERAGE FILTERS

The innovations representation model can also be cast in an ordinary Wiener and
Kalman filter form of the type discussed in [45]. The state and measurement equations
for such a model are:

xn+1 = xn +wn

yn = xn + vn
(24.2.5)

where wn, vn are zero-mean white-noise signals that are mutually uncorrelated. This
model is referred to as a “constant level” state-space model, and represents a random-
walk observed in noise. The optimal prediction estimate x̂n/n−1 of the state xn is equiv-
alent to ân−1. The equivalence between EMA and this model results in the following
relationship between the parameters α and q = σ2

w/σ2
v :

q = α2

1−α
⇒ α =

√
q2 + 4q− q

2
(24.2.6)

Further discussion of such state-space models may found in [45].

24.3 Higher-Order Polynomial Smoothing Filters

We recall that in fitting a local polynomial of orderd to a local block of data {yn−M, . . . , yn,
. . . , yn+M}, the performance index was

J =
M∑

k=−M

[
yn+k − p(k)

]2 =
M∑

k=−M

[
yn+k − uTk c

]2 = min

where p(k) is a dth degree polynomial, representing the estimate ŷn+k = p(k),

p(k)= uTkc = [1, k, . . . , kd]
⎡⎢⎢⎢⎢⎢⎣
c0

c1

...
cd

⎤⎥⎥⎥⎥⎥⎦ =
d∑
i=0

ciki

and we defined the monomial basis vector uk =
[
1, k, k2, . . . , kd

]T
. The higher-order

exponential smoother is obtained by restricting the data range to {y0, y1, . . . , yn} and
using exponential weights, and similarly, the corresponding FIR version will be restricted
to {yn−N+1, . . . , yn−1, yn}. The resulting performance indices are then,

Jn =
0∑

k=−n
λ−k

[
yn+k − uTk c

]2 = min

Jn =
0∑

k=−N+1

[
yn+k − uTk c

]2 = min

or, replacing the summation index k by −k, the performance indices read,

(EMA) Jn =
n∑

k=0

λk
[
yn−k − uT−kc

]2 = min

(FIR) Jn =
N−1∑
k=0

[
yn−k − uT−kc

]2 = min

(24.3.1)

24.3. HIGHER-ORDER POLYNOMIAL SMOOTHING FILTERS 1171

In both cases, we may interpret the quantities p(±τ)= uT±τc as the estimates ŷn±τ.
We will denote them by ŷn±τ/n to emphasize their causal dependence only on data up to
the current time n. In particular, the quantity c0 = uT0 c = p(0) represents the estimate
ŷn, or ŷn/n, that is, an estimate of the local level of the signal. Similarly, c1 = ṗ(0)=
u̇Tτc|τ=0 represents the local slope, and 2c2 = p̈(0), the local acceleration. Eqs. (24.1.4d)
and (24.1.4c) are special cases of (24.3.1) corresponding to d = 0.

Both indices in Eq. (24.3.1) can be written in the following compact vectorial form,
whose solution we have already obtained in previous chapters:

J = (y− Sc)TW(y− Sc)= min ⇒ c = (STWS)−1STWy (24.3.2)

where the data vector y is defined as follows in the EMA and FIR cases,

y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
y0

⎤⎥⎥⎥⎥⎥⎦ , y(n)=

⎡⎢⎢⎢⎢⎢⎣
yn
yn−1

...
yn−N+1

⎤⎥⎥⎥⎥⎥⎦ (24.3.3)

with the polynomial basis matrices S,

Sn =
[
u0,u−1, . . . ,u−n

]T , SN =
[
u0,u−1, . . . ,u−N+1

]T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uT0
uT−1
...
uT−k
...
uT−N+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24.3.4)

with, uT−k =
[
1, (−k), (−k)2, . . . , (−k)d] , and weight matrices W in the two cases,

Wn = diag
(
[1, λ, . . . , λn]

)
, or, W = IN (24.3.5)

The predicted estimates can be written in the filtering form:

ŷn+τ/n = uTτc(n)= hTτ(n)y(n) (24.3.6)

where in the exponential smoothing case,

c(n) = (STnWnSn)−1STnWny(n)

hτ(n) =WnSn(STnWnSn)−1uτ
(EMA) (24.3.7)

We will see in Eq. (24.5.19) and more explicitly in (24.6.5) that c(n) can be expressed
recursively in the time n. Similarly, for the FIR case, we find:

c(n) = (STNSN)
−1STNy(n)

hτ = SN(STNSN)
−1uτ

(FIR) (24.3.8)

1172 24. EXPONENTIAL MOVING AVERAGE FILTERS

We note also that the solution for c in Eq. (24.3.2) can be viewed as the least-squares
solution of the over-determined linear system, W1/2Sc = W1/2y, which is particularly
convenient for the numerical solution using MATLAB’s backslash operation,

c = (W1/2S
)\(W1/2y

)
(24.3.9)

In fact, this corresponds to an alternative point of view to filtering and is followed
in the so-called “linear regression” indicators in financial market trading, as we discuss
in Sec. 25.5, where the issue of the initial transients, that is, the evaluation of c(n) for
0 ≤ n ≤ N − 1 in the FIR case, is also discussed.

In the EMA case, the basis matrices Sn are full rank for n ≥ d. For 0 ≤ n < d, we may
restrict the polynomial order d to to dn = n and thus obtain the first dn coefficients of
the vector c(n), and set the remaining coefficients to zero. For the commonly used case
of d = 1, this procedure amounts to setting c(0)= [y0, 0]T. Similarly, in the FIR case,
we must have N ≥ d+ 1 to guarantee the full rank of SN.

24.4 Linear Trend FIR Filters

The exact solutions of the FIR case have already been found in Sec. 23.9. The d = 1
and d = 2 closed-form solutions were given in Eqs. (23.9.10) and (23.9.11). The same
expressions are valid for both even and odd N. For example, replacing M = (N − 1)/2
in (23.9.10), we may express the solution for the d = 1 case as follows,

hτ(k)= 2(N − 1)(2N − 1− 3k)+6(N − 1− 2k)τ
N(N2 − 1)

, k = 0,1, . . . ,N − 1 (24.4.1)

A direct derivation of (24.4.1) is as follows. From the definition (24.3.4), we find:

STNSN =
N−1∑
k=0

u−kuT−k =
N−1∑
k=0

[
1 −k

−k k2

]

=
[

N −N(N − 1)/2
−N(N − 1)/2 N(N − 1)(2N − 1)/6

]

(STNSN)
−1 = 2

N(N2 − 1)

[
(N − 1)(2N − 1) 3(N − 1)

3(N − 1) 6

]
(24.4.2)

then, from Eq. (24.3.8), because the kth row of SN is uT−k, we obtain the kth impulse
response coefficient:

hτ(k)= uT−k(S
T
NSN)

−1uτ = 2

N(N2 − 1)
[
1, −k][(N − 1)(2N − 1) 3(N − 1)

3(N − 1) 6

][
1
τ

]

which leads to Eq. (24.4.1). Thus, we obtain,

hτ(k)= ha(k)+hb(k)τ , k = 0,1, . . . ,N − 1 (24.4.3)

with

24.4. LINEAR TREND FIR FILTERS 1173

ha(k)= 2(2N − 1− 3k)
N(N + 1)

, hb(k)= 6(N − 1− 2k)
N(N2 − 1)

(24.4.4)

These are the FIR filters that generate estimates of the local level and local slope of
the input signal. Indeed, setting c(n)= [an, bn]T, where an, bn represent the local level
and local slope† at time n, we obtain from (24.3.8),[

an
bn

]
= (STNSN)

−1STNy(n)= (STNSN)
−1

N−1∑
k=0

u−kyn−k

which is equivalent, component-wise, to the filtering equations:

an =
N−1∑
k=0

ha(k)yn−k = local level

bn =
N−1∑
k=0

hb(k)yn−k = local slope

(24.4.5)

Since, ŷn+τ/n = an+bnτ, it is seen that the local level an is equal to ŷn/n. Similarly,
the sum an+bn is the one-step-ahead forecast ŷn+1/n obtained by extrapolating to time
instant n+ 1 by extending the local level an along the straight line with slope bn. This
is depicted in the figure below. The sum, an + bn, can be generated directly by the
predictive FIR filter, h1(k)= ha(k)+hb(k), obtained by setting τ = 1 in (24.4.1):

h1(k)= 2(2N − 2− 3k)
N(N − 1)

, k = 0,1, . . . ,N − 1 (predictive FIR filter) (24.4.6)

The filters ha(k), hb(k), and h1(k) find application in the technical analysis of
financial markets [864]. Indeed, the filter ha(k) is equivalent to the so-called linear
regression indicator, hb(k) corresponds to the linear regression slope indicator, and
h1(k), to the time series forecast indicator. We discuss these in more detail, as well as
other indicators, in Chap. 25.

†a,b are the same as the components c0, c1 of the vector c.

1174 24. EXPONENTIAL MOVING AVERAGE FILTERS

More generally, for order d polynomials, it follows from the solution (24.3.8), that
the FIR filters hτ satisfy the moment constraints STNhτ = uτ, or, component-wise:

N−1∑
k=0

(−k)rhτ(k)= τr , r = 0,1, . . . , d (24.4.7)

In fact, the solution hτ = SN(STNSN)−1uτ is recognized (see [45]) to be the minimum-
norm, pseudoinverse, solution of the under-determined system STNh = uτ, that is, it
has minimum norm, or, minimum noise-reduction ratio, R = hTh = min. A direct
derivation is as follows. Introduce a (d + 1)×1 vector of Lagrange multipliers, λλλ =
[λ0, λ1, . . . , λd]T, and incorporate the constraint into the performance index,

J = hTh+ 2λλλT(uτ − STNh)= min

Then, its minimization leads to,

∂J
∂h

= 2h− 2SNλλλ = 0 ⇒ h = SNλλλ

and, imposing the constraint STNh = uτ leads to the solutions for λλλ and for h,

uτ = STNh = STNSNλλλ ⇒ λλλ = (STNSN)
−1uτ ⇒ h = SNλλλ = SN(STNSN)

−1uτ

Returning to Eq. (24.4.3) and setting τ = 0, we note that the d = 1 local-level filter
ha(k) satisfies the explicit constraints:

N−1∑
k=0

ha(k)= 1 ,
N−1∑
k=0

kha(k)= 0 (24.4.8)

The latter implies that its lag parameter n̄ is zero, and therefore, straight-line inputs
will appear at the output undelayed (see Example 24.5.1). It has certain limitations as a
lowpass filter that we discuss in Sec. 24.10, but its NRR is decreasing with N:

R = 2(2N − 1)
N(N + 1)

(24.4.9)

A direct consequence of Eq. (24.4.7) is that the filter hτ(k) generates the exact pre-
dicted value of any polynomial of degree d, that is, for any polynomial P(x) with degree
up to d in the variable x, we have the exact convolutional result,

N−1∑
k=0

P(n− k)hτ(k)= P(n+ τ) , with deg(P)≤ d (24.4.10)

24.5 Higher-Order Exponential Smoothing

For any value of d, the FIR filters hτ have length N and act on the N-dimensional data
vector y(n)= [yn, yn−1, . . . , yn−N+1]T. By contrast, the exponential smoother weights
hτ(n) have an ever increasing length. Therefore, it proves convenient to recast them

24.5. HIGHER-ORDER EXPONENTIAL SMOOTHING 1175

recursively in time. The resulting recursive algorithm bears a very close similarity to
the so-called exact recursive-least-squares (RLS) adaptive filters, discussed in [45]. Let
us define the quantities,

Rn = STnWnSn =
n∑

k=0

λku−kuT−k = (d+1)×(d+1) matrix

rn = STnWny(n)=
n∑

k=0

λku−kyn−k = (d+1)×1 vector

(24.5.1)

Then, the optimal polynomial coefficients (24.3.7) are:

c(n)= R−1
n rn (24.5.2)

Clearly, the invertibility of Rn requires that n ≥ d, which we will assume from now
on. The sought recursions relate c(n) to the optimal coefficients c(n − 1)= R−1

n−1rn−1

at the previous time instant n−1. Therefore, we must actually assume that n > d.
To proceed, we note that the basis vector uτ = [1, τ, τ2, . . . , τd]T satisfies the time-
propagation property:

uτ+1 = Fuτ (24.5.3)

where F is a (d+1)×(d+1) unit lower triangular matrix whose ith row consists of the
binomial coefficients:

Fij =
(
i
j

)
, 0 ≤ i ≤ d , 0 ≤ j ≤ i (24.5.4)

This follows from the binomial expansion:

(τ+ 1)i=
i∑

j=0

(
i
j

)
τj

Some examples of the F matrices are for d = 0,1,2:

F = [1], F =
[

1 0
1 1

]
, F =

⎡⎢⎣ 1 0 0
1 1 0
1 2 1

⎤⎥⎦ (24.5.5)

It follows from Eq. (24.5.3) that uτ = Fuτ−1, and inverting uτ−1 = F−1uτ. The
inverse matrix G = F−1 will also be unit lower triangular with nonzero matrix elements
obtained from the binomial expansion of (τ− 1)i:

Gij = (−1)i−j
(
i
j

)
, 0 ≤ i ≤ d , 0 ≤ j ≤ i (24.5.6)

For example, we have for d = 0,1,2,

G = [1], G =
[

1 0
−1 1

]
, G =

⎡⎢⎣ 1 0 0
−1 1 0

1 −2 1

⎤⎥⎦ (24.5.7)

1176 24. EXPONENTIAL MOVING AVERAGE FILTERS

It follows from uτ−1 = Guτ that u−k−1 = Gu−k. This implies the following recursion
for Rn:

Rn =
n∑

k=0

λku−kuT−k = u0uT0 +
n∑

k=1

λku−kuT−k

= u0uT0 + λ
n∑

k=1

λk−1u−kuT−k

= u0uT0 + λ
n−1∑
k=0

λku−k−1uT−k−1

= u0uT0 + λG

⎛⎝n−1∑
k=0

λku−kuT−k

⎞⎠GT = u0uT0 + λGRn−1GT

where in the third line we changed summation variables from k to k−1, and in the fourth,
we used u−k−1 = Gu−k. Similarly, we have for rn,

rn =
n∑

k=0

λku−kyn−k = u0yn +
n∑

k=1

λku−kyn−k

= u0yn + λ
n−1∑
k=0

λku−k−1yn−k−1

= u0yn + λG

⎛⎝n−1∑
k=0

λku−ky(n−1)−k

⎞⎠ = u0yn + λGrn−1

Thus, Rn, rn satisfy the recursions:

Rn = u0uT0 + λGRn−1GT

rn = u0yn + λGrn−1

(24.5.8)

and they may be initialized to zero, R−1 = 0 and r−1 = 0. Using ŷn+τ/n = uTτc(n), we
may define the smoothed estimates, predictions, and the corresponding errors:

ŷn/n = uT0 c(n) , en/n = yn − ŷn/n
ŷn+1/n = uT1 c(n)= uT0FTc(n) , en+1/n = yn+1 − ŷn+1/n

ŷn/n−1 = uT1 c(n− 1)= uT0FTc(n− 1) , en/n−1 = yn − ŷn/n−1

(24.5.9)

where we used u1 = Fu0. In the language of RLS adaptive filters, we may refer to
ŷn/n−1 and ŷn/n as the a priori and a posteriori estimates of yn, respectively. Using the
recursions (24.5.8), we may now obtain a recursion for c(n). Using c(n−1)= R−1

n−1rn−1

and the matrix relationship GF = I, we have,

Rnc(n) = rn = u0yn + λGrn−1 = u0yn + λGRn−1c(n− 1)

= u0yn + λGRn−1GTFTc(n− 1)= u0yn + (Rn − u0uT0)FTc(n− 1)

= RnFTc(n− 1)+u0
(
yn − uT0FTc(n− 1)

) = RnFTc(n− 1)+u0(yn − ŷn/n−1)

= RnFTc(n− 1)+u0en/n−1

24.5. HIGHER-ORDER EXPONENTIAL SMOOTHING 1177

where in the second line we used λGRn−1GT = Rn − u0uT0 . Multiplying both sides by
R−1
n , we obtain,

c(n)= FTc(n− 1)+R−1
n u0en/n−1 (24.5.10)

Again, in the language of RLS adaptive filters, we define the so-called a posteriori
and a priori “Kalman gain” vectors kn and kn/n−1,

kn = R−1
n u0 , kn/n−1 = λ−1FTR−1

n−1Fu0 (24.5.11)

and the “likelihood” variables,

νn = uT0 kn/n−1 = λ−1uT0FTR
−1
n−1Fu0 = λ−1uT1R

−1
n−1u1 , μn = 1

1+ νn
(24.5.12)

Starting with the recursion Rn = u0uT0 + λGRn−1GT and multiplying both sides by
R−1
n from the left, then by FT from the right, then by R−1

n−1 from the left, and then by F
from the right, we may easily derive the equivalent relationship:

λ−1FTR−1
n−1F = R−1

n u0 λ−1uT0FTR
−1
n−1F +R−1

n (24.5.13)

Multiplying on the right by u0 and using the definitions (24.5.11), we find

kn/n−1 = knνn + kn = (1+ νn)kn , or,

kn = μnkn/n−1 (24.5.14)

Substituting this into (24.5.13), we obtain a recursion for the inverse matrix R−1
n ,

which is effectively a variant of the matrix inversion lemma:

R−1
n = λ−1FTR−1

n−1F − μnkn/n−1kTn/n−1 (24.5.15)

This also implies that the parameter μn can be expressed as

μn = 1− uT0R−1
n u0 = 1− uT0 kn (24.5.16)

The a priori and a posteriori errors are also proportional to each other. Using (24.5.16),
we find,

ŷn/n = uT0 c(n)= uT0
(
FTc(n−1)+knen/n−1

) = ŷn/n−1+(1−μn)en/n−1 = yn−μnen/n−1

which implies that
en/n = μnen/n−1 (24.5.17)

The coefficient updates (24.5.10) may now be expressed as:

c(n)= FTc(n− 1)+knen/n−1 (24.5.18)

We summarize the complete set of computational steps for high-order exponential
smoothing. We recall that the invertibility conditions require that we apply the recur-
sions for n > d:

1178 24. EXPONENTIAL MOVING AVERAGE FILTERS

1. kn/n−1 = λ−1FTR−1
n−1Fu0 = λ−1FTR−1

n−1u1

2. νn = uT0 kn/n−1 , μn = 1/(1+ νn)

3. kn = μnkn/n−1

4. ŷn/n−1 = uT1 c(n− 1) , en/n−1 = yn − ŷn/n−1

5. en/n = μnen/n−1 , ŷn = yn − en/n
6. c(n)= FTc(n− 1)+knen/n−1

7. R−1
n = λ−1FTR−1

n−1F − μnkn/n−1kTn/n−1

(24.5.19)

For 0 ≤ n ≤ d, the fitting may be done with polynomials of varying degree dn = n,
and the coefficient estimate computed by explicit matrix inversion, c(n)= R−1

n rn. The
above computational steps and initialization have been incorporated into the MATLAB
function ema with usage:

C = ema(y,d,lambda); % exponential moving average - exact version

The input y is an L-dimensional vector (row or column) of samples to be smoothed,
with a total number L > d, and C is an L×(d+1) matrix whose nth row is the coefficient
vector c(n)T. Thus, the first column, holds the smoothed estimate, the second column
the estimated first derivative, and so on.

To understand the initialization process, consider an input sequence {y0, y1, y2, . . . }
and the d = 1 smoother. At n = 0, we use a smoother of order d0 = 0, constructing the
quantities R0, r0 using the definition (24.5.1):

R0 = [1] , r0 = [y0] ⇒ c(0)= R−1
0 r0 = y0

Next, at n = 1 we use a d1 = 1 smoother, and definition (24.5.1) now implies,

R1 =
[

1 0
0 0

]
+ λ

[
1 −1
−1 1

]
=
[

1+ λ −λ
−λ λ

]

r1 =
[

1
0

]
y1 + λ

[
1
−1

]
y0 =

[
y1 + λy0

−λy0

] ⇒ c(1)= R−1
1 r1 =

[
y1

y1 − y0

]

Starting with R1, r1, the recursion (24.5.8) may then be continued for n ≥ d+ 1 = 2.
If we had instead d = 2, then there is one more initialization step, giving

R2 =
⎡⎢⎣ 1+ λ+ λ2 −λ− 2λ2 λ+ 4λ2

−λ− 2λ2 λ+ 4λ2 −λ− 8λ2

λ+ 4λ2 −λ− 8λ2 λ+ 16λ2

⎤⎥⎦ , r2 =
⎡⎢⎣ y2 + λy1 + λ2y0

−λy1 − 2λ2y0

λy1 + 4λ2y0

⎤⎥⎦
resulting in

c(2)= R−1
2 r2 =

⎡⎢⎣ y2

1.5y2 − 2y1 + 0.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦ (24.5.20)

We note that the first d+ 1 smoothed values get initialized to the first d+ 1 values
of the input sequence.

24.5. HIGHER-ORDER EXPONENTIAL SMOOTHING 1179

Example 24.5.1: Fig. 24.5.1 shows the output of the exact exponential smoother with d = 1
and λ = 0.9 applied on the same noiseless input sn of Example 24.1.3. In addition, it shows
the d = 1 FIR filter ha(k) designed to have zero lag according to Eq. (24.4.4).

Because d = 1, both filters can follow a linear signal. The input sn (dashed curve) is barely
visible under the filter outputs (solid curves). The length of the FIR filter was chosen according
to the rule N = (1+ λ)/(1− λ).

The following MATLAB code generates the two graphs; it uses the function upulse which is
a part of the OSP toolbox that generates a unit-pulse of prescribed duration

n = 0:300;
s = (20 + 0.8*n) .* upulse(n,75) + ... % upulse is in the OSP toolbox

(80 - 0.3*(n-75)) .* upulse(n-75,150) + ...
(35 + 0.4*(n-225)) .* upulse(n-225,76);

la = 0.9; al = 1-la; d = 1;

C = ema(s,d,la); % exact exponential smoother output

x = C(:,1);

N = round((1+la)/(1-la)); % equivalent FIR length, N=19

k=0:N-1;
ha = 2*(2*N-1-3*k)/N/(N+1); % zero-lag FIR filter

xh = filter(ha,1,s); % FIR filter output

figure; plot(n,s,’--’, n,x,’-’); % left graph

figure; plot(n,s,’--’, n,xh,’-’); % right graph

0 75 150 225 300
0

20

40

60

80

100

n

exact EMA with d = 1, λ = 0.9

 input
 output

0 75 150 225 300
0

20

40

60

80

100

n

zero− lag FIR with equivalent N = 19

 input
 output

Fig. 24.5.1 Exact EMA with order d = 1, and zero-lag FIR filter with equivalent length.

Next, we add some noise yn = sn + 4vn, where vn is zero-mean, unit-variance, white noise.
The top two graphs of Fig. 24.5.2 show the noisy signal yn and the response of the exact EMA
with d = 0 and λ = 0.9.

The bottom two graphs show the exact EMA with d = 1 as well as the response of the same
zero-lag FIR filter to the noisy data. 	

1180 24. EXPONENTIAL MOVING AVERAGE FILTERS

0 75 150 225 300
0

20

40

60

80

100

n

noisy input

 noisy input
 noise−free

0 75 150 225 300
0

20

40

60

80

100

n

exact EMA with d = 0, λ = 0.9

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

exact EMA with d = 1, λ = 0.9

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

zero− lag FIR with equivalent N = 19

 noise−free
 output

Fig. 24.5.2 EMA with order d = 1, and zero-lag FIR filter with equivalent length.

24.6 Steady-State Exponential Smoothing

Next, we look in more detail at the cases d = 0,1,2, which are the most commonly used
in practice, with d = 1 providing the best performance and flexibility. We denote the
polynomial coefficients by:

c(n)= [an] , c(n)=
[
an
bn

]
, c(n)=

⎡⎢⎣ anbn
cn

⎤⎥⎦ (24.6.1)

Then, with uτ = [1], uτ = [1, τ]T, and uτ = [1, τ, τ2]T, the implied predicted
estimates will be for arbitrary τ:

ŷn+τ/n = uTτc(n)= an
ŷn+τ/n = uTτc(n)= an + bnτ

ŷn+τ/n = uTτc(n)= an + bnτ+ cnτ2

(24.6.2)

Thus, an, bn represent local estimates of the level and slope, respectively, and 2cn

24.6. STEADY-STATE EXPONENTIAL SMOOTHING 1181

represents the acceleration. The one-step-ahead predictions are,

ŷn/n−1 = uT1 c(n− 1)= an−1

ŷn/n−1 = uT1 c(n− 1)= an−1 + bn−1

ŷn/n−1 = uT1 c(n− 1)= an−1 + bn−1 + cn−1

(24.6.3)

Denoting the a posteriori gains kn by,

kn = [α(n)] , kn =
[
α1(n)
α2(n)

]
, kn =

⎡⎢⎣α1(n)
α2(n)
α3(n)

⎤⎥⎦ (24.6.4)

then, the coefficient updates (24.5.18) take the forms, where en/n−1 = yn − ŷn/n−1,

an = an−1 +α(n)en/n−1[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[
α1(n)
α2(n)

]
en/n−1

⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1(n)
α2(n)
α3(n)

⎤⎥⎦en/n−1

(24.6.5)

Since kn = R−1
n u0, the gains depend only on λ and n and converge to steady-state

values for large n. For example, for d = 0, we have,

Rn =
n∑

k=0

λk = 1− λn+1

1− λ
⇒ kn = R−1

n = 1− λ
1− λn+1

→ 1− λ ≡ α

Thus, the steady-state form of the d = 0 EMA smoother is as expected:

en/n−1 = yn − ŷn/n−1 = yn − an−1

an = an−1 + (1− λ)en/n−1
(single EMA, d = 0) (24.6.6)

initialized as usual at a−1 = y0. The corresponding likelihood variable μn = 1 − uT0 kn
tends to μ = 1− (1− λ)= λ. Similarly, we find for d = 1,

Rn =
n∑

k=0

λk
[

1
−k

]
[1,−k]=

n∑
k=0

λk
[

1 −k
−k k2

]
≡
[
R00(n) R01(n)
R10(n) R11(n)

]

where

R00(n)= 1− λn+1

1− λ
, R01(n)= R10(n)= −λ+ λn+1

[
1+ n(1− λ)

]
(1− λ)2

R11(n)= λ(1+ λ)−λn+1
[
1+ λ− 2n(1− λ)+n2(1− λ)2

]
(1− λ)3

1182 24. EXPONENTIAL MOVING AVERAGE FILTERS

which have the limit as n→∞,

Rn →R = 1

(1− λ)3

[
(1− λ)2 −λ(1− λ)
−λ(1− λ) λ(1+ λ)

]

R−1 =
[

1− λ2 (1− λ)2

(1− λ)2 λ−1(1− λ)3

] (24.6.7)

It follows that the asymptotic gain vector k = R−1u0 will be the first column of R−1:

kn → k =
[
α1

α2

]
=
[

1− λ2

(1− λ)2

]
(24.6.8)

and the steady-state version of the d = 1 EMA smoother becomes:

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1)[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[

1− λ2

(1− λ)2

]
en/n−1

(double EMA, d = 1) (24.6.9)

with estimated level ŷn/n = an and one-step-ahead prediction ŷn+1/n = an + bn. The
corresponding limit of the likelihood parameter is μ = 1 − uT0 k = 1 − (1 − λ2)= λ2.
The difference equation may be initialized at a−1 = 2y0−y1 and b−1 = y1−y0 to agree
with the first outputs of the exact smoother. Indeed, iterating up to n = 1, we find the
same answer for c(1) as the exact smoother:[

a0

b0

]
=
[

1 1
0 1

][
a−1

b−1

]
+
[
α1

α2

]
e0/−1 =

[
y0

y1 − y0

]
[
a1

b1

]
=
[

1 1
0 1

][
a0

b0

]
+
[
α1

α2

]
e1/0 =

[
y1

y1 − y0

]

Of course, other initializations are possible, a common one being to fit a straight line
to the first few input samples and choose the intercept and slope as the initial values.
This is the default method used by the function stema (see below). For the d = 2 case,
the asymptotic matrix R is

R =
∞∑
k=0

λku−kuT−k =
∞∑
k=0

λk

⎡⎢⎣ 1 −k k2

−k k2 −k3

k2 −k3 k4

⎤⎥⎦
which may be summed to

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1− λ
− λ
(1− λ)2

λ(1+ λ)
(1− λ)3

− λ
(1− λ)2

λ(1+ λ)
(1− λ)3

−λ(1+ 4λ+ λ2)
(1− λ)4

λ(1+ λ)
(1− λ)3

−λ(1+ 4λ+ λ2)
(1− λ)4

λ(1+ λ)(1+ 10λ+ λ2)
(1− λ)5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

24.6. STEADY-STATE EXPONENTIAL SMOOTHING 1183

with an inverse

R−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− λ3 3

2
(1+ λ)(1− λ)2 1

2
(1− λ)3

3

2
(1+ λ)(1− λ)2 (1+ λ)(1− λ)3(1+ 9λ)

4λ2

(1− λ)4(1+ 3λ)
4λ2

1

2
(1− λ)3 (1− λ)4(1+ 3λ)

4λ2

(1− λ)5

4λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The asymptotic gain vector k = R−1u0 and μ parameter are,

k =
⎡⎢⎣α1

α2

α3

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1− λ3

3

2
(1+ λ)(1− λ)2

1

2
(1− λ)3

⎤⎥⎥⎥⎥⎥⎦ , μ = 1−α1 = λ3 (24.6.10)

and the steady-state d = 2 EMA smoother becomes:

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1 + cn−1)⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1

α2

α3

⎤⎥⎦en/n−1

(triple EMA, d = 2) (24.6.11)

They may be initialized to reach the same values at n = 2 as the exact smoother,
that is, Eq. (24.5.20). This requirement gives:⎡⎢⎣ a−1

b−1

c−1

⎤⎥⎦ =
⎡⎢⎣ y2 − 3y1 + 3y0

−1.5y2 + 4y1 − 2.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦ ⇒
⎡⎢⎣ a2

b2

c2

⎤⎥⎦ =
⎡⎢⎣ y2

1.5y2 − 2y1 + 0.5y0

0.5y2 − y1 + 0.5y0

⎤⎥⎦
Alternatively, they may be initialized by fitting a second degree polynomial to the first

few input samples, as is done by default in the function stema, or they may be initialized
to a zero vector, or to any other values, for example, [a−1, b−1, c−1]= [y0,0,0].

For arbitrary polynomial order d, the matrixRn converges to a (d+1)×(d+1)matrix
R that must satisfy the Lyapunov-type equation:

R = u0uT0 + λGRGT (24.6.12)

where G is the backward boost matrix, G = F−1. This follows by considering the limit
of Eq. (24.5.1) as n → ∞ and using the property u−k−1 = Gu−k. Multiplying from the
left by F, and noting that Fu0 = u1, we have

FR = u1uT0 + λRGT (24.6.13)

Taking advantage of the unit-lower-triangular nature of F and G, this equation can
be written component-wise as follows:

i∑
k=0

FikRkj = u1(i)u0(j)+λ
j∑

k=0

RikGjk , 0 ≤ i, j ≤ d (24.6.14)

1184 24. EXPONENTIAL MOVING AVERAGE FILTERS

Noting that u1(i)= 1 and u0(j)= δ(j), and setting first i = j = 0, we find

R00 = 1+ λR00 ⇒ R00 = 1

1− λ
(24.6.15)

Then, setting i = 0 and 1 ≤ j ≤ d,

R0j = λ
j∑

k=0

RikGjk = λR0j + λ
j−1∑
k=0

R0kGjk

which can be solved recursively for R0j:

R0j = Rj0 = λ
1− λ

j−1∑
k=0

R0kGjk , j = 1,2, . . . , d (24.6.16)

Next, take i ≥ 1 and j ≥ i, and use the symmetry of R:

Rij +
i−1∑
k=0

FikRkj = λRij + λ
j−1∑
k=0

RikGjk

or, for i = 1,2, . . . , d , j = i, i+ 1, . . . , d,

Rij = Rji = 1

1− λ

⎡⎣λ j−1∑
k=0

RikGjk −
i−1∑
k=0

FikRkj

⎤⎦ (24.6.17)

To clarify the computations, we give the MATLAB code below:

R(1,1) = 1/(1-lambda);
for j=2:d+1,
R(1,j) = lambda * R(1,1:j-1) * G(j,1:j-1)’ / (1-lambda);
R(j,1) = R(1,j);

end
for i=2:d+1,
for j=i:d+1,
R(i,j) = (lambda*R(i,1:j-1)*G(j,1:j-1)’ - F(i,1:i-1)*R(1:i-1,j))/(1-lambda);
R(j,i) = R(i,j);

end
end

Once R is determined, one may calculate the gain vector k = R−1u0. Then, the
overall filtering algorithm can be stated as follows, for n ≥ 0,

ŷn/n−1 = uT1 c(n− 1)

en/n−1 = yn − ŷn/n−1

c(n)= FTc(n− 1)+ken/n−1

(steady-state EMA) (24.6.18)

which requires specification of the initial vector c(−1). The transfer function from the
input yn to the signals c(n) can be determined by taking z-transforms of Eq. (24.6.18):

C(z)= z−1FTC(z)+k
(
Y(z)−z−1uT1 C(z)

)
, or,

24.6. STEADY-STATE EXPONENTIAL SMOOTHING 1185

H(z)= C(z)
Y(z)

= [I − (FT − kuT1)z−1]−1
k (24.6.19)

The computational steps (24.6.18) have been incorporated in the MATLAB function
stema, with usage,

C = stema(y,d,lambda,cinit); % steady-state exponential moving average

where C,y,d,lambda have the same meaning as in the function ema. The parameter
cinit is a (d+1)×1 column vector that represents the initial vector c(−1). If omitted,
it defaults to fitting a polynomial of order d to the first L input samples, where L is the
effective length corresponding to λ, that is, L = (1+ λ)/(1− λ). The fitting is carried
out with the help of the function lpbasis from Chap. 23.1, and is given in MATLAB
notation by:

cinit = lpbasis(L,d,-1) \ y(1:L); % fit order-d polynomial to first L inputs

where the fit is carried out with respect to the time origin n = −1. The length L must be
less than the length of the input vector y. If not, another, shorter L can be used. Other
initialization possibilities for cinit are summarized in the help file for stema.

To clarify the fitting operation, we note that fitting the first L samples yn, n =
0,1, . . . , L − 1, to a polynomial of degree d centered at n = −1 amounts to the mini-
mization of the performance index:

J =
L−1∑
n=0

(yn − pn)2= min , pn =
d∑
i=0

(n+ 1)ici = uTn+1c

which can be written compactly as

J = ‖y− Sc‖2 = min , S = [u1,u2, . . . ,un+1, . . . ,uL]T

with solution c = (STS)−1STy = S\y in MATLAB notation.† The actual fitted values
p = [p0, p1, . . . , pL−1]T are then computed by p = Sc.

Selecting n = −1 as the centering time, assumes that the filtering operation will
start at n = 0 requiring therefore the value c(−1). The centering can be done at any
other reference time n = n0, for example, one would choose n0 = L− 1 if the filtering
operation were to start at n = L. The performance index would be then,

J =
L−1∑
n=0

(yn − pn)2= min , pn =
d∑
i=0

(n− n0)ici = uTn−n0
c̄

with another set of coefficients c̄. The MATLAB implementation is in this case,

cinit = lpbasis(L,d,n0) \ y(1:L); % fit order-d polynomial to first L inputs

From un+1 = Fun, we obtain un+1 = Fn0+1un−n0 . By requiring that the fitted poly-
nomials be the same, pn = uTn+1c = uTn−n0

c̄, it follows that,

c̄ = (FT)n0+1c (24.6.20)

†assuming that S has full rank, which requires L > d.

1186 24. EXPONENTIAL MOVING AVERAGE FILTERS

In Sec. 24.8, we discuss the connection to conventional multiple exponential smooth-
ing obtained by filtering in cascade through d+1 copies of a single exponential smooth-
ing filter H(z)= α/(1−λz−1), that is, through

[
H(z)

]d+1
. Example 24.12.1 illustrates

the above initialization methods, as well as how to map the initial values of c(n) to the
initial values of the cascaded filter outputs.

24.7 Smoothing Parameter Selection

The performance of the steady-state EMA may be judged by computing the covariance of
the estimates c(n), much like the case of thed = 0 smoother. Starting with c(n)= R−1

n rn
and rn = STnWny(n), we obtain for the correlation matrix,

E
[
c(n)cT(n)

] = R−1
n STnWnE

[
y(n)yT(n)

]
WnSnR−1

n

and for the corresponding covariance matrix,

Σcc = R−1
n STnWnΣyyWnSnR−1

n (24.7.1)

Under the typical assumption that yn is white noise, we have Σyy = σ2
yIn+1, where

In+1 is the (n+1)-dimensional unit matrix. Then,

Σcc = σ2
y R−1

n QnR−1
n , Qn = STnW2

nSn (24.7.2)

In the limit n→∞, the matrices Rn,Qn tend to steady-state values, so that

Σcc = σ2
y R−1QR−1 (24.7.3)

where the limit matrices R,Q are given by

R =
∞∑
k=0

λku−ku−k , Q =
∞∑
k=0

λ2ku−ku−k (24.7.4)

Since ŷn/n = uT0 c(n) and ŷn+1/n = uT1 c(n), the corresponding variances will be:

σ2
ŷn/n = uT0 Σccu0 , σ2

ŷn+1/n
= uT1 Σccu1 ≡ σ2

ŷ , (24.7.5)

Because yn was assumed to be an uncorrelated sequence, the two terms in the pre-
diction error en+1/n = yn+1 − ŷn+1/n will be uncorrelated since ŷn+1/n depends only on
data up to n. Therefore, the variance of the prediction error en+1/n will be:

σ2
e = σ2

y +σ2
ŷ = σ2

y
[
1+ uT1R−1QR−1u1

]
(24.7.6)

For the case d = 0, we have

R =
∞∑
k=0

λk = 1

1− λ
, Q =

∞∑
k=0

λ2k = 1

1− λ2

which gives the usual results:

σ2
ŷ = Σcc = 1− λ

1+ λ
σ2
y , σ2

e = σ2
y +σ2

ŷ =
2

1+ λ
σ2
y

24.7. SMOOTHING PARAMETER SELECTION 1187

For d = 1, we have as in Eq. (24.6.7),

R = 1

(1− λ)3

[
(1− λ)2 −λ(1− λ)
−λ(1− λ) λ(1+ λ)

]
,

with the Q matrix being obtained from R by replacing λ→ λ2,

Q = 1

(1− λ2)3

[
(1− λ2)2 −λ2(1− λ2)
−λ2(1− λ2) λ2(1+ λ2)

]

It follows then that

Σcc = σ2
y R−1QR−1 = 1− λ

(1+ λ)3

[
1+ 4λ+ 5λ2 (1− λ)(1+ 3λ)

(1− λ)(1+ 3λ) 2(1− λ)2

]
(24.7.7)

The diagonal entries are the variances of the level and slope signals an, bn:

σ2
a =

(1− λ)(1+ 4λ+ 5λ2)
(1+ λ)3

σ2
y , σ2

b =
2(1− λ)3

(1+ λ)3
σ2
y (24.7.8)

For the prediction variance, we find

σ2
ŷ = σ2

y uT1 (R−1QR−1)u1 = (1− λ)(λ2 + 4λ+ 5)
(1+ λ)3

σ2
y (24.7.9)

which gives for the prediction error:

σ2
e = σ2

y +σ2
ŷ =

[
1+ (1− λ)(λ2 + 4λ+ 5)

(1+ λ)3

]
σ2
y =

2(3+ λ)
(1+ λ)3

σ2
y (24.7.10)

In order to achieve an equivalent smoothing performance with a d = 0 EMA, one
must equate the corresponding prediction variances, or mean-square errors. If λ0, λ1

denote the equivalent d = 0 and d = 1 parameters, the condition reads:

2

1+ λ0
= 2(3+ λ1)
(1+ λ1)3

⇒ λ0 = (1+ λ1)3

3+ λ1
− 1 (24.7.11)

Eq. (24.7.11) may also be solved for λ1 in terms of λ0,

λ1 = 1

3
D0 + 1+ λ0

D0
− 1 , D0 =

[
27(1+ λ0)+

√
27(1+ λ0)2(26− λ0)

]1/3

(24.7.12)

Setting λ0 = 0 gives D0 = (27+3
√

78)1/3 and λ1 = 0.5214. For all λ1 ≥ 0.5214, the
equivalent λ0 is non-negative and the NRR σ2

ŷ/σ2
y of the prediction filter remains less

than unity.
The corresponding FIR averager would have length N0 = (1+λ0)/(1−λ0), whereas

an equivalent zero-lag FIR filter should have length N1 that matches the corresponding
NRRs. We have from Eq. (24.4.9):

2(2N1 − 1)
N1(N1 + 1)

= 1− λ0

1+ λ0

1188 24. EXPONENTIAL MOVING AVERAGE FILTERS

which gives,

λ0 = N2
1 − 3N1 + 2

N2
1 + 5N1 − 2

� N1 =
3+ 5λ0 +

√
33λ2

0 + 30λ0 + 1

2(1− λ0)
(24.7.13)

The MATLAB function emap implements Eq. (24.7.12),

la1 = emap(la0); % mapping equivalent λ’s between d = 0 and d = 1 EMAs

The computed λ1 is an increasing function of λ0 and varies over 0.5214 ≤ λ1 ≤ 1
as λ0 varies over 0 ≤ λ0 ≤ 1.

Example 24.7.1: The lower-right graph of Fig. 24.7.1 shows a zero-lag FIR filter defined by
Eq. (24.4.4) with length N1 = 100 and applied to the noisy signal shown on the upper-left
graph. The noisy signal was yn = 20 + 0.2n + 4vn, for 0 ≤ n ≤ 300, with zero-mean,
unit-variance, white noise vn.

0 75 150 225 300
0

20

40

60

80

100

n

noisy data

0 75 150 225 300
0

20

40

60

80

100

n

steady EMA with d = 0, λ = λ0

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

steady EMA with d = 1, λ = λ1

 noise−free
 output

0 75 150 225 300
0

20

40

60

80

100

n

zero− lag FIR with equivalent length N1

 noise−free
 output

Fig. 24.7.1 Comparison of two equivalent steady-state EMAs with equivalent zero-lag FIR.

The equivalent EMA parameter for d = 0 was found from (24.7.13) to be λ0 = 0.9242, which
was then mapped to λ1 = 0.9693 of an equivalent d = 1 EMA using Eq. (24.7.12). The
upper-right graph shows the d = 0 EMA output, and the lower-left graph, the d = 1 EMA.
The steady-state version was used for both EMAs with default initializations. The following
MATLAB code illustrates the calculations:

24.7. SMOOTHING PARAMETER SELECTION 1189

t = 0:300; s = 20 + 0.2*t;
randn(’state’, 1000);
y = s + 4 * randn(size(t)); % noisy input

N1 = 100;
la0 = (N1^2-3*N1+2)/(N1^2+5*N1-2); % equivalent λ0

la1 = emap(la0); % equivalent λ1

C = stema(y,0,la0); x0 = C(:,1); % steady EMA with d = 0, λ = λ0

C = stema(y,1,la1); x1 = C(:,1); % steady EMA with d = 1, λ = λ1

k=0:N1-1; h = 2*(2*N1-1-3*k)/N1/(N1+1); % zero-lag FIR of length N1

% h = lpinterp(N1,1,-(N1-1)/2)’; % alternative calculation

xh = filter(h,1,y);

figure; plot(t,y,’-’, t,s,’-’); figure; plot(t,s,’--’, t,x0,’-’);
figure; plot(t,s,’--’, t,x1,’-’); figure; plot(t,s,’--’, t,xh,’-’);

We observe that all three outputs achieve comparable noise reduction. The d = 0 EMA suffers
from the expected delay. Both the d = 1 EMA and the zero-lag FIR filter follow the straight-
line input with no delay, after the initial transients have subsided. 	

The choice of the parameterλ is more of an art than science. There do exist, however,
criteria that determine an “optimum” value. Given the prediction ŷn/n−1 = uT1 c(n− 1)
of yn, and prediction error en/n−1 = yn− ŷn/n−1, the following criteria, to be minimized
with respect to λ, are widely used:

MSE = mean(e2
n/n−1) , (mean square error)

MAE = mean
(|en/n−1|

)
, (mean absolute error)

MAPE = mean
(
100|en/n−1/yn|

)
, (mean absolute percentage error)

(24.7.14)

where the mean may be taken over the entire data set or over a portion of it. Usually,
the criteria are evaluated over a range of λ’s and the minimum is selected. Typically,
the criteria tend to underestimate the value of λ, that is, they produce too small a λ to
be useful for smoothing purposes. Even so, the optimum λ has been used successfully
for forecasting applications. The MATLAB function emaerr calculates these criteria for
any vector of λ’s and determines the optimum λ in that range:

[err,lopt] = emaerr(y,d,lambda,type); % mean error criteria

where type takes one of the string values ’mse’,’mae’,’mape’ and err is the criterion
evaluated at the vector lambda, and lopt is the corresponding optimum λ.

Example 24.7.2: Fig. 24.7.2 shows the same Dow-Jones data of Example 24.1.2. The MSE crite-
rion was searched over the range 0.1 ≤ λ ≤ 0.9. The upper-left graph shows the MSE versus
λ. The minimum occurs at λopt = 0.61.

The upper-right graph shows the d = 1 exact EMA run with λ = λopt. The EMA output is
too rough to provide adequate smoothing. The other criteria are even worse. The MAE and
MAPE optima both occur at λopt = 0.56. For comparison, the bottom two graphs show the
d = 1 exact EMA run with the two higher values λ = 0.90 and λ = 0.95. The MATLAB code
generating these graphs was as follows:

1190 24. EXPONENTIAL MOVING AVERAGE FILTERS

0 0.2 0.4 0.6 0.8 1
0.03

0.04

0.05

0.06

0.07

λ

MSE, λopt = 0.61

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with d = 1, λ = λopt

 data
 smoothed

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with d = 1, λ = 0.9

 data
 smoothed

0 100 200 300 400 500
6

7

8

9

10

11

12

13

14

15

th
ou

sa
n

ds

trading days

EMA with d = 1, λ = 0.95

 data
 smoothed

Fig. 24.7.2 MSE criterion for the DJIA data.

Y = loadfile(’dow-oct07-dec09.dat’); % read data

y = Y(:,1)/1000; n = (0:length(y)-1)’;

d = 1; u1 = ones(d+1,1); % polynomial order for EMA

la = linspace(0.1, 0.9, 81); % range of λ’s to search

[err,lopt] = emaerr(y,d,la,’mse’); % evaluate MSE at this range of λ’s

figure; plot(la,err, lopt,min(err),’.’); % upper-left graph

C = ema(y,d,lopt); yhat = C*u1;
figure; plot(n,y,’:’, n,yhat,’-’); % upper-right graph

la=0.90; C = ema(y,d,la); yhat = C*u1; % bottom-left graph

figure; plot(n,y,’:’, n,yhat,’-’); % use la=0.95 for bottom-right

We note that the d = 1 smoother is more capable in following the signal than the d = 0 one.
We plotted the forecasted value ŷn+1/n = cT(n)u1 versus n. Because the output matrix C

from the ema function has the cT(n) as its rows, the entire vector of forecasted values can be
calculated by acting by C on the unit vector u1, that is, yhat = C*u1. 	

24.8. SINGLE, DOUBLE, TRIPLE EXPONENTIAL SMOOTHING 1191

24.8 Single, Double, Triple Exponential Smoothing

Single exponential smoothing is the same as first-order, d = 0, steady-state exponential
smoothing. We recall its filtering equation and corresponding transfer function:

a[1]n = λa[1]n−1 +αyn , H[1](z)= H(z)= α
1− λz−1

(24.8.1)

where α = 1 − λ. Double smoothing refers to filtering a[1]n one more time through
the same filter H(z); and triple smoothing, two more times. The resulting filtering
equations and transfer functions (from the overall input yn to the final outputs) are:

a[2]n = λa[2]n−1 +αa[1]n , H[2](z)=
(

α
1− λz−1

)2

a[3]n = λa[3]n−1 +αa[2]n , H[3](z)=
(

α
1− λz−1

)3
(24.8.2)

yn −→ H −→ a[1]n −→ H −→ a[2]n −→ H −→ a[3]n

Thus, the filter H(z) acts once, twice, three times, or in general d+1 times, in cas-
cade, producing the outputs,

yn−→ H −→a[1]n −→ H −→a[2]n −→ H −→a[3]n −→· · ·−→a[d]n −→ H −→a[d+1]
n (24.8.3)

The transfer function and the corresponding causal impulse response from yn to the
r-th output a[r]n are, for r = 1,2, . . . , d+1 with u(n) denoting the unit-step function:

H[r](z)= [H(z)]r = (α
1− λz−1

)r
� h[r](n)= αrλn

(n+ r − 1)!
n!(r − 1)!

u(n) (24.8.4)

Double and triple exponential smoothing are in a sense equivalent to the d = 1 and
d = 2 steady-state EMA filters of Eq. (24.6.9) and (24.6.11). From Eq. (24.6.19), which in
this case reads H(z)= [Ha(z),Hb(z)]T, we may obtain the transfer functions from yn
to the outputs an and bn:

Ha(z)= (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

, Hb(z)= (1− λ)2(1− z−1)
(1− λz−1)2

(24.8.5)

It is straightforward to verify that Ha and Hb are related to H and H2 by

Ha = 2H −H2 = 1− (1−H)2

Hb = α
λ
(H −H2)

(local level filter)

(local slope filter)
(24.8.6)

In the time domain this implies the following relationships between thean, bn signals
and the cascaded outputs a[1]n , a[2]n :

an = 2a[1]n − a[2]n = local level

bn = α
λ
(
a[1]n − a[2]n

) = local slope
(24.8.7)

1192 24. EXPONENTIAL MOVING AVERAGE FILTERS

which can be written in a 2×2 matrix form:[
an
bn

]
=
[

2 −1
α/λ −α/λ

][
a[1]n

a[2]n

]
⇒

[
a[1]n

a[2]n

]
=
[

1 −λ/α
1 −2λ/α

][
an
bn

]
(24.8.8)

Similarly, for the d = 2 case, the transfer functions from yn to an, bn, cn are:

Ha(z) = α
[
1+ λ+ λ2 − 3λ(1+ λ)z−1 + 3λ2z−2

]
(1− λz−1)3

Hb(z) = 1

2

α2(1− z−1)
[
3(1+ λ)−(5λ+ 1)z−1

]
(1− λz−1)3

Hc(z) = 1

2

α3(1− z−1)2

(1− λz−1)3

(24.8.9)

which are related to H,H2,H3 by the matrix transformation:⎡⎢⎣HH2

H3

⎤⎥⎦ =
⎡⎢⎣ 1 −λ/α λ(λ+ 1)/α2

1 −2λ/α 2λ(2λ+ 1)/α2

1 −3λ/α 3λ(3λ+ 1)/α2

⎤⎥⎦
⎡⎢⎣Ha
Hb
Hc

⎤⎥⎦ (24.8.10)

implying the transformation between the outputs:⎡⎢⎢⎣ a
[1]
n

a[2]n

a[3]n

⎤⎥⎥⎦ =
⎡⎢⎣ 1 −λ/α λ(λ+ 1)/α2

1 −2λ/α 2λ(2λ+ 1)/α2

1 −3λ/α 3λ(3λ+ 1)/α2

⎤⎥⎦
⎡⎢⎣ anbn
cn

⎤⎥⎦ (24.8.11)

with corresponding inverse relationships,⎡⎢⎣Ha
Hb
Hc

⎤⎥⎦ = 1

2λ2

⎡⎢⎣ 6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎦
⎡⎢⎣HH2

H3

⎤⎥⎦ (24.8.12)

⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2λ2

⎡⎢⎢⎣
6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n

a[3]n

⎤⎥⎥⎦ (24.8.13)

In particular, we have:

Ha = 3H − 3H2 +H3 = 1− (1−H)3 (24.8.14)

and
ŷn/n = an = 3a[1]n − 3a[2]n + a[3]n (24.8.15)

More generally, for an order-d polynomial EMA, we have [827],

Ha = 1− (1−H)d+1 (24.8.16)

ŷn/n = an = −
d+1∑
r=1

(−1)r
(
d+ 1

r

)
a[r]n (24.8.17)

24.9. TUKEY’S TWICING OPERATION 1193

24.9 Tukey’s Twicing Operation

There is an interesting interpretation [839] of these results in terms of Tukey’s twic-
ing operation [841] and its generalizations to thricing, and so on. To explain twicing,
consider a smoothing operation, which for simplicity we may assume that it can be rep-
resented by the matrix operation ŷ = Hy, or if so preferred, in the z-domain as the
multiplication of z-transforms Ŷ(z)= H(z)Y(z).

The resulting residual error is e = y− ŷ = (I −H)y. In the twicing procedure, the
residuals are filtered through the same smoothing operation, which will smooth them
further, ê = He = H(I−H)y, and the result is added to the original estimate to get an
improved estimate:

ŷimpr = ŷ+ ê = [H +H(I −H)
]
y = [2H −H2]y (24.9.1)

which is recognized as the operation (24.8.6). The process can be continued by repeating
it on the residuals of the residuals, and so on. For example, at the next step, one would
compute the new residual r = e − ê = (I −H)e = (I −H)2y, then filter it through H,
r̂ = Hr = H(I −H)2y, and add it to get the “thriced” improved estimate:

ŷimpr = ŷ+ ê+ r̂ = [H +H(I −H)+H(I −H)2]y = [3H − 3H2 +H3]y (24.9.2)

which is Eq. (24.8.14). The process can be continued d times, resulting in,

ŷimpr = H
[
I + (I −H)+(I −H)2+· · · + (I −H)d

]
y = [I − (I −H)d+1]y (24.9.3)

Twicing and its generalizations can be applied with benefit to any smoothing oper-
ation, for example, if we used an LPRS filter designed by B = lprs(N,d, s), the compu-
tational steps for twicing would be:

ŷ = lpfilt(B,y) ⇒ e = y− ŷ ⇒ ê = lpfilt(B, e) ⇒ ŷimpr = ŷ+ ê

A limitation of twicing is that, while it drastically improves the passband of a lowpass
smoothing filter, it worsens its stopband. To see this, we write for the improved transfer
function, Himpr(z)= 1−(1−H(z))d+1

. In the passband, H is near unity, say H ≈ 1−ε,
with |ε| � 1, then,

Himpr = 1− (1− (1− ε)
)d+1 = 1− εd+1

thus, making the passband ripple (d+1) orders of magnitude smaller. On the other
hand, in the stopband, H is near zero, say H ≈ ±ε, resulting in a worsened stopband,

Himpr = 1− (1∓ ε)d+1≈ 1− (1∓ (d+ 1)ε
) = ±(d+ 1)ε

The twicing procedure has been generalized by Kaiser and Hamming [842] to the
so-called “filter sharpening” that improves both the passband and the stopband. For
example, the lowest-order filter combination that achieves this is,

Himpr = H2(3− 2H)= 3H2 − 2H3 (24.9.4)

1194 24. EXPONENTIAL MOVING AVERAGE FILTERS

where now both the passband and stopband ripples are replaced by ε → ε2. More
generally, it can be shown [842] that the filter that achieves pth order tangency at H = 0
and qth order tangency at H = 1 is given by

Himpr = Hp+1
q∑

k=0

(p+ k)!
p!k!

(1−H)k (24.9.5)

The multiple exponential moving average case corresponds to p = 0 and q = d,
resulting in Himpr = 1− (1−H)d+1, whereas Eq. (24.9.4) corresponds to p = q = 1.

24.10 Zero-Lag Filters and Twicing

Another advantage of twicing and, more generally, filter sharpening is that the resulting
improved smoothing filter always has zero lag, that is, n̄ = 0.

Indeed, assuming unity DC gain for the original filter, H(z)
∣∣
z=1 = 1, it is straight-

forward to show that the general formula (24.9.5) gives for the first derivative:

H′
impr(z)

∣∣
z=1 = 0 (24.10.1)

which implies that its lag is zero, n̄ = 0, by virtue of Eq. (24.1.18). The twicing procedure,
or its generalizations, for getting zero-lag filters is not limited to the exponential moving
average. It can be applied to any other lowpass filter. For example, if we apply it to an
ordinary length-N FIR averager, we would obtain:

H(z)= 1

N

N−1∑
n=0

z−n = 1

N
1− z−N

1− z−1
⇒ Ha(z)= 2H(z)−H2(z) (24.10.2)

The impulse response of Ha(z) can be shown to be, where 0 ≤ n ≤ 2(N − 1),

ha(n)=
(

2N − 1− n
N2

)[
u(n)−2u(n−N)+u(n− 2N + 1)

]
(24.10.3)

It is straightforward to show that n̄a = 0 and that its noise-reduction ratio is

R = 8N2 − 6N + 1

3N3
(24.10.4)

Because of their zero-lag property, double and triple EMA filters are used as trend
indicators in the financial markets [881,882]. The application of twicing to the modified
exponential smoother of Eq. (15.2.2) gives rise to a similar indicator called the instanta-
neous trendline [869], and further discussed in Problem 24.8. We discuss such market
indicators in Chap. 25.

The zero-lag property for a causal lowpass filter comes at a price, namely, that al-
though its magnitude response is normalized to unity at ω = 0 and has a flat derivative
there, it typically bends upwards developing a bandpass peak near DC before it attenu-
ates to smaller values at higher frequencies. See, for example, Fig. 24.10.1.

This behavior might be deemed to be objectionable since it tends to unevenly amplify
the low-frequency passband of the filter.

24.10. ZERO-LAG FILTERS AND TWICING 1195

To clarify these remarks, consider a lowpass filter H(ω) (with real-valued impulse
response hn) satisfying the gain and flatness conditions H(0)= 1 and H′(0)= 0 at
ω = 0. The flatness condition implies the zero-lag property n̄ = 0. Using these two
conditions, it is straightforward to verify that the second derivative of the magnitude
response at DC is given by:

d2

dω2

∣∣H(ω)
∣∣2
ω=0 = 2 Re

[
H′′(0)

]+ 2|H′(0)|2 = 2 Re
[
H′′(0)

] = −2
∞∑
n=0

n2hn

(24.10.5)
Because n̄ = ∑

n nhn = 0, it follows that some of the coefficients hn must be nega-
tive, which can cause (24.10.5) to become positive, implying that ω = 0 is a local mini-
mum and hence the response will rise for ωs immediately beyond DC. This is demon-
strated for example in Problem 24.7 by Eq. (24.14.1), so that,

d2

dω2

∣∣H(ω)
∣∣2
ω=0 = −2

∞∑
n=0

n2hn = 4λ2

(1− λ)2

A similar calculation yields the result,

d2

dω2

∣∣H(ω)
∣∣2
ω=0 = −2

∞∑
n=0

n2hn = 1

3
(N − 1)(N − 2)

for the optimum zero-lag FIR filter of Eq. (24.4.4),

ha(k)= 2(2N − 1− 3k)
N(N + 1)

, k = 0,1, . . . ,N − 1 (24.10.6)

We note that the first derivative of the magnitude response |H(ω)|2 is always zero at
DC, regardless of whether the filter has zero lag or not. Indeed, it follows from H(0)= 1
and the reality of hn that,

d
dω

∣∣H(ω)
∣∣2
ω=0 = 2 Re

[
H′(0)

] = 0 (24.10.7)

Example 24.10.1: Zero-Lag Filters. In Problem 24.7, we saw that the double EMA filter has
transfer function and magnitude response:

Ha(z) = (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

|Ha(ω)|2 = (1− λ)2
[
1+ 2λ+ 5λ2 − 4λ(1+ λ)cosω

][
1− 2λ cosω+ λ2

]2

and that a secondary peak develops at,

cosωmax = 1+ 4λ− λ2

2(1+ λ)
, |Ha(ωmax)|2 = (1+ λ)2

1+ 2λ

The left graph of Fig. 24.10.1 shows the magnitude responses for the two cases of λ = 0.8
and λ = 0.9. The calculated peak frequencies are ωmax = 0.1492 and ωmax = 0.0726
rads/sample, corresponding to periods of 2π/ωmax = 42 and 86 samples/cycle. The peak
points are indicated by black dots on the graph.

1196 24. EXPONENTIAL MOVING AVERAGE FILTERS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ω in units of π

|H
a(ω

)|
2

double EMA filters

 λ = 0.8
 λ = 0.9
 max

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ω in units of π

|H
0(ω

)|
2

zero−lag FIR filters

 N = 15
 N = 33

Fig. 24.10.1 Double EMA and zero-lag FIR filter responses.

The right graph shows the magnitude responses of the optimum zero-lag FIR filter ha(k)
of Eq. (24.10.6) for the two lengths N = 15 and N = 33. The lengths N were calculated to
achieve equivalent behavior in the vicinity of DC, i.e., equal second derivatives at ω = 0,

4λ2

(1− λ)2
= 1

3
(N − 1)(N − 2) ⇒ N = 3

2
+
√

12λ2

(1− λ)2
+ 1

4

The magnitude responses were computed from the above formulas for the double EMA cases,
and by the following MATLAB code in the FIR cases:

w = linspace(0,1,1001); % ω in units of π
N = 15; k = (0:N-1);
h = 2*(2*N-1-3*k)/N/(N+1);
H2 = abs(freqz(h,1,pi*w)).^2; % magnitude response squared

We observe from these examples that the zero-lag filters have less than desirable passbands.
However, they do act as lowpass filters, attenuating the high frequencies and thereby smooth-
ing the input signal. 	

24.11 Local Level, Local Slope, Local Acceleration Filters

Since the twicing operation can be applied to any lowpass filter H(z) resulting in the
zero-lag local-level filter,Ha(z)= 2H(z)−H2(z), it raises the question as to what would
be the corresponding local-slope filter Hb(z), in other words, what is the generalization
of Eqs. (24.8.6) for an arbitrary filter H(z), and similarly, what is the generalization of
Eq. (24.8.12) for the thricing operations.

Starting with an arbitrary causal lowpass filter H(z), with impulse response h(n),
and assuming that it has unity gain at DC, the local level, slope, and acceleration filters
depend on the following two filter moments:

μ1 = n̄ =
∞∑
n=0

nh(n) , μ2 =
∞∑
n=0

n2h(n) (24.11.1)

24.11. LOCAL LEVEL, LOCAL SLOPE, LOCAL ACCELERATION FILTERS 1197

In terms of these parameters, the generalization of Eq. (24.8.6) is then,

Ha(z) = 2H(z)−H2(z)

Hb(z) = 1

μ1

[
H(z)−H2(z)

] (local level filter)

(local slope filter)
(24.11.2)

while the generalization of (24.8.12) is,⎡⎢⎣Ha(z)
Hb(z)
Hc(z)

⎤⎥⎦ = 1

2μ3
1

⎡⎢⎣ 6μ3
1 −6μ3

1 2μ3
1

μ2 + 4μ2
1 −2(μ2 + 3μ2

1) μ2 + 2μ2
1

μ1 −2μ1 μ1

⎤⎥⎦
⎡⎢⎣H(z)H2(z)
H3(z)

⎤⎥⎦ (24.11.3)

and in particular,
Ha = 3H − 3H2 +H3 = 1− (1−H)3 (24.11.4)

For an EMA filter, h(n)= (1− λ)λnu(n), we have,

μ1 = λ
1− λ

, μ2 = λ(1+ λ)
(1− λ)2

and Eqs. (24.11.2) and (24.11.3) reduce to (24.8.6) and (24.8.12), respectively. To justify
(24.11.2), consider a noiseless straight-line input signal, yn = a+bn. Since it is linearly
rising and noiseless, the local-level will be itself, and the local-slope will be constant,
that is, we may define,

an ≡ a+ bn , bn ≡ b

Following the calculation leading to Eq. (24.1.24), we can easily verify that the two
successive outputs, a[1]n , a[2]n , from the twice-cascaded filter h(n), will be,

a[1]n = a+ b(n− μ1)= (a− μ1b)+bn = a+ bn− μ1b = an − μ1bn

a[2]n = (a− μ1b− μ1b)+bn = (a− 2μ1b)+bn = an − 2μ1bn

These may be solved for an, bn in terms of a[1]n , a[2]n , leading to the following time-
domain relationships, which are equivalent to Eqs. (24.11.2),

an = 2a[1]n − a[2]n

bn = 1

μ1

(
a[1]n − a[2]n

)
For the thricing case, consider a noiseless input that is quadratically varying with

time, yn = a + bn + cn2, so that its local level, local slope, and local acceleration may
be defined as,†

an ≡ a+ bn+ cn2 , bn ≡ b+ 2cn , cn ≡ c
†true acceleration would be represented by 2c.

1198 24. EXPONENTIAL MOVING AVERAGE FILTERS

Upon passing through the first stage of h(n), the output will be,

a[1]n =
∑
k

[
a+ b(n− k)+c(n− k)2]h(k)

=
∑
k

[
a+ b(n− k)+c(n2 − 2nk+ k2)

]
h(k)

= a+ b(n− μ1)+c(n2 − 2nμ1 + μ2)

= (a− bμ1 + cμ2)+(b− 2cμ1)n+ cn2

and applying the same formula to the second and third stages of h(n), we find the
outputs,

a[1]n = (a− bμ1 + cμ2)+(b− 2cμ1)n+ cn2

a[2]n = (a− 2bμ1 + 2cμ2 + 2cμ2
1)+(b− 4cμ1)n+ cn2

a[3]n = (a− 3bμ1 + 3cμ2 + 6cμ2
1)+(b− 6cμ1)n+ cn2

which can be re-expressed in terms of the an, bn, cn signals,

a[1]n = an − μ1bn + μ2cn

a[2]n = an − 2μ1bn + 2(μ2 + μ2
1)cn

a[3]n = an − 3μ1bn + 3(μ2 + 2μ2
1)cn

Solving these for an, bn, cn leads to the time-domain equivalent of Eq. (24.11.3),⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2μ3
1

⎡⎢⎣ 6μ3
1 −6μ3

1 2μ3
1

μ2 + 4μ2
1 −2(μ2 + 3μ2

1) μ2 + 2μ2
1

μ1 −2μ1 μ1

⎤⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n

a[3]n

⎤⎥⎥⎦
and in particular,

an = 3a[1]n − 3a[2]n + a[3]n

24.12 Basis Transformations and EMA Initialization

The transformation matrix between the c(n)= [c0(n), c1(n), . . . , cd(n)]T basis and
the cascaded basis a(n)= [a[1]n , a[2]n , . . . , a[d+1]

n]T can be written in the general form:

a(n)=Mc(n) ⇒ a[r]n =
d∑
i=0

Mrici(n) , r = 1,2, . . . , d+1 (24.12.1)

The matrix elements Mri can be found by looking at the special case when the input
is a polynomial of degree d,

xn+τ =
d∑
i=0

τici(n)

24.12. BASIS TRANSFORMATIONS AND EMA INITIALIZATION 1199

The convolutional output of the filter H[r](z) is then,

a[r]n =
∞∑
k=0

h[r](k)xn−k =
∞∑
k=0

h[r](k)
d∑
i=0

(−k)ici(n)

It follows that,

Mri =
∞∑
k=0

h[r](k)(−k)i=
∞∑
k=0

αrλk
(k+ r − 1)!
k!(r − 1)!

(−k)i (24.12.2)

with 1 ≤ r ≤ d+ 1 and 0 ≤ i ≤ d. The matrices for d = 1 and d = 2 in Eqs. (24.8.8) and
(24.8.11) are special cases of (24.12.2). The function emat calculates M numerically,

M = emat(d,lambda); % polynomial to cascaded basis transformation matrix

One of the uses of this matrix is to determine the initial condition vector in the a[r]n
basis, a init =Mc init, where c init is more easily determined, for example, using the default
method of the function stema.

The function mema implements the multiple exponential moving average in cascade
form, generating the individual outputs a[r]n :

[a,A] = mema(y,d,la,ainit); % multiple exponential moving average

where A is an N×(d+1) matrix whose nth row is a(n)T= [a[1]n , a[2]n , . . . , a[d+1]
n

]
, and a

is the an output of Eq. (24.8.17). The (d+1)×1 vector ainit represents the initial values
of a(n), that is, a init =

[
a[1]init , a

[2]
init , . . . , a

[d+1]
init

]T
. If the argument ainit is omitted, it

defaults to the following least-squares fitting procedure:

L = round((1+la)/(1-la)); % effective length of single EMA

cinit = lpbasis(L,d,-1) \ y(1:L); % fit order-d polynomial to first L inputs

M = emat(d,la); % transformation matrix to cascaded basis

ainit = M*cinit; % (d+1)×1 initial vector

The function mema calculates the filter outputs using the built-in function filter
to implement filtering by the single EMA filter H(z)= α/(1 − λz−1) and passing each
output to the next stage, for example, with a[0]n = yn,

a[r] = filter
(
α, [1,−λ], a[r−1], λa[r]init

)
, r = 1,2, . . . , d+ 1 (24.12.3)

The last argument of filter imposes the proper initial state on the filtering op-
eration (the particular form is dictated from the fact that filter uses the transposed
realization.) Eq. (24.12.3) is equivalent to the operations:

a[r]n = λa[r]n−1 +αa[r−1]
n , r = 1,2, . . . , d+ 1 (24.12.4)

Example 24.12.1: EMA Initialization. To clarify these operations and the initializations, we
consider a small example using d = 1 (double EMA) and λ = 0.9, α = 1− λ = 0.1. The data
vector y has length 41 and is given in the code segment below.

The top two graphs in Fig. 24.12.1 show the default initialization method in which a linear
fit (because d = 1) is performed to the first L = (1 + λ)/(1 − λ)= 19 data samples. In the

1200 24. EXPONENTIAL MOVING AVERAGE FILTERS

bottom two graphs, the initialization is based on performing the linear fit to just the first
L = 5 samples.

In all cases, the linearly-fitted segments are shown on the graphs (short dashed lines). In
the left graphs, the initialization parameters c init, a init were determined at time n = −1 and
processing began at n = 0. In the right graphs, the c init, a init were recalculated to correspond
to time n = L−1 (i.e., n = 18 and n = 4 for the top and bottom graphs), and processing was
started at n = L. The table below displays the computations for the left and right bottom
graphs.

For both the left and right tables, the same five data samples {yn,0 ≤ n ≤ 4} were used to
determine the initialization vectors c init, which were then mapped into a init = Mc init. The
transformation matrix M is in this example (cf. Eq. (24.8.8)):

M =
[

1 −λ/α
1 −2λ/α

]
=
[

1 −9
1 −18

]

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = −1, filter for n ≥ 0

 double EMA
 linear fit, L = 19
 data

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = L−1, filter for n ≥ L

 double EMA
 linear fit, L = 19
 data

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = −1, filter for n ≥ 0

 double EMA
 linear fit, L = 5
 data

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

n

initialize at n = L−1, filter for n ≥ L

 double EMA
 linear fit, L = 5
 data

Fig. 24.12.1 Double-EMA initialization examples.

24.12. BASIS TRANSFORMATIONS AND EMA INITIALIZATION 1201

n yn a[1]n a[2]n

−1 −5.2000 −18.7000

0 7 −3.9800 −17.2280
1 14 −2.1820 −15.7234
2 12 −0.7638 −14.2274
3 19 1.2126 −12.6834
4 12 2.2913 −11.1860

5 14 3.4622 −9.7211
6 16 4.7160 −8.2774
...

...
...

...
39 44 39.2235 30.5592
40 47 40.0011 31.5034

n yn a[1]n a[2]n

−1

0 7
1 14
2 12
3 19
4 12 2.3000 −11.2000

5 14 3.4700 −9.7330
6 16 4.7230 −8.2874
...

...
...

...
39 44 39.2237 30.5596
40 47 40.0013 31.5037

For the left table, the data fitting relative to n = −1 gives:

c init =
[

8.3
1.5

]
⇒ a init =Mc init =

[
1 −9
1 −18

][
8.3
1.5

]
=
[
−5.2
−18.7

]

obtained from cinit = S\y(1:L), indeed, with S = lpbasis(L, d,−1), we find

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1
1 2
1 3
1 4
1 5

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ c init = (STS)−1STy1:L =
[

0.8 0.5 0.2 −0.1 −0.4
−0.2 −0.1 0.0 0.1 0.2

]
⎡⎢⎢⎢⎢⎢⎢⎣

7
14
12
19
12

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

8.3
1.5

]

These initial values are shown at the top of the left table. The rest of the table entries are
computed by cranking the difference equations for n ≥ 0,

a[1]n = λa[1]n−1 +αyn

a[2]n = λa[2]n−1 +αa[1]n

for example,

a[1]0 = λa[1]−1 +αy0 = (0.9)(−5.2)+(0.1)(7)= −3.980

a[2]0 = λa[2]−1 +αa[1]0 = (0.9)(−18.7)+(0.1)(−3.98)= −17.228

For the right table, the initialization coefficients relative to n = L−1 = 4 may be determined
by boosting those for n = −1 by L = 5 time units:

c̄ init = (FT)Lc init =
[

1 1
0 1

]5 [
8.3
1.5

]
=
[

1 5
0 1

][
8.3
1.5

]
=
[

15.8
1.5

]

ā init =Mc̄ init =
[

1 −9
1 −18

][
15.8
1.5

]
=
[

2.3
−11.2

]

1202 24. EXPONENTIAL MOVING AVERAGE FILTERS

Alternatively, c̄ init can be computed from cinit = lpbasis(L,d,L-1)\y(1:L), i.e.,

S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −4
1 −3
1 −2
1 −1
1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ c̄ init = (STS)−1STy1:L =
[
−0.2 0.0 0.2 0.4 0.6
−0.2 −0.1 0.0 0.1 0.2

]
⎡⎢⎢⎢⎢⎢⎢⎣

7
14
12
19
12

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

15.8
1.5

]

The ā init values are shown on the right table at then = 4 line. The rest of the table is computed
by cranking the above difference equations starting at n = 5. For example,

a[1]5 = λa[1]4 +αy5 = (0.9)(2.3)+(0.1)(14)= 3.47

a[2]5 = λa[2]4 +αa[1]5 = (0.9)(−11.2)+(0.1)(3.47)= −9.733

We note that the filtered values at n = L − 1 = 4 on the left table and the initial values
on the right table are very close to each other, and therefore, the two initialization methods
produce very comparable results for the output segments n ≥ L. The following MATLAB
code illustrates the generation of the bottom graphs in Fig. 24.12.1:

y = [7 14 12 19 12 14 16 26 24 22 13 22 26 15 22 28 28 29 34 23 26 ...
39 29 34 32 38 40 40 40 35 32 41 45 41 41 48 42 44 52 44 47]’;

n = (0:length(y)-1)’;

d=1; F=binmat(d,1); L=5; % F = boost matrix - not needed

la = 0.9; al = 1-la;
% L = round((1+la)/(1-la)); % use this L for the top two graphs

cinit = lpbasis(L,d,-1)\y(1:L); % fit relative to n = −1

M = emat(d,la); % transformation matrix

ainit = M*cinit; % initial values for cascade realization

C = stema(y,d,la,cinit); % needed for testing purposes only

[a,A] = mema(y,d,la,ainit); % filter for n ≥ 0

N1 = norm(A-C*M’) + norm(a-C(:,1)); % compare stema and mema outputs

t = (0:L-1)’; p = lpbasis(L,d,-1)*cinit; % initial L fitted values

figure; plot(n,y,’.’, n,a,’-’, t,p,’--’, n,y,’:’); % bottom left graph

cinit = lpbasis(L,d,L-1)\y(1:L); % fit relative to n = L− 1

% or, multiply previous cinit by (F’)^L

ainit = M*cinit; % initial values for cascade realization

nL = n(L+1:end); yL = y(L+1:end); % restrict input to n ≥ L

C = stema(yL,d,la,cinit); % needed for testing purposes only

[a,A] = mema(yL,d,la,ainit); % filter for n ≥ L

N2 = norm(A-C*M’) + norm(a-C(:,1)); % compare stema and mema outputs

t = (0:L-1)’; p = lpbasis(L,d,L-1)*cinit; % initial L fitted values

figure; plot(n,y,’.’, nL,a,’-’, t,p,’--’, n,y,’:’); % bottom right graph

Ntot = N1 + N2 % overall test – should be zero

24.13. HOLT’S EXPONENTIAL SMOOTHING 1203

The first initialization scheme (finding c init, a init at n = −1 and starting filtering at n = 0) is
generally preferable because it produces an output of the same length as the input. 	

An alternative initialization scheme that is more common in financial market trading
applications of EMA is discussed in Sec. 25.4.

24.13 Holt’s Exponential Smoothing

We recall that the d = 1 steady-state EMA was given by[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[
α1

α2

]
(yn − an−1 − bn−1) (24.13.1)

with asymptotic gain factorsα1 = 1−λ2 andα2 = (1−λ)2, which are both computable
from a single λ parameter.

Holt [824] has generalized (24.13.1) to allow arbitrary values for α1,α2. The addi-
tional flexibility has been found to be effective in applications. There is an alternative
way of writing (24.13.1). From the first equation, we have

an = an−1+bn−1+α1(yn−an−1−bn−1) ⇒ yn−an−1−bn−1 = 1

α1
(an−an−1−bn−1)

and substituting into the second,

bn = bn−1 +α2(yn − an−1 − bn−1)= bn−1 + α2

α1
(an − an−1 − bn−1)

Defining ᾱ2 = α2/α1, we may write the new system as follows:

an = an−1 + bn−1 +α1(yn − an−1 − bn−1)

bn = bn−1 + ᾱ2(an − an−1 − bn−1)
(24.13.2)

and defining the effective λ-parameters λ1 = 1−α1 and λ̄2 = 1− ᾱ2,

an = λ1(an−1 + bn−1)+α1yn

bn = λ̄2bn−1 + ᾱ2(an − an−1)
(Holt’s exponential smoothing) (24.13.3)

Eq. (24.13.1) is referred to a exponential smoothing with “local trend”. The first
equation tracks the local level an, and the second, the local slope bn, which is being
determined by smoothing the first-order difference of the local level an − an−1.

The predicted value is as usual ŷn/n−1 = an−1 + bn−1, and for the next time instant,
ŷn+1/n = an + bn, and τ steps ahead, ŷn+τ/n = an + bnτ. The MATLAB function holt
implements Eq. (24.13.1):

C = holt(y,a1,a2,cinit); % Holt’s exponential smoothing

1204 24. EXPONENTIAL MOVING AVERAGE FILTERS

where C has the same meaning as stema, its nth row cT(n)= [an, bn] holding the local
level and slope at time n. The initialization vector cinit can be chosen as in stema by
a linear fit to the first L samples of y, where L = (1 + λ)/(1 − λ), with λ determined
from α1 from the relationship α1 = 1 − λ2 or λ = √1−α1. Another possibility is to
choose c init = [y0,0]T, or, [y0, y1 − y0]T.

Like emaerr, the MATLAB function holterr evaluates the MSE/MAE/MAPE errors over
any set of parameter pairs (α1,α2) and produces the corresponding optimum pair
(α1,opt,α2,opt):

[err,a1opt,a2opt] = holterr(y,a1,a2,type,cinit); % mean error measures

By taking z-transforms of Eq. (24.13.1), we obtain the transfer functions from yn to
the two outputs an, bn:

Ha(z) = α1 + (α2 −α1)z−1

1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

Hb(z) = α2(1− z−1)
1+ (α1 +α2 − 2)z−1 + (1−α1)z−2

(24.13.4)

The transfer function from yn to the predicted output ŷn+1/n isH(z)= Ha(z)+Hb(z).
Making the usual assumption that yn is a white noise sequence, the variance of ŷn+1/n
will be σ2

ŷ =Rσ2
y , where R is the NRR of H(z):

R =
∞∑
n=0

h2(n)= 2α2
1 +α1α2 + 2α2

α1(4− 2α1 −α2)
(24.13.5)

This reduces to Eq. (24.7.9) in the EMA case of α1 = 1 − λ2 and α2 = (1 − λ)2,
while Eq. (24.13.4) reduces to (24.8.5). It can be shown that R remains less than unity
for 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 2α1(1 − α1)/(1 + α1), with R reaching unity at α1 =√

2− 1 = 0.4142 and α2 = 2α1(1−α1)/(1+α1)= 2(3− 2
√

2)= 0.3431.
There is an extensive literature on exponential smoothing, a small subset of which

is [816–863]. There are many other variants (no less than 15), such as multiplicative,
seasonal, adaptive versions. A recent review of all cases that emphasizes the state-space
point of view is found in [823].

We finish by mentioning the Holt-Winters generalization [825] of Holt’s method to
seasonal data. In addition to tracking the level and slope signals an, bn the method also
tracks the local seasonal component, say sn. For the additive version, we have:

an = λ1(an−1 + bn−1)+α1(yn − sn−D)

bn = λ̄2bn−1 + ᾱ2(an − an−1)

sn = λ3sn−D +α3(yn − an−1 − bn−1)

(Holt-Winters) (24.13.6)

whereD is the assumed periodicity of the seasonal data, andα3 and λ3 = 1−α3 are the
smoothing parameters associated with the seasonal component. The predicted estimate
is obtained by

ŷn+1/n = an + bn + sn−D

24.14. PROBLEMS 1205

24.14 Problems

24.1 Consider a filter with a real-valued impulse response hn. Let H(ω)= M(ω)e−jθ(ω) be
its frequency response, where M(ω)= |H(ω)| and θ(ω)= − argH(ω). First, argue that
θ(0)= 0 and M′(0)= 0, where M′(ω)= dM(ω)/dω. Then, show that the filter delay n̄ of
Eq. (24.1.18) is the group delay at DC, that is, show Eq. (24.1.19),

n̄ = dθ(ω)
dω

∣∣∣∣
ω=0

24.2 The lag of a filter was defined by Eqs. (24.1.17) and (24.1.18) to be,

n̄ =

∑
n
nhn∑

n
hn

= − H′(z)
H(z)

∣∣∣∣
z=1

If the filter H(z) is the cascade of two filters, H(z)= H1(z)H2(z), with individual lags,
n̄1, n̄2, then show that, regardless of whether H1(z),H2(z) are normalized to unity gain at
DC, the lag of H(z) will be the sum of the lags,

n̄ = n̄1 + n̄2

24.3 Consider a low-frequency signal s(n) whose spectrum S(ω) is limited within a narrow band
around DC, |ω| ≤ Δω, and therefore, its inverse DTFT representation is:

s(n)= 1

2π

∫ Δω

−Δω
S(ω)ejωn dω

For the purposes of this problem, we may think of the above relationship as defining s(n)
also for non-integer values of n. Suppose that the signal s(n) is filtered through a filter
H(ω) with real-valued impulse response whose magnitude response |H(ω)| is approxi-
mately equal to unity over the ±Δω signal bandwidth. Show that the filtered output can be
written approximately as the delayed version of the input by an amount equal to the group
delay at DC, that is,

y(n)= 1

2π

∫ Δω

−Δω
H(ω)S(ω)ejωn dω ≈ s(n− n̄)

24.4 Show that the general filter-sharpening formula (24.9.5) results in the following special cases:

p = 0, q = d ⇒ Himpr = 1− (1−H)d+1

p = 1, q = d ⇒ Himpr = 1− (1−H)d+1
[
1+ (d+ 1)H

]
24.5 Prove the formulas in Eqs. (24.10.5) and (24.10.7).

24.6 Prove Eq. (24.4.10).

24.7 Consider the single and double EMA filters:

H(z)= 1− λ
1− λz−1

, Ha(z)= 2H(z)−H2(z)= (1− λ)(1+ λ− 2λz−1)
(1− λz−1)2

a. Show that the impulse response of Ha(z) is:

ha(n)= (1− λ)
[
1+ λ− (1− λ)n

]
λnu(n)

1206 24. EXPONENTIAL MOVING AVERAGE FILTERS

b. Show the relationships:

∞∑
n=0

nha(n)= 0,
∞∑
n=0

n2ha(n)= − 2λ2

(1− λ)2
(24.14.1)

c. Show that the NRR of the filter Ha(z) is:

R =
∞∑
n=0

h2
a(n)=

(1− λ)(1+ 4λ+ 5λ2)
(1+ λ)3

d. Show that the magnitude response squared of Ha(z) is:

|Ha(ω)|2 = (1− λ)2
[
1+ 2λ+ 5λ2 − 4λ(1+ λ)cosω

][
1− 2λ cosω+ λ2

]2 (24.14.2)

e. Show that Eq. (24.14.2) has local minima at ω = 0 and ω = π, and a local maximum
at ω =ωmax:

cosωmax = 1+ 4λ− λ2

2(1+ λ)
(24.14.3)

and that the corresponding extremal values are:

|Ha(0)|2 = 1 , |Ha(π)|2 = (1− λ)2(1+ 3λ)2

(1+ λ)4

|Ha(ωmax)|2 = (1+ λ)2

1+ 2λ

(24.14.4)

24.8 Consider the modified EMA of Eq. (15.2.2) and its twicing,

H(z)= (1− λ)(1+ z−1)
2(1− λz−1)

, Ha(z)= 2H(z)−H2(z)= (1− λ)
(
1+ z−1)(3+ λ− z−1(1+ 3λ)

)
4(1− λz−1)2

a. Show the relationships:

∞∑
n=0

nha(n)= 0,
∞∑
n=0

n2ha(n)= − (1+ λ)2

2(1− λ)2

b. Show that the NRR of the filter Ha(z) is:

R =
∞∑
n=0

h2
a(n)=

1

8
(1− λ)(3λ+ 7)

24.9 Consider the optimum length-N predictive FIR filter hτ(k) of polynomial order d = 1 given
by Eq. (24.4.1).

a. Show that its effective lag is related to the prediction distance τ by n̄ = −τ.

b. Show that its NRR is given by

R =
N−1∑
k=0

h2
τ(k)=

1

N
+ 3(N − 1+ 2τ)2

N(N2 − 1)

Thus, it is minimized when τ = −(N − 1)/2. What is the filter hτ(k) in this case?

24.14. PROBLEMS 1207

c. Show that the second-derivative of its frequency response at DC is given by:

d2

dω2
H(ω)ω=0= −

∞∑
n=0

k2hτ(k)= 1

6
(N − 1)(N − 2+ 6τ)

Determine the range of τs for which
∣∣H(ω)

∣∣2
is sloping upwards or downwards in

the immediate vicinity of ω = 0.

d. It is evident from the previous question that the value τ = −(N − 2)/6 corresponds
to the vanishing of the second-derivative of the magnitude response. Show that in this
case the filter is simply,

h(k)= 3N(N − 1)−2k(2N − 1)
N(N2 − 1)

, k = 0,1, . . . ,N − 1

and verify explicitly the results:

N−1∑
k=0

h(k)= 1 ,
N−1∑
k=0

kh(k)= N − 2

6
,

N−1∑
k=0

k2h(k)= 0 ,
N−1∑
k=0

h2(k)= 7N2 − 4N − 2

3N(N2 − 1)

e. Show that hτ(k) interpolates linearly between the τ = 0 and τ = 1 filters, that is,
show that for k = 0,1, . . . ,N − 1,

hτ(k)= (1− τ)ha(k)+τh1(k)= ha(k)+
[
h1(k)−ha(k)

]
τ

f. Another popular choice for the delay parameter is τ = −(N − 1)/3. Show that,

h(k)= 2(N − k)
N(N + 1)

, k = 0,1, . . . ,N − 1

and that,

N−1∑
k=0

h(k)= 1 ,
N−1∑
k=0

kh(k)= N − 1

3
,

N−1∑
k=0

k2h(k)= N(N − 1)
6

,
N−1∑
k=0

h2(k)= 2(2N + 1)
3N(N + 1)

In financial market trading, the cases τ = −(N−1)/2 and τ = −(N−1)/3 correspond,
respectively, to the so-called “simple” and “weighted” moving average indicators. The
case τ = −(N − 2)/6 is not currently used, but it provides a useful compromise
between reducing the lag while preserving the flatness of the passband. By comparison,
the relative lags of three cases are:

1

6
(N − 2)<

1

3
(N − 1)<

1

2
(N − 1)

24.10 Computer Experiment: Response of predictive FIR filters. Consider the predictive FIR filter
hτ(k) of the previous problem. For N = 9, compute and on the same graph plot the magni-
tude responses |H(ω)|2 for the following values of the prediction distance:

τ = −N − 1

2
, τ = −N − 2

6
, τ = 0 , τ = 1

Using the calculated impulse response values hτ(k), 0 ≤ k ≤ N−1, and for each value of τ,
calculate the filter lag, n̄, the NRR, R, and the “curvature” parameter of Eq. (24.10.5). Recall
from part (d) of the Problem 24.9 that the second τ should result in zero curvature.

Repeat all the questions for N = 18.

1208 24. EXPONENTIAL MOVING AVERAGE FILTERS

24.11 Moving-Average Filters with Prescribed Moments. The predictive FIR filter of Eq. (25.3.3) has
lag equal to n̄ = −τ by design. Show that its second moment is not independently specified
but is given by,

n2 =
N−1∑
n=0

n2h(n)= −1

6
(N − 1)(N − 2+ 6τ) (24.14.5)

The construction of the predictive filters (25.3.3) can be generalized to allow arbitrary spec-
ification of the first and second moments, that is, the problem is to design a length-N FIR
filter with the prescribed moments,

n0 =
N−1∑
n=0

h(n)= 1 , n1 =
N−1∑
n=0

nh(n)= −τ1 , n2 =
N−1∑
n=0

n2h(n)= τ2 (24.14.6)

Show that such filter is given by an expression of the form,

h(n)= c0 + c1n+ c2n2 , n = 0,1, . . . ,N − 1

where the coefficients c0, c1, c2 are the solutions of the linear system,⎡⎢⎣ S0 S1 S2

S1 S2 S3

S2 S3 S4

⎤⎥⎦
⎡⎢⎣ λ0

λ1

λ2

⎤⎥⎦ =
⎡⎢⎣ 1
−τ1

τ2

⎤⎥⎦
where

Sp =
N−1∑
n=0

np , p = 0,1,2,3,4

Then, show that the Sp are given explicitly by,

S0 = N , S1 = 1

2
N(N − 1) , S2 = 1

6
N(N − 1)(2N − 1)

S3 = 1

4
N2(N − 1)2 , S4 = 1

30
N(N − 1)(2N − 1)(3N2 − 3N − 1)

and that the coefficients are given by,

c0 = 3(3N2 − 3N + 2)+18(2N − 1)τ1 + 30τ2

N(N + 1)(N + 2)

c1 = −18(N − 1)(N − 2)(2N − 1)+12(2N − 1)(8N − 11)τ1 + 180(N − 1)τ2

N(N2 − 1)(N2 − 4)

c2 = 30(N − 1)(N − 2)+180(N − 1)τ1 + 180τ2

N(N2 − 1)(N2 − 4)

Finally, show that the condition c2 = 0 recovers the predictive FIR case of Eq. (25.3.3) with
second moment given by Eq. (24.14.5).

24.12 Consider the Butterworth filter of Eq. (25.7.2). Show that the lag of the first-order section
and the lag of the ith second-order section are given by,

n̄0 = 1

2Ω0
, n̄i = − cosθi

Ω0
, i = 1,2, . . . , K

Using these results, prove Eq. (25.7.8) for the full lag n̄, and show that it is valid for both
even and odd filter orders M.

25
Filtering Methods in Financial Markets

25.1 Technical Analysis of Financial Markets

Technical analysis of financial markets refers to a family of signal processing methods
and indicators used by stock market traders to make sense of the constantly fluctuating
market data and arrive at successful “buy” or “sell” decisions.

Both linear and nonlinear filtering methods are used. A comprehensive reference on
such methods is the Achelis book [864]. Some additional references are [865–928,935–
937].

In this chapter,† we look briefly at some widely used indicators arising from FIR
or EMA filters, and summarize their properties and their MATLAB implementation. In
order to keep the discussion self-contained, some material from the previous sections
is repeated.

25.2 Moving Average Filters – SMA, WMA, TMA, EMA

Among the linear filtering methods are smoothing filters that are used to smooth out
the daily fluctuations and bring out the trends in the data. The most common filters are
the simple moving average (SMA) and the exponentially weighted moving average (EMA),
and variations, such as the weighted or linear moving average (WMA) and the triangular
moving average (TMA). The impulse responses of these filters are:

(SMA) h(n)= 1

N
, 0 ≤ n ≤ N − 1

(WMA) h(n)= 2(N − n)
N(N + 1)

, 0 ≤ n ≤ N − 1

(TMA) h(n)= N − ∣∣n−N + 1
∣∣

N2
, 0 ≤ n ≤ 2N − 2

(EMA) h(n)= (1− λ)λn , 0 ≤ n <∞

(25.2.1)

†adapted from the author’s book on Applied Optimum Signal Processing [45]

1209

1210 25. FILTERING METHODS IN FINANCIAL MARKETS

with transfer functions,

(SMA) H(z)= 1+ z−1 + z−2 + · · · + z−N+1

N
= 1

N
1− z−N

1− z−1

(WMA) H(z)= 2

N(N + 1)
N − (N + 1)z−1 + z−N−1

(1− z−1)2

(TMA) H(z)=
[

1

N
1− z−N

1− z−1

]2

(EMA) H(z)= α
1− λz−1

, α = 1− λ

(25.2.2)

whereN denotes the filter span for the SMA and WMA cases, while for the EMA case, λ is
a forgetting factor such that 0 < λ < 1, which is usually specified in terms an equivalent
FIR length N given by the following condition, which implies that the SMA and the EMA
filters have the same lag and the same noise reduction ratio, as discussed in Sec. 24.1,

N = 1+ λ
1− λ

⇒ λ = N − 1

N + 1
⇒ α = 1− λ = 2

N + 1
(25.2.3)

The TMA filter has length 2N − 1 and is evidently the convolution of two length-N
SMAs. Denoting by yn the raw data, where n represents the nth trading day (or, weekly,
monthly, or quarterly sample periods), we will denote the output of the moving average
filters by an representing the smoothed local level of yn. The corresponding I/O filtering
equations are then,

(SMA) an = yn + yn−1 + yn−2 + · · · + yn−N+1

N

(WMA) an = 2

N(N + 1)

N−1∑
k=0

(N − k)yn−k

(TMA) an = 1

N2

2N−2∑
k=0

(
N − |k−N + 1|)yn−k

(EMA) an = λan−1 + (1− λ)yn

(25.2.4)

The typical trading rule used by traders is to “buy” when an is rising and yn lies
above an, and to “sell” when an is falling and yn lies below an.

Unfortunately, these widely used filters have an inherent lag, which can often result
in false buy/sell signals. The basic tradeoff is that longer lengths N result in longer
lags, but at the same time, the filters become more effective in smoothing and reducing
noise in the data. The noise-reduction capability of any filter is quantified by its “noise-
reduction ratio” defined by,

R =
∞∑
n=0

h2(n) (25.2.5)

25.2. MOVING AVERAGE FILTERS – SMA, WMA, TMA, EMA 1211

with smaller R corresponding to more effective noise reduction. By construction, the
above filters are lowpass filters with unity gain at DC, therefore, satisfying the constraint,

∞∑
n=0

h(n)= 1 (25.2.6)

The “lag” is defined as the group delay at DC which, after using Eq. (25.2.6), is given by,

n̄ =
∞∑
n=0

nh(n) (25.2.7)

One can easily verify that the noise-reduction ratios and lags of the above filters are:

(SMA) R = 1

N
, n̄ = N − 1

2

(WMA) R = 4N + 2

3N(N + 1)
, n̄ = N − 1

3

(TMA) R = 2N2 + 1

3N3
, n̄ = N − 1

(EMA) R = 1− λ
1+ λ

= 1

N
, n̄ = λ

1− λ
= N − 1

2
, for equivalent N

(25.2.8)

The tradeoff is evident, with R decreasing and n̄ increasing with N.
We include one more lowpass smoothing filter, the integrated linear regression slope

(ILRS) filter [891] which is developed in Sec. 25.3. It has unity DC gain and its impulse
response, transfer function, lag, and NRR are given by,

(IRLS) h(n)= 6(n+ 1)(N − 1− n)
N(N2 − 1)

, n = 0,1, . . . ,N − 1

H(z)= 6

N(N2 − 1)
N(1− z−1)(1+ z−N)−(1− z−N)(1+ z−1)

(1− z−1)3

n̄ = N − 2

2
, R = 6(N2 + 1)

5N(N2 − 1)

(25.2.9)

Fig. 25.2.1 compares the frequency responses of the above filters. We note that
the ILRS has similar bandwidth as the WMA, but it also has a smaller NRR and more
suppressed high-frequency range, thus, resulting in smoother output.

As a small example, we also give for comparison the impulse responses, h = [h0, h1, . . .],
of the SMA, WMA, TMA, and ILRS filters for the case N = 5,

(SMA) h = 1

5

[
1, 1, 1, 1, 1

]
(WMA) h = 1

15

[
5, 4, 3, 2, 1

]
(TMA) h = 1

25

[
1, 2, 3, 4, 5, 4, 3, 2, 1

]
(ILRS) h = 1

10

[
2, 3, 3, 2, 0

]

1212 25. FILTERING METHODS IN FINANCIAL MARKETS

0 0.1 0.2 0.3 0.4 0.5

−36

−30

−24

−18

−12

−6

0

ω / π

dB

frequency responses, N = 19, λ = 0.90

 SMA
 WMA
 TMA
 ILRS
 EMA

0 0.1 0.2 0.3 0.4 0.5

−36

−30

−24

−18

−12

−6

0

ω / π

dB

frequency responses, N = 39, λ = 0.95

 SMA
 WMA
 TMA
 ILRS
 EMA

Fig. 25.2.1 Frequency responses of SMA, WMA, TMA, ILRS, and EMA filters.

with the SMA having constant weights, the WMA having linearly decreasing weights, the
TMA has triangular weights, and the last coefficient hN−1 of the ILRS always being zero.

The following MATLAB functions implement the SMA, WMA, TMA, and ILRS moving
averages. The input array y represents the financial data to be filtered.

a = sma(y,N,yin); % simple moving average

a = wma(y,N,yin); % weighted moving average

a = tma(y,N,yin); % triangular moving average

a = ilrs(y,N,yin); % integrated linear regression slope

The string variable yin specifies the way the filters are initialized and can take on
the following values as explained further in Sec. 25.6,

yin = ’f’, % progressive filtering (default method)

yin = ’n’, % initial transients are NaNs (facilitates plotting)

yin = ’c’, % standard convolutional transients

Some comparisons of these and other moving average indicators are presented in
Figures 25.5.2 and 25.8.1.

25.3 Predictive Moving Average Filters

The predictive FIR and double EMA filters discussed in Sects. 24.4 and 24.8 find appli-
cation in stock market trading. Their main property is the elimination or shortening of
the lag, which is accomplished by tracking both the local level and the local slope of the
data. More discussion of these filters and their application in the trading context may
be found in Refs. [881–892].

The local-level and local-slope FIR filters ha(k) and hb(k) were given in Eq. (24.4.4),

25.3. PREDICTIVE MOVING AVERAGE FILTERS 1213

and their filtering equations by (24.4.5). They define the following market indicators:

an =
N−1∑
k=0

ha(k)yn−k = linear regression indicator

bn =
N−1∑
k=0

hb(k)yn−k = linear regression slope indicator

an + bn =
N−1∑
k=0

h1(k)yn−k = time-series forecast indicator

(25.3.1)

where h1(k)= ha(k)+hb(k). The quantity an + bn, denoted by ŷn+1/n, represents the
one-step ahead forecast or prediction to time n+1 based on the data up to time n. More
generally, the prediction τ steps ahead from time n is given by the following indicator,
which we will refer to as the predictive moving average (PMA),

ŷn+τ/n = an + τbn =
N−1∑
k=0

hτ(k)yn−k (PMA) (25.3.2)

where, as follows from Eq. (24.4.4), we have for n = 0,1, . . . ,N − 1,

hτ(n)= ha(n)+τhb(n)= 2(2N − 1− 3n)
N(N + 1)

+ τ
6(N − 1− 2n)
N(N2 − 1)

(25.3.3)

The time “advance” τ can be non-integer, positive, or negative. Positive τs corre-
spond to forecasting, negative τs to delay or lag. In fact, the SMA and WMA are special
cases of Eq. (25.3.3) for the particular choices of τ = −(N− 1)/2 and τ = −(N− 1)/3,
respectively.

The phrase “linear regression indicators” is justified in Sec. 25.5. The filters hτ(n)
are very flexible and useful in the trading context, and are actually the optimal filters that
have minimum noise-reduction ratio subject to the two constraints of having unity DC
gain and lag equal to −τ, that is, for fixed N, hτ(n) is the solution of the optimization
problem (for N = 1, we ignore the lag constraint to get, hτ(n)= 1, for n = 0, and all τ):

R =
N−1∑
n=0

h2(n)= min, subject to
N−1∑
n=0

h(n)= 1 ,
N−1∑
n=0

nh(n)= −τ (25.3.4)

This was solved in Sec. 24.4. The noise-reduction-ratio of these filters is,

Rτ =
N−1∑
n=0

h2
τ(n)=

1

N
+ 3(N − 1+ 2τ)2

N(N2 − 1)
(25.3.5)

We note the two special cases, first for the SMA filter having τ = −(N − 1)/2, and
second, for the zero-lag filter ha(n) having τ = 0,

RSMA = 1

N
, Ra = 4N − 2

N(N + 1)

1214 25. FILTERING METHODS IN FINANCIAL MARKETS

The transfer functions of the FIR filters ha(n), hb(n) are not particularly illuminat-
ing, however, they are given below in rational form,

Ha(z) =
N−1∑
n=0

ha(n)z−n = 2

N(N + 1)
N(1− z−1)(2+ z−N)−(1+ 2z−1)(1− z−N)

(1− z−1)2

Hb(z) =
N−1∑
n=0

hb(n)z−n = 6

N(N2 − 1)
N(1− z−1)(1+ z−N)−(1+ z−1)(1− z−N)

(1− z−1)2

By a proper limiting procedure, one can easily verify the unity-gain and zero-lag
properties, Ha(z)

∣∣
z=1 = 1, and, n̄ = −H′

a(z)
∣∣
z=1 = 0.

The ILRS filter mentioned in the previous section is defined as the integration, or
cumulative sum, of the slope filter, which can be evaluated explicitly resulting in (25.2.9),

h(n)=
n∑

k=0

hb(k)=
n∑

k=0

6(N − 1− 2k)
N(N2 − 1)

= 6(n+ 1)(N − 1− n)
N(N2 − 1)

(25.3.6)

where 0 ≤ n ≤ N − 1. For n > N, since hb(k) has duration N, the above sum remains
constant and equal to zero, i.e., equal to its final value,

N−1∑
k=0

hb(k)= 0

The corresponding transfer function is the integrated (accumulated) form of Hb(z)
and is easily verified to be as in Eq. (25.2.9),

H(z)= Hb(z)
1− z−1

The following MATLAB function, pma, implements Eq. (25.3.2) and the related indi-
cators, where the input array y represents the financial data to be filtered. The function,
pmaimp, implements the impulse response of Eq. (25.3.3).

at = pma(y,N,tau,yin); % at = a + tau*b, prediction distance tau

a = pma(y,N,0,yin); % local-level indicator
b = pma(y,N,1,yin)-pma(y,N,0,yin); % local-slope indicator

af = pma(y,N,1,yin); % time-series forecast indicator, af = a + b

ht = pmaimp(N,tau); % impulse response of predictive filter
ha = pmaimp(N,0); % impulse response of local level filter
hb = pmaimp(N,1)-pmaimp(N,0); % impulse response of local slope filter

and again, the string variable yin specifies the way the filters are initialized and can take
on the following values,

yin = ’f’, % progressive filtering (default method)

yin = ’n’, % initial transients are NaNs (facilitates plotting)

yin = ’c’, % standard convolutional transients

25.4. SINGLE, DOUBLE, TRIPLE EMA INDICATORS 1215

A few examples of impulse responses are as follows, for N = 5,8,11,

N = 5 , ha = 1

5

[
3 , 2 , 1 , 0 , −1

]
(local level)

hb = 1

10

[
2 , 1 , 0 , −1 , −2

]
(local slope)

h1 = 1

10

[
8 , 5 , 2 , −1 , −4

]
(time-series forecast)

N = 8 , ha = 1

12

[
5 , 4 , 3 , 2 , 1 , 0 , −1 , −2

]
hb = 1

84

[
7 , 5 , 3 , 1 , −1 , −3 , −5 , −7

]
h1 = 1

28

[
14 , 11 , 8 , 5 , 2 , −1 , −4 , −7

]
N = 11 , ha = 1

22

[
7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , −1 , −2 , −3

]
hb = 1

110

[
5 , 4 , 3 , 2 , 1 , 0 , −1 , −2 , −3 , −4 , −5

]
h1 = 1

55

[
20 , 17 , 14 , 11 , 8 , 5 , 2 , −1 , −4 , −7 , −10

]
Some comparisons of PMA with other moving average indicators are shown in Figures

25.5.2 and 25.8.1.

25.4 Single, Double, Triple EMA Indicators

As discussed in Sec. 24.6, the single EMA (SEMA), double EMA (DEMA), and triple EMA
(TEMA) steady-state exponential smoothing recursions are as follows,

en/n−1 = yn − ŷn/n−1 = yn − an−1

an = an−1 + (1− λ)en/n−1
(SEMA) (25.4.1)

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1)[
an
bn

]
=
[

1 1
0 1

][
an−1

bn−1

]
+
[

1− λ2

(1− λ)2

]
en/n−1

(DEMA) (25.4.2)

en/n−1 = yn − ŷn/n−1 = yn − (an−1 + bn−1 + cn−1)⎡⎢⎣ anbn
cn

⎤⎥⎦ =
⎡⎢⎣ 1 1 1

0 1 2
0 0 1

⎤⎥⎦
⎡⎢⎣ an−1

bn−1

cn−1

⎤⎥⎦+
⎡⎢⎣α1

α2

α3

⎤⎥⎦en/n−1

(TEMA) (25.4.3)

where

α1 = 1− λ3 , α2 = 3

2
(1− λ)(1− λ2) , α3 = 1

2
(1− λ)3

1216 25. FILTERING METHODS IN FINANCIAL MARKETS

and ŷn/n−1 represents the forecast of yn based on data up to time n−1. More generally,
the forecast ahead by a distance τ is given by,

(SEMA) ŷn+τ/n = an
(DEMA) ŷn+τ/n = an + bnτ

(TEMA) ŷn+τ/n = an + bnτ+ cnτ2

⇒
ŷn/n−1 = an−1

ŷn/n−1 = an−1 + bn−1

ŷn/n−1 = an−1 + bn−1 + cn−1

(25.4.4)

We saw in Sec. 24.8 that an alternative way of computing the local level and local
slope signals an, bn in the DEMA case is in terms of the outputs of the cascade of two
single EMAs, that is, with α = 1− λ,

a[1]n = λa[1]n−1 +αyn

a[2]n = λa[2]n−1 +αa[1]n

(25.4.5)

an = 2a[1]n − a[2]n = local level DEMA indicator

bn = α
λ
(
a[1]n − a[2]n

) = local slope DEMA indicator
(25.4.6)

The transfer functions from yn to the signals an, bn were given in Eq. (24.8.5), and
are expressible as follows in terms of the transfer function of a single EMA, H(z)=
α/(1− λz−1),

Ha(z) = α(1+ λ− 2λz−1)
(1− λz−1)2

= 2H(z)−H2(z)= 1− [1−H(z)
]2

Hb(z) = α2(1− z−1)
(1− λz−1)2

= α
λ
[
H(z)−H2(z)

] (25.4.7)

Similarly, in the TEMA case, the signals an, bn, cn can be computed from the outputs
of three successive single EMAs via the following relationships,

a[1]n = λa[1]n−1 +αyn

a[2]n = λa[2]n−1 +αa[1]n

a[3]n = λa[3]n−1 +αa[2]n

(25.4.8)

⎡⎢⎣ anbn
cn

⎤⎥⎦ = 1

2λ2

⎡⎢⎢⎣
6λ2 −6λ2 2λ2

α(1+ 5λ) −2α(1+ 4λ) α(1+ 3λ)
α2 −2α2 α2

⎤⎥⎥⎦
⎡⎢⎢⎣ a

[1]
n

a[2]n

a[3]n

⎤⎥⎥⎦ (25.4.9)

where α = 1− λ. See also Eqs. (24.8.9)–(24.8.13). In particular, we have,

an = 3a[1]n − 3a[2]n + a[3]n (local level TEMA indicator) (25.4.10)

Initialization issues for the single EMA, DEMA, and TEMA recursions are discussed
in Sec. 25.6. The following MATLAB functions implement the corresponding filtering
operations, where the input array y represents the financial data to be filtered.

25.5. LINEAR REGRESSION AND R-SQUARE INDICATORS 1217

a = sema(y,N,yin); % single exponential moving average
[a,b,a1,a2] = dema(y,N,yin); % double exponential moving average

[a,b,c,a1,a2,a3] = tema(y,N,yin); % triple exponential moving average

The variable yin specifies the way the filters are initialized and can take on the
following possible values,

yin = y(1) % default for SEMA
yin = ’f’ % fits polynomial to first N samples, default for DEMA, TEMA
yin = ’c’ % cascaded initialization for DEMA, TEMA, described in Sect. 6.19
yin = any vector of initial values of [a], [a;b], or [a;b;c] at n=-1
yin = [0], [0;0], or [0;0;0] for standard convolutional output

Even though the EMA filters are IIR filters, traders prefer to specify the parameter λ
of the EMA recursions through the SMA-equivalent length N defined as in Eq. (24.1.16),

λ = N − 1

N + 1
� N = 1+ λ

1− λ
(25.4.11)

The use of DEMA and TEMA as market indicators with less lag was first advocated
by Mulloy [881,882]. Some comparisons of these with other moving average indicators
are shown in Fig. 25.5.2.

25.5 Linear Regression and R-Square Indicators

In the literature of technical analysis, the PMA indicators of Eq. (25.3.1) are usually not
implemented as FIR filters, but rather as successive fits of straight lines to the past N
data from the current data point, that is, over the time span, [n−N+ 1, n], for each n.
This is depicted Fig. 25.5.1 below.

Fig. 25.5.1 Local linear regression and prediction.

They have been rediscovered many times in the past and different names given to
them. For example, Lafferty [884] calls them “end-point moving averages”, while Rafter
[887] refers to them as “moving trends.” Their application as a forecasting tool was
discussed first by Chande [883].

1218 25. FILTERING METHODS IN FINANCIAL MARKETS

Because of the successive fitting of straight lines, the signals an, bn are known as
the “linear regression” indicator and the “linear regression slope” indicator, respectively.
The an indicator is also known as “least-squares moving average” (LSMA).

For each n ≥ N − 1, the signals an, bn can be obtained as the least-squares solution
of the following N×2 overdetermined system of linear equations in two unknowns:

an − kbn = yn−k , k = 0,1, . . . ,N − 1 (25.5.1)

which express the fitting of a straight line, a + bτ, to the data [yn−N+1, . . . , yn−1, yn],
that is, over the time window, [n−N+ 1, n], where a is the intercept at the end of the
line. The overdetermined system (25.5.1) can be written compactly in matrix form by
defining the length-N column vectors,

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
...
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
...
k
...

N − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn
yn−1

yn−2

...
yn−k

...
yn−N+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ [

u,−k
][an

bn

]
= yn (25.5.2)

with the least-squares solution expressed in the following MATLAB-like vectorial nota-
tion using the backslash operator,[

an
bn

]
= [u,−k

] \yn (25.5.3)

Indeed, this is the solution for the local level and local slope parameters a,b that
minimize the following least-squares performance index, defined for each n,

Jn =
N−1∑
k=0

(
a− bk− yn−k

)2 = min (25.5.4)

In order to account also for the initial transient period, 0 ≤ n ≤ N − 1, we may
change the upper limit of summation in Eq. (25.5.4) to,

Jn =
min(n,N−1)∑

k=0

(
a− bk− yn−k

)2 = min (25.5.5)

which amounts to fitting a straight line to a progressively longer and longer data vector
until its length becomes equal to N, that is, starting with a0 = y0 and b0 = 0,† we fit a
line to [y0, y1] to get a1, b1, then fit a line to [y0, y1, y2] to get a2, b2, and so on until
n = N − 1, and beyond that, we continue with a length-N data window.

†b0 = 0 is an arbitrary choice since b0 is indeterminate for N = 1.

25.5. LINEAR REGRESSION AND R-SQUARE INDICATORS 1219

Thus, we may state the complete solution for all 0 ≤ n ≤ L−1, where L is the length
of the data vector yn, using the backslash notation,‡

for each, n = 0,1,2, . . . , L− 1, do:

Kn = min(n,N − 1)+1 = fitting length, Kn = N when n ≥ N − 1

k = [0 : Kn − 1
]′ = column vector, length Kn

yn = y(n− k)= column vector, [yn, yn−1, . . . , yn−Kn+1]T

u = ones(Kn,1)= column vector[
an
bn

]
= [u,−k

] \yn = linear regression indicators

R2(n)= (corr(−k,yn)
)2 = 1− det

(
corrcoef(−k,yn)

) = R2 indicator

(25.5.6)

where we also included the so-called R-square indicator,∗ which is the coefficient of
determination for the linear fit, and quantifies the strength of the linear relationship,
that is, higher values of R2 suggest that the linear fit is statistically significant with a
certain degree of confidence (usually taken to be at the 95% confidence level).

The MATLAB function, r2crit in the AOSP toolbox, calculates the critical values R2
c

of R2 for a given N and given confidence level p, such that if R2(n)> R2
c , then the linear

fit is considered to be statistically significant for the nth segment. Some typical critical
values of R2

c at the p = 0.95 and p = 0.99 levels are listed below in Eq. (25.5.7), and
were computed with the following MATLAB commands (see also [864]),

N = [5, 10, 14, 20, 25, 30, 50, 60, 120];

R2c = r2crit(N,0.95);

R2c = r2crit(N,0.99);

N p = 0.95 p = 0.99
5 0.7711 0.9180

10 0.3993 0.5846
14 0.2835 0.4374
20 0.1969 0.3152
25 0.1569 0.2552
30 0.1303 0.2143
50 0.0777 0.1303
60 0.0646 0.1090

120 0.0322 0.0549

(25.5.7)

The standard errors for the successive linear fits, as well as the standard errors
for the quantities an, bn, can be computed by including the following lines within the

‡the backslash solution also correctly generates the case n = 0, i.e., a0 = y0 and b0 = 0.
∗where, corr, det, and corrcoef, are built-in MATLAB functions.

1220 25. FILTERING METHODS IN FINANCIAL MARKETS

for-loop in Eq. (25.5.6),

en = yn −
[
u,−k

][an
bn

]
= fitting error, column vector

σe(n) =
√

eTnen
Kn − 2

= standard error

σa(n) =
√

2(2Kn − 1)
Kn(Kn + 1)

σe(n)= standard error for an

σb(n) =
√

12

Kn(K2
n − 1)

σe(n)= standard error for bn

(25.5.8)

The derivation of the expressions for σe,σa,σb follows from the standard theory
of least-squares linear regression. For example, linear regression based on the K pairs,
(xk, yk), k = 0,1, . . . , K− 1, results in the estimates, ŷk = a+ bxk, and error residuals,
ek = yk − ŷk, from which the standard errors can be calculated from the following
expressions [939],

σ2
e =

1

K − 2

N−1∑
k=0

e2
k , σ2

a = σ2
e

x2

Kσ2
x
, σ2

b =
σ2
e

Kσ2
x

(25.5.9)

For our special case of equally-spaced data, xk = −k, we easily find,

x = −k = − 1

K

K−1∑
k=0

k = −K − 1

2

x2 = k2 = 1

K

K−1∑
k=0

k2 = (K − 1)(2K − 1)
6

σ2
x = σ2

k = k2 − k
2 = K2 − 1

12

⇒
σ2
a =

2(2K − 1)
K(K + 1)

σ2
e

σ2
b =

12

K(K2 − 1)
σ2
e

Standard error bands [913], as well as other types of bands and envelopes, and their
use as market indicators, are discussed further in Sec. 25.11. The MATLAB function,
lreg, implements Eqs. (25.5.6) and (25.5.8) with usage,

[a,b,R2,se,sa,sb] = lreg(y,N,init); % linear regression indicators

y = data a = local level se = standard error
N = window length b = local slope sa = standard error for a
init = initialization R2 = R-square sb = standard error for b

where init specifies the initialization scheme and takes on the following values,

init = ’f’, progressive linear fitting of initial N-1 samples, default

init = ’n’, replacing initial N-1 samples of a,b,R2,se,sa,sb by NaNs

25.5. LINEAR REGRESSION AND R-SQUARE INDICATORS 1221

The local level and local slope outputs an, bn are identical to those produced by the
function pma of Sec. 25.3.

Generally, these indicators behave similarly to the DEMA indicators, but both indica-
tor types should be used with some caution since they are too quick to respond to price
changes and sometimes tend to produce false buy/sell signals. In other words, some
delay may miss the onset of a trend but provides more safety.

Example 25.5.1: Fig. 25.5.2 compares the SMA, EMA, WMA, PMA/linear regression, DEMA, TEMA
indicators. The data are from [889] and represent daily prices for Nicor-Gas over 130 trading
days starting on Sept. 1, 2006. The included excel file, nicor.xls, contains the open-high-low-
close prices in its first four columns. The left graphs were produced by the following MATLAB
code, in which the function, ohlc, from the AOSP toolbox, makes an OHLC† bar chart,

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 SMA
 EMA
 WMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 SMA
 EMA
 WMA
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 PMA
 DEMA
 TEMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 PMA
 DEMA
 TEMA
 data

Fig. 25.5.2 Comparison of SMA, EMA, WMA with PMA/LREG, DEMA, TEMA indicators.

Y = xlsread(’nicor.xls’); % read Nicor-Gas data

†Open–High–Low–Close

1222 25. FILTERING METHODS IN FINANCIAL MARKETS

Y = Y(1:130,:); % keep only 130 trading days
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % filter length

figure; % SMA, EMA, WMA
plot(t,sma(y,N),’r-’, t,sema(y,N),’k--’, t,wma(y,N),’g-.’); hold on;
ohlc(t,Y(:,1:4)); % add OHLC bar chart

figure; % PMA/lreg, DEMA, TEMA
plot(t,pma(y,N,0),’r-’, t,dema(y,N),’k--’, t,tema(y,N),’g-.’); hold on;
ohlc(t,Y(:,1:4)); % add OHLC bar chart

The filter length was N = 20. The right graphs are an expanded view of the range [45,90]
days and show more clearly the reduced lag of the PMA, DEMA, and TEMA indicators. At about
the 57th trading day, these indicators turn downwards but still lie above the data, therefore,
they would correctly issue a “sell” signal. By contrast, the SMA, EMA, and WMA indicators are
rising and lie below the data, and they would issue a “buy” signal.

Fig. 25.8.1 in Sec. 25.8 compares the PMA with two other indicators of reduced lag, namely,
the Hull moving average (HMA), and the exponential Hull moving average (EHMA).

The R-squared and slope indicators are also useful in determining the direction of trend.
Fig. 25.5.3 shows the PMA/linear regression indicator, an, for the same Nicor data, together
with the corresponding R2(n) signal, and the slope signal bn, using again a filter length of
N = 20. They were computed with the MATLAB code:

[a,b,R2] = lreg(y,N); % local level, local slope, and R-squared

% equivalent calculation:
% a = pma(y,N,0);
% b = pma(y,N,1)-pma(y,N,0);

For N = 20, the critical value of R2 at the 95% confidence level is R2
c = 0.1969, determined

in Eq. (25.5.7), and is displayed as the horizontal dashed line on the R2 graph.

When R2(n) is small, below R2
c , it indicates lack of a trend with the data moving sideways,

and corresponds to slope bn near zero.

WhenR2(n) rises near unity, it indicates a strong trend, but it does not indicate the direction,
upwards or downwards. This is indicated by the slope indicator bn, which is positive when
the signal is rising, and negative, when it is falling. More discussion on using these three
indicators in conjunction may be found in [889]. 	

25.6 Initialization Schemes

In Eq. (25.5.6), one solves a shorter linear fitting problem of progressively increasing
length during the transient period, 0 ≤ n < N − 1, and then switches to fixed length N
for n ≥ N − 1.

The same idea can be applied to all FIR filters, such as the SMA, WMA, TMA, and the
PMA filter, hτ(n), that is, to use the same type of filter, but of progressively increasing

25.6. INITIALIZATION SCHEMES 1223

0 20 40 60 80 100 120
42

44

46

48

50

52
linear regression indicator, N = 20

 lreg
 data

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

R−squared, N = 20

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

trading days

linear regression slope, N = 20

Fig. 25.5.3 PMA/linear regression, R-squared, and linear regression slope indicators.

length, during the period 0 ≤ n < N − 1, and then switch to using the filters of fixed
length N for n ≥ N − 1. The first N − 1 outputs computed in this manner are not the
same as the standard convolutional outputs obtained from the built-in function filter,
because the latter uses the same length-N filter and assumes zero initial internal states.

To clarify this, consider the SMA case with N = 5, then the above procedure and
the standard convolutional one compute the outputs in the following manner, agreeing

1224 25. FILTERING METHODS IN FINANCIAL MARKETS

only after n ≥ N − 1 = 4,

progressive convolutional

a0 = y0 a0 = 1

5
y0

a1 = 1

2
(y1 + y0) a1 = 1

5
(y1 + y0)

a2 = 1

3
(y2 + y1 + y0) a2 = 1

5
(y2 + y1 + y0)

a3 = 1

4
(y3 + y2 + y1 + y0) a3 = 1

5
(y3 + y2 + y1 + y0)

a4 = 1

5
(y4 + y3 + y2 + y1 + y0) a4 = 1

5
(y4 + y3 + y2 + y1 + y0)

a5 = 1

5
(y5 + y4 + y3 + y2 + y1) a5 = 1

5
(y5 + y4 + y3 + y2 + y1)

· · · · · ·

Similarly, the local level PMA filters, ha, of lengths up to N = 5 can be determined
from Eq. (25.3.3), leading to the following progressive initializations,

N = 1 , ha = [1] , a0 = y0

N = 2 , ha = [1,0] , a1 = y1

N = 3 , ha = 1

6
[5,2,−1] , a2 = 1

6
(5y2 + 2y1 − y0)

N = 4 , ha = 1

10
[7,4,1,−2] , a3 = 1

10
(7y3 + 4y2 + y1 − 2y0)

N = 5 , ha = 1

5
[3,2,1,0,−1] , a4 = 1

5
(3y4 + 2y3 + y2 − y0)

and for the local slope filters hb,

N = 1 , hb = [0] , b0 = 0

N = 2 , hb = [1,−1] , b1 = y1 − y0

N = 3 , hb = 1

2
[1,0,−1] , b2 = 1

2
(y2 − y0)

N = 4 , hb = 1

10
[3,1,−1,−3] , b3 = 1

10
(3y3 + y2 − y1 − 3y0)

N = 5 , hb = 1

10
[2,1,0,−1,−2] , b4 = 1

10
(2y4 + y3 − y1 − 2y0)

where, we arbitrarily set hb = [0] for the case N = 1, since the slope is meaningless
for a single data point. To see the equivalence of these with the least-square criterion
of Eq. (25.5.5) consider, for example, the case N = 5 and n = 2,

J2 = (a− y2)2+(a− b− y1)2+(a− 2b− y0)2= min

25.6. INITIALIZATION SCHEMES 1225

with minimization conditions,

∂J2

∂a
= 2(a− y2)+2(a− b− y1)+2(a− 2b− y0)= 0

∂J2

∂b
= −2(a− b− y1)−4(a− 2b− y0)= 0

⇒
3a− 3b = y2 + y1 + y0

3a− 5b = y1+ 2y0

resulting in the solution,

a = 1

6
(5y2 + 2y1 − y0) , b = 1

2
(y2 − y0)

Similarly we have for the cases n = 0 and n = 1,

J0 = (a− y0)2= min ⇒ a = y0 , b = indeterminate

J1 = (a− y1)2+(a− b− y0)2= min ⇒ a = y1 , b = y1 − y0

EMA Initializations

The single, double, and triple EMA difference equations (25.4.1)–(25.4.3), also need to
be properly initialized at n = −1. For the single EMA case, a good choice is a−1 = y0,
which leads to the same value at n = 0, that is,

a0 = λa−1 +αy0 = λy0 +αy0 = y0 (25.6.1)

This is the default initialization for our function, sema. Another possibility is to
choose the mean of the first N data samples, a−1 = mean

(
[y0, y1, . . . , yN−1]

)
.

For DEMA, if we initialize both the first and the second EMAs as in Eq. (25.6.1), then
we must choose, a[1]−1 = y0, which leads to a[1]0 = y0, which then would require that,

a[2]−1 = a[1]0 = y0, thus, in this scheme, we would choose,⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ y0

y0

⎤⎦ ⇒
⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 2 −1

α/λ −α/λ

⎤⎦⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ y0

0

⎤⎦ (25.6.2)

This is the default initialization method for our function, dema. Another possibility
is to fit a straight line to a few initial data [881,938], such as the first N data, where
N is the equivalent SMA length, N = (1 + λ)/(1 − λ), and then extrapolate the line
backwards to n = −1. This can be accomplished in MATLAB-like notation as follows,

n = [1 : N
]′ = column vector

y = [y0, y1, . . . , yN−1]′= column vector

u = ones
(
size(n)

)
[
a−1

b−1

]
= [u,n] \y

(25.6.3)

If one wishes to use the cascade of two EMAs, then the EMA signals, a[1]n , a[2]n , must
be initialized by first applying Eq. (25.6.3), and then using the inverse matrix relationship

1226 25. FILTERING METHODS IN FINANCIAL MARKETS

of Eq. (25.4.6), i.e., ⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ 1 −λ/α

1 −2λ/α

⎤⎦⎡⎣ a−1

b−1

⎤⎦ (25.6.4)

A third possibility [864] is to initialize the first EMA with a[1]−1 = y0, then calculate
the output at the time instant n = N − 1 and use it to initialize the second EMA at
n = N, that is, define a[2]N−1 = a[1]N−1. This value can be iterated backwards to n = −1 to

determine the proper initial value a[2]−1 such that, if iterated forward, it would arrive at

the chosen value a[2]N−1 = a[1]N−1. Thus, the steps in this scheme are as follows,

a[1]−1 = y0

for n = 0,1, . . . ,N − 1,

a[1]n = λa[1]n−1 +αyn
end

⇒

a[2]N−1 = a[1]N−1

for n = N−1, . . . ,1,0,

a[2]n−1 =
1

λ
(
a[2]n −αa[1]n

)
end

(25.6.5)

Upon exit from the second loop, one has a[2]−1 , then, one can transform the calculated

a[1]−1 , a
[2]
−1 to the an, bn basis in order to get the DEMA recursion started,⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 2 −1

α/λ −α/λ

⎤⎦⎡⎣ a[1]−1

a[2]−1

⎤⎦
Such cascaded initialization scheme for DEMA (and TEMA below) is somewhat ad

hoc since the EMA filters are IIR and there is nothing special about the time n = N;
one, could just as well wait until about n = 6N when typically all transient effects have
disappeared. We have found that the schemes described in Eqs. (25.6.2) and (25.6.3)
work the best.

Finally, we note that for ordinary convolutional output, one would choose zero initial
values, ⎡⎣ a−1

b−1

⎤⎦ =
⎡⎣ 0

0

⎤⎦ ⇒
⎡⎣ a[1]−1

a[2]−1

⎤⎦ =
⎡⎣ 0

0

⎤⎦
All of the above initialization choices are incorporated in the function, dema. For

TEMA, the default initialization is similar to that of Eq. (25.6.2), that is,⎡⎢⎢⎢⎣
a[1]−1

a[2]−1

a[3]−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
y0

y0

y0

⎤⎥⎥⎥⎦ ⇒

⎡⎢⎢⎢⎣
a−1

b−1

c−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
y0

0

0

⎤⎥⎥⎥⎦ (25.6.6)

Alternatively, one can fit a second-order polynomial to the first few data samples,
such as the first 2N samples [881], and extrapolate them back to n = −1. The fitting
can be done with the following MATLAB-like code,

25.6. INITIALIZATION SCHEMES 1227

n = [1 : 2N − 1
]′ = column vector

y = [y0, y1, . . . , y2N−1]′= column vector

u = ones
(
size(n)

)
⎡⎢⎣ a−1

b−1

c−1

⎤⎥⎦ = [u, n, n2] \y

The cascaded initialization scheme is also possible in which the output of the first
EMA at time n = N − 1 serves to initialize the second EMA at n = N, and the output
of the second EMA at n = 2N − 1 serves to initialize the third EMA at n = 2N. This,
as well as the second-order polynomial fitting initialization schemes are incorporated
in the function, tema.

A special case of the EMA indicator is “Wilder’s Exponential Moving Average” [865],
known as WEMA. It is used widely and appears in several other indicators, such as the
“Relative Strength Index” (RSI), the “Average True Range” (ATR), and the “Directional
Movement System” (±DMI and ADX), discussed in Sec. 25.12. An N-point WEMA is
defined to be an ordinary EMA with λ,α parameters,

α = 1

N
, λ = 1−α = 1− 1

N
(WEMA parameters) (25.6.7)

It is equivalent to an EMA with effective length, Ne, determined as follows,

λ = Ne − 1

Ne + 1
= 1− 1

N
⇒ Ne = 2N − 1 (25.6.8)

The corresponding filtering equation for calculating the smoothed local-level signal
an from the input data yn, will be,

an = λan−1 +αyn = an−1 +α(yn − an−1)

or, for n ≥ 0,

an = an−1 + 1

N
(yn − an−1) (WEMA) (25.6.9)

The required initial value a−1 can be chosen in a variety of ways, just as in EMA.
However, by convention [865], the default way of fixing it is similar to that in Eq. (25.6.5).
It is defined by choosing the value of an at time n = N−1 to be the mean of first N input
values, then, aN−1 is back-tracked to time n = −1, thus, we have,

aN−1 = 1

N
(y0 + y1 + · · · + yN−1)

for n = N−1, . . . ,1,0,

an−1 = 1

λ
(
an −αyn

)
end

(25.6.10)

1228 25. FILTERING METHODS IN FINANCIAL MARKETS

Upon exit from the loop, one has the proper starting value of a−1. The following
MATLAB function, wema, implements WEMA with such default initialization scheme,

a = wema(y,N,ain); % Wilder’s EMA

y = signal to be smoothed

N = effective length, (EMA alpha = 1/N, lambda = 1-1/N)

ain = any initial value

= ’m’, default, as in Eq.(6.19.10)

= 0, for standard convolutional output

a = smoothed version of y

25.7 Butterworth Moving Average Filters

Butterworth moving average (BMA) lowpass filters, are useful alternatives [869] to the
first-order EMA filters, and have comparable smoothing properties and shorter lag. Here,
we summarize their properties and filtering implementation, give explicit design equa-
tions for orders M = 1,2,3, and derive a general expression for their lag.

Digital Butterworth filters are characterized by two parameters, the filter order M,
and the 3-dB cutoff frequency f0 in Hz, or, the corresponding digital frequency in units
of radians per sample, ω0 = 2πf0/fs, where fs is the sampling rate in Hz. We may also
define the period of f0 in units of samples/cycle, N = fs/f0, so that, ω0 = 2π/N.

We follow the design method of Chap. 12 based on the bilinear transformation, al-
though the matched z-transform method has also been used [869]. If the filter order is
even, say, M = 2K, then, there are K second-order sections, and if it is odd, M = 2K+1,
there is an additional first-order section. Both cases can be combined into one by writing,

M = 2K + r , r = 0,1 (25.7.1)

Then, the transfer function can be expressed in the following cascaded and direct forms,

H(z) =
[
G0(1+ z−1)
1+ a01z−1

]r K∏
i=1

[
Gi(1+ z−1)2

1+ ai1z−1 + ai2z−2

]

= G(1+ z−1)M

1+ a1z−1 + a2z−2 + · · · + aMz−M

(25.7.2)

where the notation []r means that the first-order factor is absent if r = 0 and present
if r = 1. The corresponding first-order coefficients are,

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(25.7.3)

The second-order coefficients are , for i = 1,2, . . . , K,

25.7. BUTTERWORTH MOVING AVERAGE FILTERS 1229

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2 , ai2 = 1+ 2Ω0 cosθi +Ω2

0

1− 2Ω0 cosθi +Ω0
2

(25.7.4)

where the angles θi are defined by,

θi = π
2M

(M − 1+ 2i) , i = 1,2, . . . , K (25.7.5)

and the quantity Ω0 is the equivalent analog 3-dB frequency defined as,

Ω0 = tan
(
ω0

2

)
= tan

(
πf0

fs

)
= tan

(
π
N

)
(25.7.6)

We note that the filter sections have zeros at z = −1, that is, at the Nyquist frequency,
f = fs/2, or, ω = π. Setting Ω = tan(ω/2), the magnitude response of the designed
digital filter can be expressed simply as follows:

|H(ω)|2 = 1

1+ (Ω/Ω0
)2M = 1

1+ (tan(ω/2)/Ω0
)2M (25.7.7)

Each section has unity gain at DC. Indeed, setting z = 1 in Eq. (25.7.2), we obtain the
following condition, which can be verified from the given definitions,

4Gi

1+ ai1 + ai2
= 1 and

2G0

1+ a01
= 1

Moreover, the filter lag can be shown to be (cf. Problem 24.12), for anyM ≥ 1 andN > 2,

n̄ = 1

2Ω0 sin
(
π

2M

) = 1

2 tan
(
π
N

)
sin

(
π

2M

) (lag) (25.7.8)

For M � 2 and N � 5, it can be approximated well by [868],

n̄ = MN
π2

The overall numerator gain in the direct form is the product of gains,

G = Gr
0G1G2 · · ·GK

and the direct-form numerator coefficients are the coefficients of the binomial expansion
of (1 + z−1)M times the overall gain G. The direct-form denominator coefficients are
obtained by convolving the coefficients of the individual sections, that is, setting, a = [1]
if M is even, and, a = [1, a01] if M is odd, then the vector, a = [1, a1, a2, . . . , aM], can
be constructed recursively by,

for i = 1,2, . . . , K
a = conv

(
a, [1, ai1, ai2]

) (25.7.9)

1230 25. FILTERING METHODS IN FINANCIAL MARKETS

For example, we have,

M = 2 , a = [1, a11, a12]
M = 3 , a = conv

(
[1, a01], [1, a11, a12]

)= [1, a01 + a11, a12 + a01a11, a01a12]

From these, we obtain the following explicit expressions, for M = 2,

G = Ω2
0

Ω2
0 +

√
2Ω0 + 1

, a1 = 2(Ω2
0 − 1)

Ω2
0 +

√
2Ω0 + 1

, a2 = Ω2
0 −

√
2Ω0 + 1

Ω2
0 +

√
2Ω0 + 1

H(z)= G(1+ 2z−1 + z−2)
1+ a1z−1 + a2z−2

, n̄ = 1√
2Ω0

(25.7.10)

and, for M = 3,

G = Ω3
0

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

, a1 = (Ω0 − 1)(3Ω2
0 + 5Ω0 + 3)

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

a2 = 3Ω2
0 − 5Ω0 + 3

Ω2
0 +Ω0 + 1

, a3 = (Ω0 − 1)(Ω2
0 −Ω0 + 1)

(Ω0 + 1)(Ω2
0 +Ω0 + 1)

H(z)= G(1+ 3z−1 + 3z−2 + z−3)
1+ a1z−1 + a2z−2 + a3z−3

, n̄ = 1

Ω0

(25.7.11)

We note also that the M = 1 case has lag, n̄ = 1/(2Ω0), and is equivalent to the
modified EMA of Eq. (15.2.2). This can be seen by rewriting H(z) in the form,

H(z)= G0(1+ z−1)
1+ a01z−1

=
1
2(1− λ)(1+ z−1)

1− λz−1
, λ = −a01 = 1−Ω0

1+Ω0

where 0 < λ < 1 for Ω0 < 1, which requires N > 4.
The MATLAB function, bma, implements the design and filtering operations for any

filter order M and any period N > 2,† with usage,

[y,nlag,b,a] = bma(x,N,M,yin); % Butterworth moving average
[y,nlag,b,a] = bma(x,N,M);

where

x = input signal

N = 3-dB period, need not be integer, but N>2

M = filter order

yin = any Mx1 vector of initial values of the output y

default, yin = repmat(x(1),M,1)

yin = ’c’ for standard convolutional output

y = output signal

nlag = filter lag

b = [b0, b1, b2, ..., bM], numerator filter coefficients

a = [1, a1, a2, ..., aM], denominator filter coefficients

†the sampling theorem requires, f0 < fs/2, or, N = fs/f0 > 2

25.8. MOVING AVERAGE FILTERS WITH REDUCED LAG 1231

Fig. 25.7.1 shows the BMA output for Butterworth orders M = 2,3 applied to the
same Nicor-Gas data of Fig. 25.5.2. It has noticeably shorter lag than SMA. The graphs
were produced by the MATLAB code,

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % period, SMA lag = (N-1)/2 = 9.50
[y2,n2] = bma(y,N,2); % order-2 Butterworth, lag n2 = 4.46
[y3,n3] = bma(y,N,3); % order-3 Butterworth, lag n3 = 6.31

figure; plot(t,sma(y,N), t,y2, t,y3); % plot SMA, y2, y3
hold on; ohlc(t,Y,’color’,’b’); % add OHLC bar chart

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20, Butterworth M = 2,3

 SMA
 M=2
 M=3
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20, Butterworth M = 2,3

 SMA
 M=2
 M=3
 data

Fig. 25.7.1 Comparison of SMA and Butterworth filters of orders M = 2,3.

25.8 Moving Average Filters with Reduced Lag

The PMA/linear regression and the DEMA/TEMA indicators have zero lag by design.
There are other useful indicators that are easily implemented and have zero or very
much reduced lag. Examples are twicing and Kaiser-Hamming (KH) filter sharpening
[644], the Hull moving average (HMA) [893], the zero-lag EMA indicator (ZEMA) [868],
the generalized DEMA (GDEMA) [891], and their variants. Here, we discuss a general
procedure for constructing such reduced-lag filters, including the corresponding local-
slope filters.

Consider three lowpass filters H1(z),H2(z),H3(z) with unity DC gains and lags,
n̄1, n̄2, n̄2, respectively, and define the following filters for estimating the local level and
local slope of the data, generalizing the twicing operations of Eq. (24.11.2),

1232 25. FILTERING METHODS IN FINANCIAL MARKETS

Ha(z) = H1(z)
[
(1+ v)H2(z)−vH3(z)

] = local level

Hb(z) = 1

n̄3 − n̄2
H1(z)

[
H2(z)−H3(z)

] = local slope
(25.8.1)

where v is a positive constant. One may viewHa(z) as the smoothed, byH1(z), version
of (1 + v)H2(z)−vH3(z). The filter Ha(z) will still have unity DC gain as follows by
evaluating Eq. (25.8.1) at z = 1, that is,

Ha(1)= (1+ v)H1(1)H2(1)−vH1(1)H3(1)= (1+ v)−v = 1

Using the fact that the lag of a product of filters is the sum of the corresponding
lags (cf. Problem 24.2), we find that the lag of Ha(z) is,

n̄a = (1+ v)(n̄1 + n̄2)−v(n̄1 + n̄3) , or,

n̄a = n̄1 + (1+ v)n̄2 − vn̄3 (25.8.2)

By appropriately choosing the parameters v, n̄1, n̄2, n̄3, the lag n̄a can be made very
small, even zero. Indeed, the following choice for v will generate any particular n̄a,

v = n̄1 + n̄2 − n̄a
n̄3 − n̄2

(25.8.3)

Below we list a number of examples that are special cases of the above constructions.
In this list, the filter H(z), whose lag is denoted by n̄, represents any unity-gain lowpass
filter, such as WMA, EMA, or SMA and similarly, HN(z) represents either a length-N FIR
filter such as WMA or SMA, or an EMA filter with SMA-equivalent length N. Such filters
have a lag related to N via a relationship of the form, n̄ = r · (N − 1), for example,
r = 1/3, for WMA, and, r = 1/2, for EMA and SMA.

reduced-lag filters lag

(twicing) Ha(z)= 2H(z)−H2(z) , n̄a = 0

(GDEMA) Ha(z)= (1+ v)H(z)−vH2(z) , n̄a = (1− v)n̄

(KH) Ha(z)= (1+ v)H2(z)−vH3(z), n̄a = (2− v)n̄

(HMA) Ha(z)= H√
N(z)

[
2HN/2(z)−HN(z)

]
, n̄a = r

[√
N − 2

]
(ZEMA) Ha(z)= 2H(z)−z−dH(z) , n̄a = n̄− d

(ZEMA) Ha(z)= (1+ v)H(z)−vz−dH(z) , n̄a = n̄− vd

(25.8.4)

The corresponding local-slope filters are as follows (they do not depend on v),

25.8. MOVING AVERAGE FILTERS WITH REDUCED LAG 1233

local-slope filters

(DEMA/GDEMA) Hb(z)= 1

n̄
[
H(z)−H2(z)

]
(KH) Hb(z)= 1

n̄
[
H2(z)−H3(z)

]
(HMA) Hb(z)= 2

rN
H√

N(z)
[
HN/2(z)−HN(z)

]
(ZEMA) Hb(z)= 1

d
[
H(z)−z−dH(z)]

(25.8.5)

The standard twicing method, Ha(z)= 2H(z)−H2(z), coincides with DEMA if we
choose H(z) to be a single EMA filter,

HEMA(z)= α
1− λz−1

, α = 1− λ , λ = N − 1

N + 1
, n̄ = N − 1

2
(25.8.6)

but the filter H(z) can also be chosen to be an SMA, WMA, or BMA filter, leading to what
may be called, “double SMA,” or, “double WMA,”, or, ‘double BMA.”

The generalized DEMA, HGDEMA(z)= (1 + v)H(z)−vH2(z), also has, H = HEMA,
and is usually operated in practice with v = 0.7. It reduces to standard DEMA for v = 1.
The so-called Tillson’s T3 indicator [891] is obtained by cascading GDEMA three times,

HT3(z)=
[
HGDEMA(z)

]3
(T3 indicator) (25.8.7)

The Kaiser-Hamming (KH) filter sharpening case is not currently used as an indicator,
but it has equally smooth output as GDEMA and T3. It reduces to the standard filter
sharpening case with zero lag for v = 2.

In the original Hull moving average [893], Ha(z)= H√
N(z)

[
2HN/2(z)−HN(z)

]
, the

filter HN is chosen to be a length-N weighted moving average (WMA) filter, as defined in
Eqs. (25.2.1) and (25.2.2), and similarly, HN/2 and H√

N are WMA filters of lengths N/2
and

√
N respectively. Assuming for the moment that these filter lengths are integers,

then the corresponding lags of the three WMA filters, H√
N,HN/2,HN, will be,

n̄1 =
√
N − 1

3
, n̄2 = N/2− 1

3
, n̄3 = N − 1

3
,

and setting v = 1 in Eq. (25.8.2), we find,

n̄a = n̄1 + 2n̄2 − n̄3 =
√
N − 1

3
+ N − 2

3
− N − 1

3
=
√
N − 2

3
(25.8.8)

Thus, for larger Ns, the lag is effectively reduced by a factor of
√
N. The extra

filter factor H√
N(z) provides some additional smoothing. In practice, the filter lengths

N1 =
√
N and N2 = N/2 are replaced by their rounded values. This changes the lag

n̄a somewhat. If one wishes to maintain the same lag as that given by Eq. (25.8.8), then
one can compensate for the replacement of N1,N2 by their rounded values by using a

1234 25. FILTERING METHODS IN FINANCIAL MARKETS

slightly different value for v. It is straightforward to show that the following procedure
will generate the desired lag value, where the required v is evaluated from Eq. (25.8.3),

N1 = round
(√

N
)
, ε1 = N1 −

√
N = rounding error

N2 = round
(
N
2

)
, ε2 = N2 − N

2
= rounding error

v = n̄1 + n̄2 − n̄a
n̄3 − n̄2

= N/2+ ε1 + ε2

N/2− ε2

n̄a = N1 − 1

3
+ (1+ v)

N2 − 1

3
− v

N − 1

3
=
√
N − 2

3

n̄3 − n̄2 = N −N2

3

(25.8.9)

with transfer functions,

Ha(z)= HN1(z)
[
(1+ v)HN2(z)−vHN(z)

] = local level

Hb(z)= 1

n̄3 − n̄2
HN1(z)

[
HN2(z)−HN(z)

] = local slope
(25.8.10)

The WMA filters in the HMA indicator can be replaced with EMA filters resulting in
the so-called “exponential Hull moving average” (EHMA), which has been found to be
very competitive with other indicators [937]. Because N does not have to be an integer
in EMA, it is not necessary to round the lengths N1 =

√
N and N2 = N/2, and one can

implement the indicator as follows, where HN denotes the single EMA of Eq. (25.8.6),

n̄a =
√
N − 2

2
, n̄3 − n̄2 = N

4

Ha(z)= H√
N(z)

[
2HN/2(z)−HN(z)

]
Hb(z)= 4

N
H√

N(z)
[
HN/2(z)−HN(z)

]
One can also replace the WMA filters by SMAs leading to the “simple Hull moving

average” (SHMA). The filter HN now stands for a length-N SMA filter, resulting in n̄a =
(
√
N − 1)/2, and n̄3 − n̄2 = (N −N2)/2. Except for these changes, the computational

procedure outlined in Eq. (25.8.9) remains the same.
The following MATLAB code illustrates the computation of the local-level output

signal an from the data yn, for the three versions of HMA and a given value of N > 1,

N1 = round(sqrt(N)); e1 = N1 - sqrt(N);

N2 = round(N/2); e2 = N2 - N/2;

v = (N/2 + e1 + e2) / (N/2 - e2);

a = wma((1+v)*wma(y,N2) - v*wma(y,N), N1); % HMA

a = sma((1+v)*sma(y,N2) - v*sma(y,N), N1); % SHMA

a = sema(2*sema(y,N/2) - sema(y,N), sqrt(N); % EHMA

25.8. MOVING AVERAGE FILTERS WITH REDUCED LAG 1235

The functions, hma, shma, ehma, which are discussed below, implement these op-
erations but offer more options, including the computation of the slope signals.

In the zero-lag EMA (ZEMA or ZLEMA) indicator [868], Ha(z)= 2H(z)−z−dH(z),
the filter H(z) is chosen to be a single EMA filter of the form of Eq. (25.8.6), and the
delay d is chosen to coincide with the filter lag, that is, d = n̄ = (N − 1)/2 . It follows
from Eq. (25.8.4) that the lag will be exactly zero, n̄a = n̄− d = 0. This assumes that n̄
is an integer, which happens only for odd N. For even N, the delay d may be chosen as
the rounded-up version of n̄, that is,

d = round(n̄)= round
(
N − 1

2

)
= N

2
, N = even

Then, the lag n̄a can still be made to be zero by choosing the parameter v such that
n̄a = n̄− vd = 0, or, v = n̄/d = n̄/round(n̄). Thus, the generalized form of the ZEMA
indicator is constructed by,

n̄ = N − 1

2
, d = round(n̄) , v = n̄

d

Ha(z)= (1+ v)H(z)−vz−dH(z)

Hb(z)= 1

d
[
H(z)−z−dH(z)]

(25.8.11)

The code segment below illustrates the computation of the local-level ZEMA signal.
It uses the function, delay, which implements the required delay.

nbar = (N-1)/2;

d = round(nbar);

v = nbar/d;

a = (1+v)*sema(y,N) - v*delay(sema(y,N), d); % ZEMA

The following MATLAB functions implement the reduced-lag filters discussed above,
where the input array y represents the financial data to be filtered, and the outputs a,b
represent the local-level and local-slope signals.

[a,b] = hma(y,N,yin); % Hull moving average
[a,b] = ehma(y,N,yin); % exponential Hull moving average
[a,b] = shma(y,N,yin); % simple Hull moving average
[a,b] = zema(y,N,yin); % zero-lag EMA

y = delay(x,d); % d-fold delay, y(n) = x(n-d)
a = gdema(y,N,v,yin); % generalized DEMA
a = t3(y,N,v,yin); % Tillson’s T3

The input variable yin defines the initialization and defaults to progressive filtering
for hma, shma, and zema, yin=’f’, and to, yin = y0, for ehma.

Fig. 25.8.1 compares the PMA/linear regression indicator with HMA, EHMA, and
ZEMA on the same Nicor-Gas data, with filter length N = 20. Fig. 25.8.2 compares the
corresponding slope indicators. The MATLAB code below illustrates the computation.

1236 25. FILTERING METHODS IN FINANCIAL MARKETS

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 PMA
 EHMA
 HMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 PMA
 EHMA
 HMA
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, N = 20

 ZEMA
 EHMA
 data

30 40 50 60 70 80 90
46

47

48

49

50

51

trading days

NICOR, N = 20

 ZEMA
 EHMA
 data

Fig. 25.8.1 Comparison of PMA/LREG, HMA, EHMA, and ZEMA indicators.

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % keep 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % filter length

[al,bl] = lreg(y,N); % PMA/LREG
[ah,bh] = hma(y,N); % HMA
[ae,be] = ehma(y,N); % EHMA
[az,bz] = zema(y,N); % ZEMA

figure; plot(t,al, t,ae, t,ah); % PMA/LREG, EHMA, HMA
hold on; ohlc(t,Y); % add OHLC chart

figure; plot(t,az, t,ae); % ZEMA, EHMA
hold on; ohlc(t,Y); % add OHLC chart

25.9. ZIGZAG INDICATOR 1237

figure; plot(t,bh, t,be); hold on; % HMA, EHMA slopes
stem(t,bl,’marker’,’none’); % plot LREG slope as stem

figure; plot(t,bh, t,bz); hold on; % HMA, ZEMA slopes
stem(t,bl,’marker’,’none’);

We note that the reduced-lag HMA, EHMA, and ZEMA local-level and local-slope filters
have comparable performance as the PMA/linear regression and DEMA/TEMA filters,
with a comparable degree of smoothness.

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

trading days

 hma
 ehma

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

trading days

 hma
 zema

Fig. 25.8.2 Slope indicators, linear regression (stem) vs. HMA, EHMA, ZEMA.

25.9 Zigzag Indicator

The zigzag indicator [864,929–934] is a trend indicator constructed by joining by straight
lines the so-called “swing-highs” and “swing-lows” of a price series.

The swing points are local extrema (local maxima or minima) determined by requiring
that the price variations in the immediate neighborhoods of the extrema be greater than
a specified percentage amount, for example, if y(n) is a point to the left or to the right
of a local maximum or minimum, ymax or ymin, then, if p < 1 is the specified percentage
amount (p = percentage/100), the following conditions must be satisfied by ymax, ymin,

ymax − y(n) > p · ymax (at local maximum)

y(n)−ymin > p · ymin (at local minimum)

1238 25. FILTERING METHODS IN FINANCIAL MARKETS

Fig. 25.9.1 shows the IBM closing prices over the time period from 9/1/2000 to
5/29/2001. The zigzag indicator is plotted for three values of p = 5,10,20 percent.

Larger valuesp result in more filtering of small price variations, showing more clearly
the broader features and major trends of the data.

It should be noted that the last leg of the zigzag is not a reliable indicator of future
trends because the next future data point can alter that leg. See Refs. [930–934] that
address this issue and try to improve the zigzag.

0 40 80 120 160 200
70

80

90

100

110

120

130
IBM closing prices

n, days
0 40 80 120 160 200

70

80

90

100

110

120

130

n, days

zigzag indicator, p = 5%

 closing prices
 zigzag

0 40 80 120 160 200
70

80

90

100

110

120

130

n, days

zigzag indicator, p = 10%

 closing prices
 zigzag

0 40 80 120 160 200
70

80

90

100

110

120

130

n, days

zigzag indicator, p = 20%

 closing prices
 zigzag

Fig. 25.9.1 Zigzag indicator examples.

The zigzag indicator can be implemented by the MATLAB function, zigzag, in the
ISP2e toolbox, with usage,

[z,nz] = zigzag(y,p); % zigzag indicator

y = closing values, or other indicator
p = percentage changes to be ignored, e.g., p = 8 for 8%
z = zigzag points of swing-highs and swing-lows
nz = zigzag time instants, note (MATLAB index) = nz+1

The MATLAB code for generating the above graphs was as follows:

Y = xlsread(’IBM-sep00-jun01.xlsx’); % data file in ISP2e toolbox

25.10. L0 TREND INDICATOR 1239

Y = Y(:,1:4); % extract O,H,L,C prices
y = Y(:,4); % closing prices
n = 0:length(y)-1; % trading days

p = 10; % 10 percent

[z,nz] = zigzag(y,p); % zigzag points and times

figure; plot(n,y,’r-’, nz,z,’b.-’); % z-points connected by straight lines

25.10 L0 Trend Indicator

A similar indicator to the zigzag, that also captures the broad variations and major
trends of the data, can be constructed using the sparse versions of the Whittaker-
Henderson smoothing problem, as we discuss in Sec. 26.7. In particular, the L0 version
provides the sparsest solution and is ideally suited for this purpose.

Given a length-N vector of observations, yn, 0 ≤ n ≤ N−1, the L0 version minimizes
the following L0-regularized least-squares performance index, for determining a length-
N smoothed signal xn,

J =
N−1∑
n=0

∣∣yn − xn
∣∣2 + λ

N−1∑
n=s

∣∣∇sxn
∣∣0 = ∥∥y− x

∥∥2
2 + λ

∥∥Dsx
∥∥

0 = min (25.10.1)

where the L0 norm†, ‖Dsx‖0, is the cardinality of the vector Dsx, that is, the number of
its non-zero entries, and Ds is the (N− s)×N convolution matrix corresponding to the
s-difference operator ∇s. It can be constructed in MATLAB by,

Ds = diff(eye(N),s); % or, sparsely, Ds = diff(speye(N),s);

The choice s = 2 results in an almost piecewise linear solution xn, whereas, s = 1
results in a piecewise constant solution. The piecewise linear case is better suited if the
price data exhibit upgoing or downgoing zigzag trends, while the piecewise constant
case would be more suited for data trending sideways.

The criterion (25.10.1) forces the L0 term to become sparse, i.e., Dsx is sparse, being
almost zero essentially everywhere, except at the kink points. If s = 2, the kink points
are where the slopes change — with Dsx being the 2nd difference of x, the condition
that Dsx ≈ 0 implies that x(n) would be an approximately linear function of time n,
resulting in almost linear segments between kink points. On the other hand, if s = 1,
then Dsx is the first difference of x, and the sparsity of Dsx would imply that x(n)
would be almost piecewise constant.

Larger values of the regularization parameter λ, result in sparser Dsx, and capture
more broadly the trends in the data. Smaller values of λ, follow the data more closely.

The minimization of Eq. (25.10.1) can be carried out using an iterative reweighted
least-squares (IRLS) iteration as discussed in Sec. 26.7. The following MATLAB function,
l0trend, in the ISP2e toolbox, implements this indicator with usage,

†L0 is not strictly-speaking a proper norm.

1240 25. FILTERING METHODS IN FINANCIAL MARKETS

[x,k] = l0trend(y,lambda); % L0 trend indicator

y = closing values, or other indicator
lambda = L0-regularized least-squares lambda parameter
x = zigzag piecewise (almost) linear estimate of y
k = time instants of kink points, note (MATLAB index) = k+1

There are some additional input parameters that allow one to set the value of s (by
default s = 2), as well the number of IRLS iterations, and the threshold for determining
the kink points — see the help file for the function, l0trend.m, for details.

Fig. 25.10.1 plots the L0 trend indicator for the same IBM data as in Fig. 25.9.1. As
expected, the larger value ofλ captures the major trends, whereas the smaller value tries
to follow the data more closely. Fig. 25.10.2 shows the L0 trend for piecewise constant
segments.

0 40 80 120 160 200
70

80

90

100

110

120

130

n, days

L0−trend, piecewise linear, λ = 20

 closing prices
 L0 trend
 kinks

0 40 80 120 160 200
70

80

90

100

110

120

130

n, days

L0−trend, piecewise linear, λ = 10

 closing prices
 L0 trend
 kinks

Fig. 25.10.1 L0 trend indicator – almost piecewise linear (s = 2).

0 40 80 120 160 200
70

80

90

100

110

120

130

n, days

L0−trend, piecewise constant, λ = 20

 closing prices
 L0 trend
 kinks

Fig. 25.10.2 L0 trend indicator – almost piecewise constants (s = 1).

The following MATLAB code segment demonstrates how the above graphs were gen-
erated, including how to use the extra input parameters for the s = 1 case,

25.10. L0 TREND INDICATOR 1241

Y = xlsread(’IBM-sep00-jun01.xlsx’); % data file in ISP2e toolbox
Y = Y(:,1:4); % extract O,H,L,C prices
y = Y(:,4); % closing prices
n = 0:length(y)-1; % trading days

la = 20; % lambda regularization parameter

[x,k] = l0trend(y,la); % s=2 case by default

figure; plot(n,y,’r-’, n,x,’b-’, k,x(k+1),’b.’);

ek = 0.1; % kink threshold
K = 10; % number of IRLS iterations
s = 1; % s can only be 1 or 2
[x,k] = l0trend(y,la,ek,K,s); % s=1 case

figure; plot(n,y,’r-’, n,x,’b-’, k,x(k+1),’b.’);

This indicator can also be used to make predictions of future values by simply ex-
trapolating the last leg using its effective slope. This can be very risky, especially if the
end-point becomes an actual kink point in the future of the data – however, it should be
OK if the current trend continues.

Fig. 25.10.3 shows the previous examples, extrapolated 15 days into the future. The
following MATLAB code demonstrates how to calculate the predicted values, d-steps
ahead into the future, with the two cases s = 2 and s = 1 combined into one,

[x,k] = l0trend(y,la,ek,K,s); % estimate x, and kink points k
d = ... % choose a value for d
k2 = k(end); % last kink point
k1 = k(end-1); % penultimate kink point
x2 = x(k2+1); x1 = x(k1+1); % estimated values at the kink points

kpred = k2+1 : k2+d % range of prediction times

ypred = x2 + (s-1) * (kpred-k2) * (x2-x1)/(k2-k1) % predictions

0 40 80 120 160 200
70

80

90

100

110

120

130

n, days

L0−trend with 15−day prediction

 closing prices
 L0 trend
 prediction

0 40 80 120 160 200
70

80

90

100

110

120

130

n, days

L0−trend with 15−day prediction

 closing prices
 L0 trend
 prediction

Fig. 25.10.3 L0 trends with 15-day predictions.

1242 25. FILTERING METHODS IN FINANCIAL MARKETS

25.11 Envelopes, Bands, and Channels

Moving averages help market traders discern trends by smoothing out variations in
the data. However, such variations can provide additional useful information, such as
gauging volatility, or, identifying extremes in the data that provide trading opportunities,
or observing how prices settle into their trends.

Trading envelopes or bands or channels consist of two curves drawn above and below
a moving average trendline. The two bounds define a zone of variation, or volatility,
about the average, within which most of the price fluctuations are expected to lie.

The typical trading rule is that when a price closes near or above the upper bound,
it signals that the stock is overbought and suggests trading in the opposite direction.
Similarly, if a price moves below the lower bound it signals that the stock is oversold
and suggests an opposite reaction.
In this section we discuss the following types of bands and their computation,

– Bollinger bands – Standard-error bands

– Projection bands – Donchian channels

– Fixed-width bands – Keltner bands

– Starc bands – Parabolic SAR

Examples of these are shown in Figs. 25.11.1 and 25.11.2 applied to the same Nicor
data that we used previously. Below we give brief descriptions of how such bands are
computed. We use our previously discussed MATLAB functions, such as SMA, LREG,
etc., to summarize the computations. Further references are given in [907–918].

Bollinger Bands

Bollinger bands [907–911] are defined relative to an N-day SMA of the closing prices,
where typically, N = 14. The two bands are taken to be two standard deviations above
and below the SMA. The following MATLAB code clarifies the computation,

M = sma(y,N); % N-point SMA of closing prices y

S = stdev(y,N); % std-dev relative to M

L = M - 2*S; % lower bound

U = M + 2*S; % upper bound

where the function, stdev, uses the built-in function std to calculate the standard devi-
ation over each length-N data window, and its essential code is,

for n=1:length(y),

S(n) = std(y(max(1,n-N+1):n));

end

where the data window length is N for n ≥ N, and n during the initial transients n < N.

25.11. ENVELOPES, BANDS, AND CHANNELS 1243

Standard-Error Bands

Standard-error bands [913] use the PMA/linear-regression moving average as the middle
trendline and shift it by two standard errors up and down. The calculation is summa-
rized below with the help of the function lreg, in which the quantities, y, a, se, represent
the closing prices, the local level, and the standard error,

[a,~,~,se] = lreg(y,N); % N-point linear regression

L = a - 2*se; % lower bound

U = a + 2*se; % upper bound

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, Bollinger bands, N = 20

 sma
 bands
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, standard−error bands, N = 20

 lreg
 bands
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, projection bands, N = 20

 lreg
 bands
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, Donchian channels, N = 20

 sma
 bands
 data

Fig. 25.11.1 Bollinger bands, standard-error bands, projection bands, and Donchian channels.

1244 25. FILTERING METHODS IN FINANCIAL MARKETS

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, 3% fixed bands, N = 10

 bands
 middle
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, Keltner bands, N = 10

 bands
 middle
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, STARC bands, N = 10

 bands
 middle
 data

0 20 40 60 80 100 120
42

44

46

48

50

52

trading days

NICOR, parabolic SAR

 PSAR
 data

Fig. 25.11.2 Fixed-width bands, Keltner bands, STARC bands, and parabolic SAR.

Projection Bands

Projection bands [912] also use the linear regression function lreg to calculate the local
slopes for the high and low prices, H,L. The value of the upper (lower) band at the n-th
time instant is determined by considering the values of the highs H (lows L) over the
look-back period, n −N + 1 ≤ t ≤ n, extrapolating each of them linearly according to
their slope to the current time instant n, and taking the maximum (minimum) among
them. The following MATLAB code implements the procedure,

25.11. ENVELOPES, BANDS, AND CHANNELS 1245

[~,bL] = lreg(L,N); % linear regression slope for Low

[~,bH] = lreg(H,N); % linear regression slope for High

for n=0:length(H)-1,

t = (max(0,n-N+1) : n)’; % look-back interval

Lo(n+1) = min(L(t+1) + bL(n+1)*(n-t)); % lower band

Up(n+1) = max(H(t+1) + bH(n+1)*(n-t)); % upper band

end

Donchian Channels

Donchian channels [915] are constructed by finding, at each time instant n, the highest
high (resp. lowest low) over the past time interval, n−N ≤ t ≤ n− 1, that is, the value
of the upper bound at the n-th day, is the maximum of the highs over the previous N
days, not including the current day, i.e., max

[
Hn−1,Hn−2, . . . ,Hn−N

]
. The code below

describes the procedure,

for n = 2:length(H) % n is MATLAB index

t = max(1,n-N) : n-1; % past N days

Lo(n) = min(L(t)); % lower band

Up(n) = max(H(t)); % upper band

end

Mid = (Up + Lo)/2; % middle band

Fixed-Width Bands

Fixed-width bands or envelopes [914] shift an N-point SMA of the closing prices by a
certain percentage, such as, typically, 3 percent,

M = sma(C,N); % N-point SMA of closing prices C

L = M - p*M; % lower band, e.g., p = 0.03

U = M + p*M; % upper band

Keltner Bands

Keltner bands or channels [914], use as the middle trendline an N-point SMA of the
average of the high, low, and closing prices, (H+L+C)/3, and use an N-point SMA of
the difference (H−L) as the bandwidth, representing a measure of volatility. The code
below implements the operations,

M = sma((H+L+C)/3,N); % SMA of (H+L+C)/3

D = sma(H-L,N); % SMA of (H-L)

L = M - D; % lower band

U = M + D; % upper band

The typical value of N is 10, and the trading rule is that a “buy” signal is generated
when the closing priceC lies above the upper band, and a “sell” signal whenC lies below
the lower band.

1246 25. FILTERING METHODS IN FINANCIAL MARKETS

Starc Bands

In Starc† bands [914] all three prices, high, low, and closing, H,L,C, are used. The
middle band is an N -point SMA of the closing prices C, but the bandwidth is defined
in terms of an Na-point of the so-called “average true range” (ATR), which represents
another measure of volatility. The code below describes the computation,

M = sma(C,N); % SMA of closing prices

R = atr([H,L,C],Na); % ATR = average true range

L = M - 2*R; % lower and

U = M + 2*R; % upper band

The ATR [865] is an Na -point WEMA of the “true range”, defined as follows, at each
time n,

Tn = max
[
Hn − Ln, Hn −Cn−1, Cn−1 − Ln

] = true range in n-th day

Rn = wema(Tn,Na)= ATR
(25.11.1)

and is implemented by the function atr, with the help of the delay function. Its essential
MATLAB code is as follows, where H,L,C are column vectors,

T = max([H-L, H-delay(C,1), delay(C,1)-L], [], 2); % row-wise max

R = wema(T,N);

MATLAB Functions

The following MATLAB functions implement the band indicators discussed above, where
the various parameters are fully explained in the help files for these functions,

[L,U,M] = bbands(y,N,d); % Bollinger bands
[L,U,a] = sebands(y,N,d,init); % standard-error bands
[L,U,R,Rs] = pbands(Y,N,Ns); % projection bands & oscillator
[L,U,M] = donch(Y,N); % Donchian channels
[L,U,M] = fbands(Y,N,p); % fixed-width bands
[L,U,M] = kbands(Y,N); % Keltner bands
[L,U,M] = stbands(Y,N,Na); % Starc bands

S = stdev(y,N,flag); % standard deviation

[R,TR] = atr(Y,N); % average true range

The essential MATLAB code for generating Figs. 25.11.1 and 25.11.2 is as follows,

Y = xlsread(’nicor.xls’); % load Nicor-Gas data
Y = Y(1:130,1:4); % 130 trading days, and [O,H,L,C] prices
y = Y(:,4); % closing prices
t = 0:length(y)-1; % trading days

N = 20; % used in Fig.6.22.1

†Stoller Average Range Channels

25.11. ENVELOPES, BANDS, AND CHANNELS 1247

[L,U,M] = bbands(y,N); % Bollinger
figure; ohlc(t,Y); hold on; % make OHLC bar chart
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,a] = sebands(y,N); % standard-error
figure; ohlc(t,Y); hold on;
plot(t,a,’g-’, t,U,’r--’, t,L,’r--’);

a = lreg(y,N);
[L,U] = pbands(Y,N); % projection
figure; ohlc(t,Y); hold on;
plot(t,a,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = donch(Y,N); % Donchian
figure; ohlc(t,Y); hold on;
plot(t,M,’r--’, t,L,’r--’, t,U,’r--’);
plot(t,sma(y,N),’g-’);

N=10; % used in Fig.6.22.2

p=0.03;
[L,U,M] = fbands(Y,N,p); % fixed-width
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = kbands(Y,N); % Keltner
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

[L,U,M] = stbands(Y,N); % Starc
figure; ohlc(t,Y); hold on;
plot(t,M,’g-’, t,U,’r--’, t,L,’r--’);

H = Y(:,2); L = Y(:,3); ni=1; Ri=1; % parabolic SAR
S = psar(H,L,Ri,ni);
figure; ohlc(t,Y); hold on;
plot(t,S,’r.’);

Parabolic SAR

Wilder’s parabolic stop & reverse (SAR) [865] is a trend-following indicator that helps a
trader to switch positions from long to short or vice versa.

While holding a long position during a period of increasing prices, the SAR indicator
lies below the prices and is also increasing. When the prices begin to fall and touch the
SAR from above, then a “sell” signal is triggered with a reversal of position from long
to short, and the SAR switches sides and begins to fall, lying above the falling prices. If
subsequently, the prices begin to rise again and touch the SAR from below, then a “buy”
signal is triggered and the position is reversed from short to long again, and so on.

The indicator is very useful as it keeps a trader constantly in the market and works
well during trending markets with steady periods of increasing or decreasing prices,
even though it tends to recommend buying relatively high and selling relatively low—
the opposite of what is the ideal. It does not work as well during “sideways” or trading
markets causing so-called “whipsaws.” It is usually used in conjunction with other indi-
cators that confirm trend, such as the RSI or DMI. Some further references on the SAR

1248 25. FILTERING METHODS IN FINANCIAL MARKETS

are [919–924].
The SAR is computed in terms of the high and low price signalsHn,Ln and is defined

as the exponential moving average of the extreme price reached within each trending
period, but it uses a time-varying EMA parameter, λn = 1 − αn, as well as additional
conditions that enable the reversals. Its basic EMA recursion from day n to day n+1 is,

Sn+1 = λnSn +αnEn = (1−αn)Sn +αnEn , or,

Sn+1 = Sn +αn(En − Sn) (SAR) (25.11.2)

where En is the extreme price reached during the current trending position, that is, the
highest high reached up to day n during an up-trending period, or the lowest low up to
day n during a down-trending period. At the beginning of each trending period, Sn is
initialized to be the extreme price of the previous trending period.

The EMA factor αn increases linearly with time, starting with an initial value, αi, at
the beginning of each trending period, and then increasing by a fixed increment Δα, but
only every time a new extreme value is reached, that is,

αn+1 =
⎧⎨⎩αn +Δα , if En+1 �= En
αn , if En+1 = En

(25.11.3)

where we note that En+1 �= En happens when En+1 is strictly greater than En during an
up-trend, or, En+1 is strictly less than En during a down-trend. Moreover, an additional
constraint is that αn is not allowed to exceed a certain maximum value, αm. The values
recommended by Wilder [865] are,

αi = 0.02 , Δα = 0.02 , αm = 0.2

Because of the increasingαn parameter, the EMA has a time-varying decreasing lag,†

thus, tracking more quickly the extreme prices as time goes by. As a result, Sn has a
particular curved shape that resembles a parabola, hence the name “parabolic” SAR.

The essential steps in the calculation of the SAR are summarized in the following
MATLAB code, in which the inputs are the quantities, H,L, representing the high and low
price signals, Hn,Ln, while the output quantities, S,E,a,R, represent, Sn, En,αn,Rn,
where Rn holds the current position and is equal to ±1 for long/short.

†The EMA equivalent length decreases from, Ni = 2/αi − 1 = 99, down to, Nm = 2/αm − 1 = 9.

25.11. ENVELOPES, BANDS, AND CHANNELS 1249

Hi = max(H(1:ni)); % initial highest high, default
Li = min(L(1:ni)); % initial lowest low

R(ni) = Ri; % initialize outputs at starting time n=ni
a(ni) = ai;
S(ni) = Li*(Ri==1) + Hi*(Ri==-1);
E(ni) = Hi*(Ri==1) + Li*(Ri==-1);

for n = ni : length(H)-1

S(n+1) = S(n) + a(n) * (E(n) - S(n)); % SAR update

r = R(n); % current position

if (r==1 & L(n+1)<=S(n+1)) | (r==-1 & H(n+1)>=S(n+1)) % reversal
r = -r; % reverse r
S(n+1) = E(n); % reset new S
E(n+1) = H(n+1)*(r==1) + L(n+1)*(r==-1); % reset new E
a(n+1) = ai; % reset new a

else % no reversal
if n>2 % new S
S(n+1) = min([S(n+1), L(n-1), L(n)])*(r==1) ... % additional

+ max([S(n+1), H(n-1), H(n)])*(r==-1); % conditions
end

E(n+1) = max(E(n),H(n+1))*(r==1) ... % new E
+ min(E(n),L(n+1))*(r==-1);

a(n+1) = min(a(n) + (E(n+1)~=E(n)) * Da, am); % new a
end

R(n+1) = r; % new R

end % for-loop

If the current trading position is long (r = 1), corresponding to an up-trending
market, then, a reversal of position to short (r = −1) will take place at time n+1 if the
low price Ln+1 touches or becomes less than the SAR, that is, if, Ln+1 ≤ Sn+1. Similarly, if
the current position is short, corresponding to a down-trending market, then, a reversal
of position to long will take place at time n+1 if the high priceHn+1 touches or becomes
greater than the SAR, that is, if, Hn+1 ≥ Sn+1. At such reversal time points, the SAR is
reset to be equal to the extreme price of the previous trend, that is, Sn+1 = En, and the
En+1 is reset to be either Ln+1 if reversing to short, or Hn+1 if reversing to long, and the
EMA parameter is reset to, αn+1 = αi.

An additional condition is that during an up-trend, the SAR for tomorrow, Sn+1, is
not allowed to become greater that either today’s or yesterday’s lows, Ln, Ln−1, and in
such case it is reset to the minimum of the two lows. Similarly, during a down-trend, the
Sn+1 is not allowed to become less that either today’s or yesterday’s highs, Hn,Hn−1,
and is reset to the maximum of the two highs. This is enforced by the code line,

Sn+1 = min
(
[Sn+1, Ln−1, Ln]

)·(r==1)+ max
(
[Sn+1,Hn−1,Hn]

)·(r==−1)

The parabolic SAR is implemented with the MATLAB function psar, with usage,

[S,E,a,R] = psar(H,L,Ri,ni,af,Hi,Li); % parabolic SAR

H = vector of High prices, column
L = vector of Low prices, column, same length as H

1250 25. FILTERING METHODS IN FINANCIAL MARKETS

Ri = starting position, long Ri = 1, short Ri = -1
ni = starting time index, default ni = 1, all outputs are NaNs for n<ni
af = [ai,da,am] = [initial EMA factor, increment, maximum factor]

default, af = [0.02, 0.02, 0.2]
Hi,Li = initial high and low used to initialize S(n),E(n) at n=ni,

default, Hi = max(H(1:ni)), Li = min(L(1:ni))

S = parabolic SAR, same size as H
E = extremal price, same size as H
a = vector of EMA factors, same size as H
R = vector of positions, R = +1/-1 for long/short, same size as H

The SAR signal Sn is usually plotted with dots, as shown for example, in the bottom
right graph of Fig. 25.11.2. Fig. 25.11.3 shows two more examples.

0 4 8 12 16 20 24 28 32 36 40
49

50

51

52

53

54

55

56

57

58

59

days

parabolic SAR

 SAR
 Hi/Lo

0 3 6 9 12 15 18 21 24 27
83

85

87

89

91

93

95

97

days

parabolic SAR

 SAR
 reversal
 Hi/Lo

Fig. 25.11.3 Parabolic SAR examples from Wilder [865] and Achelis [864].

The left graph reproduces Wilder’s original example [865] and was generated by the
following MATLAB code,†

Y = xlsread(’psarexa.xls’);
t = Y(:,1); H = Y(:,2); L = Y(:,3); % extract H,L signals

Ri = 1; ni = 4; % initialize SAR
[S,E,a,R] = psar(H,L,Ri,ni);

num2str([t, H, L, a, E, S, R], ’%8.2f’);

figure; ohlc(t,[H,L], t,S,’r.’); % make OHLC plot, including SAR

which reproduces table on p.13 of [865]. The right graph is from Achelis [864]. The SAR
is plotted with filled dots, but at the end of each trending period and shown with open
circles are the points that triggered the reversals. The MATLAB code for this example is
similar to the above,†

†data are from Wilder [865]
†data are from Wilder [864]

25.12. MOMENTUM, OSCILLATORS, AND OTHER INDICATORS 1251

Y = xlsread(’psarexb.xls’);
t = Y(:,1); H = Y(:,2); L = Y(:,3);

Ri = 1; ni = 1; % initialize
[S,E,a,R] = psar(H,L,Ri,ni); % compute SAR

num2str([t ,H, L, a, E, S, R], ’%9.4f’);
figure; ohlc(t,[H,L], t,S,’r.’); % make OHLC plot, including SAR

which reproduces the same table from [864]. The first up-trending period ends at day
n = 9 at which the would be SAR, shown as an opened-circle, lies above the low of that
day, thus, causing a reversal to short and that SAR is then replaced with the filled-circle
value that lies above the highs, and corresponds to the highest high of the previous
period that had occurred on day n = 6.

The second down-trending period ends at n = 15 at which point the SAR, shown
as an opened-circle, is breached by the high on that day, thus causing a reversal to
long, and the SAR is reset to the filled-circle value on that day lying below the data, and
corresponds to the lowest low during the previous period that had been reached on day
n = 12. Finally, another such reversal takes place on day n = 27 and the SAR is reset to
the highest high that had occurred on day n = 18. To clarify, we list below the values
of the SAR at the reversal points before and after the reversal takes place,

n Sbefore(n) Safter(n)
9 91.5448 95.1875 = H6

15 92.3492 85.0625 = L12

27 89.8936 95.2500 = H18

25.12 Momentum, Oscillators, and Other Indicators

There exist several other indicators that are used in technical analysis, many of them
built on those we already discussed. The following MATLAB functions implement some
of the more popular ones, several are also included in MATLAB’s financial toolbox. Ad-
ditional references can be found in the Achelis book [864] and in [865–928,935–937].

1252 25. FILTERING METHODS IN FINANCIAL MARKETS

R = rsi(y,N,type); % relative strength index, RSI

R = cmo(y,N); % Chande momentum oscillator, CMO

R = vhfilt(y,N); % Vertical Horizontal Filter, VHF

[Dp,Dm,DX,ADX] = dirmov(Y,N); % directional movement system, +-DI,DX,ADX

--

[y,yr,ypr] = mom(x,d,xin); % momentum and price rate of change

[y,ys,ypr] = prosc(x,N1,N2,N3); % price oscillator & MACD

[pK,pD] = stoch(Y,K,Ks,D,M); % stochastic, %K, %D oscillators

--

R = accdist(Y); % accumulation/distribution line

R = chosc(Y,N1,N2); % Chaikin oscillator

R = cmflow(Y,N); % Chaikin money flow

R = chvol(Y,N); % Chaikin volatility

--

[P,N] = pnvi(Y,P0); % positive/negative volume indices, PVI/NVI

R = cci(Y,N); % commodity channel index, CCI

R = dpo(Y,N); % detrended price oscillator, DPO

[R,N] = dmi(y,Nr,Ns,Nm); % dynamic momentum index, DMI

[R,Rs] = forosc(y,N,Ns); % forecast oscillator

--

[R,Rs] = trix(y,N,Ns,yin); % TRIX oscillator

a = vema(y,N,Nv); % variable-length EMA

Below we discuss briefly their construction. Examples of their use are included in
their respective help files. Several online examples can be found in the Fidelity Guide
[935] and in the TradingView Wiki [936].

Relative Strength Index, RSI

The relative strength index (RSI) was introduced by Wilder [865] to be used in conjunction
with the parabolic SAR to confirm price trends. It is computed as follows, where y is the
column vector of daily closing prices,

x = diff(y); % price differences

xu = +x.*(x>0); % upward differences

xd = -x.*(x<=0); % downward differences

su = wema(xu,N); % smoothed differences

sd = wema(xd,N);

RSI = 100*su/(su+sd); % RSI

Chande Momentum Oscillator, CMO

If the wema function is replaced by sma, one obtains the Chande momentum oscillator,

25.12. MOMENTUM, OSCILLATORS, AND OTHER INDICATORS 1253

x = diff(y); % price differences

xu = +x.*(x>0); % upward differences

xd = -x.*(x<=0); % downward differences

su = sma(xu,N); % smoothed differences

sd = sma(xd,N);

CMO = 100*(su-sd)/(su+sd); % CMO

Thus, the SMA-based RSI is related to CMO via,

CMO = 2 RSI− 100 � RSI = CMO+ 100

2

Vertical Horizontal Filter, VHF

The vertical horizontal filter (VHF) is similar to the RSI or CMO and helps to confirm a
trend in trending markets. It is computed as follows, where the firstN outputs are NaNs,

x = [NaN; diff(y)]; % y = column of closing prices

% x = price differences

for n=N+1:length(y),

yn = y(n-N+1:n); % length-N look-back window

xn = x(n-N+1:n);

R(n) = abs(max(yn)-min(yn)) / sum(abs(xn)); % VHF

end

Directional Movement System

The directional movement system was also proposed by Wilder [865] and consists of
several indicators, the plus/minus directional indicators, (±DI), the directional index
(DX), and the average directional index (ADX). These are computed as follows,

R = atr(Y,N); % average true range

DH = [0; diff(H)]; % high price differences

DL = [0; -diff(L)]; % low price differences

Dp = DH .* (DH>DL) .* (DH>0); % daily directional movements

Dm = DL .* (DL>DH) .* (DL>0); %

Dp = wema(Dp,N); % averaged directional movements

Dm = wema(Dm,N); %

Dp = 100 * Dp ./ R; % +DI,-DI directional indicators

Dm = 100 * Dm ./ R;

DX = 100*abs(Dp - Dm)./(Dp + Dm); % directional index, DI

ADX = wema(DX,N); % average directional index, ADX

Momentum and Price Rate of Change

In its simplest form a momentum indicator is the difference between a price today,
x(n), and the price d days ago, x(n−d), but it can also be expressed as a ratio, or as a

1254 25. FILTERING METHODS IN FINANCIAL MARKETS

percentage, referred to as price rate of change,

y(n) = x(n)−x(n− d)= momentum

yr(n) = 100 · x(n)
x(n− d)

= momentum as ratio

yp(n) = 100 · x(n)−x(n− d)
x(n− d)

= price rate of change

It can be implemented simply with the help of the function, delay,

y = x - delay(x,d);

yr = x./delay(x,d) * 100;

yp = (x-delay(x,d))./delay(x,d) * 100;

Price Oscillator and MACD

The standard moving average convergence/divergence (MACD) indicator is defined as
the difference between two EMAs of the daily closing prices: a length-12 shorter/faster
EMA and a length-26 longer/slower EMA. A length-9 EMA of the MACD difference is also
computed as a trigger signal.

Typically, a buy (sell) signal is indicated when the MACD rises above (falls below)
zero, or when it rises above (falls below) its smoothed signal line.

The MACD can also be represented as a percentage resulting into the price oscillator,
and also, different EMA lengths can be used. The following code segment illustrates the
computation, where x are the closing prices,

y1 = sema(x,N1); % fast EMA, default N1=12

y2 = sema(x,N2); % slow EMA, default N2=26

y = y1 - y2; % MACD

ys = sema(y,N3); % smoothed MACD signal, default N3=9

ypr = 100 * y./y2; % price oscillator

Stochastic Oscillator

H = Y(:,1); L = Y(:,2); C = Y(:,3); % extract H,L,C inputs

Lmin = NaN(size(C)); Hmax = NaN(size(C)); % NaNs for n<K

for n = K:length(C), % look-back period K

Lmin(n) = min(L(n-K+1:n)); % begins at n=K

Hmax(n) = max(H(n-K+1:n));

end

pK = 100 * sma(C-Lmin, Ks) ./ sma(Hmax-Lmin, Ks); % percent-K

pD = sma(Pk, D); % percent-D

Fast Stochastic has Ks = 1, i.e., no smoothing, and Slow Stochastic has, typically, Ks = 3.

25.12. MOMENTUM, OSCILLATORS, AND OTHER INDICATORS 1255

Accumulation/Distribution

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V

R = cumsum((2*C-H-L)./(H-L).*V); % ACCDIST

Chaikin Oscillator

y = accdist(Y); % Y = [H,L,C,V] data matrix

R = sema(y,N1) - sema(y,N2); % CHOSC, default, N1=3, N2=10

Chaikin Money Flow

H=Y(:,1); L=Y(:,2); C=Y(:,3); V=Y(:,4); % extract H,L,C,V

R = sma((2*C-H-L)./(H-L).*V, N) ./ sma(V,N); % CMFLOW

Chaikin Volatility

S = sema(H-L,N); % H,L given

R = (S - delay(S,N)) ./ delay(S,N) * 100; % volatility

Positive/Negative Volume Indices, PNVI

These are defined recursively as follows, in MATLAB-like notation, where Cn,Vn are the
closing prices and the volume,

Pn = Pn−1 + (Vn > Vn−1)·Cn −Cn−1

Cn−1
· Pn−1 = Pn−1

(
Cn

Cn−1

)(Vn>Vn−1)
= PVI

Nn = Nn−1 + (Vn < Vn−1)·Cn −Cn−1

Cn−1
·Nn−1 = Nn−1

(
Cn

Cn−1

)(Vn<Vn−1)
= NVI

and initialized to some arbitrary initial value, such as, P0 = N0 = 1000. The MATLAB
implementation uses the function, delay,

P = P0 * cumprod((C./delay(C,1)) .^ (V>delay(V,1))); % PNVI

N = P0 * cumprod((C./delay(C,1)) .^ (V<delay(V,1)));

Commodity Channel Index, CCI

T = (H+L+C)/3; % H,L,C given

M = sma(T,N);

for n=N+1:length(C),

D(n) = mean(abs(T(n-N+1:n) - M(n))); % mean deviation

end

R = (T-M)./D/0.015; % CCI

1256 25. FILTERING METHODS IN FINANCIAL MARKETS

Detrended Price Oscillator, DPO

S = sma(y,N,’n’); % y = column of closing prices

M = floor(N/2) + 1; % advancing time

R = y - delay(S,-M,’n’); % DPO, i.e., R(n) = y(n) - S(n+M)

Dynamic Momentum Index, DMI

x = [NaN; diff(y)]; % y = column of closing prices

xu = x .* (x>0); % updward differences

xd = -x .* (x<=0); % downward differences

S = stdev(y,Ns); % Ns-period stdev

V = S ./ sma(S,Nm); % volatility measure

N = floor(Nr ./ V); % effective length

N(N>Nmax) = Nmax; % restrict max and min N

N(N<Nmin) = Nmin;

Nstart = Nr + Ns + Nm;

su1 = mean(xu(2:Nstart)); % initialize at start time

sd1 = mean(xd(2:Nstart));

switch lower(type)

case ’wema’ % WEMA type

for n = Nstart+1:length(y),

su(n) = su1 + (xu(n) - su1) / N(n); su1 = su(n);

sd(n) = sd1 + (xd(n) - sd1) / N(n); sd1 = sd(n);

end

case ’sma’ % SMA type

for n = Nstart+1:length(y),

su(n) = mean(xu(n-N(n)+1:n));

sd(n) = mean(xd(n-N(n)+1:n));

end

end

R = 100 * su./(su+sd); % DMI

Forecast Oscillator

yp = pma(y,N,1); % time series forecast

x = y - delay(yp,1);

R = 100 * x./y; % forecast oscillator

Rs = sma(R,Ns); % trigger signal

25.13. MATLAB FUNCTIONS 1257

TRIX Oscillator

[~,~,~,~,~,a3] = tema(y,N,cin); % triple EMA

R = 100*(a3 - delay(a3,1))./a3; % TRIX

Rs = sma(R,Ns); % smoothed TRIX

Variable-Length EMA

la = (N-1)/(N+1); al = 1-la; % EMA parameter

switch lower(type)

case ’cmo’ % CMO volatility

V = abs(cmo(y,Nv))/100;

case ’r2’ % R^2 volatility

[~,~,V] = lreg(y,Nv);

end

for n=Nv+1:length(y), % default si=y(Nv)

s(n) = si + al*V(n)*(y(n)-si); % EMA recursion

si = s(n);

end

25.13 MATLAB Functions

We summarize the MATLAB functions discussed in this chapter:

% ------------------------------------
% Exponential Moving Average Functions
% ------------------------------------
% ema - exponential moving average - exact version
% stema - steady-state exponential moving average
% lpbasis - fit order-d polynomial to first L inputs
% emap - map equivalent lambdas’s between d=0 and d=1 EMAs
% emaerr - MSE, MAE, MAPE error criteria
% emat - transformation matrix from polynomial to cascaded basis
% mema - multiple exponential moving average
% holt - Holt’s exponential smoothing
% holterr - MSE, MAE, MAPE error criteria for Holt

The technical analysis functions are:

% ----------------------------
% Technical Analysis Functions
% ----------------------------
% accdist - accumulation/distribution line
% atr - true range & average true range
% cci - commodity channel index
% chosc - Chaikin oscillator
% cmflow - Chaikin money flow
% chvol - Chaikin volatility
% cmo - Chande momentum oscillator
% dirmov - directional movement system, +-DI, DX, ADX
% dmi - dynamic momentum index (DMI)

1258 25. FILTERING METHODS IN FINANCIAL MARKETS

% dpo - detrended price oscillator
% forosc - forecast oscillator
% pnvi - positive and negative volume indices, PVI, NVI
% prosc - price oscillator & MACD
% psar - Wilder’s parabolic SAR
% rsi - relative strength index, RSI
% stdev - standard deviation index
% stoch - stochastic oscillator, %K, %D oscillators
% trix - TRIX oscillator
% vhfilt - Vertical Horizontal Filter
%
% ------------ moving averages ---------------------------
%
% bma - Butterworth moving average
% dema - steady-state double exponential moving average
% ehma - exponential Hull moving average
% gdema - generalized dema
% hma - Hull moving average
% ilrs - integrated linear regression slope indicator
% delay - delay or advance by d samples
% mom - momentum and price rate of change
% lreg - linear regression, slope, and R-squared indicators
% pma - predictive moving average, linear fit
% pmaimp - predictive moving average impulse response
% pma2 - predictive moving average, polynomial order d=1,2
% pmaimp2 - predictive moving average impulse response, d=1,2
% sema - single exponential moving average
% shma - SMA-based Hull moving average
% sma - simple moving average
% t3 - Tillson’s T3 indicator, triple gdema
% tema - triple exponential moving average
% tma - triangular moving average
% vema - variable-length exponential moving average
% wema - Wilder’s exponential moving average
% wma - weighted or linear moving average
% zema - zero-lag EMA
%
% --------------- bands ----------------------------------
%
% bbands - Bollinger bands
% donch - Donchian channels
% fbands - fixed-envelope bands
% kbands - Keltner bands or channels
% pbands - Projection bands and projection oscillator
% sebands - standard-error bands
% stbands - STARC bands
%
% --------------- misc ----------------------------------
%
% ohlc - make Open-High-Low-Close bar chart
% ohlcyy - OHLC with other indicators on the same graph
% yylim - adjust left/right ylim
%
% r2crit - R-squared critical values
% tcrit - critical values of Student’s t-distribution
% tdistr - cumulative t-distribution

25.14. COMPUTER PROJECT – MARKOWITZ PORTFOLIO THEORY 1259

25.14 Computer Project – Markowitz Portfolio Theory

This project, divided into separate questions, deals with Markowitz’s optimum mean-
variance portfolio theory [940–951]. It represents a special case of a linearly-constrained
quadratic optimization problem. The project develops the following topics from finan-
cial engineering:

• optimum mean-variance Markowitz portfolios

• efficient frontier between risk and return

• quantifying risk aversion

• two mutual fund theorem

• inequality-constrained portfolios without short selling

• risk-free assets and tangency portfolio

• capital asset line and the Sharp ratio

• market portfolios and capital market line

• stock’s beta, security market line, risk premium

• capital asset pricing model (CAPM)

• minimum-variance with multiple constraints

1. Mean-Variance Portfolio Theory. The following constrained optimization problem
finds application in investment analysis and optimum portfolio selection in which
one tries to balance return versus risk.†

Suppose one has identified M stocks or assets into which to invest,

y =

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yM

⎤⎥⎥⎥⎥⎥⎦
where yi is a random variable that represents the value of the ith asset. From his-
torical data, the expected returns of the individual assets are assumed to be known,

E[y]= m =

⎡⎢⎢⎢⎢⎢⎣
m1

m2

...
mM

⎤⎥⎥⎥⎥⎥⎦
as are the cross-correlations between the assets,

Rij = E
[
(yi −mi)(yj −mj)

]
, 1 ≤ i, j ≤M

or, matrix-wise,
R = E

[
(y−m)(y−m)T

]
†Harry Markowitz received the Nobel prize in economics for this work.

1260 25. FILTERING METHODS IN FINANCIAL MARKETS

where R is assumed to have full rank. The variance σ2
i = Rii is a measure of the

volatility, or risk, of the ith asset.

An investment portfolio is selected by choosing the percentage ai to invest in the
ith asset yi. The value of the portfolio is defined by the random variable:

y =
M∑
i=1

aiyi = [a1, a2, . . . , aM]

⎡⎢⎢⎢⎢⎢⎣
y1

y2

...
yM

⎤⎥⎥⎥⎥⎥⎦ = aTy

where the weights ai must add up to unity (negative weights are allowed, describing
so-called “short sells”):

M∑
i=1

ai = [a1, a2, . . . , aM]

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎦ = aTu = 1 , where u =

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎦
The expected return of the portfolio and its variance or risk are given by:

μ = E[y]= E[aTy]= aTm = return

σ2 = E
[
(y − μ)2] = aTRa = risk

An optimum portfolio may be defined by finding the weights that minimize the risk
σ2 for a given value of the return μ, that is,

σ2 = aTRa = min , subject to

⎧⎨⎩aTm = μ
aTu = 1

(25.14.1)

(a) Incorporate the constraints by means of two Lagrange multipliers, λ1, λ2, and
minimize the modified performance index:

J = 1

2
aTRa+ λ1(μ− aTm)+λ2(1− aTu)= min

Show that the quantities {a, λ1, λ2} can be obtained from the solution of the
(M + 2)×(M + 2) linear system of equations:⎡⎢⎣R −m −u

mT 0 0
uT 0 0

⎤⎥⎦
⎡⎢⎣ a
λ1

λ2

⎤⎥⎦ =
⎡⎢⎣ 0
μ
1

⎤⎥⎦ (25.14.2)

where the invertibility of this matrix requires that the vectors m and u not be
collinear.

25.14. COMPUTER PROJECT – MARKOWITZ PORTFOLIO THEORY 1261

(b) Show that the solution of this system for a takes the form:

a = λ1R−1m+ λ2R−1u (25.14.3)

and that λ1, λ2 can be obtained from the reduced 2×2 linear system:

[
A B
B C

][
λ1

λ2

]
=
[
μ
1

]
⇒

λ1 = μC− B
D

λ2 = A− μB
D

where, A,B,C,D, are defined in terms of m, R by

A = mTR−1m

B = mTR−1u

C = uTR−1u

D = AC− B2

(c) Show that the quantities A,C,D are non-negative.

(d) Show that the minimized value of the risk σ2 = aTRa can be written in the form:

σ2 = μλ1 + λ2 = Cμ2 − 2Bμ+A
D

(25.14.4)

Thus, the dependence of the variance σ2 on the return μ has a parabolic shape,
referred to as the efficient frontier.

(e) The apex of this parabola is obtained by minimizing Eq. (25.14.4) with respect
to μ. Setting ∂σ2/∂μ = 0, show that the absolute minimum is reached for the
following values of the return, risk, and weights:

μ0 = B
C
, σ2

0 =
1

C
, a0 = R−1u

uTR−1u
(25.14.5)

(f) Show that Eq. (25.14.4) can be re-expressed as

σ2 = σ2
0 +

C
D
(μ− μ0)2 (efficient frontier) (25.14.6)

which can be solved for μ in terms of σ2, as is common in practice:

μ = μ0 ±
√
D
C

√
σ2 −σ2

0 (25.14.7)

Of course, only the upper sign corresponds to the efficient frontier because it
yields higher return for the same risk. (See some example graphs below.)

1262 25. FILTERING METHODS IN FINANCIAL MARKETS

(g) Show that the optimum portfolio of Eq. (25.14.3) can be written in the form:

a = a0 + C
D
(μ− μ0)R−1(m− μ0 u) (25.14.8)

where a0 was defined in Eq. (25.14.5). Thus, as expected, a = a0, if μ = μ0.

(h) Show that the optimum portfolio of Eq. (25.14.3) can be written in the form

a = μg+ h

where g,h depend only on the asset statistics m, R and are independent of μ.
Moreover, show that, mTg = 1, and, mTh = 0, and that, uTg = 0, and, uTh = 1.
In particular, show that g,h are given by,

g = C
D
R−1m− B

D
R−1u

h = A
D
R−1u− B

D
R−1m

(i) Consider two optimal portfolios a1 and a2 having return-risk values that lie on
the efficient frontier, μ1, σ1 and μ2, σ2, satisfying Eq. (25.14.6), and assume that
μ1 < μ2. Using the results of the previous question, show that any other opti-
mum portfolio with return-risk pair μ,σ, such that μ1 < μ < μ2, can be con-
structed as a linear combination of a1, a2 as follows, with positive weights p1, p2,
such that, p1 + p2 = 1,

a = p1a1 + p2a2 , p1 = μ2 − μ
μ2 − μ1

, p2 = μ− μ1

μ2 − μ1

Thus, the investor need only invest in the two standard portfolios a1 and a2 in
the proportions p1 and p2, respectively. This is known as the two mutual fund
theorem. The restriction μ1 < μ < μ2 can be relaxed if short selling of the funds
is allowed.

(j) Consider a portfolio of four assets having return (given as annual rate) and co-
variance matrix:

m =

⎡⎢⎢⎢⎣
0.02
0.03
0.01
0.05

⎤⎥⎥⎥⎦ , R =

⎡⎢⎢⎢⎣
0.10 −0.02 0.04 −0.01

−0.02 0.20 0.05 0.02
0.04 0.05 0.30 0.03

−0.01 0.02 0.03 0.40

⎤⎥⎥⎥⎦
Make a plot of the efficient frontier of μ versus σ according to Eq. (25.14.7).
To do so, choose 51 equally-spaced μs in the interval

[
min(m), max(m)

]
and

calculate the corresponding σs.

Compute the risk σ and weight vector a that would achieve a return of μ = 0.04
and indicate that point on the efficient frontier.

Why wouldn’t an investor want to put all his/her money in stock y4 since it has
a higher return of m4 = 0.05?

25.14. COMPUTER PROJECT – MARKOWITZ PORTFOLIO THEORY 1263

(k) Generate 100 weight vectors, a, randomly (but such that aTu = 1), compute the
values of the quantities, μ = aTm, and, σ2 = aTRa, and make a scatterplot of
the points (μ,σ) to see that they lie on or below the efficient frontier.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
efficient frontier

risk, σ

re
tu

rn
,

μ

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
efficient frontier

risk, σ

re
tu

rn
,

μ

2. Risk aversion. A somewhat different minimization criterion is often chosen for the
portfolio selection problem, that is,

J = 1

2
aTRa− γaTm = min , subject to uTa = 1 (25.14.9)

where γ is a positive parameter that quantifies the investor’s aversion for risk versus
return—small γ emphasizes low risk, larger γ, high return.

For various values of γ, the optimum weights a are determined and then the corre-
sponding return, μ = aTm, and risk, σ2 = aTRa, are calculated. The resulting plot
of the pairs (μ,σ) is the efficient frontier in this case.

Given the parameters γ,m, R, incorporate the constraint, aTu = 1, with a Lagrange
multiplier and work with the modified performance index:

J = 1

2
aTRa− γaTm+ λ2(1− uTa)= min

Show that one obtains exactly the same solution for a as in the previous problem
and that the correspondence between the assumed γ and the realized return μ is
given by

μ = μ0 + D
C
γ

3. Portfolio with inequality constraints. If short sales are not allowed, the portfolio
weights ai must be restricted to be in the interval, 0 ≤ ai ≤ 1. In this case, the
following optimization problem must be solved:

σ2 = aTRa = min , subject to

⎧⎪⎪⎨⎪⎪⎩
aTm = μ
aTu = 1

0 ≤ ai ≤ 1 , i = 1,2, . . . ,M
(25.14.10)

1264 25. FILTERING METHODS IN FINANCIAL MARKETS

This is a convex optimization problem that can be solved conveniently using the
CVX package.† For example, given a desired value for μ, the following CVX code will
solve for a:

% define M, m, R, mu
cvx_begin

variable a(M)
minimize(a’*R*a);
subject to

a’*u == 1;
a’*m == mu;
a <= ones(M,1);
-a <= zeros(M,1);

cvx_end

(a) For the numerical example of Question (1.j), choose 51 equally-spaced μs in the
interval

[
min(m), max(m)

]
and calculate the corresponding a and σs, and plot

the efficient frontier, that is the pairs (μ,σ). Superimpose on this graph the
efficient frontier of the unconstrained case from Question 1.

(b) Compute the risk σ and weight vector a that would achieve a return of μ = 0.04
and indicate that point on the efficient frontier of part (a). Place on the graph
also the unconstrained solution for the same μ, and explain why the inequality-
constrained case is slightly worse.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
efficient frontier

risk, σ
re

tu
rn

,
μ

 unconstrained
 constrained

4. Capital Asset Line. A variation of the mean-variance portfolio theory was considered
by W. F. Sharpe, who in addition to the collection of risky assets, allowed the presence
of a risk-free asset, such as a Treasury T-bill, that has a fixed guaranteed return, say
μ = μf , and no risk, σf = 0.

Let us assume again that we also have M risky assets y = [y1, y2, . . . , yM]T with
expected returns E[y]= m = [m1,m2, . . . ,mM]T, and known covariance matrix

†http://cvxr.com/cvx

25.14. COMPUTER PROJECT – MARKOWITZ PORTFOLIO THEORY 1265

R = E
[
(y −m)(y −m)T

]
. Clearly, we must assume that μf < mi, i = 1,2, . . . ,M,

otherwise, we would put all our money into the risk-free asset. We form an optimum
portfolio of risky assets y = aTy by choosing a point on the efficient frontier, for
example, the indicated point b on the figure below.

Then, we join with a straight line the point b to the risk-free point μf (the dashed line
on the figure), and we allocate a fraction, wf , of our total funds to the risk-free asset
and hence a fraction, (1−wf), to the portfolio y, that is, the combined portfolio will
be:

ytot = wfμf + (1−wf)y = wfμf + (1−wf)aTy

with mean and variance:

μ = E[ytot]= wfμf + (1−wf)aTm

σ2 = E
[
(ytot − μ)2] = (1−wf)2 aTRa

(25.14.11)

The lowest location for b is at the apex of the frontier, for which we have a = a0.
It should be evident from the figure that if we move the point b upwards along the
efficient frontier, increasing the slope of the dashed straight line, we would obtain
a better portfolio having larger μ.

We may increase the slope until the dashed line becomes tangent to the efficient
frontier, say at the point a, which would correspond to an optimum portfolio a with
mean and variance μa,σa.

This portfolio is referred to as the tangency portfolio and the tangent line (red line)
is referred to as the capital asset line and its maximum slope, say β, as the Sharpe
ratio. Eqs. (25.14.11) become now:

μ = wfμf + (1−wf)μa

σ = (1−wf)σa
(25.14.12)

where μa = aTm and σ2
a = aTRa. Solving the second of Eq. (25.14.12) for wf , we

find 1 − wf = σ/σa, and substituting in the first, we obtain the equation for the

1266 25. FILTERING METHODS IN FINANCIAL MARKETS

straight line on the (μ,σ) plane:

μ = μf + βσ , β = μa − μf
σa

= slope, Sharpe ratio (25.14.13)

This line is the efficient frontier for the combined portfolio. Next we impose the
condition that the point a be a tangency point on the efficient frontier. This will
fix μa,σa. We saw that the frontier is characterized by the parabolic curve of
Eq. (25.14.6) with the optimum weight vector given by (25.14.8). Applying these
to the pair (μa,σa), we have:

σ2
a = σ2

0 +
C
D
(μa − μ0)2

a = a0 + C
D
(μa − μ0)R−1(m− μ0 u)

(25.14.14)

The slope of the tangent at the point a is given by the derivative dμa/dσa, and it
must agree with the slope β of the line (25.14.13):

dμa
dσa

= β = μa − μf
σa

(25.14.15)

(a) Using condition (25.14.15) and Eq. (25.14.14), show the following relationships:

C
D
(μa − μ0)(μ0 − μf)= 1

C

σ2
a =

C
D
(μa − μ0)(μa − μf)

β = σaC(μ0 − μf)

(25.14.16)

The first can be solved for μa, and show that it can be expressed as:

μa = A− μfB
C(μ0 − μf)

(25.14.17)

(b) Using Eqs. (25.14.14) and (25.14.16), show that the optimum weights are given
by

a = 1

C(μ0 − μf)
R−1(m− μfu) (25.14.18)

and verify that they satisfy the constraints aTm = μa and aTu = 1.

(c) Show that the slope β can also be expressed by:

β2 =
(μa − μf

σa

)2

= (m− μfu)TR−1(m− μfu) (25.14.19)

(d) Define w = (1−wf)a to be the effective weight for the total portfolio:

ytot = wfμf + (1−wf)aTy = wfμf +wTy (25.14.20)

Show that w is given in terms of the return μ = wfμf + (1−wf)μa as follows:

w = (1−wf)a = μ− μf
β2

R−1(m− μfu) (25.14.21)

25.14. COMPUTER PROJECT – MARKOWITZ PORTFOLIO THEORY 1267

(e) The optimality of the capital asset line and the tangency portfolio can also be
derived directly by considering the following optimization problem. Let wf and
w be the weights to be assigned to the risk-free asset μf and the risky assets y.
Then the total portfolio, its mean μ, and variance σ2 are given by:

ytot = wfμf +wTy

μ = wfμf +wTm

σ2 = wTRw

(25.14.22)

where the weights must add up to unity: wf + wTu = 1. Given μ, we wish to
determine the weights wf ,w to minimize σ2. Incorporating the constraints by
two Lagrange multipliers, we obtain the performance index:

J = 1

2
wTRw+ λ1(μ−wfμf −wTm)+λ2(1−wf −wTu)= min

Show that the minimization of J with respect to wf ,w results in:

w = λ1R−1(m− μfu) , λ2 = −λ1μf

(f) Imposing the constraints show that,

wT(m− μfu)= μ− μf , λ1 = μ− μf
β2

where β2 is given as in Eq. (25.14.19),

β2 = (m− μfu)TR−1(m− μfu)

and hence, show that w is given by Eq. (25.14.21)

w = μ− μf
β2

R−1(m− μfu)

(g) Show that σ2 = wTRw is given by,

σ2 =
(
μ− μf
β

)2

which corresponds to the straight-line frontier on the μ,σ plane:

μ = μf + βσ

(h) For the numerical example of Question (1.j) and for a fixed-asset return of μf =
0.005, connect the points (μa,σa) and (μf ,0) by a straight line and plot it to-
gether with the parabolic efficient frontier of the risky assets, and verify the
tangency of the line.

1268 25. FILTERING METHODS IN FINANCIAL MARKETS

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
Capital Asset Line

risk, σ

re
tu

rn
,

μ

5. Security market line and CAPM. When the collection of risky stocks of the previous
problem are taken to be representative of the market, such as for example, the stocks
in the S&P 500 index, the tangency portfolio at point a is referred to as the market
portfolio, and the capital asset line, as the capital market line.

Let ya = aTy be the linear combination of stocks for the market portfolio, and
consider another stock yi with return and risk μi,σi. The stock yi is arbitrary and
not necessarily belonging to those that make up the representative market. Define
the beta for the stock as the ratio of the following covariances relative to the market
portfolio:

βi = Ria

Raa

where Ria = E
[
(yi − μi)(ya − μa)

]
and Raa = σ2

a = E
[
(ya − μa)2

]
.

Let us now make a portfolio y consisting of a percentage w of the stock yi and a
percentage (1 − w) of the market ya. Then, y and its mean and variance will be
given as follows, where Rii = σ2

i .

y = wyi + (1−w)ya

μ = wμi + (1−w)μa

σ2 = w2Rii + 2w(1−w)Ria + (1−w)2Raa

(25.14.23)

As w varies, the pair (μ,σ) varies over its own parabolic efficient frontier.

The capital asset pricing model (CAPM) asserts that the tangent line at the market
point y = ya on this frontier obtained whenw = 0, coincides with the capital market
line between the risk-free asset μf and the market portfolio. This establishes the
following relationship to be proved below:

μi − μf = βi(μa − μf) (25.14.24)

so that the excess return above μf , called the risk premium, is proportional to the
stock’s beta. The straight line of μi vs. βi is referred to as the security market line.

25.14. COMPUTER PROJECT – MARKOWITZ PORTFOLIO THEORY 1269

(a) Using the differentiation rule,

dσ
dμ

= dσ
dw

· dw
dμ

show that the slope at the market point, i.e., at w = 0, is given by

dμ
dσ

∣∣∣∣
w=0

= μi − μa
(βi − 1)σa

(25.14.25)

(b) Then, derive Eq. (25.14.24) by equating (25.14.25) to the slope (25.14.13).

6. Minimum-variance with multiple constraints. A generalization of the portfolio con-
strained minimization problem involves more that two constraints:

J = 1

2
aTRa− bTa = min

subject to K linear constraints:

cTi a = μi , i = 1,2, . . . , K

where R is an M×M positive definite symmetric matrix, b is a given M×1 vector,
and we assume that K < M and that the M×1 vectors ci are linearly independent.
Defining theM×K matrix of constraintsC and theK-dimensional vector of “returns”
μμμ,

C = [c1, c2, . . . , cK] , μμμ =

⎡⎢⎢⎢⎢⎢⎣
μ1

μ2

...
μK

⎤⎥⎥⎥⎥⎥⎦
the above minimization problem can be cast compactly in the form:

J = 1

2
aTRa− bTa = min , subject to CTa = μμμ

(a) Introduce a K-dimensional vector of Lagrange multipliers λλλ and replace the per-
formance index by:

J = 1

2
aTRa− bTa+λλλT(μμμ−CTa)= min

Show that the quantities a,λλλmay be obtained as the solution of the (M+K)×(M+
K) linear system of equations:[

R −C
CT 0

][
a
λλλ

]
=
[

b
μμμ

]

1270 25. FILTERING METHODS IN FINANCIAL MARKETS

(b) Show that the above matrix has the following inverse:[
R−1 −R−1C(CTR−1C)−1CTR−1 R−1C(CTR−1C)−1

−(CTR−1C)−1CTR−1 (CTR−1C)−1

]

and explain why the assumed full rank ofC guarantees the existence of the matrix
inverse (CTR−1C)−1.

(c) Show that the solution for a and λλλ can be obtained by:

λλλ = (CTR−1C)−1[μμμ−CTR−1b
]

a = R−1[b+Cλλλ]

(d) Show that the “variance”σ2 = aTRa is parabolic in the “returns”, like Eq. (25.14.4),
thus defining a generalized “efficient frontier”:

σ2 = σ2
0 +μμμT(CTR−1C)−1μμμ

where the constant σ2
0 is defined by:

σ2
0 = bT

[
R−1 −R−1C(CTR−1C)−1CTR−1]b

Note that if additional inequality constraints are included, such as for exampleai > 0
for the weights, then this becomes a much harder problem that must be solved with
quadratic programming techniques. The CVX package or MATLAB’s function quad-
prog from the optimization toolbox solves such problems. The antenna or sen-
sor array version of this problem is know as linearly-constrained minimum-variance
(LCMV) beamforming [45].

26
Whittaker-Henderson Smoothing

26.1 Smoothing Splines

We recall from Sec. 23.12 that the minimum-Rs filters had the property of maximizing
the smoothness of the filtered output signal by minimizing the mean-square value of the
s-differenced output, that is, the quantity E

[
(∇sx̂n)2

]
in the notation of Eq. (23.12.11).

Because of their finite span, minimum-Rs filters belong to the class of local smoothing
methods. Smoothing splines are global methods in the sense that their design criterion
involves the entire data signal to be smoothed, but their objective is similar, that is, to
maximize smoothness.

Splines assume an observation model of the form, y(t)= x(t)+v(t), where x(t)
is a smooth trend to be estimated on the basis of N noisy observations, yn = y(tn),
measured at N time instants tn, for n = 0,1, . . . ,N − 1, as shown below.

The times tn, called the knots, are not necessarily equally-spaced, but are in increas-
ing order and are assumed to lie within a slightly larger interval [ta, tb], that is,

ta < t0 < t1 < t2 < · · · < tN−1 < tb

A smoothing spline fits a continuous function x(t), taken to be the estimate of the
underlying smooth trend, by solving the optimization problem:

J =
N−1∑
n=0

wn
(
yn − x(tn)

)2 + λ
∫ tb

ta

[
x(s)(t)

]2dt = min (26.1.1)

where x(s)(t) denotes the s-th derivative of x(t), λ is a positive “smoothing parameter,”
and wn are given non-negative weights.

The performance index strikes a balance between interpolation and smoothing. The
first term attempts to interpolate the data by x(t), while the second attempts to min-
imize the roughness or maximize the smoothness of x(t). The balance between the

1271

1272 26. WHITTAKER-HENDERSON SMOOTHING

two terms is controlled by the parameter λ; larger λ increases smoothing, smaller λ
interpolates the data more closely.

Schoenberg [959] has shown that the solution to the problem (26.1.1) is a so-called
natural smoothing spline of polynomial order 2s−1, that is, x(t) has 2s−2 continuous
derivatives, it is a polynomial of degree 2s−1 within each subinterval (tn, tn+1), for
n = 0,1, . . . ,N − 2, and it is a polynomial of order s−1 within the end subintervals
[ta, t0) and (tN−1, tb]. See Ref. [45] for a detailed discussion of splines, especially cubic
splines corresponding to the case s = 2, including several computational examples.

For discrete-time sampled data, the problem was originally posed and solved for
special cases of s by Thiele, Bohlmann, Whittaker, and Henderson [1007–1014], and is
referred to as Whittaker-Henderson smoothing — we consider it in this chapter.

Besides their extensive use in drafting and computer graphics, splines have many
other applications. A large online bibliography can be found in [952]. A small subset of
references on interpolating and smoothing splines and their applications is [953–1006].

26.2 Whittaker-Henderson Smoothing Methods

In this chapter,† we discuss Whittaker-Henderson smoothing methods and some gener-
alizations. Whittaker-Henderson smoothing is a discrete-time version of spline smooth-
ing for equally spaced data. Some of the original papers by Thiele, Bohlmann, Whit-
taker, Henderson and others,‡ and their applications to trend extraction in the actu-
arial sciences, physical sciences, and business and finance, are given in [1007–1040],
including Hodrick-Prescott filters in finance [1041–1069], and recent sparse realizations
in terms of the L1 norm [1070–1080], as well as extensions to seasonal data [1214–
1217,1228,1230].

The Whittaker-Henderson smoothing method, based on L2 regularization, is one of
the most effective methods of trend extraction, trying to balance fidelity to the obser-
vations, yet resulting in a smooth trend having a prescribed degree of smoothness. It
has been termed the “perfect smoother” [1030].

It is defined by the minimization of the following performance index, where yn,
n = 0,1, . . . ,N − 1, are the observations, and xn the resulting smoothed estimate,

J =
N−1∑
n=0

wn
∣∣yn − xn

∣∣2 + λ
N−1∑
n=s

∣∣∇sxn
∣∣2 = min (26.2.1)

where ∇sxn represents the backward-difference operator ∇xn = xn − xn−1 applied s
times. We encountered this operation in Sec. 23.12 on minimum-Rs Henderson filters.
The corresponding difference filter and its impulse response are

Ds(z)= (1− z−1)s

ds(k)= (−1)k
(
s
k

)
, 0 ≤ k ≤ s

(26.2.2)

†adapted from the author’s book on Applied Optimum Signal Processing [45]
‡Bohlmann considered the case s = 1, Whittaker and Henderson, s = 3, and Hodrick-Prescott, s = 2.

26.2. WHITTAKER-HENDERSON SMOOTHING METHODS 1273

For example, we have for s = 1,2,3,

d1 =
[

1
−1

]
, d2 =

⎡⎢⎣ 1
−2

1

⎤⎥⎦ , d3 =

⎡⎢⎢⎢⎣
1
−3

3
−1

⎤⎥⎥⎥⎦
Because Ds(z) is a highpass filter, the performance index attempts, in its second

term, to minimize the spectral energy of xn at the high frequency end, while attempt-
ing to interpolate the noisy observations with the first term. The result is a lowpass,
smoothing, operation. In fact, the filter Ds(z) may be replaced by any other (causal)
FIR highpass filter D(z), or dn in the time domain, with a similar result. Thus, a more
general version of (26.2.1) would be:

J =
N−1∑
n=0

wn
∣∣yn − xn

∣∣2 + λ
N−1∑
n=s

∣∣dn ∗ xn
∣∣2 = min (26.2.3)

where dn ∗ xn denotes convolution and s is the filter order, that is, we assume that the
impulse response is dn =

[
d0, d1, . . . , ds

]
. The criteria (26.2.1) and (26.2.3) are examples

of the method of regularization for ill-conditioned linear systems.
The summation limits of the second terms in Eqs. (26.2.1) and (26.2.3) restrict the

convolutional operations to their steady-state range. For example, for a length-N causal
input {x0, x1, . . . , xN−1}, the s-difference filter has the full convolutional output:

gn = ∇sxn =
min(s,n)∑

k=max(0,n−N+1)
ds(k)xn−k , 0 ≤ n ≤ N − 1+ s (26.2.4)

and the steady-state output (assuming N > s):

gn = ∇sxn =
s∑

k=0

ds(k)xn−k , s ≤ n ≤ N − 1 (26.2.5)

Similarly, we have in the more general case,

gn = dn ∗ xn =
min(s,n)∑

k=max(0,n−N+1)
dkxn−k , 0 ≤ n ≤ N − 1+ s

gn = dn ∗ xn =
s∑

k=0

dkxn−k , s ≤ n ≤ N − 1

(26.2.6)

In Sec. 23.12 we worked with the full convolutional form (26.2.4) and implemented
it in a matrix form using the convolution matrix. We recall that the MATLAB functions
binom and diffmat can be used to compute the impulse response ds(k) and the corre-
sponding (N+s)×N full convolutional matrix Ds.

The filtering operation gn = ∇sxn, 0 ≤ n ≤ N−1+s, can be expressed vectorially as
g = Dsx, where x is the N-dimensional input vector x = [x0, x1, . . . , xN−1]T, and g =
[g0, g1, . . . , gN−1+s]T, the (N+s)-dimensional output vector. Similarly, the operation
gn = dn ∗ xn can be expressed as g = Dfull x, where the (N+s)×N full convolution
matrix can be constructed using convmat—the sparse version of convmtx,

1274 26. WHITTAKER-HENDERSON SMOOTHING

Dfull = convmat(d,N); % sparse full convolution matrix

where d = [d0, d1, . . . , ds]T. The steady-state versions of the full convolution matrices
are obtained by extracting their middle N−s rows, and therefore, they have dimension
(N−s)×N. For example, we have for N = 5 and s = 2, with d = [d0, d1, d2]T,

Dfull =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 0 0 0 0
d1 d0 0 0 0

d2 d1 d0 0 0
0 d2 d1 d0 0
0 0 d2 d1 d0

0 0 0 d2 d1

0 0 0 0 d2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ D =

⎡⎢⎣d2 d1 d0 0 0
0 d2 d1 d0 0
0 0 d2 d1 d0

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
d2 0 0
d1 d2 0
d0 d1 d2

0 d0 d1

0 0 d0

⎤⎥⎥⎥⎥⎥⎥⎦

T

The last expression shows that the steady matrix can also be viewed as the trans-
posed of the convolution matrix of the reversed filter with N−s columns. Thus, in
MATLAB two possible ways of constructing D are:

1) Dfull = convmat(d,N); D = Dfull(s+ 1 : N, :)
2) D = convmat(flip(d),N − s)′; (26.2.7)

For the s-difference filter, we can use the equivalent (sparse) constructions:

1) Dfull = diffmat(s,N); D = Dfull(s+ 1 : N, :)
2) D = (−1)s∗diffmat(s,N − s)′;
3) D = diff(speye(N), s);

(26.2.8)

where the second method is valid because the reversed binomial filter is (−1)s times
the unreversed one. The third method is the fastest [1030], but does not generalize to
an arbitrary filter d. As an example, we have for N = 7, s = 2, and d = [1,−2,1]T:

D =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎦
The corresponding steady-state output vector g = [gs, gs+1, . . . , gN−1]T is given by

g = Dx, with squared norm,

N−1∑
n=s

[dn ∗ xn]2=
N−1∑
n=s

g2
n = gTg = xT(DTD)x

Therefore, the performance index (26.2.1) or (26.2.3) can be written compactly as:

J = (y− x)TW(y− x)+λxT(DTD)x = min (26.2.9)

26.2. WHITTAKER-HENDERSON SMOOTHING METHODS 1275

where W is the diagonal matrix of the weights, W = diag
(
[w0,w1, . . . ,wN−1]

)
. The

optimum solution is obtained by setting the gradient with respect to x to zero,

∂J
∂x

= −2W(y− x)+2λ(DTD)x = 0 ⇒ (W + λDTD)x =Wy

with solution, which may be regarded as the estimate of x in the signal model y = x+v,

x̂ = (W + λDTD)−1Wy (26.2.10)

The matrix D plays the same role as the matrix QT in the spline smoothing case,
but for equally-spaced data. As was the case in Sec. 23.12, the matrix DTD is essentially
equivalent to the (2s)-differencing operator ∇2s, after ignoring the first s and last s
rows. For example, we have for N = 7 and s = 2,

DTD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 0
−2 5 −4 1 0 0 0

1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0
0 0 1 −4 6 −4 1

0 0 0 1 −4 5 −2
0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where we recognize the expansion coefficients (1−z−1)4= 1−4z−1+6z−2−4z−3+z−4.

The N×N matrix (W + λDTD) is sparse and banded with bandwidth 2s + 1, and
therefore, MATLAB solves Eq. (26.2.10) very efficiently by default (as long as it is imple-
mented by the backslash operator). The function whsm implements Eq. (26.2.10):

x = whsm(y,lambda,s,w); % Whittaker-Henderson smoothing

where method (2) is used internally to compute D, and w is the vector of weights, which
defaults to unity. The function whgen is the generalized version that uses an arbitrary
highpass filter d, whose steady convolution matrix D is also computed by method (2):

x = whgen(y,lambda,d,w); % generalized Whittaker-Henderson smoothing

Denoting the “hat” filtering matrixH = (W+λDTD)−1W, and defining the error e =
y− x̂ = (I−H)y, we may define a generalized cross-validation criterion for determining
the smoothing parameter λ,

GCV(λ)= eTWe[
tr(I −H)

]2 = min (26.2.11)

The function whgcv calculates it at any vector of λ’s and finds the corresponding
optimum:

[gcv,lopt] = whgcv(y,la,s,w); % Whittaker-Henderson GCV evaluation

1276 26. WHITTAKER-HENDERSON SMOOTHING

The GCV criterion should be used with some caution because it suffers from the
same problem, as in the spline case, of typically underestimating the proper value of λ.

The Whittaker-Henderson method was compared to the local polynomial and mini-
mum roughness filters in Examples 23.10.2 and 23.12.1. Some additional examples are
discussed below.

Example 26.2.1: NIST ENSO data. We apply the Whittaker-Henderson (WH) smoothing method
to the ENSO data which are another benchmark example in the NIST Statistical Reference
Dataset Archives, and original reference [37]. The data file ENSO.dat is available online from
the NIST web sites:

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

http://www.itl.nist.gov/div898/strd/nls/data/enso.shtml

The data represent the monthly averaged atmospheric pressure differences between Easter
Island and Darwin, Australia. In the nonlinear NIST fit, the data are fitted to three sinusoids of
unknown amplitudes and frequencies, except that one of the sinusoids is kept at the annual
frequency. There are three significant cycles at 12, 26, and 44 months.

The upper-left graph of Fig. 26.2.1 compares the NIST fit with the Whittaker-Henderson
method. We used s = 3 and smoothing parameter λopt = 6.6. which was determined by
the GCV function whgcv.

The lower-left graph shows the corresponding periodogram spectra plotted versus period in
units of months/cycle. The three dominant peaks are evident. In the spectrum graphs, the
digital frequency is ω = 2πf rads/month, with f measured in cycles/month, and with the
corresponding period p = 1/f measured in months/cycle.

The time-domain WH signal agrees fairly well with the NIST fit. We note that in the places
where the two disagree, the WH fit appears to be a better representation of the noisy data.

The upper-right graph shows the application of the SVD enhancement method, which typ-
ically works well for sinusoids in noise. The embedding dimension was M = 20 and the
assumed rank r = 6 (three real sinusoids are equivalent to six complex ones.) The lower-
right graph shows the corresponding spectral peaks. The following MATLAB code illustrates
the generation of the four graphs:

Y = loadfile(’ENSO.dat’); % data file in AOSP toolbox

y = Y(:,1); t = Y(:,2); % extract data signal

b1 = 1.0510749193E+01; b2 = 3.0762128085E+00; b3 = 5.3280138227E-01;
b4 = 4.4311088700E+01; b5 =-1.6231428586E+00; b6 = 5.2554493756E-01;
b7 = 2.6887614440E+01; b8 = 2.1232288488E-01; b9 = 1.4966870418E+00;

yf = b1 + b2*cos(2*pi*t/12) + b3*sin(2*pi*t/12) + b5*cos(2*pi*t/b4) ...
+ b6*sin(2*pi*t/b4) + b8*cos(2*pi*t/b7) + b9*sin(2*pi*t/b7);

s=3; la = linspace(2,10,100); % search range for λ
[gcv,lopt]=whgcv(y,la,s); % λopt = 6.6

yw = whsm(y,lopt,s); % WH smoothing method

M=20; r=6; ye = svdenh(y,M,r); % SVD enhancement method

figure; plot(t,y,’.’, t,yw,’-’, t,yf,’:’); % upper-left graph

figure; plot(t,y,’.’, t,ye,’-’, t,yf,’:’); % upper-right graph

p = linspace(6,54, 481); w = 2*pi./p; % period in months/cycle

26.3. REGULARIZATION FILTERS 1277

0 20 40 60 80 100 120 140 160

0

5

10

15

20

t (months)

Whittaker− Henderson Smoothing

 data
 smoothed
 NIST fit

0 20 40 60 80 100 120 140 160

0

5

10

15

20

t (months)

SVD Enhancement, M = 20, r = 6

 data
 smoothed
 NIST fit

6 12 18 24 30 36 42 48 54
0

0.2

0.4

0.6

0.8

1

months/cycle

periodogram spectra

 WH method
 data
 NIST fit

6 12 18 24 30 36 42 48 54
0

0.2

0.4

0.6

0.8

1

months/cycle

periodogram spectra

 SVD method
 data
 NIST fit

Fig. 26.2.1 Smoothed ENSO signal and spectra.

Sy = abs(freqz(zmean(y), 1, w)).^2; Sy = Sy/max(Sy); % spectra

Sf = abs(freqz(zmean(yf), 1, w)).^2; Sf = Sf/max(Sf);
Sw = abs(freqz(zmean(yw), 1, w)).^2; Sw = Sw/max(Sw);
Se = abs(freqz(zmean(ye), 1, w)).^2; Se = Se/max(Se);

figure; plot(p,Sw, p,Sy,’:’, p,Sf,’--’); % lower-left graph

figure; plot(p,Se, p,Sy,’:’, p,Sf,’--’); % lower-right graph

The bi parameters and the signal yf represent the NIST fit. Anticipating the three relevant
peaks, the spectra were computed only over the period range 6 ≤ p ≤ 54 months. The
function zmean removes the mean of the signal so that the spectrum is not masked by the
DC component. 	

26.3 Regularization Filters

Most of the results of the spline smoothing case carry over to the discrete case. For
example, we may obtain an equivalent digital filter by taking the signals to be double-

1278 26. WHITTAKER-HENDERSON SMOOTHING

sided and infinite. Using the Parseval identity, the performance index (26.2.3) becomes:

J =
∞∑

n=−∞
|yn − xn|2 + λ

∞∑
n=−∞

|dn ∗ xn|2 =

=
∫ π

−π

∣∣Y(ω)−X(ω)
∣∣2 dω

2π
+ λ

∫ π

−π

∣∣D(ω)X(ω)
∣∣2 dω

2π
= min

(26.3.1)

where D(ω) is the frequency response† of the filter dn, and we assumed unity weights,
wn = 1. The vanishing of the functional derivative of J with respect to X∗(ω),

δJ
δX∗(ω)

= X(ω)−Y(ω)+λ|D(ω)|2X(ω)= 0 (26.3.2)

gives the effective equivalent smoothing filter H(ω)= X(ω)/Y(ω):

H(ω)= 1

1+ λ|D(ω)|2 (26.3.3)

The corresponding z-domain transfer function is obtained by noting that for real-
valued dn, we have |D(ω)|2 = D(z)D(z−1), where z = ejω, so that,

H(z)= 1

1+ λD(z)D(z−1)
(26.3.4)

Such “recursive regularization filters” have been considered in [1042]. In particular,
for the s-difference filter Ds(z)= (1− z−1)s, we have:

H(z)= 1

1+ λ(1− z−1)s(1− z)s
(Whittaker-Henderson filter) (26.3.5)

Similarly, Eq. (26.3.2) can be written in the z-domain and converted back to the
time domain. Noting that Ds(z)Ds(z−1)= (1 − z−1)s(1 − z)s= (−1)szs(1 − z−1)2s=
(−1)szsD2s(z), we have:

X(z)−Y(z)+λ(−1)szs(1− z−1)2sX(z)= 0 , or,

(−1)szsD2s(z)X(z)= λ−1(Y(z)−X(z)),
resulting in the time-domain (2s)-difference equation:

(−1)s∇2sxn+s = λ−1(yn − xn) (26.3.6)

In the early years, some ingenious methods were developed for solving this type of
equation [1009–1018]. Noting that |Ds(ω)| = |1− e−jω|s = 2s

∣∣sin(ω/2)
∣∣s, we obtain

the frequency response of (26.3.5):

H(ω)= 1

1+ λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s (26.3.7)

†Here, ω is the digital frequency in units of radians per sample.

26.4. HODRICK-PRESCOTT FILTERS 1279

The complementary highpass filter Hc(z)= 1 − H(z) extracts the error residual
component from the observations yn, that is, en = yn − xn, or in the z-domain, E(z)=
Y(z)−X(z)= Y(z)−H(z)Y(z)= Hc(z)Y(z). Its transfer function and frequency re-
sponse are given by:

Hc(z)= λ(1− z−1)s(1− z)s

1+ λ(1− z−1)s(1− z)s
, Hc(ω)=

λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s

1+ λ
∣∣∣∣2 sin

ω
2

∣∣∣∣2s (26.3.8)

Fig. 26.3.1 shows a plot of H(ω) and Hc(ω) for s = 1,2,3 and the two values of
the smoothing parameter λ = 5 and λ = 50. Increasing λ narrows the response of the
lowpass filter and widens the response of the highpass one.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

λ = 5

 s = 3
 s = 2
 s = 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

λ = 50

 s = 3
 s = 2
 s = 1

Fig. 26.3.1 Frequency responses of Whittaker-Henderson filters.

26.4 Hodrick-Prescott Filters

In macroeconomic applications such as extracting business cycles from GDP data, the
standard signal model yn = xn + vn is interpreted to consist of a long-term trend rep-
resented by xn and a shorter-term cyclical component vn. The filters H(z) and Hc(z)
extract the trend and cyclical components, respectively.

The use of Whittaker-Henderson smoothing with s = 2 has been advocated by Ho-
drick and Prescott [1041] and has become standard in such applications. The Whittaker-
Henderson filters are referred to as Hodrick-Prescott filters and there is a very large lit-
erature on the subject and on the use of other types of bandpass filters for extracting
business cycles, a subset of which is [1041–1067].

As is the case in typical filter design, the filter parameter λ can be fixed by specifying
a desired value for the filter’s cutoff frequency ωc corresponding to some standardized
value of the gain. For the lowpass filter we have for general s, the condition:

1

1+ λ
∣∣∣∣2 sin

ωc

2

∣∣∣∣2s = Gc (26.4.1)

1280 26. WHITTAKER-HENDERSON SMOOTHING

whereGc is desired value of the gain. The 3-dB cutoff frequencyωc corresponds toGc =
1/
√

2. In macroeconomic applications, the 6-dB frequency is often used, corresponding
to the choice Gc = 1/2. For the highpass case, measuring the gain Gc relative to that at
the Nyquist frequency ω = π, we have the condition:

λ
∣∣∣∣2 sin

ωc

2

∣∣∣∣2s

1+ λ
∣∣∣∣2 sin

ωc

2

∣∣∣∣2s = Gc
22sλ

1+ 22sλ
(26.4.2)

Typically, business cycles are defined [1048] as having frequency components with
periods between 6 and 32 quarters (1.5 to 8 years). A bandpass filter with a passband
[ω1,ω2]= [2π/32, 2π/6] radians/quarter would extract such cycles.

The Hodrick-Prescott highpass filter Hc(ω) must therefore have a cutoff frequency
of about ωc = ω1 = 2π/32. Hodrick-Prescott advocate the use of λ = 1600 for
quarterly data. Interestingly, the values of λ = 1600 and ωc = 2π/32 rads/quarter,
correspond to almost a 3-dB gain. Indeed, the gain calculated from Eq. (26.4.2) with
s = 2 turns out to be Gc = 0.702667 ≡ −3.065 dB.

Using the same ωc and Gc, but different values of s requires adjusting the value of
λ. For example, solving Eq. (26.4.2) for λ with s = 1,2,3 gives:

λ = 1600 (s = 2), λ = 60.654 (s = 1), λ = 41640 (s = 3) (26.4.3)

Similarly, the value of λ must be adjusted if the sampling frequency is changed. For
example, the same cutoff frequency expressed in different units is:

ωc = 2π
32

radians

quarter
= 2π

8

radians

year
= 2π

96

radians

month
(26.4.4)

The above value Gc = 0.702667 used in (26.4.2) with s = 2 then gives the following
values of λ for quarterly, yearly, and monthly sampled data:

λ = 1600 (quarterly) , λ = 6.677 (yearly) , λ = 128878 (monthly) (26.4.5)

Similarly, using the slightly more exact value Gc = 1/
√

2 and s = 2 gives:

λ = 1634.5 (quarterly) , λ = 6.822 (yearly) , λ = 131659 (monthly) (26.4.6)

There is not much agreement as to the values of λ to be used for annual and monthly
data. Two other sets of values are as follows, with the first being used by the European
Central Bank and the second recommended by [1058,1065],

λ = 1600/42 = 100 (yearly) , λ = 1600× 32 = 14400 (monthly)
λ = 1600/44 = 6.25 (yearly) , λ = 1600× 34 = 129600 (monthly)

(26.4.7)

The latter choice is essentially the same as that of Eq. (26.4.5) based on the criterion
(26.4.2). Indeed, for small ωc, we may make the approximation 2 sin(ωc/2)≈ ωc.
Since 22sλ is typically much larger than unity, the right-hand side of Eq. (26.4.2) can be

26.4. HODRICK-PRESCOTT FILTERS 1281

replaced by Gc, resulting in the following approximate solution, which turns out to be
valid up to about ωc ≤ 0.3π,

λω2s
c

1+ λω2s
c
= Gc ⇒ λ = Gc

(1−Gc)ω2s
c

(26.4.8)

If in this formula, we adjust Gc to get λ = 1600 at ωc = 2π/32, we find Gc =
0.70398 ≡ −3.049 dB, which in turn generates the second set of values in Eq. (26.4.7).

Example 26.4.1: US GDP for investment. A protypical example is the application of the Hodrick-
Prescott filter to the US GDP. Fig. 26.4.1 shows the real gross domestic product in chained
(2000) dollars from private domestic investment, seasonally adjusted at annual rates. The
data can be retrieved (as Table 1.1.6) from the BEA web sites:

http://www.bea.gov/
http://www.bea.gov/national/nipaweb/Index.asp

The signal to be smoothed is the log of the GDP, that is, y = log10(GDP), and the ordinate
units are such that y = 12 corresponds to GDP = 1012, or, one trillion dollars. The data are
quarterly and span the years 1947–2008.

The upper-left graph shows the raw data and the WH-smoothed signal computed with s = 2
and λ = 1600, which as we mentioned above correspond to an approximate 3-dB cutoff
frequency of 32 quarters. The upper-right graph shows the residual cyclical component. Its
deviations above or below zero indicate the business cycles.

For comparison, the left-bottom graph shows the WH-smoothed signal with s = 3 and λ =
41640 adjusted to match the same 3-dB cutoff frequency as the s = 2 case, see Eq. (26.4.3).
The lower-right graph shows the smoothed trend from the SVD enhancement method applied
with embedding dimension M = 9 and rank r = 1. The following MATLAB code illustrates
the generation of the four graphs:

Y = loadfile(’USGDP_Inv.dat’); % data file in AOSP toolbox

y = log10(Y(:,2) * 1e9); % Y was in billions

t = taxis(y,4,1947); % t-axis in quarters since 1947

s = 2; la = 1600; yt = whsm(y,la,s); % WH smoothing with s = 2

figure; plot(t,yt,’-’, t,y,’--’); % upper-left graph

yc = y-yt; % cyclical component

figure; plot(t,yc, ’-’); % upper-right graph

s = 3; la = 41640.16; yt = whsm(y,la,s); % WH smoothing with s = 3

figure; plot(t,yt,’-’, t,y,’--’); % bottom-left graph

M=9; r=1; ye = svdenh(y,M,r); % SVD enhancement method

figure; plot(t,ye,’-’, t,y,’--’); % bottom-right graph

Except near the end-points, the smoothed trend for s = 3 is virtually indistinguishable from
the s = 2 case, and therefore, it would lead to the same prediction of business cycles. The
SVD trend is also very comparable. 	

1282 26. WHITTAKER-HENDERSON SMOOTHING

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing, s = 2

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−0.2

−0.1

0

0.1

0.2

years in quarters

cyclical component = (GDP) − (trend)

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing, s = 3

 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

SVD enhancement, M = 9, r = 1

 trend
 data

Fig. 26.4.1 U.S. quarterly GDP in private investment, 1947–2008.

26.5 Poles and Impulse Response

Because of the invariance under the substitution z→ z−1, the 2s poles of the filter H(z)
of Eq. (26.3.5) come in two groups with s poles inside the unit circle and their reciprocals
outside. It follows that H(z) can be expressed in the factored form:

H(z)= 1

1+ λ(1− z−1)s(1− z)s
=

s∏
k=1

[
(1− zk)2

(1− zkz−1)(1− zkz)

]
(26.5.1)

where zk, k = 1,2, . . . , s, denote the s poles inside the unit circle. The numerator factors
(1 − zk)2 ensure that the right-hand side has unity gain at DC (z = 1), as does the
left-hand side. The stable impulse response is double-sided and can be obtained by
performing an inverse z-transform with the unit circle as the inversion contour [3]:

hn =
∮

u.c.
H(z)zn

dz
2πjz

, −∞ < n <∞ (26.5.2)

Inserting the factored form (26.5.1) into (26.5.2), we find

hn =
s∑

k=1

Akz
|n|
k , −∞ < n <∞ (26.5.3)

26.6. REGULARIZATION AND KERNEL MACHINES 1283

where the coefficients Ak are given by

Ak =
(

1− zk
1+ zk

) s∏
i=1
i�=k

[
(1− zi)2

(1− ziz−1
k)(1− zizk)

]
, k = 1,2, . . . , s (26.5.4)

The poles can be obtained in the form zk = ejωk , where ωk are the complex fre-
quencies of the denominator, that is, the frequencies that are solutions of the equation:

1+ λ
[

2 sin
ω
2

]2s
= 0 (26.5.5)

where we note that even thoughω is complex, we still have (1−z−1)(1−z)= 4 sin2(ω/2)
for z = ejω. The solution of Eq. (26.5.5) is straightforward. The s frequencies ωk that
lead to poles zk that are inside the unit circle can be parametrized as follows:[

2 sin
ω
2

]2s
= −1

λ
= ejπ(2k−1)

λ
⇒ sin

ωk

2
= ejπ(2k−1)/(2s)

2λ1/(2s) , k = 1,2, . . . , s

Thus, the desired set of poles are:

zk = ejωk , ωk = 2 arcsin

[
ejθk

2λ1/(2s)

]
, θk = π(2k− 1)

2s
, k = 1,2, . . . , s (26.5.6)

If s is even, then the zk (and the coefficients Ak) come in conjugate pairs. If s is odd,
then the zero at k = (s+1)/2 is real and the rest come in conjugate pairs. In either case,
hn given by (26.5.3) is real-valued and decays exponentially from either side of the time
axis. The MATLAB function whimp calculates hn at any vector of ns and also produces
the poles and residues zk,Ak, k = 1,2, . . . , s,

[h,z,A] = whimp(lambda,s,n); % Whittaker-Henderson impulse response and poles

Fig. 26.5.1 shows the impulse responses for s = 1,2,3 with λs chosen as in (26.4.3)
so that the (complementary) filters have the same 3-dB cutoff frequency. The impulse
response of the complementary filter is hc(n)= δ(n)−h(n). Therefore, the three re-
sponses will have roughly the same time width.

26.6 Regularization and Kernel Machines

Regularization was initially invented as a method for solving ill-posed, inconsistent,
overdetermined, and ill-conditioned inverse problems. Recently it has been applied also
to support-vector machines and kernel methods for machine learning. There is a huge
literature on the subject, a small subset of which is [1085–1125]. Here, we present a short
discussion with particular emphasis on deconvolution and kernel regression methods.

Both spline and Whittaker-Henderson smoothing are examples of regularization. The
performance index Eq. (26.2.3) can be generalized further to cover the case of deconvo-
lution, or inverse filtering,

J =
∑
n
|yn − fn ∗ xn|2 + λ

∑
n
|dn ∗ xn|2 = min (26.6.1)

1284 26. WHITTAKER-HENDERSON SMOOTHING

−40 −20 0 20 40

0

0.02

0.04

0.06

WH impulse response

n

h
n

 s = 1
 s = 2
 s = 3

Fig. 26.5.1 Impulse responses of Whittaker-Henderson filters.

where fn and dn are FIR filters. This attempts to solve, yn = fn ∗ xn, for xn by de-
convolving the effect of fn. We may write (26.6.1) in a compact matrix form using the
convolution matrices F,D of the two filters:

J = ‖y− Fx‖2 + λ‖Dx‖2 = (y− Fx)T(y− Fx)+λxT(DTD)x = min (26.6.2)

The solution is obtained from the gradient,

∂J
∂x

= −2FT(y− Fx)+2λDTDx = 0 , or,

x̂ = (FTF + λDTD)−1FTy (26.6.3)

The problem (26.6.2) is of course much more general than inverse filtering. The
method is known as Tikhonov regularization and as ridge regression. The linear sys-
tem, y = Fx, may in general be overdetermined, or underdetermined, or rank de-
fective. To simplify the discussion, we assume here that the linear system is either
square and invertible or overdetermined but F having full rank. For λ = 0, we obtain,
x̂ = (FTF)−1FTy, which is recognized as the unique pseudoinverse least-squares solu-
tion. In the square case, we have, x̂ = F−1y. We are envisioning a signal model of the
form, y = Fx+ v, and the objective is to determine an estimate of x. We have then,

x̂ = F−1y = F−1(Fx+ v)= x+ F−1v (26.6.4)

A potential problem with this estimate is that if F is ill-conditioned with a large con-
dition number—a common occurrence in practice—the resulting inverse-filtered noise
component u = F−1v may be magnified to such an extent that it will mask the desired
term x, rendering the estimate x̂ useless. The same can happen in the overdetermined
case. The presence of the regularization term helps in this regard by providing a more
well-conditioned inverse. For the deconvolution problem, one typically selects D to be
the unit matrix, D = I, leading to the solution,

x̂ = (FTF + λI)−1FTy (26.6.5)

26.6. REGULARIZATION AND KERNEL MACHINES 1285

To see how regularization improves the condition number, let λmax, λmin be the max-
imum and minimum eigenvalues of FTF. Then, the condition numbers of FTF and
FTF + λI are λmax/λmin and (λmax + λ)/(λmin + λ). A highly ill-conditioned problem
would have λmin � λmax. It is straightforward to verify that the larger the λ, the more
the condition number of the regularized matrix is reduced:

λ� 1 ⇒ λmax + λ
λmin + λ

� λmax

λmin

For example, if λmin = 10−3 and λmax = 103, we have λmax/λmin = 106, but the
regularized version (λmax + λ)/(λmin + λ) takes approximately the values 11, 2, 1.1,
for λ = 102,103,104, respectively.

Regularization is not without problems. For noisy data the basic tradeoff is that
improving the condition number by increasing λ causes more distortion and smoothing
of the desired signal component x. As usual, choosing the proper value of λ is more of
an art than science and requires some trial-and-error experimentation. The method of
cross-validation can also be applied [1125] as a guide.

Other choices forD, for example differencing matrices, are used in applications such
as edge-preserving deblurring of images.

Next, we consider briefly the connection of regularization to machine learning and
reproducing kernel Hilbert spaces. Spline smoothing [45] is a regularization and learn-
ing example for continuous-time functions, in which the following performance index
attempts to “learn” the unknown function f(t) from a finite subset of N noisy observa-
tions, yn = f(tn)+vn, n = 0,1, . . . ,N − 1.

J =
N−1∑
n=0

[
yn − f(tn)

]2 + λ
∫ tb

ta

[
f̈ (t)

]2dt = min (26.6.6)

The concept can be generalized from functions of time to multivariable functions of
some independent variable, say x, such as three-dimensional space. The observed data
samples are of the form, yn = f(xn)+vn, and the objective is to learn the unknown
function f(x). The performance index (26.6.6) is replaced by,

J =
N−1∑
n=0

[
yn − f(xn)

]2 + λ‖f‖2 = min (26.6.7)

where ‖f‖ is an appropriate norm that depends on the approach one takes to the mini-
mization problem. One possible and very successful approach is to use a neural network
to model the unknown function f(x). In this case the regularization norm depends
on the parameters of the neural network and its assumed structure (typically a single-
hidden layer is sufficient.)

The reproducing kernel approach that we discuss here is to assume that f(x) can be
represented as a linear combination of a finite or infinite set of nonlinear basis functions
φi(x), i = 1,2, . . . ,M, where for now we will assume that M is finite,

f(x)=
M∑
i=1

φi(x)ci =φφφT(x)c , φφφ(x)=

⎡⎢⎢⎢⎢⎢⎣
φ1(x)
φ2(x)

...
φM(x)

⎤⎥⎥⎥⎥⎥⎦ , c =

⎡⎢⎢⎢⎢⎢⎣
c1

c2

...
cM

⎤⎥⎥⎥⎥⎥⎦ (26.6.8)

1286 26. WHITTAKER-HENDERSON SMOOTHING

This is analogous to the approach of Chap. 23.1 where f(t) was modeled as a poly-
nomial in t and expanded in the monomial basis functions si(t)= ti. Here, we define
the regularization norm in terms of the coefficients ci as follows:

‖f‖2 =
M∑
i=1

c2
i
λi
= cTΛ−1c (26.6.9)

where λi is a set of some given positive coefficients, and Λ = diag
(
[λ1, λ2, . . . , λM]

)
.

The function values at the N observation points are f(xn)= φφφT(xn)c , and can be ar-
ranged into an N-dimensional column vector:

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x0)
...
f(xn)
...
f(xN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Φc , Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

φφφT(x0)
...
φφφT(xn)

...
φφφT(xN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26.6.10)

where Φ has dimension N×M. Thus, the performance index can be written compactly,

J = (y−Φc)T(y−Φc)+λcTΛ−1c = min (26.6.11)

The solution for the optimum coefficients c is obtained by setting the gradient to zero:

∂J
∂c

= −2ΦT(y−Φc)+2λΛ−1c = 0 ⇒ (λΛ−1 +ΦTΦ)c = ΦTy (26.6.12)

c = (λΛ−1 +ΦTΦ)−1ΦTy (26.6.13)

Using the matrix-inversion lemma, we have:

(λΛ−1 +ΦTΦ)−1= 1

λ
[
Λ−ΛΦT(λI +ΦΛΦT)−1ΦΛ

]
(26.6.14)

from which it follows that:

(λΛ−1 +ΦTΦ)−1ΦT = ΛΦT(λI +ΦΛΦT)−1 (26.6.15)

where I is the N×N identity matrix. Thus, the optimal coefficients are given by

c = ΛΦT(λI +ΦΛΦT)−1y (26.6.16)

The observation vector f = Φc and estimated function value f(x)=φφφT(x)c are then,

f = ΦΛΦT(λI +ΦΛΦT)−1y

f(x)=φφφT(x)ΛΦT(λI +ΦΛΦT)−1y
(26.6.17)

26.6. REGULARIZATION AND KERNEL MACHINES 1287

The appearance of the bilinear products of the basis functions suggests that we
define the kernel function:

K(x,x′)=φφφT(x)Λφφφ(x′)=
M∑
i=1

λiφi(x)φi(x′) (26.6.18)

Let us also define the N×N symmetric positive-definite kernel matrix K and N-
dimensional coefficient vector a = [a0, a1, . . . , aN−1]T by

K = ΦΛΦT

a = (λI +K)−1y
(26.6.19)

so that c = ΛΦTa and f = Φc = ΦΛΦTa = Ka and f(x)= φφφT(x)ΛΦTa. The matrix
elements of K can be expressed in terms of the kernel function:

Knm =
(
ΦΛΦT)

nm =φφφT(xn)Λφφφ(xm)= K(xn,xm) (26.6.20)

for n,m = 0,1, . . . ,N − 1. Similarly, we have for f(x),

f(x) =φφφT(x)ΛΦTa =φφφT(x)Λ
[
φφφ(x0), . . . ,φφφ(xn), . . . ,φφφ(xN−1)

]
a

= [K(x,x1), . . . , K(x,xn), . . . , K(x,xN−1
]
a =

N−1∑
n=0

K(x,xn)an
(26.6.21)

Thus, we may express (26.6.17) directly in terms of the kernel function and the
coefficient vector a ,

f = Ka , f(x)=
N−1∑
n=0

K(x,xn)an (26.6.22)

Moreover, since c = ΛΦTa , the norm ‖f‖2 can also be expressed in terms of K and
the vector a as follows, ‖f‖2 = cTΛ−1c = (aTΦΛ)Λ−1(ΛΦTa)= aT(ΦΛΦT)a , or,

‖f‖2 = aTKa (26.6.23)

Thus, the knowledge of the kernel function K(x,x′)—rather than the knowledge of
the possibly infinite set of basis functions φi(x)—is sufficient to formulate and solve
the regularization problem. Indeed, an equivalent optimization problem to (26.6.11) is
the following, with the performance index to be minimized with respect to a:

J = (y−Ka)T(y−Ka)+λaTKa = min (26.6.24)

The vanishing of gradient with respect to a leads to the same solution as (26.6.19),

∂J
∂a

= −2KT(y−Ka)+2λKa = 0 ⇒ (λK +KTK)a = KTy ⇒ a = (λI +K)−1y

where we used the symmetry property KT = K and assumed that K was invertible.

1288 26. WHITTAKER-HENDERSON SMOOTHING

The linear vector space of functions of the form f(x)=φφφT(x)c , spanned by the set
of basis functions {φi(x), i = 1,2, . . . ,M}, can be turned into an inner-product space
(a Hilbert space if M = ∞) by endowing it with the inner product induced by the norm
(26.6.9). That is, for any two functions f1(x)=φφφT(x)c1 and f2(x)=φφφT(x)c2, we define
the inner product:

〈f1, f2〉 = cT1Λ−1c2 (26.6.25)

The resulting vector space, sayH, is referred to as a reproducing kernel Hilbert space.
By writing the kernel function in the form, K(x,x′)=φφφT(x)Λφφφ(x′)≡φφφT(x)c(x′), with
c(x′)= Λφφφ(x′), we see that, as a function of x for each fixed x′, it lies in the space H,
and satisfies the two reproducing-kernel properties:

f(x′)= 〈f(·),K(·,x′)〉 , K(x,x′)= 〈K(·,x),K(·,x′)〉 (26.6.26)

These follow from the definition (26.6.25). Indeed, given f(x)=φφφT(x)c , we have,〈
f(·),K(·,x′)〉= cTΛ−1c(x′)= cTΛ−1Λφφφ(x′)= cTφφφ(x′)= f(x′)〈
K(·,x),K(·,x′)〉 = c(x)TΛ−1c(x′)=φφφT(x)ΛΛ−1Λφφφ(x′)=φφφT(x)Λφφφ(x′)= K(x,x′)

One can re-normalize the basis functions by defining φ̄i(x)= λ−1/2
i φi(x), or, vec-

torially φ̄φφ(x)= Λ−1/2φφφ(x), which imply the renormalized basis matrix Φ̄ = ΦΛ1/2 and
coefficient vector c̄ = Λ−1/2c . We obtain then the alternative expressions:

c̄ = Φ̄Ta

f = Φc = Φ̄c̄

K = ΦΛΦT = Φ̄Φ̄T

‖f‖2 = cTΛ−1c = c̄Tc̄

(26.6.27)

and kernel function,

K(x,x′)=φφφT(x)Λφφφ(x′)= φ̄φφ
T
(x)φ̄φφ(x′) (26.6.28)

Eq. (26.6.28) expresses the kernel function as the dot product of two vectors and is
known as the kernel trick. Given a kernel functionK(x,x′) that satisfies certain positive-
definiteness conditions, the existence of basis functions satisfying Eq. (26.6.28) is guar-
anteed by Mercer’s theorem [1117]. The remarkable property of the kernel regularization
approach is Eq. (26.6.22), which is known as the representer theorem [1117],

f(x)=
N−1∑
n=0

K(x,xn)an (26.6.29)

It states that even though the original least-squares problem (26.6.11) was formu-
lated in a possibly infinite-dimensional Hilbert space, the resulting solution is repre-
sented by a finite number of terms in Eq. (26.6.29). This property is more general than
the above case and it applies to a performance index of the form:

J = L(y−Φc)+λcTΛ−1c = min (26.6.30)

26.7. SPARSE WHITTAKER-HENDERSON METHODS 1289

where L(z) is an arbitrary (convex, increasing, and differentiable) scalar function that
replaces the quadratic norm L(z)= zTz. Indeed, the vanishing of the gradient gives,

∂J
∂c

= −ΦT ∂L
∂y

+ 2λΛ−1c = 0 ⇒ c = ΛΦT 1

2λ
∂L
∂y

which implies for f = Φc and f(x)=φφφT(x)c ,

f = Ka , f(x)=
N−1∑
n=0

K(x,xn)an , with a = 1

2λ
∂L(y−Ka)

∂y
(26.6.31)

where the last equation is a nonlinear equation for the N-vector a. Of course, in the
quadratic-norm case, L(z)= zTz, we obtain the equivalent of (26.6.19),

a = 1

λ
(y−Ka)

Kernels and the above representation property are used widely in machine learning
applications, such as support vector machines [1104]. Some typical kernels that satisfy
the representation property (26.6.28) are polynomial and gaussian of the type:

K(x,x′) = (c+ x · x′)p

K(x,x′) = exp
(
−‖x− x′‖2

2σ2

) (26.6.32)

By mapping nonlinear problems into linear ones, kernel methods offer a new paradigm
for solving many of the classical problems of estimation and classification, including the
“kernelization” of methods such as principal component analysis [1118], canonical cor-
relation analysis, array processing [1121], and adaptive filtering [1124]. Some accessible
overviews of kernel methods with emphasis on regularization are [1109,1115,1120]. For
more details, the reader may consult the references [1085–1124].

26.7 Sparse Whittaker-Henderson Methods

Several variations of the Whittaker-Henderson method have been proposed in the liter-
ature that use different norms for the two terms of Eq. (26.2.1), such as the following
criterion based on the Lr and the Lp norms, and using unity weights wn for simplicity,

Jrp =
N−1∑
n=0

∣∣yn − xn
∣∣r + λ

N−1∑
n=s

∣∣∇sxn
∣∣p = min (26.7.1)

Such criteria are capable of handling outliers in the data more effectively. Eq. (26.7.1)
can be written vectorially with the help of the s-differencing matrix D of Eq. (26.2.8),

Jrp =
∥∥y− x

∥∥r
r + λ

∥∥Dx
∥∥p
p = min (26.7.2)

where ‖x‖p denotes the Lp norm of the vector x = [x0, x1, · · · , xN−1]T,

‖x‖p =
⎡⎣N−1∑
n=0

|xn|p
⎤⎦ 1

p

⇒ ∥∥x
∥∥p
p =

N−1∑
n=0

|xn|p

1290 26. WHITTAKER-HENDERSON SMOOTHING

and similarly for ‖x‖r . For p = ∞, we have instead,

‖x‖∞ = max
0≤n≤N−1

∣∣xn∣∣
For p = 0, we define ‖x‖0 as the cardinality of the vector x, that is, the number of
nonzero elements of x. We note that ‖x‖p is a proper norm only for p ≥ 1, however, the
cases 0 ≤ p < 1 have also been considered.

The case J11 was studied in [1024,1028] and formulated as a linear programming
problem, the case Jpp, including the L∞ norm case, p = ∞, was studied in [1026],
and the more general case, Jrp, in [1027]. More recently, the case J21, called L1 trend
filtering, has been considered in [1070] and has received a lot of attention [1071–1080].

Generally, the cases J2p are examples of so-called Lp-regularized least-squares prob-
lems, which have been studied very extensively in inverse problems, with renewed inter-
est in sparse modeling, statistical learning, compressive sensing applications—a small
and very incomplete set of references on regularization and sparse regularization meth-
ods is [1084–1196].

Next, we concentrate on the original J22 criterion, and the J21 and J20 criteria,

J22 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥2

2 = min

J21 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥

1 = min

J20 =
∥∥y− x

∥∥2
2 + λ

∥∥Dx
∥∥

0 = min

(26.7.3)

The J21 and J20 criteria tend to promote the sparsity of the regularizing term Dx,
that is, Dx will be a sparse vector consisting mostly of zeros with a few nonzero entries.
Since Dx represents the s-differenced signal, ∇sxn, its piecewise vanishing implies that
the trend xn will be a piecewise polynomial of order s − 1, with the polynomial pieces
joining continuously at few break (or, kink) points where ∇sxn is nonzero.

This is similar to the spline smoothing case, except here the locations of the break
points are determined dynamically by the solution of the optimization problem, whereas
in the spline case they are at prescribed locations.

For differencing order s = 2, used in Hodrick-Prescott and L1-trend-filtering cases,
the trend signal xn will be a piecewise linear function of n, with a sparse number of
slope changes. The case s = 3, used originally by Whittaker and Henderson, would
correspond to piecewise parabolic segments in n. The case s = 1, corresponding to the
original Bohlmann choice, results in a piecewise constant trend signal xn. This case is
known also as total variation minimization method[1135] and has been applied widely
in image processing.

The J21 problem can be implemented easily in MATLAB with the CVX package.†

The J20 problem, which produces the sparsest solution, can be solved by an iterative
reweighted L1-regularized method [1070], or alternatively, by an iterative reweighted
least-squares method, which can also be used to solve the J21 and the J2p problems.

There are several variants of the iterative reweighted least-squares (IRLS) method,
[1126–1134,1138,1159,1163,1166,1171,1172], but the basic idea is to replace the Lp
†http://cvxr.com/cvx/

26.8. COMPUTER EXPERIMENTS 1291

norm with a weighted L2 norm, which can be solved iteratively. Given any real number
0 ≤ p ≤ 2, let q = 2− p, and note that for any real number x �= 0, we can write,

|x|p = |x|2
|x|q ≈

|x|2
|x|q + ε

where ε is a sufficiently small positive number needed to also allow the case x = 0.
Similarly, we can write for the Lp-norm of a vector x ∈ RN,

‖x‖pp =
N−1∑
i=0

|xi|p ≈
N−1∑
i=0

|xi|2
|xi|q + ε

= xTW(x)x

W(x) = diag
[

1

|x|q + ε

]
= diag

[
1

|x0|q + ε
,

1

|x1|q + ε
, . . . ,

1

|xN−1|q + ε

] (26.7.4)

Then, the Lp-regularized problem J2p can be written in the form,

J = ∥∥y− x
∥∥2

2 + λ
∥∥Dx

∥∥p
p =

∥∥y− x
∥∥2

2 + λxTDTW(Dx)Dx = min (26.7.5)

which leads to to the following iterative algorithm,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
Dx(k−1))

x(k) = arg min
x

∥∥y− x
∥∥2

2 + λxTDTWk−1Dx

(IRLS) (26.7.6)

with the algorithm initialized to the ordinary least-squares solution of criterion J22,

x(0) = (I + λDTD
)−1

y

The solution of the optimization problem in (26.7.6) at the kth step is:

x(k) = (I + λDTWk−1D
)−1

y

Thus, the choices p = 0 and p = 1 should resemble the solutions of the L0 and L1

regularized problems.

26.8 Computer Experiments

Next, we consider a number of computer experiment examples that illustrate and com-
pare the performaces of the various approaches, standard Whittaker-Henderson least-
squares, regularized least-squares, sparse methods, as well as local polynomial smooth-
ing methods and SVD enhancement [45] methods.

We summarize the criteria to be implemented in the computer experiments. For a
length-N signal of observations, yn, 0 ≤ n ≤ N − 1, the L2, L1, and L0 optimization

1292 26. WHITTAKER-HENDERSON SMOOTHING

criteria for determining a length-N smoothed signal xn are:

(L2): J =
N−1∑
n=0

∣∣yn − xn
∣∣2 + λ

N−1∑
n=s

∣∣∇sxn
∣∣2 = ∥∥y− x

∥∥2
2 + λ

∥∥Dsx
∥∥2

2 = min

(L1): J =
N−1∑
n=0

∣∣yn − xn
∣∣2 + λ

N−1∑
n=s

∣∣∇sxn
∣∣1 = ∥∥y− x

∥∥2
2 + λ

∥∥Dsx
∥∥

1 = min

(L0): J =
N−1∑
n=0

∣∣yn − xn
∣∣2 + λ

N−1∑
n=s

∣∣∇sxn
∣∣0 = ∥∥y− x

∥∥2
2 + λ

∥∥Dsx
∥∥

0 = min

(26.8.1)

where the L0 norm†, ‖x‖0, is the cardinality of the vector x, that is, the number of its
non-zero entries, and Ds is the (N − s)×N convolution matrix corresponding to the
s-difference operator ∇s. It can be constructed in MATLAB by

Ds = diff(eye(N),s); % or, sparsely, Ds = diff(speye(N),s);

The solution of problem (L2) is straightforward:

x = (I + λDT
s Ds)−1y (26.8.2)

The solution of problem (L1) can be obtained with the CVX package‡ as follows:

cvx_begin
variable x(N)
minimize(sum_square(x-y) + la * norm(Ds*x,1));

cvx_end

Alternatively, the (L1) problem, as well as the (L0) problem, can be solved with the
iteratively re-weighted least-squares (IRLS) method.

The purpose of the regularizing, λ-term, in Eq. (26.8.1) is to enforce a certain degree
of smoothness on the solution, that is, since the minimization tries to make the term
∇sxn as small as possible and since ∇sxn acts as the s-th derivative of the signal, this
would imply a smoother solution.

Furthermore, the most essential property of theL1 andL0 criteria is that they enforce
the sparsity of the term,‡ ∇sxn, that is, ∇sxn = 0 except for a few values of n, so that
the signal xn will be characterized of piecewise polynomials of degree s− 1.

Thus, the case s = 1 would be appropriate for modeling piecewise constant signals,
i.e., polynomials of degree s− 1 = 0. This case has wide application in image denoising
applications and is referred to as the “total-variation minimization” method [1135]. This
makes sense for images since they often consist of large areas or patches of constant
intensity.

The case s = 2 would be appropriate for modeling piecewise linear trends, i.e., poly-
nomials of degree s− 1 = 1, and is the basic choice for s in the Hodrick-Prescott filter.

†L0 is not strictly-speaking a norm.
‡http://cvxr.com/cvx/ – please download and install this package on your computer.
‡in general, they enforce the sparsity of whatever quantity lies inside the norms ‖ · ‖1 and ‖ · ‖0.

26.8. COMPUTER EXPERIMENTS 1293

Higher values of s, such as s = 3 or s = 4 can also be used, but they are not as common.
Whittaker and Henderson used s = 3 in the actuarial context.

Regarding the choice of λ, the best practice is by trial-and-error. There exist criteria
for choosing λ, however, they are not particularly good. The higher the λ, the more
emphasis is placed on minimizing ∇sxn, and the smoother the solution. Too high a
value of λ might result in too smooth a signal. In practice, since we do not know the
ground truth, we must resort to the trial-end-error method of trying several λ’s until
the result seems acceptable.

26.8.1 Total Variation Minimization

Consider a piece-wise constant, flat-top, signal xn and its observed noisy version, yn,
defined by

yn = xn + vn , 0 ≤ n ≤ 600

where vn is zero-mean white noise. The signals xn and yn have been saved into the
attached MAT file, yflat.mat, and can be loaded with the command,

load yflat; % loads signals in the variables x,y

a. Load and plot the two signals xn, yn in two separate graphs. The signal xn will serve
as the “ground truth” for evaluating its various estimated versions.

b. Let s = 1 and λ = 5. Using the L2 criterion with solution given by Eq. (26.8.2), calcu-
late and plot the estimated signal xn, and on a separate graph, plot the s-differenced
signal, ∇sxn, which is expected to be small but not necessarily sparse by the mini-
mization condition.

c. For the same values of s, λ, solve the L1 problem using the CVX package, and then us-
ing the IRLS algorithm, and for both cases, plot the estimated signal xn, as well as the
s-differenced signal, ∇sxn, which is expected to be very sparse by the minimization
condition.

Moreover, solve the L0 problem using the IRLS algorithm, and plot the estimated
signal xn, and the s-differenced signal, ∇sxn, which is also supposed to be very
sparse.

For the L1 and L0 IRLS cases, compute and plot also the iteration percentage error
P(k) versus iteration number k.

Discuss the effectiveness of the L2, L1, and L0 methods in reducing noise while not
affecting the desired signal.

d. For comparison purposes, compute also the smoothed output using a single EMA
filter and an equivalent SMA filter, choosing the duration of these filters to be less
than the duration of the flat-top portions, e.g., N = 39, so that you can see both the
transient and the steady-state parts. Plot the two smoothed filtered outputs on two
separate graphs.

Some example graphs are shown below in Figs. 26.8.1 – 26.8.7.

1294 26. WHITTAKER-HENDERSON SMOOTHING

0 50 100 150 200 250 300
0

1

2

3

4

5

n

exact input, x(n)

0 50 100 150 200 250 300
0

1

2

3

4

5

n

noisy input, y(n)

Fig. 26.8.1 Total variation minimization example of Sec. 26.8.1.

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
2
 criterion, s = 1, λ = 5

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

n

L
2
 case, ∇sx(n), s = 1, λ = 5

Fig. 26.8.2 Total variation minimization example of Sec. 26.8.1.

26.8.2 Local Linear Trends

Consider a piecewise linear signal xn and its observed noisy version, yn, defined by

yn = xn + vn , 0 ≤ n ≤ 600

where vn is zero-mean white noise. The signals xn and yn have been saved into the
attached MAT file, ylin.mat, and can be loaded with the command,

load ylin; % loads signals in the variables x,y

Repeat questions (a–d) of the previous section, with the following changes: use s = 2,
and λ = 100 for the L2 and L1 parts, and λ = 1 for the L0 part. Also, use a DEMA filter
instead of a single EMA to avoid any lag in the output. For the SMA case, the lag will be
visible.

Some example graphs are shown below in Figs. 26.8.8 – 26.8.14.

26.8. COMPUTER EXPERIMENTS 1295

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
1
 criterion, CVX, s = 1, λ = 5

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

n

L
1
 case, ∇sx(n), s = 1, λ = 5

Fig. 26.8.3 Total variation minimization example of Sec. 26.8.1.

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
1
 criterion, IRLS, s = 1, λ = 5

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

n

L
1
 case, ∇sx(n), s = 1, λ = 5

Fig. 26.8.4 Total variation minimization example of Sec. 26.8.1.

26.8.3 Global Warming Trends

Global Warming Trends. This is a continuation of Example 23.10.2 in which we compared
several smoothing methods. Figs. 26.8.15 & 26.8.16 compare the Whittaker-Henderson
trends for the L2, L1, and L0 cases, with s = 2, as well as the corresponding regularizing
differenced signals, ∇sxn.

The L1 case was computed with the CVX package. The corresponding IRLS imple-
mentation is not shown since it produces virtually indistinguishable graphs from CVX.

The L0 case was implemented with the IRLS method and produced slightly sparser
differenced signals as can be observed in the graphs. The MATLAB code used to generate
these graphs is summarized below.

Y = loadfile(’tavenh2v.dat’); % load temperature data file

n = Y(:,1); y = Y(:,14); N = length(y); % extract dates and data

1296 26. WHITTAKER-HENDERSON SMOOTHING

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
0
 criterion, IRLS, s = 1, λ = 5

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

n

L
0
 case, ∇sx(n), s = 1, λ = 5

Fig. 26.8.5 Total variation minimization example of Sec. 26.8.1.

0 10 20 30 40

0

2

4

6

8

L
1
, IRLS iteration error

pe
rc

en
t

k
0 10 20 30 40

0

2

4

6

8

L
0
, IRLS iteration error

pe
rc

en
t

k

Fig. 26.8.6 Total variation minimization example of Sec. 26.8.1.

s = 2; Ds = diff(speye(N),s); % (N-s)xN differencing matrix
ns = n(s:end-1);

la = 10000; x = whsm(y,la,s); % Whittaker-Henderson with L2 norm

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

la = 10; % Whittaker-Henderson with L1 norm
cvx_quiet(true); % CVX package, http:/cvxr.com/cvx/
cvx_begin

variable x(N)
minimize(sum_square(y-x) + la * norm(Ds*x,1))

cvx_end

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

26.8. COMPUTER EXPERIMENTS 1297

0 50 100 150 200 250 300
0

1

2

3

4

5

n

EMA output, λ = 0.95

0 50 100 150 200 250 300
0

1

2

3

4

5

n

SMA output, N = 39

Fig. 26.8.7 Total variation minimization example of Sec. 26.8.1.

0 50 100 150 200 250 300
0

1

2

3

4

5

n

exact input, x(n)

0 50 100 150 200 250 300
0

1

2

3

4

5

n

noisy input, y(n)

Fig. 26.8.8 Local linear trends – Sec. 26.8.2.

p = 0; q = 2 - p; epsilon = 1e-8; % Whittaker-Henderson with L0 norm
I = speye(N); K = 10; % using K=10 IRLS iterations
la = 0.05;

x = (I + la*Ds’*Ds) \ y; % initialize iteration

for k=1:K, % IRLS iteration
W = diag(1./(abs(Ds*x).^q + epsilon));
xk = (I + la*Ds’*W*Ds) \ y;
x = xk;

end

figure; plot(n,y,’r:’, n,x,’b-’); % plot trend
figure; plot(ns, Ds*x,’b-’); % plot differenced trend

Figs. 26.8.17 & 26.8.18 compare the L2, L1, L0 cases for s = 3, which fits piecewise
quadratic polynomials to the data. The L0 case is again the sparsest. (Color graphs

1298 26. WHITTAKER-HENDERSON SMOOTHING

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
2
 criterion, s = 2, λ = 100

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

n

L
2
 case, ∇sx(n), s = 2, λ = 100

Fig. 26.8.9 Local linear trends – Sec. 26.8.2.

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
1
 criterion, CVX, s = 2, λ = 100

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

n

L
1
 case, ∇sx(n), s = 2, λ = 100

Fig. 26.8.10 Local linear trends – Sec. 26.8.2.

online).

26.8.4 US GDP Macroeconomic Data

In this computer experiment, we study the Whittaker-Henderson smoothing method for-
mulated with the L2 and L1 norms, and apply it to the US GDP macroeconomic data.
Again, for a length-N signal, yn, 0 ≤ n ≤ N − 1, the optimization criteria for determin-
ing a length-N smoothed signal xn are,

(L2): J =
N−1∑
n=0

∣∣yn − xn
∣∣2 + λ

N−1∑
n=s

∣∣∇sxn
∣∣2 = ∥∥y− x

∥∥2
2 + λ

∥∥Dsx
∥∥2

2 = min

(L1): J =
N−1∑
n=0

∣∣yn − xn
∣∣2 + λ

N−1∑
n=s

∣∣∇sxn
∣∣ = ∥∥y− x

∥∥2
2 + λ

∥∥Dsx
∥∥

1 = min

(26.8.3)

26.8. COMPUTER EXPERIMENTS 1299

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
1
 criterion, IRLS, s = 2, λ = 100

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

n

L
1
 case, ∇sx(n), s = 2, λ = 100

Fig. 26.8.11 Local linear trends – Sec. 26.8.2.

0 50 100 150 200 250 300
0

1

2

3

4

5

n

L
0
 criterion, IRLS, s = 2, λ = 1

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

n

L
0
 case, ∇sx(n), s = 2, λ = 1

Fig. 26.8.12 Local linear trends – Sec. 26.8.2.

where Ds is the (N−s)×N convolution matrix corresponding the s-difference operator
∇s. It can be constructed in MATLAB by,

Ds = diff(eye(N),s); % or, in sparse form, Ds = diff(speye(N),s);

The solution of problem (L2) is straightforward:

x = (I + λDT
s Ds)−1y (26.8.4)

The solution of problem (L1) can be obtained with the CVX package as follows:

cvx_begin
variable x(N)
minimize(sum_square(x-y) + lambda * norm(Ds*x,1));

cvx_end

It can also be solved with the iterative reweighted least-squares (IRLS) algorithm, as
discussed in Sec. 26.7.

1300 26. WHITTAKER-HENDERSON SMOOTHING

0 10 20 30 40

0

1

2

3

4

L
1
, IRLS iteration error

pe
rc

en
t

k
0 10 20 30 40

0

1

2

3

4

L
0
, IRLS iteration error

pe
rc

en
t

k

Fig. 26.8.13 Local linear trends – Sec. 26.8.2.

0 50 100 150 200 250 300
0

1

2

3

4

5

n

DEMA output, λ = 0.95

0 50 100 150 200 250 300
0

1

2

3

4

5

n

SMA output, N = 39

Fig. 26.8.14 Local linear trends – Sec. 26.8.2.

The second column of the AOSP data file, USGDP_Inv.dat, represents the quarterly
US GDP for private investment in billions of dollars. Read this column with the help of
the function loadfile and then take its log:

Y = loadfile(’USGDP_Inv.dat’);
y = log10(Y(:,2) * 1e9);

These data represent a prototypical example for the application of Whittaker-Henderson
filters, referred to in this context as Hodrick-Prescott filters.

Questions

a. Choose difference order s = 2 and regularization parameter λ = 1600. Solve the
Whittaker-Henderson problem (L2) and plot the solution x together with the actual
data y.

26.8. COMPUTER EXPERIMENTS 1301

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L2 , s = 2

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

years

s− th difference, ∇sx(n), s = 2

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L1 , CVX, s = 2

 actual
 L

1
 trend

1850 1875 1900 1925 1950 1975 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

years

s− th difference, ∇sx(n), s = 2

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L0 , IRLS, s = 2

 actual
 L

0
 IRLS

 L
1
 CVX

1850 1875 1900 1925 1950 1975 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

years

s− th difference, ∇sx(n), s = 2

Fig. 26.8.15 Gloval warming trends, s = 2 cases.

b. Calculate the SVD enhanced version of y, by the following steps: (i) remove and save
the mean from y, (ii) form its forward/backward data matrix using an embedding
order of M = 9, (iii) subject it to K = 8 SVD enhancement iterations using rank
r = 1, (iv) extract the enhanced signal from the enhanced data matrix, and (v) add

1302 26. WHITTAKER-HENDERSON SMOOTHING

0 10 20 30 40
0

5

10

15

20

L
1
 case, IRLS iteration error

pe
rc

en
t

k
0 10 20 30 40

0

5

10

15

20

L
0
 case, IRLS iteration error

pe
rc

en
t

k

Fig. 26.8.16 Global Warming Trends – iteration errors for s = 2.

the mean that was removed. Plot the resulting enhanced signal together with y. SVD
enhancement is discussed in detail in [45].

c. For the value λ1 = λ/480 = 1600/480 and difference order s = 2, solve problem
(L1), and plot the solution x together with the actual data y. Moreover, on a separate
graph, plot the differenced signal Dsx using a stem plot and observe its sparseness,
which means that x is piece-wise linear. The particular choice for λ1 was made in
order for the (L2) and (L1) problems to have comparable RMS errors.

d. Repeat parts (a) and (c) for s = 1 and regularization parameter λ = 60.65 for the
(L2) problem (justified in Sec. 26.4), and λ1 = 1 for the (L1) problem, chosen to
achieve comparable RMS errors. Notice how the (L1) problem results in a piece-wise
constant fit. But Dsx is not as sparse because s = 1 is not really a good choice.

The s = 1 case is an example of the so-called total-variation minimization method,
used widely in image processing.

e. Repeat parts (a) and (c) for s = 3 and regularization parameter λ = 41640.16 for the
(L2) problem (justified in Sec. 26.4), and λ1 = λ/1000 for the (L1) problem, chosen
to achieve comparable RMS errors. Here, the (L1) problem will result in piece-wise
quadratic polynomial fits. Some example graphs are shown below in Figs. 26.8.19 –
26.8.23.

26.9 Sparse Modeling – LASSO and BPDN

Regularization is a method for solving linear equations of the form, Ax = b, that may
be ill-posed, inconsistent, overdetermined, underdetermined, or ill-conditioned – some
references on the topic are [1085–1125]. The regularized deconvolution problem of
Eq. (26.6.2) was just such an example.

26.9. SPARSE MODELING – LASSO AND BPDN 1303

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L2 , s = 3

 actual
 trend

1850 1875 1900 1925 1950 1975 2000
−0.01

0

0.01

years

s− th difference, ∇sx(n), s = 3

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L1 , CVX, s = 3

 actual
 L

1
 trend

1850 1875 1900 1925 1950 1975 2000
−0.01

0

0.01

years

s− th difference, ∇sx(n), s = 3

1850 1875 1900 1925 1950 1975 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

years

an
om

al
ie

s
(C

o)

WH − L0 , IRLS, s = 3

 actual
 L

0
 IRLS

 L
1
 CVX

1850 1875 1900 1925 1950 1975 2000
−0.01

0

0.01

years

s− th difference, ∇sx(n), s = 3

Fig. 26.8.17 Gloval warming trends, s = 3 cases.

In particular, Tikhonov regularization is defined by the following modified least-
squares criterion, also known as ridge regression,

J = ‖b−Ax‖2 + λ‖x‖2 = min (26.9.1)

1304 26. WHITTAKER-HENDERSON SMOOTHING

0 10 20 30 40

0

2

4

6

8

L
1
, IRLS iteration error

pe
rc

en
t

k
0 10 20 30 40

0

2

4

6

8

L
0
, IRLS iteration error

pe
rc

en
t

k

Fig. 26.8.18 Global Warming Trends – iteration errors for s = 3.

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
, s = 2

 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

SVD ehancement, M = 9, r = 1

 trend
 data

Fig. 26.8.19 US GDP example – Sec. 26.8.4.

Setting the gradient of J to zero, we find,

∂J
∂x

= 2AT(Ax− b)+2λx = 0 ⇒ (ATA+ λI)x = ATb

where I is the identity matrix, with solution,

x = (ATA+ λI)−1ATb

Regularization is used in many practical inverse problems, such as the deblurring of
images or tomography. The second term in the performance index (26.9.1) guards both
against ill-conditioning and against noise in the data. If the parameter λ is chosen to
be too large, it is possible that noise is removed too much at the expense of getting an
accurate inverse. In large-scale inverse problems (e.g., a 512×512 image is represented
by a vector x of dimension 5122 = 2.6×105), the solution can be obtained iteratively,
for example, using conjugate-gradients [1081–1083].

26.9. SPARSE MODELING – LASSO AND BPDN 1305

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
, s = 2

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−8

−6

−4

−2

0

2

4

6
x 10

−3 sparse s−differenced signal, s = 2

years in quarters

Fig. 26.8.20 US GDP example – Sec. 26.8.4.

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
, s = 1

 trend
 data

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
2
, s = 3

 trend
 data

Fig. 26.8.21 US GDP example – Sec. 26.8.4.

Often, the second term, ‖x‖2, in (26.9.1) is replaced by the more general term,
‖Dx‖2 = xTDTDx, where D is an appropriate matrix. For example, in an image restora-
tion application, D could be chosen to be a differentiation matrix so that the perfor-
mance index would attempt to preserve the sharpness of the image. The more general
ridge regression performance index and its solution are:

J = ‖b−Ax‖2 + λ‖Dx‖2 = min ⇒ x = (ATA+ λDTD
)−1ATb (26.9.2)

For example, the Whittaker-Henderson case A is the identity matrix, A = I, and
D is the s-differencing matrix Ds. Another variation of regularization is to assume a
decomposition into multiple components of the form,

b = A1x1 +A2x2

and impose different regularization constraints on each part, for example, with positive

1306 26. WHITTAKER-HENDERSON SMOOTHING

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
, s = 1

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−0.01

0

0.01

0.02

0.03

0.04

0.05

years in quarters

sparse s−differenced signal, s = 1

Fig. 26.8.22 US GDP example – Sec. 26.8.4.

1950 1960 1970 1980 1990 2000 2010

11.2

11.4

11.6

11.8

12

12.2

lo
g 10

(G
D

P
)

years in quarters

WH smoothing with L
1
, s = 3

 trend
 data

1950 1960 1970 1980 1990 2000 2010
−4

−3

−2

−1

0

1

2
x 10

−4

years in quarters

sparse s−differenced signal, s = 3

Fig. 26.8.23 US GDP example – Sec. 26.8.4.

parameters, λ1, λ2,

J = ‖b−A1x1 −A2x2‖2 + λ1‖D1x1‖2 + λ2‖D2x2‖2 = min (26.9.3)

whose minimization with respect to x1,x2, leads to the solution,[
x1

x2

]
=
[
AT

1A1 + λ1DT
1D1 AT

1A2

AT
2A1 AT

2A+ λ2DT
2D2

]−1 [AT
1 b

AT
2 b

]
(26.9.4)

An example of such decomposition was the seasonal Whittaker-Henderson case dis-
cussed in Sec. 27.11 in which x1 represented the seasonal component, and x2, the trend.
Another variation, similar to the elastic net [1146], is one in which one or both of the L2

regularizing terms are replaced by their L1 sparse versions, for example, ‖D1x1‖1 .
Sparse versions of the conventional regularized least-squares criteria are obtained by

replacing the L2-norm in the regularization term of Eq. (26.9.2) by the Lp norm, resulting

26.9. SPARSE MODELING – LASSO AND BPDN 1307

in the alternative minimization criterion, referred to as Lp-regularized least-squares,

J = ∥∥b−Ax
∥∥2

2 + λ
∥∥Dx

∥∥p
p = min (Lp-regularized least-squares) (26.9.5)

where the first term in (26.9.5) is still the L2 norm of the modeling error, b − Ax, and
‖x‖p denotes the Lp norm of the vector x = [x1, x2, · · · , xM]T,

‖x‖p =
⎡⎣ M∑
n=1

|xn|p
⎤⎦ 1

p

⇒ ∥∥x
∥∥p
p =

M∑
n=1

|xn|p

As mentioned before, even though ‖x‖p is a proper norm only for p ≥ 1, the cases
0 ≤ p ≤ 1 have also been considered widely because they promote the sparsity of the
resulting solution vector x, or rather, the sparsity of the vector, Dx, that appears inside
the Lp norm in (26.9.5). In particular, the case p = 1 is special for the following reasons:

(a) it corresponds to the smallest possible proper norm,

(b) it typically results in a sparse solution, which under many circumstances is close to,
or coincides with, the sparsest solution (based on the L0 norm), and,

(c) the minimization problem (26.9.5) is a convex optimization problem for which there
are efficient numerical methods.

We concentrate below on the three cases p = 0,1,2, and also set D = I for now, and
consider the following three optimization criteria for solving the linear system Ax = b,
with A ∈ RN×M, b ∈ RN, and, x ∈ RM,

(L0): J = ‖b−Ax‖2
2 + λ‖x‖0 = min

(L1): J = ‖b−Ax‖2
2 + λ‖x‖1 = min

(L2): J = ‖b−Ax‖2
2 + λ‖x‖2

2 = min

(26.9.6)

where the L0 norm, ‖x‖0, is the cardinality of the vector x, that is, the number of its
non-zero entries. The criteria try to minimize the corresponding norm of x while being
consistent with the given linear system. Criterion (L0) results in the sparsest solution
but is essentially intractable. Criterion (L1) is used as an alternative to (L0) and results
also in a sparse solution. It is known as the LASSO† [1137], or as basis pursuit denoising
(BPDN) [1140], or as L1-regularized least squares.

There is a vast literature on the properties, applications, and numerical methods of
the above criteria. A small and incomplete set of references is [1084–1124,1126–1195].
A comprehensive review is [1163]. Several MATLAB-based packages are also available
[1196].

Below we discuss two examples that illustrate the sparsity of the resulting solutions:
(i) an overdetermined sparse spike deconvolution problem, and (ii) an underdetermined
sparse signal recovery example. In these examples, the (L0) problem is solved with an
iteratively re-weighted least-squares (IRLS) method, and the (L1) problem, with the CVX
package‡ as well as with the IRLS method for comparison.

†Least Absolute Shrinkage and Selection Operator
‡http://cvxr.com/cvx/

1308 26. WHITTAKER-HENDERSON SMOOTHING

We introduced the IRLS method in the context of sparse Whittaker-Henderson smooth-
ing, or, L1-trend filtering, in Sec. 26.7. There are several variants of this method, [1126–
1134,1138,1159,1163,1166,1171,1172], but the basic idea is to replace the Lp norm with
a weighted L2 norm, which can be solved iteratively. We recall from Sec. 26.7 that given
a real number 0 ≤ p ≤ 2, set q = 2− p, and write for any real number x �= 0,

|x|p = |x|2
|x|q ≈

|x|2
|x|q + ε

where ε is a sufficiently small positive number needed to also allow the case x = 0.
Similarly, we can write for the Lp-norm of a vector x ∈ RM,

‖x‖pp =
M∑
i=1

|xi|p ≈
M∑
i=1

|xi|2
|xi|q + ε

= xTW(x)x

W(x) = diag
[

1

|x|q + ε

]
= diag

[
1

|x1|q + ε
,

1

|x2|q + ε
, . . . ,

1

|xM|q + ε

] (26.9.7)

Alternatively, one can define W(x) as the pseudo-inverse of the diagonal matrix of
the powers |xi|q, i = 1,2, . . . ,M, that is, in MATLAB language,∗

W(x)= pinv
(

diag
[|x1|q , |x2|q , . . . , |xM|q

])
(26.9.8)

Then, the Lp-regularized least-squares problem can be written in the form,

J = ‖b−Ax‖2
2 + λ‖x‖pp = ‖b−Ax‖2

2 + λxTW(x)x = min (26.9.9)

This approximation leads to the following iterative solution in which the diagonal
weighting matrix W to be used in the next iteration is replaced by its value from the
previous iteration,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
x(k−1))

x(k) = arg min
x

∥∥b−Ax
∥∥2

2 + λxTWk−1x

(IRLS) (26.9.10)

with the algorithm initialized to the ordinary least-squares solution of criterion (L2):

x(0) = (λI +ATA
)−1ATb

The solution of the optimization problem in (26.9.10) at the kth step is:

x(k) = (λWk−1 +ATA
)−1ATb

Thus, the choices p = 0 and p = 1 should resemble the solutions of the L0 and L1

regularized problems. The IRLS algorithm (26.9.10) works well for moderate-sized prob-
lems (N,M < 1000). For large-scale problems (N,M > 106), the successive least-squares
problems could be solved with more efficient methods, such as conjugate gradients.

∗e.g., pinv(diag([2, 0, 4])) produces the diagonal matrix, diag([0.50, 0, 0.25]).

26.9. SPARSE MODELING – LASSO AND BPDN 1309

The general case of (26.9.5) that includes the smoothness-constraining matrix D can
also be handled in the same way. Following the discussion of Sec. 26.7, we can write,

J = ∥∥b−Ax
∥∥2

2 + λ
∥∥Dx

∥∥p
p =

∥∥b−Ax
∥∥2

2 + λxTDTW(Dx)Dx = min (26.9.11)

which leads to to the following iterative algorithm,

for k = 1,2, . . . , K, do:

Wk−1 =W
(
Dx(k−1))

x(k) = arg min
x

∥∥b−Ax
∥∥2

2 + λxTDTWk−1Dx

(IRLS) (26.9.12)

with the algorithm initialized to the ordinary least-squares solution:

x(0) = (ATA+ λDTD
)−1ATb

The solution of the optimization problem at the kth step is:

x(k) = (ATA+ λDTWk−1D
)−1ATb

26.9.1 Sparse Spike Deconvolution Example

Consider a deconvolution problem in which the observed signal yn is the noisy convolu-
tion, yn = hn∗sn+vn, where vn is zero-mean white noise of variance σ2

v . The objective
is to recover the signal sn assuming knowledge of the filter hn. For an FIR filter of order
M and input of length L, the output will have length N = L +M, and we may cast the
above convolutional filtering equation in the matrix form:

y = Hs+ v

where y,v ∈ RN, s ∈ RL, and H is the N×L convolution matrix corresponding to the
filter. It can be constructed as a sparse matrix by the function:

H = convmat(h,L); % H = convmtx(h,N) = non-sparse version

The filter is taken to be:

hn = cos
(
0.15(n− n0)

)
exp

(−0.004(n− n0)2) , n = 0,1, . . . ,M

where M = 53 and n0 = 25. The input is a sparse spike train consisting of S spikes:

sn =
S∑
i=1

aiδ(n− ni) , n = 0,1, . . . , L− 1 (26.9.13)

where S = 8 and the spike locations and amplitudes are given as follows:

ni = [20, 40, 60, 70, 80, 100, 120, 140] , ai = [10, 8, 4, −4, 5, 6, −2, 4]

1310 26. WHITTAKER-HENDERSON SMOOTHING

The input signal length is defined from the last spike location to be L = n8 + 1 =
141. The noise standard deviation is chosen to be σv = 0.1, which corresponds to
approximately 38 dB signal-to-noise ratio, that is, SNR = 20 log10

(
max |Hs|/σv

) = 38.
The input signal sn and the convolved noisy signal yn are shown below. Also shown

are the impulse responsehn and the corresponding magnitude response |H(ω)| plotted
in dB versus 0 ≤ω ≤ π rads/sample.

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

exact input, s(n)

n
0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

noisy observations, y(n)

n

SNR = 38 dB

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
impulse response, h(n)

n
0 0.2 0.4 0.6 0.8 1

−40

−30

−20

−10

0

10

20

30

40
magnitude response in dB, |H(ω)|

dB

ω / π

We note that H(ω) occupies a low frequency band, thus, we expect the effective
deconvolution inverse filtering operation by 1/H(ω) to be very sensitive to even small
amounts of noise in yn, even though the noise is barely visible in yn itself. The three
criteria of Eq. (26.9.6) to be implemented are,

J = ‖y−Hx‖2
2 + λ‖x‖0 = min

J = ‖y−Hx‖2
2 + λ‖x‖1 = min

J = ‖y−Hx‖2
2 + λ‖x‖2

2 = min

(26.9.14)

The L2 case with λ = 0 corresponds to the ordinary (full-rank overdetermined)
least-squares solution of the linear system, Hx = y, that is, xord = (HTH)−1HTy,
or, xord = H\y, in MATLAB.

Similarly, the L2-regularized solution with non-zero λ is, x2 = (λI +HTH)−1HTy.

26.9. SPARSE MODELING – LASSO AND BPDN 1311

These two solutions are depicted below, displaying also the percent error of recovering
the desired signal s, defined in terms of the L2 norms by, Perror = 100·‖x− s‖2/‖s‖2.

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

ordinary least−squares solution, x(n), λ = 0

n

percent error = 139.28

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
2
 − regularized solution, x(n), λ = 0.01

n

percent error = 77.65

 s(n)
 x(n)

The MATLAB code for generating the above six graphs was as follows:

g = @(x) cos(0.15*x).*exp(-0.004*x.^2); % filter function
delta = @(x) (x==0);

M = 53; n0 = 25; k = (0:M)’; h = g(k-n0); % filter h(n)

ni = [20 40 60 70 80 100 120 140]; % spike locations & amplitudes
ai = [10 8 4 -4 5 6 -2 4];

L = ni(end)+1; N = M+L; % L = 141, N = 194
n = (0:L-1)’; t = (0:N-1)’; % time indices for s(n) and y(n)

s = 0;
for i=1:length(ni), % exact input s(n)
s = s + ai(i) * delta(n-ni(i));

end

H = convmat(h,L); % NxL=194x141 convolution matrix

sigma = 0.1;
seed = 2017; randn(’state’,seed); % initialize generator

y = H*s + sigma * randn(N,1); % noisy observations y(n)

w = linspace(0,1,1001)*pi; % frequencies in rads/sample
Hmag = 20*log10(abs(dtft(h,w))); % can also use freqz(h,1,w)

xord = H\y; % ordinary least-squares
Perr = 100 * norm(s-xord)/norm(s);

la = 0.01;
x2 = (la * eye(L) + H’*H) \ (H’*y); % L2-regularized
Perr = 100 * norm(s-x2)/norm(s);

figure; plot(n,s); figure; plot(t,y); % plot s(n) and y(n)
figure; plot(k,h); figure; plot(w/pi,Hmag); % plot h(n) and H(w)
figure; plot(n,xord); figure; plot(n,x2); % plot xord(n) and x2(n)

1312 26. WHITTAKER-HENDERSON SMOOTHING

As expected from the lowpass nature of H(ω), the ordinary least-squares solution
is too noisy to be useful, while the regularized one is only slightly better. The effect
of increasing λ is to smooth the noise further, but at the expense of flattening and
broadening the true spikes (for example, try the value, λ = 0.1).

To understand this behavior from the frequency point of view, let us pretend that
the signals yn, xn are infinitely long. Following the approach of Sec. 26.3, we may replace
the (L2) criterion in Eq. (26.9.14) by the following,

J =
∞∑

n=−∞

∣∣yn − hn ∗ xn
∣∣2 + λ

∞∑
n=−∞

∣∣xn∣∣2 =

=
∫ π

−π

∣∣Y(ω)−H(ω)X(ω)
∣∣2 dω

2π
+ λ

∫ π

−π

∣∣X(ω)
∣∣2 dω

2π
= min

(26.9.15)

where we used Parseval’s identity. The vanishing of the functional derivative of J with
respect to X∗(ω), then leads to the following regularized inverse filtering solution,

δJ
δX∗(ω)

= ∣∣H(ω)
∣∣2X(ω)−H∗(ω)Y(ω)+λX(ω)= 0 , or, (26.9.16)

X(ω)= H∗(ω)
λ+ ∣∣H(ω)

∣∣2 Y(ω) (regularized inverse filter) (26.9.17)

If we express Y(ω) in terms of the spectrum S(ω) of the desired signal and the
spectrum V(ω) of the added noise, then, Eq. (26.9.17) leads to,

Y(ω)= H(ω)S(ω)+V(ω) ⇒ X(ω)=
∣∣H(ω)

∣∣2

λ+ ∣∣H(ω)
∣∣2 S(ω)+ H∗(ω)

λ+ ∣∣H(ω)
∣∣2 V(ω)

For λ = 0, this becomes the ordinary inverse filter,

X(ω)= 1

H(ω)
Y(ω)= S(ω)+ 1

H(ω)
V(ω)

which, although it recovers the S(ω) term, it greatly amplifies the portions of the white-
noise spectrum that lie in the stopband of the filter, that is where, H(ω)≈ 0. For
λ �= 0 on the other hand, the regularization filter acts as a lowpass filter, becoming
vanishingly small over the stopband, and hence removing some of the noise, but also
smoothing and broadening the spikes for the same reason, that is, removing some of
the high-frequencies in S(ω).

By contrast, the L0 and L1 regularized criteria of Eq. (26.9.14) behave dramatically
differently and are capable of accurately extracting the input spikes, as seen in the
graphs of Fig. 26.9.1.

The L1 case was computed with the CVX package, as well as with the IRLS algorithm
of Eq. (26.9.10), with the parameter values, λ = 0.1, p = 1, q = 1, ε = 10−5, and K = 100
iterations.

The L0 case was computed with the IRLS algorithm using parameters, λ = 0.1, p = 0,
q = 2, ε = 10−5, and K = 100 iterations—however, it actually converges within about

26.9. SPARSE MODELING – LASSO AND BPDN 1313

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
1
 − CVX solution, x(n), λ = 0.1

n

percent error = 26.64

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
1
 − IRLS solution, x(n), λ = 0.1

n

percent error = 25.57

0 20 40 60 80 100 120 140 160 180 200

−4

−2

0

2

4

6

8

10

L
0
 − IRLS solution, x(n), λ = 0.1

n

percent error = 0.52

0 4 8 12 16 20

0

10

20

30

40

50

60

iterations, k

pe
rc

en
t

L
0
 − IRLS iteration error, P(k)

Fig. 26.9.1 Deconvolved signals based on the L1 and L0 criteria.

10 iterations as seen in the bottom-right graph that plots the iteration percentage error
defined at the kth iteration by, P(k)= 100·‖x(k) − x(k−1)‖2/‖x(k−1)‖2.

The recovered signal in the L0 case is slightly sparser than that of the L1 case, as is
seen in the figures, or by evaluating the reconstruction error, Perror = 100·‖x−s‖2/‖s‖2,
but both versions fairly accurately extract the spike amplitudes and locations. The
MATLAB code used to produce these four graphs was as follows.

la = 0.1;

cvx_begin % L1 case - CVX solution
variable x(L)
minimize(sum_square(H*x-y) + la * norm(x,1))

cvx_end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L1 - CVX version

% ---

1314 26. WHITTAKER-HENDERSON SMOOTHING

p=1; q=2-p; epsilon=1e-5; K=100; % L1 case - IRLS solution
W = speye(L);

x0 = (la * W + H’*H) \ (H’*y);

for k=1:K,
W = diag(1./(abs(x0).^q + epsilon));
x = (la * W + H’*H) \ (H’*y);
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L1 - IRLS version

% ---

p=0; q=2-p; epsilon=1e-5; K=100; % L0 case - IRLS solution
W = speye(L);

x0 = (la * W + H’*H) \ (H’*y); % initialize iteration

for k=1:K, % IRLS iteration
W = diag(1./(abs(x0).^q + epsilon));
x = (la * W + H’*H) \ (H’*y);
P(k) = 100*norm(x-x0)/norm(x0); % iteration error
x0 = x;

end

Perr = 100*norm(x-s)/norm(s); % reconstruction error

figure; plot(n,x,’r-’); % plot L0 - IRLS version
k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % plot iteration error P(k)

26.9.2 Sparse Signal Recovery Example

In this example, based on [1150], we consider the underdetermined noisy linear system:

y = As+ v

where A ∈ R1000×2000, s ∈ R2000, and y,v ∈ R1000. The matrix A has full rank and
consists of zero-mean, unit-variance, gaussian, independent random entries, and the
2000-long input signal s is sparse with only L = 100 non-zero entries taken to be ran-
domly positioned within its length, and constructed to have amplitudes±1 with random
signs and then weighted by a triangular window in order to get a variety of values.

The noise v is zero-mean gaussian white noise with standard deviation σv = 0.1.
The recovery criteria are as in Eq. (26.9.6),

J = ‖y−Ax‖2
2 + λ‖x‖0 = min

J = ‖y−Ax‖2
2 + λ‖x‖1 = min

J = ‖y−Ax‖2
2 + λ‖x‖2

2 = min

(26.9.18)

26.9. SPARSE MODELING – LASSO AND BPDN 1315

Fig. 26.9.2 shows the signal s(n) and the observations y(n), as well as the recovered
signals x(n) based on the above criteria. The L1 solution was computed with the CVX
package and the IRLS algorithm, and the L0 solution, with the IRLS algorithm. The
parameter λ was chosen to be λ = 0.1 in the L1 and L0 cases, and λ = 0 for the L2 case,
which corresponds to the usual minimum-norm solution of the underdetermined linear
system Ax = y, that is, x = A+y = AT(AAT)−1y, in terms of the pseudo-inverse of A.
Note that using λ = 0.1 in the L2 case is virtually indistinguishable from the λ = 0 case.

The L2 criterion does not produce an acceptable solution. But both the L1 and the L0

criteria accurately recover the sparse signal s(n), with the L0 solution being somewhat
sparser and resulting in smaller recovery error, Perror = 100·‖x− s‖2/‖s‖2.

The IRLS algorithms were run with parameters λ = 0.1, ε = 10−6, and K = 20 itera-
tions. The successive iteration percentage errors, P(k)= 100·‖x(k)−x(k−1)‖2/‖x(k−1)‖2,
are plotted versus k in Fig. 26.9.3 for the L1 and L0 cases. The MATLAB code used to
produce the solutions and graphs is given below.

N = 1000; M = 2000; L = 100; % L-sparse

seed = 1000; % initialize generators
randn(’state’,seed);
rand(’state’,seed);

A = randn(N,M); % random NxM matrix
s = zeros(M,1);

I = randperm(M); I = I(1:L); % L random indices in 1:M
s(I) = sign(randn(L,1)); % L random signs at locations I

t = (0:N-1)’; n = (0:M-1)’;
w = 1 - abs(2*n-M+1)/(M-1); % triangular window
s = s .* w; % L-sparse windowed input

sigma = 0.1;
v = sigma * randn(N,1);
y = A*s + v; % noisy observations

SNR = 20*log10(norm(A*s,Inf)/sigma); % SNR = 45 dB

figure; stem(n,s); figure; stem(t,y); % plot s(n) and y(n)

% -----------------------------------

rank(A); % verify full rank = 1000

x = pinv(A)*y; % L2 - minimum-norm solution

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 71.21 %

figure; stem(n,x,’r-’);

% -----------------------------------

la = 0.1;

cvx_begin % L1 - CVX solution
variable x(M)

1316 26. WHITTAKER-HENDERSON SMOOTHING

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

 sparse input, s(n)

0 500 1000 1500 2000
−20

−10

0

10

20

n

 observations, y(n)

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
2
, minimum−norm solution, x(n)

error = 71.21 %

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
1
, CVX solution, x(n)

error = 2.54 %

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
1
, IRLS solution, x(n)

error = 2.54 %

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

n

L
0
, IRLS solution, x(n)

error = 0.63 %

Fig. 26.9.2 Recovered signals based on the L2, L1, and L0 criteria.

minimize(sum_square(A*x-y) + la * norm(x,1))
cvx_end

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 2.54 %

26.9. SPARSE MODELING – LASSO AND BPDN 1317

0 4 8 12 16 20

0

30

60

90

iterations, k

pe
rc

en
t

L
1
 − IRLS iteration error

0 4 8 12 16 20

0

30

60

90

iterations, k

pe
rc

en
t

L
0
 − IRLS iteration error

Fig. 26.9.3 IRLS iteration error based on the L1, and L0 criteria.

figure; stem(n,x,’r-’);

% -----------------------------------

p = 1; q = 2-p; epsilon = 1e-6; K = 20;
W = speye(M);

ATA = A’*A;
ATy = A’*y;

x0 = (la*W + ATA) \ ATy;

for k=1:K, % L1 - IRLS solution
W = diag(1./(abs(x0).^q + epsilon));
x = (la*W + ATA) \ ATy;
P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

end

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 2.54 %

figure; stem(n,x,’r-’);

k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % iteration error

% -----------------------------------

p = 0; q = 2-p; epsilon = 1e-6; K = 20;
W = speye(M);

x0 = (la*W + ATA) \ ATy;

for k=1:K, % L0 - IRLS solution
W = diag(1./(abs(x0).^q + epsilon));
x = (la*W + ATA) \ ATy;

1318 26. WHITTAKER-HENDERSON SMOOTHING

P(k) = norm(x-x0)*100/norm(x0);
x0 = x;

end

Perr = 100 * norm(x-s)/norm(s); % reconstruction error = 0.63 %

figure; stem(n,x,’r-’);

k = 1:K;
figure; plot(k,P,’r-’, k,P,’b.’); % iteration error

26.10 Problems

26.1 For the case s = 1, show that the Whittaker-Henderson filter has poles z1, 1/z1, where

z1 = e−α , α = 2 asinh
(

1

2
√
λ

)
For the case s = 2, show that the filter has poles {z1, z∗1 , 1/z1, 1/z∗1 }, where

z1 =
(√

1− ja2 + jaejπ/4
)2

= 1

2
D2

(
1− a

D

)2 (
1+ j

a
D

)2

, D =
√

1+
√

1+ a4 , a = 1

2λ1/4

Show that in both cases |z1| < 1.

26.2 Determine explicit expressions in terms of λ for the quantities σ2 and z1 that appear in the
factorization of the denominator of the Hodrick-Prescott filter:

1+ λ(1− z−1)2(1− z)2= σ2(1− z1z−1)(1− z∗1 z−1)(1− z1z)(1− z∗1 z)

What are the numerical values ofσ2, z1 for λ = 1600? What are the values of the coefficients
of the second-order filter

(
1− 2 Re(z1)z−1 + |z1|2z−2

)
?

26.3 Consider the performance index (26.6.1) for a regularized deconvolution problem. Making
enough assumptions, show that the performance index can be written in terms of frequency
responses as follows,

J =∑
n
|yn − fn ∗ xn|2 + λ

∑
n
|dn ∗ xn|2

=
∫ π

−π

[∣∣Y(ω)−F(ω)X(ω)
∣∣2 + λ

∣∣D(ω)X(ω)
∣∣2
] dω

2π
= min

Determine the optimumX(ω) that minimizes this index. Then, show that the corresponding
optimum deconvolution filter H(z)= X(z)/Y(z) is given by:

H(z)= F(z−1)
F(z)F(z−1)+λD(z)D(z−1)

What would be the stochastic state-space model for xn, yn that has this H(z) as its optimum
double-sided (unrealizable) Wiener filter for estimating xn from yn?

27
Periodic Signal Extraction

27.1 Introduction

Many physical, financial, and social time series have a natural periodicity in them, such
as daily, monthly, quarterly, yearly. The observed signal can be regarded as having three
components: a periodic (or nearly periodic) seasonal part sn, a smooth trend tn, and a
residual irregular part vn that typically represents noise,

yn = sn + tn + vn

The model can also be assumed to be multiplicative, yn = sntnvn. The signal processing
task is to extract both the trend and the seasonal components, tn and sn, from the
observed signal yn.

For example, many climatic signals, such as CO2 emissions, are characterized by an
annual periodicity. Government agencies routinely estimate and remove the seasonal
component from business and financial data and only the “seasonally-adjusted” signal
an = tn + vn is available, such as the US GDP that we considered in Example 26.4.1.
Further processing of the deseasonalized signal an, using for example a trend extrac-
tion filter such as the Hodrick-Prescott filter, can reveal additional information, such as
business cycles.

Periodic signals appear also in many engineering applications. Some examples are:
(a) Electrocardiogram recordings are subject to power frequency interference (e.g., 60 Hz
and its higher harmonics) which must be removed by appropriate filters. (b) All biomed-
ical signals require some sort of signal processing for their enhancement. Often weak
biomedical signals, such as brain signals from visual responses or muscle signals, can
be evoked periodically with the responses accumulated (averaged) to enhance their SNR;
(c) TV video signals have two types of periodicities in them, one due to line-scanning
and one due to the frame rate. In the pre-HDTV days, the chrominance (color) TV signals
were put on a subcarrier signal and added to the luminance (black & white) signal, and
the composite signal was then placed on another carrier for transmission. The subcar-
rier’s frequency was chosen carefully so as to shift the line- and frame-harmonics of the
chrominance signal relative to those of the luminance so that at the receiving end the
two could be separated by appropriately designed comb filters. (d) GPS signals contain

1319

1320 27. PERIODIC SIGNAL EXTRACTION

a repetitive code word that repeats with a period of one millisecond. The use of comb
filters can enhance their reception. (e) Radars send out repetitive pulses so that the
returns from slowly moving targets have a quasi-periodic character. By accumulating
these returns, the SNR can be enhanced. As we see below, signal averaging is a form of
comb filtering.

In this chapter,† we discuss the design of comb and notch filters for extracting pe-
riodic signals or canceling periodic interference. We discuss also the specialized comb
filters, referred to as “seasonal filters,” that are used by standard seasonal decomposi-
tion methods, such as the census X-11 method, and others.

27.2 Notch and Comb Filters for Periodic Signals

We review briefly the notch and comb filters for extracting periodic signals, discussed
in Sec. 15.11. Consider the signal plus interference model,

yn = sn + vn

in which either the signal or the noise is periodic, but not both. If the noise vn is periodic,
its spectrum will be concentrated at the harmonics of some fundamental frequency, say
ω1. The noise reduction filter must be an ideal notch filter with notches at the harmonics
kω1, k = 0,1, . . . , as shown in Fig. 27.2.1. If the filter notches are narrow, then the
distortion of the desired signal sn will be minimized.

Fig. 27.2.1 Notch filter for reducing periodic interference.

On the other hand, if the desired signal sn is periodic and the noise is a wideband
signal, the signal enhancement filter for extracting sn must be an ideal comb filter with
peaks at the harmonics of the desired signal, as shown in Fig. 27.2.2. If the comb peaks
are narrow, then only a minimal amount of noise will pass through the filter (that is, the
portion of the noise whose power lies within the narrow peaks.)

A discrete-time periodic signal sn with a period of D samples admits the following
finite D-point DFT and inverse DFT representation [2] in terms of the D harmonics that
lie within the Nyquist interval, ωk = 2πk/D = kω1, for k = 0,1, . . . ,D− 1,

†adapted from the author’s book on Applied Optimum Signal Processing [45]

27.2. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 1321

Fig. 27.2.2 Comb filter for enhancing a periodic signal.

(DFT) Sk =
D−1∑
n=0

sne−jωkn , k = 0,1, . . . ,D− 1

(IDFT) sn = 1

D

D−1∑
k=0

Skejωkn , n = 0,1, . . . ,D− 1

(27.2.1)

where Sk is the D-point DFT of one period [s0, s1, . . . , sD−1] of the time signal. Because
of the periodicity, the IDFT formula is actually valid for all n in the interval−∞ < n <∞.

We note that a periodic continuous-time signal s(t) does not necessarily result into
a periodic discrete-time signal when sampled at some arbitrary rate. For the sampled
signal sn = s(nT) to be periodic innwith a period ofD samples, whereT is the sampling
interval, the sampling rate fs = 1/T must be D times the fundamental harmonic f1, that
is, fs = Df1, or equivalently, one periodTper = 1/f1 must containD samples,Tper = DT.
This implies periodicity in n,

sn+D = s
(
(n+D)T

) = s(nT +DT)= s(nT +Tper)= s(nT)= sn

The assumed periodicity of sn implies that the sum of any D successive samples,
(sn + sn−1 + · · · + sn−D+1), is a constant independent of n. In fact, it is equal to the
DFT component S0 at DC (ωk = 0),

sn + sn−1 + · · · + sn−D+1 = S0 , −∞ < n <∞ (27.2.2)

In a seasonal + trend model such as, yn = sn + tn + vn, we may be inclined to
associate any DC term with the trend tn rather with the periodic signal sn. Therefore, it
is common to assume that the DC component of sn is absent, that is, the sum (27.2.2) is
zero, S0 = 0. In such cases, the comb filter for extracting sn must be designed to have
peaks only at the non-zero harmonics, ωk = kω1, k = 1,2, . . . ,D − 1. Similarly, the
notch filter for removing periodic noise must not have a notch at DC.

The typical technique for designing notch and comb filters for periodic signals is by
frequency scaling, that is, the mapping of frequencies ω → ωD, or equivalently, the
mapping of the z-domain variable

z→ zD (27.2.3)

1322 27. PERIODIC SIGNAL EXTRACTION

The effect of the transformation is to shrink the spectrum by a factor of D and then
replicate it D times to fill the new Nyquist interval. An example is shown in Fig. 27.2.3
for D = 4. Starting with a lowpass filter HLP(ω), the frequency-scaled filter will be a
comb filter, Hcomb(ω)= HLP(ωD). Similarly, a highpass filter is transformed into a
notch filter Hnotch(ω)= HHP(ωD).

Fig. 27.2.3 Mapping of a lowpass filter to a comb filter by frequency scaling.

In the z-domain, we have the following simple prescriptions for turning lowpass and
highpass filters into comb and notch filters:

Hcomb(z) = HLP(zD)

Hnotch(z) = HHP(zD)
(27.2.4)

For example, the simplest comb and notch filters are generated by,

HLP(z) = 1

2
(1+ z−1)

HHP(z) = 1

2
(1− z−1)

⇒
Hcomb(z) = 1

2
(1+ z−D)

Hnotch(z) = 1

2
(1− z−D)

(27.2.5)

Their magnitude responses are shown in Fig. 27.2.4 for D = 10. The harmonics
ωk = 2πk/D = 2πk/10, k = 0,1, . . . ,9 are the peaks/notches of the comb/notch
filters. The original lowpass and highpass filter responses are shown as the dashed
lines. The factors 1/2 in Eq. (27.2.5) normalize the peak gains to unity. The magnitude
responses of the two filters are:∣∣Hcomb(ω)

∣∣2 = cos2(ωD/2) ,
∣∣Hnotch(ω)

∣∣2 = sin2(ωD/2) (27.2.6)

The filters are complementary, as well as power-complementary, in the sense,

Hcomb(z)+Hnotch(z)= 1 ,
∣∣Hcomb(ω)

∣∣2 + ∣∣Hnotch(ω)
∣∣2 = 1 (27.2.7)

The 3-dB widths Δω of the comb peaks or the notch dips are fixed by the period D.
Indeed, they are defined by the condition sin2(DΔω/4)= 1/2, which gives Δω = π/D.
They are indicated on Fig. 27.2.4 as the short horizontal lines at the half-power level.

In order to control the width, we must consider IIR or higher order FIR filters. For
example, we may start with the lowpass filter given in Eq. (15.2.2), and its highpass
version,

HLP(z)= b
1+ z−1

1− az−1
, b = 1− a

2
, HHP(z)= b

1− z−1

1− az−1
, b = 1+ a

2
(27.2.8)

27.2. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 1323

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
comb filter, D = 10

ω / π

|
H

co
m

b(
ω

)|
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
notch filter, D = 10

ω / π

|
H

n
ot

ch
(ω

)|
2

Fig. 27.2.4 Simple comb and notch filters with D = 10.

where 0 < a < 1. The transformation z→ zD gives the comb and notch filters:

Hcomb(z) = b
1+ z−D

1− az−D
, b = 1− a

2

Hnotch(z) = b
1− z−D

1− az−D
, b = 1+ a

2

(27.2.9)

The filters remain complementary, and power-complementary, with magnitude responses:

∣∣Hcomb(ω)
∣∣2 = β2

β2 + tan2(ωD/2)
, β ≡ 1− a

1+ a∣∣Hnotch(ω)
∣∣2 = tan2(ωD/2)

β2 + tan2(ωD/2)

(27.2.10)

Their 3-dB width Δω is controlled by the pole parameter a through the relation:

tan
(
DΔω

4

)
= 1− a

1+ a
= β (27.2.11)

The noise reduction ratio of the comb filter is the same as that of the lowpass filter
HLP(z), which was calculated in Chap. 15,

R = 1− a
2

= β
1+ β

(27.2.12)

and can be made as small as desired by increasing a towards unity, but at the expense
of also increasing the time constant of the filter. The canonical (direct-form II) real-
ization of the comb filter and its sample processing algorithm using a circular buffer

1324 27. PERIODIC SIGNAL EXTRACTION

implementation of the multiple delay z−D is as follows, where p is the circular pointer,

for each x do:
sD = ∗(p+D)
s0 = bx+ asD
y = s0 + sD
∗p = s0

p−−

Example 27.2.1: Fig. 27.2.5 shows two examples designed with D = 10 and 3-dB widths Δω =
0.05π and Δω = 0.01π. By comparison, the simple designs had Δω = π/D = 0.1π. For
Δω = π/D, we have tan(DΔω/4)= tan(π/4)= 1, which implies that a = 0 and b = 1/2,
reducing to the simple designs of Eq. (27.2.5). 	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
IIR comb filters, D = 10

ω / π

|
H

co
m

b(
ω

)|
2

 Δω = 0.05π
 Δω = 0.01π

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
IIR notch filters, D = 10

ω / π

|
H

n
ot

ch
(ω

)|
2

 Δω = 0.05π
 Δω = 0.01π

Fig. 27.2.5 Recursive comb and notch filters with D = 10.

Example 27.2.2: Fig. 27.2.6 shows on the left a simulated electrocardiogram (ECG) signal cor-
rupted by 60 Hz power frequency interference and its harmonics. On the right, it shows
the result of filtering by an IIR notch filter. The underlying ECG is recovered well after the
initial transients die out.

The sampling rate was fs = 600 Hz and the fundamental frequency of the noise, f1 = 60
Hz. This gives for the period D = fs/f1 = 10. The ECG beat was taken to be 1 sec and
therefore there were 600 samples in each beat for a total of 1200 samples in the two beats
shown in the figure.

The IIR notch filter was designed to achieve a 3-dB width of Δf = f1/50, that is, a Q-
factor of Q = f1/Δf = 50. Therefore, in units of rads/sample, the notch width is Δω =
2πΔf/fs = 2π/(DQ)= 0.004π, which results in the filter parameters a = 0.9391 and
b = (1+ a)/2 = 0.9695. Thus, the designed notch filter was:

Hnotch(z)= 0.9695
1− z−10

1− 0.9391z−10

The noise was simulated by adding the following harmonic components,

vn =
D/2−1∑
k=1

Ak sin(ωkn) , with ωk = 2πk
D

, Ak = 1

2k2

27.2. NOTCH AND COMB FILTERS FOR PERIODIC SIGNALS 1325

0 1 2

−1

0

1

ECG + 60 Hz noise

t (sec)
0 1 2

−1

0

1

filtered ECG

t (sec)

 filtered
 noise free

Fig. 27.2.6 Eliminating 60 Hz harmonics from ECG signal.

where the amplitudes Ak were arbitrarily chosen. Note that only the non-zero harmonics
that lie in the interval 0 < ω < π were used.

The 40-dB time-constant of the notch filter was neff = D ln(0.01)/ ln(a)= 732 samples or
equivalently, τ = neff/fs = 732/600 = 1.22 sec. It is evident from the figure that beyond
this time, the transients essentially die out. The MATLAB code for generating these graphs
was as follows:

nbeats = 2; L = 600; M = 15; % 600 samples per beat

s = ecgsim(nbeats,L,M); % simulated ECG

n = (0:length(s)-1)’; t = n/L; % time in seconds

D = 10; v = 0;
for k=1:D/2-1,

v = v + (0.5/k^2) * sin(2*pi*k*n/D); % generate noise

end

y = s + v; % noisy ECG

Q = 50; beta = tan(pi/2/Q);
a = (1-beta)/(1+beta); b = (1+a)/2; % filter parameters

aD = up([1,-a],D); % upsampled denominator coefficients

bD = up([b,-b],D); % upsampled numerator coefficients

x = filter(bD,aD,y); % filtered ECG

figure; plot(t,y); % left graph

figure; plot(t,x, t,s,’:’); % right graph

The MATLAB function ecgsim, which is part of the AOSP toolbox [45], was used to generate
the simulated ECG. It is based on the ISP function ecg. The function up is used to upsample
the highpass filter’s coefficient vectors by a factor of D, generating the coefficient vectors
of the notch filter, so that the built-in filtering function filter can be used. 	

The upsampling operation used in the previous example is the time-domain equiva-
lent of the transformation z → zD and it amounts to inserting D−1 zeros between any

1326 27. PERIODIC SIGNAL EXTRACTION

two original filter coefficients. For example, applied to the vector [h0, h1, h2, h3] with
D = 4, it generates the upsampled vector:

[h0, h1, h2, h3] → [h0,0,0,0, h1,0,0,0, h2,0,0,0, h3]

The function up implements this operation,

g = up(h,D); % upsampled vector

It is similar to MATLAB’s built-in function upsample, except it does not append D−1
zeros at the end. The difference is illustrated by the following example,

up([1,2,3,4],4) = [1 0 0 0 2 0 0 0 3 0 0 0 4]
upsample([1,2,3,4],4) = [1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0]

In addition to enhancing periodic signals or removing periodic interference, comb
and notch filters have many other applications. The transformation z → zD is widely
used in audio signal processing for the design of reverberation algorithms emulating the
delays arising from reflected signals within rooms or concert halls or in other types of
audio effects. The mapping z → zD is also used in multirate signal processing applica-
tions, such as decimation or interpolation. The connection to multirate applications can
be seen by writing the frequency mapping ω′ =ωD in terms of the physical frequency
f in Hz and sampling rate fs,

2πf ′

f ′s
= 2πf

fs
D

In the signal enhancement context, the sampling rates are the same f ′s = fs, but
we have frequency scaling f ′ = fD. On the other hand, in multirate applications, the
frequencies remain the same f ′ = f and the above condition implies the sampling rate
change f ′s = fs/D, which can be thought of as decimation by a factor of D from the high
rate fs to the low rate f ′s , or interpolation from the low to the high rate.

27.3 Notch and Comb Filters with Fractional Delay

The implementation of comb and notch filters requires that the sampling rate be related
to the fundamental harmonic by fs = Df1 with D an integer, so that z−D represents a
D-fold multiple delay. In some applications, one may not have the freedom of choosing
the sampling rate and the equation D = fs/f1 may result into a non-integer number.

One possible approach, discussed at the end of this section, is simply to design
individual comb/notch filters for each desired harmonic fk = kf1 = kfs/D, k = 1,2, . . . ,
that lies within the Nyquist interval, and then either cascade the filters together in the
notch case, or add them in parallel in the comb case.

Another approach is to approximate the desired non-integer delay z−D by an FIR
filter and then use the IIR comb/notch structures of Eq. (27.2.9). Separating D into its
integer and fractional parts, we may write:

D = Dint + d (27.3.1)

where Dint = floor(D) and 0 < d < 1. The required multiple delay can be written then
as z−D = z−Dintz−d. The fractional part z−d can be implemented by replacing it with an

27.3. NOTCH AND COMB FILTERS WITH FRACTIONAL DELAY 1327

FIR filter that approximates it, that is, H(z)≈ z−d, so that z−D ≈ z−DintH(z). Then, the
corresponding IIR comb/notch filters (27.2.9) will be approximated by

Hcomb(z) = b
1+ z−DintH(z)

1− az−DintH(z)
, b = 1− a

2

Hnotch(z) = b
1− z−DintH(z)

1− az−DintH(z)
, b = 1+ a

2

(27.3.2)

Fig. 27.3.1 Comb and notch filters with fractional delay.

Fig. 27.3.1 shows a possible realization. There exist many design methods for such
approximate fractional delay filters [746]. We encountered some in Sec. 23.6. For exam-
ple, the transfer functions of the causal Lagrange interpolation filters of orders 1 and 2
approximating the required non-integer delay d can be obtained from Eq. (23.7.17),

H(z) = d+ (1− d)z−1

H(z) = 1

2
(d− 1)(d− 2)−d(d− 2)z−1 + 1

2
d(d− 1)z−2

(27.3.3)

Such interpolation filters accurately cover only a fraction, typically 10–20%, of the
Nyquist interval, and therefore, would be appropriate only if the first few harmonics are
significant. A more effective approach suggested by [752] is to impose linear constraints
on the design of H(z) that preserve the required filter response at all the harmonics.

For integer delay D, the comb filter peaks or the notch filter nulls occur at the D-th
roots of unity zk = ejωk , ωk = 2πk/D, which satisfy zDk = 1.

For non-integer D, we require the same constraints for the delay filter z−DintH(z),
that is, z−Dint

k H(zk)= 1, or in terms of the frequency response, e−jωkDintH(ωk)= 1,
where again zk = ejωk , ωk = 2πk/D. Since e−jωkD = 1, we have,

e−jωkDintH(ωk)= 1 = e−jωkD = e−jωk(Dint+d) ⇒ H(ωk)= e−jωkd

These are the constraints to be imposed on the design of H(z). In order to obtain
a real-valued impulse response for this filter, we must work with the harmonics that lie
in the symmetric Nyquist interval, that is, −π ≤ωk ≤ π, or,

−π ≤ 2πk
D

≤ π ⇒ −D
2
≤ k ≤ D

2

1328 27. PERIODIC SIGNAL EXTRACTION

Writing Dint = 2p + q and D = Dint + d = 2p + q + d, with integer p and q = 0,1,
the above condition reads:

−p− 1

2
(q+ d)≤ k ≤ p+ 1

2
(q+ d)

Since 0 < d < 1 and k must be an integer, we obtain,

− p ≤ k ≤ p (27.3.4)

Thus, the design problem is to determine an FIR filterH(z) such thatH(ω)≈ e−jωd,
and subject to the constraints:

H(ωk)= e−jωkd , −p ≤ k ≤ p (27.3.5)

When q = d = 0, we must choose −p ≤ k ≤ p−1, because k = ±p both are mapped
onto the Nyquist frequency ω = ±π and need be counted only once. In this case, of
course, we expect the design method to produce the identity filter H(z)= 1.

Following [752], we use a constrained least-squares design criterion with the follow-
ing performance index into which the constraints have been incorporated by means of
complex-valued Lagrange multipliers λk:

J =
∫ απ

−απ

∣∣H(ω)−e−jωd∣∣2 dω
2π

+
p∑

k=−p

[
e−jωkd −H(ωk)

]
λ∗k + c.c. = min (27.3.6)

where “c.c.” denotes the complex conjugate of the second term. The approximation
H(ω)≈ e−jωd is enforced in the least-squares sense over a portion of the Nyquist in-
terval, [−απ,απ], where typically, 0.9 ≤ α ≤ 1, with α = 1 covering the full interval.
Assuming an Mth order filter h = [h0, h1, . . . , hM]T, we can write the frequency re-
sponse in terms of the (M+1)-dimensional vectors,

H(ω)=
M∑
n=0

hne−jnω = s†ωh , sω =

⎡⎢⎢⎢⎢⎢⎣
1
ejω

...

ejMω

⎤⎥⎥⎥⎥⎥⎦ , h =

⎡⎢⎢⎢⎢⎢⎣
h0

h1

...
hM

⎤⎥⎥⎥⎥⎥⎦ (27.3.7)

Similarly, we can express the gain constraints in the vector form,

S†h = g (27.3.8)

where S is an (M+1)×(2p+1) matrix and g a (2p+1)-dimensional column vector de-
fined component-wise by

Snk = ejnωk , 0 ≤ n ≤M , −p ≤ k ≤ p

gk = e−jωkd , −p ≤ k ≤ p
(27.3.9)

that is,

S = [. . . , sωk , . . .] , g =

⎡⎢⎢⎢⎢⎣
...

e−jωkd

...

⎤⎥⎥⎥⎥⎦ (27.3.10)

27.3. NOTCH AND COMB FILTERS WITH FRACTIONAL DELAY 1329

It follows that the performance index can be written compactly as,

J =
∫ απ

−απ

∣∣s†ωh− e−jωd∣∣2 dω
2π

+λλλ†(g− S†h)+(g− S†h)†λλλ = min (27.3.11)

where λλλ = [. . . , λk , . . .]T is the vector of Lagrange multipliers. Expanding the first
term of J, we obtain,

J = h†Rh− h†r− r†h+α+λλλ†(g− S†h)+(g† − h†S)λλλ = min (27.3.12)

where the matrix R and vector r are defined by,

R = 1

2π

∫ απ

−απ
sωs†ω dω, r = 1

2π

∫ απ

−απ
sωe−jωd dω (27.3.13)

and component-wise,

Rnm =
∫ απ

−απ
ejω(n−m) dω

2π
= sin

(
απ(n−m)

)
π(n−m)

, n,m = 0,1, . . . ,M

rn =
∫ απ

−απ
ejω(n−d) dω

2π
= sin

(
απ(n− d)

)
π(n− d)

, n = 0,1, . . . ,M
(27.3.14)

We note that for α = π, R reduces to the identity matrix. The optimal solution for
h is obtained by setting the gradient of J to zero:

∂J
∂h∗

= Rh− r− Sλλλ = 0 ⇒ h = R−1r+R−1Sλλλ = hu +R−1Sλλλ

where hu = R−1r is the unconstrained solution of the least-squares problem. The La-
grange multiplier λλλ can be determined by multiplying both sides by S† and using the
constraint (27.3.8):

g = S†h = S†hu + S†R−1Sλλλ ⇒ λλλ = (S†R−1S)−1(g− S†hu)

Finally, substituting λλλ into the solution for h, we obtain,

h = hu +R−1S(S†R−1S)−1(g− S†hu) (27.3.15)

This type of constrained least-squares problem appears in many applications. We
will encounter it again in the context of designing linearly constrained minimum vari-
ance beamformers for interference suppression, and in the problem of optimum stock
portfolio design.

The MATLAB function combfd implements the above design method. Its inputs are
the fractional period D, the order M of the filter H(z), the comb/notch pole parameter
a, and the Nyquist factor α,

[bD,aD,h,zmax] = combfd(D,M,a,alpha); % comb/notch filter design with fractional delay

1330 27. PERIODIC SIGNAL EXTRACTION

Entering the parameter a as negative indicates the design of a notch filter. The
outputs bD,aD are the coefficients of the numerator and denominator polynomials of
the comb/notch filters (27.3.2):

BD(z) = b
[
1± z−DintH(z)

]
AD(z) = 1− az−DintH(z)= 1− az−Dint

(
h0 + h1z−1 + · · · + hMz−M

) (27.3.16)

The output h is the impulse response vector h, and zmax is the maximum pole ra-
dius of the denominator filter AD(z), which can be used to monitor the stability of the
designed comb/notch filter. The pole parameter a can be fixed using the bandwidth
equation (27.2.11), which is still approximately valid.

Fig. 27.3.2 shows a design example with fractional period D = 9.1, so that Dint = 9
and d = 0.1. The other parameters were M = 8, a = RD with R = 0.95, and α = 1.

−1 0 1
0

0.5

1

Comb, D = 9.1, M = 8, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

−1 0 1
0

0.5

1

Notch, D = 9.1, M = 8, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

Fig. 27.3.2 Comb and notch filters with D = 9.1, and their pole/zero patterns.

The 3-dB widths obtained from Eq. (27.2.11) are indicated on the graphs by the two
short horizontal lines at the half-power levels. The frequency plots are over the sym-
metric interval −π ≤ ω ≤ π. The comb peaks have unity gain at the harmonics. For
the notch case, the response between the notch dips is not very flat, but can be made
flatter by decreasing the bandwidth, i.e., increasing the parameter a towards unity.

27.4. PARALLEL AND CASCADE REALIZATIONS 1331

The right graphs depict the pole/zero patterns of the polynomialsBD(z) andAD(z).
These polynomials have orders Dint +M = 9+ 8 = 17. For the comb filter, we observe
how the Dint = 9 poles arrange themselves around the unit circle at the harmonic fre-
quencies, while the remaining 8 poles lie inside the unit circle.

The zeros of BD(z) also arrange themselves in two groups, 8 of them lying on the
unit circle halfway between the comb peak poles, and the remaining 9 lying inside the
unit circle, with a group of 7 poles and 7 zeros almost falling on top of each other,
almost canceling each other.

A similar pattern occurs for the notch filter, except now the notch zeros at the har-
monics have poles lying almost behind them in order to sharpen the notch widths, while
the remaining pole/zero pairs arrange themselves inside the unit-circle as in the comb
case.

Generally, this design method tends to work well whenever D is near an odd integer,
such as in the above example and in the top graphs of Fig. 27.3.4, which have D = 9.1
and D = 8.9. The method has some difficulty when D is near an even integer, such as
D = 9.9 or D = 8.1, as shown in Figs. 27.3.3 and the bottom of 27.3.4.

In such cases, the method tends to place a pole or pole/zero pair on the real axis
near z = −1 resulting in an unwanted peak or dip at the Nyquist frequency ω = π.
Such poles are evident in the pole/zero plots of Fig. 27.3.3. If D were exactly an even
integer, then such pole/zero pair at Nyquist would be present, but for non-integer D,
the Nyquist frequency is not one of the harmonics. Removing that pole/zero pair from
the design, does not improve the problem.

The MATLAB code for generating the magnitude responses and pole/zero plots is
the same for all three figures. In particular, Fig. 27.3.2 was generated by,

f = linspace(-1,1,4001); w = pi*f; % frequency range

D=9.1; R=0.95; a=R^D; M=8; alpha=1; % design parameters

beta = (1-a)/(1+a); Dw = 4/D * atan(beta); % bandwidth calculation

[bD,aD,h,zmax] = combfd(D,M,a,alpha); % comb, param a entered as positive

Hcomb = abs(freqz(bD,aD,w)).^2; % comb’s magnitude rresponse

figure; plot(w/pi,Hcomb); figure; zplane(bD,aD); % upper two graphs

[bD,aD,h,zmax] = combfd(D,M,-a,alpha); % notch, param a entered as negative

Hnotch = abs(freqz(bD,aD,w)).^2;

figure; plot(w/pi,Hnotch); figure; zplane(bD,aD); % lower two graphs

27.4 Parallel and Cascade Realizations

As we mentioned in the beginning of the previous section, an alternative approach is to
design individual peak or notch filters at the harmonics and then combine the filters in
parallel for the comb case, and in cascade for the notch case. Fig. 27.4.1 illustrates this
type of design for the two “difficult” cases of D = 9.9 and D = 8.1 using second-order
peak/notch filters designed to have the same bandwidth as in Fig. 27.3.3.

Let Hk(z) be the peak/notch filter for the kth harmonic ωk = kω1 = 2πk/D,
k = 0,1, . . . , p and its negative −ωk. Then, the transfer functions of the comb and

1332 27. PERIODIC SIGNAL EXTRACTION

−1 0 1
0

0.5

1

Comb, D = 9.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

−1 0 1
0

0.5

1

Notch, D = 9.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1

−1

0

1

real part

im
ag

in
ar

y
pa

rt

z− plane

zeros
poles

Fig. 27.3.3 Comb and notch filters with D = 9.9, and their pole/zero patterns.

notch filters will be:

Hcomb(z)=
p∑

k=0

Hk(z) , Hnotch(z)=
p∏

k=0

Hk(z) (27.4.1)

In their simplest form, the individual filters Hk(z) are second-order and can be
obtained from the lowpass and highpass filters (27.2.8) by the lowpass-to-bandpass z-
domain transformation:

z → z′ = z(cosωk − z)
1− z cosωk

(27.4.2)

The resulting second-order peaking and notch filters are, for k = 1,2, . . . , p:

peak: Hk(z)= b
1− z−2

1− (1+ a)cosωk z−1 + az−2
, b = 1− a

2

notch: Hk(z)= b
1− 2 cosωk z−1 + z−2

1− (1+ a)cosωk z−1 + az−2
, b = 1+ a

2

(27.4.3)

The filter parameter a is fixed in terms of the 3-dB width of the peak or the notch by,

tan
(
Δω

2

)
= 1− a

1+ a
= β (27.4.4)

27.4. PARALLEL AND CASCADE REALIZATIONS 1333

−1 0 1
0

0.5

1

Comb, D = 8.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Notch, D = 8.9, M = 12, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Comb, D = 8.1, M = 60, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1

−1 0 1
0

0.5

1

Notch, D = 8.1, M = 60, α = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 27.3.4 Comb and notch filters with D = 8.9 and D = 8.1.

For k = 0, we may use the first-order lowpass/highpass filters of Eq. (27.2.8) with-
out any z-domain transformation. But in order for their 3-dB frequency to match the
specified 3-dB width Δω, their parameter a must be redefined as follows:

tan
(
Δω

4

)
= 1− a

1+ a
= β (27.4.5)

To clarify the construction, we give below the MATLAB code for generating the left
graphs of Fig. 27.4.1,

f = linspace(-1,1,4001); w = pi*f; % frequency range −π ≤ω ≤ π

D = 9.9; p = floor(D/2); w1 = 2*pi/D; % design parameters

R = 0.95; a = R^2;

beta = (1-a)/(1+a); dw = 2*atan(beta); % 3-dB width calculation

beta0 = tan(dw/4); a0 = (1-beta0)/(1+beta0); % bandwidth parameter for k = 0 section

A = [1, -a0, 0]; % denominator coefficients for k = 0

Bcomb = [1, 1, 0] * (1-a0)/2; % numerator coefficients for k = 0

Bnotch = [1,-1, 0] * (1+a0)/2;

1334 27. PERIODIC SIGNAL EXTRACTION

−1 0 1
0

0.5

1

Parallel comb, D = 9.9, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 9.9, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 1

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 27.4.1 Second-order parallel comb and cascaded notch filters.

Hcomb = freqz(Bcomb,A,w); % k = 0 section, H0(ω)
Hnotch = freqz(Bnotch,A,w);

for k=1:p, % non-zero harmonics

A = [1, -(1+a)*cos(k*w1), a]; % denominator of Hk(z)
Bcomb = [1, 0, -1] * (1-a)/2; % numerator of peak Hk(z)
Bnotch = [1, -2*cos(k*w1), 1] * (1+a)/2; % numerator of notch Hk(z)
Hcomb = Hcomb + freqz(Bcomb,A,w); % add in parallel for comb

Hnotch = Hnotch .* freqz(Bnotch,A,w); % cascade for notch

end

figure; plot(w/pi, abs(Hcomb).^2, ’-’); left graphs

figure; plot(w/pi, abs(Hnotch).^2,’-’);

It is evident from Fig. 27.4.1 that this design method is flexible enough to correctly
handle any values of the fractional periodD. However, because of the mutual interaction
between the individual filters, the peaks of the comb do not quite have unity gains, and
the segments between the nulls of the notch filter are not quite flat.

This behavior can be fixed by decreasing the widthΔω. However, for a fixed value of
Δω, the only way to improve the response is by using higher-order filters. For example,
Fig. 27.4.2 illustrates the cases of designing the individual filters using Butterworth filter

27.4. PARALLEL AND CASCADE REALIZATIONS 1335

prototypes of orders N = 2 and N = 3, whereas Fig. 27.4.1 corresponds to N = 1.

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 2

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Parallel comb, D = 8.1, N = 3

ω / π
m

ag
n

it
u

de
 s

qu
ar

e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 2

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

−1 0 1
0

0.5

1

Cascaded notch, D = 8.1, N = 3

ω / π

m
ag

n
it

u
de

 s
qu

ar
e

f1 2 f1

Fig. 27.4.2 High-order Butterworth parallel comb and cascaded notch filters.

The following MATLAB code illustrates the generation of the left graphs in Fig. 27.4.2,
and uses the functions hpeq and frespc from the high-order equalizer design toolbox
in [329], which is also included in the AOSP toolbox:

f = linspace(-1,1,4001); w = pi*f;

D = 8.1; p = floor(D/2); w1 = 2*pi/D;
R = 0.95; a = R^2;

beta = (1-a)/(1+a); dw = 2*atan(beta); % 3-dB width

N = 2; GB = -20*log10(2); % Butterworth order and bandwidth gain

[B0,A0] = hpeq(N, -inf, 0, GB, 0, dw/2); % k = 0 for comb, cutoff = half-bandwidth

Hcomb = frespc(B0,A0,w);

for k=1:p
[B,A] = hpeq(N, -inf, 0, GB, k*w1, dw); % non-zero harmonics

Hcomb = Hcomb + frespc(B,A,w); % add in parallel

end

1336 27. PERIODIC SIGNAL EXTRACTION

figure; plot(w/pi,abs(Hcomb).^2,’-’); upper-left graph

[B0,A0] = hpeq(N, 0, -inf, GB, 0, dw/2); % k = 0 for notch

Hnotch = frespc(B0,A0,w);

for k=1:p
[B,A] = hpeq(N, 0, -inf, GB, k*w1, dw);
Hnotch = Hnotch .* frespc(B,A,w); % cascade in series

end

figure; plot(w/pi,abs(Hnotch).^2,’-’); % lower-left graph

The higher-order designs can also be based on Chebyshev or elliptic filters. In all
cases, the starting point is a lowpass (or highpass) analog prototype filter Ha(s), which
is transformed into a peaking (or notch) filter centered at ωk using the s-to-z domain
bandpass transformation:

H(z)= Ha(s) , s = z′ − 1

z′ + 1
= z2 − 2 cosωk z+ 1

z2 − 1
(27.4.6)

where z′ is given by Eq. (27.4.2). For example, the analog Butterworth prototype filters
of orders N = 1,2,3 are:

Ha(s)= β
β+ s

, Ha(s)= β2

β2 +√2βs+ s2
, Ha(s)= β

β+ s
· β2

β2 + βs+ s2

Similarly, for the notch filters, the analog prototypes are the highpass filters:

Ha(s)= s
β+ s

, Ha(s)= s2

β2 +√2βs+ s2
, Ha(s)= s

β+ s
· s2

β2 + βs+ s2

For arbitrary N, the Butterworth lowpass and highpass filters are:

Ha(s)=
[

σ
β+ s

]r L∏
i=1

[
σ2

β2 + 2βs sinφi + s2

]
, φi = π(2i− 1)

2N
(27.4.7)

where N = 2L + r, with integer L and r = 0,1, and with σ = β in the lowpass case,
and σ = s in the highpass one. The parameter β is related to the 3-dB width through
β = tan(Δω/2). The filters of Eq. (27.4.3) are obtained by applying the transformation
(27.4.6) to the N = 1 case.

Each peaking or notching filter is the cascade of L second-order sections in s or
fourth-order sections in z (and possibly a second-order section in z if r = 1). The
function frespc is used to calculate the corresponding frequency responses in such
cascaded form. Further details on high-order designs and a description of the function
hpeq can be found in [329].

27.5 Signal Averaging

Signal averaging is a technique for estimating a repetitive signal in noise. Evoked bio-
logical signals, GPS, and radar were some applications mentioned at the beginning of

27.5. SIGNAL AVERAGING 1337

this chapter. A variant of the method can also be used to deseasonalize business, social,
and climate data—the difference being here that the non-periodic part of the measured
signal is not only noise but it can also contain a trend component. The typical assumed
noise model in signal averaging has the form:

yn = sn + vn (27.5.1)

where sn is periodic with some period D, assumed to be an integer, and vn is zero-mean
white noise. The periodic signal sn can be extracted by filtering yn through any comb
filter, such as the IIR filter of Eq. (27.2.9).

Signal averaging is equivalent to comb filtering derived by applying the D-fold repli-
cating transformation z→ zD to an ordinary, length-N, lowpass FIR averaging filter:

HLP(z)= 1

N
[
1+ z−1 + z−2 + · · · + z−(N−1)] = 1

N
1− z−N

1− z−1
(27.5.2)

The definition H(z)= HLP(zD), then gives the comb filter:

H(z)= 1

N
[
1+ z−D + z−2D + · · · + z−(N−1)D] = 1

N
1− z−ND

1− z−D
(27.5.3)

The latter equation shows that H(z) has zeros at all the (ND)-th roots of unity that
are not D-th roots of unity. At the latter, the filter has unity-gain peaks.

An example is shown in Fig. 27.5.1, with period D = 10 and N = 5 and N = 10. The
comb peaks are at the D-th roots of unity ωk = 2πk/D = 2πk/10, k = 0,1, . . . ,9. The
3-dB width of the peaks is indicated on the graphs by the short horizontal lines at the
half-power level centered around the first harmonic.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

ω /π

m
ag

n
it

u
de

 s
qu

ar
e

D = 10, N = 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

ω /π

m
ag

n
it

u
de

 s
qu

ar
e

D = 10, N = 10

Fig. 27.5.1 Signal averaging filters with D = 10 and N = 5,10.

The 3-dB width is given by

Δω = 0.886
2π
ND

(27.5.4)

which follows from the frequency response of H(z):

H(ω)= 1

N
1− e−jωND

1− e−jωD = 1

N
sin(NDω/2)
sin(Dω/2)

e−j(ω(N−1)D/2 (27.5.5)

1338 27. PERIODIC SIGNAL EXTRACTION

Thus, the peaks get narrower with increasing number N of averaging periods. This
has the effect of decreasing the noise, while letting through the periodic signal sn.

The signal averaging interpretation can be seen from the time-domain operation of
the filter. The corresponding output is the estimated periodic signal,

ŝn = 1

N
[
yn + yn−D + yn−2D + · · · + yn−(N−1)D

]
(27.5.6)

Inserting yn = sn + vn and using the periodicity property sn−D = sn, we obtain,

ŝn = sn + 1

N
[
vn + vn−D + · · · + vn−(N−1)D

] ≡ sn + v̂n (27.5.7)

Because vn was assumed to be stationary uncorrelated white noise, the variance of
the filtered noise v̂n will be reduced by a factor of N,

σ2
v̂ =

1

N2

[
var(vn)+var(vn−D]+· · · + var(vn−(N−1)D)

] = 1

N2
(Nσ2

v)=
1

N
σ2
v (27.5.8)

which implies that the NRR of the comb filter is R = 1/N. Thus, by choosing N suffi-
ciently large, the noise can be reduced, enabling the estimation of sn.

Let the signal yn be collected over N periods, that is, 0 ≤ n ≤ ND − 1, and divide
the signal into N length-D period segments as shown below,

The filtering operation (27.5.6) can be thought of as the averaging the N subblocks
together. Indeed, let yi(n)= yiD+n, for n = 0,1, . . . ,D − 1, be the samples within the
i-th subblock, i = 0,1, . . . ,N − 1. Then, we have

1

N

N−1∑
i=0

yi(n)= 1

N

N−1∑
i=0

yiD+n = 1

N

N−1∑
k=0

y(N−1)D+n−kD = ŝ(N−1)D+n (27.5.9)

or, in words, the lastD filter output samples, that is, over the period
[
(N−1)D, ND−1

]
,

are the average of the samples over the lastN periods. This can also be seen more simply
by writing (27.5.6) in recursive form, which follows from Eq. (27.5.3),

ŝn = ŝn−D + 1

N
(
yn − yn−ND

) = ŝn−D + 1

N
yn , 0 ≤ n ≤ ND− 1 (27.5.10)

where the term yn−ND was dropped because of the causal nature of yn and the assumed
range of n, that is, 0 ≤ n ≤ ND−1. Thus, Eq. (27.5.10) shows that ŝn is the accumulation
and averaging of the N period segments of yn.

The MATLAB implementation of signal averaging is straightforward, for example,
assuming that the array y has length at least ND,

s = 0;
for i=0:N-1,

yi = y(i*D+1 : i*D+D); % extract i-th period

s = s + yi; % accumulate i-th period

end
s = s/N; % average of N periods

27.5. SIGNAL AVERAGING 1339

So far we have not imposed the constraint S0 = sn + sn−1 + · · · + sn−D+1 = 0. If
in addition to the noise component vn, there is a slowly-varying background or trend
present, say, tn, so that the observation signal is yn = sn+tn+vn, then we may associate
the constant S0 with the trend and assume that S0 = 0. To guarantee this constraint,
we may subtract from each block yi(n) its local average, and compute the estimated
periodic component by:

ŝn = 1

N

N−1∑
i=0

[
yi(n)−μi

]
, μi = 1

D

D−1∑
n=0

yi(n) (27.5.11)

which does satisfy S0 = 0. By replicating the μi by D times within the i-th time period[
iD, iD +D − 1

]
, and stringing the replicated values together over all the periods, we

obtain a step-wise estimate of the trend component tn. The following MATLAB code
illustrates how to do that:

y = y(:);
L = length(y);
N = floor(L/D); % number of periods in y

r = mod(L,D); % L = ND + r

s = 0;
for i=0:N-1,

yi = y(i*D+1 : i*D+D); % i-th period

m(i+1) = mean(yi); % mean to be removed

s = s + yi - m(i+1); % accumulate i-th period

end
s = s / N; % estimated period

ys = repmat(s,N,1); % replicate N periods

ys(end+1:end+r) = s(1:r); % extend to length L by appending a portion of s

yt = repmat(m,D,1); yt = yt(:); % repeat each mean D times within its period

yt(end+1:end+r) = yt(end); % extend to length L by replicating last mean r times

where ys represents the estimated periodic signal, replicated over N periods, and yt is
the estimated step-function trend. These above steps have been incorporated into the
MATLAB function sigav:

[ys,s,yt] = sigav(y,D); % signal averaging

Example 27.5.1: Fig. 27.5.2 shows a simulated signal averaging example. The period is D = 10
and the total number of periods N = 100. The graphs display only the first 10 periods to
improve visibility. The periodic signal was superimposed on a slowly-varying trend and
noise was added:

yn = sn + tn + vn , sn = 0.5 sin
(

4πn
D

)
+ 0.5 sin

(
6πn
D

)
, tn = sin

(
2πn
10D

)
where n = 0,1, . . . ,ND − 1, and vn is zero-mean, unit-variance, white noise. The upper
row shows the noise-free case (with vn = 0). The upper-right graph shows the periodic
signal sn. The estimated one resulting from the output of sigav is essentially identical to
sn and thus not displayed. The step-function estimated trend is shown on the upper-left.

The lower-left graph shows the noisy case, including the estimated step-trend signal. The
lower-right graph shows the estimated periodic signal from the output of sigav. The
following MATLAB code illustrates the generation of the bottom graphs:

1340 27. PERIODIC SIGNAL EXTRACTION

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

noise− free periodic signal with trend

 data
 true trend
 step trend

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

periodic component

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

noisy periodic signal with trend

 data
 true trend
 step trend

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

n

estimated periodic component

 true
 estimated

Fig. 27.5.2 Signal averaging of noisy periodic signal with slowly-varying trend.

D = 20; N = 100; n = 0:N*D;

s = (sin(4*pi*n/D) + sin(6*pi*n/D))/2; % periodic component

t = sin(2*pi*n/D/10); % trend component

seed = 2008; randn(’state’,seed);
v = randn(size(n));

y = s + t + v; % noisy observations

[ys,p,yt] = sigav(y,D); % signal averaging, p = one period

figure; plot(n,y,’--’, n,t,’-.’, n,yt,’-’); % yt is the estimated trend

xlim([0,200]); % show only the first 10 periods

figure; plot(n,ys, ’-’); % estimated periodic component

xlim([0,200]);

Example 27.5.2: Housing Starts. Fig. 27.5.3 shows the application of signal averaging to the
monthly, not seasonally adjusted, new privately-owned housing starts, for the 25 year
period from January 1984 to December 2008. The data are from the US Census Bureau
from the web link: http://www.census.gov/ftp/pub/const/starts_cust.xls.

The upper graphs show the estimated step-wise trend and the seasonal, periodic, compo-

27.5. SIGNAL AVERAGING 1341

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal component

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 WH trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal + irregular component

Fig. 27.5.3 Signal averaging and smoothing of monthly housing data.

nent. Although there is clear annual periodicity in the data, the signal averaging method
is not the best approach to this application because it does not result into a smooth trend.
We consider better methods to deseasonalize such data in the next sections.

As an alternative method, the bottom graphs show the application of the Whittaker Hender-
son smoothing method to estimate the smooth trend. The optimal smoothing parameter
was determined by the GCV criterion to be λ = 6850 and the smoothing order was s = 2.

The difference between the raw data and the estimated trend represents the seasonal plus
irregular component and is plotted in the bottom-right graph. Further application of signal
averaging to this component will generate an estimate of the seasonal component. It is
not plotted because it is essentially identical to that shown in the upper-right graph.

The following MATLAB code illustrates the generation of the four graphs, including, but
commented out, the computation of the seasonal part for the bottom graphs:

Y = loadfile(’newhouse.dat’); % data file available in the AOSP toolbox

i = find(Y(:,1)==109.1); % finds the beginning of the year 1984

y = Y(i:end-4,1); % keep data from Jan.1984 to Dec.2008

t = taxis(y,12,1984); % define time axis

1342 27. PERIODIC SIGNAL EXTRACTION

[ys,s,yt] = sigav(y,12); % signal averaging with period 12

figure; plot(t,y,’--’, t,yt,’-’); % upper-left graph

figure; plot(t,ys,’-’); % upper-right graph

s = 2; la = 6800:2:6900; % smoothing order and search-range of λ’s

[gcv,lopt] = whgcv(y,la,s); % optimum smoothing parameter, λopt = 6850

yt = whsm(y,lopt,s); % Whittaker-Henderson smoothing

ysi = y-yt; % seasonal + irregular component

% ys = sigav(ysi,12); % seasonal component, not shown

figure; plot(t,y,’--’, t,yt,’-’); % bottom-left graph

figure; plot(t,ysi,’-’); % bottom-right graph

% figure; plot(t,ys,’-’); % essentially the same as upper-right graph

27.6 Ideal Seasonal Decomposition Filters

A possible approach for separating the three components of the signal yn = sn+tn+vn
is to first estimate the trend tn using a lowpass filter, and then extract the seasonal
component sn by applying a comb filter to the residual rn = yn − tn = sn + vn, which
consists of the seasonal and irregular parts.

The technique assumes of course that the trend is a slowly-varying, low-frequency,
signal. Fig. 27.6.1 illustrates some typical frequency spectra for the three components
and the ideal filters that might be used to extract them.

Fig. 27.6.1 Ideal filters for decomposition into trend and seasonal components.

Let Htrend(z) be the trend-extraction filter and Hcomb(z) the comb filter with peaks
at the seasonal harmonics (excluding the one at DC). Then, the filtering equations for
extracting the three components from yn can be expressed in the z-domain as follows:

T(z) = Htrend(z)Y(z)

R(z) = S(z)+V(z)= Y(z)−T(z)= [1−Htrend(z)
]
Y(z)

S(z) = Hcomb(z)R(z)= Hcomb(z)
[
1−Htrend(z)

]
Y(z)≡ HS(z)Y(z)

V(z) = R(z)−S(z)= [1−Hcomb(z)
][

1−Htrend(z)
]
Y(z)≡ HI(z)Y(z)

27.6. IDEAL SEASONAL DECOMPOSITION FILTERS 1343

where Y(z), S(z),T(z),V(z),R(z) are the z-transforms of yn, sn, tn, vn, rn. Thus, the
filters for extracting the three components are:

HT(z)= Htrend(z) (trend)

HS(z)= Hcomb(z)
[
1−Htrend(z)

]
(seasonal)

HI(z)=
[
1−Hcomb(z)

][
1−Htrend(z)

]
(irregular)

(27.6.1)

The three filters satisfy the complementarity property:

HT(z)+HS(z)+HI(z)= 1 (27.6.2)

In Example 27.5.2, we followed exactly this approach where the trend filter was im-
plemented as a Whittaker-Henderson smoother and the comb filter as a signal averager.
Other possibilities exist for these filters and a lot of research has gone into making
choices that try to balance a good filter response versus the ability to work well with
short data records, including the handling of the end-point problem.

Example 27.6.1: Housing Starts. The housing starts signal considered in Example 27.5.2 dis-
plays the typical frequency spectra shown in Fig. 27.6.1.

The left graph in Fig. 27.6.2 shows the corresponding magnitude spectrum of the original
data signal yn, normalized to unity maximum and plotted over the symmetric Nyquist
interval [−π,π] in units of the fundamental harmonic ω1 = 2π/12. The spectrum is
dominated by the low-frequency trend signal. The right graph shows the spectrum of the
seasonal plus irregular component rn = yn − tn = sn + vn, which displays the harmonics
more clearly.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

ω / ω
1

m
ag

n
it

u
de

 s
pe

ct
ru

m

spectrum of original signal yn

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

ω / ω
1

m
ag

n
it

u
de

 s
pe

ct
ru

m

spectrum of seasonal + irregular part rn

Fig. 27.6.2 Spectra of monthly housing data with and without trend.

The following MATLAB code illustrates the computation of the spectra:

Y = loadfile(’newhouse.dat’); % data file available in the AOSP toolbox

i = find(Y(:,1)==109.1); % finds the beginning of the year 1984

y = Y(i:end-4,1); % keep data from Jan.1984 to Dec.2008

s = 2; lopt = 6850 % use optimum λ from Example 27.5.2

1344 27. PERIODIC SIGNAL EXTRACTION

yt = whsm(y,lopt,s); % Whittaker-Henderson smoothing

ysi = y - yt; % seasonal + irregular component

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency ω = kω1

L = length(y);
wind = 0.54 - 0.46*cos(2*pi*(0:L-1)/(L-1))’; % Hamming window

Y = abs(freqz(y.*wind,1,w)); Y = Y/max(Y); % normalized spectrum

Ysi = abs(freqz(ysi.*wind,1,w)); Ysi = Ysi/max(Ysi);

figure; plot(k,Y); figure; plot(k,Ysi); % left and right graphs

The signals were windowed by a Hamming window prior to computing their DTFTs. 	

Ideally, it does not matter if Hcomb(z) excludes or not the peak at DC because it
would be canceled from HS(z) by the presence of the factor

[
1−Htrend(z)

]
. However,

in practice because the filters are non-ideal, an extra step is usually taken to ensure that
this peak is absent or minimized from sn. For example, an additional de-trending step
may be applied to S(z), that is,

Sprelim(z)= Hcomb(z)R(z)

S(z)= Sprelim(z)−Htrend(z)Sprelim(z)= Hcomb(z)
[
1−Htrend(z)

]2Y(z)
(27.6.3)

This results in the modified extraction filters, which still satisfy (27.6.2):

HT(z)= Htrend(z) (trend)

HS(z)= Hcomb(z)
[
1−Htrend(z)

]2
(seasonal)

HI(z)=
[
1−Htrend(z)

]{
1−Hcomb(z)

[
1−Htrend(z)

]}
(irregular)

(27.6.4)

Further refinements will be discussed later on.

27.7 Classical Seasonal Decomposition

The classical seasonal decomposition method is the simplest realization of the proce-
dure outlined in the previous section. Consider the following two possible lowpass
trend-extraction filters:

Htrend(z) = 1

D
[
1+ z−1 + z−2 + · · · + z−(D−1)]

Htrend(z) = 1

D
[
1+ z−1 + z−2 + · · · + z−(D−1)] · 1

2
(1+ z−1)

(27.7.1)

where D is the period of the seasonal component. The first is typically used when D is
odd, and the second, when D is even. They are referred to as the 1×D and 2×D trend
filters, the notation N1×N2 denoting the convolution of a length-N1 with a length-N2

averaging filter:

1

N1

[
1+ z−1 + · · · + z−(N1−1)] · 1

N2

[
1+ z−1 + · · · + z−(N2−1)] (27.7.2)

27.7. CLASSICAL SEASONAL DECOMPOSITION 1345

The filters (27.7.1) are not perfect but are widely used. They have the desirable prop-
erty of having nulls at the non-zero harmonics ωk = kω1 = 2πk/D, k = 1,2, . . . ,D−1.
Their 3-dB cutoff frequency is about one-half the fundamental harmonic ω1, that is,

ωc = 0.886
π
D

(27.7.3)

Eq. (27.7.3) can easily be derived for the 1×D case and is a good approximation for
the 2×D case. Fig. 27.7.1 shows the magnitude response

∣∣Htrend(ω)
∣∣ versus ω over

the symmetric Nyquist interval, −π ≤ ω ≤ π. The 3-dB frequency is indicated on the
graph at the 1/

√
2 level.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

ω / ω
1

m
ag

n
it

u
de

 r
es

po
n

se

trend filter, D = 12

 2 x 12
 1 x 12

Fig. 27.7.1 Trend-extraction filters with D = 12.

In order to avoid delays introduced by the filters, the filters can be made symmetric
with respect to the time origin. Let D = 2p+1 or D = 2p in the even or odd case. Then,
the symmetrized versions of the filters (27.7.1) are obtained by advancing them by p
time units, that is, multiplying them by a factor of zp:

D = 2p+ 1 , Htrend(z)= zp
1

D
[
1+ z−1 + · · · + z−(D−1)]

D = 2p , Htrend(z)= zp
1

D
[
1+ z−1 + · · · + z−(D−1)] · 1

2
(1+ z−1)

(27.7.4)

The corresponding frequency responses are obtained by setting z = ejω:

D = 2p+ 1 , Htrend(ω)= sin(Dω/2)
D sin(ω/2)

D = 2p , Htrend(ω)= sin(Dω/2)
D sin(ω/2)

· cos(ω/2)
(27.7.5)

where we used the identity 1+z−1+· · ·+z−(D−1) = (1−z−D)/(1−z−1). The symmetric
impulse responses are:

D = 2p+ 1 , h trend = 1

D
[
1, 1, . . . , 1︸ ︷︷ ︸

2p−1 ones

, 1
]

D = 2p , h trend = 1

D
[
0.5, 1, . . . , 1︸ ︷︷ ︸

2p−1 ones

, 0.5
] (27.7.6)

1346 27. PERIODIC SIGNAL EXTRACTION

In both cases, the filter length is 2p+1, and the time-domain operation for calculating
the estimated trend is by the symmetric convolutional equation:

t̂n =
p∑

i=−p
htrend(i)yn−i (27.7.7)

The issues of filtering with double-sided filters were discussed in Sec. 23.10. We
recall that for a length-L input signal yn, the steady-state filtered output is over the time
range p ≤ n ≤ L−1−p. The first p and last p output transients can be computed using
appropriate asymmetric filters, and there exist many possibilities for these. Musgrave’s
minimum-revision method, discussed in Sec. 27.10, constructs such asymmetric filters
from a given symmetric filter such as h trend.

The calculation of the trend estimate, incorporating also the end-point asymmetric
filters, can be carried out with the MATLAB functions trendma, minrev, and lpfilt,

htrend = trendma(D); % trend filters of Eq. (27.7.6)

B = minrev(htrend,R); % corresponding smoothing matrix

t_hat = lpfilt(B,y); % filtering operation

where y denotes the input data vector, and R is the Musgrave parameter to be explained
in Sec. 27.10. The use of asymmetric filters affects only the first p and last p outputs.

In the so-called classical decomposition method, we apply the above filtering proce-
dure to calculate the trend, and then apply ordinary signal averaging on the residual
rn = yn − tn to calculate the seasonal component. The following computational steps
describe the method:

B = minrev(trendma(D),R); % trend moving-average, with minimum-revision end-filters

yt = lpfilt(B,y); % trend component

yr = y - yt; % seasonal + irregular components

ys = sigav(yr,D); % seasonal component

yi = yr - ys; % irregular component

For a multiplicative decomposition, yn = sntnvn, the last three steps are replaced by,

yr = y ./ yt; % seasonal + irregular components

ys = sigav(yr,D); % seasonal component

yi = yr ./ ys; % irregular component

The function cldec implements the above steps,

[yt,ys,yi] = cldec(y,D,R,type); % classical decomposition method

where the string type takes on the values ’a’ or ’m’ for additive (the default) or mul-
tiplicative decomposition. The default value of R is zero, which simply omits the com-
putation of the first and last p transients and replaces them with the corresponding
samples of the input signal yn.

Example 27.7.1: Housing Starts. Fig. 27.7.2 the trend and seasonal components of the housing
starts data extracted by the classical decomposition method versus the methods discussed
in Example 27.5.2.

The Musgrave parameter was chosen to be R = 10. Since D = 12, the value of R affects
only the first and last 6 outputs. The MATLAB code for generating these graphs was,

27.7. CLASSICAL SEASONAL DECOMPOSITION 1347

1984 1988 1992 1996 2000 2004 2008

40

80

120

160

200

year

th
ou

sa
n

ds

housing starts 1984− 2008

 data
 trend

1984 1988 1992 1996 2000 2004 2008
−60

−40

−20

0

20

40

60

year

seasonal component

Fig. 27.7.2 Classical decomposition of monthly housing data.

Y = loadfile(’newhouse.dat’);
i = find(Y(:,1)==109.1);
y = Y(i:end-4,1); t = taxis(y,12,1984);

D=12; R=10;
[yt,ys,yi] = cldec(y,D,R); % classical decomposition method

figure; plot(t,y,’--’, t,yt,’-’); % left graph

figure; plot(t,ys,’-’); % right graph

The estimated trend is not as smooth as that of the Whittaker-Henderson method, but the
estimated seasonal component is essentially the same as that of Example 27.5.2. 	

Example 27.7.2: Global Carbon Dioxide Data. Figure 27.7.3 shows on the upper-left the monthly
global CO2 data for the period of January 1980 to March 2009, obtained from the NOAA
web site: http://www.esrl.noaa.gov/gmd/ccgg/trends/.

The vertical axis is in parts per million (ppm), which represents the dry air mole fraction,
that is, the number of CO2 molecules divided by the number of all air molecules, after
water vapor has been removed.

The upper graphs show the application of the classical seasonal decomposition method.
The upper-left graph shows the trend tn extracted by a 2×12 moving-average filter, while
the right graph shows the seasonal component sn.

The middle graphs show the spectra of the original data on the left, and of the residual
part rn = yn − tn = sn + vn on the right. The frequency axis is the symmetric Nyquist
interval [−π,π] in units of the fundamental harmonicω1 = 2π/12. The trend dominates
the spectrum of yn and swamps the smaller harmonic peaks of the seasonal part. Indeed,
the level of the seasonal component relative to the trend can be estimated in dB to be:

20 log10

(
std(sn)

mean(yn)

)
= 20 log10

(
1.46

360

)
= −47.8 dB

Therefore, the spectrum of the seasonal component is too small to be visible if plotted in
absolute units. In order to make it visible, a Kaiser window with an 80-dB sidelobe level
was applied to yn prior to computing its spectrum and then plotted in dB. On the other

1348 27. PERIODIC SIGNAL EXTRACTION

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
classical seasonal decomposition

year

pp
m

 data
 trend

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4
seasonal component

year

pp
m

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−120

−100

−80

−60

−40

−20

0

ω / ω
1

dB

spectrum of original signal yn

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

ω / ω
1

m
ag

n
it

u
de

spectrum of seasonal + irregular part rn

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
local polynomial smoothing, N = 59, d = 2

year

pp
m

 data
 trend

1980 1985 1990 1995 2000 2005 2010
330

340

350

360

370

380

390
Whittaker− Henderson, λ = 4000, s = 3

year

pp
m

 data
 trend

Fig. 27.7.3 Monthly global CO2 data and spectra.

hand, after the trend is removed, the harmonics in the residual component rn are quite
visible if plotted in absolute units as in the middle-right graph.

The bottom two graphs show the trend component tn extracted by a local polynomial
smoothing filter on the left (with length N = 59 and length d = 2), and by a Whittaker-
Henderson smoother on the right (with λ = 4000 and s = 3). The corresponding seasonal
components obtained by signal averaging of the residual rn = yn − tn are not shown

27.7. CLASSICAL SEASONAL DECOMPOSITION 1349

because they are essentially the same as that of the upper-right graph. The MATLAB code
used to generate these six graphs was as follows:

Y = loadfile(’co2_mm_gl.dat’); % data file in the AOSP toolbox

t = Y(:,3); y = Y(:,4); yt0 = Y(:,5); % extract times and signals

R = 15; [yt,ys,yi] = cldec(y,12,R); % classical decomposition

figure; plot(t,y, t,yt); % upper-left graph

figure; plot(t,ys); % upper-right graph

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency in units of ω1

L = length(y); Rdb = 80; % Kaiser window parameters

wind = kwindow(L,Rdb)’; % Kaiser window in the AOSP toolbox

ysi = y - yt; % seasonal + irregular component

Y = abs(freqz(y.*wind,1,w)); Y = Y/max(Y); % DTFT computation

Ysi = abs(freqz(ysi.*wind,1,w)); Ysi = Ysi/max(Ysi);

figure; plot(k, 20*log10(Y)); % middle-left graph

figure; plot(k, Ysi); % middle-right graph

N=59; d=2; yt = lpfilt(lpsm(N,d),y); % LPSM smoother

figure; plot(t,y, t,yt); % bottom-left graph

% ys = sigav(y-yt,12); % seasonal part, not shown

% figure; plot(t,ys);

la=4000; s=3; yt = whsm(y,la,s); % Whittaker-Henderson smoother

figure; plot(t,y, t,yt); % bottom-right graph

The signal yt0 extracted from the 5th column of the data file (as in the second line of code
above) represents the already de-seasonalized data, and therefore, we can compare it to
the trend extracted by the above three methods. It is not plotted because it is virtually
identical to the above extracted trends.

The percentage error defined as 100*norm(yt-yt0)/norm(yt0) is found to be 0.05%,
0.07%, and 0.05% for the classical, LPSM, and WH methods, respectively. 	

To gain some further insight into the nature of the filtering operations for the classi-
cal decomposition method, we show in Fig. 27.7.4 the magnitude responses of the filters
HS(ω), HT(ω), and HI(ω) for extracting the seasonal, trend, and irregular compo-
nents, as defined by Eq. (27.6.1). The trend filter Htrend(ω) is given by Eq. (27.7.5),
and the comb filter Hcomb(ω) by Eq. (27.5.5) with the phase factor removed to make it
symmetric.

The upper graphs in Fig. 27.7.4 show the case of D = 12 and N = 15. We observe
the absence of the harmonic at DC in HS(ω). The irregular filter does not quite extract
the noise component vn, but rather a filtered version thereof. Ideally, the irregular filter
HI(ω) should have zeros at the harmonics, be very small in the passband of HT(ω),
and be flat between the harmonics. The actual filter HI(ω) does approximate these
features.

1350 27. PERIODIC SIGNAL EXTRACTION

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|, N = 15, uniform

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 ω /ω1

|HI (ω)| and |HT (ω)|

 irregular
 trend

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|, N = 15, Kaiser

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 ω /ω1

|HI (ω)| and |HT (ω)|

 irregular
 trend

Fig. 27.7.4 Component extraction filters HS(ω), HT(ω), and HI(ω).

The sidelobe behavior about the harmonics in HS(ω), or about the nulls in HI(ω),
is due to the sidelobes introduced by the signal averaging filterHcomb(ω) of Eq. (27.5.5),
which was obtained by applying the seasonalizing transformation z→ zD to a length-N
FIR filter with uniform weights—the sidelobes being effectively the D-fold replicated
versions of the sidelobes of a length-N rectangular window.

Such sidelobes are suppressed only by about 13 dB relative to the main peaks and are
quire visible (at the level of 10−13/20 = 0.22). The sidelobes can be suppressed further
by replacing the rectangular FIR filter by a length-N windowed version thereof, using for
example a Hamming or a Kaiser window. To be precise, the comb filter obtained from a
window w(n), −M ≤ n ≤M, where N = 2M + 1, is defined by

W(z)=
M∑

n=−M
w(n)z−n ⇒ Hcomb(z)=W(zD)=

M∑
n=−M

w(n)z−nD (27.7.8)

where w(n) must be normalized to add up to unity. The two lower graphs of Fig. 27.7.4
show the filters obtained from a Kaiser window of length N = 15 and sidelobe level
RdB = 50 dB. The sidelobes are suppressed to the level of 10−50/20 = 0.003 and are not
visible if plotted in absolute scales. The price one pays for suppressing the sidelobes

27.7. CLASSICAL SEASONAL DECOMPOSITION 1351

is, of course, the widening of the harmonic peaks. To clarify these ideas, we give below
the MATLAB code for generating the graphs in Fig. 27.7.4:

D = 12; N = 15;
k = linspace(-6,6,1201); w = 2*pi*k/D; % frequency axis

ht = trendma(D); Ht = abs(freqz(ht,1,w)); % trend filter Htrend(ω)
hc = up(ones(1,N)/N, D); Hc = abs(freqz(hc,1,w)); % comb filter Hcomb(ω)
hs = conv(hc, compl(ht)); Hs = abs(freqz(hs,1,w)); % seasonal filter HS(ω)
hi = conv(compl(hs), compl(ht)); Hi = abs(freqz(hi,1,w)); % irregular filter HI(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % seasonal adjustment filter

figure; plot(k, Hs); figure; plot(k, Hi, k,Ht,’r--’); % upper graphs

figure; plot(k, Ha); % left graph in Fig. 27.7.5

Rdb=50; hk = kwindow(N,Rdb); hk = hk/sum(hk); % Kaiser window

hc = up(hk, D); Hc = abs(freqz(hc,1,w)); % new Hcomb(ω)
hs = conv(hc, compl(ht)); Hs = abs(freqz(hs,1,w)); % new HS(ω)
hi = conv(compl(hs), compl(ht)); Hi = abs(freqz(hi,1,w)); % new HI(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % seasonal adjustment filter

figure; plot(k, Hs); figure; plot(k, Hi, k,Ht,’r--’); % lower graphs

figure; plot(k, Ha); % right graph in Fig. 27.7.5

The impulse response definitions in this code implement Eq. (27.6.1) in the time
domain. The upsampling function up was described in Sec. 27.2. The function compl
computes the impulse response of the complement of a double-sided symmetric filter,
that is, H(z)→ 1−H(z), or hn → δn −hn. The function kwindow computes the Kaiser
window (for spectral analysis) [224] for a given length N and sidelobe level Rdb in dB,
and it is part of the AOSP toolbox.

Fig. 27.7.5 illustrates the complementarity property more clearly by showing the
seasonal adjustment filter HA(ω)= 1 − HS(ω)= HT(ω)+HI(ω), that is, the filter
that removes the seasonal component from the data. As expected, the filter has nulls at
the harmonics and is essentially flat in-between.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

 ω /ω1

|HA (ω)|, N = 15, uniform

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

 ω /ω1

|HA (ω)|, N = 15, Kaiser

Fig. 27.7.5 Seasonal adjustment filter HA(ω)= 1−HS(ω)= HT(ω)+HI(ω).

1352 27. PERIODIC SIGNAL EXTRACTION

27.8 Seasonal Moving-Average Filters

Signal averaging can be thought of as ordinary filtering by the seasonalized FIR averager
filter of Eq. (27.5.3). However, as we saw in Eq. (27.5.9), the averaged period builds up
gradually at the filter output and becomes available only as the last D output points.
This is so because the filter length ND is essentially the same as the signal length so
that the filter operates mostly in its transient state. Indeed, if L is the length of the
signal yn, the number of periods is N = floor(L/D) so that L ≈ ND.

In the classical decomposition method, the final accumulated period is replicated N
times to make up the seasonal component sn. This procedure is appropriate only if sn
is truly periodic. However, in many practical applications sn is only quasi-periodic with
slowly changing periods. In order to be able to estimate sn more accurately we must
use a shorter seasonal moving-average filter that tracks the local (i.e., within the filter’s
moving window) periodic component.

Example 27.8.1: Fig. 27.8.1 illustrates the filtering point of view for extracting the seasonal
part sn. The same CO2 data are used as in Example 27.7.2. The classical decomposition
method is applied first to determine the trend tn, and then the residual signal is formed
rn = yn− tn. In this example, the number of periods contained in the yn signal is N = 29.

The upper-left graph shows the result of ordinary causal filtering of the residual signal rn
by the signal averaging comb filter (27.5.3) using MATLAB’s built-in function filter. We
observe that the transients eventually build up to the same final period as that obtained
by signal averaging (shown as the dotted line.)

In the upper-right graph, the residual rn was filtered by the double-sided filtering function
filtdbl discussed in Sec. 23.10, which is ordinary causal convolution followed by ad-
vancing the result by (N − 1)D/2 samples. Again, we observe the input-on and input-off
transients and the build-up of the correct period at the middle.

The transient portions of the double-sided filter output can be adjusted by using Mus-
grave’s minimum-revision asymmetric filters for the left and right end points. The result-
ing filter output is shown in the lower-left graph, in which the Musgrave parameter was
chosen to be R = ∞ (see Sec. 27.10 for more on that.)

The lower-right graph shows the result of filtering rn through a so-called 3×3 double-sided
seasonal moving-average filter, which is discussed below. The MATLAB code for generating
these graphs is as follows:

Y = loadfile(’co2_mm_gl.dat’);
t = Y(:,3); y = Y(:,4); % CO2 data

D=12; N=floor(length(y)/D); M=33; R=inf; % filter parameters

[yt,ys,yi] = cldec(y,D,R); yr = y - yt; % yr = residual component rn

h = ones(1,N)/N; % length-N moving-average

hc = up(h, D); % seasonalized comb filter obtained from h

Bc = upmat(minrev(h,R), D); % seasonalized minimum-revision filter matrix

ys1 = filter(hc,1,yr); % ordinary causal filtering by the comb filter hc

ys2 = filtdbl(hc,yr); % double-sided filtering

ys3 = lpfilt(Bc, yr); % double-sided filtering and end-point filters

[yt4,ys4] = smadec(y, D, M, R); % ys4 is the 3×3 moving-average output

27.8. SEASONAL MOVING-AVERAGE FILTERS 1353

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

causal filtering

 filter
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

double− sided filtering

 filtdbl
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

double− sided with end− point filters

 lpfilt
 cldec

1980 1985 1990 1995 2000 2005 2010
−4

−3

−2

−1

0

1

2

3

4

year

pp
m

3x3 seasonal moving− average

 3x3
 cldec

Fig. 27.8.1 Filtering versions of seasonal filter.

figure; plot(t,ys1, t,ys,’:’); figure; plot(t,ys2, t,ys,’:’); % upper graphs

figure; plot(t,ys3, t,ys,’:’); figure; plot(t,ys4, t,ys,’:’); % lower graphs

The smadec function is a simple alternative to cldec and is discussed below. The
function upmat upsamples a filter matrix by a factor of D for its use in comb filtering. It
upsamples each row and then each column by D and then, it replaces each group of D
columns by the corresponding convolution matrix arising from the first column in each
group. It can be passed directly into the filtering function lpfilt,

Bup = upmat(B,D; % upsampling a filtering matrix

For example, the asymmetric filters associated with the 3×3 seasonal moving-average
filter [1210] are as follows for D = 3, where the middle column is the 3×3 filter and the
other columns, the asymmetric filters to be used at the ends of the data record, and the

1354 27. PERIODIC SIGNAL EXTRACTION

function smat is described below:

B = smat(1,33) = 1

27

⎡⎢⎢⎢⎢⎢⎢⎣
11 7 3 0 0
11 10 6 3 0
5 7 9 7 5
0 3 6 10 11
0 0 3 7 11

⎤⎥⎥⎥⎥⎥⎥⎦

Bup = upmat(B,3)= 1

27

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 0 0 7 0 0 3 0 0 0 0 0 0
0 11 0 0 7 0 0 3 0 0 0 0 0
0 0 11 0 0 7 0 0 3 0 0 0 0

11 0 0 10 0 0 6 0 0 3 0 0 0
0 11 0 0 10 0 0 7 0 0 5 0 0
0 0 11 0 0 10 0 0 7 0 0 5 0
5 0 0 7 0 0 9 0 0 7 0 0 5
0 5 0 0 7 0 0 10 0 0 11 0 0
0 0 5 0 0 7 0 0 10 0 0 11 0
0 0 0 3 0 0 6 0 0 10 0 0 11
0 0 0 0 3 0 0 7 0 0 11 0 0
0 0 0 0 0 3 0 0 7 0 0 11 0
0 0 0 0 0 0 3 0 0 7 0 0 11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27.8.1)

The simple 3×3, 3×5, and 3×9 seasonal moving-average filters are widely used in de-
seasonalizing business, government, and census data. They are obtained by symmetriz-
ing the N1×N2 filters of Eq. (27.7.2) and then applying the transformation z → zD. For
example, the resulting 3×3 and 3×5 comb filters are:

H33(z) = 1

3
(zD + 1+ z−D)·1

3
(zD + 1+ z−D)

H35(z) = 1

3
(zD + 1+ z−D)·1

5
(z2D + zD + 1+ z−D + z−2D)

(27.8.2)

with symmetric impulse responses,

h33 = 1

9
[1, 0, . . . ,0︸ ︷︷ ︸

D−1 zeros

,2,0, . . . ,0,3,0, . . . ,0,2,0, . . . ,0,1]

h35 = 1

15
[1,2,0, . . . ,0,3,0, . . . ,0,3,0, . . . ,0,3,0, . . . ,0,2,0, . . . ,0,1]

(27.8.3)

The MATLAB function smav calculates such impulse responses,

h = smav(N1,N2,D); % seasonal moving-average filters

It is simply:

h = up(conv(ones(1,N1), ones(1,N2))/(N1*N2), D);

These filters are to be applied to the residual signal rn = yn − tn. Their end-point
effects can be handled by using Musgrave’s minimum-revision filters or by any other

27.8. SEASONAL MOVING-AVERAGE FILTERS 1355

appropriate asymmetric filters. In fact, the census X-11/X-12 methods use asymmetric
filters that are specially constructed for the 3×3, 3×5, and 3×9 filters, and may be found
in Ref. [1210]. They have been incorporated into the smadec and x11dec. For example,
Eq. (27.8.1) shows the 3×3 filter matrix before and after it is upsampled.

To summarize, the filtering approach for de-seasonalizing a signal yn = sn+ tn+vn
with period D consists of the following two basic steps:

1. Apply a lowpass filter to extract the trend component tn, incorporating also asym-
metric end-point filters. The trend-extraction filter can be a simple 1×D or 2×D
moving average, or, any other lowpass filter such as a local-polynomial or Whittaker-
Henderson smoother.

2. Apply a comb filter to the de-trended residual signal rn = yn − tn to extract the
seasonal part sn, incorporating asymmetric filters for the end-points. The comb
filter can be a simple seasonalized 3×3, 3×5, or 3×9 lowpass filter, or a more
general seasonalized filter such as one obtained from a non-rectangular window.
The de-seasonalized, or seasonally adjusted, signal is then an = yn − sn.

The MATLAB function smadec carries out this program using the simple 1×D or
2×D moving-average filter for de-trending and the 3×3, 3×5, or 3×9 comb filters for
the seasonal part. It has usage:

[yt,ys,yi] = smadec(y,D,M,R,iter,type); % seasonal moving-average decomposition

where yt, ys, yi are the estimated components tn, sn, vn, and y is the input data
vector. The integer values M = 33,35,39 select the 3×3, 3×5, or 3×9 seasonal comb
filters, other values of M can also be used. The Musgrave parameter defaults to R = ∞,
the parameter iter specifies the number of iterations of the filtering process, which
correspond to applying the trend filter iter times. The string type takes on the values
’a’, ’m’ for additive or multiplicative decomposition. To clarify the operations, we
give below the essential part of the code in smadec for the additive case:

F = minrev(trendma(D),R); % trend moving-average, with minimum-revision end-filters

B = smat(D,M,R); % seasonal moving averages, with end-filters

yt = y; % initialize iteration

for i=1:iter,
yt = lpfilt(F,yt); % T component

yr = y - yt; % S+I component

ys = lpfilt(B,yr); % S component

yi = yr - ys; % I component

end

The function smat generates the filtering matrix of the seasonalized comb filters,
including the specific asymmetric filters for the 3×3, 3×5, or 3×9 cases, as well for
other cases.

Example 27.8.2: Unemployment Data 1965–1979. The data set representing the monthly num-
ber of unemployed 16–19 year old men for the period Jan. 1965 to Dec. 1979 has served
as a benchmark for comparing seasonal adjustment methods [1225,1229]. The data set
is available from the US Bureau of Labor Statistics web site: http://www.bls.gov/data/

1356 27. PERIODIC SIGNAL EXTRACTION

(series ID: LNU03000013, under category: Unemployment > Labor Force Statistics > on-
screen data search).

The upper graphs of Fig. 27.8.2 illustrate the application of the smadec function using
D = 12, M = 35 (which selects the 3×5 comb), one iteration, Musgrave parameter R = ∞
for the 2×D trend filter, and additive decomposition type. The left graph shows the trend
tn and the right, the estimated seasonal component sn, which is not exactly periodic but
exhibits quasi-periodicity. The results are comparable to those of Refs. [1225,1229].

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

2x12 trend moving− average

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal 3x5 filter

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year
m

il
li

on
s

Whittaker− Henderson trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal Kaiser filter

Fig. 27.8.2 Trend/seasonal decomposition of monthly unemployment data for 1965–1979.

The lower graphs show the decomposition obtained by de-trending using a Whittaker-
Henderson smoother of order s = 2, followed by a Kaiser comb filter. The function whgcv

was used to determine the optimum smoothing parameter, λopt = 2039. The Kaiser win-
dow had length N = 15 and relative sidelobe level of Rdb = 50 dB. The MATLAB code for
generating these graphs was as follows:

Y = loadfile(’unemp-1619-nsa.dat’); % data file in AOSP toolbox

i=find(Y==1965); Y = Y(i:i+14,2:13)’; % extract 1965-1979 data

y = Y(:)/1000; t = taxis(y,12,65); % y units in millions

D=12; M=35; R=inf; iter=1; type=’a’; % smadec input parameters

[yt,ys,yi] = smadec(y,D,M,R,iter,type); % yt,ys represent tn, sn

27.8. SEASONAL MOVING-AVERAGE FILTERS 1357

figure; plot(t,y, t,yt); figure; plot(t,ys); % upper graphs

s = 2; la = 2000:2050; % search range of λ’s

[gcv,lopt] = whgcv(y,la,s); % optimum λopt = 2039

yt = whsm(y,lopt,s); % extract tn component

yr = y-yt; % residual S+I component

Rdb=50; N=15; h = kwindow(N,Rdb); hk = h/sum(h); % Kaiser window

B = upmat(minrev(hk,R), D); % Kaiser comb with end-filters

ys = lpfilt(B, yr); % extract sn component

figure; plot(t,y, t,yt); figure; plot(t,ys); % bottom graphs

The Whittaker-Henderson method results in a smoother trend. However, the trend from
smadec can be made equally smooth by increasing the number of iterations, for example,
setting iter=3. The frequency responses of the various filters are shown in Eq. (27.8.3).

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

|HS (ω)| and |HT (ω)| with 3x5 comb

 seasonal filter
 trend filter

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

seasonal adjustment filter |HA (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

|HS (ω)| and |HT (ω)| with Kaiser comb

 seasonal filter
 trend filter

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

 ω / ω
1

m
ag

n
it

u
de

seasonal adjustment filter |HA (ω)|

Fig. 27.8.3 Frequency responses of trend, seasonal, and seasonal-adjustment filters.

The filters HT(ω),HS(ω) for extracting the trend and seasonal components, and the
seasonal-adjustment filter HA(ω)= 1 − HS(ω) are constructed from Eq. (27.6.1). The
MATLAB code for generating these graphs was:

1358 27. PERIODIC SIGNAL EXTRACTION

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency range [−π,π]

ht = trendma(12); Ht = abs(freqz(ht,1,w)); % 2×12 trend filter

hc = smav(3,5,12); % upsampled 3×5 comb filter

hs = conv(hc,compl(ht)); Hs = abs(freqz(hs,1,w)); % seasonal filter, HS(ω)
ha = compl(hs); Ha = abs(freqz(ha,1,w)); % adjustment filter, 1−HS(ω)

figure; plot(k,Hs, k,Ht,’--’); figure; plot(k,Ha); % upper graphs

Ht = 1 ./ (1 + lopt * (2*sin(w/2)).^(2*s)); % Whittaker-Henderson trend filter

hc = up(hk,12); % Kaiser comb impulse response

Hc = freqz(hc,1,w) .* exp(j*(N-1)*D*w/2); % Kaiser comb frequency response

Hs = Hc .* (1-Ht); Ha = 1 - Hs; % HS(ω) and HA(ω)= 1−HS(ω)
Hs = abs(Hs); Ha = abs(Ha);

figure; plot(k,Hs, k,Ht,’--’); figure; plot(k,Ha); % bottom graphs

The Whittaker-Henderson trend filter was computed using Eq. (26.3.7). The frequency re-
sponse of the Kaiser comb filter was multiplied by ejω(N−1)D/2 to make the filter symmetric.
It is evident that the WH/Kaiser filters perform better. 	

The steps implementing the Whittaker-Henderson/Kaiser decomposition have been
incorporated into the MATLAB function whkdec,

[yt,ys,yi] = whkdec(y,D,s,la,N,Rdb,R,type); % WH/Kaiser decomposition

The WH parameters s,la must be selected in advance, for example, λ can be ten-
tatively estimated using the GCV function whgcv, but it should be noted that the GCV
does not always give a “good” value for λ. The Kaiser window length N must be odd and
the sidelobe level must be restricted to the range [13,120] dB. The Musgrave parameter
R affects only the Kaiser comb filter because the WH trend already takes into account
the end points. The parameter type is as in the function smadec.

27.9 Census X-11 Decomposition Filters

The Census X-11/X-12 seasonal adjustment procedures have become a standard for
de-seasonalizing economic data [1197–1213]. They are based on a series of filtering
operations that represent a refined version of the procedures outlined in the previous
section.

Here, we only discuss the relevant filtering operations, leaving out details such as
adjustments for outliers or calendar effects. The most recent version, X-12-ARIMA, is
available from the web site [1199]. The web pages [1200,1201] contain a number of
papers on the development of the X-11/X-12 methods.

As outlined in [1202,1205], the X-11 method involves the repeated application of
the 2×12 trend filter of Eq. (27.7.1), the 3×3 and 3×5 comb filters of Eq. (27.8.2), and
the Henderson filters of lengths 9, 13, or 25, with polynomial and smoothing orders
d = s = 3 given by Eq. (11.1.1) of Sec. 23.12. The basic X-11 filtering steps are as
follows, assuming an additive model yn = sn + tn + vn,

1. Apply a 2×12 trend filter to yn to get a preliminary estimate of the trend tn.

27.9. CENSUS X-11 DECOMPOSITION FILTERS 1359

2. Subtract tn from yn to get a preliminary estimate of the residual rn = yn − tn.

3. Apply the 3×3 comb filter to rn to get a preliminary estimate of sn.

4. Get an improved sn by removing its filtered version by the 2×12 trend filter.

5. Subtract sn from yn to get a preliminary adjusted signal an = yn − sn = tn + vn.

6. Filter an by a Henderson filter to get an improved estimate of the trend tn.

7. Subtract tn from yn to get an improved residual rn = yn − tn.

8. Apply the 3×5 comb filter to rn to get an improved estimate of sn.

9. Get the final sn by removing its filtered version by the 2×12 trend filter.

10. Subtract sn from yn to get the final adjusted signal an = yn − sn = tn + vn.

11. Filter an by a Henderson filter to get the final estimate of the trend tn.

12. Subtract tn from an to get the final estimate of the irregular component vn.

These steps are for monthly data. For quarterly data, replace the 2×12 trend filter
by a 2×4 filter. The steps can be expressed concisely in the z-domain as follows:

1. Ypre
T = FY

2. Ypre
R = Y −Ypre

T = (1− F)Y

3. Ypre
S = H33Y

pre
R = H33(1− F)Y

4. Yimp
S = Ypre

S − FYpre
S = H33(1− F)2Y

5. Ypre
A = Y −Yimp

S = [1−H33(1− F)2
]
Y

6. Yimp
T = HYpre

A = H
[
1−H33(1− F)2

]
Y

7. Yimp
R = Y −Yimp

T =
[

1−H
[
1−H33(1− F)2

]]
Y

8. Yimp
S = H35Y

imp
R = H35

[
1−H

[
1−H33(1− F)2

]]
Y

9. YS = Yimp
S − FYimp

S = (1− F)H35

[
1−H

[
1−H33(1− F)2

]]
Y ≡ HSY

10. YA = Y −YS = (1−HS)Y ≡ HAY

11. YT = HYA = H(1−HS)Y ≡ HTY

12. YI = YA −YT = (1−H)(1−HS)Y ≡ HIY

(27.9.1)

where Ypre
T = FY stands for Ypre

Y (z)= F(z)Y(z), etc., and F(z), H33(z), H35(z), H(z)
denote the 2×12 trend filter, the 3×3 and 3×5 comb filters, and the Henderson filter,
and the z-transforms of the data, trend, seasonal, adjusted, and irregular components
are denoted by Y(z), YT(z), YS(z), YA(z), and YI(z).

It follows that the effective filters for extracting the seasonal, seasonally-adjusted,
trend, and irregular components are:

HS = (1− F)H35

[
1−H

[
1−H33(1− F)2

]]
(seasonal)

HA = 1−HS (seasonally-adjusted)

HT = H(1−HS) (trend)

HI = (1−H)(1−HS) (irregular)

(27.9.2)

They satisfy the complementarity property HT(z)+HS(z)+HI(z)= 1.

1360 27. PERIODIC SIGNAL EXTRACTION

Example 27.9.1: X-11 Filters. The construction of the time-domain impulse responses of the
X-11 decomposition filters (27.9.2) is straightforward. For example, the following MATLAB
code evaluates the impulse responses (using a 13-term Henderson filter), as well as the
corresponding frequency responses shown in Fig. 27.9.1,

k = linspace(-6,6,1201); w = 2*pi*k/12; % frequency axis −π ≤ω ≤ π

hf = trendma(12); % 2×12 trend filter, F
hfc = compl(hf); % complement of trend filter, 1− F
h33 = smav(3,3,12); % 3×3 comb filter, H33

h35 = smav(3,5,12); % 3×5 comb filter, H35

N=13; he = lprs2(N,3,3); % 13-term Henderson filter, H
g = conv(hfc,hfc); % G = (1− F)2, G is temporary variable

g = compl(conv(h33, g)); % G = 1−H33(1− F)2

g = compl(conv(he,g)); % G = 1−H
[
1−H33(1− F)2]

g = conv(h35,g); % G = H35
{
1−H

[
1−H33(1− F)2]}

% HS = (1− F)H35
{
1−H

[
1−H33(1− F)2]}

hs = conv(hfc,g); Hs = abs(freqz(hs,1,w)); % seasonal

ha = compl(hs); Ha = abs(freqz(ha,1,w)); % adjustment

ht = conv(he,ha); Ht = abs(freqz(ht,1,w)); % trend

hi = conv(compl(he),ha); Hi = abs(freqz(hi,1,w)); % irregular

figure; plot(k, Hs); figure; plot(k, Ht); % upper graphs

figure; plot(k, Ha); figure; plot(k, Hi); % lower graphs

We note that the filters have the expected shapes. All cases described in [1205] can be
generated by variations of this code. 	

The MATLAB function x11dec implements the above steps, amended by the use of
asymmetric filters to handle the end-points of the time series,

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 decomposition method

where D is the seasonal period, M1,M2 the sizes of the first and second comb filters
(entered as 33, 35, or 39), N1,N2 are the lengths of the first and second Henderson filters,
R is the Musgrave minimum-revision parameter affecting both the Henderson filters and
the trend filter, and type designates an additive or multiplicative decomposition. The
Musgrave parameter R is usually assigned the following values, depending on the length
N of the Henderson filter [1210]:

N R
5 0.001
7 4.5
9 1.0

13 3.5
23 4.5

(27.9.3)

Example 27.9.2: Unemployment Data 1980–2008. Fig. 27.9.2 shows the X-11 decomposition of
the monthly unemployment data for 20 year and older men for the period Jan. 1980 to
Dec. 2008. The data are from the US BLS web site: http://www.bls.gov/data/, series
LNU03000025, under category: Unemployment > Labor Force Statistics > on-screen data
search. The already seasonally adjusted data are also available as series LNS13000025.

The upper-left graph shows the original data and the extracted trend tn assuming an addi-
tive model yn = tn+sn+vn. The lower-left graph is the extracted seasonal component sn.

27.9. CENSUS X-11 DECOMPOSITION FILTERS 1361

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HS (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HT (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HA (ω)|

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 ω /ω1

|HI (ω)|

Fig. 27.9.1 X-11 decomposition filters (with 13-term Henderson).

The upper-right graph shows the seasonally-adjusted signal an = yn − sn = tn + vn to be
compared with that of the lower-right graph, which shows the already available adjusted
signal— the two agreeing fairly well. The graphs were generated by the following code:

Y = loadfile(’unemp-20-nsa.dat’); % not-seasonally adjusted data

i = find(Y==1980); Y = Y(i:end,2:13)’; % select years 1980-2008

y = Y(:)/1000; t = taxis(y,12,1980); % data vector y, and time axis

% data sets available in the AOSP toolbox

Y = loadfile(’unemp-20-sa.dat’); % seasonally adjusted data

i = find(Y==1980); Y = Y(i:end,2:13)’;
yadj = Y(:)/1000; % yadj = already available adjusted data

D=12; M1=33; M2=35; N1=13; N2=13; R=3.5; type=’a’; % X-11 parameters

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 method

ya = y-ys; % seasonally adjusted

%s = 2; la = 1000; N=15; Rdb=50; % WH/K parameters

%[yt,ys,yi] = whkdec(y,D,s,la,N,Rdb,R,type); % Whittaker-Henderson/Kaiser

%ya = y-ys; % seasonally adjusted

figure; plot(t,y,’:’, t,yt,’-’); figure; plot(t,ya); % upper graphs

figure; plot(t,ys); figure; plot(t,yadj); % lower graphs

1362 27. PERIODIC SIGNAL EXTRACTION

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

X− 11 trend

 data
 trend

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

computed seasonally adjusted

1980 1984 1988 1992 1996 2000 2004 2008
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

year

m
il

li
on

s

seasonal component

1980 1984 1988 1992 1996 2000 2004 2008
2

3

4

5

6

7

year

m
il

li
on

s

available seasonally adjusted

Fig. 27.9.2 X-11 decomposition of unemployment data 1980-2008.

The value of R was 3.5 because a 13-term Henderson filter was used. The purpose of this
example was to compare the performance of our simplified X-11 implementation with the
results that are already available from the Bureau of Labor Statistics. We note that the use
of the Whittaker-Henderson/Kaiser decomposition method also works comparably well,
for example with parameters s = 2, λ = 1000, Kaiser length N = 15, and Rdb = 50 dB. The
code for that is included above but it is commented out. 	

27.10 Musgrave Asymmetric Filters

The handling of the end-point problem by the use of asymmetric filters was discussed in
Sec. 23.10. We saw that the output yn of filtering a length-L signal xn, 0 ≤ n ≤ L−1, by a
double-sided filter hm, −M ≤m ≤M, using for example the function filtdbl, consists
of M initial and M final transient output samples, and L−2M steady-state samples, the
latter being computed by the steady-state version of the convolutional equation:

yn =
M∑

m=−M
hmxn−m , M ≤ n ≤ L− 1−M (27.10.1)

27.10. MUSGRAVE ASYMMETRIC FILTERS 1363

The overall operation can be cast in convolution matrix form. For example, for L = 8
and M = 2, we have:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h−1 h−2 0 0 0 0 0
h1 h0 h−1 h−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 h2 h1 h0 h−1

0 0 0 0 0 h2 h1 h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

. . .
x2

x3

x4

x5

. . .
x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27.10.2)

The middle L − 2M = 4 output samples are steady, while the first and last M = 2
are transient and are computed by using fewer filter weights that the steady ones. The
transient and steady filters can be arranged into a matrix B, which is for the above
example,

B =

⎡⎢⎢⎢⎢⎢⎢⎣
h0 h1 h2 0 0
h−1 h0 h1 h2 0
h−2 h−1 h0 h1 h2

0 h−2 h−1 h0 h1

0 0 h−2 h−1 h0

⎤⎥⎥⎥⎥⎥⎥⎦ (27.10.3)

The convolution matrix H can be built from the knowledge of B as described in
Sec. 23.10. The matrix B conveniently summarizes the relevant filters and can be used
as an input to the filtering function lpfilt.

As discussed in Sec. 23.10, local polynomial smoothing filters, including Henderson
filters, generate their own matrix B to handle the series end-points, with the non-central
columns of B consisting of the corresponding prediction filters.

However, when one does not have available such prediction filters, but only the
central filter hm, −M ≤m ≤M, one must use appropriately designed end-point filters.
For example, Eq. (27.10.2) would change to:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

. . .
y2

y3

y4

y5

. . .
y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0
0 f0

−1 f0
−2 0 0 0 0 0

f1
1 f1

0 f1−1 f1−2 0 0 0 0
. .
h2 h1 h0 h−1 h−2 0 0 0
0 h2 h1 h0 h−1 h−2 0 0
0 0 h2 h1 h0 h−1 h−2 0
0 0 0 h2 h1 h0 h−1 h−2

. .
0 0 0 0 g1

2 g1
1 g1

0 g1−1

0 0 0 0 0 g0
2 g0

1 g0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

. . .
x2

x3

x4

x5

. . .
x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27.10.4)

where the filters f0
m and f1

m are used for computing the first two transient outputs y0, y1,
and the filters g0

m and g1
m are for the last two outputs y7, y6. The correspondingBmatrix

1364 27. PERIODIC SIGNAL EXTRACTION

would be in this case:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f0
0 f1

1 h2 0 0

f0
−1 f1

0 h1 g1
2 0

f0
−2 f1−1 h0 g1

1 g0
2

0 f1−2 h−1 g1
0 g0

1

0 0 h−2 g1−1 g0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (27.10.5)

More generally, the filters f im , gim , i = 0,1, . . . ,M − 1, compute the first M and last
M output samples yi , yL−1−i , respectively, through the convolutional equations:

yi =
i∑

m=−M
fimxi−m =

M∑
m=−i

f i−mxi+m = f ii x0 + · · · + f i0xi + · · · + f i−Mxi+M

yL−1−i =
M∑

m=−i
gimxL−1−i−m = giMxL−1−i−M + · · · + gi0xL−1−i + · · · + gi−ixL−1

(27.10.6)
for i = 0,1, . . . ,M − 1, where the limits of summations follow by the requirement that
only available xn samples appear in the sums.

Musgrave’s method [1207,1208] constructs such asymmetric filters from the knowl-
edge only of the central filter hm. The construction applies to filters hm that are sym-
metric, hm = h−m, and are normalized to unity gain at DC, such as lowpass trend filters,

M∑
m=−M

hm = 1 (27.10.7)

The asymmetric filters f im, gim are required to satisfy similar moment constraints:

i∑
m=−M

fim = 1 ,
M∑

m=−i
gim = 1 (27.10.8)

The design is based on a minimum-revision criterion. When the data record has
length L, the ith output from the end, yL−1−i, is computed with the filter gim. If or
when the series is extended to length L− 1+M, then the same output can actually be
computed with the symmetric filter hm resulting in a revised output yrev

L−1−i, that is,

yL−1−i =
M∑

m=−i
gimxL−1−i−m , yrev

L−1−i =
M∑

m=−M
hmxL−1−i−m

Musgrave’s criterion selectsgim to minimize the mean-square revision errorE[e2
L−1−i],

where eL−1−i = yL−1−i−yrev
L−1−i, under the assumption that locally the input series is lin-

ear, that is, xL−1−i−m = a+bm+vm, with a,b constant parameters, and vm zero-mean

27.10. MUSGRAVE ASYMMETRIC FILTERS 1365

white noise with variance σ2. The mean-square error becomes then,

E[e2
L−1−i] = E

[[M∑
m=−i

gim(a+ bm+ vm)−
M∑

m=−M
hm(a+ bm+ vm)

]2
]

= E
[[
b

M∑
m=−i

mgim +
M∑

m=−i
(gim − hm)vm −

−i−1∑
m=−M

hmvm
]2
]

= σ2
M∑

m=−i
(gim − hm)2+b2

(M∑
m=−i

mgim
)2

+ const.

(27.10.9)

where “const.” is a positive term independent of gim. In deriving this, we used the
moment constraints (27.10.7) and (27.10.8), and the property

∑M
m=−Mmhm = 0, which

follows from the assumed symmetry ofhm. Defining the constantβ2 = b2/σ2, it follows
that the optimum filter gim will be the solution of the following optimization criterion,
which incorporates the constraint (27.10.8) by means of a Lagrange multiplier λ:

J =
M∑

m=−i
(gm − hm)2+β2

(M∑
m=−i

mgm
)2

+ λ
(

1−
M∑

m=−i
gm

)
= min (27.10.10)

In a similar fashion, we can show that the filters f im are the solutions of

J =
i∑

m=−M
(fm − hm)2+β2

(i∑
m=−M

mfm
)2

+ λ
(

1−
i∑

m=−M
fm
)
= min (27.10.11)

Because hm is even in m it follows (by changing variables m→ −m in the sums) that
f im = gi−m, that is, the beginning filters are the reverse of the end filters. Thus, only gim
need be determined and is found to be [1208]:

gim = hm + Ai

M + i+ 1
+ β2Bi

Di
(m− μi) , −i ≤m ≤M (27.10.12)

for i = 0,1, . . . ,M − 1, with the constants Ai, Bi,Di, μi defined by,

Ai =
−i−1∑
m=−M

hm , Bi =
−i−1∑
m=−M

(m− μi)hm , i = 0,1, . . . ,M − 1

μi = M − i
2

, Di = 1+ β2

12
(M + i)(M + i+ 1)(M + i+ 2)

(27.10.13)

To show Eq. (27.10.12), we set the gradient of J in (27.10.10) to zero, ∂J/∂gm = 0, to
get,

gm = hm + λ− β2Gm, G =
M∑

m=−i
mgm (27.10.14)

Summing up over m and using the constraint (27.10.8), and then, multiplying by m

1366 27. PERIODIC SIGNAL EXTRACTION

and summing up over m, results in two equations for the two unknowns λ,G:

1 =
M∑

m=−i
hm +

(M∑
m=−i

1
)
λ−

(M∑
m=−i

m
)
β2G

G =
M∑

m=−i
mhm +

(M∑
m=−i

m
)
λ−

(M∑
m=−i

m2
)
β2G

(27.10.15)

Using the properties,

1−
M∑

m=−i
hm =

−i−1∑
m=−M

hm ,
M∑

m=−i
mhm = −

−i−1∑
m=−M

mhm

and the identities,

M∑
m=−i

1 =M + i+ 1

M∑
m=−i

m = 1

2
(M + i+ 1)(M − i)= (M + i+ 1)μi

M∑
m=−i

m2 = (M + i+ 1)μ2
i +

1

12
(M + i)(M + i+ 1)(M + i+ 2)

(27.10.16)

and solving Eqs. (27.10.15) for the constants λ,G and substituting them in (27.10.14),
gives the solution (27.10.12). The parameter β is usually computed in terms of the
Musgrave parameter R, the two being related by

R2 = 4

πβ2
⇒ β2 = 4

πR2
(27.10.17)

The MATLAB function minrev implements Eq. (27.10.12) and arranges the asym-
metric filters into a filtering matrix B, which can be passed into the filtering function
lpfilt,

B = minrev(h,R); % minimum-revision asymmetric filters

The input is any odd-length symmetric filter hm and the parameterR. Typical values
of R are given in Eq. (27.9.3). The value R = ∞ corresponds to slope β = 0. For R = 0 or
β = ∞, the limit of the solution (27.10.12) is ignored and, instead, the function minrev
generates the usual convolutional transients for the filter hm, resulting in a matrix B
such that in Eqs. (27.10.3).

We have made extensive use of this function since Chap. 23. As a further example,
we compare the filtering matrix B for a 7-term Henderson filter resulting from minrev
with the standard value R = 4.5 to that resulting from the function lprs using the
corresponding prediction filters for the same Henderson filter:

27.10. MUSGRAVE ASYMMETRIC FILTERS 1367

h = lprs2(7,3,3)=[−0.0587, 0.0587, 0.2937, 0.4126, 0.2937, 0.0587, −0.0587]

B = minrev(h,4.5)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5345 0.2892 0.0336 −0.0587 0 0 0
0.3833 0.4103 0.2747 0.0587 −0.0531 0 0
0.1160 0.2937 0.3997 0.2937 0.0582 −0.0542 0
−0.0338 0.0610 0.2870 0.4126 0.2870 0.0610 −0.0338

0 −0.0542 0.0582 0.2937 0.3997 0.2937 0.1160
0 0 −0.0531 0.0587 0.2747 0.4103 0.3833
0 0 0 −0.0587 0.0336 0.2892 0.5345

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B = lprs(7,3,3)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8182 0.1836 −0.0587 −0.0587 0.0336 0.0682 −0.1049
0.4895 0.4510 0.2741 0.0587 −0.0951 −0.0874 0.1818
−0.2448 0.4283 0.5245 0.2937 −0.0140 −0.1486 0.1399
−0.2797 0.1049 0.3357 0.4126 0.3357 0.1049 −0.2797

0.1399 −0.1486 −0.0140 0.2937 0.5245 0.4283 −0.2448
0.1818 −0.0874 −0.0951 0.0587 0.2741 0.4510 0.4895
−0.1049 0.0682 0.0336 −0.0587 −0.0587 0.1836 0.8182

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The mean-square revision error (27.10.9) was calculated assuming a local linear func-

tion of time for the input. The criterion can be generalized to higher-order polynomials.
For example, for a second-order polynomial,

xL−1−i−m = a+ bm+ cm2 + vm

the mean-square revision error will be:

E[e2
L−1−i] = E

[[M∑
m=−i

gm(a+ bm+ cm2 + vm)−
M∑

m=−M
hm(a+ bm+ cm2 + vm)

]2
]

= σ2
M∑

m=−i
(gm − hm)2+c2

(M∑
m=−i

m2gm
)2

+ const.

(27.10.18)
where we assumed that hm is symmetric, has unity gain at DC, and zero second moment
(i.e., it reproduces second-order polynomials). Similarly, we assumed that gm has unity
gain at DC and zero first moment (so that it reproduces first-order polynomials). Thus,
the expression (27.10.18) was obtained under the constraints:

hm = h−m ,
M∑

m=−M

⎡⎢⎣ 1
m
m2

⎤⎥⎦hm =
⎡⎢⎣ 1

0
0

⎤⎥⎦ ,
M∑

m=−i

[
1
m

]
gm =

[
1
0

]
(27.10.19)

Defining γ2 = c2/σ2, we obtain the following optimization criterion, which incorporates
the above constraints on gm with two Lagrange multipliers λ1, λ2:

J =
M∑

m=−i
(gm − hm)2+γ2

(M∑
m=−i

m2gm
)2

+ λ1

(
1−

M∑
m=−i

gm
)
− λ2

(M∑
m=−i

mgm
)

(27.10.20)

1368 27. PERIODIC SIGNAL EXTRACTION

The vanishing of the gradient gives:

gm = hm + λ1 + λ2m− γ2Gm2 , G =
M∑

m=−i
m2gm (27.10.21)

By multiplying by m0,m1,m2 and summing up over m, we obtain three equations
for the three unknowns λ1, λ2, G,

1 =
M∑

m=−i
hm +

(M∑
m=−i

1
)
λ1 +

(M∑
m=−i

m
)
λ2 −

(M∑
m=−i

m2
)
γ2G

0 =
M∑

m=−i
mhm +

(M∑
m=−i

m
)
λ1 +

(M∑
m=−i

m2
)
λ2 −

(M∑
m=−i

m3
)
γ2G

G =
M∑

m=−i
m2hm +

(M∑
m=−i

m2
)
λ1 +

(M∑
m=−i

m3
)
λ2 −

(M∑
m=−i

m4
)
γ2G

(27.10.22)

Substituting the solutions for λ1, λ2, G into (27.10.21) gives the solution:

gim = hm + Ai

M + i+ 1
+ Bi
Σi
(m−μi)+γ

2Ci

Δi

[
(m−μi)2−ν2

i
]
, −i ≤m ≤M (27.10.23)

for i = 0,1, . . . ,M − 1, with the same constants Ai, Bi, μi as in Eq. (27.10.13), and with
Σi,Δi, νi, Ci are defined by

Σi = 1

12
(M + i)(M + i+ 1)(M + i+ 2) , ν2

i =
1

12
(M + i)(M + i+ 2)

Δi = 1+ γ2

180
(M + i− 1)(M + i)(M + i+ 1)(M + i+ 2)

Ci =
−i−1∑
m=−M

[
(m− μi)2−ν2

i
]
hm

(27.10.24)

27.11 Seasonal Whittaker-Henderson Decomposition

There are several other seasonal decomposition methods. The Holt-Winters exponential
smoothing method [823–825], which was briefly discussed in Eq. (24.13.6), is a simple,
effective, method of simultaneously tracking trend and seasonal components.

Another method is based on a seasonal generalization of the Whittaker-Henderson
method [1214–1217] and we discuss it a more detail in this section.

Model-based methods of seasonal adjustment [1218–1234] are widely used and are
often preferred over the X-11/X-12 methods. They are based on making ARIMA-type
models for the trend and seasonal components and then estimating the components
using optimum Wiener filters, or their more practical implementation as Kalman filters
[1235–1256]. We encountered some examples in making signal models of exponential-
smoothing, spline, and Whittaker-Henderson filters. The state-space approach is dis-
cussed in greater detail in [45].

27.11. SEASONAL WHITTAKER-HENDERSON DECOMPOSITION 1369

The seasonal generalization of the Whittaker-Henderson method, which was origi-
nally introduced by Leser, Akaike, and Schlicht [1214–1216], differs from the Whittaker-
Henderson/Kaiser method that we discussed earlier in that the latter determines the
trend tn using ordinary Whittaker-Henderson smoothing, and then applies a Kaiser-
window comb filter to the residual rn = yn − tn to extract the seasonal part sn. By
contrast, in the seasonalized version, tn and sn are determined simultaneously from a
single optimization criterion. We recall that the ordinary Whittaker-Henderson perfor-
mance index for estimating the trend tn is,

J =
N−1∑
n=0

(yn − tn)2+λ
N−1∑
n=s

(∇stn
)2 = min (27.11.1)

where s is the smoothing order and N, the length of yn. The seasonalized version with
period D replaces this by,

J =
N−1∑
n=0

(yn − tn − sn)2+λ
N−1∑
n=s

(∇stn)2+α
N−1∑

n=D−1

(sn + sn−1 + · · · + sn−D+1)2= min

(27.11.2)
A fourth term, β

∑N−1
n=D(sn − sn−D)2, may be added [1215,1216], but it is generally

not necessary for the following reason. The minimization of J forces the sum

Sn = sn + sn−1 + · · · + sn−D+1 (27.11.3)

to become small, ideally zero, and as a consequence the quantity sn− sn−D = Sn−Sn−1

will also be made small. Nevertheless, such a term has been implemented as an option
in the function swhdec below. Eq. (27.11.2) can be written in a compact vectorial form
as,

J = (y−t−s)T(y−t−s)+λ tT(DT
s Ds) t+α sT(ATA)s = min (27.11.4)

where, as discussed in general terms in Sec. 26.2, the matrices Ds,A have dimensions
(N−s)×N and (N−D+1)×N, respectively, and are the steady-state versions of the
convolution matrices of the corresponding filters, that is,

Ds(z)= (1− z−1)s , ds = binom(s) , Ds = convmat
(
flip(ds), N − s

)T
A(z)=

D−1∑
k=0

z−k , a = [1, 1, . . . ,1︸ ︷︷ ︸
D ones

] , A = convmat
(
flip(a), N−D+1

)T
(27.11.5)

For example, we have for N = 7, s = 2, and D = 4:

Ds =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎣
1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1

⎤⎥⎥⎥⎦
(27.11.6)

1370 27. PERIODIC SIGNAL EXTRACTION

The solution of the minimization problem (27.11.4) is obtained from the vanishing
of the gradient of J with respect to t and s, which results in the system and its solution:

(I + P)t+ s = y

t+ (I +Q)s = y
⇒

t = (Q + P+QP)−1Qy

s = y− (I + P)t
(27.11.7)

where we defined P = λ(DT
s Ds) andQ = α(ATA). The matrices P,Q and (Q+P+QP)

are banded sparse matrices and therefore the indicated inverse† in (27.11.7) can be
computed very efficiently with O(N) operations (provided it is implemented by the
backslash operator in MATLAB.)

From the above system we also have, t = (I+ P)−1(y− s), which has the appealing
interpretation that the trend is obtained by an ordinary Whittaker-Henderson smoother,
i.e., the operator (I + P)−1, applied to the seasonally-adjusted signal (y − s), which is
similar to how the X-11 method obtains the final trend by applying a Henderson filter.

The function swhdec implements this method. It has an optional argument for the
fourth β-term mentioned above:

[yt,ys,yi] = swhdec(y,D,s,lambda,alpha,beta); % seasonal Whittaker-Henderson

The larger the parameters α,β, the closer to zero the quantity (27.11.3), and the
“more periodic” the seasonal component. Thus, if one wants to extract a slowly evolving
periodic component, one should choose smaller values for these parameters, relative to
λ. The latter, can be estimated using the GCV criterion. The simultaneous estimation
of λ,α,β can be accomplished by maximizing an appropriate likelihood function in a
Bayesian formulation of this method [1215,1228,1230].

27.12 Sparse Seasonal Whittaker-Henderson Decomposition

The �1-regularized version can be obtained by replacing the �2 norms of the regularizing
parts by their �1 norms, that is,

J =
N−1∑
n=0

(yn − tn − sn)2+λ
N−1∑
n=s

∣∣∇stn
∣∣+α

N−1∑
n=D−1

∣∣sn + sn−1 + · · · + sn−D+1
∣∣ = min

J = ∥∥y− t− s)
∥∥2

2 + λ
∥∥Ds t

∥∥
1 +α

∥∥A s
∥∥

1 = min (27.12.1)

and can be solved easily with the CVX package.‡

Example 27.12.1: We revisit the unemployment data for 16–19 year old men for the 1965–79
period, which we encountered in Example 27.8.2. Fig. 27.12.1 compares the trend/seasonal
decomposition obtained by the X-11 method (top graphs) and by the seasonal Whittaker-
Henderson (middle graphs), as well as the corresponding L1 version (bottom graphs). The
input parameters were as follows, where λ was determined in Example 27.8.2 by the GCV
criterion,

D = 12, s = 2, λ = 2039, α = 10, β = 0

27.12. SPARSE SEASONAL WHITTAKER-HENDERSON DECOMPOSITION 1371

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

X− 11 trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

seasonal WH trend

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component

65 67 69 71 73 75 77 79
0

0.5

1

1.5

year

m
il

li
on

s

seasonal WH trend, L1 version

 data
 trend

65 67 69 71 73 75 77 79
−0.2

−0.1

0

0.1

0.2

0.3

0.4

year

seasonal component, L1 version

Fig. 27.12.1 X-11 and seasonal Whittaker-Henderson decomposition methods.

The MATLAB code used to generate the six graphs was as follows:

Y = loadfile(’unemp-1619-nsa.dat’); i=find(Y==1965); % read data

Y = Y(i:i+14,2:13)’; y = Y(:)/1000; t = taxis(y,12,65); % extract 1965-79 range

†It can be shown [1216] that the inverse exists for all positive values of λ,α.
‡http://cvxr.com/cvx

1372 27. PERIODIC SIGNAL EXTRACTION

D=12; M1=33; M2=35; N1=13; N2=13; R=3.5; type=’a’; % X-11 input parameters

[yt,ys,yi] = x11dec(y,D,M1,M2,N1,N2,R,type); % X-11 decomposition

figure; plot(t,y, t,yt); figure; plot(t,ys); % upper graphs

D=12; s=2; la=2039; alpha=10; % input parameters

[yt,ys,yi] = swhdec(y,D,s,la,alpha); % seasonal WH decomposition

figure; plot(t,y, t,yt); figure; plot(t,ys); % middle graphs

la=5; alpha=10; % L1 version

N = length(y); s=2; Ds = diff(eye(N),s); % construct matrices Ds and A
A = convmat(ones(1,D), N-D+1)’;

cvx_quiet(true); % CVX package

cvx_begin
variable X(2*N) % pack trend and seasonal into X

T = X(1:N); S = X(N+1:2*N);
minimize(sum_square(y-T-S) + la * norm(Ds*T,1) + alpha * norm(A*S,1));

cvx_end

yt = X(1:N); ys = X(N+1:2*N); % extract trend and seasonal parts

figure; plot(t,y, t,yt); figure; plot(t,ys); % lower graphs

The seasonal components extracted by the methods are comparable, as are the outputs of
this method and the Whittaker-Henderson/Kaiser method plotted in Fig. 27.8.2. 	

In Sec. 26.3 we obtained the equivalent Whittaker-Henderson trend-extraction filter
and showed that it could be thought of as the optimum unrealizable Wiener filter of a
particular state-space model. The optimum filter had frequency response:

H(ω)= 1

1+ λ
∣∣Ds(ω)

∣∣2 , where Ds(ω)= (1− e−jω
)s

(27.12.2)

and the state-space model was defined by

yn = tn + vn , ∇stn = wn (27.12.3)

where vn,wn were zero-mean, mutually-uncorrelated, white-noise signals of variances
σ2
v,σ2

w, and the smoothing parameter was identified as λ = σ2
v/σ2

w.
All of these results carry over to the seasonal case. First, we obtain the effective

trend and seasonal filters HT(ω),HS(ω) for extracting tn, sn. Then, we show that they
are optimal in the Wiener sense. As we did in Sec. 26.3, we consider a double-sided
infinitely-long signal yn and using Parseval’s identity, we may write the performance
index (27.11.2) in the frequency domain, as follows:

J =
∫ π

−π

[∣∣Y(ω)−T(ω)−S(ω)
∣∣2 + λ

∣∣Ds(ω)T(ω)
∣∣2 +α

∣∣A(ω)S(ω)
∣∣2
] dω

2π
(27.12.4)

27.12. SPARSE SEASONAL WHITTAKER-HENDERSON DECOMPOSITION 1373

whereDs(ω) andA(ω) are the frequency responses of the filters in Eq. (27.11.5). From
the vanishing of the gradients ∂J/∂T∗ and ∂J/∂S∗, we obtain the equations:

T(ω)+λ∣∣Ds(ω)
∣∣2T(ω)+S(ω) = Y(ω)

S(ω)+α∣∣A(ω)
∣∣2S(ω)+T(ω) = Y(ω)

(27.12.5)

which may be solved for the transfer functions HT(ω)= T(ω)/Y(ω) and HS(ω)=
S(ω)/Y(ω), resulting in,

HT(ω) = α
∣∣A(ω)

∣∣2

λ
∣∣Ds(ω)

∣∣2 +α
∣∣A(ω)

∣∣2 + λα
∣∣Ds(ω)

∣∣2∣∣A(ω)
∣∣2

HS(ω) = λ
∣∣Ds(ω)

∣∣2

λ
∣∣Ds(ω)

∣∣2 +α
∣∣A(ω)

∣∣2 + λα
∣∣Ds(ω)

∣∣2∣∣A(ω)
∣∣2

(27.12.6)

with
∣∣Ds(ω)

∣∣2
and

∣∣A(ω)
∣∣2

given by,∣∣Ds(ω)
∣∣2 = ∣∣1− e−jω

∣∣2s = ∣∣2 sin(ω/2)
∣∣2s

∣∣A(ω)
∣∣2 = ∣∣1+ e−jω + · · · + e−j(D−1)ω∣∣2 =

∣∣∣∣sin(ωD/2)
sin(ω/2)

∣∣∣∣2 (27.12.7)

The filters (27.12.6) generalize the Whittaker-Henderson, or Hodrick-Prescott filter
(27.12.2) to the seasonal case. The filters may be identified as the optimum Wiener filters
for the following signal model:

yn = tn + sn + vn , ∇stn = wn , sn + sn−1 + · · · + sn−D+1 = un (27.12.8)

where vn,wn, un are mutually-uncorrelated, zero-mean, white noises. The model can be
written symbolically in operator form:

yn = tn + sn + vn , Ds(z)tn = wn , A(z)sn = un (27.12.9)

The signals tn, sn are not stationary, but nevertheless the optimum Wiener filters
can be derived as though the signals were stationary [1235–1241]. Alternatively, multi-
plication by Ds(z)A(z) acts as a stationarity-inducing transformation, resulting in the
stationary signal model,

ȳn = Ds(z)A(z)yn = t̄n + s̄n + v̄n = A(z)wn +Ds(z)un +Ds(z)A(z)vn

t̄n = Ds(z)A(z)tn = A(z)wn

s̄n = Ds(z)A(z)sn = Ds(z)un

v̄n = Ds(z)A(z)vn

(27.12.10)

with spectral densities:

St̄ȳ(ω) = St̄t̄(ω)= σ2
w
∣∣A(ω)

∣∣2

Ss̄ȳ(ω) = Ss̄s̄(ω)= σ2
u
∣∣Ds(ω)

∣∣2

Sȳȳ(ω) = σ2
u
∣∣Ds(ω)

∣∣2 +σ2
w
∣∣A(ω)

∣∣2 +σ2
v
∣∣Ds(ω)A(ω)

∣∣2

1374 27. PERIODIC SIGNAL EXTRACTION

It follows from [1235–1241] that the optimum Wiener filters for estimating tn, sn will
be:

HT(ω) = St̄ȳ(ω)
Sȳȳ(ω)

= σ2
w
∣∣A(ω)

∣∣2

σ2
u
∣∣Ds(ω)

∣∣2 +σ2
w
∣∣A(ω)

∣∣2 +σ2
v
∣∣Ds(ω)A(ω)

∣∣2

HS(ω) = Ss̄ȳ(ω)
Sȳȳ(ω)

= σ2
u
∣∣Ds(ω)

∣∣2

σ2
u
∣∣Ds(ω)

∣∣2 +σ2
w
∣∣A(ω)

∣∣2 +σ2
v
∣∣Ds(ω)A(ω)

∣∣2

(27.12.11)

It is evident that these are identical to (27.12.6) with the identifications λ = σ2
v/σ2

w
and α = σ2

v/σ2
u. For a finite, length-N, signal yn, the model (27.12.8) has been used to

derive Kalman smoothing algorithms for estimating tn, sn with O(N) operations, and
for efficiently evaluating the model’s likelihood function [1228,1230]. We note, however,
that the matrix solutions (27.11.7) are equally efficient.

Example 27.12.2: Fig. 27.12.2 plots the frequency responsesHT(ω) andHS(ω) of Eq. (27.12.6).
For the upper graphs, the parameter values were the same as those of Example 27.12.1,
that is, D = 12, s = 2, λ = 2039, α = 10. We note that the responses have the expected
shapes.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HT (ω)|, α = 10

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HS (ω)|, α = 10

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HI (ω)|, α = 100

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

 ω /ω1

|HS (ω)|, α = 100

Fig. 27.12.2 Frequency responses of seasonal Whittaker-Henderson filters.

27.13. PROBLEMS 1375

In the lower graphs, we increased the parameter α to 100 in order to sharpen the comb
peaks. The lower-left graph depicts the filter HI(ω)= 1−HT(ω)−HS(ω) for extracting
the irregular component, and the right graph depicts HS(ω). The trend filter is not shown
since it is virtually identical to that of the upper-left graph. The MATLAB code used to
generate the upper graphs was as follows:

k = linspace(-6,6,2401); w = 2*pi*k/12; % frequencies −π ≤ ω ≤ π

D = 12; s = 2; la = 2039; alpha = 10;

a = ones(D,1); A = freqz(a,1,w); % calculate A(ω)

P = la * abs(1 - exp(-j*w)).^(2*s); % evaluate P(ω) = λ |Ds(ω)|2
Q = alpha * abs(A).^2; % evaluate Q(ω) = α |A(ω)|2
R = Q + P + Q.*P;

HT = Q./R; HS = P./R; HI = 1-HS-HT;

figure; plot(k,HT); figure; plot(k,HS); % upper graphs

27.13 Problems

27.1 First prove Eq. (27.2.2) for all n. Then, using the DFT/IDFT pair in Eq. (27.2.1), show that a
more general form of (27.2.2) is,

D−1∑
m=0

sn−mejωkm = ejωknSk , k = 0,1, . . . ,D− 1, −∞ < n <∞

27.2 Consider the analog signal s(t)= cos(2πf1t) and its sampled version sn = cos(2πf1nT),
where T is the sampling interval related to the sampling rate by fs = 1/T. It is required that
sn be periodic in n with period of D samples, that is, cos

(
2πf1(n+D)T

) = cos(2πf1nT),
for all n. How does this requirement constrain fs and f1?

27.3 Show that the IIR comb and notch filters defined in Eq. (27.2.9) are complementary and power
complementary in the sense that they satisfy Eqs. (27.2.7).

Working with the magnitude response
∣∣Hcomb(ω)

∣∣2
show that the 3-dB width of the comb

peaks is given by Eq. (27.2.11).

27.4 Show that the solution of the system (27.11.7) can be written in the more symmetric, but
computationally less efficient, form:

t = (Q + P+QP)−1Qy

s = (P+Q + PQ)−1Py

28
Neural Networks

28.1 Introduction

Neural networks are the underlying engine for most Machine Learning and Artificial Intel-
ligence (AI) applications. There are several online resources, textbooks, bibliographies,
and software implementations [1415–1437].

The subject has expanded considerably in the past decade with several variations
of neural network architectures, and efficient computational procedures. Some typical
variations are:

– Multilayer feedforward neural networks

– Recurrent neural networks, LSTM, GRU

– Deep learning, convolutional neural networks

– Deep residual networks, ResNet, ResNet50

– Hopfield networks

– Boltzman machines, including restricted

– Auto encoders, including sparse, denoising, variational

– Deep belief networks

– Generative adversarial networks

– Kohonen networks

– Extreme learning machine

– Reinforcement learning

In this chapter, we present only a brief introduction to multilayer feedforward neural
networks, discuss the backpropagation algorithm, and carry out some computer experi-
ments illustrating the convergence and learning properties of neural networks, including
neural networks for time-series prediction [1430–1437].

28.2 Multilayer Feedforward Neural Networks

A typical multilayer feedforward neural network is depicted in Fig. 28.2.1. For clarity,
only two hidden layers are shown, but any additional layers can be added as necessary,

1376

28.2. MULTILAYER FEEDFORWARD NEURAL NETWORKS 1377

as in deep learning networks.

Fig. 28.2.1 Neural network with two hidden layers.

Starting with an applied input pattern x0 (column vector of dimension M0), the out-
put pattern x3 (column vector of dimension M3) is computed by the following sequence
of operations defined by the connection matrices Wr and bias weights br , r = 0,1,2,
and activation function f(u),

forward pass

u1 =W0 x0 + b0

x1 = f(u1)

u2 =W1 x1 + b1

x2 = f(u2)

u3 =W2 x2 + b2

x3 = f(u3)

(28.2.1)

The vector dimensions of the layers are,

M0 × 1, input layer, x0

M1 × 1, hidden layer 1, u1, x1 = f(u1)
M2 × 1, hidden layer 2, u2, x2 = f(u2)
M3 × 1, output layer, u3, x3 = f(u3)

so that the dimensions of the connection matrices and bias weights will be,

W0, M1 ×M0 and b0 , M1 × 1

W1, M2 ×M1 and b1 , M2 × 1

W2, M3 ×M2 and b2 , M3 × 1

and the activation function operations are element-wise, that is, if ui is the i-th compo-
nent of a vector u, then, the i-th component of the vector f(u) is f(ui). The activation
functions could also be chosen to be different for each layer, and also, often the activa-
tion function for the last layer is omitted, that is, the output is, x3 = u3.

1378 28. NEURAL NETWORKS

Several types of activation functions f(u) have been used, some of which are listed
below together with their derivatives f ′(u), with the most common being the sigmoid
logistic and tanh functions and ReLU (rectified linear unit),

logistic: f(u)= 1

1+ e−u
, f ′(u)= f(u)

[
1− f(u)

]
tanh: f(u)= tanh(u) , f ′(u)= 1− f2(u)

softplus: f(u)= ln(1+ eu) , f ′(u)= 1

1+ e−u

linear: f(u)= u , f ′(u)= 1

ReLU: f(u)= max(u,0), f ′(u)= (u ≥ 0)

leaky ReLU: f(u)= max(u,αu), f ′(u)= (u ≥ 0)+α(u < 0)

sinusoid: f(u)= sinu, f ′(u)= cosu

where for the ReLU cases, the notations, (u ≥ 0) and (u < 0), denote MATLAB-like
logical operations†, and the parameter α must be in the range, 0 < α < 1.

During the training phase of the neural network, a set of training input/output pat-
tern pairs,

{
x0, d

}
, are applied to the network, and the connection matrices and bias

weights are adapted to minimize the square deviations of the actual outputs x3 from
the desired outputs d, that is, minimizing the following typical performance index,‡

where, ε3 = d− x3, is the output error,

J =
∑

patterns

εT3 ε3 =
∑

patterns

(d− x3)T(d− x3)= min (28.2.2)

The adaptation of the weights is usually implemented with the gradient-descent
algorithm, that is, the weight updates are computed by the following rule with a small
positive adaptation constant μ, where Wrij denotes the ij matrix element of the r-th
connection matrix Wr , and bri denotes the i-th component of the bias weight br ,

ΔWrij = −μ ∂J
∂Wrij

, Δbri = −μ ∂J
∂bri

, r = 0,1,2 (28.2.3)

The updated weights are then,

Wr =Wr +ΔWr , r = 0,1,2

br = br +Δbr , r = 0,1,2
(28.2.4)

The updates (28.2.4) can be applied in two ways:

†being equal to 1 if their argument is true, and 0, otherwise.
‡more generally, the negative-log-likelihood function based on maximum likelihood is used

28.3. BACKPROPAGATION ALGORITHM 1379

(i) On a pattern-basis, that is, J arises only from one pattern pair in the sum (28.2.2),
that is, Jpatt = (d − x3)T(d − x3), and the updates are applied immediately for
that pattern, then, the next pattern pair is used to perform the next update, and
so on. After all the pattern pairs in the training set have been used, the whole
process is repeated multiple times till convergence.

(ii) On an epoch-basis, that is, a whole series of input/output patterns called an epoch
(which could be the whole training set) is applied and the corrections, ΔWrij,Δbri,
are accumulated over all the patterns in the epoch before the updated weights are
computed, and then, the whole epoch is repeated till convergence.

To see how the gradient-descent works, we may expand the performance index,
considered as a function of the weights, J(W,b), to first-order in Taylor series (justified
if μ is sufficiently small), and apply Eq. (28.2.3), so that component-wise we have,

J(W +ΔW,b+Δb)= J(W,b)+
∑
r,i,j

∂J
∂Wrij

ΔWrij +
∑
r,i

∂J
∂bri

Δbri

= J(W,b)−μ
∑
r,i,j

∣∣∣∣∣ ∂J
∂Wrij

∣∣∣∣∣
2

− μ
∑
r,i

∣∣∣∣ ∂J
∂bri

∣∣∣∣2

≤ J(W,b) , since μ > 0

Thus, the value of J at the updated weights is smaller than its value at the original
weights, J(W+ΔW,b+Δb)≤ J(W,b), so that the iteration of the updating process will
drive J to smaller and smaller values, such as a local minimum. If a local minimum is
reached, then both summation terms are zero, and the performance index will no longer
change. Because of the highly nonlinear dependence of J on the weights, there may be
several local minima, but often choosing any of these tends to be good enough for many
applications — another way to state this is that J is fairly flat in the neighborhoods of
the local or global minima.

28.3 Backpropagation Algorithm

The backpropagation algorithm [1427] is a convenient way of calculating the updates
(28.2.3) based on each pattern

{
x0, d

}
. It makes use of the following gradients of the

performance index,

er = − ∂J
∂ur

, r = 1,2,3 , or, component-wise , eri = − ∂J
∂uri

(28.3.1)

To see how this works, start with the updates of the last connection weights, W2,b2.
Given an input pattern, x0, then after the forward pass of Eq. (28.2.1), we have computed
all layer vectors, ur, xr , r = 1,2,3. Because J depends on W2,b2 only through the
variable u3, we have for the partial derivatives of the updates,

ΔW2ij = −μ ∂J
∂W2ij

= −μ ∂J
∂u3i

∂u3i

∂W2ij
= μe3i x2j

Δb2i = −μ ∂J
∂b2i

= −μ ∂J
∂u3i

∂u3i

∂b2i
= μe3i

(28.3.2)

1380 28. NEURAL NETWORKS

where we used the definitions (28.3.1) and the partial derivatives of the connection for-
mula,

u3 =W2 x2 + b2 ⇒ u3i =
∑
j
W2ij x2j + b2i

∂u3i

∂W2ij
= x2j ,

∂u3i

∂b2i
= 1

Eqs. (28.3.2) can be written in the compact matrix forms,†

ΔW2 = μe3 xT2 , Δb2 = μe3 (28.3.3)

The other updates can similarly be expressed in terms of the gradients (28.3.1). In
summary, we have,

ΔW2 = μe3 xT2 , Δb2 = μe3

ΔW1 = μe2 xT1 , Δb1 = μe2

ΔW0 = μe1 xT0 , Δb0 = μe1

(28.3.4)

The backpropagation algorithm efficiently calculates the quantities, e3, e2, e1, start-
ing from the output layer and proceeding backwards to the input. The operations involve
the diagonal matrix of the derivatives of the activation function, that is,

D(u)= diag
[
f ′(u)

]
, or, element-wise , Dij(u)= δij f ′(ui) (28.3.5)

Given the output x3 of the network corresponding to the input pattern x0, the error
relative to the training pattern, d, will be, ε3 = d − x3, and its contribution to the
performance index J of Eq. (28.2.2), will be, Jpatt = (d − x3)T(d − x3)= εT3 ε3. Starting
with e3, we have component-wise,

e3i = −∂Jpatt

∂u3i
= −∂x3i

∂u3i

∂Jpatt

∂x3i
= f ′(u3i)(di − x3i) , or,

e3 = D(u3)(d− x3)= D(u3)ε3

Next, for e2, because Jpatt depends on x2 through u3, and for e1, because Jpatt depends
on x1 through u2, we have,

e2i = −∂Jpatt

∂u2i
= −∂x2i

∂u2i

∂Jpatt

∂x2i
= −D(u2i)

∂Jpatt

∂x2i

= −D(u2i)
∑
j

∂Jpatt

∂u3j

∂u3j

∂x2i
= D(u2i)

∑
j
W2jie3j

e1i = −∂Jpatt

∂u1i
= −∂x1i

∂u1i

∂Jpatt

∂x1i
= −D(u1i)

∂Jpatt

∂x1i

= −D(u1i)
∑
j

∂Jpatt

∂u2j

∂u2j

∂x1i
= D(u1i)

∑
j
W1jie2j

†supescript T denotes transposition

28.3. BACKPROPAGATION ALGORITHM 1381

These can be written in matrix forms using the transposed connection matrices,

e2 = D(u2)WT
2 e3

e1 = D(u1)WT
1 e2

(28.3.6)

Finally, putting all the computational steps together, we have for the two-hidden-layer
network, for each input/output pattern,

{
x0, d

}
,

forward pass

u1 =W0 x0 + b0

x1 = f(u1)

u2 =W1 x1 + b1

x2 = f(u2)

u3 =W2 x2 + b2

x3 = f(u3)

⇒

backpropagation

ε3 = d− x3

e3 = D(u3)ε3

ε2 =WT
2 e3

e2 = D(u2)ε2

ε1 =WT
1 e2

e1 = D(u1)ε1

⇒

weight updates

ΔW2 = μe3 xT2
Δb2 = μe3

ΔW1 = μe2 xT1
Δb1 = μe2

ΔW0 = μe1 xT0
Δb0 = μe1

(28.3.7)

If the last activation function is omitted, then we simply set, x3 = u3 and e3 = ε3. For a
single hidden layer network depicted in Fig. 28.3.1, we have the simpler version,

forward pass

u1 =W0 x0 + b0

x1 = f(u1)

u2 =W1 x1 + b1

x2 = f(u2)

⇒

backpropagation

ε2 = d− x2

e2 = D(u2)ε2

ε1 =WT
1 e2

e1 = D(u1)ε1

⇒

weight updates

ΔW1 = μe2 xT1
Δb1 = μe2

ΔW0 = μe1 xT0
Δb0 = μe1

(28.3.8)

Fig. 28.3.1 Neural network with one hidden layer.

In practice, the weight updates, ΔWr, Δbr , are smoothed using a simple EMA with
a forgetting factor λ (referred to as momentum updating) before the new weights are
computed, that is, instead of using the corrections of Eq. (28.3.4),

ΔWr = μ er+1 xTr , r = 0,1,2

Δbr = μ er+1

1382 28. NEURAL NETWORKS

we use their EMA-smoothed versions, with some forgetting factor, 0 < λ < 1,†

ΔWr = λΔWr + μ er+1 xTr , r = 0,1,2

Δbr = λΔbr + μ er+1

Depending on whether one uses pattern-updating or epoch-updating, the iterative
computational algorithm for minimizing the performance index J may be summarized
as follows, where we use the value λ = 1 for epoch updating, and 0 ≤ λ < 1 for pattern
updating,‡ and the weights are usually initialized to random values prior to starting the
iteration,

for each epoch, do,

for each pattern, do,

forward pass, calculate, xr, r = 1,2,3
backpropagation pass, calculate, er+1, r = 2,1,0
ΔWr = λΔWr + μer+1 xTr , r = 0,1,2
Δbr = λΔbr + μer+1

if pattern-updating, update now

Wr =Wr +ΔWr , r = 0,1,2
br = br +Δbr

end

end pattern loop

if epoch-updating, update after all epoch patterns

Wr =Wr +ΔWr , r = 0,1,2
br = br +Δbr

end

end epoch loop

(28.3.9)

In the pattern-updating case, the smoothed weight corrections are applied to up-
date the weights after each pattern presentation, whereas in the epoch-updating case,
the weight corrections are accumulated over all the patterns and applied to update the
weights after all patterns have been presented. The epoch loop is then repeated several
times (typically, thousands of times) until J has been minimized.

28.4 Computer Experiments

28.4.1 3:3:2 network for 3-bit parity problem

The 2-bit XOR† problem has served as a prototypical example for neural networks. Here,
we consider its 3-bit generalization, so that the input patterns are length-3 vectors of

†we can also define, ΔWr = λΔWr + (1− λ)μ er+1 xTr , but this amounts to a redefinition of μ.
‡λ = 0 corresponds to no EMA smoothing
†exclusive OR

28.4. COMPUTER EXPERIMENTS 1383

bits (0 or 1), and there are two outputs, one corresponding to the XOR operation of
the 3 bits, i.e., having odd parity, while the other output is the complement of the first
one, i.e., having even parity. There are, 23 = 8, input/output pattern pairs, contained
column-wise in the matrices X0 and D,

X0 =
⎡⎢⎣ 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤⎥⎦

D =
[

0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0

]

As a first example, we use a neural network with one hidden layer of dimension 3, i.e.,
a 3:3:2 network. One epoch consists of all 8 patterns, and the algorithm of Eqs. (28.3.8)
and (28.3.9) is applied repeatedly, with μ = 0.7, to train the network.

Fig. 28.4.1 shows the convergence of the performance index J as a function of epoch
iterations for the four cases of using epoch updating (λ = 1) versus pattern updating
(λ < 1), and using standard sigmoid activation function versus tanh. Because tanh lies
in the symmetric interval [−1,1], the input/output patterns are also transformed in
that case to the same interval before applying the algorithm. For plotting purposes, in
Fig. 28.4.1 the performance index J was normalized to unity value at its beginning.

In all cases, the initial connection matrices and bias weights are initialized to random
values. We note that the algorithm is quite sensitive to the choice of initial values.

After convergence, the output of the network (i.e., layer 2) is calculated by performing
a forward pass using the converged weights, and the results are collected in the 2×8
matrix X2. As an example, for the case λ = 1 with sigmoid activation function, the
calculated or learned output X2 is listed below (row-wise) together with the input X0

and theoretical output D, where we observe that the rounding of X2 reproduces the
correct D output,

activation = sigmoid

X0 | D | X2

0 0 0 | 0 1 | 0.01 0.99

0 0 1 | 1 0 | 0.99 0.01

0 1 0 | 1 0 | 0.99 0.01

0 1 1 | 0 1 | 0.01 0.99

1 0 0 | 1 0 | 0.99 0.01

1 0 1 | 0 1 | 0.01 0.99

1 1 0 | 0 1 | 0.01 0.99

1 1 1 | 1 0 | 0.99 0.01

The complete MATLAB code for this example can be found in the script file, nn332.m,
located in the NN folder of the ISP2e toolbox.

1384 28. NEURAL NETWORKS

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2 net, μ=0.7, λ=1, sigmoid activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 4.55e−04

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2 net, μ=0.7, λ=0.2, sigmoid activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 4.04e−04

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2 net, μ=0.7, λ=1, tanh activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 3.90e−06

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2 net, μ=0.7, λ=0.2, tanh activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 2.35e−06

Fig. 28.4.1 3-bit parity problem – performance index for 3:3:2 network for epoch (λ = 1) vs.
pattern (λ < 1) updating with sigmoid vs. tanh activation functions, but same initializations.

28.4.2 3:3:2:2 network for 3-bit parity problem

Here, we consider the same 3-bit parity problem, but using a neural network with two
hidden layers of dimensions 3 and 2, i.e., a 3:3:2:2 network, adapted with Eqs. (28.3.7) and
(28.3.9). Fig. 28.4.2 shows the convergence of the performance index J as a function of
epoch iterations for the four cases of using epoch updating (λ = 1) vs. pattern updating
(λ < 1), and using standard sigmoid vs. tanh activation functions. Again, the initial
connection matrices and bias weights were initialized to random values, and as before,
the algorithm was sensitive to the choice of initial values.

The complete MATLAB code for this example can be found in the file, nn3322.m,
located in the NN folder of the ISP2e toolbox.

28.4.3 4:4:1 network for prediction of sunspot time series

In addition to their Machine Learning and AI applications, neural networks can also be
used for time series forecasting or prediction. Some of the earlier and later references
discussing a variety of approaches and different architectures are [1427,1430–1436].

28.4. COMPUTER EXPERIMENTS 1385

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2:2 net, μ=0.4, λ=1, sigmoid activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 2.58e−04

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2:2 net, μ=0.4, λ=0.1, sigmoid activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 6.97e−04

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2:2 net, μ=0.4, λ=1, tanh activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 2.39e−06

0 2000 4000 6000 8000 10000
−6

−5

−4

−3

−2

−1

0

1
3:3:2:2 net, μ=0.4, λ=0.1, tanh activation

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 1.68e−06

Fig. 28.4.2 3-bit parity problem – performance index for 3:3:2:2 network for epoch (λ = 1) vs.
pattern (λ < 1) updating with sigmoid vs. tanh activation functions, but same initializations.

One possible approach is to use a nonlinear autoregressive (NAR) neural network
model, as shown in Fig. 28.4.3, in which a time series yn of lengthN, say, {y0, y1, . . . , yN−1},
is being estimated, or predicted, in terms of its past-p time samples, yn−1, yn−2, . . . , yn−p,
which are fed as the inputs to a multilayer neural network that computes an estimate
of yn, denoted here by, ŷn/n−1, as a nonlinear function of these p delayed inputs.

This generalizes the standard linear autoregressive model [45], which determines
the coefficients of the model by minimizing the mean-square prediction error,

J = E
[
e2
n
] = min

en = yn − ŷn/n−1 = prediction error
(28.4.1)

In the neural network case, the criterion (28.4.1) is replaced by a time average over
a training set, consisting of a subset of length Nt the sequence yn, that is, defined over
the Nt time periods, p ≤ n ≤ Nt + p− 1,

J = 1

Nt

Nt+p−1∑
n=p

e2
n =

1

Nt

Nt+p−1∑
n=p

(
yn − ŷn/n−1

)2 = min (28.4.2)

1386 28. NEURAL NETWORKS

Fig. 28.4.3 Times series prediction with a neural network.

where the minimization is with respect to the network connection matrices and bias
weights. If the size Nt of the training set is such that, Nt + p < N, then, once the
neural network has been adapted, the rest of the sequence samples over the time period
Nt + p ≤ n ≤ N − 1, can be used as a prediction set, testing the ability of the trained
network to predict the future values of the time series.

If the adapted network makes a good prediction, ŷn/n−1, of yn, then the correspond-
ing prediction error, en = yn − ŷn/n−1, should be unpredictable and resemble white
noise. Thus, as an additional test of the performance of the network, one may calculate
the autocorrelation function of the prediction error, and verify that it resembles that of
white noise, that is, a delta-function autocorrelation.

The input and output patterns of the training set will be the following p× 1 vectors
and scalars, over the training time range, p ≤ n ≤ Nt + p− 1,

input vectors =

⎡⎢⎢⎢⎢⎢⎣
yn−1

yn−2

...
vn−p

⎤⎥⎥⎥⎥⎥⎦ , scalar outputs = yn

For example, if p = 4 and Nt = 8, then, the set of input and output training pairs
can be collected together in the matrices, X0,D,

X0 =

⎡⎢⎢⎢⎣
y3 y4 y5 y6 y7 y8 y9 y10

y2 y3 y4 y5 y6 y7 y8 y9

y1 y2 y3 y4 y5 y6 y7 y8

y0 y1 y2 y3 y4 y5 y6 y7

⎤⎥⎥⎥⎦
D = [y4 y5 y6 y7 y8 y9 y10 y11

]
These matrices can be easily constructed with the help of the MATLAB function,

datamat.m, found in the NN folder of the ISP2e toolbox.

28.4. COMPUTER EXPERIMENTS 1387

Such neural networks, driven by time-delayed inputs, can also be applied to the more
general problem of estimating one signal, say xn, from another, say yn, using a nonlinear
generalization of the usual linear Wiener filtering problem [45], as depicted in Fig. 28.4.4.

Fig. 28.4.4 Times series estimation with a neural network.

In the present example, we discuss the prediction of the sunspot time series, which
has served as a benchmark for time series prediction problems. The time series yn
consists of N = 300 time samples, and we will use a 4:4:1 network, i.e., p = 4, so that
there will be, N − p = 296, input/output patterns, over the time range, 4 ≤ n ≤ 299.
The first Nt = 250 of these, that is, for 4 ≤ n ≤ 253, will be taken as the training set,
and the remaining 46 ones, 254 ≤ n ≤ 299, will be used for testing the predictive ability
of the network.

Two further simplifications in the present case are (i) to normalize the time series
to unity maximum prior to applying the training algorithm, and (ii) to not use an ac-
tivation function for the output layer. For the middle layer, we used a plain logistic
sigmoid, and applied the training algorithm of Eqs. (28.3.8) and (28.3.9) on an epoch
basis (λ = 1). Because of the normalization factor 1/Nt in the definition of the per-
formance index (28.4.2), we have used the following effective adaptation constant μ in
applying Eqs. (28.3.8),

μ = 0.7
Nt

= 0.0028

The left graph of Fig. 28.4.5 shows the performance index vs. epoch iterations, and
the right graph, the output of trained network over the training set, as well as the pre-
dicted output of the prediction set. We observe the initial rapid decrease of the perfor-
mance index.

Fig. 28.4.6 shows the prediction error, en = yn − ŷn/n−1, calculated only over the
training set, as well as 45 lags of its autocorrelation function, resembling a delta function.

The complete MATLAB code for this example is in the file, nn441sun.m, located in
the NN folder of the ISP2e toolbox.

1388 28. NEURAL NETWORKS

0 1000 2000 3000 4000 5000
−4

−3

−2

−1

0

1

4:4:1 net, μ = 0.7/N
t
, λ=1, sigmoid

epoch iterations, n

lo
g 10

(J
)

 J(n)
 J

min
 = 6.03e−04

0 50 100 150 200 250 300

0

0.5

1

4:4:1 net, μ=0.0028, λ=1, sigmoid

years

training pred

 data
 training set
 prediction

Fig. 28.4.5 Performance index vs. epoch iterations, and output of trained network over the
training set as well as the predicted output (color online).

0 50 100 150 200 250 300
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
prediction error over training set

years

e n

 prediction error

−40 −30 −20 −10 0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

k, lag

R
(k

)
/ R

(0
)

autocorrelation of prediction error

Fig. 28.4.6 Prediction error and its autocorrelation function.

29
Appendices

A Random Number Generators

A.1 Uniform and Gaussian Generators

Random number generators are useful in DSP for performing simulations of various
algorithms, for example, in simulating noisy data. They are also useful in real-time
applications, such as adding dither noise to eliminate quantization distortions as we
saw in Chapter 2, or in computer music synthesis and in the implementation of digital
audio effects, such as chorusing.

Most computer systems and languages have built-in routines for the generation of
random numbers. Typically, these routines generate random numbers that are dis-
tributed uniformly over the standardized interval [0,1), although Gaussian-distributed
random numbers can be generated just as easily. Figure A.1 shows the probability den-
sity functions in the uniform and Gaussian cases.

u

p(u)

1/2 1

1

0
x

p(x)

m m+σm-σ

Fig. A.1 Uniform and Gaussian probability distributions.

There is a large literature on random number generators; see [1257–1275] and ref-
erences therein. As reviewed by Park and Miller [1260], it is hard to find good random
number generators, that is, generators that pass all or most criteria of randomness.

By far the most common generators are the so-called linear congruential generators
(LCG). They can generate fairly long sequences of independent random numbers, typi-
cally, of the order of two billion numbers before repeating. For longer sequences, one
may use shift-register and lagged-Fibonacci generators [1264–1268], which can generate
astronomically long sequences of order of 2250 or 2931.

1389

1390 29. APPENDICES

In C, a typical call to a random number generator routine takes the form:

u = ran(&iseed);

where the output is a real number in the interval 0 ≤ u < 1.
The input is an integer seed, iseed, which is passed by address because it is modified

by the routine internally and its new value serves as the next seed.† Thus, the routine
has one input, namely iseed, and two outputs, u and the new value of iseed. Figure
A.2 shows the effect of a single call to such a routine, as well as successive calls which
generate a sequence of independent random numbers, starting from an arbitrary initial
seed.

ran

u

iseedin iseedout

ran
iseed0 iseed1 iseed2 iseed3ran

u1 u2 u3

ran

Fig. A.2 Single and successive calls to routine ran.

The LCG algorithm for generating u and updating the seed is defined by three integer
parameters, {a, c,m}, called the multiplier, the displacement, and the modulus. Given
an initial integer seed I0 in the interval‡ 0 ≤ I0 ≤ m − 1, the LCG algorithm is the
recursion:

In = (aIn−1 + c)mod(m)

un = In
m

(LCG algorithm) (A.1)

Because of the modulo-m operation, all the seeds In are restricted to the interval:

0 ≤ In ≤m− 1

This implies that un will be in the interval 0 ≤ un < 1, and that the length of such
a sequence can be at most m − 1. The parameters {a, c,m} must be chosen carefully,
such that every initial seed must result in a maximal-length sequence [1257]. We will
use the following generator which has maximal length m−1. It was originally proposed
in [1269] and has withstood the test of time [1260]. It has c = 0 and:

a = 75 = 16807, m = 231 − 1 = 2147483647 (A.2)

†In some implementations, the seed is hidden from the user.
‡If c = 0, one must pick I0 �= 0.

A. RANDOM NUMBER GENERATORS 1391

With these parameters, Eq. (A.1) cannot be implemented in a straightforward fashion
because the product aI can take on extremely large values that exceed the integer range
of many computers. For example, if I =m−1 = 2147483646, thenaI � 3.6×1013 � 245,
which exceeds the typical signed “long” (4-byte) integer range of most micros:

− 231 ≤ I ≤ 231 − 1 (A.3)

A portable implementation suggested by Schrage [1258,1270] rearranges the com-
putation of (aI)mod(m) in such a way that all intermediate results remain bounded
by the range (A.3). The technique is based on using the quotient q and remainder r of
the division of m by a, that is,

m = aq+ r (A.4)

where r is in the range 0 ≤ r ≤ a − 1. The key requirement for the method to work is
that r satisfy the additional constraint:

r < q (A.5)

For the choice (A.2), we have the values for q and r satisfying (A.4) and (A.5):

q = 127773, r = 2836 (A.6)

Given an integer seed I in the range 0 ≤ I ≤ m− 1, the quantity J = (aI)mod(m)
is the remainder of the division of aI by m, that is,

aI =mK + J, where 0 ≤ J ≤m− 1 (A.7)

Schrage’s method calculates J without directly performing the multiplication aI. As
a preliminary step, the seed I is divided by q, giving the quotient and remainder:

I = qk+ j, where 0 ≤ j ≤ q− 1 (A.8)

Then, the quantity aI can be expressed as follows:

aI = a(qk+ j)= aqk+ aj = (m− r)k+ aj =mk+ (aj − rk) (A.9)

where we used aq =m− r from Eq. (A.4).
Comparing Eqs. (A.9) and (A.7), it appears that K = k and J = aj − rk. This would

be true by the uniqueness of Eq. (A.7) if aj− rk were in the range 0 ≤ aj− rk ≤m− 1.
Note that both quantities aj and rk lie in this range:

0 ≤ aj ≤m− 1, 0 ≤ rk ≤m− 1 (A.10)

Indeed, the first follows from the fact that j < q from Eq. (A.8), so that

0 ≤ aj < aq =m− r < m

The second one follows from Eqs. (A.5) and (A.8):

0 ≤ rk < qk = I − j ≤ I ≤m− 1

1392 29. APPENDICES

Combining the inequalities (A.10) we find the range of the quantity aj − rk:

−(m− 1)≤ aj − rk ≤m− 1

If aj − rk lies in the positive half, 0 ≤ aj − rk ≤ m − 1, then we must necessarily
have J = aj− rk and K = k. But, if it lies in the negative half, −m+ 1 ≤ aj− rk ≤ −1,
we must shift it by m so that 1 ≤ aj − rk +m ≤ m − 1. In this case, we have aI =
mk+ aj − rk =m(k− 1)+(m+ aj − rk); therefore, J =m+ aj − rk and K = k− 1.

Denoting k = �I/q� and j = I%q, we can summarize the computation of the new
seed J = (aI)mod(m) as follows:

given a seed I in the range 0 ≤ I ≤m− 1 do:
compute J = a(I%q)−r�I/q�
if J < 0, then shift

J = J +m

The following routine ran.c is a C implementation based on Schrage’s Fortran ver-
sion [1258]. Note that iseed is declared long and passed by reference:

/* ran.c - uniform random number generator in [0, 1) */

#define a 16807 that is, a = 75

#define m 2147483647 that is, m = 231 − 1

#define q 127773 note, q = m/a = quotient

#define r 2836 note, r = m%a = remainder

double ran(iseed) usage: u = ran(&iseed);

long *iseed; iseed passed by address

{
*iseed = a * (*iseed % q) - r * (*iseed / q); update seed

if (*iseed < 0) wrap to positive values

*iseed += m;

return (double) *iseed / (double) m;
}

The following program segment illustrates the usage of the routine. It generates an
array of N uniform random numbers. The initial value of the seed is arbitrary:

long iseed; seed must be long int

iseed = 123456; initial seed is arbitrary

for (n=0; n<N; n++)
u[n] = ran(&iseed);

There exist methods that improve the quality of random number generators by mak-
ing them “more random” than they already are [1257–1275].

The generated random numbers u are uniformly distributed over the interval 0 ≤
u < 1, as shown in Fig. A.1. Over this interval, the probability density is flat, p(u)= 1.
Therefore, the mean and variance of u will be:

A. RANDOM NUMBER GENERATORS 1393

E[u] =
∫ 1

0
up(u)du =

∫ 1

0
udu = 1

2

σ2
u = E[u2]−E[u]2=

∫ 1

0
u2 du− 1

4
= 1

3
− 1

4
= 1

12

(A.11)

To generate a random number which is uniformly distributed over a different inter-
val, say a ≤ v < b, we generate a uniform u over [0,1) and then shift and scale it to
obtain:

v = a+ (b− a)u (A.12)

The mean and variance of v will be:

E[v]= a+ (b− a)
1

2
= a+ b

2
, σ2

v =
(b− a)2

12

In particular, the transformation v = u− 0.5 will generate zero-mean random num-
bers over the unit interval [−0.5,0.5), and the transformation v = 2u− 1 will generate
zero-mean random numbers over the length-2 interval [−1,1).

More complicated transformations and combinations of uniform random numbers
can be used to generate random numbers that are distributed according to other proba-
bility distributions, such as Gaussian, exponential, Poisson, binomial, etc. [1257–1275].

A method of generating Gaussian-distributed random numbers is based on the cen-
tral limit theorem, which states that the sum of a large number of independent random
variables is Gaussian. In particular, summing only 12 independent uniform random
numbers gives a very good approximation to a Gaussian:

v = u1 + u2 + · · · + u12 (A.13)

The mean of v is the sum of the individual means, and because ui are independent,
the variance of v will be the sum of the variances:

E[v] = E[u1]+· · · + E[u12]= 1

2
+ · · · + 1

2
= 12× 1

2
= 6

σ2
v = σ2

u1
+ · · · +σ2

u12
= 1

12
+ · · · + 1

12
= 12× 1

12
= 1

Because each ui has finite range 0 ≤ ui < 1, the range of v will also be finite:
0 ≤ v < 12, with mean at 6. Even though v has finite range, it represents an adequate
approximation to a Gaussian because there are ±6σv on either side of the mean, and we
know that for a Gaussian distribution more than 99.99% of the values fall within ±4σv.

To generate a Gaussian random number x with a given mean E[x]=m and variance
σ2
x = s2, we may shift and scale v:

x =m+ s(v− 6)

The following routine gran.c implements this method using the uniform routine
ran. Its inputs are {m,s} and a seed. Its outputs are the random number x and the
updated seed:

1394 29. APPENDICES

/* gran.c - gaussian random number generator */

double ran(); uniform generator

double gran(m, s, iseed) usage: x = gran(m, s, &iseed);

double m, s; m = mean, s2 = variance

long *iseed; iseed passed by address

{
double v = 0;
int i;

for (i = 0; i < 12; i++) sum 12 uniform random numbers

v += ran(iseed);

return s * (v - 6) + m; adjust mean and variance

}

Its usage is demonstrated by the following program segment. As in the case of ran,
the seed must be declared to be long:

iseed = 123456; initial seed is arbitrary

for (n=0; n<N; n++)
x[n] = gran(m, s, &iseed);

A.2 Low-Frequency Noise Generators

A sequence of zero-mean uniform random numbers generated by successive calls to
ran, such as,

un = ran(&iseed)−0.5, n = 0,1,2, . . .

corresponds to a white noise signal because the generated numbers are mutually inde-
pendent. The autocorrelation function and power spectral density of such signal are,

Ruu(k)= σ2
uδ(k), Suu(f)= σ2

u (A.14)

with variance σ2
u = 1/12.

Such a sequence is purely random in the sense that each sample has no memory or
dependence on the previous samples. Because Suu(f) is flat, the sequence will contain
all frequencies in equal proportions and will exhibit equally slow and rapid variations
in time.

The rate at which this sequence is produced is equal to the sampling rate fs, that
is, one random number per sampling instant. In some applications, such as computer
music [110–114,116], or for generating 1/f noise, it is desired to generate random num-
bers at a slower rate, for example, one random number every D sampling instants. This
corresponds to a generation frequency of fs/D random numbers per second.

If a new random number is generated every D sampling instants, that is, at times
n = 0,D,2D,3D, . . . , then the signal values filling the gaps between these random
numbers must be calculated by interpolation. Two simple ways of interpolating are
to use hold or linear interpolators [110]. They are shown in Fig. A.3 for D = 5.

A. RANDOM NUMBER GENERATORS 1395

u0

n

u1

u2

u3

u0

n

0 0D D3D 3D2D 2D

u1

u2

u3 y(n)y(n)

Fig. A.3 Low-frequency noise generation using hold and linear interpolators.

In the hold interpolator, each random number is held constant for D sampling in-
stants. In the linear interpolator, two successive random numbers, separated by D time
units, are connected by a straight line and the intermediate samples lie on that line.

The following routine ranh.c implements the hold generator. Its inputs are the de-
sired period D and a seed. Its outputs are a zero-mean random number and an updated
seed.

/* ranh.c - hold random number generator of period D */

double ran(); uniform generator

void cdelay2(); circular delay

double ranh(D, u, q, iseed) usage: y = ranh(D, u, &q, &iseed);

int D, *q; q is cycled modulo-D
double *u; u = 1-dimensional array

long *iseed; q, iseed are passed by address

{
double y;

y = u[0]; hold sample for D calls

cdelay2(D-1, q); decrement q and wrap mod-D

if (*q == 0) every D calls,

u[0] = ran(iseed) - 0.5; get new u[0] (zero mean)

return y;
}

The temporary variable u is a 1-dimensional array that holds the current value of the
random number forD calls. The index q is cycled modulo-Dwith the help of the circular
delay routine cdelay2, which decrements it circularly during each call. Every D calls,
the index q cycles through zero, and a new zero-mean random number is obtained by
a call to ran, which overwrites the value of u[0] and also updates the seed. Before the
first call, the array u[0] must be filled with an initial (zero-mean) random number. The
initialization and usage of the routine are illustrated by the following program segment:

double *u; u is a 1-dimensional array

int D, q;
long iseed = 654321; initial seed is arbitrary

u[0] = ran(&iseed) - 0.5; initialize u (zero mean)

q = 0; initialize q

1396 29. APPENDICES

for (n=0; n<N; n++)
y[n] = ranh(D, u, &q, &iseed); q, iseed are passed by address

For the linear interpolation case, we need to keep track of two successive random
valuesu, sayu[0] andu[1], and connect them linearly. Because the slope of the straight
line between u[0] and u[1] is (u[1]−u[0])/D, the linearly interpolated samples will
be

y = u[0]+(u[1]−u[0]) i
D
, i = 0,1, . . . ,D− 1

Because we use the routine cdelay2, the circular index q takes periodically the suc-
cessive values: q = 0,D − 1,D − 2, . . . ,1. These may be mapped to the interpolation
index i by:

i = (D− q)%D = 0,1, . . . ,D− 1

where the modulo-D operation is effective only when q = 0 giving in that case i =
D%D = 0. The following routine ranl.c implements the linearly interpolated periodic
generator, where now the temporary variable u is a two-dimensional array:

/* ranl.c - linearly interpolated random generator of period D */

double ran(); uniform generator

void cdelay2(); circular delay

double ranl(D, u, q, iseed) usage: y = ranl(D, u, &q, &iseed);

int D, *q; q is cycled modulo-D
double *u; u = 2-dimensional array

long *iseed; q, iseed are passed by address

{
double y;
int i;

i = (D - *q) % D; interpolation index

y = u[0] + (u[1] - u[0]) * i / D; linear interpolation

cdelay2(D-1, q); decrement q and wrap mod-D

if (*q == 0) { every D calls,

u[0] = u[1]; set new u[0] and

u[1] = ran(iseed) - 0.5; get new u[1] (zero mean)

}

return y;
}

Every D calls, as q cycles through zero, the value of u[1] is shifted into u[0] and
u[1] is replaced by a new zero-mean random number by a call to ran. The initialization
and usage of the routine are illustrated by the program segment:

double u[2]; u is a 2-dimensional array

int D, q;

A. RANDOM NUMBER GENERATORS 1397

long iseed = 654321; initial seed is arbitrary

u[0] = ran(&iseed) - 0.5; initialize u[0] and u[1]
u[1] = ran(&iseed) - 0.5; zero-mean initial values

q = 0; initialize q

for (n=0; n<N; n++)
y[n] = ranl(D, u, &q, &iseed); q, iseed are passed by address

Figure A.4 shows typical sequences y[n] both for the hold and linear interpolator
generators, for the cases D = 5 and D = 10. The sequence length was N = 100.

Fig. A.4 Hold and linearly interpolated low-frequency random sequences.

The routines ranh and ranl generate random numbers y in the range −0.5 ≤ y <
0.5, with mean E[y]= 0. In the hold case, the variance is σ2

y = σ2
u = 1/12, and in the

linear case σ2
y = (2D2 + 1)σ2

u/3D2.
The hold and linear interpolator generators can be given a convenient filtering inter-

pretation, as shown in Fig. A.5. The interpolated random sequence y(n) can be thought
of as the output of an interpolation filter whose input is the low-rate sequence of random
numbers um occurring at rate fs/D and being separated from each other by D−1 zeros.
Each input random number causes the filter to produce its impulse response filling the
gap till the next random number D samples later. The impulse responses for the hold
and linear cases are shown in Fig. 14.3.1.

u0

n
0

u1

D 2D 3D

u2

u3

u0

n
0

u1

D 2D 3D

u2

u3

H(z)

hold
interpolator

x(n) y(n)

Fig. A.5 Filtering interpretation of hold interpolator.

To turn the input and output sequences x(n) and y(n) into stationary random se-
quences, we must make a slight modification to the generation model [1276]. Instead of

1398 29. APPENDICES

assuming that the random numbers um, m = 0,1, . . . are generated exactly at multiples
of D, that is, at times n =mD, we introduce a random delay shift in the entire sequence
and assume that the um’s are generated at times:

n =mD+ d

where the delay d is a discrete-valued random variable taking on the possible values
{0,1, . . . ,D−1}with uniform probability, that is, p(d)= 1/D. In this case, the sequences
x(n) and y(n) defining the generation model are obtained by:

x(n) =
∞∑

m=−∞
δ(n−mD− d)um

y(n) =
∞∑

m=−∞
h(n−mD− d)um

(A.15)

Each realization of x(n) and y(n) is defined by a random value of d from the set
{0,1, . . . ,D− 1} and the random numbers um. The particular case D = 5 and d = 3 is
shown in Fig. A.6 for the hold interpolator.

u0

n

0

u1

u-1 u-1

d

2D+d 2D+dD+d D+dd 3D+d 3D+d

u2

u3

x(n)

u0

n

0

u1
d

d

u2

u3

y(n)

Fig. A.6 Randomly delayed input and output sequences.

If we assume that the random numbers um are zero-mean, mutually independent,
and uniformly distributed over the interval [−0.5,0.5), then the sequence x(n) becomes
a zero-mean white noise sequence with variance σ2

x = σ2
u/D, and therefore, its filtered

version y(n) will be stationary (in the steady state) and have power spectrum as given
by Eq. (9.7.2):

Syy(f)= |H(f)|2σ
2
u
D

(A.16)

where for the hold and linear interpolators, we have from Section 14.3:

H(f)= sin(πfD/fs)
sin(πf/fs)

e−jπf(D−1)/fs , H(f)= 1

D

[
sin(πfD/fs)
sin(πf/fs)

]2

(A.17)

The above technique of introducing a random delay to guarantee the stationarity
of the output process is standard in digital communication applications [1277]. For

A. RANDOM NUMBER GENERATORS 1399

the purpose of generating low-frequency random sequences, such a delay is a welcome
feature that improves the flexibility of the model.

The implementation of an overall random delay shift in the generated sequence can
be accomplished by initializing the routines ranh or ranl not at q = 0, but at q = d,
where the random integer d = 0,1, . . . ,D− 1 can be generated by an initial call to ran:

d = �D · ran(&iseed)�
The interpolation between the low-rate random numbers um can also be accom-

plished using more sophisticated interpolation filters, whose frequency response H(f)
closely approximates an ideal lowpass filter with cutoff fs/2D. The subject of interpola-
tion filter design was discussed in Chapter 14. Any of those designs and their efficient,
so-called polyphase, realizations can be used in place of the hold and linear interpola-
tors. For example, using the polyphase sample processing algorithm of Eq. (14.2.20), we
may write the low-frequency random number generation algorithm:

repeat forever:
if (q = 0)

w[0]= ran(&iseed)−0.5
i = (D− q)%D
y = dot(P,hi,w)= output
cdelay2(D−1,&q)
if (q = 0)

delay(P,w)

(A.18)

where hi is the ith polyphase subfilter of order P, w is the low-rate delay line holding
the random numbers um. The length of the interpolation filter is N = 2DM+1, and P =
2M−1. As in the routines ranh and ranl, q is passed by address and gets decremented
circularly with the help of cdelay2. As q cycles through zero every D calls, the low-
rate delay line is shifted and a new (zero-mean) random number is entered into w. See
Problem A.5 for a simulation.

A.3 1/f Noise Generators

1/f -noise is also known as flicker or pink noise, depending on the context. It is charac-
terized by a power spectrum that falls in frequency like 1/f :

S(f)= A
f

(A.19)

To avoid the infinity at f = 0, this behavior is assumed valid for f ≥ fmin, where
fmin is a desired minimum frequency. The spectrum (A.19) is characterized by a 3-dB
per octave drop, that is, whenever f doubles, S(f) drops by a factor of 1/2. Indeed, we
have:

S(2f)= A
2f
= 1

2
S(f) ⇒ 10 log10

[
S(f)
S(2f)

]
= 10 log10(2)= 3 dB

The amount of power contained within a frequency interval [f1, f2] is

1400 29. APPENDICES

∫ f2

f1
S(f)df = A ln

(f2

f1

)
This implies that the amount of power contained in any octave interval is the same.

That is, if f2 = 2f1, then A ln(f2/f1)= A ln(2f1/f1)= A ln(2), which is independent of
the octave interval [f1,2f1].

1/f noise is ubiquitous in nature. It is observed in solid-state circuits, astrophysics,
oceanography, geophysics, fractals, and music; see [1278–1287] and references therein.
In audio engineering, it is known as pink noise and is used to test the frequency response
of audio equipment such as loudspeakers. It represents the psychoacoustic equivalent
of white noise because our auditory system is better matched to the logarithmic octave
frequency scale than the linear scale.

In this section, we present a 1/f noise generator that uses the low-frequency gener-
ator ranh. It is based on an algorithm by Voss, mentioned in [1279]. The algorithm is a
variant of the so-called “spreading of time constants” models that have been proposed
to explain the physics of 1/f noise [1278,1283,1287].

Such models assume that the noise consists of the sum of several white noise pro-
cesses that are filtered through first-order lowpass filters having time constants that are
successively larger and larger, forming a geometric progression. In Voss’s algorithm,
the role of the lowpass filters is played by the hold interpolation filters.

In our notation, Voss’s 1/f -noise generator is defined by taking the average of several
periodically held random numbers with periods that form a geometric progression,Db =
2b, with b = 0,1,2, . . . , B− 1. That is, we define the random number sequence:

y(n)= 1

B

B−1∑
b=0

yb(n)= 1

B
[
y0(n)+y1(n)+· · · + yB−1(n)

]
(A.20)

where the term yb(n) is a periodically held random number with period Db = 2b,
produced by calling the routine ranh:

yb(n)= ranh(Db, &u[b], &q[b], &iseed) (A.21)

Each term yb(n) must have its own 1-dimensional array u[b] and circular index
q[b]. The same seed variable iseed is used by all terms, but because it is updated at
different periods, the terms yb(n) will be mutually independent.

The following routine ran1f.c implements this algorithm. Its inputs are the number
of “bits” B, the B-dimensional arrays u and q, and a seed. Its outputs are a 1/f -noise
random number and an updated seed:

/* ran1f.c - 1/f random number generator */

double ranh(); random hold periodic generator

double ran1f(B, u, q, iseed) usage: y = ran1f(B, u, q, &iseed);

int B, *q; q, u are B-dimensional

double *u;
long *iseed; passed by address

A. RANDOM NUMBER GENERATORS 1401

{
double y;
int b;

for(y=0, b=0; b<B; b++)
y += ranh(1<<b, u+b, q+b, iseed); period = (1<<b) = 2b

return y / B;
}

Because the component signals yb(n) are mutually independent with mean E[yb]=
0 and variance σ2

yb = σ2
u = 1/12, it follows that the mean and variance of the 1/f -noise

sequence y(n) will be:

E[y]= 0, σ2
y =

σ2
u
B
= 1

12B
(A.22)

The initialization and usage of the routine are illustrated by the following program
segment, which generates N random numbers y(n):

double *u;
int *q;
long iseed=123456; initial seed is arbitrary

u = (double *) calloc(B, sizeof(double)); B-dimensional

q = (int *) calloc(B, sizeof(int)); B-dimensional

for (b=0; b<B; b++) {
u[b] = ran(&iseed) - 0.5; initialize u’s

q[b] = (1<<b) * ran(&iseed); random initial q’s

}

for (n=0; n<N; n++) N is arbitrary

y[n] = ran1f(B, u, q, &iseed);

As discussed in the previous section, to guarantee stationarity the initial values of q
must be selected randomly from the set {0,1, . . . ,D−1}. To see how the various terms
yb(n) combine to generate y(n), consider the case B = 4

y(n)= 1

4

[
y0(n)+y1(n)+y2(n)+y3(n)

]
Figures A.7 and A.8 show the generated signal y(n) and its four component signals

yb(n), for n = 0,1, . . . ,199. The periods of the four component signals are 1, 2, 22, 23.
For convenience, all initial random delays were set to zero, that is, q[b]= 0, b = 0,1,2,3.

The power spectrum of the model (A.20) does not have an exact 1/f shape, but is
close to it. Therefore, it can be used in practice to simulate 1/f noise. The 1/f shape is
approximated for frequencies f ≥ fmin, where:

fmin = fs
2B

(A.23)

This expression can be used to pick the proper value of B for a particular simulation.
That is, given a desired minimum frequency we calculate B = log2(fs/fmin).

1402 29. APPENDICES

Fig. A.7 1/f -noise with B = 4.

Fig. A.8 Components of 1/f noise.

Because the yb(n) components are mutually independent, the power spectrum of
y(n) will be equal to the sum of the power spectra of the individual parts. Using Eqs.
(A.16) and (A.17), we have:

A. RANDOM NUMBER GENERATORS 1403

Syy(f)= 1

B2

B−1∑
b=0

Sybyb(f)=
1

B2

B−1∑
b=0

1

2b
sin2(πf2b/fs)
sin2(πf/fs)

σ2
u (A.24)

The DC value of the spectrum at f = 0 is not infinite as suggested by Eq. (A.19); it
is finite, but large. Taking the limit f → 0, we find: Syy(0)= (2B − 1)σ2

u/B2. Figure
A.9 shows the theoretical spectrum computed via Eq. (A.24) for B = 8, together with
the exact 1/f curve, and the estimated spectra obtained by the periodogram averaging
method, for the two cases of averaging K = 2 and K = 200 zero-mean blocks of length
N = 256, generated by calls to ran1f.

Fig. A.9 Theoretical and estimated 1/f power spectra, for B = 8.

All spectra have been normalized to unity at f = fmin = fs2−B = fs/256, and are
plotted in dB, that is, 10 log10

(
S(f)/S(fmin)

)
. Basically, they attenuate by 3 dB per oc-

tave. The calculation of the averaged periodograms was done by the following program
segment, which implements the periodogram averaging method,

for (k=0; k<K; k++) { average K periodograms

for (b=0; b<B; b++) { initialize kth block

u[b] = ran(&iseed) - 0.5;
q[b] = (1<<b) * ran(&iseed); randomized initial q’s

}

for (n=0; n<N; n++) generate kth block

Y[n] = cmplx(ran1f(B,u,q,&iseed), 0.0); complexify for FFT

fft(N, Y); FFT of kth block

for(i=0; i<N; i++)
S[i] += cabs(Y[i]) * cabs(Y[i]); accumulate kth periodogram

}

A.4 Problems

A.1 Consider the random signal model of Eq. (A.15). Show that x(n) is a zero-mean white noise
sequence with variance σ2

x = σ2
u/D. Show that the output signal y(n) has zero mean and

variance is in the two cases:

1404 29. APPENDICES

σ2
y = σ2

u (hold), σ2
y =

2D2 + 1

3D2
σ2
u (linear)

A.2 For the hold interpolator case of Eq. (A.15), show that the autocorrelation function of the
output signal is:

Ryy(k)= E[y(n+ k)y(n)]=
(

1− |k|
D

)
σ2
u, −D ≤ k ≤ D

A.3 Computer Experiment: Autocorrelation Function of Held Noise. Generate a length-100 block
of randomly held zero-mean random numbers with period D = 5. Using the routine corr,
compute the sample autocorrelation R̂yy(k) of the block for k = 0,1, . . . ,99, and plot it
together with the theoretical autocorrelation of Problem A.2.

A.4 Computer Experiment: Power Spectrum of Held Noise. For the cases D = 2, 5, and 10, plot
the theoretical power spectrum of the hold interpolation noise given by Eq. (A.16), over the
interval 0 ≤ f ≤ fs. Then, for the case D = 5, generate K = 200 blocks of held numbers
y(n) of length N = 256, compute the periodogram of each block using a 256-point FFT, and
average the K periodograms to get an estimate of the power spectrum. Plot that estimate
together with the theoretical power spectrum. Use absolute scales (not dB) and normalize
all spectra to unity at DC. (The steps for such a computation were illustrated at the end of
Section A.3.)

A.5 Computer Experiment: Interpolated Random Number Generators. The algorithm of Eq. (A.18)
generates low-frequency random numbers using a general interpolation filter. The input
random numbers are generated at a rate fs/L and are interpolated by an L-fold interpolator
resulting in a random sequence at rate fs. Write a general routine, say rani.c, that imple-
ments this algorithm. Its inputs should be the L×(P + 1) polyphase filter matrix h[i][n]
(designed independently), the low-rate delay line vector w, an input/output seed variable
declared as in ranh or ranl, and the circular index q that cycles modulo-L.

Using this routine, write a test program that generates Ntot = 150 random numbers of
frequency fs/10, i.e., L = 10. The delay line w must be initialized as in Eq. (14.2.19). Use
three interpolator designs—all implemented by your routine rani: a hold, a linear, and a
Kaiser interpolator with given stopband attenuation A and transition width Δf (you may
choose values such that P = 5). Plot and compare the three length-150 random number
sequences.

A.6 Using the result of Problem A.2, show that the autocorrelation of the 1/f noise model of
Eq. (A.20) is:

Ryy(k)=
[

1− b(k)
B

− 2|k|
B

(2−b(k) − 2−B)
] σ2

u
B

(A.25)

where b(k) is the ceiling quantity b(k)= 'log2(|k|+1)(. Draw a sketch ofRyy(k) for B = 4.
Show that the maximum correlation length is kmax = 2B−1 − 1.

A.7 Computer Experiment: Autocorrelation Function of 1/f Noise. Generate a block of 1/f noise
samples y(n), n = 0,1, . . . ,N − 1, where N = 2000 assuming B = 8. Using the correlation
routine corr.c, compute and plot the sample autocorrelation of the sequence for lags 0 ≤
k ≤ 150. Compare it Eq. (A.25).

A.8 Computer Experiment: Alternative 1/f Noise Generator. An alternative 1/f noise generator
is based on the “spreading of time constants” model [1278,1283,1287] in which white noise

A. RANDOM NUMBER GENERATORS 1405

signals are filtered through first-order lowpass filters with time constants in geometric pro-
gression, τb = τ0cb, b = 0,1, . . . , where c > 1. Discrete-time versions of such filters are of
the formH(z)= G/(1−az−1), where a is related to the sampling interval and time constant
by a = e−T/τ and the gain is chosen to be G = √1− a2 in order for the NRR of the filter
to be unity. For small T/τ, we may use the first-order approximation a = 1 − T/τ. The
generation model is based on summing the outputs of B such filters:

y(n) = 1√
B

B−1∑
b=0

yb(n)

yb(n) = abyb(n− 1)+Gbxb(n), b = 0,1, . . . , B− 1

(A.26)

where Gb =
√

1− a2
b and xb(n) are mutually independent, zero-mean, unit-variance, white

Gaussian signals that can be generated by calls to gran. The 1/
√
B factor normalizes y(n)

to unit variance. The power spectrum of the signal y(n) will be:

S(ω)= 1

B

B−1∑
b=0

|Hb(ω)|2 = 1

B

B−1∑
b=0

1− a2
b

1− 2ab cosω+ a2
b

(A.27)

The filter parameters can be expressed as ab = e−T/τb � 1 − T/τb = 1 − c−bT/τ0. As a
practical matter, we would like the model to approximate 1/f noise over a given interval
ωmin ≤ ω ≤ ωmax. These limits are inversely proportional to the longest and shortest
time constants τb [1287]. Thus, we may set cB−1 = ωmax/ωmin. Using the approximation
a = 1−ωc of Example 15.2, we obtain the “design” equations for the filter parameters:

c =
(
ωmax

ωmin

)1/(B−1)
, ab = 1−ωmincB−1−b = 1−ωmaxc−b, (A.28)

for b = 0,1, . . . , B − 1. The model works well over a wide range of frequencies, especially
whenωmin is very small [1283,1288]. The positivity of ab requiresωmax < 1 in rads/sample.
However, the model also works if we allow negative ab’s as long as they have |ab| < 1. This
requires that ωmax < 2 or in terms of the sampling frequency fmax < fs/π. To get a feeling
for the range of applicability of this model consider the values:

ωmin = 0.01π, 0.001π

ωmax = 0.1π, 0.2π, 0.3π, 0.4π,0.5π, 0.6π

For each pair {ωmin,ωmax}, compute the model spectrum (A.27) over the interval ωmin ≤
ω ≤ωmax and plot it together with the desired 1/ω spectrum. Use dB scales and normalize
each spectrum to 0 dB at ωmin. In each case, you need to experiment to find the best value
for B, but typically, B = 2–6.

Next, for each frequency pair, generateK sequences y(n) each of length L by the Eqs. (A.26).
For each sequence compute its L-point FFT periodogram and average the K periodograms;
(such a computation was outlined at the end of Section A.3). Use K = 200 and L = 256. Plot
the averaged periodogram together with the model spectrum. Use dB scales and normalize
all spectra to the same DFT frequency (for this problem, it is better to normalize them at the
second DFT frequency; that is, ω = 2π/L.)

A.9 Computer Experiment: Yet Another 1/f Noise Generator. A simple and effective 1/f noise
generator that covers almost the entire Nyquist interval is obtained by sending a zero-mean
white noise sequence x(n) of variance σ2

x through the following third-order filter [1289]:

1406 29. APPENDICES

H(z)= G
(1− 0.98444z−1)(1− 0.83392z−1)(1− 0.07568z−1)
(1− 0.99574z−1)(1− 0.94791z−1)(1− 0.53568z−1)

(A.29)

The resulting output sequence y(n) has power spectrum Syy(ω)= |H(ω)|2σ2
x , according

to Eq. (9.7.1). The filter is lowpass with finite gain at DC; its 3-dB frequency is approximately
ωc = 0.0015π (e.g., 30 Hz at the audio rate fs = 40 kHz). Beyond ωc the filter’s magnitude
response squared behaves approximately like 1/ω over the rest of the Nyquist interval, that
is,

|H(ω)|2 � const.

ω
, for ωc �ω ≤ π

Thus, the output sequence y(n) will imitate 1/f noise. To generate y(n), one needs to filter
a white noise input x(n) through H(z). To avoid the transients introduced by the filter, the
first neff outputs must be discarded, where neff = log ε/ loga is the ε-level time constant of
the filter (for example, with ε = 0.05, a = maxi |pi| = 0.99574, we have neff = 702).

This model is similar to the spreading of time constants model discussed in Problem A.8,
except it is the cascade instead of the sum of factors with time constants increasing in
geometric progression. Indeed, a more general such model would be of the form:

H(z)= G
(1− bz−1)(1− bcz−1)(1− bc2z−1)
(1− az−1)(1− acz−1)(1− ac2z−1)

(A.30)

The time constants neff of the three poles are in geometric proportions 1 : c : c2.

a. Determine the parameters {a,b, c} of the model (A.30) by matching them to those of
the model (A.29), that is, set a = 0.99574, ac = 0.94791, and b = 0.98444. Then solve
for c and determine the remaining pole and zeros: ac2

, bc, bc2
.

b. Evaluate |H(ω)|2 of the filters (A.29) and (A.30) at 500 equally spaced frequencies over
the interval 0.002π ≤ω ≤ π and plot them on the same graph together with the curve
1/ω evaluated over the same frequencies. For plotting convenience, use dB scales for
all responses and normalize them to 0 dB at ω = 0.01π. Note the characteristic 3
dB/octave drop.

c. Define the overall gain factor G such that the NRR of the filter (A.29) is unity and
therefore the generated 1/f noise sequence y(n) has variance σ2

y = σ2
x . Verify that

G = 0.57534. Then, write the sample processing algorithm for generating the output
samples y(n) using the cascade realization of the three sections.

B Prolate Spheroidal Wave Functions

Prolate spheroidal wave functions (PSWF) of order zero provide an ideal basis for repre-
senting bandlimited signals that are also maximally concentrated in a finite time inter-
val. They were extensively studied by Slepian, Pollak, and Landau in a series of papers
[1290–1294] and have since been applied to a wide variety of applications, such as sig-
nal extrapolation, deconvolution, communication systems, waveform design, antennas,
diffraction-limited optical systems, laser resonators, and acoustics.

In this Appendix,† we summarize their properties and provide a MATLAB function
for their computation. We have used them in [46] in our discussion of superresolution

†adapted from the author’s book on Electromagnetic Waves and Antennas [46]

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1407

and its dual, supergain, and their relationship to superoscillations. Further details on
superoscillations may be found in references [1327–1340]. More information on super-
resolution, signal restoration, degrees of freedom, and focusing of evanescent plane
waves may be found in [1341–1393]. References on superdirectivity are [1394–1414].

B.1 Definition

The PSWF functions are defined with respect to two intervals: a frequency interval,
[−ω0,ω0] (rad/sec), over which they are bandlimited, and a time interval, [−t0, t0]
(sec), over which they are concentrated (but not limited to).

For notational convenience let us define the following three function spaces: (a) the
space L2∞ of functions f(t) that are square-integrable over the real line, −∞ < t < ∞,
(b) the space L2

t0 of functions f(t) that are square-integrable over the finite interval
[−t0, t0], and (c) the subspace Bω0 of L2∞ of bandlimited functions f(t) whose Fourier
transform f̂ (ω) vanishes outside the interval [−ω0,ω0], that is, f̂ (ω)= 0 for |ω| >
ω0, so that they are representable in the form,

f(t)=
∫ω0

−ω0

f̂ (ω)ejωt dω
2π

, f̂(ω)=
∫∞
−∞

f(t)e−jωt dt (B.1)

The PSWF functions, denoted here by ψn(t) with n = 0,1,2, . . . , belong to the sub-
space Bω0 and are defined by the following equivalent expansions in terms of Legendre
polynomials or spherical Bessel functions:

ψn(t)=
√
λn
t0

∑
k
βnk

√
k+ 1

2 Pk
(
t
t0

)
=
√

c
2πt0

∑
k
βnk

√
k+ 1

2 2ik−n jk
(
ω0t

)
(B.2)

for n = 0,1,2, . . . , where βnk are the expansion coefficients, c is the time-bandwidth
product, c = t0ω0, and λn are the positive eigenvalues (listed in decreasing order) and
ψn(t) the corresponding eigenfunctions of the following linear integral operator with
the sinc-kernel:

∫ t0

−t0
sin
(
ω0(t − t′)

)
π(t − t′)

ψn(t′)dt′ = λnψn(t) n = 0,1,2, . . . , for all t (B.3)

The Legendre polynomial expansion in (B.2) is numerically accurate for |t| ≤ t0,
whereas the spherical Bessel function expansion is valid for all t, and we use that in our
MATLAB implementation. The unnormalized Legendre polynomials Pk(x) are defined
as follows [40],

Pn(x)= 1

2nn!

dn

dxn
[
(x2 − 1)n

]
, n = 0,1,2, . . . (B.4)

1408 29. APPENDICES

The first few of them are listed below,

P0(x) = 1

P1(x) = x

P2(x) = 3

2

[
x2 − 1

3

]
P3(x) = 5

2

[
x3 − 3

5
x
]

P4(x) = 35

8

[
x4 − 6

7
x2 + 3

35

]
(B.5)

They are normalized such that Pn(1)= 1 and satisfy the orthogonality property:∫ 1

−1
Pn(x)Pm(x)dx = 2

2n+ 1
δnm (B.6)

and the three-term recurrence relation:

xPn(x)=
(

n
2n+ 1

)
Pn−1(x)+

(
n+ 1

2n+ 1

)
Pn+1(x) (B.7)

The normalized Legendre polynomials are
√
k+ 1

2 Pk(x). The spherical Bessel functions
jk(x) are defined in terms of the ordinary Bessel functions of half-integer order:

jk(x)=
√
π
2x

J
k+ 1

2
(x) (B.8)

The eigenvalues λn are distinct and lie in the interval, 0 < λn < 1. Typically, they
have values near unity, λn � 1, for n = 0,1,2, . . . , up to about the so-called Shannon
number, Nc = 2c/π, and after that they drop rapidly towards zero. The Shannon
number represents roughly the number of degrees of freedom for characterizing a signal
of total frequency bandwidth Ω = 2ω0 and total time duration T = 2t0. If F is the total
bandwidth in Hz, that is, F = Ω/2π, then, Nc = FT,

Nc = 2c
π
= 2ω0t0

π
= 2ω0 2t0

2π
= ΩT

2π
= FT (B.9)

Since, jk(ω0t)= jk(ct/t0), we note that up to a scale factor, ψn(t) is a function of
c and the scaled variable η = t/t0. Indeed, we have, ψn(t)= t−1/2

0 φn(c, t/t0), where,

φn(c,η)=
√
λn
∑
k
βnk

√
k+ 1

2 Pk(η)=
√

c
2π

∑
k
βnk

√
k+ 1

2 2ik−n jk(cη) (B.10)

We will also use the following notation to indicate explicitly the dependence on the
parameters t0,ω0 and c = t0ω0,

ψn(t0,ω0, t)= 1√
t0
φn

(
c,

t
t0

)
(B.11)

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1409

The k-summation in (B.2) goes over 0 ≤ k < ∞. However, k takes only even values,
k = 0,2,4, . . . , when n is even or zero, and only odd values, k = 1,3,5, . . . , when n is
odd. This also implies that ψn(t) is an even function of t, if n is even, and odd in t, if n
is odd, so that, ψn(−t)= (−1)nψn(t). The expansion coefficients βnk are real-valued
and because n, k have the same parity, i.e., n−k is even, it follows that the number ik−n

will be real, ik−n = (−1)(k−n)/2. Therefore, all ψn(t) are real-valued.
The k-summation can be extended to all k ≥ 0 by redefining the expansion coeffi-

cients βnk for all k by appropriately interlacing zeros as follows:

βnk =
[
βn0, 0, βn2, 0, βn4, 0, · · ·] (n even)[
0, βn1, 0, βn3, 0, βn5, · · ·] (n odd)

(B.12)

The expansion coefficients are chosen to satisfy the orthogonality property,

∞∑
k=0

βnkβmk = δnm n,m = 0,1,2, . . . (B.13)

This particular normalization is computationally convenient and enables the orthog-
onality properties of the ψn(t) functions, that is, Eqs. (B.28) and (B.30). The coefficients
βnk may be constructed as the orthonormal eigenvectors of a real symmetric tridiagonal
matrix as we discuss below. We note also that for large t, the PSWF functions behave
like sinc-functions [1290,1305],

ψn(t)≈
√

2c
πλn

ψn(t0)
sin
(
ω0t − 1

2πn
)

ω0t
, for large |t| (B.14)

This follows from the asymptotic expansion of the spherical Bessel functions,

jk(x)≈
sin
(
x− 1

2πk
)

x
, for large |x|

B.2 Fourier Transform

The bandlimited Fourier transform of ψn(t) can be constructed as follows. First, we
note that Pk(x) and jk(x) satisfy the following Fourier transform relationships [40]:∫ 1

−1
ejωt π i−k Pk(ω)

dω
2π

= jk(t) , for all real t

∫∞
−∞

e−jωt jk(t)dt = πi−k Pk(ω)·χ1(ω)=
⎧⎨⎩πi−k Pk(ω) , |ω| < 1

0 , |ω| > 1

(B.15)

where χ1(ω) is the indicator function for the interval [−1,1], defined in terms of the
unit-step function u(x) as follows for a more general interval [−ω0,ω0],†

χω0(ω)= u
(
ω0 − |ω|

) =
⎧⎨⎩1 , |ω| < ω0

0 , |ω| > ω0
(B.16)

† χω0(ω)may be defined to have the value 1
2 atω = ±ω0 corresponding to the unit-step valueu(0)= 1

2 .

1410 29. APPENDICES

It follows that the Fourier transform ĵk(ω) of jk(ω0t) is bandlimited over [−ω0,ω0],

ĵk(ω) =
∫∞
−∞

e−jωt jk(ω0t)dt = π
ω0 ik

Pk
(
ω
ω0

)
· χω0(ω)

jk(ω0t) =
∫ω0

−ω0

ejωt ĵk(ω)
dω
2π

=
∫ω0

−ω0

ejωt π
ω0 ik

Pk
(
ω
ω0

)
dω
2π

(B.17)

In fact, the functions jk(ω0t), like the ψn(t), form a complete and orthogonal basis
of the subspace Bω0 , see [1325,1326]. Their mutual orthogonality follows from Parse-
val’s identity and the orthogonality property (B.6) of the Legendre polynomials:∫∞

−∞
jk(ω0t) jn(ω0t)dt =

∫ω0

−ω0

ĵ∗k (ω)ĵn(ω)
dω
2π

= π
ω0

δkn
2k+ 1

(B.18)

The bandlimited Fourier transform ψ̂n(ω) ofψn(t) can now be obtained by Fourier-
transforming the spherical Bessel function expansion in (B.2), then using (B.17), and
comparing the result with the Legendre expansion of (B.2), that is,

ψ̂n(ω)=
√

c
2πt0

∑
k
βnk

√
k+ 1

2 2ik−n ĵk(ω)

=
√

c
2πt0

∑
k
βnk

√
k+ 1

2 2ik−n
π

ω0 ik
Pk
(
ω
ω0

)
· χω0(ω)

= 2π
ω0

1

μn

√
λn
t0

∑
k
βnk

√
k+ 1

2 Pk
(
ω
ω0

)
︸ ︷︷ ︸

ψn(ωt0/ω0)

·χω0(ω)= 2π
ω0

1

μn
ψn

(
ωt0
ω0

)
· χω0(ω)

where μn was defined in terms of λn as follows:

μn = in |μn| , |μn| =
√

2πλn
c

⇒ λn = c
2π

|μn|2 (B.19)

Thus, we find that ψ̂n(ω) is a scaled version of ψn(t) itself,

ψ̂n(ω)=
∫∞
−∞

e−jωt ψn(t)dt = 2π
ω0

1

μn
ψn

(
ωt0
ω0

)
· χω0(ω) (B.20)

The inverse Fourier transform brings out more clearly the meaning of μn:

ψn(t)=
∫ω0

−ω0

ejωt ψ̂n(ω)
dω
2π

⇒
∫ω0

−ω0

ejωt ψn

(
ωt0
ω0

)
dω
ω0

= μnψn(t) (B.21)

for all t. By changing variables to ω→ tω0/t0 and t →ωt0/ω0, we also have,

∫ t0

−t0
ejωt ψn(t)

dt
t0
= μnψn

(
ωt0
ω0

)
for all ω (B.22)

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1411

If (B.21) is written in terms of the scaled function φn(η) of (B.10), then, μn is the
eigenvalue and φn(η) the eigenfunction of the following integral operator with expo-
nential kernel:∫ 1

−1
ejcηξ φn(ξ)dξ = μn φn(η) n = 0,1,2, . . . , and all η (B.23)

Similarly, (B.3) reads as follows with respect to φn(η),∫ 1

−1

sin
(
c(η− ξ)

)
π(η− ξ)

φn(ξ)dξ = λn φn(η) for all η (B.24)

Eqs. (B.3) and (B.19) can be derived from Eqs. (B.21) and (B.22). Indeed, multiplying
both sides of (B.21) by μ∗n and taking the complex conjugate of (B.22), we have,

|μn|2 ψn(t)=
∫ω0

−ω0

μ∗n ψn

(
ωt0
ω0

)
ejωt dω

ω0
=
∫ω0

−ω0

[∫ t0

−t0
e−jωt′ ψn(t′)

dt′

t0

]
ejωt dω

ω0

= 2π
t0ω0

∫ t0

−t0

[∫ω0

−ω0

ejω(t−t′) dω
2π

]
ψn(t′)dt′ = 2π

c

∫ t0

−t0
sin
(
ω0(t − t′)

)
π(t − t′)

ψn(t′)dt′

where we used the sinc-function transform,

sin(ω0t)
πt

=
∫∞
−∞

χω0(ω)ejωt dω
2π

=
∫ω0

−ω0

ejωt dω
2π

(B.25)

Eq. (B.3) follows now by multiplying both sides by c/2π and using the definition
(B.19). Any function f(t) in Bω0 with a bandlimited Fourier transform f̂ (ω) over
[−ω0,ω0] satisfies a similar sinc-kernel integral equation, but over the infinite time
interval, −∞ < t < ∞. Indeed, using the convolution theorem of Fourier transforms
and (B.25), we have,

f(t)=
∫ω0

−ω0

f̂ (ω)ejωt dω
2π

=
∫∞
−∞

χω0(ω)f̂(ω)ejωt dω
2π

=
∫∞
−∞

sin
(
ω0(t − t′)

)
π(t − t′)

f(t′)dt′

that is, for f(t)∈ Bω0 and for all t,

f(t)=
∫∞
−∞

sin
(
ω0(t − t′)

)
π(t − t′)

f(t′)dt′ (B.26)

Thus, because they lie in Bω0 , all ψn(t) satisfy a similar condition,∫∞
−∞

sin
(
ω0(t − t′)

)
π(t − t′)

ψn(t′)dt′ = ψn(t) , for all t (B.27)

B.3 Orthogonality and Completeness Properties

The PSWF functionsψn(t) satisfy dual orthogonality and completeness properties, that
is, the ψn(t) functions form an orthogonal and complete basis for both L2

t0 and Bω0 .
With respect to the space L2

t0 , we have,

∫ t0

−t0
ψn(t)ψm(t)dt = λn δnm (orthogonality) (B.28)

1412 29. APPENDICES

∞∑
n=0

1

λn
ψn(t)ψn(t′)= δ(t − t′) (completeness) (B.29)

for t, t′ ∈ [−t0, t0]. And, with respect to the subspaceBω0 , we have for the infinite time
interval, −∞ < t <∞, ∫∞

−∞
ψn(t)ψm(t)dt = δnm (B.30)

∞∑
n=0

ψn(t)ψn(t′)= sin
(
ω0(t − t′)

)
π(t − t′)

for all t, t′ (B.31)

Eq. (B.28) can be derived from the Legendre expansion in (B.2) as a consequence
of the normalization condition (B.13) and the Legendre polynomial orthogonality (B.6).
Similarly, (B.30) can be derived from the spherical Bessel function expansion and (B.18).

The sinc-kernel in (B.31) plays the role of the identity operator for functions in Bω0 ,
as implied by (B.26). Taking the limit t′ → t on both sides of (B.31), we obtain the
following relationship, valid for all t,

∞∑
n=0

ψ2
n(t)=

ω0

π
(B.32)

Integrating this over [−t0, t0] and using (B.28) for n =m, we obtain the sums,

∞∑
n=0

λn = 2c
π
= Nc ⇒

∞∑
n=0

|μn|2 = 4 (B.33)

Another identity can be derived from (B.31) by taking Fourier transforms of both
sides with respect to the variable t′ and using the delay theorem of Fourier transforms
on the right-hand-side, resulting in,

e−jωt · χω0(ω)=
∞∑
n=0

ψn(t)ψ̂n(ω)= 2π
ω0

χω0(ω)
∞∑
n=0

1

μn
ψn(t)ψn

(
ωt0
ω0

)
, or,

2π
ω0

∞∑
n=0

1

μn
ψn(t)ψn

(
ωt0
ω0

)
= e−jωt , for all t and |ω| < ω0 (B.34)

and in particular, setting ω = 0, we have for all t,

2π
ω0

∞∑
n=0

1

μn
ψn(0)ψn(t)= 1 (B.35)

Eqs. (B.31)–(B.35) are demonstrated in Examples B.1–B.2. The completeness property
(B.29) can also be derived by complex-conjugating both sides of (B.34) and taking Fourier
transforms with respect to the variable t, denoting the corresponding frequency by ω′,
with |ω′| < ω0,

2π
ω0

∞∑
n=0

1

μ∗n
ψ̂n(ω′)ψn

(
ωt0
ω0

)
= 2πδ(ω−ω′) , or,

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1413

(2π)2

ω2
0

∞∑
n=0

1

|μn|2 ψn

(
ωt0
ω0

)
ψn

(
ω′t0
ω0

)
= 2πδ(ω−ω′)

or, using the relationship, |μn|2 = 2πλn/c,

∞∑
n=0

1

λn
ψn

(
ωt0
ω0

)
ψn

(
ω′t0
ω0

)
= δ

(
ωt0
ω0

− ω′t0
ω0

)
(B.36)

forω,ω′ ∈ [−ω0,ω0]. This becomes equivalent to Eq. (B.29) after replacing,ωt0/ω0 →
t and ω′t0/ω0 → t′, with t, t′ ∈ [−t0, t0]. In a similar fashion, Eq. (B.28) can be derived
by applying Parseval’s identity to (B.30).

B.4 Signal Restoration

Another application is in signal restoration, such as image restoration through a finite-
aperture diffraction-limited optical system, involving the inversion of the sinc-kernel
over the finite interval [−t0, t0], that is, finding a kernel function, say, K(t, t′), that
performs the inverse operation,

g(t)=
∫ t0

−t0
sin
(
ω0(t − t′)

)
π(t − t′)

f(t′)dt′ ⇒ f(t)=
∫ t0

−t0
K(t, t′)g(t′)dt′ (B.37)

for |t| ≤ t0. It is easily verified that K(t, t′) is given formally by [1365],†

K(t, t′)=
∑
n

1

λ2
n
ψn(t)ψn(t′) , for t, t′ ∈ [−t0, t0] (B.38)

The operation of K(t, t′) on the sinc-kernel generates the identity kernel, that is,∫ t0

−t0
K(t, t′′)

sin
(
ω0(t′′ − t′)

)
π(t′′ − t′)

dt′′ = δ(t − t′) , for t, t′ ∈ [−t0, t0] (B.39)

Indeed, using (B.28), (B.29), (B.31), and (B.38), we have,∫ t0

−t0
K(t, t′′)

sin
(
ω0(t′′ − t′)

)
π(t′′ − t′)

dt′′ =

=
∫ t0

−t0

[∑
n

1

λ2
n
ψn(t)ψn(t′′)

][∑
m
ψm(t′′)ψm(t′)

]
dt′′

=
∑
n

∑
m

1

λ2
n
ψn(t)

[∫ t0

−t0
ψn(t′′)ψm(t′′)dt′′

]
︸ ︷︷ ︸

λnδnm

ψm(t′)

=
∑
n

1

λn
ψn(t)ψn(t′)= δ(t − t′) , for t, t′ ∈ [−t0, t0]

Such inversion method will most surely fail in practice if there is even a tiny amount
of noise in the observed data. Suppose, for example, that we add a small noise compo-
nent v(t) to Eq. (B.37),

†A more precise meaning may be given to (B.38) by the regularized versions discussed below.

1414 29. APPENDICES

g(t)=
∫ t0

−t0
sin
(
ω0(t − t′)

)
π(t − t′)

f(t′)dt′ + v(t) (B.40)

then, the restored signal will be,

frest(t)=
∫ t0

−t0
K(t, t′)g(t′)dt′ = f(t)+

∫ t0

−t0
K(t, t′)v(t′)dt′ ≡ f(t)+u(t)

where the noise v(t) and its inverse-filtered version u(t) can be expanded in the fol-
lowing forms over [−t0, t0],

v(t)=
∑
n
vn ψn(t) ⇒ u(t)=

∫ t0

−t0
K(t, t′)v(t′)dt′ =

∑
n

vn
λn

ψn(t)

Thus, even if all the vn were tiny, the ratios vn/λn can become very large, because
the λn tend to zero for large n, and the filtered noise u(t) will be amplified and may
completely mask the desired signal component f(t).

A way out of this, which provides only an approximation to the inverse kernel, is to
limit the summation over n to those eigenvalues λn that are large and near unity, that
is, for n less than about the Shannon number Nc. For example, using M+ 1 terms, with
M near Nc, we have the following approximation to K(t, t′) and to the delta function in
(B.39), for t, t′ in [−t0, t0],

K̂(t, t′)=
M∑
n=0

1

λ2
n
ψn(t)ψn(t′) (B.41)

δ̂(t, t′)=
∫ t0

−t0
K̂(t, t′′)

sin
(
ω0(t′′ − t′)

)
π(t′′ − t′)

dt′′ =
M∑
n=0

1

λn
ψn(t)ψn(t′) (B.42)

where δ̂(t, t′) approximates δ(t − t′), for t, t′ ∈ [−t0, t0]. With f(t) expanded as,

f(t)=
∞∑
n=0

fnψn(t) , |t| ≤ t0 (B.43)

it follows that the restoration approximations correspond to the finite sums,

frest(t)= f̂ (t)+û(t)=
M∑
n=0

fnψn(t)+
M∑
n=0

vn
λn

ψn(t) (B.44)

Keeping only a finite number of terms is a form of regularization of the inverse fil-
tering operation. Other regularization schemes are possible, for example, the Tikhonov-
type regularization approximating δ(t − t′) over [−t0, t0],

δ̂(t, t′)=
∞∑
n=0

λn
λ2
n + ε2

ψn(t)ψn(t′) (B.45)

where ε small regularization parameter, ε2 � 1. The summation in (B.45) effectively
cuts off as soon as λn ≈ ε, while it behaves like (B.42) for 1 ≥ λn � ε.

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1415

Setting t′ = 0 in Eqs. (B.29), (B.42), and (B.45), we obtain the following bandlimited
approximations to a delta function δ(t), over the finite interval [−t0, t0],

δ(t)=
∞∑
n=0

1

λn
ψn(0)ψn(t) , −t0 ≤ t ≤ t0 (B.46)

δ̂(t)=
M∑
n=0

1

λn
ψn(0)ψn(t) , −t0 ≤ t ≤ t0 (B.47)

δ̂(t)=
∞∑
n=0

λn
λ2
n + ε2

ψn(0)ψn(t) , −t0 ≤ t ≤ t0 (B.48)

Given that δ(t) has a flat spectrum extending over −∞ < ω < ∞, referring to a
“bandlimited” delta function is an oxymoron. However, the above expressions approx-
imate δ(t) only over the finite interval, −t0 ≤ t ≤ t0, while they have bandlimited
spectrum over −ω0 < ω < ω0. Outside the [−t0, t0] interval, they result in extremely
large values. In fact, these expressions provide the ultimate example of superoscillations
[1327–1340], which are bandlimited signals that, over a finite time interval, appear to
oscillate faster than their highest frequency, but typically, exhibit much higher values
outside that interval. Indeed, the above δ(t) is the fastest varying signal in [−t0, t0]
while at the same time it remains bandlimited.

Example B.3 explores the approximation of Eq. (B.47). We will used it in [46] in the
design of superresolving pupil masks for achieving highly focused fields, and in the
design of supergain aperture antennas for achieving very high directivity.

B.5 Representation and Extrapolation of Bandlimited Functions

If a function f(t) is bandlimited over [−ω0,ω0], then the completeness of the ψn(t)
basis implies that f(t) can be expanded in the following form, for all t,

f(t)=
∑
n
cnψn(t) , with cn =

∫∞
−∞

ψn(t)f(t)dt (B.49)

Using the expansion (B.49) and the orthogonality property (B.28), we may obtain an
alternative way of calculating the coefficients cn that involves knowledge of f(t) only
over the finite interval [−t0, t0],

cn = 1

λn

∫ t0

−t0
ψn(t)f(t)dt (B.50)

Thus, once cn are determined, f(t) can be extrapolated outside [−t0, t0] using (B.49).
The validity of this procedure rests on the assumption that f(t) is a bandlimited function
in Bω0 and a segment of it is known over the interval [−t0, t0].

If f(t) is an arbitrary function inL2
t0 , but is not necessarily a segment of a bandlimited

function in Bω0 , then the orthogonality and completeness properties (B.28) and (B.29)
still allow an expansion in the following form, but valid only for |t| ≤ t0,

f(t)=
∑
n
cnψn(t) , with cn = 1

λn

∫ t0

−t0
ψn(t)f(t)dt (B.51)

1416 29. APPENDICES

The attempt to extrapolate f(t) beyond [−t0, t0] using (B.51) could diverge and
lead to extremely large values for f(t) outside the [−t0, t0] interval. This, again, is an
example of superoscillations.

The representation (B.49) of a bandlimited function f(t) in the ψn(t) basis is con-
venient, but is not the only one. One could also expand f(t) in the spherical Bessel
function basis jn(ω0t), or in the familiar sinc-function basis that appears in the sam-
pling theorem. We summarize these expansions and their Fourier transforms below.

The expansion coefficients cn can be expressed either in the time domain or in the
frequency domain. Let f(t) be inBω0 with a bandlimited Fourier transform f̂ (ω), then,
in the ψn(t) basis,

f(t) =
∑
n
cnψn(t)

f̂(ω) =
∑
n
cn

2π
ω0

1

μn
ψn

(
ωt0
ω0

)
· χω0(ω)

(PSWF basis) (B.52)

cn =
∫∞
−∞

ψn(t)f(t)dt = 1

λn

∫ t0

−t0
ψn(t)f(t)dt = 1

μ∗n

∫ω0

−ω0

ψn

(
ωt0
ω0

)
f̂ (ω)

dω
ω0

(B.53)

Similarly, in the jn(ω0t) basis, with Legendre polynomial Fourier transform,

f(t) =
∑
n
cn jn(ω0t)

f̂(ω) =
∑
n
cn

π
ω0 in

Pn
(
ω
ω0

)
· χω0(ω)

(spherical Bessel basis) (B.54)

cn = (2n+ 1)ω0

π

∫∞
−∞

jn(ω0t) f(t)dt = in(2n+ 1)
2π

∫ω0

−ω0

f̂ (ω)Pn
(
ω
ω0

)
dω (B.55)

and in the sinc-function basis, with Ts = π/ω0 denoting the sampling time interval,

f(t) =
∑
n
cn

sin
(
ω0(t − nTs)

)
π(t − nTs)

= Ts
∑
n
f(nTs)

sin
(
ω0(t − nTs)

)
π(t − nTs)

f̂(ω) =
∑
n
cn e−jωnTs · χω0(ω)= Ts

∑
n
f(nTs) e−jωnTs · χω0(ω)

(sinc) (B.56)

cn = Ts f(nTs)= Ts

∫ω0

−ω0

f̂ (ω)ejωnTs dω
2π

(B.57)

The expansion of f(t) in Eq. (B.56) is the same as Eq. (1.6.4) of the Shannon sampling the-
orem discussed in Chap. 1, whereas the expansion of f̂ (ω) is equivalent to Eq. (1.5.19).
Note that the sinc-basis satisfies the orthogonality condition:∫∞

−∞
sin
(
ω0(t − nTs)

)
π(t − nTs)

sin
(
ω0(t −mTs)

)
π(t −mTs)

dt = 1

Ts
δnm (B.58)

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1417

The result, cn = Ts f(nTs), follows from (B.58) by applying (B.26) at t = nTs, indeed,

f(nTs) =
∫∞
−∞

sin
(
ω0(t − nTs)

)
π(t − nTs)

f(t)dt

=
∫∞
−∞

sin
(
ω0(t − nTs)

)
π(t − nTs)

[∑
m
cm

sin
(
ω0(t −mTs)

)
π(t −mTs)

]
dt

=
∑
m
cm

∫∞
−∞

sin
(
ω0(t − nTs)

)
π(t − nTs)

sin
(
ω0(t −mTs)

)
π(t −mTs)

dt

=
∑
m
cm

1

Ts
δnm = cn

Ts
⇒ cn = Ts f(nTs)

Up to the factor Ts, the cn are the time samples of f(t), and f̂ (ω) in (B.56) is
recognized as the central Nyquist replica of the DTFT of the discrete-time signal f(nTs).
Moreover, Eq. (B.57) is the inverse DTFT of f̂ (ω) integrated over the Nyquist interval.

The Shannon number can be understood with the help of (B.56). In this context, we
are assuming that the bandlimited function f(t) is sampled at its Nyquist rate, which
is 2ω0 in units of radians/sec, or, fs = 2ω0/2π = ω0/π in samples/sec, so that the
sampling time interval is Ts = 1/fs = π/ω0 in seconds. Thus, the sampling rate fs
plays the role of F in (B.9).

Because f(t) is frequency-limited, it cannot be time-limited. However, if we assume
that the most significant time samples of f(t) are contained within a total time interval
T, say, 0 ≤ nTs ≤ T, then the maximum time index, and hence the number of significant
time samples will be, nmaxTs = T, or, nmax = T/Ts = fsT, that is, the Shannon number.

B.6 Energy Concentration Properties

Consider a bandlimited signal f(t) in Bω0 with an expansion of the form (B.52),

f(t)=
∑
n
cnψn(t) , with cn =

∫∞
−∞

ψn(t)f(t)dt = 1

λn

∫ t0

−t0
ψn(t)f(t)dt (B.59)

Then, its energy contained in [−t0, t0] and in the infinite interval are given by the norms,

∫ t0

−t0
f2(t)dt =

∞∑
n=0

λn c2
n ,

∫∞
−∞

f2(t)dt =
∞∑
n=0

c2
n

(B.60)

The proportion of the total energy contained in the interval [−t0, t0] is the ratio,

R(f)=

∫ t0

−t0
f2(t)dt∫∞

−∞
f2(t)dt

=

∞∑
n=0

λn c2
n

∞∑
n=0

c2
n

(B.61)

1418 29. APPENDICES

In the context of designing apodization functions [46], it is known as the “encircled
energy” ratio, while in the context of superdirective antennas, its inverse, 1/R(f), is
known as Taylor’s supergain or superdirectivity ratio [233].

The following extremal properties of the PSWF functions can be derived from (B.61).
Because the eigenvalues λn are in decreasing order, 1 > λ0 > λ1 > λ2 > · · · > 0, it is
easily seen that R(f) is maximized when c0 �= 0, and cn = 0, for n ≥ 1, that is, when
f(t)= ψ0(t), and the maximized value isR(ψ0)= λ0. This follows from the inequality,

λ0 −R(f)=

∞∑
n=1

(λ0 − λn)c2
n

∞∑
n=0

c2
n

≥ 0

with equality realized when cn = 0 for all n ≥ 1. Similarly, among all the functions
in Bω0 that are orthogonal to ψ0(t), the energy ratio R(f) is maximized when f(t)=
ψ1(t), with maximum value R(ψ1)= λ1. In this case the c0 term is absent because of
the orthogonality to ψ0, and R(f) becomes,

R(f)=

∞∑
n=1

λn c2
n

∞∑
n=1

c2
n

⇒ λ1 −R(f)=

∞∑
n=2

(λ1 − λn)c2
n

∞∑
n=1

c2
n

≥ 0

More generally, among all the functions inBω0 that are simultaneously orthogonal to
ψ0(t),ψ1(t), . . . ,ψn−1(t), the function f(t)= ψn(t) maximizes R(f) with maximum
value R(ψn)= λn.

If f(t) is not necessarily bandlimited inBω0 then, as we mentioned earlier, its values
outside the interval [−t0, t0] could become very large causing the energy concentration
ratio R(f) to become very small.

Thus, a related optimization problem is to find that function g(t) in Bω0 that has a
prescribed value of the energy ratio, say,R(g)= R0 < 1, and provides the best approx-
imation to a given f(t) within the [−t0, t0] interval. Using a mean-square criterion, the
problem can be stated as finding g(t)∈ Bω0 that minimizes the following performance
index subject to the energy ratio constraint,

J =
∫ t0

−t0

(
f(t)−g(t))2 = min , subject to R0 =

∫ t0

−t0
g2(t)dt∫∞

−∞
g2(t)dt

(B.62)

or equivalently, we may introduce a Lagrange multiplier μ for the constraint,

J =
∫ t0

−t0

(
f(t)−g(t))2 + μ

(
R0

∫∞
−∞

g2(t)−
∫ t0

−t0
g2(t)dt

)
= min (B.63)

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1419

Expand f(t) and g(t) in the ψn(t) basis,

f(t)=
∑
n
fn ψn(t) , for |t| ≤ t0

g(t)=
∑
n
gn ψn(t) , for all t

(B.64)

where fn may be assumed to be known since f(t) is given. Then, (B.63) becomes,

J =
∑
n
λn(gn − fn)2+μ

(
R0

∑
n
g2
n −

∑
n
λn g2

n

)
= min (B.65)

The minimization condition with respect to gn gives,

∂J
∂gn

= 0 ⇒ λn(gn − fn)+μ(R0 − λn)gn = 0 , or,

gn = λn fn
λn + μ(R0 − λn)

(B.66)

with the Lagrange multiplier μ determined by solving the constraint equation,

R0

∑
n
g2
n −

∑
n
λn g2

n =
∑
n
(R0 − λn)g2

n = 0 , or,

∑
n
(R0 − λn)

[
λn fn

λn + μ(R0 − λn)

]2

= 0 (B.67)

B.7 Computation

The numerical computation of ψn(t) is based on keeping only a finite number of terms
in the summation of Eq. (B.2), e.g., 0 ≤ k ≤ K − 1,

ψn(t)=
√
λn
t0

K−1∑
k=0

βnk
√
k+ 1

2 Pk
(
t
t0

)
=
√

c
2πt0

K−1∑
k=0

βnk
√
k+ 1

2 2ik−n jk
(
ω0t

)
(B.68)

where K is chosen to be sufficiently large. In practice, the choice, K = 2N + 30, is
adequate [1317], where N = M + 1 is the number of PSWF functions to be calculated,
that is, ψn(t), n = 0,1,2, . . . ,M.

The computation of βnk is based on the observation [1290] that the PSWF functions
ψn(t) are also the eigenfunctions of the following Sturm-Liouville differential operator
eigenproblem, that arises in solving the Helmholtz equation in spheroidal coordinates,[

(t2 − t2
0)

d2

dt2
+ 2t

d
dt
+ω2

0 t2

]
ψn(t)= χnψn(t) , n = 0,1,2, . . . (B.69)

The eigenvalues χn are real and positive and when listed in increasing order, they
match the eigenvalues λn of Eq. (B.3) listed in decreasing order, that is, we have the
correspondence,

0 < χ0 < χ1 < χ2 < . . . ,
1 > λ0 > λ1 > λ2 > . . . ,

1420 29. APPENDICES

There is extensive literature on the computation of the PSWF solutions of (B.69),
including its generalization to higher order PSWFs, with implementations in FORTRAN,
MATLAB, and Mathematica [1301–1324].

Our MATLAB implementation is based on Rhodes [1305] who gives normalization-
independent expressions, Hodge [1307] who was the first to suggest using a tridiagonal
eigenvalue problem for calculating the coefficients βnk, Kozin et al. [1309] who applied
Hodge’s method specifically to order-zero PSWFs, and Xiao et al [1311] and Boyd [1317]
for some more recent implementations. Accurate computation of the eigenvalues λn
and eigenfunctions ψn(t) is very demanding for large values of c and large values of n
because theλn quickly get smaller than the machine epsilon, even using double precision
as in MATLAB.

If one inserts the Legendre polynomial expansion of Eq. (B.2) into (B.69), one finds
that the coefficients βnk satisfy the following recursion formula, for k ≥ 0,

Ak,k−2 βn,k−2 +Ak,k βnk +Ak,k+2 βn,k+2 = χn βnk (B.70)

where the first term is present only for k ≥ 2, and,

Ak,k = k(k+ 1)+ c2 · 2k(k+ 1)−1

(2k+ 3)(2k− 1)
, k ≥ 0

Ak,k+2 = c2 · (k+ 2)(k+ 1)
(2k+ 3)

√
(2k+ 1)(2k+ 5)

, k ≥ 0

Ak,k−2 = Ak−2,k = c2 · k(k− 1)
(2k− 1)

√
(2k− 3)(2k+ 1)

, k ≥ 2

(B.71)

If a finite number of coefficients is kept, such as, K = 2N+30, then, we may define a
K×K symmetric tridiagonal matrixAwhose main diagonal isAk,k, for k = 0,1, . . . , K−1,
and whose upper and lower second diagonals are given byAk,k+2, for k = 0,1, . . . , K−3.
For example, if K = 8, the matrix will have the following structure,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 0 A02 0 0 0 0 0
0 A11 0 A13 0 0 0 0
A02 0 A22 0 A24 0 0 0
0 A13 0 A33 0 A35 0 0
0 0 A24 0 A44 0 A46 0
0 0 0 A35 0 A55 0 A57

0 0 0 0 A46 0 A66 0
0 0 0 0 0 A57 0 A77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The difference equation (B.69) is equivalent then to the following eigenvalue equation,
where the coefficients βn,k are arranged into the corresponding eigenvectors,

Aβββn = χnβββn , βββn =

⎡⎢⎢⎢⎢⎢⎣
βn,0
βn,1
...
βn,K−1

⎤⎥⎥⎥⎥⎥⎦ (B.72)

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1421

Because A is real and symmetric, its eigenvectors may be chosen to be real-valued
and orthonormal, that is, satisfying Eq. (B.13). And because of the particular structure
of A, having only a nonzero second upper/lower subdiagonal, every other element of
the eigenvectors may be set to zero, that is, βn,k = 0, if n−k is odd. For example, if
K = 8, the eigenvectors, will have the following structure,

βββn,even

n=0,2,4,6

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βn0

0
βn2

0
βn4

0
βn6

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, βββn,odd

n=1,3,5,7

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
βn1

0
βn3

0
βn5

0
βn7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
MATLAB can very efficiently and accurately solve the above tridiagonal eigenvalue

problem using the built-in function eig, and obtain allK eigenvectorsβββn and eigenvalues
χn (even for very large values of c,K, e.g., c = 100, K = 1000).

Once the K×K eigenvalue problem (B.72) is solved, we may retain the first M + 1
eigenvectors βββn, for n = 0,1, . . . ,M, that are needed in the computation of ψn(t). One
still has the task of determining the corresponding eigenvalues λn of the eigenproblem
(B.3). Since λn appears in (B.2), we may solve for it by evaluating both sides of (B.68) at
a particular value of t. It’s is simpler to solve for μn and then calculate λn from (B.19).
Multiplying both sides of (B.68) by in

√
2πt0/c, we obtain the relationship:

in
√

2πt0
c

ψn(t)= μn
K−1∑
k=0

βnk
√
k+ 1

2 Pk
(
t
t0

)
=

K−1∑
k=0

βnk
√
k+ 1

2 2ik jk
(
ω0t

)
(B.73)

One obvious choice is to set t = t0, and since Pn(1)= 1, we may solve for μn,

μn =

K−1∑
k=0

βnk
√
k+ 1

2 2ik jk(c)

K−1∑
k=0

βnk
√
k+ 1

2

n = 0,1, . . . ,M (B.74)

Another choice is to set t = 0, resulting in

μn
K−1∑
k=0

βnk
√
k+ 1

2 Pk(0)=
K−1∑
k=0

βnk
√
k+ 1

2 2ik jk(0) (B.75)

However, this works only for n even, because if n and k are odd, both Pk(0) and jk(0)
are zero. In this case, one may work with the time derivative of both sides of (B.68),

μn
K−1∑
k=0

βnk
√
k+ 1

2

1

t0
P′k
(
t
t0

)
=

K−1∑
k=0

βnk
√
k+ 1

2 2ik ω0 j′k
(
ω0t

)
, or,

1422 29. APPENDICES

μn
K−1∑
k=0

βnk
√
k+ 1

2 P
′
k

(
t
t0

)
=

K−1∑
k=0

βnk
√
k+ 1

2 2ik c j′k
(
ω0t

)
Evaluating this at t = 0 will work for n odd, but not for n even,

μn
K−1∑
k=0

βnk
√
k+ 1

2 P
′
k(0)=

K−1∑
k=0

βnk
√
k+ 1

2 2ik c j′k(0) (B.76)

We may add (B.75) and (B.76) together to get a combined formula that works for all n,
even or odd, and solve for μn,

μn =

K−1∑
k=0

βnk
√
k+ 1

2 2ik
[
jk(0)+c j′k(0)

]
K−1∑
k=0

βnk
√
k+ 1

2

[
Pk(0)+P′k(0)

] n = 0,1, . . . ,M (B.77)

The spherical Bessel functions jk(x) for k ≥ 0 have the following limiting behavior,

jk(x) −→
x→0

xk

1 · 3 · 5 · · · (2k+ 1)
⇒ jk(0)= δk =

⎧⎨⎩1, k = 0

0, k �= 0
(B.78)

The derivative, j′k(x), can be computed from the recursion:

j′k(x)=
k jk−1(x)−(k+ 1)jk+1(x)

2k+ 1
(B.79)

and using the result (B.78),

j′k(0)=
kδk−1 − (k+ 1)δk+1

2k+ 1
= 1

3
δk−1 (B.80)

Using (B.78) and (B.80), the numerator in (B.77) simplifies to the k = 0 and k = 1 terms,

μn =
√

2βn0 +
√

2

3
icβn1

K−1∑
k=0

βnk
√
k+ 1

2

[
Pk(0)+P′k(0)

] n = 0,1, . . . ,M (B.81)

The quantities, Pk(0), P′k(0), can be calculated in terms of gamma-functions,

Pk(0)=
√
π

Γ
(
k
2
+ 1

)
Γ
(

1

2
− k

2

) , P′k(0)= kPk−1(0)= −2
√
π

Γ
(
k
2
+ 1

2

)
Γ
(
−k

2

) (B.82)

These are valid for all k ≥ 0 and give Pk(0)= 0, for odd k, and P′k(0)= 0, for even k.
Moreover, they can be implemented as vectorized functions in MATLAB. For a given n,
either the left or the right terms will be non-zero in the numerator and denominator of
(B.81). We have found that the choice (B.81) produces more accurate results than (B.74)
for moderate values of c,M, up to about, c = 50, M = 50.

The following MATLAB function, pswf.m, implements the above computational steps.
It also computes the derivatives ψ′

n(t). It has usage:

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1423

[Psi,La,dPsi,Chi,B] = pswf(t0,w0,M,t); % prolate spheroidal wave functions

[Psi,La,dPsi,Chi,B] = pswf(t0,w0,M,t,K);

t0 = time limit, [-t0,t0], (sec)

w0 = freq limit, [-w0,w0], (rad/sec)

M = max order computed, evaluating psi_n(t), n = 0,1,...,M

t = length-L vector of time instants (sec), e.g., t = [t1,t2,...,tL]

Psi = (M+1)xL matrix of prolate function values

La = (M+1)x1 vector of eigenvalues

dPsi = (M+1)xL matrix of derivatives of prolate functions

Chi = (M+1)x1 vector of eigenvalues of spheroidal differential operator

B = (M+1)xK matrix of expansion coefficients

K = number of expansion terms (default, K=2*N+30, N=M+1)

For a given maximum order M and time vector t = [t1, t2, . . . , tL], the output matrix
Psi contains the computed values ψn(ti), arranged into an (M + 1)×L matrix,

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(t1) ψ0(t2) ψ0(t3) · · · ψ0(tL)
ψ1(t1) ψ1(t2) ψ1(t3) · · · ψ1(tL)
ψ2(t1) ψ2(t2) ψ2(t3) · · · ψ2(tL)

...
...

... · · · ...
ψM(t1) ψM(t2) ψM(t3) · · · ψM(tL)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The output dPsi contains the derivatives ψ′

n(ti) arranged in a similar fashion. The
outputs La,Chi are column vectors containing the eigenvalues λn,χn, n = 0,1, . . . ,M.
The (M + 1)×K matrix B contains the expansion coefficients, Bnk = βnk, in its rows,
with the appropriate interlacing of zeros for even or odd n, that is,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β0,0 0 β0,2 0 β0,4 0 · · · β0,K−1

0 β1,1 0 β1,3 0 β1,5 · · · β1,K−1

β2,0 0 β2,2 0 β2,4 0 · · · β2,K−1

0 β3,1 0 β3,3 0 β3,5 · · · β3,K−1

...
...

...
...

...
... · · · ...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The eigenvector matrix is actually the transposed, BT = [

βββ0, βββ1, . . . , βββM
]
, which

satisfies the eigenvalue equation, ABT = BTX, where X = diag{χ0, χ1, . . . , χM}, and
the orthonormality property,

BBT = IM+1 ⇒
K−1∑
k=0

βnkβmk = δnm , n,m = 0,1, . . . ,M

The required spherical Bessel function computations are implemented by the func-
tion, spherj.m, which also computes the derivatives using the recursion (B.79). It ar-
ranges its output similarly to pswf, and has usage:

[J,dJ] = spherj(k,x); % spherical Bessel functions and derivatives

1424 29. APPENDICES

The derivatives, ψ′
n(t), are computed using the expansion,

ψ′
n(t)=

√
c

2πt0

K−1∑
k=0

βnk
√
k+ 1

2 2ik−nω0 j′k
(
ω0t

)
(B.83)

The functions pswf and spherj are included in the EWA-toolbox of this book, and
work well for parameter values up to about c = 50 and M = 50. A related function that
evaluates Legendre polynomials and can be used in the Legendre expansion of Eq. (B.2)
is the function legpol with usage:

P = legpol(N,x); % evaluates Legendre polynomials of orders n=0:N

Example B.1: The following MATLAB code illustrates the usage of the pswf function and repro-
duces the data tables and plots from Rhodes [1305] for the case c = 6.

t0=1; w0=6; c=t0*w0; M=13;

t = linspace(-5,5,501);

[Psi,La,dPsi,Chi] = pswf(t0,w0,M,t); % calculate the first 14 PSWFs

figure; plot(t,Psi(1:4,:)); % plot first four PSWFs

The following graph plots the first four PSWFs, ψn(t), n = 0,1,2,3.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

t
ψ

n
(t

)

t
0
=1, ω

0
=6

 n=0
 n=1
 n=2
 n=3

The following table contains the values of the quantities χn,μn, λn for n = 0,1, . . . ,13, as
well the values of the sum, ψn(0)+ψ′

n(0), which represents either ψn(0) if n is even, or
ψ′

n(0) id n is odd. They agree with those in [1305].

n chi_n |mu_n| psi_n(0)+psi_n’(0) lambda_n

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1425

--
0 5.208269160e+00 1.023276504e+00 1.631136822e-03 9.999018826e-01
1 1.600044275e+01 1.021309607e+00 -5.777995494e-02 9.960616433e-01
2 2.535647864e+01 9.922435547e-01 3.539393687e-02 9.401733902e-01
3 3.320419949e+01 8.229938914e-01 4.428586710e-01 6.467919492e-01
4 4.072019427e+01 4.659781027e-01 -3.045590356e-01 2.073492169e-01
5 4.977371213e+01 1.693510361e-01 -7.517787765e-01 2.738716624e-02
6 6.118075690e+01 4.524678973e-02 7.141707743e-01 1.955000734e-03
7 7.485286653e+01 9.966212672e-03 5.750889706e-01 9.484876556e-05
8 9.065115937e+01 1.897100693e-03 -1.117460330e+00 3.436783286e-06
9 1.085154453e+02 3.192404741e-04 3.163806610e-02 9.732115989e-08

10 1.284188799e+02 4.820488557e-05 1.196006265e+00 2.218980545e-09
11 1.503474435e+02 6.605196410e-06 -9.118593645e-01 4.166226284e-11
12 1.742930029e+02 8.286721621e-07 -5.384541132e-01 6.557478591e-13
13 2.002505133e+02 9.588946460e-08 1.423257002e+00 8.780377122e-15

The table was generated by the MATLAB code,

n = (0:M)’;
Mu = sqrt(2*pi/c*La); % calculate |mu_n| from la_n
P = Psi(:,1) + dPsi(:,1); % interlace psi_n(0) and its derivative psi_n’(0)

fprintf(’ n chi_n |mu_n| psi_n(0)+psi_n’’(0) lambda_n\n’)
fprintf(’--\n’)
fprintf(’%3d %1.9e %1.9e % 1.9e %1.9e\n’, [n,Chi,Mu,P,La]’)

The Shannon number is Nc = 2c/π = 3.8197. We observe in the above table how quickly
the eigenvalues λn decay towards zero for n > Nc. The following figure plots λn and the
dividing line at Nc (the eigenvalues have been joined by a smooth curve to guide the eye.)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1

eigenvalues λ
n

 n

 λ

n

 N
c
 = 3.8197

The following MATLAB code tests the relationships (B.32) and (B.33) for M = 13 and M =
25. The graphs plot the quantity,

FM(t)= π
ω0

M∑
n=0

ψ2
n(t) (B.84)

which should tend to unity as M increases and more terms are included in the sum.

1426 29. APPENDICES

F = sum(Psi.^2) * pi/w0; % test: pi/w0 * \sum_n psi_n(t)^2 = 1
figure; plot(t,F,’b-’) % gets better as M is increased

Nc = 2*c/pi; % Nc = 3.8197, Shannon number
Err = abs(sum(La)-Nc); % Err = 1.3323e-15, for M=13

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

F
M

(t), M=13

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

F
M

(t), M=25

Example B.2: This example tests the relationships (B.31) and (B.35). Setting t′ = 0 in (B.31), we
obtain the limit,

lim
M→∞

FM(t)= sin(ω0t)
πt

, where FM(t)=
M∑
n=0

ψn(0)ψn(t)

Similarly we have the limit of (B.35),

lim
M→∞

GM(t)= 1 , where GM(t)= 2π
ω0

M∑
n=0

1

μn
ψn(0)ψn(t)

The following MATLAB code computes and plots FM(t),GM(t) for M = 4 and M = 20 for
the case t0 = 1, ω0 = 6,

t0 = 1; w0 = 6; c = t0*w0;
t = linspace(-4,4,801);

for M = [4,20]
[Psi,La] = pswf(t0,w0,M,t);
Psi0 = Psi(:,t==0);

F = Psi0’ * Psi;

figure; plot(t,F,’b-’, t,sinc(w0*t/pi)*w0/pi,’r:’);

n = (0:M)’;
Mu = i.^n .* sqrt(2*pi*La/c);
G = (2*pi/w0) * Psi0’ * diag(1./Mu) * Psi;

figure; plot(t,G,’b-’);
end

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1427

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

t

F
M

(t), M = 4

 approximation
 sinc

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

t

F
M

(t), M = 20

 approximation
 sinc

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

t

G
M

(t), M = 4

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

t

G
M

(t), M = 20

The convergence of FM(t) is very quick and one can barely distinguish the approximation
from the exact sinc function on the graphs (see the color graphs in the PDF book file). 	

Example B.3: Here we explore the bandlimited approximation (B.47) of a delta function over a
limited time interval. Let us denote the approximation by,

δM(t)=
M∑
n=0

1

λn
ψn(0)ψn(t) (B.85)

The following MATLAB code segment evaluates and plots δM(t) for the following values
of the parameters: t0 = 1, ω0 = 4π, and the cases, M = 20 and M = 30.

t0 = 1; w0 = 4*pi;
t = linspace(-2,2,401);

for M = [20,30]
[Psi,La] = pswf(t0,w0,M,t);
Psi0 = Psi(:,t==0);

F = Psi0’ * diag(1./La) * Psi; % the summation in (J.81)

figure; plot(t,F, ’b-’,’linewidth’,2);
axis([-2,2,-10,20]); xlabel(’\itt’);

end

1428 29. APPENDICES

Because ψn(t)= (−1)nψn(−t), it follows that ψn(0)= 0 for odd n and the summation
in (B.85) can be restricted to even n’s. However, in the MATLAB implementation above
it is much simpler to keep all terms. The following graphs plot δM(t) versus t, over the
interval −2t0 ≤ t ≤ 2t0.

To display the incredibly large values outside the interval, [−t0, t0], we have also plotted
the absolute values

∣∣δM(t)∣∣ using a semi-log scale. Within the [−t0, t0] interval, the peak
around t = 0 approximating δ(t) becomes narrower with increasing M.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

15

20

t

δ
M

(t), M = 20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

15

20

t

δ
M

(t), M = 30

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−5

10
0

10
5

10
10

10
15

t

|δ
M

(t)|, M = 20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−5

10
0

10
5

10
10

10
15

t

|δ
M

(t)|, M = 30

We note that since the maximum frequency is f0 = ω0/(2π)= 2 in cycles per unit time,
the approximation δM(t) clearly oscillates several times faster than f0 over the [−t0, t0]
interval, exhibiting a superoscillatory behavior [1327–1340].

The bandlimited Fourier transform of the approximation (B.85) is obtained from the Fourier
transform of ψn(t),

ΔM(ω)=
∫∞
−∞

e−jωt δM(t)dt =
M∑
n=0

1

λn
ψn(0)ψ̂n(ω)

or, using (B.20),

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1429

ΔM(ω) =
M∑
n=0

2π
ω0 λn μn

ψn(0)ψn

(
ωt0
ω0

)
· χω0(ω)

=
√

2πt0
ω0

M∑
n=0

1

in λ3/2
n

ψn(0)ψn

(
ωt0
ω0

)
· χω0(ω)

(B.86)

The following MATLAB code computes and plots ΔM(ω) over [−ω0,ω0] for the same
parameter values, t0 = 1, ω0 = 4π, and M = 20,30.

t0 = 1; w0 = 4*pi;
w = linspace(-1,1,401); % normalized frequency, w = omega/omega_0

for M = [20,30]
[Psi,La] = pswf(t0,w0,M,w*t0);
Psi0 = Psi(:,w==0);
n = (0:M)’;

D = sqrt(2*pi*t0/w0) * Psi0’ * diag(1./i.^n./La.^(3/2)) * Psi;

D0 = abs(D(w==0));

figure; plot(w,D/D0, ’b-’,’linewidth’,2);
axis([-1.05, 1.05, -8, 8]);

end

−1 −0.5 0 0.5 1
−8

−4

0

4

8

ω / ω
0

ba
n

dl
im

it
ed

 s
pe

ct
ru

m

Δ
M

(ω) / Δ
0
 , M = 20

 Δ

0
 = 2.59e+07

−1 −0.5 0 0.5 1
−8

−4

0

4

8

ω / ω
0

ba
n

dl
im

it
ed

 s
pe

ct
ru

m

Δ
M

(ω) / Δ
0
 , M = 30

 Δ

0
 = 3.15e+16

For plotting purposes, the spectrum is normalized to its magnitude at ω = 0, that is, the
quantity ΔM(ω)/Δ0 is plotted, where Δ0 =

∣∣ΔM(0)
∣∣. The computed values of Δ0 and

hence the values ofΔM(ω) in absolute scales are huge, indeed, we have, Δ0 = 2.5897×107

and Δ0 = 3.1503×1016 for the two cases of M = 20 and M = 30, respectively.

We considered this type of example in [46] in our discussion of superresolving optical
systems and the design of superdirective aperture antennas.

In the optics context, we must map the variables (t,ω) to the spatial variables (x, kx), with
the optical system introducing bandlimiting in the wavenumber domain kx. The sharp fo-
cusing of the delta-function approximation δM(x) is accompanied by huge values outside
a specified “field-of-view” interval [−x0, x0] which plays the role of [−t0, t0]. Such huge
values can be blocked with additional aperture stops provided the object fits within this
field of view.

1430 29. APPENDICES

In the context of aperture-limited antennas, we must remap the variables (t,ω) onto the
spatial variables (kx, x), so that δM(t) maps into δM(kx) and becomes the radiation pat-
tern of the antenna as a function of the wavenumber kx. The Fourier spectrum ΔM(ω)
maps onto the aperture-limited field distribution ΔM(x) as a function of distance x along
the finite antenna, limited to an interval−a ≤ x ≤ a, where 2a is the length of the antenna.

Although in principle one can design an aperture antenna that has high directivity, approx-
imating δ(kx), the extremely large values of the aperture distribution ΔM(x), make such
designs effectively unrealizable in practice.

The role of the bandwidth interval [−ω0,ω0] is played by the space interval [−a,a], while
the role of [−t0, t0] is played by the visible region of the wavenumber interval, [−k0, k0],
where k0 is the free-space wavenumber, k0 = 2π/λ. Although the visible radiation pattern
is limited to |kx| ≤ k0, and emulates a sharp radiation pattern δM(kx), the rest of the
pattern over the invisible region |kx| > k0 takes on very large values as we saw in this
example. These are associated with very large reactive power stored in the vicinity of the
antenna.

Further discussion of these issues is presented in [46]. We note also that the superresolu-
tion examples of Barnes [1365] can be reproduced by changing the parameters to ω0 = 4
and M = [2,4,6,8] in the above MATLAB segments, while the supergain design example
of Kritikos [1412] is reproduced by the choice, t0 = 1,ω0 = 6,M = 8. 	

Example B.4: Another superoscillation example from [1334] is constructed as a linear combina-
tion of sinusoids of frequencies, f = 0,1,2,3,4,5, and amplitudes ranging hugely between
large positive and large negative values,

y(t)= a0 + a1 cos(2πt)+a3 cos(4πt)+a3 cos(6πt)+a4 cos(8πt)+a5 cos(10πt)

where,
a0 = 1
a1 = +13295000
a2 = −30802818
a3 = +26581909
a4 = −10836909
a5 = +1762818

The maximum frequency present in the signal is, f5 = 5, and one would naively expect
that y(t) would not exhibit oscillations that are faster than f5. However, as can be seen
in the left graph below, plotted over the narrow time interval, |t| ≤ 0.04, the signal y(t),
plotted in blue, exhibits a fast oscillation with frequency approximately f = 45, as can be
verified by superimposing the following signal, represented by the dashed red curve.

y45(t)= 0.5 cos(90πt)+0.5

For reference, that fastest component present in y(t),with frequency f5, is plotted with
the green dotted curve,

y5(t)= cos(10πt)

B. PROLATE SPHEROIDAL WAVE FUNCTIONS 1431

−0.04 −0.02 0 0.02 0.04
0

1

2

3

4

t

 y(t)
 y

45
(t)

 y
5
(t)

The left graph below shows the same signals plotted over the wider time range, |t| ≤ 0.1,
while the right graph plots the signals of the range, |t| ≤ 2.

−0.1 −0.05 0 0.05 0.1
0

10

20

t

 y(t)
 y

45
(t)

 y
5
(t)

−2 −1 0 1 2
−10

−5

0

5
x 10

7

t

 y(t)
 y

45
(t)

The extremely large values outside the narrow superoscillatory regions are typical of super-
oscillatory signals. More superoscillatory examples exhibiting this behavior are discussed
in [46] in the context of designing superdirective apertures and antenna arrays. The MAT-
LAB code for generating the above graphs was as follows,

a0 = 1;
a1 = 13295000;
a2 = -30802818;
a3 = 26581909;
a4 = -10836909;
a5 = 1762818;

t = linspace(-0.04,0.04,10001); % time interval, |t| <= 0.04
% t = linspace(-0.1,0.1,10001); % time interval, |t| <= 0.10
% t = linspace(-2,2,10001); % time interval, |t| <= 2.00

y = a0 + a1*cos(2*pi*t) + a2*cos(2*pi*2*t) + a3*cos(2*pi*3*t)...
+ a4*cos(2*pi*4*t) + a5*cos(2*pi*5*t);

y5 = cos(2*pi*5*t);
y45 = 0.5 * cos(2*pi*45*t) + 0.5;

figure; plot(t,y,’b-’, t,y45,’r--’, t,y5,’g:’, ’linewidth’,2)
yaxis(0,4,0:4); xlabel(’\itt’);

1432 29. APPENDICES

C MATLAB Toolbox

To save space, all the MATLAB and C functions mentioned in this book, as well as the
data files, have been moved into the following zip file,

ISP2e-toolbox.zip

located in,

www.ece.rutgers.edu/~orfanidi/intro2sp/2e

References

Texts

[1] B. Gold and C. M. Rader, Digital Processing of Signals, McGraw-Hill, New York, 1969.

[2] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall, Engle-
wood Cliffs, NJ, 1989.

[3] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice Hall, Englewood
Cliffs, NJ, 1975.

[4] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1975.

[5] S. K. Mitra and J. F. Kaiser, eds., Handbook of Digital Signal Processing, Wiley, New York,
1993.

[6] T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley, New York, 1987.

[7] A. Antoniou, Digital Filters: Analysis and Design, 2nd ed., McGraw-Hill, New York, 1993.

[8] D. F. Elliott, ed., Handbook of Digital Signal Processing, Academic Press, New York, 1987.

[9] L. R. Rabiner and C. M. Rader, eds., Digital Signal Processing, IEEE Press, New York, 1972.

[10] Selected Papers in Digital Signal Processing, II, edited by the Digital Signal Processing Com-
mittee and IEEE ASSP, IEEE Press, New York, 1976.

[11] Programs for Digital Signal Processing, edited by the Digital Signal Processing Committee,
IEEE ASSP Society, IEEE Press, New York, 1979.

[12] A. V. Oppenheim, ed., Applications of Digital Signal Processing, Prentice Hall, Englewood
Cliffs, NJ, 1978.

[13] J. S. Lim and A. V. Oppenheim, eds., Advanced Topics in Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[14] R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison-Wesley, Reading, MA,
1987.

[15] P. A. Lynn and W. Fuerst, Introductory Digital Signal Processing with Computer Applications,
Wiley, New York, 1989.

[16] J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Processing, 2nd ed., Macmil-
lan, New York, 1988.

[17] E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach, Addison-
Wesley, Reading, MA, 1993.

[18] R. A. Haddad and T. W. Parsons, Digital Signal Processing: Theory, Applications, and Hard-
ware, Computer Science Press, W. H. Freeman, New York, 1991.

1433

1434 REFERENCES

[19] L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic Publishers, , Norwell,
MA 1989.

[20] A. Bateman and W. Yates, Digital Signal Processing Design, Computer Science Press, W. H.
Freeman, New York, 1991.

[21] S. D. Stearns and D. R. Hush, Digital Signal Analysis, 2nd ed., Prentice Hall, Englewood
Cliffs, NJ, 1990.

[22] S. D. Stearns and R. A. David, Signal Processing Algorithms, Prentice Hall, Englewood Cliffs,
NJ, 1988.

[23] D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing: A System Design
Approach, Wiley, New York, 1988.

[24] E. Robinson and S. Treitel, Geophysical Signal Analysis, Prentice Hall, Englewood Cliffs, NJ,
1980.

[25] S. M. Kay, Modern Spectral Estimation: Theory and Application, Prentice Hall, Englewood
Cliffs, NJ, 1988.

[26] S. L. Marple, Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs, NJ,
1987.

[27] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs,
NJ, 1985.

[28] D. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Processing, Artech
House, 2005.

[29] B. Porat, A Course in Digital Signal Processing, Wiley, New York, 1996.

[30] A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems, Prentice Hall, Engle-
wood Cliffs, NJ, 1983.

[31] R. Lyons, Understanding Digital Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 2004.

[32] S. K. Mitra, Digital Signal Processing, 4/e, McGraw-Hill, New York, 2010.

[33] J. M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Vols. 1–3, Springer, Sin-
gapore, 2017.

[34] R. A. Losada, “Digital Filters with MATLAB,”, MATLAB Central File Exchange, 2022.
www.mathworks.com/matlabcentral/fileexchange/19880-digital-filters-

with-matlab

[35] P. H. Scholfield, The Theory of Proportion in Architecture, Cambridge Univ. Press, London,
1958.

[36] J. Kappraff, Connections: The Geometric Bridge Between Art and Science, McGraw-Hill, New
York, 1990.

[37] D. C. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice Hall, En-
glewood Cliffs, NJ, 1989.

[38] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press,
New York, 1980.

[39] H. R. Chillingworth, Complex Variables, Pergamon, Oxford, 1973.

[40] http://dlmf.nist.gov/, F. W. J. Olver, et al., eds. NIST Digital Library of Mathematical
Functions, 2010, an updated and extended version of the Abramowitz and Stegun Hand-
book [41].

REFERENCES 1435

[41] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications,
New York, 1965. Available online from: http://people.math.sfu.ca/~cbm/aands/, or,
http://www.math.hkbu.edu.hk/support/aands/.

[42] D. S. G. Pollock, Handbook of Time Series Analysis, Signal Processing, and Dynamics, Aca-
demic, New York, 1999.

[43] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control,
4th ed., Wiley, New York, 2008.

[44] S. J. Orfanidis, Introduction to Signal Processing, 1st edition, Prentice Hall, Upper Saddle
River, NJ, 1996. Available online from:
http://www.ece.rutgers.edu/~orfanidi/intro2sp/.

[45] S. J. Orfanidis, Applied Optimum Signal Processing, 2018, online book freely available from:
https://www.ece.rutgers.edu/~orfanidi/aosp.

See also, S. J. Orfanidis, Optimum Signal Processing, 2nd ed., McGraw-Hill, New York, 1988,
and a free online 1996 version available from,
https://www.ece.rutgers.edu/~orfanidi/osp2e

[46] S. J. Orfanidis, Electronagnetic Waves and Antennas, online book, 2016, available from:
https://www.ece.rutgers.edu/~orfanidi/ewa/

Sampling

[47] D. A. Linden, “A Discussion of Sampling Theorems,” Proc. IRE, 47, 1219 (1959).

[48] A. J. Jerri, “The Shannon Sampling Theorem—Its Various Extensions and Applications: A
Tutorial Review,” Proc. IEEE, 65, 1565 (1977).

[49] P. L. Butzer and R. L. Strauss, “Sampling Theory for not Necessarily Band-Limited Functions:
A Historical Overview,” SIAM Review, 34, 40 (1992).

[50] R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory, Springer-Verlag,
New York, 1991.

[51] R. J. Marks II, ed., Advanced Topics in Shannon Sampling and Interpolation Theory,
Springer-Verlag, New York, 1993.

[52] M. Unser, “Sampling—50 Years After Shannon,” Proc. IEEE, 88, 569 (2000).

[53] P. P. Vaidyanathan, “Generalizations of the Sampling Theorem: Seven Decades After
Nyquist,” IEEE Trasn. Circuits & Systems–I, 48, 1094 (2001).

[54] E. Meijering, “A Chronology of Interpolation: From Ancient Astronomy to Modern Signal
and Image Processing,” Proc. IEEE, 90, 319 (2002).

[55] J. A. S. Angus, “Modern Sampling: A Tutorial,” J. Audio Eng. Soc., 67, 300 (2019).

A/D & D/A Conversion, Quantization, Dithering, and Noise Shaping

[56] G. B. Clayton, Data Converters, Halsted Press, Wiley, New York, 1982.

[57] M. J. Demler, High-Speed Analog-to-Digital Conversion, Academic Press, New York, 1991.

[58] G. F. Miner and D. J. Comer, Physical Data Acquisition for Digital Processing, Prentice Hall,
Englewood Cliffs, NJ, 1992.

[59] D. Seitzer, G. Pretzl, and N. A. Hamdy, Electronic Analog-to-Digital Converters, Wiley, New
York, 1983.

1436 REFERENCES

[60] D. H. Sheingold, ed., Analog-Digital Conversion Handbook, 3d ed., Prentice Hall, Englewood
Cliffs, NJ, 1986.

[61] A. VanDoren, Data Acquisition Systems, Reston Publishing, Reston, VA, 1982.

[62] W. R. Bennett, “Spectra of Quantized Signals,” Bell Syst. Tech. J., 27, 446 (1948).

[63] B. Widrow, “Statistical Analysis of Amplitude-Quantized Sampled-Data Systems,” AIEE
Trans. Appl. Ind., pt.2, 79, 555 (1961).

[64] P. F. Swaszek, ed., Quantization, Van Nostrand Reinhold, New York, 1985.

[65] A. B. Sripad and D. L. Snyder, “A Necessary and Sufficient Condition for Quantization Errors
to Be Uniform and White,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-25, 442 (1977).

[66] C. W. Barnes, et al., “On the Statistics of Fixed-Point Roundoff Error,” IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-33, 595 (1985).

[67] R. M. Gray, “Quantization Noise Spectra,” IEEE Trans. Inform. Theory, IT-36, 1220 (1990),
and earlier references therein. Reprinted in Ref. [350], p. 81.

[68] L. G. Roberts, “Picture Coding Using Pseudo-Random Noise,” IRE Trans. Inform. Th., IT-8,
145 (1962).

[69] L. Schuchman, “Dither Signals and Their Effect on Quantization Noise,” IEEE Trans. Com-
mun., COM-12, 162 (1964).

[70] N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice Hall, Englewood Cliffs, NJ
1984.

[71] J. F. Blinn, “Quantization Error and Dithering,” IEEE Comput. Graphics & Appl. Mag., (July
1994), p. 78.

[72] S. P. Lipshitz, R. A. Wannamaker, and J. Vanderkooy, “Quantization and Dither: A Theo-
retical Survey,” J. Audio Eng. Soc., 40, 355 (1992).

[73] J. Vanderkooy and S. P. Lipshitz, “Resolution Below the Least Significant Bit in Digital
Systems with Dither,” J. Audio Eng. Soc., 32, 106 (1984).

[74] J. Vanderkooy and S. P. Lipshitz, “Dither in Digital Audio,” J. Audio Eng. Soc., 35, 966 (1987).

[75] J. Vanderkooy and S. P. Lipshitz, “Digital Dither: Signal Processing with Resolution Far
Below the Least Significant Bit,” Proc. 7th Int. Conf.: Audio in Digital Times, Toronto, May
1989, p. 87.

[76] M. A. Gerzon and P. G. Graven, “Optimal Noise Shaping and Dither of Digital Signals,”
presented at 87th Convention of the AES, New York, October 1989, AES Preprint 2822, J.
Audio Eng. Soc., (Abstracts) 37, 1072 (1989).

[77] S. P. Lipshitz, J. Vanderkooy, and R. A. Wannamaker, “Minimally Audible Noise Shaping,”
J. Audio Eng. Soc., 39, 836 (1991).

[78] R. A. Wannamaker, “Psychoacoustically Optimal Noise Shaping,” J. Audio Eng. Soc., 40, 611
(1992).

[79] M. A. Gerzon, P. G. Graven, J. R. Stuart, and R. J. Wilson, “Psychoacoustic Noise Shaped
Improvements in CD and Other Linear Digital Media,” presented at 94th Convention of the
AES, Berlin, May 1993, AES Preprint no. 3501.

[80] R. van der Waal, A. Oomen, and F. Griffiths, “Performance Comparison of CD, Noise-Shaped
CD and DCC,” presented at 96th Convention of the AES, Amsterdam, February 1994, AES
Preprint no. 3845.

REFERENCES 1437

[81] J. A. Moorer and J. C. Wen, “Whither Dither: Experience with High-Order Dithering Algo-
rithms in the Studio,” presented at 95th Convention of the AES, New York, October 1993,
AES Preprint no. 3747.

[82] R. A. Wannamaker, “Subtractive and Nonsubtractive Dithering: A Comparative Analysis,”
presented at 97th Convention of the AES, San Francisco, November 1994, AES Preprint no.
3920.

[83] D. Ranada, “Super CD’s: Do They Deliver The Goods?,” Stereo Review, July 1994, p. 61.

[84] M. A. Gerzon and P. G. Craven, “A High-Rate Buried-Data Channel for Audio CD,” J. Audio
Eng. Soc., 43, 3 (1995).

[85] A. Oomen, M. Groenewegen, R. van der Waal, and R. Veldhuis, “A Variable-Bit-Rate Buried-
Data Channel for Compact Disc,” J. Audio Eng. Soc., 43, 25 (1995).

[86] Trân-Thôńg and B. Liu, “Error Spectrum Shaping in Narrow Band Recursive Filters,” IEEE
Trans. Acoust., Speech, Signal Process., ASSP-25, 200 (1977).

[87] W. E. Higgins and D. C. Munson, “Noise Reduction Strategies for Digital Filters: Error Spec-
trum Shaping Versus the Optimal Linear State-Space Formulation,” IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-30, 963 (1982).

[88] C. T. Mullis and R. A. Roberts, “An Interpretation of Error Spectrum Shaping in Digital
Filters,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-30, 1013 (1982).

[89] J. Dattoro, “The Implementation of Digital Filters for High-Fidelity Audio,” Proc. AES 7th
Int. Conf., Audio in Digital Times, Toronto, 1989, p. 165.

[90] R. Wilson, et al., “Filter Topologies,” J. Audio Eng. Soc., 41, 455 (1993).

[91] U. Zölzer, “Roundoff Error Analysis of Digital Filters,” J. Audio Eng. Soc., 42, 232 (1994).

[92] W. Chen, “Performance of the Cascade and Parallel IIR Filters,” presented at 97th Conven-
tion of the AES, San Francisco, November 1994, AES Preprint no. 3901.

[93] D. W. Horning and R. Chassaing, “IIR Filter Scaling for Real-Time Signal Processing,” IEEE
Trans. Educ., 34, 108 (1991).

[94] K. Baudendistel, “Am Improved Method of Scaling for Real-Time Signal Processing Appli-
cations,” IEEE Trans. Educ., 37, 281 (1994).

DSP Hardware

[95] E. A. Lee, “Programmable DSP Architectures: Part I,” IEEE ASSP Mag., 5, no. 4, 4 (1988), and
“Programmable DSP Architectures: Part II,” ibid., 6, no. 1, 4 (1989).

[96] K-S. Lin, ed., Digital Signal Processing Applications with the TMS320 Family, vol. 1, Prentice
Hall, Englewood Cliffs, NJ, 1987.

[97] P. E. Papamichalis, ed., Digital Signal Processing Applications with the TMS320 Family, vols.
2 and 3, Prentice Hall, Englewood Cliffs, NJ, 1991.

[98] TMS320C2x, TMS320C3x, TMS320C4x, TMS320C5x, User Guides, Texas Instruments, Dal-
las, TX, 1989–93.

[99] R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York, 1992.

[100] M. El-Sharkawy, Real Time Digital Signal Processing Applications with Motorola’s DSP56000
Family, Prentice Hall, Englewood Cliffs, NJ, 1990.

[101] M. El-Sharkawy, Signal Processing, Image Processing and Graphics Applications with Mo-
torola’s DSP96002 Processor, vol. I, Prentice Hall, Englewood Cliffs, NJ, 1994.

1438 REFERENCES

[102] V. K. Ingle and J. G. Proakis, Digital Signal Processing Laboratory Using the ADSP-2101
Microcomputer, Prentice Hall, Englewood Cliffs, NJ, 1991.

[103] WE©R DSP32 Digital Signal Processor, Application Guide, AT&T Document Management Or-
ganization, 1988.

[104] J. Tow, “Implementation of Digital Filters with the WE©R DSP32 Digital Signal Processor,”
AT&T Application Note, 1988.

[105] S. L. Freeny, J. F. Kaiser, and H. S. McDonald, “Some Applications of Digital Signal Processing
in Telecommunications,” in Ref. [12], p. 1.

[106] J. R. Boddie, N. Sachs, and J. Tow, “Receiver for TOUCH-TONE Service,” Bell Syst. Tech. J.,
60, 1573 (1981).

[107] J. Hartung, S. L. Gay, and G. L. Smith, “Dual-Tone Multifrequency Receiver Using the
WE©R DSP32 Digital Signal Processor,” AT&T Application Note, 1988.

[108] P. Mock, “Add DTMF Generation and Decoding to DSP-μP Designs,” EDN, March 21, (1985).
Reprinted in Ref. [96], p. 543.

[109] A. Mar, ed., Digital Signal Processing Applications Using the ADSP-2100 Family, Prentice
Hall, Englewood Cliffs, NJ, 1990.

Computer Music

[110] M. V. Mathews, et al., The Technology of Computer Music, MIT Press, Cambridge, MA, 1969.

[111] F. R. Moore, Elements of Computer Music, Prentice Hall, Englewood Cliffs, NJ, 1990.

[112] C. Roads and J. Strawn, eds., Foundations of Computer Music, MIT Press, Cambridge, MA,
1988.

[113] C. Roads, ed., The Music Machine, MIT Press, Cambridge, MA, 1989.

[114] C. Dodge and T. A. Jerse, Computer Music, Schirmer/Macmillan, New York, 1985.

[115] G. Haus, ed., Music Processing, A-R Editions, Inc., Madison, WI, 1993.

[116] B. Vercoe, “Csound: A Manual for the Audio Processing System and Support-
ing Programs with Tutorials,” MIT Media Lab, 1993. Csound is available via
ftp from cecelia.media.mit.edu in pub/Csound and MSDOS versions from
ftp.maths.bath.ac.uk in pub/dream.

[117] J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modu-
lation,” J. Audio Eng. Soc., 21, 526, 1973. Reprinted in Ref. [112].

[118] F. R. Moore, “Table Lookup Noise for Sinusoidal Digital Oscillators,” Computer Music J., 1,
26, 1977. Reprinted in Ref. [112].

[119] S. Mehrgardt, “Noise Spectra of Digital Sine-Generators Using the Table-Lookup Method,”
IEEE Trans. Acoust., Speech, Signal Process., ASSP-31, 1037 (1983).

[120] W. M. Hartmann, “Digital Waveform Generation by Fractional Addressing,” J. Acoust. Soc.
Am., 82, 1883 (1987).

[121] P. D. Lehrman, “The Computer as a Musical Instrument,” Electronic Musician, 7, no. 3, 30
(1991).

[122] M. N. McNabb, “Dreamsong: The Composition,” Computer Music J., 5, no. 4, 1981.
Reprinted in Ref. [113].

REFERENCES 1439

[123] G. De Poli, “A Tutorial on Digital Sound Synthesis Techniques,” Computer Music J., 7, no.
4, (1983). Reprinted in Ref. [113].

[124] R. Karplus and A. Strong, “Digital Synthesis of Plucked String and Drum Timbres,” Com-
puter Music J., 7, 43 (1983). Reprinted in Ref. [113].

[125] D. A. Jaffe and J. O. Smith, “Extensions of the Karplus-Strong Plucked-String Algorithm,”
Computer Music J., 7, 56 (1983). Reprinted in Ref. [113].

[126] C. R. Sullivan, “Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar Tim-
bres with Distortion and Feedback,” Computer Music J., 14, 26 (1990).

[127] J. O. Smith, “Physical Modeling Using Digital Waveguides,” Computer Music J., 16, 74 (1992).

[128] G. Mayer-Kress, et al., “Musical Signals from Chua’s Circuit,” IEEE Trans. Circuits Syst.—II:
Analog and Digital Signal Process., 40, 688 (1993).

[129] X. Rodet, “Models of Musical Instruments from Chua’s Circuit with Time Delay,” IEEE Trans.
Circuits Syst.—II: Analog and Digital Signal Process., 40, 696 (1993).

[130] S. Wilkinson, “Model Music,” Electronic Musician, 10, no. 2, 42 (1994).

[131] J. A. Moorer, “Signal Processing Aspects of Computer Music: A Survey,” Proc. IEEE, 65,
1108, (1977). Reprinted in Ref. [158].

Digital Audio Effects

[132] IEEE ASSP Mag., 2, no. 4, October 1985, Special Issue on Digital Audio.

[133] Y. Ando, Concert Hall Acoustics, Springer-Verlag, New York, 1985.

[134] D. Begault, “The Evolution of 3-D Audio,” MIX, October 1993, p. 42.

[135] P. J. Bloom, “High-Quality Digital Audio in the Entertainment Industry: An Overview of
Achievements and Challenges,” in Ref. [132], p. 2.

[136] B. Blesser and J. M. Kates, “Digital Processing of Audio Signals,” in Ref. [12], p. 29.

[137] N. Brighton and M. Molenda, “Mixing with Delay,” Electronic Musician, 9, no. 7, 88 (1993).

[138] N. Brighton and M. Molenda, “EQ Workshop” Electronic Musician, October 1993, p. 105.

[139] D. Cronin, “Examining Audio DSP Algorithms,” Dr. Dobbs Journal, 19, no. 7, 78, (1994).

[140] D. Griesinger, “Practical Processors and Programs for Digital Reverberation,” Proc. AES 7th
Int. Conf., Audio in Digital Times, Toronto, 1989, p. 187.

[141] G. Hall, “Effects, The Essential Musical Spice,” Electronic Musician, 7, no. 8, 62 (1991).

[142] G. Hall, “Solving the Mysteries of Reverb,” Electronic Musician, 7, no. 6, 80 (1991).

[143] M. Kleiner, B. Dalebäck, and P. Svensson, “Auralization—An Overview,” J. Audio Eng. Soc.,
41, 861 (1993).

[144] P. D. Lehrman, “The Electronic Orchestra, Parts I and II,” Electronic Musician, September
1993, p. 41, and October 1993, p. 46.

[145] J. Meyer, “The Sound of the Orchestra,” J. Audio Eng. Soc., 41, 203 (1993).

[146] J. A. Moorer, “About this Reverberation Business,” Computer Music J., 3, 13 (1979).
Reprinted in Ref. [112].

[147] D. Moulton, “Spectral Management, Parts 1 & 2,” Home & Studio Recording, July 1993, p.
22, and August 1993, p. 50.

1440 REFERENCES

[148] E. Persoon and C. Vanderbulcke, “Digital Audio: Examples of the Application of the ASP
Integrated Signal Processor,” Philips Tech. Rev., 42, 201 (1986).

[149] J. R. Pierce, The Science of Musical Sound, W. H. Freeman and Company, New York, 1992.

[150] K. Pohlmann, The Principles of Digital Audio, 2nd ed., H. W. Sams, Carmel, IN, 1989.

[151] K. Pohlmann, ed., Advanced Digital Audio, H. W. Sams, Carmel, IN, 1991.

[152] M. R. Schroeder, “Natural Sounding Artificial Reverberation,” J. Audio Eng, Soc., 10, 219,
(1962).

[153] M. R. Schroeder, “Digital Simulation of Sound Transmission in Reverberant Spaces", J.
Acoust. Soc. Am., 47, 424 (1970).

[154] M. R. Schroeder, D. Gottlob, and K. F. Siebrasse, “Comparative Study of European Concert
Halls: Correlation of Subjective Preference with Geometric and Acoustic Parameters,” J.
Acoust. Soc. Am., 56, 1195 (1974).

[155] W. L. Sinclair and L. I. Haworth, “Digital Recording in the Professional Industry, parts I and
II,” Electronics & Communications Eng. J., June and August 1991.

[156] SE-50 Stereo Effects Processor, User Manual, Roland/Boss Corp., 1990.

[157] J. O. Smith, “An Allpass Approach to Digital Phasing and Flanging,” Proc. Int. Computer
Music Conf. (ICMC), IRCAM, Paris, Oct. 1984, p. 236.

[158] J. Strawn, ed., Digital Audio Signal Processing: An Anthology, W. Kaufmann, Los Altos, CA,
1985.

[159] J. Watkinson, The Art of Digital Audio, Focal Press, London, 1988.

[160] P. White, Creative Recording: Effects and Processors, Music Maker Books, Cambridgeshire,
UK, 1989.

[161] J. D. Reiss and A. P. McPherson, Audio Effects : Theory, Implementation And Application,
CRC Press, 2014.

[162] A. Uncini, Digital Audio Processing Fundamentals, Springer Nature, Switzerland, 2022.

Dynamic Range Control

[163] B. Blesser, “Audio Dynamic Range Compression for Minimum Perceived Distortion,” IEEE
Trans. Audio Electroacoust., AU-17, 22 (1969).

[164] G. W. McNally, “Dynamic Range Control of Digital Audio Signals,” J. Audio Eng. Soc., 32,
316 (1984).

[165] G. Davis and R. Jones, Sound Reinforcement Handbook, 2nd ed., Yamaha Corp., Hal Leonard
Publishing, Milwaukee, WI., 1989.

[166] B. Hurtig, “The Engineer’s Notebook: Twelve Ways to Use Dynamics Processors,” Electronic
Musician, 7, no. 3, 66 (1991). See also, B. Hurtig, “Pumping Gain: Understanding Dynamics
Processors,” Electronic Musician, 7, no. 3, 56 (1991).

[167] J. M. Eargle, Handbook of Recording Engineering, 2nd ed., Van Nostrand Reinhold, New
York, 1992.

[168] P. Freudenberg, “All About Dynamics Processors, Parts 1 & 2,” Home & Studio Recording,
March 1994, p. 18, and April 1994, p. 44.

REFERENCES 1441

[169] U. Zölzer, ed., DAFX – Digital Audio Effects, Wiley, Chichester, England, 2003.
MATLAB and audio files available from:
http://ant-s4.unibw-hamburg.de/dafx/DAFX_Book_Page/matlab.html

https://www.dafx.de/DAFX_Book_Page/matlab.html

[170] D. Giannoulis, M. Massberg, and J. D. Reiss. “Digital Dynamic Range Compressor Design—A
Tutorial and Analysis,” J. Audio Eng. Soc., 60, 399 (2012).

[171] “Dynamics Processors,” ReneNote 155, Rane Corporation, 2005. Available from,
https://www.ranecommercial.com/kb_article.php?article=2129

https://www.ranecommercial.com/legacy/note155.html

[172] S. Banerjee, “The Compression Handbook,” 4th ed, Starkey Hearing Research & Technology,
Starkey Laboratories, 2017. Available from:
https://starkeypro.com/pdfs/The_Compression_Handbook.pdf

[173] Wikipedia article, “Dynamic range compression,” with additional references therein.
https://en.wikipedia.org/wiki/Dynamic_range_compression

Biomedical Signal Processing

[174] M. L. Ahlstrom and W. J. Tompkins, “Digital Filters for Real-Time ECG Signal Processing
Using Microprocessors,” IEEE Trans. Biomed. Eng., BME-32, 708 (1985).

[175] I. I. Christov and I. A. Dotsinsky, “New Approach to the Digital Elimination of 50 Hz Inter-
ference from the Electrocardiogram,” Med. & Biol. Eng. & Comput., 26 431 (1988).

[176] “The Design of Digital Filters for Biomedical Signal Processing,” Part-1, J. Biomed. Eng., 4,
267 (1982), Part-2, ibid., 5, 19 (1983), Part-3, ibid., 5, 91 (1983).

[177] M. Della Corte, O. Cerofolini, and S. Dubini, “Application of Digital Filter to Biomedical
Signals,” Med. & Biol. Eng., 12 374 (1974).

[178] G. M. Friesen, et al., “A Comparison of the Noise Sensitivity of Nine QRS Detection Algo-
rithms,” IEEE Trans. Biomed. Eng., BME-37, 85 (1990).

[179] C. Levkov, et al., “Subtraction of 50 Hz Interference from the Electrocardiogram,” Med. &
Biol. Eng. & Comput., 22 371 (1984).

[180] C. L. Levkov, “Fast Integer Coefficient FIR Filters to Remove the AC Interference and the
High-Frequency Noise Components in Biological Signals,” Med. & Biol. Eng. & Comput., 27
330 (1989).

[181] P. A. Lynn, “Online Digital Filters for Biological Signals: Some Fast designs for a Small
Computer,” Med. & Biol. Eng. & Comput., 15 534 (1977).

[182] P. A. Lynn, “Transversal Resonator Digital Filters: Fast and Flexible Online Processors for
Biological Signals,” Med. & Biol. Eng. & Comput., 21 718 (1983).

[183] R. M. Lu and B. M. Steinhaus, “A Simple Digital Filter to Remove Line-Frequency Noise in
Implantable Pulse Generators,” Biomed. Instr. & Technol., 27, 64 (1993).

[184] N. R. Malik, “Microcomputer Realisations of Lynn’s Fast Digital Filtering Designs,” Med. &
Biol. Eng. & Comput., 18 638 (1980). (This reference uses circular addressing to implement
delays and refers to its earlier use by J. D. Schoeffler (1971) as a wrap-around queue.)

[185] C. J. Marvell and D. L. Kirk, “Use of a Microprocessor to Simulate Precise Electrocardio-
grams,” J. Biomed. Eng., 2, 61 (1980).

[186] V. T. Rhyne, “A Digital System for Enhancing the Fetal Electrocardiogram,” IEEE Trans.
Biomed. Eng., BME-16, 80 (1969).

1442 REFERENCES

[187] J. E. Sheild and D. L. Kirk, “The Use of Digital Filters in Enhancing the Fetal Electrocardio-
gram,” J. Biomed. Eng., 3, 44 (1981).

[188] T. P. Taylor and P. W. Macfarlane, “Digital Filtering of the ECG–A Comparison of Low-pass
Digital Filters on a Small Computer,” Med. & Biol. Eng., 12 493 (1974).

[189] N. V. Thakor and D. Moreau, “Design and Analysis of Quantised Coefficient Digital Filters:
Application to Biomedical Signal Processing With Microprocessors,” Med. & Biol. Eng. &
Comput., 25 18 (1987).

[190] W. J. Tompkins and J. G. Webster, eds., Design of Microcomputer-Based Medical Instrumen-
tation, Prentice Hall, Englewood Cliffs, NJ, 1981.

[191] W. J. Tompkins, ed., Biomedical Digital Signal Processing, Prentice Hall, Englewood Cliffs,
NJ, 1993.

[192] R. Wariar and C. Eswaran, “Integer Coefficient Bandpass Filter for the Simultaneous Re-
moval of Baseline Wander, 50 and 100 Hz Interference from the ECG,” Med. & Biol. Eng. &
Comput., 29 333 (1991).

Digital TV

[193] A. Acampora, “Wideband Picture Detail Restoration in a Digital NTSC Comb-Filter System,”
RCA Engineer, 28-5, 44, Sept./Oct. (1983).

[194] A. A. Acampora, R. M. Bunting, and R. J. Petri, “Noise Reduction in Video Signals by a Digital
Fine-Structure Process,” RCA Engineer, 28-2, 48, March/April (1983).

[195] A. A. Acampora, R. M. Bunting, and R. J. Petri, “Noise Reduction in Video Signals Using
Pre/Post Signal Processing in a Time Division Multiplexed Component System,” RCA Re-
view, 47, 303 (1986).

[196] M. Annegarn, A. Nillesen, and J. Raven, “Digital Signal Processing in Television Receivers,”
Philips Tech. Rev., 42, 183 (1986).

[197] J. F. Blinn, “NTSC: Nice Technology, Super Color,” IEEE Comput. Graphics & Appl. Mag.,
(March 1993), p. 17.

[198] J. Isailovic, Videodisc Systems: Theory and Applications, Prentice Hall, Englewood Cliffs,
NJ, 1987.

[199] H. E. Kallmann, “Transversal Filters,” Proc. IRE, 28, 302 (1940). Perhaps, the earliest refer-
ence on FIR and comb filters.

[200] P. Mertz and F. Gray, “A Theory of Scanning and Its Relation to the Characteristics of the
Transmitted Signal in Telephotography and Television,” Bell Syst. Tech. J., 13, 464 (1934).

[201] D. E. Pearson, Transmission and Display of Pictorial Information, Wiley, New York, 1975.

[202] J. O. Limb, C. B. Rubinstein, and J. E. Thompson, “Digital Coding of Color Video Signals—A
Review,” IEEE Trans. Commun., COM-25, 1349 (1977).

[203] C. H. Lu, “Subcarrier Phase Coherence in Noise Reduction of Composite NTSC Signals—
Three Approaches and Their Comparison,” RCA Review, 47, 287 (1986).

[204] D. H. Pritchard and J. J. Gibson, “Worldwide Color TV Standards—Similarities and Differ-
ences,” RCA Engineer, 25-5, 64, Feb./Mar. (1980).

[205] D. H. Pritchard, “A CCD Comb Filter for Color TV Receiver Picture Enhancement,” RCA
Review, 41, 3 (1980).

[206] J. P. Rossi, “Color Decoding a PCM NTSC Television Signal,” SMPTE J., 83, 489 (1974).

REFERENCES 1443

[207] J. P. Rossi, “Digital Television Image Enhancement,” SMPTE J., 84, 546 (1975).

[208] C. P. Sandbank, ed., Digital Television, Wiley, Chichester, England, 1990.

[209] K. B. Benson and D. G. Fink, HDTV, Advanced Television for the 1990s, Inter-
text/Multiscience, McGraw-Hill, New York, 1991.

[210] M. I. Krivocheev and S. N. Baron, “The First Twenty Years of HDTV: 1972-1992,” SMPTE J.,
102, 913 (1993).

[211] Special Issue on All Digital HDTV, Signal Processing: Image Commun., 4, no. 4–5 (Aug.
1992).

[212] Special Issue on Digital High Definition Television, Signal Processing: Image Commun., 5,
no. 5–6 (Dec. 1993).

[213] R. Hopkins, “Digital Terrestrial HDTV for North America: The Grand Alliance HDTV Sys-
tem,” IEEE Trans. Consum. Electr., 40, 185 (1994).

Signal Averaging

[214] D. G. Childers, “Biomedical Signal Processing,” in Selected Topics in Signal Processing, S.
Haykin, ed., Prentice Hall, Englewood Cliffs, NJ, 1989.

[215] A. Cohen, Biomedical Signal Processing, vols. 1 and 2, CRC Press, Boca Raton, FL, 1986.

[216] H. G. Goovaerts and O. Rompelman, “Coherent Average Technique: A Tutorial Review,” J.
Biomed. Eng., 13, 275 (1991).

[217] P. Horowitz and W. Hill, The Art of Electronics, 2nd ed., Cambridge University Press, Cam-
bridge, 1989.

[218] O. Rompelman and H. H. Ros, “Coherent Averaging Technique: A Tutorial Review, Part
1: Noise Reduction and the Equivalent Filter,” J. Biomed. Eng., 8, 24 (1986); and “Part 2:
Trigger Jitter, Overlapping Responses, and Non-Periodic Stimulation,” ibid., p. 30.

[219] V. Shvartsman, G. Barnes, L. Shvartsman, and N. Flowers, “Multichannel Signal Processing
Based on Logic Averaging,” IEEE Trans. Biomed. Eng., BME-29, 531 (1982).

[220] C. W. Thomas, M. S. Rzeszotarski, and B. S. Isenstein, “Signal Averaging by Parallel Digital
Filters,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-30, 338 (1982).

[221] T. H. Wilmshurst, Signal Recovery from Noise in Electronic Instrumentation, 2nd ed., Adam
Hilger and IOP Publishing, Bristol, England, 1990.

Windows

[222] F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,” Proc. IEEE, 66, 51 (1978).

[223] N. C. Geçkinli and D. Yavuz, “Some Novel Windows and a Concise Tutorial Comparison of
Window Families,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-26, 501 (1978).

[224] J. F. Kaiser and R. W. Schafer, “On the Use of the I0-Sinh Window for Spectrum Analysis,”
IEEE Trans. Acoust., Speech, Signal Process., ASSP-28, 105 (1980).

[225] A. H. Nuttal, “Some Windows with Very Good Sidelobe Behavior,” IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-29, 84 (1981).

[226] K. M. Prabhu, Window Functions and Their Applications in Signal Processing, Taylor & Fran-
cis Group, Boca Raton , FL, 2014.

1444 REFERENCES

[227] A. W. Doerry, “Catalog of Window Taper Functions for Sidelobe Control,” Sandia National
Laboratories, Report SAND2017-4042, April 2017.

[228] C. L. Dolph, “A Current Distribution for Broadside Arrays Which Optimizes the Relation-
ship Between Beam Width and Side-Lobe Level,” Proc. IRE, 34, 335 (1946).

[229] D. Barbiere, “A Method for Calculating the Current Distribution of Tschebyscheff Arrays,”
Proc. IRE, 40, 78 (1952).

[230] R. J. Stegen, “Excitation Coefficients and Beamwidths of Tschebyscheff Arrays,” Proc. IRE,
41, 1671 (1953).

[231] A. D. Bresler, “A New Algorithm for Calculating the Current Distributions of Dolph-
Chebyshev Arrays,” IEEE Trans. Antennas Propagat., AP-28, 951 (1980).

[232] T. T. Taylor, “One Parameter Family of Line Sources Producing sinπu/πu Patterns,” Tech-
nical Memorandum no.324, Hughes Aircraft Company, Sept. 1953. Available online from:
http://www.ece.rutgers.edu/~orfanidi/ewa/taylor-1953.pdf

[233] T. T. Taylor, “Design of Line-Source Antennas for Narrow Beamwidth and Low Side Lobes,”
IRE Trans. Antennas Propagat., AP-3, 16 (1955).

[234] A. Papoulis and M. S. Bertram, “Digital Filtering and Prolate Functions,” IEEE Trans. Circuit
Th., CT-19, 674 (1972).

[235] A. T. Villeneuve, “Taylor Patterns for Discrete Arrays,” IEEE Trans. Antennas Propagat.,
AP-32, 1089 (1984).

[236] D. Slepian, “Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty—V: The
Discrete Case,” Bell Syst. Tech. J., 57, 1371 (1978). Available online from Bell System Tech-
nical Journal, http://www.alcatel-lucent.com/bstj/,
and also, https://archive.org/details/bstj-archives

[237] A. T. Walden, “Accurate Approximation of a 0th Order Discrete Prolate Spheroidal Se-
quence for Filtering and Data Tapering,” Sig. Process., 18, 341 (1989).

[238] J. W. Adams, “A New Optimal Window,” IEEE Trans. Acoust., Speech, Signal Process., 39,
1753 (1991).

[239] J. M. Varah, “The Prolate Matrix,” Lin. Alg. Appl., 187, 269 (1993).

[240] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications, Cambridge Univ.
Press., Cambridge, 1993.

[241] T. Verma, S. Bilbao, and T. H. Y. Meng, “The Digital Prolate Spheroidal Window,” IEEE Int.
Conf. Acoust., Speech, Signal Process., ICASSP-96, 1351 (1996).

Spectral Analysis and DFT/FFT Algorithms

[242] E. O. Brigham, The Fast Fourier Transform, Prentice Hall, Englewood Cliffs, NJ, 1988.

[243] R. W. Ramirez, The FFT, Fundamentals and Concepts, Prentice Hall, Englewood Cliffs, NJ,
1985.

[244] C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms, Wiley, New York, 1985.

[245] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadel-
phia, 1992.

[246] W. L. Briggs and V. E. Henson, The DFT: An Owner’s Manual for the Discrete Fourier Trans-
form, SIAM, Philadelphia, 1995.

REFERENCES 1445

[247] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The Fast Fourier Transform and Its Applica-
tions,” IEEE Trans. Educ., 12, 27 (1969).

[248] G. D. Bergland, “A Guided Tour of the Fast Fourier Transform,” IEEE Spectrum, 6, 41, July
1969.

[249] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The Fast Fourier Transform Algorithm:
Programming Considerations in the Calculation of Sine, Cosine, and Laplace Transforms,”
J. Sound Vib., 12, 315 (1970). Reprinted in Ref. [9].

[250] F. J. Harris, “The Discrete Fourier Transform Applied to Time Domain Signal Processing,”
IEEE Commun. Mag., May 1982, p. 13.

[251] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “Historical Notes on the Fast Fourier Trans-
form,” IEEE Trans. Audio Electroacoust., AU-15, 76 (1967). Reprinted in Ref. [9].

[252] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the History of the Fast Fourier
Transform,” IEEE ASSP Mag., 4, no. 4, 14 (1984).

[253] J. W. Cooley, “How the FFT Gained Acceptance,” IEEE Signal Proc. Mag., 9, no. 1, 10 (1992).

[254] P. Kraniauskas, “A Plain Man’s Guide to the FFT,” IEEE Signal Proc. Mag., 11, no. 2, 36
(1994).

[255] J. R. Deller, “Tom, Dick, and Mary Discover the DFT,” IEEE Signal Proc. Mag., 11, no. 2, 36
(1994).

[256] P. Duhamel and M. Vetterli, “Fast Fourier Transforms: A Tutorial Review and a State of the
Art,” Signal Processing, 19, 259 (1990).

[257] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans. Comput.,
C-23, 90 (1974).

[258] H. S. Hou, “A Fast Recursive Algorithm for the Discrete Cosine Transform,” IEEE Trans.
Acoust., Speech, Signal Process., ASSP-35, 1455 (1987).

[259] J. F. Blinn, “What’s the Deal with the DCT?,” IEEE Comput. Graphics & Appl. Mag., (July
1993), p. 78.

[260] R. C. Singleton, “A Method for Computing the Fast Fourier Transform with Auxiliary Mem-
ory and Limited High-Speed Storage,” IEEE Trans. Audio Electroacoust., AU-15, 91 (1967).
Reprinted in Ref. [9].

[261] N. M. Brenner, “Fast Fourier Transform of Externally Stored Data,” IEEE Trans. Audio Elec-
troacoust., AU-17, 128 (1969).

[262] W. K. Hocking, “Performing Fourier Transforms on Extremely Long Data Streams,” Comput.
Phys., 3, 59 (1989).

[263] H. V. Sorensen and C. S. Burrus, “Efficient Computation of the DFT with Only a Subset of
Input or Output Points,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-41, 1184 (1993).

[264] FFTW is perhaps the most efficient, fast, and flexible version of FFT implementations. It
is described in, M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,”
Proc. IEEE, 93, 216 (2005), and it is freely available from: http://www.fftw.org/

FIR Filter Design

[265] J. F. Kaiser, “Design Methods for Sampled Data Filters,” Proc. 1st Allerton Conf. Circuit
System Theory, p. 221, (1963), and reprinted in Ref. [9], p. 20.

1446 REFERENCES

[266] J. F. Kaiser, “Digital Filters,” in F. F. Kuo and J. F. Kaiser, eds., System Analysis by Digital
Computer, Wiley, New York, 1966, p. 228.

[267] J. F. Kaiser, “Nonrecursive Digital Filter Design Using the I0-Sinh Window Function,” Proc.
1974 IEEE Int. Symp. on Circuits and Systems, p. 20, (1974), and reprinted in [10], p. 123.

[268] H. D. Helms, “Nonrecursive Digital Filters: Design Methods for Achieving Specifications on
Frequency Response,” IEEE Trans. Audio Electroacoust., AU-16, 336 (1968).

[269] H. D. Helms, “Digital Filters with Equiripple or Minimax Response,” IEEE Trans. Audio
Electroacoust., AU-19, 87 (1971), and reprinted in Ref. [9], p. 131.

[270] R. C. Hansen, “Linear Arrays,” in A. W. Rudge, et al., eds., Handbook of Antenna Design,
vol. 2, 2nd ed., P. Peregrinus and IEE, London, 1986.

[271] T. Saramäki, “Finite Impulse Response Filter Design,” in Ref. [5], p. 155.

[272] K. B. Benson and J. Whitaker, Television and Audio Handbook, McGraw-Hill, New York,
1990.

[273] P. L. Schuck, “Digital FIR Filters for Loudspeaker Crossover Networks II: Implementation
Example,” Proc. AES 7th Int. Conf., Audio in Digital Times, Toronto, 1989, p. 181.

[274] R. Wilson, et al., “Application of Digital Filters to Loudspeaker Crossover Networks,” J.
Audio Eng. Soc., 37, 455 (1989).

[275] K. Steiglitz, T. W. Parks, and J. F. Kaiser, “METEOR: A Constraint-Based FIR Filter Design
Program,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-40, 1901 (1992). This program
is available via anonymous ftp from princeton.edu.

[276] K. Steiglitz and T. W. Parks, “What is the Filter Design Problem?,” Proc. 1986 Princeton
Conf. Inform. Sci. Syst., p. 604 (1986).

Gibbs Phenomenon

[277] H. Wilbraham, “On a certain periodic function,” Cambridge and Dublin Math. J., 3, 198
(1848).

[278] J. W. Gibbs, Letter in Nature 59, 200 (1898-1899), and, ibid., p.606. Also in Collected Works,
Vol. II. New York: Longmans, Green & Co., 1927, p.258.

[279] H. S. Carslaw, “A trigonometrical sum and the Gibbs’ phenomenon in Fourier’s series,”
Amer. J. Math., 39, 185 (1917). See also, H. S. Carslaw, “A historical note on Gibbs’ phe-
nomenon in Fourier’s series and integrals,” Bull. Am. Math. Soc., 31, 420 (1925).

[280] E. Hewitt and R. E. Hewitt, “The Gibbs-Wilbraham Phenomenon: An Episode in Fourier Anal-
ysis,” Author(s): Edwin Hewitt and Robert E. Hewitt Source: Archive Hist. Exact Sciences,
21, 129 (1979).

[281] D. Gottlieb and C-W. Shi, “On the Gibbs phenomenon and its resolution,” SIAM Rev., 39,
644 (1997).

[282] https://en.wikipedia.org/wiki/Fourier_series

https://en.wikipedia.org/wiki/Dirichlet_conditions

https://en.wikipedia.org/wiki/Gibbs_phenomenon

Second-Order IIR Filter Design

[283] K. Hirano, S. Nishimura, and S. Mitra, “Design of Digital Notch Filters,” IEEE Trans. Com-
mun., COM-22, 964 (1974).

REFERENCES 1447

[284] M. N. S. Swami and K. S. Thyagarajan, “Digital Bandpass and Bandstop Filters with Variable
Center Frequency and Bandwidth,” Proc. IEEE, 64, 1632 (1976).

[285] G. W. McNally, “Digital Audio: Recursive Digital Filtering for High Quality Audio Sig-
nals,” BBC Research Dept. Report, BBC RD 1981/10, Dec. 1981. Available online from:
www.bbc.co.uk/rd/pubs/reports/1981-10.pdf.

[286] J. A. Moorer, “The Manifold Joys of Conformal Mapping: Applications to Digital Filtering
in the Studio,” J. Audio Eng. Soc., 31, 826 (1983). Updated version available online from
www.jamminpower.com.

[287] S. A. White, “Design of a Digital Biquadratic Peaking or Notch Filter for Digital Audio Equal-
ization,” J. Audio Eng. Soc., 34, 479 (1986).

[288] P. A. Regalia and S. K. Mitra, “Tunable Digital Frequency Response Equalization Filters,”
IEEE Trans. Acoust., Speech, Signal Process., ASSP-35, 118 (1987).

[289] D. J. Shpak, “Analytical Design of Biquadratic Filter Sections for Parametric Filters,” J. Audio
Eng. Soc., 40, 876 (1992).

[290] D. C. Massie, “An Engineering Study of the Four-Multiply Normalized Ladder Filter,” J.
Audio Eng. Soc., 41, 564 (1993).

[291] F. Harris and E. Brooking, “A Versatile Parametric Filter Using Imbedded All-Pass Sub-Filter
to Independently Adjust Bandwidth, Center Frequency, and Boost or Cut,” presented at the
95th Convention of the AES, New York, October 1993, AES Preprint 3757.

[292] R. Bristow-Johnson, “The Equivalence of Various Methods of Computing Biquad Coeffi-
cients for Audio Parametric Equalizers,” presented at the 97th Convention of the AES, San
Francisco, November 1994, AES Preprint 3906.

[293] R. Bristow-Johnson, “Cookbook formulae for audio EQ biquad filter coefficients,” available
from: www.musicdsp.org/files/Audio-EQ-Cookbook.txt.

[294] U. Zölzer and T. Boltze, “Parametric Digital Filter Structures,” Presented at the 99th Con-
vention of the AES, New York, October 1995, AES Preprint 4099.

[295] U. Zölzer, Digital Audio Signal Processing, Wiley, Chichester, UK, 1997.

[296] S. J. Orfanidis, “Digital Parametric Equalizer Design With Prescribed Nyquist-Frequency
Gain,” J. Aud. Eng. Soc., 45, 444 (1997).

[297] K. B. Christensen, “A Generalization of the Biquad Parametric Equalizer,” Presented at the
115th Convention of the AES, New York, October 2003, AES Preprint 5916.

Analog Filter Design

[298] M. E. Van Valkenburg, Analog Filter Design, Holt, Rinehart and Winston, New York, 1982.

[299] A. B. Williams and F. J. Taylor, Electronic Filter Design Handbook, 2nd ed., McGraw-Hill,
New York, 1988.

[300] L. P. Huelsman, Active and Passive Analog Filter Design: An Introduction, McGraw-Hill, New
York, 1993.

[301] W. J. Thompson, “Chebyshev Polynomials: After the Spelling the Rest Is Easy,” Comput.
Phys., 8, 161 (1994).

Elliptic Filter Design

1448 REFERENCES

[302] E. I. Zolotarev, “Application of Elliptic Functions to Problems about Functions with Least
and Greatest Deviation from Zero,” Zap. Imp. Akad. Nauk. St. Petersburg, 30 (1877), no. 5.
(in Russian); available online from:
www.math.technion.ac.il/hat/fpapers/zol1.pdf.

[303] W. Cauer, Synthesis of Linear Communication Networks, McGraw-Hill, New York, 1958.

[304] S. Darlington, “Synthesis of Reactance 4-Poles which Produce Prescribed Insertion Loss
Characteristics,” J. Math. and Phys., 18, 257 (1939).

[305] A. J. Grossman, “Synthesis of Tchebycheff Parameter Symmetrical Filters,” Proc. IRE, 45,
454 (1957).

[306] J. E. Storer, Passive Network Synthesis, McGraw-Hill, New York, 1957.

[307] R. W. Daniels, Approximation Methods for Electronic Filter Design, McGraw-Hill, New York,
1974.

[308] H. J. Orchard, “Adjusting the Parameters of Elliptic Function Filters,” IEEE Trans. Circuits
Syst., I, 37, 631 (1990).

[309] H. J. Orchard and A. N. Willson, “Elliptic Functions for Filter Design,” IEEE Trans. Circuits
Syst., I, 44, 273 (1997).

[310] A. Antoniou, Digital Filters, 2nd ed., McGraw-Hill, New York, 1993.

[311] M. D. Lutovac, D. V. Tosic, and B. L. Evans, Filter Design for Signal Processing, Prentice Hall,
Upper Saddle River, NJ, 2001.

[312] M. Vlcek and R. Unbehauen, “Degree, Ripple, and Transition Width of Elliptic Filters,” IEEE
Trans. Circ. Syst., CAS-36, 469 (1989).

[313] C. G. J. Jacobi, “Fundamenta Nova Theoriae Functionum Ellipticarum,” reprinted in C. G. J.
Jacobi’s Gesammelte Werke, vol.1, C. W. Borchardt, ed., Verlag von G. Reimer, Berlin, 1881.

[314] F. Bowman, Introduction to Elliptic Functions with Applications, Dover Publications, New
York, 1961.

[315] E. H. Neville, Jacobian Elliptic Functions, Oxford University Press, 1944.

[316] A. Cayley, An Elementary Treatise on Elliptic Functions, Dover Publications, New York, 1961.

[317] D. F. Lawden, Elliptic Functions and Applications, Springer-Verlag, New York, 1989.

[318] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists,
Springer-Verlag, New York, 1971.

[319] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Translations of Mathematical
Monographs, vol.79, American Mathematical Society, Providence, RI, 1990.

[320] R. Hoppe, “Elliptische Integrale und Funktionen nach Jacobi,” available online at the web
page: http://www.dfcgen.de/wpapers/elliptic/elliptic.html

[321] A. G. Constantinides, “Frequency Transformations for Digital Filters,” Elect. Lett., 3, 487
(1967), and ibid., 4, 115 (1968).

[322] A. G. Constantinides, “Spectral Transformations for Digital Filters,” Proc. IEE, 117, 1585
(1970).

[323] M. N. S. Swami and K. S. Thyagarajan, “Digital Bandpass and Bandstop Filters with Variable
Center Frequency and Bandwidth,” Proc. IEEE, 64, 1632 (1976).

[324] S. K. Mitra, Y. Neuvo, and H. Roivainen, “Design of Recursive Digital Filters with Variable
Characteristics,” Int. J. Circ. Th. Appl., 18, 107 (1990).

REFERENCES 1449

[325] S. K. Mitra, K. Hirano, and S. Nishimura, “Design of Digital Bandpass/Bandstop Filters with
Independent Tuning Characteristics,” Frequenz, 44, 117 (1990).

[326] F. Harris and E. Brooking, “A Versatile Parametric Filter Using Imbedded All-Pass Sub-Filter
to Independently Adjust Bandwidth, Center Frequency, and Boost or Cut,” Presented at the
95th Convention of the AES, New York, October 1993, AES Preprint 3757.

High-Order Digital Parametric Equalizer Design

[327] J. A. Moorer, “The Manifold Joys of Conformal Mapping: Applications to Digital Filtering
in the Studio,” J. Audio Eng. Soc., 31, 826 (1983). Updated version available online from
www.jamminpower.com.

[328] F. Keiler and U. Zölzer, “Parametric Second- and Fourth-Order Shelving Filters for Audio
Applications,” Proc. IEEE 6th Workshop on Multimedia Signal Processing, Siena, Italy, Sept.,
2004, p.231.

[329] S. J. Orfanidis, “High-Order Digital Parametric Equalizer Design,” J. Audio Eng. Soc., 53,
1026 (2005). https://www.aes.org/e-lib/browse.cfm?elib=13397

[330] Available from from the author’s web page: www.ece.rutgers.edu/~orfanidi/hpeq,
and from the JAES supplementary materials page:
https://www.aes.org/journal/suppmat/hpeq_2005_11.zip.

[331] R. Bristow-Johnson, Private Communication, June 2005.

[332] R. A. Losada and V. Pellissier, “Designing IIR Filters with a Given 3-dB Point,” IEEE Signal
Process. Mag., 22, no.4, 95, July 2005.

[333] J. N. Mourjopoulos, E. D. Kyriakis-Bitzaros, and C. E. Goutis, “Theory and Real-Time Imple-
mentation of Time-Varying Digital Audio Filters,” J. Aud. Eng. Soc., 38, 523 (1990).

[334] U. Zölzer, B. Redmer, and J. Bucholz, “Strategies for Switching Digital Audio Filters,” Pre-
sented at the 95th Convention of the AES, New York, October 1993, AES Preprint 3714.

[335] Y. Ding and D. Rossum, “Filter Morphing of Parametric Equalizers and Shelving Filters for
Audio Signal Processing,” J. Aud. Eng. Soc., 43, 821 (1995).

[336] J. Laroche, “Using Resonant Filters for the Synthesis of Time-Varying Sinusoids,” Presented
at the 105th Convention of the AES, San Francisco, September 1998, AES Preprint 4782.

Quantization Effects in Digital Filter Structures

[337] A. H. Gray and J. D. Markel, “Digital Lattice and Ladder Filter Synthesis,” IEEE Trans. Audio
Electroacoust., AU-21, 491 (1973).

[338] A. H. Gray and J. D. Markel, “A Normalized Digital Filter Structure,” IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-23, 268 (1975).

[339] A. H. Gray and J. D. Markel, “Roundoff Noise Characteristics of a Class of Orthogonal
Polynomial Structures,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-23, 473 (1975).

[340] J. A. Moorer, “48-Bit Integer Processing Beats 32-Bit Floating Point for Professional Audio
Applications,” Presented at the 107th Convention of the AES, New York, September 1999,
AES Preprint 5038.

[341] D. C. Massie, “An Engineering Study of the Four-Multiply Normalized Ladder Filter,” J.
Audio Eng. Soc., 41, 564 (1993).

1450 REFERENCES

[342] C. T. Mullis and R. A. Roberts, “Synthesis of Minimum Roundoff Noise Fixed-Point Digital
Filters,” IEEE Trans. Circuits Syst., CAS-23, 551 (1976).

[343] S. Y. Hwang, “Minimum Uncorrelated Unit Noise in State-Space Digital Filtering,” IEEE Trans.
Acoust., Speech, Signal Process., ASSP-25, 273 (1977).

[344] C. T. Mullis and R. A. Roberts, Digital Signal Processing, Addison-Wesley, Boston, 1987.

[345] C. W. Barnes, “On the Design of Optimal State-Space Realizations of Second-Order Digital
Filters,” IEEE Trans. Circuits Syst., CAS-31, 602 (1984).

[346] B. W. Bomar, “New Second-Order State-Space Structures for Realizing Low Roundoff Noise
Digital Filters,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-33, 106 (1985).

Interpolation, Decimation, Oversampling, and Noise Shaping

[347] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice Hall, Engle-
wood Cliffs, NJ, 1983.

[348] R. E. Crochiere and L. R. Rabiner, “Multirate Processing of Digital Signals” in Ref. [13].

[349] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Englewood-Cliffs, NJ,
1993.

[350] J. C. Candy and G. C. Temes, eds., Oversampling Delta-Sigma Data Converters, IEEE Press,
Piscataway, NJ, 1992.

[351] J. C. Candy and G. C. Temes, “Oversampling Methods for A/D and D/A Conversion,” in Ref.
[350].

[352] R. M. Gray, “Oversampled Sigma-Delta Modulation,” IEEE Trans. Commun., COM-35, 481
(1987). Reprinted in Ref. [350], p. 73.

[353] D. Goedhart, et al., “Digital-to-Analog Conversion in Playing a Compact Disc,” Philips Tech.
Rev., 40, 174-179, (1982).

[354] M. W. Hauser, “Principles of Oversampling A/D Conversion,” J. Audio Eng. Soc., 39, 3-26,
(1991).

[355] P. J. A. Naus, et al., “A CMOS Stereo 16-bit D/A Converter for Digital Audio,” IEEE J. Solid-
State Circuits, SC-22, 390-395, (1987). Reprinted in Ref. [350].

[356] SONY Semiconductor IC Data Book, A/D, D/A Converters, 1989 and 1990.

[357] R. Legadec and H. O. Kunz, “A Universal, Digital Sampling Frequency Converter for Digital
Audio,” Proc. 1981 IEEE Int. Conf. Acoust., Speech, Signal Process., ICASSP-81, Atlanta, GA,
p. 595.

[358] T. A. Ramstad, “Digital Methods for Conversion Between Arbitrary Sampling Frequencies,”
IEEE Trans. Acoust., Speech, Signal Process., ASSP-32, 577 (1984).

[359] J. O. Smith and P. Gossett, “A Flexible Sampling-Rate Conversion Method,” Proc. 1984 IEEE
Int. Conf. Acoust., Speech, Signal Process., ICASSP-84, San Diego, CA, p. 19.4.1. C code is
available via ftp from ftp.netcom.com in directory pub/thinman/resample.*.

[360] R. Adams and T. Kwan, “Theory and VLSI Architectures for Asynchronous Sample-Rate
Converters,” J. Audio Eng. Soc., 41, 539 (1993).

[361] “SamplePort Stereo Asynchronous Sample Rate Converters, AD1890/AD1891,” Data Sheet,
Analog Devices, Norwood, MA, 1994.

[362] R. Adams, “Asynchronous Sample-Rate Converters,” Analog Dialogue, 28, no. 1, 9 (1994),
Analog Devices, Inc., Norwood, MA.

REFERENCES 1451

[363] K. Uchimura, et al., “Oversampling A-to-D and D-to-A Converters with Multistage Noise
Shaping Modulators,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-36, 259 (1988).
Reprinted in Ref. [350].

[364] D. B. Ribner, “A Comparison of Modulator Networks for High-Order Oversampled ΣΔ
Analog-to-Digital Converters,” IEEE Trans. Circuits Syst., CAS-38, 145 (1991).

[365] L. A. Williams, III and B. A. Wooley, “Third-Order Cascaded Sigma-Delta Modulators,” IEEE
Trans. Circuits Syst., CAS-38, 489 (1991).

[366] R. W. Adams, et al., “Theory and Practical Implementation of a Fifth-Order Sigma-Delta
A/D Converter,” J. Audio Eng. Soc., 39, 515 (1991).

[367] S. Harris, “How to Achieve Optimum Performance from Delta-Sigma A/D and D/A Con-
verters,” J. Audio Eng. Soc., 41, 782 (1993).

[368] O. Josefsson, “Using Sigma-Delta Converters—Part 1,” Analog Dialogue, 28, no. 1, 26
(1994), Analog Devices, Inc., Norwood, MA, and "Part 2,” ibid., no. 2, 24 (1994).

[369] R. N. J. Veldhuis, M. Breeuwer, and R. G. Van Der Waal, “Subband Coding of Digital Audio
Signals,” Philips J. Res., 44, 329 (1989).

[370] R. N. J. Veldhuis, “Bit Rates in Audio Source Coding,” IEEE J. Select. Areas Commun., 10, 86
(1992).

[371] G. C. P. Lockoff, “DCC—Digital Compact Cassette,” IEEE Trans. Consum. Electr., 37, 702
(1991).

[372] G. C. P. Lockoff, “Precision Adaptive Subband Coding (PASC) for the Digital Compact Cas-
sette (DCC),” IEEE Trans. Consum. Electr., 38, 784 (1992).

[373] A. Hoogendoorn, “Digital Compact Cassette,” Proc. IEEE, 82, 1479 (1994).

[374] T. Yoshida, “The Rewritable MiniDisc System,” Proc. IEEE, 82, 1492 (1994).

STFT and Phase Vocoder

[375] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3/e, Pearson, Upper
Saddle River, NJ, 2010. Chapter 10 discusses the STFT.

[376] U. Zölzer, ed., DAFX – Digital Audio Effects, Wiley, Chichester, England, 2003.
MATLAB and audio files available from:
http://ant-s4.unibw-hamburg.de/dafx/DAFX_Book_Page/matlab.html

[377] J. O. Smith III, Spectral Audio Signal Processing, W3K Publishing, 2011. Available online
from, https://ccrma.stanford.edu/~jos/sasp/.

[378] M. S. Puckette, The Theory and Technique of Electronic Music, 2006. Available online from,
http://msp.ucsd.edu/techniques.htm.

[379] W. A. Sethares, Rhythm and Transforms, Springer, 2007.
Available from: https//sethares.engr.wisc.edu/RT.html|

[380] J.L. Flanagan and R.M. Golden, “Phase Vocoder,” Bell Syst. Tech. J., 4545, 1493 (1966).

[381] J. A.. Moorer, “The Use of the Phase Vocoder in Computer Music Applications,” J. Audio
Eng. Soc., 26, 42 (1978).

[382] J. B. Allen and L. R. Rabiner, “A Unified Approach to Short-Time Fourier Analysis and
Synthesis,” Proc. IEEE, 65, 1558 (1977).

1452 REFERENCES

[383] M. R. Portnoff, “Implementation of the Digital Phase Vocoder Using the Fast Fourier Trans-
form,”IEEE Trans. Acoust., Speech, Signal Process., 24, 243 (1976). See also, M. R. Portnoff,
“Time-Scale Modifications of Speech Based on Short-Time Fourier Analysis,” ibid., 29, 374
(1981).

[384] M Dolson, “The Phase Vocoder: A Tutorial,” Computer Music J., 1010, 14 (1986).

[385] J. Laroche and M. Dolson, “Improved Phase Vocoder Time-Scale Modification of Audio,”
IEEE Trans. Speech Audio Proc., 7, 323 (1999). See also, J. Laroche and M. Dolson, “New
Phase-Vocoder Techniques Real-Time Pitch-Shifting, Chorusing, Harmonizing, and Other
Exotic Audio Modifications,” J. Audio Eng. Soc., 47, 928 (1999). And also, M. Dolson and
J. Laroche, “About This Phasiness Business,” Proc. Int. Computer Music Conf., Ann Arbor,
1997, p. 55. And, also, J. Laroche, “Time and Pitch Scale Modification of Audio Signals,” in
Applications of Digital Signal Processing to Audio and Acoustics, M. Kahrs and K. Branden-
burg, Eds. Kluwer, MA, 1998.

[386] M. S. Puckette, “Phase-Locked Vocoder,” IEEE ASSP Workshop Appl. Sig. Process. Audio and
Acoust., 1995. And, also, M. S. Puckette, “On Timbre Stamps and Other Frequency-Domain
Filters,” Proc. ICMA, 2007, http://hdl.handle.net/2027/spo.bbp2372.2007.061

[387] A. De Götzen, Amalia, N. Bernardini, and D. Arfib. “Traditional (?) Implementations of a
Phase Vocoder: Tricks of the Trade,” Proc. COST G-6 Conf. Digital Audio Effects (DAFX-00),
Verona, Italy. 2000.

[388] D, Barry, D. Dorran, and E. Coyle, “Time and pitch scale modification: a real-time framework
and tutorial,” Proc. 11th Int. Conf. Digital Audio Effets (DAFx-08), Espoo, Finland, Sept.,
2008.

[389] B. Dias, et al., “Time Stretching & Pitch Shifting with the Web Audio API: Where Are We
at?,” Web Audio Conf. WAC-2016, April 2016, Atlanta, USA.

[390] J. Drieger and M. Müller, “A Review of Time-Scale Modification of Music Signals,” Appl. Sci.,
6(2), 57 (2016), https://doi.org/10.3390/app6020057.

DCT, MDCT, Data Compression

[391] T. Giannakopoulos and A. Pikrakis, Introduction to Audio Analysis: A MATLAB Approach,
Elsevier, Amsterdam, 2014.

[392] https://en.wikipedia.org/wiki/Discrete_cosine_transform

[393] https://www.mathworks.com/help/images/ref/dct2.html

[394] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans. Com-
puters, C-23, 90 (1974). See also, N. Ahmed, “How I Came Up With the Discrete Cosine
Transform,” Dig. Sig. Proc. 1, 4 (1991).

[395] https://en.wikipedia.org/wiki/Nasir_Ahmed_(engineer)

[396] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications,
Academic Press, Boston, 1990. See also, K. R. Rao and P. Yip, (Eds.), The Transform and
Data Compression Handbook, CRC Press, Boca Raton, 2000. And, also, D. F. Elliott and K. R.
Rao, Fast Transforms: Algorithms, Analyses, Applications, Academic Press, Orlando, 1982.

[397] Z. Wang and B. R. Hunt, “The Discrete W Transform,” Appl. Math. Comput., 16, 19 (1985).

[398] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consumer Electr.,
38, 18 (1992); and also, Comm. ACM, 34 (4), 31 (1991).

REFERENCES 1453

[399] https://en.wikipedia.org/wiki/JPEG

https://jpeg.org

[400] D. Austin, “Image Compression: Seeing What’s Not There,” AMS Feature Column,
Sept. 2007, http://www.ams.org/publicoutreach/feature-column/fcarc-image-

compression.

[401] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG2000 Still Image Compression
Standard,” IEEE Signal Proc. Mag., 18 (5), 36, (2001).

[402] J. Lin, “Image Compression – The Mathematics of JPEG 2000,” MSRI Modern Signal Process-
ing, 46, 185 (2003).

[403] J. P. Princen and A. B. Bradley, “Analysis/synthesis filter bank based on time domain alias-
ing cancellation,” IEEE Trans. Acoust., Speech, Signal Proc., ASSP-34, (5), 1153 (1986).

[404] J. P. Princen, A. W. Johnson, and A. B. Bradley, “Sub-band/transform coding using filter
bank designs based on time domain aliasing cancellation,” Proc. IEEE ICASSP 87, Dallas,
TX, April 1987, p. 2161.

[405] Y. Wang, L. Yaroslavsky and M. Vilermo, “On the relationship between MDCT, SDPT and
DFT,” WCC 2000 - ICSP 2000. 2000 5th Int. Conf. Signal Proc. Proc., 16th World Computer
Congress 2000, Beijing, China, 2000, p.44, vol. 1.

[406] M-H Cheng and Y-H Hsu, “Fast IMDCT and MDCT Algorithms—A Matrix Approach,” IEEE
Trans. Signal Proc., 51, 221 (2003).

[407] V. Britanak, “A survey of efficient MDCT implementations in MP3 audio coding standard—
Retrospective and state-of-the-art,” Signal Processing, 91, 624 (2011).

[408] T. Painter and A. Spanias, “Perceptual Coding of Digital Audio,” Proc. IEEE, 88, 451 (2000).

[409] M. Bosi and R. E. Goldberg, Introduction to Digital Audio Coding and Standards, Kluwer
Academic, Boston, 2003.

[410] https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform

https://en.wikipedia.org/wiki/Advanced_Audio_Coding

[411] R. N. Bracewell, “Discrete Hartley Transform,” J. Opt. Soc. Amer., 73, 1832 (1983). See also,
R. N. Bracewell, The Hartley Transform, Oxford Univ. Press, 1986, and
https://en.wikipedia.org/wiki/Discrete_Hartley_transform

[412] H. S. Malvar, Signal Processing with Lapped Transforms, Artech House, Norwood, MA, 1992.
See also, H. S. Malvar, “Extended Lapped Transforms: Properties, Applications and Fast
Algorithms,,, IEEE Trans. Signal Process., 40, 2703 (1992).

Wavelets and Applications

[413] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

[414] J. M. Combes, A. Grossmann, and P. Tchamitchian, eds., Wavelets, Time-Frequency Methods
and Phase Space, Springer-Verlag, Berlin, 1989.

[415] C. K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.

[416] Y. Meyer, Wavelets, Algorithms and Applications, SIAM, Philadelphia, 1993.

[417] A. Akansu and R. Haddad, Multiresolution Signal Decomposition, Academic Press, New York,
1993.

[418] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Englewood Cliffs, NJ,
1993.

1454 REFERENCES

[419] G. Kaiser, A Friendly Guide to Wavelets Birkhäuser, Boston, 1994.

[420] V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, AK Peters, Boston,
1994.

[421] M. Vetterli and J. Kovačevíc, Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs,
NJ, 1995.

[422] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley,
MA, 1996.

[423] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms:
A Primer, Prentice Hall, Upper Saddle River, NJ, 1998.

[424] S. Mallat, A Wavelet Tour of Signal Processing, Academic, New York, 1998.

[425] A. Antoniadis and G. Oppenheim, eds., Wavelets and Statistics, Lecture Notes in Statistics
v. 103, Springer-Verlag, New York, 1995.

[426] B. Vidakovic, Statistical Modeling with Wavelets, Wiley, New York, 1999.

[427] R. Gençay, F. Selçuk, and B. Whitcher, An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic, New York, 2001.

[428] A. Jensen and A. la Cour-Harbo, Ripples in Mathematics, Springer, New York, 2001.

[429] S. Jaffard, Y. Meyer, and R. D. Ryan, Wavelets: Tools for Science and Technology, SIAM,
Philadelphia, 2001.

[430] A. Cohen, Numerical Analysis of Wavelet Methods, Elsevier, Amsterdam, 2003.

[431] C. Heil, D. F. Walnut, and I. Daubechies, Fundamental Papers in Wavelet Theory, Princeton
Univ. Press, Princeton, NJ, 2006.

[432] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis Cambridge Uni-
versity Press, Cambridge, 2006.

[433] P. Van Fleet, Discrete Wavelet Transformations, Wiley, New York, 2008.

[434] G. P. Nason, Wavelet Methods in Statistics with R, Springer, New York, 2008.

[435] G. Strang, “Wavelets and Dilation Equations: A Brief Introduction,” SIAM J. Math. Anal., 31,
614 (1989).

[436] C. Heil and D. Walnut, “Continuous and Discrete Wavelet Transforms,” SIAM Rev., 31, 628
(1989).

[437] L. Cohen, “Time-Frequency Distributions: A Review,” Proc. IEEE, 77, 941 (1989).

[438] O. Rioul and M. Vetterli, “Wavelets and Signal Processing,” IEEE SP Mag., 8, no.4, 14, October
1991.

[439] Special issue on Wavelets, IEEE Trans. Inform. Th., 38, Mar. 1992.

[440] IEEE Trans. Signal Process., Special Issue on Wavelets and Signal Processing, 41, Dec. 1993.

[441] A. H. Tewfik, M. Kim, and M. Deriche, “Multiscale Signal Processing Techniques: A Review,”
in N. K. Bose and C. R. Rao, eds., Handbook of Statistics, vol. 10, Elsevier, Amsterdam, 1993.

[442] Special Issue on Wavelets, Proc. IEEE, 84, Apr. 1996.

[443] G. Strang, “Wavelet Transforms versus Fourier Transforms,” Bull. (New Series) Am. Math.
Soc., 28, 288 (1993).

[444] B. Jawerth and T. Swelden, “An Overview of Wavelet Based Multiresolution Analyses,” SIAM
Rev., 36, 377 (1994).

REFERENCES 1455

[445] G. Strang, “Wavelets,” Amer. Scientist, 82, 250, May-June 1994.

[446] P. M. Bentley and J. T. E. McDonnell, “Wavelet Transforms: An Introduction,” Electr. Comm.
Eng. J., p. 175, Aug. 1994.

[447] A. Graps, “An Introduction to Wavelets,” IEEE Comput. Sci. Eng. Mag., 2, no. 2, 50, Summer
1995.

[448] J. R. Williams and K. Amaratunga, “Introduction to Wavelets in Engineering,” Int. J. Numer.
Meth. Eng., 37, 2365 (1994).

[449] I. Daubechies, “Where Do Wavelets Come From? A Personal Point of View,” Proc. IEEE, 84,
510 (1996).

[450] W. Sweldens, “Wavelets: What next?,” Proc. IEEE, 84, 680 (1996).

[451] C. Mulcahy, “Plotting and Scheming with Wavelets,” Math. Mag., 69, 323 (1996).

[452] C. Mulcahy, “Image Compression Using The Haar Wavelet Transform,” Spelman College
Sci. Math. J., 1, 22 (1997).

[453] M . Vetterli, “Wavelets, Approximation, and Compression,” IEEE SP Mag., Sept. 2001, p. 59.

[454] P. P. Vaidyanathan, “Quadrature Mirror Filter Banks, M-band Extensions and Perfect Re-
construction Techniques,” IEEE ASSP Mag., 4, no. 3, 4, July 1987.

[455] P. P. Vaidyanathan and Z. Doganata, ”The Role of Lossless Systems in Modern Digital Signal
Processing: A Tutorial,” IEEE Trans. Educ., 32, 181 (1989).

[456] P. P. Vaidyanathan, “Multirate Digital Filters, Filter Banks, Polyphase Networks, and Appli-
cations: A Tutorial,” Proc. IEEE, 78, 56 (1990).

[457] A. Haar, “Zur Theorie der Orthogonalen Funktionensysteme,” Math. Annal., 69, 331 (1910).
Reprinted in [431].

[458] D. Gabor, “Theory of Communication,” J. IEE, 93, 429 (1946).

[459] D. Esteban and C. Galand, “Application of Quadrature Mirror Filters to Split-Band Voice
Coding Schemes,” Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., May 1977, p. 191.
Reprinted in [431].

[460] P. J. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Trans.
Commun., 31, 532 (1983). Reprinted in [431].

[461] M. J. T. Smith and T. P. Barnwell III, “A Procedure for Designing Exact Reconstruction Filter
Banks for Tree-Structured Sub-Band Coders,” Proc. IEEE Int. Conf. Acoust., Speech, and
Signal Process., San Diego, CA, March 1984. Reprinted in [431].

[462] F. Mintzer, “Filters for Distortion-Free Two-Band Multirate Filter Banks,” IEEE Trans.
Acoust., Speech, Signal Process., 33, 626 (1985). Reprinted in [431].

[463] A. Grossmann and J. Morlet, “Decomposition of Hardy Functions into Square Integrable
Wavelets of Constant Shape,” SIAM J. Math. Anal., 15, 723 (1984). Reprinted in [431].

[464] A. Grossmann, J. Morlet, and T. Paul, “Transforms Associated to Square Integrable Group
Representations I,” J. Math. Phys., 26, 2473 (1985). Reprinted in [431].

[465] I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Commun. Pure
Appl. Math., 41 909 (1988). Reprinted in [431].

[466] G. Battle, “A block spin construction of ondelettes. Part I: Lemarié functions” Commun.
Math. Phys., 110, 601 (1987); and, “Part II: the QFT connection,” ibid., 114, 93 (1988).
Reprinted in [431].

[467] P. G. Lemarié, “Ondelettes á localisation exponentielle,” J. Math. Pures Appl., 67, 227 (1988).

1456 REFERENCES

[468] Y. Meyer, “Wavelets with Compact Support,” Zygmund Lectures, U. Chicago (1987).
Reprinted in [431].

[469] S. Mallat, “A Theory for Multiresolution Signal Decomposition: the Wavelet Representa-
tion,” IEEE Trans. Patt. Recogn. Mach. Intell., 11, 674 (1989). Reprinted in [431].

[470] S. Mallat, “Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R),”
Trans. Amer. Math. Soc., 315, 69 (1989). Reprinted in [431].

[471] A. Cohen, “Ondelettes, Analysis Multirésolutions et Filtres Mirroirs en Quadrature,” Ann.
Inst. H. Poincaré, Anal. Non Linéaire, 7, 439 (1990). Reprinted in [431].

[472] A. Grossmann, R. Kronland-Martinet, and J. Morlet, “Reading and Understanding Continu-
ous Wavelet Transforms,” in [414].

[473] M. Holschneider, et al, “A Real Time Algorithm for Signal Analysis with the Help of the
Wavelet Transform,” in [414].

[474] I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal Analysis,”
IEEE Trans. Inform. Th., 36, 961 (1990). Reprinted in [431].

[475] M. Holsclmeider, “Wavelet Analysis on the Circle,” J. Math. Phys., 31, 39 (1990).

[476] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast Wavelet Transforms and Numerical Algo-
rithms I,,, Commun. Pure Appl. Math., 44, 141 (1991). Reprinted in [431].

[477] W. Lawton, “Tight Frames of Compactly Supported Affine Wavelets,, J. Math. Phys., 31,
1898 (1990). Reprinted in [431].

[478] W. Lawton, “Necessary and Sufficient Conditions for Constructing Orthonormal Wavelet
Bases,” J. Math. Phys., 32, 57 (1991).

[479] W. Lawton, “Multiresolution Properties of the Wavelet Galerkin Operator,” J. Math. Phys.,
32, 1440 (1991).

[480] I. Daubechies and J. Lagarias, “Two-Scale Difference Equations I. Existence and Global Reg-
ularity of Solutions,” SIAM J. Math. Anal., 22, 1388 (1991); and, “II. Local Regularity, Infinite
Products of Matrices and Fractals,” ibid., 24, 1031 (1992).

[481] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal Bases of Compactly Supported
Wavelets,” Commun. Pure Appl. Math., 45, 485 (1992).

[482] O. Rioul and P. Duhamel, “Fast Algorithms for Discrete and Continuous Wavelet Trans-
forms,” IEEE Trans. Inform. Th., 38, 569 (1992).

[483] M. Vetterli and C. Herley, “Wavelets and Filter Banks: Theory and Design,” IEEE Trans.
Signal Process., 40, 2207 (1992).

[484] G. G. Walter, “A Sampling Theorem for Wavelet Subspaces,” IEEE Trans. Inform. Th., 38,
881 (1992).

[485] N. H. Getz, “A Perfectly Invertible, Fast, and Complete Wavelet Transform for Finite Length
Sequences: The Discrete Periodic Wavelet Transform,” SPIE Mathematical Imaging, vol,
2034, p. 332, (1993).

[486] L. Cohen, “The Scale Representation,” IEEE Trans. Signal Process., 41, 3275 (1993).

[487] I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets II, Variations on a
Theme,” SIAM J. Math. Anal., 24, 499 (1993).

[488] O. Rioul, “A Discrete-Time Multiresolution Theory,” IEEE Trans. Signal Process., 41, 2591
(1993).

REFERENCES 1457

[489] X. Xia and Z. Zhang, “On Sampling Theorem, Wavelets, and Wavelet Transforms, IEEE Trans.
Signal Process., 41, 3524 (1993).

[490] W. Sweldens, “The Lifting Scheme: A Custom-Design Construction of Biorthogonal
Wavelets,” Appl. Comput. Harmon. Anal.,3, 186 (1996).

[491] W. Sweldens, “The Lifting Scheme: A Construction of Second Generation Wavelets,” SIAM
J. Math. Anal., 29, 511 (1996).

[492] G. Strang, “Eigenvalues of (↓2)H and Convergence of the Cascade Algorithm,” IEEE Trans.
Signal Process., 44, 233 (1996).

[493] S. H. Maes, “Fast Quasi-Continuous Wavelet Algorithms for Analysis and Synthesis of One-
Dimensional Signals,” SIAM J. Appl. Math., 57, 1763 (1997).

[494] I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into Lifting Steps,” J.
Fourier Anal. Appl., 4, 247 (1998).

[495] M. Unser and T. Blu, “Wavelet Theory Demystified,” IEEE Trans. Signal Process., 51, 470
(2003).

[496] P. Dutilleux, “An Implementation of the Algorithm à Trous to Compute the Wavelet Trans-
form,” in [414].

[497] S. Mallat, “Zero-Crossings of a Wavelet Transform,” IEEE Trans. Inform. Th., 37, 1019
(1991).

[498] G. Beylkin, “On the Representation of Operators in Bases of Compactly Supported
Wavelets,” SIAM J. Numer. Anal., 29, 1716 (1992).

[499] M. J. Shensa, “The Discrete Wavelet Transform: Wedding the á Trous and Mallat Algo-
rithms,” IEEE Trans. Signal Process., 40, 2464 (1992).

[500] G. P. Nason and B. W. Silverman, “The Discrete Wavelet Transform in S,” J. Comput. Graph.
Statist., 3, 163 (1994).

[501] G. P. Nason and B. W. Silverman, “The Stationary Wavelet Transform and Some Statistical
Applications,” in [425].

[502] R. R. Coifman and D. L. Donoho, “Translation-Invariant Denoising,” in [425].

[503] J. C. Pesquet, H. Krim, and H. Carfantan, “Time-Invariant Orthonormal Wavelet Represen-
tations,” IEEE Trans. Signal Process., 44, 1964 (1996).

[504] J. Liang and T. W. Parks, “A Translation-Invariant Wavelet Representation Algorithm with
Applications,” IEEE Trans. Signal Process., 44, 225 (1996).

[505] M. Lang, et al., “Noise Reduction Using An Undecimated Discrete Wavelet Transform,” IEEE
Signal Process. Lett., 3, 10 (1996).

[506] H. Sari-Sarraf and D. Brzakovic, “A Shift-Invariant Discrete Wavelet Transform,” IEEE Trans.
Signal Process., 45, 2621 (1997).

[507] J. E. Fowler, “The Redundant Discrete Wavelet Transform and Additive Noise, IEEE Signal
Process. Lett., 12, 629 (2005).

[508] A. F. Abdelnour and I. W. Selesnick, “Symmetric Nearly Shift-Invariant Tight Frame
Wavelets,” IEEE Trans. Signal Process., 53, 231 (2005).

[509] J.-L. Starck, J. Fadili, and F. Murtagh, “The Undecimated Wavelet Decomposition and its
Reconstruction,” IEEE Trans. Imag. Process., 16, 297 (2007).

[510] J. D. Johnston, “Transform Coding of Audio Signals Using Perceptual Noise Criteria,” IEEE
J. Selected Areas Commun., 6, 314 (1988).

1458 REFERENCES

[511] D. J. LeGall, H. Gaggioni, and C. T. Chen, “Transmission of HDTV Signals Under 140 Mbits/s
Using a Subband Decomposition and Discrete Cosine Transform Coding,” in L. Chiariglione,
ed., Signal Processing of HDTV, Elsevier, Amsterdam, 1988.

[512] JPEG Technical Specification: Revision (DRAFT), Joint Photographic Experts Group, ISO/IEC
JTC1/SC2/WG8, CCITT SGVIII, August 1990.

[513] G. K. Wallace, “The JPEG Still Picture Compression Standard,” Commun. ACM, 34, 30 (1991).

[514] D. LeGall, “MPEG: A Video Compression Standard for Multimedia Applications,” Commun.
ACM, 34 46 (1991).

[515] N. S. Jayant, “Signal Compression: Technology Targets and Research Directions,” IEEE J.
Sel. Areas Commun., 10, 796 (1992).

[516] M. Antonini, et al., “Image Coding Using Wavelet Transform,” IEEE Trans. Im. Process., 1,
205 (1992).

[517] R. DeVore, B. Jawerth, and V. Popov, “Compression of Wavelet Decompositions,” Amer. J.
Math., 114, 737 (1992). Reprinted in [431].

[518] R. DeVore, B. Jawerth, and B. Lucier, “Image Compression Through Wavelet Transform
Coding,” IEEE Trans. Inform. Th., 38, 719 (1992).

[519] M. Farge, “Wavelet Transforms and their Applications to Turbulence,” Ann. Rev. Fluid
Mech., 24, 395 (1992).

[520] J. N. Bradley, C. M. Brislawn, and T. Hopper, “The FBI Wavelet/Scalar Quantization Standard
for Grey-Scale Fingerprint Image Compression,” Proc. SPIE, 1961, 293 (1993).

[521] C. M. Brislawn, “Fingerprints Go Digital,” Notices AMS, 42 no. 11, 1278 (1995).

[522] C. M. Brislawn, et al., “FBI Compression Standard for Digitized Fingerprint Images,” Proc.
SPIE, 2847, 344 (1996).

[523] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for Computer Graphics: A Primer,
part 1,” IEEE Comput. Graph. Appl., 15, 76 (1995).

[524] G. Pan, “Orthogonal Wavelets with Applications in Electromagnetics,” IEEE Trans. Magn.,
32, 975 (1996).

[525] R. Zaciu, et al., “Image Compression Using an Overcomplete Discrete Wavelet Transform,”
IEEE Trans. Consum. Electron., 42, 500 (1996).

[526] N. Erdol and F. Basbug, “Wavelet Transform Based Adaptive Filters: Analvsis and New
Results,” IEEE Trans. Signal Process., 44, 2163 (1996).

[527] A. Bijaoui, et al., “Wavelets and the Study of the Distant Universe,” Proc. IEEE, 84, 670
(1996).

[528] M. Unser and A. Aldroubi, “A Review of Wavelets in Biomedical Applications,” Proc. IEEE,
84, 626 (1996).

[529] B. K. Alsberg, A. M. Woodward, and D. B. Kell, “An Introduction to Wavelet Transforms
for Chemometricians: A Time-Frequency Approach,” Chemometr. Intell. Lab. Syst., 37, 215
(1997).

[530] B. K. Alsberg, et al., “Wavelet Denoising of Infrared Spectra,” Analyst, 122, 645 (1997).

[531] B. Walczak and D. L. Massart, “Wavelets – Something for Analytical Chemistry?,” Trends
Anal. Cem., 15, 451 (1997).

[532] A. Chambolle, et al., “Nonlinear Wavelet Image Processing: Variational Problems, Compres-
sion and Noise Removal Through Wavelet Shrinkage,” IEEE Trans. Imag. Process., 7, 319
(1998).

REFERENCES 1459

[533] A. K-M. Leung, F-T. Chau, and J-B. Gao, “A Review on Applications of Wavelet Trans-
form Techniques in Chemical Analysis: 1989–1997,” Chemometr. Intell. Lab. Syst., 43,
165 (1998).

[534] G. Strang, “The Discrete Cosine Transform,” SIAM Rev., 41, 135 (1999).

[535] C. Torrence and G. P. Compo, “A Practical Guide to Wavelet Analysis,” Bull. Amer. Meteor.
Soc., 79, 621 (1998).

[536] J. B. Ramsey, “The Contribution of Wavelets to the Analysis of Economic and Financial
Data,” Phil. Trans. Roy. Soc. Lond. A, 357, 2593 (1999).

[537] M. W. Marcellin, et al., “An Overview of JPEG2000,” Proc. Data Compression Conf., Snowbird,
Utah, March 2000, p. 523.

[538] ISO/IEC JTC1/SC29/WG1/N1646R, JPEG 2000 Part I Final Committee Draft Version 1.0,
Mar. 2000, available from http://www.jpeg.org/public/fcd15444-1.pdf.

[539] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 Still Image Coding System:
An Overview,”, IEEE Trans. Consum. Electron., 46, 1103 (2000).

[540] C-H. Lee, Y-J Wang, and W-L Huang, “A Literature Survey of Wavelets in Power Engineering
Applications,” Proc. Natl. Sci. Counc. ROC(A), 24, 249 (2000).

[541] C.H. Kim and R. Aggarwal, “Wavelet Transforms in Power Systems, Part 1: General Intro-
duction to the Wavelet Transforms,” Power Eng. J., 14, 81 (2000); and “Part 2: Examples
of Application to Actual Power System Transients,”, ibid., 15, 193 (2000).

[542] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive Wavelet Thresholding for Image Denoising
and Compression,” IEEE Trans. Imag. Process., 9, 1532 (2000).

[543] D. B. H. Tay, “Rationalizing the Coefficients of Popular Biorthogonal Wavelet Filters,” IEEE
Trans. Circ. Syst. Video Tech., 10, 998 (2000).

[544] B. E. Usevitch, “A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of
JPEG 2000,” IEEE SP Mag., Sept. 2001, p. 22.

[545] M. D. Adams, “The JPEG-2000 Still Image Compression Standard,” ISO/IEC JTC 1/SC
29/WG1 N 2412, Sept. 2001, Available from http://www.ece.ubc.ca/~mdadams.

[546] J-L, Starck and F. Murtagh, “Astronomical Image and Signal Processing Looking at Noise,
Information, and Scale,” IEEE SP Mag., p.30, Mar. 2001.

[547] J. B. Ramsey, “Wavelets in Economics and Finance: Past and Future,” Stud. Nonlin. Dynam.
Econometr., 2002.

[548] M. Unser and T. Blu, “Mathematical Properties of the JPEG2000 Wavelet Filters,” IEEE Trans.
Imag. Process., 12, 1080 (2003).

[549] F. Truchetet and O. Laligant, “Wavelets in Industrial Applications: A Review,” Proc. SPIE,
5607, 1 (2004).

[550] M. J. Fadili and E. T. Bullmore, “A Comparative Evaluation of Wavelet-Based Methods for
Hypothesis Testing of Brain Activation Maps,” NeuroImage, 23, 1112 (2004).

[551] M. N. O. Sadiku, C. M. Akujuobi, and R. C. Garcia, “An Introduction to Wavelets in Electro-
magnetics,” IEEE Microwave Mag., 6, no.5, p.63, June 2005.

[552] P. S. Addison, “Wavelet Transforms and the ECG: A Review,” Physiol. Meas., 26, R155 (2005).

[553] M. Kaboudan, “Computational Forecasting of Wavelet-converted Monthly Sunspot Num-
bers,” J. Appl. Statist., 33, 925 (2006).

1460 REFERENCES

[554] P. Liò, “Wavelets in Bioinformatics and Computational Biology: State of Art and Perspec-
tives,” Bionform. Rev., 21, 207 (2007).

[555] P. M. Crowley, “A Guide to Wavelets for Economists,” J. Econ. Surveys, 21, 207 (2007).

[556] J. E. Fowler and B. Pesquet-Popescu, ”An Overview on Wavelets in Source Coding, Com-
munications, and Networks,” EURASIP J. Imag. Vid. Process., vol. 2007, Article ID 60539,
(2007).

[557] I. Balasingham and T. A. Ramstad, J. E. Fowler and B. Pesquet-Popescu, ”Are the Wavelet
Transforms the Best Filter Banks for Image Compression?” EURASIP J. Imag. Vid. Process.,
vol. 2008, Article ID 287197, (2008).

[558] F. Truchetet and O. Laligant, “Review of Industrial Applications of Wavelet and
Multiresolution-Based Signal and Image Processing,” J. Electron. Imag., 17, 031102 (2008)

[559] H. Hashish, S. H. Behiry, and N.A. El-Shamy, “Numerical Integration Using Wavelets,” Appl.
Math. Comput. 211, 480 (2009).

[560] B. Mandelbrot and J. W. Van Ness, “Fractional Brownian Motions: Fractional Noises and
Applications,” SIAM Rev., 10, 422 (1968).

[561] S. Granger and R. Joyeux, “An Introduction to Long-Memory Time Series Models and Frac-
tional Differencing,” J. Time Ser. Anal., 1, 15 (1980).

[562] J. R. M. Hosking, “Fractional Differencing,” Biometrika, 68, 165 (1981).

[563] G. Wornell, “A Karhunen-Loève Like Expansion for 1/f Processes via Wavelets,” IEEE Trans.
Inform. Th., 36, 859 (1990).

[564] G. Wornell and A. V. Oppenheim, “Wavelet-Based Representations for a Class of Self-Similar
Signals with Application to Fractal Modulation,” IEEE Trans. Inform. Th., 38, 785 (1992).

[565] P. Flandrin, “Wavelet Analysis and Synthesis of Fractional Brownian Motion,” IEEE Trans.
Inform. Th., 38, 910 (1992).

[566] P. Abry, et al., “The Multiscale Nature of Network Traffic,” IEEE SP Mag., 19, no. 3, 28, May
2002.

[567] R. A. DeVore and B. J. Lucier, “Fast Wavelet Techniques for Near-Optimal Image Processing,”
MILCOM ’92, IEEE Mil. Commun. Conf., p.1129, (1992).

[568] D. Donoho, “Unconditional Bases are Optimal Bases for Data Compression and Statistical
Estimation,” Appl. Computat. Harmon. Anal., 1, 100 (1993).

[569] D. L. Donoho and I. M. Johnstone, “Ideal Spatial Adaptation by Wavelet Shrinkage,”
Biometrika, 81, 425 (1994).

[570] , D. L. Donoho, “Denoising by Soft Thresholding,” IEEE Trans. Inform. Th., 41, 613 (1995).

[571] , D. L. Donoho, et al., “Wavelet Shrinkage: Asymptopia?,” J. Roy. Statist. Soc., Ser. B, 57, 301
(1995).

[572] D. L. Donoho and I. M. Johnstone, “Adapting to Unknown Smoothness via Wavelet Shrink-
age,” J. Amer. Statist. Assoc., 90, 1200 (1995). Reprinted in [431].

[573] A. Antoniadis, “Smoothing Noisy Data with Tapered Coiflets Series,” Scand. J. Statist., 23,
313 (1996).

[574] F. Abramovich and B. W. Silverman, “Wavelet Decomposition Approaches to Statistical
Inverse Problems,” Biometrika, 85, 115 (1998).

[575] D. L. Donoho, et al., “Data Compression and Harmonic Analysis,” IEEE Trans. Inform. Th.,
44, 2435 (1998).

REFERENCES 1461

[576] F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet Thresholding via Bayesian Ap-
proach,” J. Roy. Statist. Soc., Ser. B., 60, 725 (1998).

[577] B. W. Silverman, “Wavelets in Statistics: Beyond the Standard Assumptions,” Phil. Trans.
Roy. Soc. Lond. A, 357, 2459 (1999).

[578] G. P. Nason and R. von Sachs, “Wavelets in Time-Series Analysis,” Phil. Trans. Roy. Soc.
Lond. A, 357, 2511 (1999).

[579] F. Abramovich, T. C. Baily, and T. Sapatinas, “Wavelet Analysis and Its Statistical Applica-
tions,” Statistician, 49, 1 (2000).

[580] A. Antoniadis, J. Bigot, and T. Sapatinas, “Wavelet Estimators in Nonparametric Regression:
A Comparative Simulation Study,” J. Statist. Softw., 6, 1 (2001).

[581] A. Antoniadis and J. Fan, “Regularization of Wavelet Approximations,” J. Amer. Statist.
Assoc., 96, 939 (2001).

[582] http://www.cmap.polytechnique.fr/~bacry/LastWave, LastWave, Emmanuel Bacry.

[583] http://www.cs.kuleuven.ac.be/~wavelets, Uytterhoeven, et al., C++ implementation.

[584] http://www-stat.stanford.edu/~wavelab/ Wavelab.

[585] http://www.dsp.rice.edu/software/RWT Rice Wavelet Toolbox.

[586] http://paos.colorado.edu/research/wavelets, Torrance and Compo.

[587] http://www.curvelet.org/, Curvelets.

[588] http://www.stats.bris.ac.uk/~wavethresh, Wavethresh in R.

[589] http://taco.poly.edu/WaveletSoftware/, S. Cai and K. Li.

[590] http://www2.isye.gatech.edu/~brani/wavelet.html, B. Vidakovic.

[591] http://www-lmc.imag.fr/SMS/software/GaussianWaveDen/index.html, A. Anto-
niadis, J. Bigot, and J. Sapatinas.

[592] http://www.atmos.washington.edu/~wmtsa/, Percival and Walden, WMTSA toolbox.

[593] http://cas.ensmp.fr/~chaplais/UviWave/About_UviWave.html, Uvi-Wave.

[594] http://inversioninc.com/wavelet.html, N. H. Getz, see Ref. [485].

[595] http://www.math.rutgers.edu/~ojanen/wavekit/, H. Ojanen, Wavekit.

[596] http://cam.mathlab.stthomas.edu/wavelets/packages.php, P. Van Fleet, see [433].

Control Systems

[597] F. T. Ulaby and A. E. Yagle, Signals and Systems: Theory and Applications, University of
Michigan Free Textbook Initiative, available from: https://ss2.eecs.umich.edu/

[598] Z. Gajic, Linear Dynamic Systems and Signals, Prentice Hall, 2003.

[599] D. Tilbury, et al., Control Systems Tutorials for MATLAB & Simulink, 2011
https://ctms.engin.umich.edu/CTMS/index.php?aux=Home

[600] L. Moysis, et al., An Introduction to Control Theory Applications with Matlab, 2015,
online book available freely from:
http://ikee.lib.auth.gr/record/270899/files/IntroductionMatlab-2.pdf

[601] D. I. Wilson, Advanced Control using MATLAB, Auckland University of Technology, 2015.

[602] K. J. Åström and P.R. Kumar, “Control: A perspective,”, Automatica, 50, 3 (2014).

1462 REFERENCES

[603] J. Bechhoefer, “Feedback for Physicists: a Tutorial Essay on Control,” Rev. Mod. Phys., 77,
783 (2005).

[604] R. Dorf and R. Bishop, Modern Control Systems, 13/e, Pearson, 2017.

[605] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems,
8/e, Pearson, 2019.

[606] J. Golten and A. Verwer, Control System Design and Simulation, McGraw-Hill Europe, 1991.

[607] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, Prwentica Hall,
1984.

[608] P. B. Deshpande and R. H. Ash, Elements of Computer Process Control, Prentice Hall, 1981.

[609] G. F. Franklin, J. D. Powell, Digital Control of Dynamic Systems, Addison-Wesley, 1980.

[610] O. Boubaker, “The inverted Pendulum: A fundamental Benchmark in Control Theory and
Robotics,” IEEE Int. Conf. Education and e-Learning Innovations (ICEELI), Sousse, Tunisia,
July, 2012; see also, O. Boubaker, “The Inverted Pendulum Benchmark in Nonlinear Control
Theory: A Survey,” Int. J. Adv. Robotic Syst., 10, 233 (2013).

[611] I. Kafetzis and L. Moysis, “Inverted Pendulum: A system with innumerable applications,”
available from:
https://ikee.lib.auth.gr/record/288541/files/Inverted pendulum-A sys-

tem with innumerable applications.pdf

[612] M. Hehn and R. D’Andrea, “A Flying Inverted Pendulum,” IEEE Int. Conf. Robotics and Au-
tomation, p. 763, May 2011, Shanghai.

[613] F. Grasser, et al., “JOE: a mobile, inverted pendulum,” IEEE Trans. Industr. Electr., 49, 107
(2002).

[614] S. W. Nawawi, et al., “Real-time control system for a two-wheeled inverted pendulum mobile
robot,” (2010), available from:
https://www.intechopen.com/download/pdf/12354

[615] T-P Azevedo Perdicoúlis ans P. Lopes dos Santos, “The secrets of Segway revealed to stu-
dents: revisiting the inverted pendulum,” 13th APCA Int. Conf. Automatic Control and Soft
Computing (CONTROLO), p. 43, June 2018, Ponta Delgada, Azores, Portugal.

[616] N. D. Anh, et al., “Vibration control of an inverted pendulum type structure by passive
mass-spring-pendulum dynamic vibration absorber,” J. Sound Vibr., 307, 187 (2007).

[617] D. A. Winter, “Human balance and posture control during standing and walking,” Gait &
Posture, 3, no.4, 193 (1995).

[618] P. Morasso, A. Cherif, and J. Zenzeri, “Quiet standing: The Single Inverted Pendulum model
is not so bad after all,” https://doi.org/10.1371/journal.pone.0213870

[619] A. D. Kuo, “The six determinants of gait and the inverted pendulum analogy: A dynamic
walking perspective,” Human Movement Science, 26, 617 (2007).

Local Polynomial Smoothing Filters

[620] G. V. Schiaparelli, “Sul Modo Di Ricavare La Vera Espressione Delle Leggi Della Natura Dalle
Curve Empiriche,” Effemeridi Astronomiche di Milano per l’anno 1866, p.3–56, reprinted
in Le Opere di G. V. Schiaparelli, vol.8, Ulrico Hoepli Publisher, Milano, 1930, and Johnson
Reprint Corp., New York.

REFERENCES 1463

[621] A. Lees, “Interpolation and Extrapolation of Sampled Data,” IEEE Trans. Inform. Th., 2, 12
(1956).

[622] K. R. Johnson, “Optimum, Linear, Discrete Filtering of Signals Containing a Nonrandom
Component,” IEEE Trans. Inform. Th., 2, 49 (1956).

[623] M. Blum, “An Extension of the Minimum Mean Square Prediction Theory for Sampled Input
Signals,” IEEE Trans. Inform. Th., IT-2, 176 (1956).

[624] M. Blum, “On the Mean Square Noise Power of an Optimum Linear Discrete Filter Operating
on Polynomial plus White Noise Input,” IEEE Trans. Inform. Th., IT-3, 225 (1957).

[625] J. D. Musa, “Discrete Smoothing Filters for Correlated Noise,” Bell Syst. Tech. J., 42, 2121
(1963).

[626] A. Savitzky and M Golay, “Smoothing and Differentiation of Data by Simplified Least
Squares Procedures,” Anal. Chem.. 36, 1627 (1964).

[627] M. U. A. Bromba and H. Ziegler, “Efficient Computation of Polynomial Smoothing Digital
Filters,” Anal. Chem., 51, 1760 (1979).

[628] M. U. A. Bromba and H. Ziegler, “Application Hints for Savitzky-Golay Digital Smoothing
Filters,” Anal. Chem., 53, 1583 (1981).

[629] T. H. Edwards and P. D. Wilson, “Digital Least Squares Smoothing of Spectra,” Appl. Spec-
trosc., 28, 541 (1974).

[630] T. H. Edwards and P. D. Wilson, “Sampling and Smoothing of Spectra,” Appl. Spectrosc.
Rev., 12, 1 (1976).

[631] C. G. Enke and T. A. Nieman, “Signal-to-Noise Ratio Enhancement by Least-Squares Poly-
nomial Smoothing,” Anal. Chem., 48, 705A (1976).

[632] H. H. Madden, “Comments on the Savitzky-Golay Convolution Method for Least-Squares
Fit Smoothing and Differentiation of Digital Data,” Anal. Chem., 50, 1383 (1978).

[633] R. A. Leach, C. A. Carter, and J. M. Harris, “Least-Squares Polynomial Filters for Initial Point
and Slope Estimation,” Anal. Chem., 56, 2304 (1984).

[634] P. A. Baedecker, “Comments on Least-Squares Polynomial Filters for Initial Point and Slope
Estimation,” Anal. Chem., 57, 1477 (1985).

[635] J. Steinier, Y. Termonia, and J. Deltour, “Comments on Smoothing and Differentiation of
Data by Simplified Least Squares Procedures,” Anal. Chem.. 44, 1627 (1972).

[636] H. Ziegler, “Properties of Digital Smoothing Polynomial (DISPO) Filters,” Appl. Spectrosc.,
35, 88 (1981).

[637] G. R. Phillips and J. M. Harris, “Polynomial Filters for Data Sets with Outlying or Missing
Observations: Application to Charged-Coupled-Device- Detected Raman Spectra Contam-
inated by Cosmic Rays,” Anal. Chem., 62, 2351 (1990).

[638] M. Kendall, Time-Series, 2nd ed., Hafner Press, Macmillan, New York, 1976.

[639] M. Kendall and A. Stuart, Advanced Theory of Statistics, vol. 3, 2nd ed., Charles Griffin &
Co., London, 1968.

[640] R. W. Hamming, Digital Filters, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1983.

[641] C. S. Williams, Designing Digital Filters, Prentice Hall, Upper Saddle River, NJ, 1986.

[642] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C,
2nd ed., Cambridge Univ. Press, New York, 1992.

1464 REFERENCES

[643] J. F. Kaiser and W. A. Reed, “Data Smoothing Using Lowpass Digital Filters,” Rev. Sci. In-
strum., 48, 1447 (1977).

[644] J. F. Kaiser and R. W. Hamming, “Sharpening the Response of a Symmetric Nonrecursive
Filter by Multiple Use of the Same Filter,” IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-25, 415 (1975).

[645] J. Luo, et al., “Properties of Savitzky-Golay Digital Differentiators,” Dig. Sig. Process., 15,
122 (2005).

[646] J. Luo, “Savitzky-Golay Smoothing and Differentiation Filter for Even Number Data,” Signal
Process., 85, 1429 (2005).

[647] S. Hargittai, “Savitzky-Golay Least-Squares Polynomial Filters in ECG Signal Processing,”
Computers Cardiol., 32, 763 (2005).

[648] T. C. Mills, “A Note on Trend Decomposition: The ‘Classical’ Approach Revisited with an
Application to Surface Temperature Trends,” J. Appl. Statist., 34, 963 (2007).

Henderson Filters

[649] E. L. De Forest, “On Some Methods of Interpolation Applicable to the Graduation of Ir-
regular Series, such as Tables of Mortality,” Ann. Rep. Board of Regents of Smithsonian
Institution, 1871, p.275. Also, ibid., 1873, p.319.

[650] E. L. De Forest, “On Adjustment Formulas,” The Analyst (De Moines, Iowa), 4, 79 (1877),
and ibid., p. 107.

[651] E. L. De Forest, “On the Limit of Repeated Adjustments,” The Analyst (De Moines, Iowa), 5,
129 (1878), and ibid., p. 65.

[652] H. H. Wolfenden, “Development of Formulae for Graduation by Linear Compounding, With
Special Reference to the Work of Erastus L. De Forest,” Trans. Actuarial Soc. Am., 26, 81
(1925).

[653] F. R. Macauley, The Smoothing of Time Series, Nat. Bureau Econ. Res., NY, 1931.

[654] M. D. Miller, Elements of Graduation, Actuarial Soc. Am. and Am. Inst. Actuaries, 1946.

[655] C. A. Spoerl, “Actuarial Science—A Survey of Theoretical Development,” J. Amer. Statist.
Assoc., 46, 334 (1951).

[656] S. M. Stigler, “Mathematical Statistics in the Early States,” Ann. Statist., 6, 239 (1978).

[657] H. L. Seal, “The Fitting of a Mathematical Graduation Formula: A Historical Review with
Illustrations,” Blätter. Deutsche Gesellschaft für Versicherungsmathematik, 14, 237 (1980).

[658] H. L. Seal, “Graduation by Piecewise Cubic Polynomials: A Historical Review,” Blätter.
Deutsche Gesellschaft für Versicherungsmathematik, 15, 89 (1981).

[659] J. M. Hoem, “The Reticent Trio: Some Little-Known Early Discoveries in Life Insurance
Mathematics by L. H. Opperman, T. N. Thiele, and J. P. Gram,” Int. Statist. Rev., 51, 213
(1983).

[660] W. F. Sheppard, “Reduction of Errors by Means of Negligible Differences,” Proc. Fifth Int.
Congress of Mathematicians, 2, 348 (1912), Cambridge.

[661] W. F. Sheppard, “Fitting Polynomials by Method of Least Squares,” Proc. London Math. Soc.,
Ser. 2, 13, 97 (1913).

[662] W. F. Sheppard, “Graduation by Reduction of Mean Square Error,” J. Inst. Actuaries, 48, 171
(1914), see also, ibid., 48, 412 (1914), and 49, 148 (1915).

REFERENCES 1465

[663] R. Henderson, “Note on Graduation by Adjusted Average,” Trans. Actuarial Soc. Am., 18,
43 (1916).

[664] H. Vaughan, “Further Enquiries into the Summation Method of Graduation,” J. Inst. Actu-
aries, 66, 463 (1935).

[665] K. Weichselberger, “Über eine Theorie der gleitenden Durchschnitte und verschiedene An-
wendungen dieser Theorie,” Metrica, 8, 185 (1964).

[666] I. J. Schoenberg, “Some Analytical Aspects of the Problem of Smoothing,” in Studies and
Essays Presented to R. Courant on his 60th Birthday, Interscience, NY, 1948.

[667] I. J. Schoenberg, “On Smoothing Operations and Their Generating Functions,” Bull. Am.
Math. Soc., 59, 199 (1953).

[668] T. N. E. Greville, “On Stability of Linear Smoothing Formulas,” SIAM J. Numer. Anal., 3, 157
(1966).

[669] W. F. Trench, “Stability of a Class of Discrete Minimum Variance Smoothing Formulas,”
SIAM J. Numer. Anal., 9, 307 (1972).

[670] T. N. E. Greville, “On a Problem of E. L. De Forest in Iterated Smoothing,” SIAM J. Math.
Anal., 5, 376 (1974).

[671] O. Borgan, “On the Theory of Moving Average Graduation,” Scand. Actuarial J., p. 83, (1979).

[672] P. B. Kenny and J. Durbin, “Local Trend Estimation and Seasonal Adjustment of Economic
and Social Time Series,” J. Roy. Statist. Soc., Ser. A, 145, 1 (1982).

[673] D. London, Graduation: The Revision of Estimates, ACTEX publications, Winsted, CT, 1985.

[674] E. S. W. Shiu, “Minimum-Rz Moving-Average Formulas,” Trans. Soc. Actuaries, 36, 489
(1984).

[675] E. S. W. Shiu, “A Survey of Graduation Theory,” in H. H. Panjer, ed., Actuarial Mathematics,
Proc. Symp. Appl. Math, vol.35, 1986.

[676] E. S. W. Shiu, “Algorithms for MWA Graduation Formulas,” Actuarial Res. Clearing House,
2, 107 (1988).

[677] W. D. Hoskins and P. J. Ponzo, “Some Properties of a Class of Band Matrices,” Math. Comp.,
26, 393 (1972).

[678] A. Eisinberg, P. Pugliese, and N. Salerno, “Vandermonde Matrices on Integer Nodes: The
Rectangular Case,” Numer. Math., 87, 663 (2001).

[679] M. Dow, “Explicit Inverse of Toeplitz and Associated Matrices,” ANZIAM J., 44 (E), 185
(2003).

[680] A. Grey and P. Thomson, “Design of Moving-Average Trend Filters Using Fidelity, Smooth-
ness and Minimum Revisions Criteria,” Res. Rep. CENSUS/SRD/RR-96/1, Statistical Re-
search Division, Bureau of the Census, Washington, DC.

[681] T. Proietti and A. Luati, “Least Squares Regression: Graduation and Filters,” in M. Boumans,
ed., Measurement in Economics: A Handbook, Academic, London, 2007.

[682] T. Proietti and A. Luati, “Real Time Estimation in Local Polynomial Regression, with Appli-
cation to Trend-Cycle Analysis,” Ann. Appl. Statist., 2, 1523 (2008).

[683] A. Luati and T. Proietti, “On the Equivalence of the Weighted Least Squares and the
Generalised Least Squares Estimators,” Compstat 2008—Proc. Comput. Statist., P. Brito,
ed., Physica-Verlag, Heidelberg, 2008. Available online from http://mpra.ub.uni-

muenchen.de/8910/

1466 REFERENCES

Asymmetric End-Point Filters

[684] T. N. E, Greville, “On Smoothing a Finite Table,” J. SIAM, 5, 137 (1957).

[685] T. N. E, Greville, “Band Matrices and Toeplitz Inverses,” Lin. Alg. Appl., 27, 199 (1979).

[686] T. N. E, Greville, “Moving-Weighted-Average Smoothing Extended to the Extremities of the
Data. I. Theory,” Scand. Actuarial J., p. 39, (1981), and “part II. Methods,”, ibid. p.65. See
also “Part III. Stability and Optimal Properties,”, J. Approx. Th., 33 43 (1981).

[687] J. M. Hoem and P. Linnemann, “The Tails in Moving Average Graduation,” Scand. Actuarial
J., p. 193, (1988).

Discrete Chebyshev and Hahn Polynomials

[688] P. L. Chebyshev, “Sur l’Interpolation,” reprinted in A. Markoff and N. Sonin, Oeu-
vres de P. L. Chebyshev, vol.1, p. 541, Commissionaires de l’Acádemie Impériale
des Sciences, St. Petersbourg, 1899, also Chelsea Publishing Co. , NY, 1961.
See also p. 203, 381, 473, 701, and vol.2, p. 219. Available online from
http://www.archive.org/details/uvresdepltcheby00chebgoog

[689] P. Butzer and F. Jongmans, “P. L. Chebyshev (1821-1894), A Guide to His Life and Work,”
J. Approx. Th., 96, 111 (1999).

[690] C. Jordan, “Sur une Série de Polynomes Dont Chaque Somme Partielle Représente la
Meilleure Approximation d’un Degré Donné Suivant la Méthode des Moindres Carrés,”
Proc. London Math. Soc., 2nd series, 20, 297 (1922).

[691] L. Isserlis and V. Romanovsky, “Notes on Certain Expansions in Orthogonal and Semi-
Orthogonal Functions,” Biometrika, 19, 87 (1927).

[692] C. Jordan, Calculus of Finite Differences, Chelsea Publishing Co. NY, 1939.

[693] G. Szegö, Orthogonal Polynomials, Am Math. Soc., Providence, RI, 1939.

[694] P. T. Birge and J. W. Weinberg, “Least Squares Fitting of Data by Means of Polynomials,”
Rev. Mod. Phys., 19, 298 (1947).

[695] M. Weber and A. Erdélyi, “On the Finite Difference Analogue of Rodrigues’ Formula,” Am.
Math. Monthly, 59, 163 (1952).

[696] G. E. Forsythe, “Generation and Use of Orthogonal Polynomials for Data-Fitting with a
Digital Computer,” J. Soc. Indust. Appl. Math., 5, 74 (1957).

[697] S. Karlin and J. L. McGregor, “The Hahn Polynomials, Formulas and an Application,” Scripta
Math., 26, 33 (1961).

[698] P. G. Guest, Numerical Methods of Curve Fitting, Cambridge Univ. Press, London, 1961.

[699] N. Morrison, Introduction to Sequential Smoothing and Prediction, McGraw-Hill, NY, 1969.

[700] B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic
Press, NY, 1972.

[701] D. E. Clapp, “Adaptive Forecasting with Orthogonal Polynomial Filters,” AIIE Trans., 6, 359
(1974).

[702] F. B. Hildebrand, Introduction to Numerical Analysis, 2/e, McGraw-Hill, New York, 1974,
reprinted by Dover Publications, Mineola, NY, 1987.

[703] R. R. Ernst, “Sensitivity Enhancement in Magnetic Resonance,” in Advances in Magnetic
Resonance, vol. 2, J. S. Waugh, ed., Academic Press, 1966.

REFERENCES 1467

[704] C. P. Neuman and D. I. Schonbach, “Discrete (Legendre) Orthogonal Polynomials—A Sur-
vey,” Int. J. Numer. Meth. Eng., 8, 743 (1974).

[705] A. Proctor and P. M. A. Sherwood, “Smoothing of Digital X-ray Photoelectron Spectra by
and Extended Sliding Least-Squares Approach,” Anal. Chem., 52 2315 (1980).

[706] P. D. Willson and S. R. Polo, “Polynomial Filters of any Degree,” J. Opt. Soc. Am., 71, 599
(1981).

[707] M. U. A. Bromba and H. Ziegler, “On Hilbert Space Design of Least-Weighted- Squares Digital
Filters,” Int. J. Circuit Th. Appl., 11, 7 (1983).

[708] P. Steffen, “On Digital Smoothing Filters: A Brief Review of Closed Form Solutions and Two
New Filter Approaches,” Circ., Syst., and Signal Process., fb5, 187 (1986).

[709] H. W. Schüssler and P. Steffen, “Some Advanced Topics in Filter Design,” in Ref. [13].

[710] S. E. Bialkowski, “Generalized Digital Smoothing Filters Made Easy by Matrix Calculations,”
Anal. Chem., 61, 1308 (1989).

[711] P. A. Gorry, “General Least-Squares Smoothing and Differentiation of by the Convolution
(Savitzky-Golay) Method,” Anal. Chem., 62, 570 (1990).

[712] P. A. Gorry, “General Least-Squares Smoothing and Differentiation of Nonuniformly Spaced
Data by the Convolution Method,” Anal. Chem., 63, 534 (1991).

[713] J. E. Kuo and H. Wang, “Multidimensional Least-Squares Smoothing Using Orthogonal Poly-
nomials,” Anal. Chem., 63, 630 (1991).

[714] G. Y. Pryzva, “Kravchuk Orthogonal Polynomials,” Ukranian Math. J., 44, 792 (1992).

[715] P. Persson and G. Strang, “Smoothing by Savitzky-Golay and Legendre Filters,” in J. Rosen-
thal and D. S. Gilliam, eds., Mathematical Systems Theory in Biology, Communications,
Computation, and Finance, Springer-Verlag, NY, 2003.

[716] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press,
Oxford, 2004.

[717] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge
University Press, Cambridge, (2005).

[718] S. Samadi and A. Nishihara, “Explicit Formula for Predictive FIR Filters and Differentiators
Using Hahn Orthogonal Polynomials,” IEICE Trans. Fundamentals, E90, 1511 (2007).

[719] M. J. Gottlieb, “Concerning Some Polynomials Orthogonal on a Finite or Enumerable Set of
Points,” A. J. Math, 60, 453 (1938).

[720] R. E. King and P. N. Paraskevopoulos, “Digital Laguerre Filters,” Circ. Th. Appl., 5, 81 (1977).

[721] M. R. Teague, “Image Analysis via the General Theory of Moments,” J. Opt. Soc. Am., 70,
920 (1980).

[722] R. M. Haralick, “Digital Step Edges from Zero Crossing of Second Directional Derivatives,”
IEEE Trans. Patt. Anal. Mach. Intell., PAMI-6, 58 (1984).

[723] C-S. Liu and H-C. Wang, “A Segmental Probabilistic Model of Speech Using an Orthogonal
Polynomial Representation,” Speech Commun., 18 291 (1996).

[724] P. Meer and I. Weiss, “Smoothed Differentiation Filters for Images,” J. Vis. Commun. Imag.
Process., 3, 58 (1992).

[725] G. Carballo, R. Álvarez-Nodarse, and J. S. Dehesa, “Chebyshev Polynomials in a Speech
Recognition Model,” Appl. Math. Lett., 14, 581 (2001).

1468 REFERENCES

[726] R. Mukundan, S. H. Ong, and P. A. Lee, “Image Analysis by Tchebichef Moments,” IEEE
Trans. Image Process., 10, 1357 (2001).

[727] J. Arvesú, J. Coussement, and W. Van Asscheb, “Some Discrete Multiple Orthogonal Poly-
nomials,” J. Comp. Appl. Math., 153, 19 (2003).

[728] R. Mukundan, “Some Computational Aspects of Discrete Orthonormal Moments,” IEEE
Trans. Image Process., 13, 1055 (2004).

[729] L. Kotoulas and I. Andreadis, “Image Analysis Using Moments,” Proc. IEEE Int. Conf. Technol.
Autom. (ICTA-05), p.360, (2005).

[730] L. Kotoulas and I. Andreadis, “Fast Computation of Chebyshev Moments,” IEEE Trans.
Circuits Syst. Video Technol., 16, 884 (2006).

[731] K. W. Lee, et al., “Image reconstruction Using Various Discrete Orthogonal Polynomials in
Comparison with DCT,” Appl. Math. Comp., 193, 346 (2007).

[732] H. Zhu, et al., “Image Analysis by Discrete Orthogonal Dual Hahn Moments,” Patt. Recogn.
Lett. 28, 1688 (2007).

[733] H. Shu, L. Luo, and J-L Coatrieux, “Moment-Based Approaches in Imaging. Part 1, Basic
Features,” IEEE Eng. Med. Biol. Mag., 26, no.5, 70 (2007).

[734] H. Shu, L. Luo, and J-L Coatrieux, “Moment-Based Approaches in Imaging. Part 2, Invari-
ance,” IEEE Eng Med Biol Mag., 27, no.1, 81 (2008).

[735] E. Diekema and T. H. Koornwinder, “Differentiation by integration using orthogonal poly-
nomials, a survey,” , J. Approx., 164, 637 (2012).

Predictive and Fractional-Delay Filters

[736] R. W. Schafer and L. R. Rabiner, “A Digital Signal Processing Approach to Interpolation,”
Proc. IEEE, 61, 692 (1973).

[737] H. W. Strube, “Sampled-Data Representation of a Nonuniform Lossless Tube of Continu-
ously Variable Length,” J. Acoust. Soc. Amer., 57, 256 (1975).

[738] P. Heinonen and Y. Neuvo, “FIR-Median Hybrid Filters with Predictive FIR Substructures,”
IEEE Trans. Acoust., Speech, Signal Process., 36, 892 (1988).

[739] C. W. Farrow, “A Continuously Variable Digital Delay Element,” Proc. IEEE Int. Symp. Circuits
and Systems, ISCAS-88, p. 2641, (1988).

[740] G-S Liu and C-H Wei, “Programmable Fractional Sample Delay Filter with Lagrange Inter-
polation,” Electronics Lett., 26, 1608 (1990).

[741] T. G. Campbell and Y. Neuvo, “Predictive FIR Filters with Low Computational Complexity,”
IEEE Trans. Circ. Syst., 38 1067 (1991).

[742] S. J. Ovaska, “Improving the Velocity Sensing Resolution of Pulse Encoders by FIR Predic-
tion,” IEEE Trans. Instr. Meas., 40, 657 (1991).

[743] S. J. Ovaska, “Newton-Type Predictors—A Signal Processing Perspective,” Signal Process.,
25, 251 (1991).

[744] G-S Liu and C-H Wei, “A New Variable Fractional Sample Delay Filter with Nonlinear Inter-
polation,” IEEE Trans. Circ. Syst.–II, 39, 123 (1992).

[745] L. Erup., F. M. Gardner, and R. A. Harris, “Interpolation in Digital Modems—Part II: Imple-
mentation and Performance,” IEEE Trans. Commun., 41, 998 (1993).

REFERENCES 1469

[746] T. I. Laakso, et al., “Splitting the Unit Delay—Tools for Fractional Delay Filter Design,” IEEE
Signal Process. Mag., 13, 30, Jan. 1996.

[747] P. J. Kootsookos and R. C. Williamson, “FIR Approximation of Fractional Sample Delay
Systems,” IEEE Trans. Circ. Syst.–II, 43, 269 (1996).

[748] O. Vainio, M. Renfors, and T. Saramäki, “Recursive Implementation of FIR Differentiators
with Optimum Noise Attenuation,” IEEE Trans. Instrum. Meas., 46, 1202 (1997).

[749] P. T, Harju, “Polynomial Prediction Using Incomplete Data,” IEEE Trans. Signal Process., 45,
768 (1997).

[750] S. Tassart and P. Depalle, “Analytical Approximations of Fractional Delays: Lagrange In-
terpolators and Allpass Filters,” IEEE Int. Conf. Acoust., Speech, Sig. Process., (ICASSP-97),
1 455 (1997).

[751] S. Väliviita and S. J. Ovaska, “Delayless Recursive Differentiator with Efficient Noise Atten-
uation for Control Instrumentation,” Signal Process., 69, 267 (1998).

[752] S-C Pei and C-C Tseng, “A Comb Filter Design Using Fractional-Sample Delay,” IEEE Trans.
Circ. Syst.–II, 45, 649 (1998).

[753] S. Väliviita, S. J. Ovaska, and O. Vainio, “Polynomial Predictive Filtering in Control and
Instrumentation: A Review,” IEEE Trans. Industr. Electr., 46, 876 (1999).

[754] E. Meijering, “A Chronology of Interpolation: From Ancient Astronomy to Modern Signal
and Image Processing,” Proc. IEEE, 90, 319 (2002).

[755] V. Välimäki, et al. “Discrete-Time Modeling of Musical Instruments,” Rep. Progr. Phys., 69,
1 (2006).

[756] C. Candan, “An Efficient Filtering Structure for Lagrange Interpolation,” IEEE Signal Proc.
Lett., 14, 17 (2007).

[757] J. Vesma and T. Saramäki, “Polynomial-Based Interpolation Filters—Part I: Filter Synthesis,”
Circ. Syst, Signal Process., 26, 115 (2007).

Maximally Flat Filters

[758] O. Herrmann, “On the Approximation Problem in Nonrecursive Digital Filter Design,” IEEE
Trans. Circ. Th., CT-18, 411 (1971).

[759] J. A. Miller, “Maximally Flat Nonrecursive Digital Filters,” Electron. Lett., 8, 157 (1972).

[760] M. F. Fahmy, “Maximally Flat Nonrecursive Digital Filters,” Int. J. Circ. Th. Appl, 4, 311
(1976).

[761] J-P. Thiran, “Recursive Digital Filters with Maximally Flat Group Delay,” IEEE Trans. Circ.
Th., CT-18, 659 (1971).

[762] M. U. A. Bromba and H. Ziegler, “Explicit Formula for Filter Function of Maximally Flat
Nonrecursive Digital Filters,” Electron. Lett., 16, 905 (1980), and ibid., 18, 1014 (1982).

[763] H. Baher, “FIR Digital Filters with Simultaneous Conditions on Amplitude and Group De-
lay,” Electron. Lett., 18, 296 (1982).

[764] L. R. Rajagopal and S. C. D. Roy, “Design of Maximally-Flat FIR Filters Using the Bernstein
Polynomial,,, IEEE Trans. Circ. Syst., CAS-34, 1587 (1987).

[765] E. Hermanowicz, “Explicit Formulas for Weighting Coefficients of Maximally Flat Tunable
FIR delayers,” Electr. Lett., 28, 1936 (1992).

1470 REFERENCES

[766] I. W. Selesnick and C. S. Burrus, “Maximally Flat Low-Pass FIR Filters with Reduced Delay,”
IEEE Trans. Circ. Syst. II, 45, 53 (1998).

[767] I. W. Selesnick and C. S. Burrus, “Generalized Digital Butterworth Filter Design,” IEEE Trans.
Signal Process., 46, 1688 (1998).

[768] S. Samadi, A. Nishihara, and H. Iwakura, “Universal Maximally Flat Lowpass FIR Systems,”
IEEE Trans. Signal Process., 48, 1956 (2000).

[769] R. A. Gopinath, “Lowpass Delay Filters With Flat Magnitude and Group Delay Constraints,”
IEEE Trans. Signal Process., 51, 182 (2003).

[770] Fractional-Delay Systems,” IEEE Trans. Circ. Syst.–I, 51, 2271 (2004).

[771] S. Samadi and A. Nishihara, “The World of Flatness,” IEEE Circ. Syst. Mag., p.38, third
quarter 2007.

Local Polynomial Modeling and Loess

[772] E. A. Nadaraya, “On Estimating Regression,” Th. Prob. Appl., 10, 186 (1964).

[773] G. S. Watson, “Smooth Regression Analysis,” Sankya, Ser. A, 26, 359 (1964).

[774] M. B. Priestley and M. T. Chao, “Non-Parametric Function Fitting,” J. Roy. Statist. Soc., Ser.
B, 34, 385 (1972).

[775] C. J. Stone, “Consistent Nonparametric Regression (with discussion),” Ann. Statist., 5, 595
(1977).

[776] W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing of Scatterplots,” J.
Amer. Statist. Assoc., 74, 829 (1979).

[777] W. S. Cleveland and R. McGill “The Many Faces of a Scatterplot,” J. Amer. Statist. Assoc., 79,
807 (1984).

[778] . H. Friedman, “A Variable Span Smoother,” Tech. Rep. No. 5, Lab. Comput. Statist., Dept.
Statist., Stanford Univ., (1984); see also, J. H. Friedman and W. Stueltze, “Smoothing of
Scatterplots,” Dept. Statist., Tech. Rep. Orion 3, (1982).

[779] H-G. Müller, “Smooth Optimum Kernel Estimators of Densities, Regression Curves and
Modes,” Ann. Statist., 12, 766 (1984).

[780] T. Gasser, H-G. Müller, and V. Mammitzsch, “Kernels for Nonparametric Curve Estimation,”
J. Roy. Statist. Soc., Ser. B, 47, 238 (1985).

[781] J. A. McDonald and A. B. Owen, “Smoothing with Split Linear Fits,” Technometrics, 28, 195
(1986).

[782] A. B. Tsybakov, “Robust Reconstruction of Functions by the Local-Approximation Method,”
Prob. Inf. Transm., 22, 69 (1986).

[783] W. S. Cleveland and S. J. Devlin, “Locally Weighted Regression: An Approach to Regression
Analysis by Local Fitting,” J. Amer. Statist. Assoc., 83, 596 (1988).

[784] A. Buja, A. Hastie, and R. Tibshirani, “Linear Smoothers and Additive Models (with discus-
sion),” Ann. Statist., 17, 453 (1989).

[785] B. L. Granovsky and H-G. Müller, “The Optimality of a Class of Polynomial Kernel Func-
tions,” Stat. Decis., 7, 301 (1989).

[786] W. Härdle, Applied Nonparametric Regression, Cambridge Univ. Press, Cambridge, 1990.

[787] A. Hastie and R. Tibshirani, Generalized Additive Models, Chapman & Hall, London, 1990.

REFERENCES 1471

[788] B. L. Granovsky, H-G. Müller, “Optimizing Kernel Methods: A Unifying Variational Princi-
ple,” Int. Stat. Rev., 59, 373 (1991).

[789] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression,”
Amer. Statist., 46, 175 (1992).

[790] I. Fan and I. Gijbels, “Variable Bandwidth and Local Linear Regression Smoothers,” Ann.
Statist., 20, 2008 (1992).

[791] W. S. Cleveland and Grosse, “A Package of C and Fortran Routines for Fitting Local Regres-
sion Models,” 1992. Available from: http://www.netlib.org/a/dloess.

[792] W. S. Cleveland, Visualizing Data, Hobart Press, Summit, NJ, 1993.

[793] I. Fan, “Local Linear Regression Smoothers and Their Minimax Efficiencies,” Ann. Statist.,
21, 196 (1993).

[794] A. Hastie and C. Loader, “Local Regression: Automatic Kernel Carpentry,” Statist. Sci., 8,
120 (1993).

[795] M. C. Jones, S. J. Davies, and B. U. Park, “Versions of Kernel-Type Regression Estimators,”
J. Amer. Statist. Assoc., 89, 825 (1994).

[796] I. Fan and I. Gijbels, “Data-Driven Bandwidth Selection in Local Polynomial Fitting: Variable
Bandwidth and Spatial Adaptation,” J. Roy. Statist. Soc., Ser. B, 57, 371 (1995).

[797] D. Ruppert, S. J. Sheather, and M. P. Wand, “An Effective Bandwidth Selector for Local Least
Squares Regression,” J. A. Statist. Assoc., 90, 125 (1995).

[798] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman & Hall, London, 1995.

[799] W. S. Cleveland and C. Loader, “Smoothing by Local Regression: Principles and Methods,”
in W. Härdle and M. G. Schimek, eds., Statistical Theory and Computational Aspects of
Smoothing, Physica-Verlag, Heidelberg, May 1996.

[800] M. C. Jones, J. S. Marron, and S. J. Sheaver, “A Brief Survey of Bandwidth Selection for
Density Estimation,” J. Amer. Statist. Assoc., 91, 401 (1996).

[801] B. Seifert and T. Gasser, “Finite Sample Variance of Local Polynomials: Analysis and Solu-
tions,” J. Amer. Statist. Assoc., 91, 267 (1996).

[802] J. S. Simonoff, Smoothing Methods in Statistics, Springer-Verlag, New York, 1996.

[803] I. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman & Hall,
London, 1996.

[804] A. Goldenshluger and A. Nemirovski, “On Spatial Adaptive Estimation of Nonparametric
Regression,” Math. Meth. Stat., 6, 135 (1997).

[805] A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, Oxford
Univ. Press, New York, 1997.

[806] C. M. Hurvich and J. S. Simonoff, “Smoothing Parameter Selection in Nonparametric Re-
gression Using an Improved AIC Criterion,” J. Roy. Statist. Soc., Ser. B, 60, 271 (1998).

[807] C. R. Loader, “Bandwidth Selection: Classical or Plug-In?,” Ann. Statist., 27, 415 (1999).

[808] C. Loader, Local Regression and Likelihood, Springer-Verlag, New York, 1999.

[809] V. Katkovnik, “A New method for Varying Adaptive Bandwidth Selection,” IEEE Trans. Sig-
nal Process., 47, 2567 (1999).

[810] I. Horová, “Some Remarks on Kernels,” J. Comp. Anal. Appl., 2, 253 (2000).

[811] W. R. Schucany, “An Overview of Curve Estimators for the First Graduate Course in Non-
parametric Statistics,” Statist. Sci., 19, 663 (2004).

1472 REFERENCES

[812] C. Loader, “Smoothing: Local Regression Techniques,” in J. Gentle, W. Härdle, and Y. Mori,
eds., Handbook of Computational Statistics, Springer-Verlag, Heidelberg, 2004.

[813] V. Katkovnik, K. Egiazarian, and J. Astola, Local Approximation Techniques in Signal and
Image Processing, SPIE Publications, Bellingham, WA, 2006.

[814] Data available from: http://www.netlib.org/a/dloess. Original source: N. D.
Brinkman, “Ethanol - A Single-Cylinder Engine Study of Efficiency and Exhaust Emissions,”
SAE Transactions, 90, 1410 (1981).

[815] Data available from http://fedc.wiwi.hu-berlin.de/databases.php, (MD*Base col-
lection). Original source: Ref. [786] and G. Schmidt, R. Mattern, and F. Schüller, EEC Res. Pro-
gram on Biomechanics of Impacts, Final report, Phase III, Project 65, Inst. für Rechtsmedi-
zin, Univ. Heidelberg, Germany.

Exponential Moving Average Filters

[816] R. G. Brown, Smoothing, Forecasting and Prediction of Discrete-Time Series, Prentice Hall,
Englewood-Cliffs, NJ, 1962.

[817] D. C. Montgomery and L. A. Johnson, Forecasting and Time Series Analysis, McGraw-Hill,
New York, 1976.

[818] C. D. Lewis, Industrial and Business Forecasting Methods, Butterworth Scientific, London,
1982.

[819] B. Abraham and J. Ledolter, Statistical Methods for Forecasting, Wiley, New York, 1983.

[820] S. Makridakis, et al., The Forecasting Accuracy of Major Time Series Models, Wiley, New
York, 1983.

[821] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting, Methods and Applications,
3/e, Wiley, New York, 1998.

[822] C. Chatfield, Time Series Forecasting, Chapman & Hall/CRC Press, Boca Raton, FL, 2001.

[823] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting with Exponential
Smoothing, Springer-Verlag, Berlin, 2008.

[824] C. C. Holt, “Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages,”
Office of Naval Research memorandum (ONR 52), 1957, reprinted in Int. J. Forecast., 20, 5
(2004); see also, ibid., 20, 11 (2004).

[825] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving Averages,” Manag. Sci.,
6, 324 (1960).

[826] J. F. Muth, “Optimal Properties of Exponentially Weighted Forecasts,” J. Amer. Statist. As-
soc., 55, 299 (1960).

[827] R. G. Brown and R. F. Meyer, “The Fundamental Theorem of Exponential Smoothing,” Oper.
Res., 9, 673 (1961).

[828] D. A. D’Esopo, “A Note on Forecasting by the Exponential Smoothing Operator,” Oper. Res.,
9, 686 (1961).

[829] D. R. Cox, “Prediction by Exponentially Weighted Moving Averages and Related Methods,”
J. Roy. Statist. Soc., Ser. B, 23, 414 (1961).

[830] R. H. Morris and C. R. Glassey, “The Dynamics and Statistics of Exponential Smoothing
Operators,” Oper. Res., 11, 561 (1963).

REFERENCES 1473

[831] H. Theil and S. Wage, “Some Observations on Adaptive Forecasting,” Manag. Sci., 10, 198
(1964).

[832] P. J. Harrison, “Short-Term Sales Forecasting,” Appl. Statist., 14, 102 (1965).

[833] P. J. Harrison, “Exponential Smoothing and Short-Term Sales Forecasting,” Manag. Sci., 13,
821 (1967).

[834] W. G. Gilchrist, “Methods of Estimation Involving Discounting,” J. Roy. Satist. Soc., Ser. B,
29, 355 (1967).

[835] C. C. Pegels, “Exponential Forecasting: Some New Variations,” Manag. Sci., 15, 311 (1969).

[836] A. C. Watts, “On Exponential Smoothing of Discrete Time Series,” IEEE TRans. Inform. Th.,
16, 630 (1970).

[837] K. O. Cogger, “The Optimality of General-Order Exponential Smoothing,” Oper. Res., 22,
858 (1974).

[838] S. D. Roberts and D. C. Whybark, “Adaptive Forecasting Techniques,” Int. J. Prod. Res., 12,
635 (1974).

[839] M. L. Goodman, “A New Look at Higher-Order Exponential Smoothing for Forecasting,”
Oper. Res., 22, 880 (1974).

[840] D. E. Clapp, “Adaptive Forecasting with Orthogonal Polynomial Models,” AIIE Trans., 6,
359 (1974).

[841] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977.

[842] J. F. Kaiser and R. W. Hamming, “Sharpening the Response of a Symmetric Nonrecursive
Filter by the Multiple Use of the same Filter,” IEEE Trans. Acoust., Speech, Signal Process.,
ASSP-25, 415 (1977).

[843] E. Mckenzie, “The Monitoring of Exponentially Weighted Forecasts,” J. Oper. Res. Soc., 29,
449 (1978).

[844] C. Chatfield, “The Holt-Winters Forecasting Procedure,” Appl. Statist., 27, 264 (1978).

[845] R. Fildes, “Quantitative Forecasting—The State of the Art: Extrapolative Methods,” J. Oper.
Res. Soc., 30, 691 (1979).

[846] S. Ekern, “Adaptive Exponential Smoothing Revisited,” J. Oper. Res. Soc., 32, 775 (1981).

[847] S. A. Roberts, “A General Class of Holt-Winters Type Forecasting Models,” Manag. Sci., 28,
808 (1982).

[848] E. J. Muth, “The Discrete Laguerre Polynomials and their Use in Exponential Smoothing,”
IIE Trans., 15, 166 (1983).

[849] E. S. Gardner, Jr., “Exponential Smoothing: The State of the Art,” J. Forecast., 4, 1 (1985).

[850] B. Abraham and J. Ledolter, “Forecast Functions Implied by Autoregressive Integrated Mov-
ing Average Models and Other Related Forecast Procedures,” Int. Statist. Rev., 54, 51 (1986).

[851] D. J. Dalrymple, “Sales Forecasting Practices: Results from a United States Survey,” Int. J.
Forecast., 3, 379 (1987).

[852] C. Chatfield and M. Yar, “Holt-Winters Forecasting: Some Practical Issues,” Statistician, 37,
129 (1988).

[853] E. Yashchin, “Estimating the Current Mean of a Process Subject to Abrupt Changes,” Tech-
nometrics, 37, 311 (1995).

[854] S. Satchell and A. Timmermann, “On the Optimality of Adaptive Expectations: Muth Revis-
ited,” Int. J. Forecast., 11, 407 (1995).

1474 REFERENCES

[855] H. Winklhofer, A. Diamantopoulos, and S. F. Witt, “Forecasting practice: A Review of the
Empirical Literature and an Agenda for Future Research,” Int. J. Forecast., 12, 193 (1996).

[856] S. Makridakis and M. Hibon, “The M3-Competition: Results, Conclusions and Implications,”
Int. J. Forecast., 16, 451 (2000).

[857] C. Chatfield, et al., “A New Look at Models for Exponential Smoothing,” Statistician, 50,
147 (2001).

[858] A. Chen and E. A. Elsayed, “Design and Performance Analysis of the Exponentially Weighted
Moving Average Mean Estimate for Processes Subject to Random Step Changes,” Techno-
metrics, 44, 379 (2002).

[859] D. J. Robb and E. A. Silver, “Using Composite Moving Averages to Forecast Sales,” J. Oper.
Res. Soc., 53, 1281 (2002).

[860] J. W. Taylor, “Smooth Transition Exponential Smoothing,” J. Forecast., 23, 385 (2004).

[861] E. S. Gardner, Jr., “Exponential Smoothing: The State of the Art—Part II,” Int. J. Forecast.,
22, 239 (2006).

[862] B. Billah, et al., “Exponential Smoothing Model Selection for Forecasting,” Int. J. Forecast.,
22, 239 (2006).

[863] J. G. De Gooijer and R. J. Hyndman, “25 Years of Time Series Forecasting,” Int. J. Forecast.,
22, 443 (2006).

Filtering Methods and Technical Analysis in Financial Markets

[864] S. B. Achelis, Technical Analysis from A to Z, 2nd ed., McGraw-Hill, NY, 2001.
available online, https://www.metastock.com/customer/resources/taaz/

[865] J. W. Wilder, New Concepts in Technical Trading Systems, Trend Research, Greensboro, NC,
1978.

[866] “Surviving The Test of Time With J. Welles Wilder,” interview by B. Twomey, Tech. Anal.
Stocks & Commod., 27, no.3, 58 (2009).

[867] T. S. Chande and S. Kroll, The New Technical Trader, Wiley, NY, 1994.

[868] J. F. Ehlers, Rocket Science for Traders, Wiley, NY, 2001.

[869] J. F. Ehlers, Cybernetic Analysis for Stocks and Futures, Wiley, NY, 2004.

[870] P. J. Kaufman, New Trading Systems and Methods, 4/e, Wiley, 2005.

[871] D. K. Mak, Mathematical Techniques in Financial Market Trading, World Scientific, Singa-
pore, 2006.

[872] Technical Analysis, PDF book, 2011, Creative Commons Attribution-Share, available from:
https://www.mrao.cam.ac.uk/~mph/Technical_Analysis.pdf

[873] International Federation of Technical Analysts, www.ifta.org

[874] V. Zakamulin, Market Timing with Moving Averages, Palgrave Macmillan, 2017. See also by
same author, “Moving Averages for Market Timing,”, Oct. 2016. Available at SSRN:
https://ssrn.com/abstract=2854180

[875] D. Penn, “The Titans Of Technical Analysis,” Tech. Anal. Stocks & Commod., 20, no.10, 32
(2002).

[876] A. W. Lo and J. Hasanhodzic, The Heretics of Finance, Bloomberg Press, NY, 2009.

REFERENCES 1475

[877] M. Carr and A. Hestla, “Technical Analysis Adapts and Thrives,” Tech. Anal. Stocks & Com-
mod., 29, no.4, 46 (2011).

[878] J. K. Hutson, “Good Trix”, Tech. Anal. Stocks & Commod., 1, no.5, 105, (1983); ibid., 2, no.2,
91, (1984). See also, D. Penn, “TRIX”, Tech. Anal. Stocks & Commod., 29, no.9, 197, (2003).

[879] R. Barrons Roosevelt, “Metaphors For Trading,” Tech. Anal. Stocks & Commod., 16, no.2,
67 (1998).

[880] T. S. Chande, “Adapting Moving Averages to Market Volatility,” Tech. Anal. Stocks & Com-
mod., 10, no.3, 108 (1992).

[881] P. G. Mulloy, “Smoothing Data with Faster Moving Averages,” Tech. Anal. Stocks & Commod.,
12, no.1, 11 (1994).

[882] P. G. Mulloy, “Smoothing Data with Less Lag,” Tech. Anal. Stocks & Commod., 12, no.2, 72
(1994).

[883] T. S. Chande, “Forecasting Tomorrow’s Trading Day,” Tech. Anal. Stocks & Commod., 10,
no.5, 220 (1992).

[884] P. E. Lafferty, “The End Point Moving Average,” Tech. Anal. Stocks & Commod., 13, no.10,
413 (1995).

[885] D. Kraska, “The End Point Moving Average,”, Letters to Tech. Anal. Stocks & Commod., 14,
Feb. (1996).

[886] J. F. Ehlers, “Zero-Lag Data Smoothers,” Tech. Anal. Stocks & Commod., 20, no.7, 26 (2002).
See also, J. F. Ehlers and R. Way, “Zero Lag (Well, Almost),” ibid., 28, 30, Nov. (2010).

[887] W. Rafter, “The Moving Trend,” Tech. Anal. Stocks & Commod., 21, no.1, 38 (2003).

[888] D. Meyers, “Surfing the Linear Regression Curve with Bond Futures,” Tech. Anal. Stocks &
Commod., 16, no.5, 209 (1998).

[889] B. Star, “Confirming Price Trend,” Tech. Anal. Stocks & Commod., 25, no.13, 72 (2007).

[890] P. E. Lafferty, “How Smooth is Your Data Smoother?,” Tech. Anal. Stocks & Commod., 17,
no.6, 251 (1999).

[891] T. Tillson, “Smoothing Techniques For More Accurate Signals,” Tech. Anal. Stocks & Com-
mod., 16, no.1, 33 (1998).

[892] J. Sharp, “More Responsive Moving Averages,” Tech. Anal. Stocks & Commod., 18, no.1, 56
(2000).

[893] A. Hull, “How to reduce lag in a moving average,” https://alanhull.com/hull-moving-
average.

[894] B. Star, “Detecting Trend Direction and Strength,” Tech. Anal. Stocks & Commod., 20, no.1,
22 (2007).

[895] S. Evens, “Momentum And Relative Strength Index,” Tech. Anal. Stocks & Commod., 17,
no.8, 367 (1999).

[896] S. Evens, “Stochastics,” Tech. Anal. Stocks & Commod., 17, no.9, 392 (1999).

[897] P. Roberts, “Moving Averages: The Heart of Trend Analysis,” Alchemist, 33, 12 (2003),
Lond. Bullion Market Assoc., available online from: www.lbma.org.uk.

[898] K. Edgeley “Oscillators Go with the Flow,” Alchemist, 37, 17 (2005), Lond. Bullion Market
Assoc., available online from: www.lbma.org.uk.

[899] D. Penn, “Moving Average Trios,” Tech. Anal. Stocks & Commod., 25, no.9, 54 (2007).

1476 REFERENCES

[900] B. Star, “Trade the Price Swings,” Tech. Anal. Stocks & Commod., 21, no.12, 68 (2003).

[901] A. Sabodin, “An MACD Trading System,” Tech. Anal. Stocks & Commod., 26, no.3, 12 (2008).

[902] C. K. Langford, “Three Common Tools, One Protocol,” Tech. Anal. Stocks & Commod., 26,
no.10, 48 (2008).

[903] H. Seyedinajad, “The RSI Miracle,” Tech. Anal. Stocks & Commod., 27, no.1, 12 (2009).

[904] M. Alves, “Join the Band: Applying Hysteresis to Moving Averages,” Tech. Anal. Stocks &
Commod., 27, no.1, 36 (2009).

[905] E. Donie, “An MACD Parallax View,” Tech. Anal. Stocks & Commod., 27, no.4, 12 (2009).

[906] R. Singh and A. Kumar, “Intelligent Stock Trading Technique using Technical Analysis,”
Int. J. Mgt. Bus. Studies, 1, 46 (2011).

[907] J. Bollinger, “Using Bollinger Bands,” Tech. Anal. Stocks & Commod., 10, no.2, 47 (1992).

[908] S. Evens, “Bollinger Bands,” Tech. Anal. Stocks & Commod., 17, no.3, 116 (1999).

[909] S. Vervoort, “Smoothing the Bollinger %b,” Tech. Anal. Stocks & Commod., 28, no.5, 40
(2010); and Part 2, ibid., 28, no.6, 48 (2010).

[910] J. Gopalakrishnan and B. Faber, “Interview: System Trading Made Easy With John Bollinger,”
Tech. Anal. Stocks & Commod., 30, no.3, 36 (2012).

[911] A. Mustapha, “Bollinger Bands & RSI: A Magical Combo,” Tech. Anal. Stocks & Commod.,
34, no.6, 18 (2016).

[912] M. Widner, “Signaling Change with Projection Bands,” Tech. Anal. Stocks & Commod., 13,
no.7, 275 (1995).

[913] J. Andersen, “Standard Error Bands,” Tech. Anal. Stocks & Commod., 14, no.9, 375 (1996).

[914] S. Evens, “Keltner Channels,” Tech. Anal. Stocks & Commod., 17, no.12, 533 (1999).

[915] D. Penn, “Donchian Breakouts,” Tech. Anal. Stocks & Commod., 20, no.2, 34 (2002); and,
“Building a Better Breakout,”, ibid., 21, no.10, 74 (2003).

[916] B. Star, “Trade Breakouts And Retracements With TMV,” Tech. Anal. Stocks & Commod.,
30, no.2, 13 (2012).

[917] F. Bertrand, “RSI Bands,” Tech. Anal. Stocks & Commod., 26, no.4, 44 (2008).

[918] S. Lim, T. T.. Hisarli, and N, S. He, “Profitability of a Combined Signal Approach: Bollinger
Bands and the ADX,” IFTA J., p.23, 2014 edition,
https://ifta.org/publications/journal/.

[919] P, Aan, “Parabolic Stop/Reversal,” Tech. Anal. Stocks & Commod., 7, no.11, 411 (1989).

[920] T. Hartle, “The Parabolic Trading System,”, Tech. Anal. Stocks & Commod., 11, no.11, 477
(1993).

[921] D. Meyers, “Modifying the Parabolic Stop And Reversal,” Tech. Anal. Stocks & Commod.,
14, no.4, 152 (1995).

[922] J. Sweeney, “Parabolics,” Tech. Anal. Stocks & Commod., 15, no.7, 329 (1997).

[923] R. Teseo, “Stay in the Market with Stop-And-Reverse,” Tech. Anal. Stocks & Commod., 20,
no.4, 76 (2002).

[924] K. Agostino and B. Dolan, “Make the Trend Your Friend in Forex,” Tech. Anal. Stocks &
Commod., 22, no.9, 14 (2004).

[925] D. Sepiashvili, “The Self-Adjusting RSI,” Tech. Anal. Stocks & Commod., 24, no.2, 20 (2006).

REFERENCES 1477

[926] G. Siligardos, “Leader Of The MACD,” Tech. Anal. Stocks & Commod., 26, no.7, 24 (2008).

[927] M. J. Pring, “The Special K, Part 1,” Tech. Anal. Stocks & Commod., 26, no.12, 44 (2008);
and Part 2, ibid., 27, no.1, 28 (2009); see also, ibid., “Identifying Trends With The KST
Indicator,” 10, no.10, 420 (1992).

[928] P. Konner, “Combining RSI with RSI,” Tech. Anal. Stocks & Commod., 29, no.1, 16 (2011).

[929] A. A. Merrill, Filtered Waves, Basic Theory: A Tool for Stock Market Analysis, Analysis Press,
Chappaqua, NY, 1977.

[930] S. Raftopoulos, “Zigzag Validity,”, Tech. Anal. Stocks & Commod., 20, no.8, 28 (2002).

[931] S. Raftopoulos, “The Zigzag Trend Indicator,”, Tech. Anal. Stocks & Commod., 21, no.11,
26 (2003).

[932] W. Cringan, “Zigzag Targets,”, Tech. Anal. Stocks & Commod., 21, no.2, 24 (2003).

[933] N. J. Brown, “Zigzag and One Rank Compared,”, Tech. Anal. Stocks & Commod., 22, no.6,
24 (2004).

[934] G. Siligardos, “Filtering Price Movement,”, Tech. Anal. Stocks & Commod., 33, no.5, 12
(2015).

[935] Fidelity’s Technical Indicator Guide:
https://www.fidelity.com/learning-center/trading-investing/technical-

analysis/technical-indicator-guide/overview

OANDA Technical Indicator Guide and Tutorials:
https://www.oanda.com/forex-trading/learn/forex-indicators

https://www.oanda.com/forex-trading/learn/technical-analysis-for-traders

[936] TradingView Wiki:
https://www.tradingview.com/wiki

[937] A. Raudys, V. Lenciauskas, and E. Malcius, “Moving Averages for Financial Data Smoothing,”
in T. Skersys, R. Butleris, and R. Butkiene (Eds.), Proceedings Information and Software
Technologies, 19th Int. Conf., ICIST 2013; paper available online from,
pdfs.semanticscholar.org/257b/837649d8b50662b3fe2c21fce825a1c184e5.pdf

[938] C. W. Gross and J. E. Sohl, “Improving Smoothing Models with an Enhanced Initialization
scheme,” J. Bus. Forecasting, 8, 13 (1989).

[939] J. R. Taylor, Introduction to Error Analysis, Oxford University Press, University Science
Books, Mill Valley, CA.

Markowitz Portfolios

[940] H. Markowitz, “Portfolio Selection,” J. Finance, 7, 77 (1962).

[941] W. F. Sharpe, “Capital asset prices: A theory of market equilibrium under conditions of
risk,” J. Finance, 19, 425 (1964).

[942] H. Markowitz, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Wiley (2000).

[943] R. Merton, “An analytic derivation of the efficient portfolio frontier,” J. Financial Quant.
Anal. 7, 1851 (1972).

[944] H. M. Markowitz, “Foundations of Portfolio Theory,” J. Finance, 46, 469 (1991).

[945] W. F. Sharpe, “Capital Asset Prices with and without Negative Holdings,” J. Finance, 46,
489 (1991).

1478 REFERENCES

[946] H. M. Markowitz, “The General Mean-Variance Portfolio Selection Problem [and Discus-
sion],” Phil. Trans.: Phys. Sci. Eng., 347, 543 (1994).

[947] H. M. Markowitz, “The Early History of Portfolio Theory: 1600-1960,” Financial Analysts J.,
55, no.4, p.5, 1999.

[948] K. V. Fernando, “Practical Portfolio Optimization,” Numerical Algorithms Group, Tech.
Report, https://www.nag.co.uk/doc/techrep/Pdf/tr2_00.pdf

[949] P. A. Forsyth, “An Introduction to Computational Finance Without Agonizing Pain,” 2007,
available online from, https://cs.uwaterloo.ca/~paforsyt/agon.pdf

[950] H. Ahmadi and D. Sitdhirasdr, “Portfolio Optimization is One Multiplication, the Rest is
Arithmetic,” J. Appl. Fin. & Banking, 6 81 (2016);
http://www.scienpress.com/download.asp?ID=1729

[951] J. B. Heaton, N. G. Polson, and J. H.Witte, “Deep learning for finance: deep portfolios,” Appl.
Stoch. Models Bus. Ind., 33, 3 (2017); with discussions, ibid.,, p.13, and p.16, and rejoinder,
p.19.

Spline Smoothing

[952] http://pages.cs.wisc.edu/~deboor/bib/, extensive online spline bibliography.

[953] G. Wahba, Spline Models for Observational Data, SIAM Publications, Philadelphia, 1990.

[954] P. J. Green and B. W. Silverman, Nonparametric Regression and Generalized Linear Mofdels:
A Roughness Penalty Approach, Chapman & Hall, London, 1994.

[955] R. L. Eubank, Spline Smoothing and Nonparametric Regression, Marcel Dekker, New York,
1988.

[956] I. M. Gelfand and S. V. Fomin, Calculus of Variations, Dover Publications, Mineola, NY, 2000;
reprint of 1963 Prentice Hall edition.

[957] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York,
1980.

[958] J. L. Walsh, J. H. Ahlberg, and E. N. Nilson, “Best Approximation Properties of the Spline
Fit,” J. Math. Mech., 11, 225 (1962).

[959] I. J. Schoenberg, “Spline Functions and the Problem of Graduation,” Proc. of the Nat. Acad.
Sci., 52, no.4, 947 (1964).

[960] C. H. Reinsch, “Smoothing by Spline Functions,” Numer. Mathematik, 10, 177 (1967), and
“Smoothing by Spline Functions. II,” ibid., 16, 451 (1971).

[961] P. M. Anselone and P. J. Laurent, “A General Method for the Construction of Interpolating
or Smoothing Spline-Functions,” Numer. Math., 12, 66 (1968).

[962] D. Kershaw, “The Explicit Inverses of Two Commonly Occurring Matrices,” Math. Comp.,
23. 189 (1969).

[963] A. M. Erisman and W. F. Tinney, “On Computing Certain Elements of the Inverse of a Sparse
Matrix,” Commun. ACM, 18, 177 (1975).

[964] S. Wold, “Spline Functions in Data Analysis,” Technometrics, 16, 1 (1974).

[965] L. L. Horowitz, “The Effects of Spline Interpolation on Power Spectral Density,” IEEE Trans.
Acoust., Speech, Signal Process., ASSP-22, 22 (1974).

[966] L. D’Hooge, J. De Kerf, and M. J. Goovaerts, “Adjustment of Mortality Tables by Means of
Smoothing Splines,” Bulletin de l’Association Royale des Actuaires Belge, 71, 78 (1976).

REFERENCES 1479

[967] D. L. Jupp, “B-Splines for Smoothing and Differentiating Data Sequences,” Math. Geol., 8,
243 (1976).

[968] C.S. Duris, “Discrete Interpolating and Smoothing Spline Functions,” SIAM J. Numer. Anal.,
14, 686 (1977), and “Fortran Routines for Discrete Cubic Spline Interpolation and Smooth-
ing,” ACM Trans. Math. Softw., 6, 92 (1980).

[969] H. S. Hou and H. C. Andrews, “Cubic Splines for Image Interpolation and Digital Filtering,”
IEEE Trans. Acoust., Speech, Signal Process., ASSP-26, 508 (1978).

[970] G. H. Golub, M. Heath, and G. Wahba, “Generalized Cross-Validation as a Method for Choos-
ing a Good Ridge Parameter,” Technometrics, 21, 215 (1979).

[971] P. Craven and G. Wahba, “Smoothing by Spline Functions, Estimating the Correct Degree of
Smoothing by the Method of Generalized Cross-Validation,” Numer. Math., 31, 377 (1979).

[972] P. L. Smith, “Splines as a Useful and Convenient Statistical Tool,” Amer. Statist., 33, 57
(1979).

[973] R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans.
Acoust., Speech, Signal Process., ASSP-29, 1153 (1981).

[974] J. McCutcheon, “Some Remarks on Splines,”, Trans. Fac. Actuaries, 37, 421 (1981).

[975] C. L. Vaughan, “Smoothing and Differentiation of Displacement-Time Data: Application of
Splines and Digital Filtering,” Int. J. Bio-Med. Comput., 13, 375 (1982).

[976] E. J. Wegman and I. W. Wright, “Splines in Statistics,” J. Amer. Statist. Assoc., 78, 351 (1983).

[977] B. K. P. Horn, “The Curve of Least Energy,” ACM Trans. Math. Softw., 9, 441 (1983).

[978] B. W. Silverman, “A Fast and Efficient Cross-Validation Method for Smoothing Parameter
Choice in Spline Regression,” J. Amer. Statist. Assoc., 79, 584 (1984).

[979] M. F. Hutchison and F. R. de Hoog, “Smoothing Noisy Data with Spline Functions,” Numer.
Math., 47, 99 (1985).

[980] B. W. Silverman, “Some Aspects of the Spline Smoothing Approach to Non-Parametric Re-
gression Curve Fitting,” J. Roy. Statist. Soc., Ser. B, 47, 1 (1985).

[981] P. H. C. Eilers and B. D. Marx, “Flexible Smoothing with B-Splines and Penalties,” Statist.
Sci., 11, 89 (1989).

[982] K. F. Üstüner and L. A. Ferrari, “Discrete Splines and Spline Filters,” IEEE Trans. Circ. Syst.—
II, 39, 417 (1992).

[983] M. A. A. Moussa and M. Y. Cheema, “Non-Parametric Regression in Curve Fitting,” Statisti-
cian, 41 209 (1992).

[984] M. Unser, A. Aldroubi, and M. Eden, “B-Spline Signal Processing: Part I—Theory,” IEEE
Trans. Signal Process., 41, 821 (1993), and “Part II—Efficient Design and Applications,”
ibid., p. 834.

[985] R. L. Eubank, “A Simple Smoothing Spline,” Amer. Statist., 48, 103 (1994).

[986] D. Nychka, “Splines as Local Smoothers,” Ann. Statist., 23, 1175 (1995).

[987] M. Unser, “Splines, A Perfect Fit for Signal and Image Processing,” IEEE Sig. Process. Mag.,
16, no.6, 22, (1999).

[988] R. Champion, C. T. Lenard, and T. M. Mills, “A Variational Approach to Splines,” ANZIAM
J., 42, 119 (2000).

[989] V. Solo, “A Simple Derivation of the Smoothing Spline,” Amer. Statist., 54, 40 (2000).

1480 REFERENCES

[990] S. Sun, M. B. Egerstedt, and C. F. Martin, “Control Theoretic Smoothing Splines,” IEEE Trans.
Autom. Contr., 45, 2271 (2000).

[991] H. Bachau, et al., “Applications of B-Splines in Atomic and Molecular Physics,” Rep. Prog.
Phys., 64, 1815 (2001).

[992] S. A. Dyer and J. S. Dyer, “Cubic-Spline Interpolation, Part 1,”, IEEE Instr. & Meas. Mag.,
March 2001, p. 44, and “Part 2,”, ibid., June 2001, p.34.

[993] J. D. Carew, et al., “Optimal Spline Smoothing of fMRI Time Series by Generalized Cross-
Validation,” NeuroImage, 18, 950 (2003).

[994] A. K. Chaniotis and D. Poulikakos, “High Order Interpolation and Differentiation Using
B-Splines,” J. Comput. Phys., 197, 253 (2004).

[995] P. H. C. Eilers, “Fast Computation of Trends in Scatterplots,” Kwantitatieve Meth., 71, 38
(2004).

[996] T. C. M. Lee, “Improved Smoothing Spline Regression by Combining Estimates of Different
Smoothness,” Statist. Prob. Lett., 67, 133 (2004).

[997] M. Unser and T. Blu, “Cardinal Exponential Splines: Part I—Theory and Filtering Algo-
rithms,” IEEE Trans. Signal Process., 53, 1425 (2005), and M. Unser, “Cardinal Exponential
Splines: Part II—Think Analog, Act Digital,” ibid., p. 1439.

[998] H. L. Weinert, “A Fast Compact Algorithm for Cubic Spline Smoothing,” Comput. Statist.
Data Anal., 53, 932 (2009).

[999] G. Kimeldorf and G. Wahba, “A Correspondence Between Bayesian Estimation on Stochastic
Processes and Smoothing by Splines,” Ann. Math. Statist., 41, 495 (1970).

[1000] G. Kimeldorf and G. Wahba, “Some Results on Tschebycheffian Spline Functions,” J. Math.
Anal. Appl., 33, 82 (1971).

[1001] G. Wahba, “Improper Priors, Spline Smoothing and the Problem of Guarding Against Model
Errors in Regression,” J. Roy. Statist. Soc., Ser. B, 40, 364 (1978).

[1002] H. L. Weinert and G. S. Sidhu, “A Stochastic Framework for Recursive Computation of
Spline Functions: Part II, Interpolating Splines,” IEEE Trans. Inform. Th., 24, 45 (1978).

[1003] H. L. Weinert, R. H. Byrd, and G. S. Sidhu, “A Stochastic Framework for Recursive Compu-
tation of Spline Functions: Part II, Smoothing Splines,” J. Optim. Th. Appl., 30, 255 (1980).

[1004] W. E. Wecker and C. F. Ansley, “The Signal Extraction Approach to Nonlinear Regression
and Spline Smoothing,” J. Amer. Statist. Assoc., 78, 81 (1983).

[1005] R. Kohn and C. F. Ansley, “A New Algorithm for Spline Smoothing Based on Smoothing a
Stochastic Process,” SIAM J. Stat. Comput., 8, 33 (1987).

[1006] R. Kohn and C. F. Ansley, “A Fast Algorithm for Signal Extraction, Influence and Cross-
Validation in State Space Models, Biometrika, 76, 65 (1989).

Whittaker-Henderson Smoothing

[1007] A. Hald, “T. N. Thiele’s Contributions to Statistics,” Int. Statist. Rev., 49, 1 (1981), with
references to Thiele’s works therein.

[1008] S. L. Lauritzen, “Time Series Analysis in 1880: A Discussion of Contributions Made by T.
N. Thiele,” Int. Statist. Rev., 49, 319 (1981). Reprinted in S. L. Lauritzen, ed., Thiele: Pioneer
in Statistics, Oxford Univ. Press, Oxford, New York, 2002.

REFERENCES 1481

[1009] G. Bohlmann, “Ein Ausgleichungsproblem,” Nachrichten Gesellschaft Wissenschaften zu
Göttingen, Mathematische-Physikalische Klasse, no.3, p.260, (1899).

[1010] E. Whittaker, “On a New Method of Graduation,” Proc. Edinburgh Math. Soc., 41, 63 (1923).

[1011] E. Whittaker, “On the Theory of Graduation,” Proc. Roy. Soc. Edinburgh, 44, 77 (1924).

[1012] E. Whittaker and G. Robinson, The Calculus of Observations, Blackie & Son, London, 1924.

[1013] R. Henderson, “A New Method of Graduation,” Trans. Actuarial Soc. Am., 25, 29 (1924).

[1014] R. Henderson, “Further Remarks on Graduation,” Trans. Actuarial Soc. Am., 26, 52 (1925).

[1015] A. C. Aitken, “On the Theory of Graduation,” Proc. Roy. Soc. Edinburgh, 46, 36 (1925).

[1016] A. W. Joseph, “The Whittaker-Henderson Method of Graduation,” J. Inst. Actuaries, 78, 99
(1952).

[1017] C. E. V. Leser, “A Simple Method of Trend Construction,” J. Roy. Statist. Soc., Ser. B, 23, 91
(1961).

[1018] A. W. Joseph, “Subsidiary Sequences for Solving Leser’s Least-Squares Graduation Equa-
tions,” J. Roy. Statist. Soc., Ser. B, 24, 112 (1962).

[1019] G. S. Kimeldorf and D. A. Jones, “Bayesian Graduation,” Trans. Soc. Actuaries, 19, Pt.1, 66
(1967).

[1020] R. J. Shiller, “A Distributed Lag Estimator Derived from Smoothness Priors,” Econometrica,
41, 775 (1973).

[1021] B. D. Cameron, et al., “Some Results of Graduation of Mortality Rates by the Whittaker-
Henderson and Spline Fitting Methods,” Bulletin de l’Association Royale des Actuaires Belge,
71, 48 (1976).

[1022] G. Taylor, “A Bayesian Interpretation of Whittaker-Henderson Graduation,” Insurance:
Math. & Econ., 11, 7 (1992).

[1023] R. J. Verrall, “A State Space Formulation of Whittaker Graduation, with Extensions,” Insur-
ance: Math. & Econ., 13, 7 (1993).

[1024] D. R. Schuette, “A Linear Programming Approach to Graduation”, Trans. Soc. Actuaries,
30, 407 (1978); with Discussions, ibid., pp. 433, 436, 440, 442, 443.

[1025] F. Y. Chan, et al., “Properties and modifications of Whittaker-Henderson graduation,”
Scand. Actuarial J., 1982, 57 (1982).

[1026] F. Y. Chan, et al., “A generalization of Whittaker-Henderson graduation,” Trans. Actuarial
Soc. Am., 36, 183 (1984).

[1027] F. Y. Chan, et al., “Applications of linear and quadratic programming to some cases of the
Whittaker-Henderson graduation method,” Scand. Actuarial J., 1986, 141 (1986).

[1028] G. Mosheiov and A. Raveh, “On Trend Estimation of Time Series: A Simple Linear Pro-
gramming Approach,” J. Oper. Res. Soc., 48, 90 (1997).

[1029] R. J. Brooks, et al., “Cross-validatory graduation,” Insurance: Math. Econ., 7, 59 (1988).

[1030] P. H. C. Eilers, “A Perfect Smoother,” Anal. Chem., 75, 3631 (2003).

[1031] W. E. Diewert and T. J. Wales, “A ‘New’ Approach to the Smoothing Problem,” in M. T.
Belongia and J. M. Binner, eds., Money, Measurement and Computation, Palgrave Macmillan,
New York, 2006.

[1032] H.L. Weinert, “Efficient Computation for Whittaker-Henderson Smoothing,” Comput.
Statist. Data Anal., 52, 959 (2007).

1482 REFERENCES

[1033] T. Alexandrov, et al. “A Review of Some Modern Approaches to the Problem of Trend
Extraction,” US Census, Statistics Report No. 2008-3, available online from
http://www.census.gov/srd/papers/pdf/rrs2008-03.pdf.

[1034] A. S. Nocon and W. F. Scott, “An extension of the Whittaker-Henderson method of gradu-
ation,” Scand. Actuarial J., 2012, 70 (2012).

[1035] J. Vondrák, “A Contribution to the Problem of Smoothing Observational Data,” Bull. Astron.
Inst. Czech., 20, 349 (1969).

[1036] J. Vondrák, “Problem of Smoothing Observational Data II,” Bull. Astron. Inst. Czech., 28,84
(1977).

[1037] J. Vondrák and A. Čepek, “Combined Smoothing Method and its Use in Combining Earth
Orientation Parameters Measured by Space Techniques,” Astron. Astrophys. Suppl. Ser.,
147, 347 (2000).

[1038] D. W. Zheng, et al., “Filtering GPS Time-Series using a Vondrak Filter and Cross-Validation,”
J. Geodesy, 79, 363 (2005).

[1039] Z-W Li, et al., “Least Squares-Based Filter for Remote Sensing Image Noise Reduction,” IEEE
Trans. Geosci. Rem. Sens., 46, 2044 (2008).

[1040] Z-W Li, et al., “Filtering Method for SAR Interferograms with Strong Noise,” Int. J. Remote
Sens., 27, 2991 (2006).

Hodrick-Prescott and Bandpass Filters

[1041] R. J. Hodrick and E. C. Prescott, “Postwar U.S. Business Cycles: An Empirical Investigation,”
J. Money, Credit & Banking, 29, 1 (1997); earlier version: Carnegie-Mellon Univ., Discussion
Paper No. 451, (1980).

[1042] M. Unser, A. Aldroubi, and M. Eden, “Recursive Regularization Filters: Design, Properties,
and Applications,” IEEE Trans. Patt. Anal. Mach. Intell., 13, 272 (1991).

[1043] A. C. Harvey and A. Jaeger, “Detrending, Stylized Facts and the Business Cycle,” J. Appl.
Econometr., 8, 231 (1993).

[1044] R. G. King and S. T. Rebelo, “Low Frequency Filtering and Real Business Cycles,” J. Econ.
Dynam. Contr., 17, 207 (1993), and appendix available online from
http://www.kellogg.northwestern.edu/faculty/rebelo/htm/LFF-Appendix.pdf.

[1045] T. Cogley and J. M. Nason, “Effects of the Hodrick-Prescott Filter on Trend and Difference
Stationary Time Series. Implications for Business Cycle Research,” J. Econ. Dynam. Contr.,
19, 253 (1995).

[1046] J. Ehlgen, “Distortionary Effects of the Optimal Hodrick-Prescott Filter,” Econ. Lett., 61,
345 (1998).

[1047] U. Woitech, “A Note on the Baxter-King Filter,” Dept. Econ., Univ. Glasgow, Working Paper,
No. 9813, 1998, http://www.gla.ac.uk/media/media_22357_en.pdf.

[1048] M. Baxter and R. G. King, “Measuring Business Cycles: Approximate Band-Pass Filters for
Economic Time Series,” Rev. Econ. Stat., 81, 575 (1999).

[1049] Y. Wen and B. Zeng, “A Simple Nonlinear Filter for Economic Time Series Analysis,” Econ.
Lett., 64, 151 (1999).

[1050] M. Bianchi, M. Boyle, and D. Hollingsworth, “A Comparison of Methods for Trend Estima-
tion,” Appl. Econ. Lett., 6, 103 (1999).

REFERENCES 1483

[1051] P. Young and D. Pedregal, “Recursive and En-Bloc Approaches to Signal Extraction,” J.
Appl. Statist., 26, 103 (1999).

[1052] J. J. Reeves, et al., “The Hodrick-Prescott Filter, a Generalization, and a New Procedure for
Extracting an Empirical Cycle from a Series,” Stud. Nonlin. Dynam. Econometr., 4, 1 (2000).

[1053] D. S. G. Pollock, “Trend Estimation and De-Trending via Rational Square-Wave Filters,” J.
Econometr., 99, 317 (2000).

[1054] V. Gómez, “The Use of Butterworth Filters for Trend and Cycle Estimation in Economic
Time Series,” J. Bus. Econ. Statist., 19, 365 (2001).

[1055] T. M. Pedersen, “The Hodrick-Prescott Filter, the Slutzky Effect, and the Distortionary
Effect of Filters,” J. Econ. Dynam. Contr., 25, 1081 (2001).

[1056] E. Slutzky, “The Summation of Random Causes as the Source of Cyclic Processes,” Econo-
metrica, 37, 105 (1937).

[1057] V. M. Guerrero, R. Juarez, and P. Poncela, “Data Graduation Based on Statistical Time Series
Methods,” Statist. Probab. Lett., 52, 169 (2001).

[1058] M. O. Ravn and H. Uhlig, “On Adjusting the Hodrick-Prescott Filter for the Frequency of
Observations,” Rev. Econ. Statist., 84, 371 (2002).

[1059] C. J. Murray, “Cyclical Properties of Baxter-King Filtered Time Series,” Rev. Econ. Statist.,
85, 472 (2003).

[1060] A. C. Harvey and T. M . Trimbur, “General Model-Based Filters for Extracting Cycles and
Trends in Economic Time Series,” Rev. Econ. Statist., 85, 244 (2003).

[1061] L. J. Christiano + T. J. Fitzgerald, “The Band Pass Filter,” Int. Econ. Rev., 44, 435 (2003).

[1062] A. Iacobucci and A. Noullez, “A Frequency Selective Filter for Short-Length Time Series,”
Comput. Econ., 25, 75 (2005).

[1063] A. Guay and P. St.-Amant, “Do the Hodrick-Prescott and Baxter-King Filters Provide a Good
Approximation of Business Cycles?,” Ann. Économie Statist., No. 77, p. 133, Jan-Mar. 2005.

[1064] T. M. Trimbur, “Detrending Economic Time Series: A Bayesian Generalization of the
Hodrick-Prescott Filter,” J. Forecast., 25, 247 (2006).

[1065] A. Maravall, A. del Ŕio, “Temporal Aggregation, Systematic Sampling, and the Hodrick-
Prescott Filter,” Comput. Statist. Data Anal., 52, 975 (2007).

[1066] V. M. Guerrero, “Estimating Trends with Percentage of Smoothness Chosen by the User,”
Int. Statist. Rev., 76, 187 (2008).

[1067] T. McElroy, “Exact Formulas for the Hodrick-Prescott Filter,” Econometr. J., 11, 209 (2008).

[1068] D. E. Giles, “Constructing confidence bands for the Hodrick-Prescott filter,” Appl. Econ.
Letters, 20, 480 (2013).

[1069] D. S. G. Pollock, “Econometric Filters,” Comput. Econ., 48, 669 (2016).

L1 Trend Filtering

[1070] S-J. Kim, et al., “�1 Trend Filtering,” SIAM Rev., 51, 339 (2009).

[1071] A. Moghtaderi, P. Borgnat, and P. Flandrin, “Trend Filtering: Empirical Mode Decomposi-
tions Versus �1 and Hodrick-Prescott,” Adv. Adaptive Data Anal., 3, 41 (2011).

[1072] B. Wahlberg, C. R. Rojas, and M. Annergren, “On �1 Mean and Variance Filtering,” 2011
Conf. Record 45th Asilomar Conf. Signals, Systems and Computers, (ASILOMAR), IEEE, p.
1913, (2011).

1484 REFERENCES

[1073] R. J. Tibshirani, “Adaptive piecewise polynomial estimation via trend filtering,” Ann. Stat..
42, 285 (2014).

[1074] Y-X Wang, et al., “Trend Filtering on Graphs,” Proc. 18th Int. Conf. Artif. Intell. Stat. (AIS-
TATS), p. 1042, May 2015.

[1075] A. Ramdas and R. J. Tibshirani, “Fast and Flexible ADMM Algorithms for Trend Filtering,”
J. Comput. Graph. Stat., 25, 839 (2016).

[1076] H. Yamada and L. Jin, “Japan’s output gap estimation and �1 trend filtering,” Empir. Econ.,
45, 81 (2013).

[1077] H. Yamada, “Estimating the trend in US real GDP using the �1 trend filtering,” Appl. Econ.
Letters, 2016, p. 1.

[1078] H. Yamada and G. Yoon, “Selecting the tuning parameter of the �1 trend filter,” Studies
Nonlin. Dynam. Econometr., 20, 97 (2016).

[1079] S. Selvin, et al., “�1 Trend Filter for Image Denoising,” Procedia Comp. Sci., 93, 495 (2016).

[1080] J. Ottersten, B. Wahlberg, and C. R. Rojas, “Accurate Changing Point Detection for �1 Mean
Filtering,” IEEE Sig. Process. Lett., 23, 297 (2016).

Regularization

[1081] G. H. Golub and C. F. Van Loan, Matrix Computations, 3/e, Johns Hopkins University Press,
Baltimore, 1996.

[1082] D. S. Watkins, Fundamentals of Matrix Computations, 2/e, Wiley, New York, 2002.

[1083] A. Björck, Numerical Methods for Least Squares Problems, SIAM Press, Philadelphia, 1996.

[1084] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge,
2004. Available online from:
http://sites.google.com/site/ingridteles02/Book-ConvexOptimization.pdf.

[1085] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, Winston, Washington DC,
1977.

[1086] A. N. Tikhonov, et al., Numerical Methods for the Solution of Ill-Posed Problems, Springer,
New York, 1995.

[1087] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal
Problems,” Technometrics, 12, 55 (1970).

[1088] V. V. Ivanov, Theory of Approximate Methods and Their Application to the Numerical So-
lution of Singular Integral Equations, Nordhoff International, 1976.

[1089] V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York,
1984.

[1090] N. Aronszajn, “Theory of Reproducing Kernels,” Trans. Amer. Math. Soc., 68, 337 (1950).

[1091] M. Foster, “An Application of the Wiener-Kolmogorov Smoothing Theory to Matrix Inver-
sion,” J. SIAM, 9, 387 (1961).

[1092] D. L. Phillips, “A Technique for the Numerical Solution of Certain Integral Equations of
the First Kind,” J. ACM, 9, 84 (1962).

[1093] M. A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical Foundations of the Po-
tential Function Method in Pattern Recognition Learning,” Autom. Remote Contr., 25, 821
(1964).

REFERENCES 1485

[1094] J. Callum, “Numerical Differentiation and Regularization,” SIAM J. Numer. Anal., 8, 254
(1971).

[1095] L. Eld’en, “An Algorithm for the Regularization of Ill-Conditioned, Banded Least Squares
Problems,” SIAM J. Statist. Comput., 5, 237 (1984).

[1096] A. Neumaier, “Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regu-
larization,” SIAM Rev., 40, 636 (1988).

[1097] M. Bertero, C. De Mol, and E. R. Pikes, “Linear Inverse Problems with Discrete Data: I:
General Formulation and Singular System Analysis,” Inv. Prob., 1, 301 (1985).; and “II.
Stability and Regularisation,” ibid., 4, 573 (1988).

[1098] M. Bertero, T. Poggio, and V. Torre, “Ill-Posed Problems in Early Vision,” Proc. IEEE, 76,
869 (1988).

[1099] T. Poggio and F. Girosi, “Networks for Approximation and Learning,” Proc. IEEE, 78, 1481
(1990).

[1100] A. M. Thompson, J. W. Kay, and D. M. Titterington, “Noise Estimation in Signal Restoration
Using Regularization,” Biometrika, 78, 475 (1991).

[1101] C. Cortes and V. Vapnik, “Support Vector Networks,” Mach. Learn., 20, 1 (1995).

[1102] F. Girosi, M. Jones, and T. Poggio, “Regularization Theory and Neural Networks Architec-
tures,” Neural Comput., 7, 219 (1995).

[1103] A. J. Smola, B. Schölkopf, and K-R. Müller, “The Connection Between Regularization Oper-
ators and Support Vector Kernels,” Neural Net., 11, 637 (1998).

[1104] V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

[1105] W. Fu, “Penalized Regressions: The Bridge versus the Lasso,” J. Comput. Graph. Statist., 7,
397 (1998). 1998.

[1106] V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory, and Methods, Wiley,
New York, 1998.

[1107] F. Girosi, “An Equivalence Between Sparse Approximation and Support Vector Machines,”
Neural Comput., 10, 1455 (1998).

[1108] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods, Cambridge Univ. Press, Cambridge, 2000.

[1109] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization Networks and Support Vector Ma-
chines,” Adv. Comput. Math., 13 1 (2000).

[1110] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer-Verlag, New York, 2001.

[1111] F. Cucker and S. Smale, “On the Mathematical Foundations of Learning,” Bull. AMS, 39, 1
(2001).

[1112] L. Tenorio, “Statistical Regularization of Inverse Problems,” SIAM Rev., 43, 347 (2001).

[1113] K-R. Müller, et al., “An Introduction to Kernel-Based Learning Algorithms,” IEEE TRans.
Neural Net., 12, 181 (2001).

[1114] B. Schölkopf, R. Herbrich, and A. J. Smola, “A Generalized Representer Theorem,” Proc.
14th Ann. Conf. Comput. Learn. Th., p.416, (2001).

[1115] T. Evgeniou, et al., “Regularization and Statistical Learning Theory for Data Analysis,”
Comput. Statist. Data Anal., 38, 421 (2002).

1486 REFERENCES

[1116] F. Cucker and S. Smale, “Best Choices for Regularization Parameters in Learning Theory:
On the Bias-Variance Problem,” Found. Comput. Math., 2, 413 (2002).

[1117] B. Schölkopf and A. Smola. Learning with Kernels, MIT Press, Cambridge, MA, 2002.

[1118] J. A. K. Suykens, et al., Least Squares Support Vector Machines, World Scientific, Singapore,
2002.

[1119] Z. Chen and S. Haykin, “On Different Facets of Regularization Theory,” Neural Comput.,
14, 2791 (2002).

[1120] T. Poggio and S. Smale, “The Mathematics of Learning: Dealing with Data,” Notices AMS,
50, no.5, 537 (2003).

[1121] M. Mart́inez-Ramón and C. Christodoulou, Support Vector machines for Antenna Array
Processing and Electromagnetics, Morgan & Claypool, 2006.

[1122] M. Mart́inez-Ramón, et al., “Kernel Antenna Array Processing,”, IEEE Trans. Antennas Prop-
agat., 55, 642 (2007).

[1123] M. Filippone, et al. “A Survey of Kernel and Spectral Methods for Clustering,” Patt. Recogn.,
41, 176 (2008).

[1124] W. Liu, P. P. Pokharel, and J. C. Principe, “The Kernel Least-Mean-Square Algorithm,” IEEE
Trans. Signal Process., 56, 543 (2008).

[1125] G. H. Golub, M. Heath, and G. Wahba, “Generalized Cross-Validation as a Method for Choos-
ing a Good Ridge Parameter,” Technometrics, 21, 215 (1979).

L1 Regularization and Sparsity

[1126] O. J. Karst, “Linear Curve Fitting Using Least Deviations,” J. Amer. Statist. Assoc., 53, 118
(1958).

[1127] E. J. Schlossmacher, “An Iterative Technique for Absolute Deviations Curve Fitting,” J.
Amer. Statist. Assoc., 68, 857 (1973).

[1128] V. A. Sposito, W. J. Kennedy and, J. E. Gentle, “Algorithm AS 110: Lp Norm Fit of a Straight
Line,” J. Roy. Statist. Soc., Series C, 26, 114 (1977).

[1129] R. H. Byrd, D. A. Pyne, “Convergence of the iteratively reweighted least squares algorithm
for robust regression,” Tech. Report, 313, Dept. Math. Sci., Johns Hopkins University, Bal-
timore, MD, 1979

[1130] C. S. Burrus, 2012, “Iterative Reweighted least-squares,” OpenStax-CNX web site,
http://cnx. org/content/m45285/1.12.

[1131] S. C. Narula and J. F. Wellington, “The Minimum Sum of Absolute Errors Regression: A
State of the Art Survey,” Int. Statist. Review, 50, 317 (1982).

[1132] R. Yarlagadda, J. B. Bednar, and T. L. Watt, “Fast algorithms for lp deconvolution,” IEEE
Trans. Signal Process., 33, 174 (1985). See also, J. A. Scales and S. Treitel, “On the connection
between IRLS and Gauss’ method for l1 inversion: Comments on ‘Fast algorithms for lp
deconvolution’,” ibid., 35, 581 (1987).

[1133] J. A. Scales, A. Gersztenkorn, and S. Treitel, “Fast lp solution of large, sparse, linear sys-
tems: Application to seismic travel time tomography,” J. Comput. Phys., 75, 314 (1988).

[1134] G. Darche, “Iterative L1 deconvolution,” Stanford Exploration Project, Annual Report 61,
Jan. 1989; available from: http://sepwww.stanford.edu/public/docs/sep61.

REFERENCES 1487

[1135] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algo-
rithms,” Physica D, 60, 259 (1992).

[1136] K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Comput., 24, 227
(1995).

[1137] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. Roy. Statist. Soc., Ser.
B, 58, 267 (1996).

[1138] F. Gorodnitsky and B. Rao, “Sparse signal reconstruction from limited data using FOCUSS:
A reweighted norm minimization algorithm,” IEEE Trans. Signal Process., 45, 600 (1997).

[1139] M. R. Osborne, B. Presnell, and B. A. Turlach, “On the LASSO and Its Dual,” J. Comput.
Graph. Stat., 9, 319 (2000).

[1140] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,”
SIAM Rev., 43, 129 (2001).

[1141] B. Efron, et al., “Least Angle Regression,” Ann. Statist., 32, 407 (2004).

[1142] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint,” Comm. Pure Appl. Math., 57 1413 (2004).

[1143] R. Tibshirani, et al., “Sparsity and smoothness via the fused Lasso,” J. Roy. Statist. Soc.,
Ser. B, 67, 91 (2005).

[1144] J-J. Fuchs, “Recovery of exact sparse representations in the presence of bounded noise.”
IEEE Trans. Inform. Th., 51, 3601 (2005); and, “On Sparse Representations in Arbitrary
Redundant Bases,” ibid., 50, 1341 (2004).

[1145] J. A. Tropp, “Just Relax: Convex Programming Methods for Identifying Sparse Signals in
Noise,” IEEE Trans. Inform. Th., 52, 1030 (2006).

[1146] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J. Roy.
Statist. Soc., Ser. B, 67, 301 (2005).

[1147] D. L. Donoho, “For most large underdetermined systems of linear equations the minimal
�1-norm solution is also the sparsest solution,” Comm. Pure Appl. Math., 59, 797 (2006).

[1148] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans, Inform. Th., 51,
4203 (2005).

[1149] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,” Comm. Pure Appl. Math., 59 1207 (2006).

[1150] E. J. Candès, J. K. Romberg, “�1-MAGIC: Recovery of Sparse Signals via Convex Program-
ming,” User’s Guide, 2006, available online from:
https://statweb.stanford.edu/~candes/l1magic/downloads/l1magic.pdf

[1151] D. L. Donoho, “Compressed Sensing,” IEEE Trans, Inform. Th., 52, 1289 (2006).

[1152] H. Zou, T. Hastie, and R. Tibshirani, “Sparse Principal Component Analysis,” J. Comput.
Graph. Stat., 15, 265 (2006).

[1153] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation,” IEEE Trans. Signal Process., 54, 4311 (2006).

[1154] S-J Kim, et al., “An Interior-Point Method for Large-Scale �1-Regularized Least Squares,”
IEEE J. Selected Topics Sig. Process., 1, 606 (2007).

[1155] A. d’Aspremont, et al., “A direct formulation for sparse PCA using semidefinite program-
ming,” SIAM Rev., 49, 434 (2007).

1488 REFERENCES

[1156] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse recon-
struction: Application to compressed sensing and other inverse problems,” IEEE J. Selected
Topics Sig. Process., 1, 586 (2007).

[1157] M. Lobo, M. Fazel, and S. Boyd, “Portfolio optimization with linear and fixed transaction
costs,” Ann. Oper. Res., 152, 341 (2007).

[1158] E. J. Candès and T. Tao, “The Dantzig Selector: Statistical Estimation When p Is Much
Larger than n,” Ann. Statist., 35, 2313 (2007); with Discussions, ibid., p. 2352, 2358, 2365,
2370, 2373, 2385, 2392.

[1159] E. J. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted �1 minimization,”
J. Fourier Anal. Appl., 14, 877 (2008).

[1160] R. G. Baraniuk, et al., “A simple proof of the restricted isometry property for random
matrices,” Constructive Approx. 28, 253 (2008).

[1161] E. J. Candès, “The restricted isometry property and its implications for compressed sens-
ing,” Comptes Rendus Mathematique, 346, 589 (2008).

[1162] E. J. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE Sig. Process.
Mag., 25(2), 21 (2008).

[1163] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From Sparse Solutions of Systems of Equa-
tions to Sparse Modeling of Signals and Images,” SIAM Rev., 51, 34 (2009).

[1164] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM J. Imaging Sci., 2, 183 (2009).

[1165] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse
decomposition based on smoothed L0 norm,” IEEE Trans. Signal Process., 57, 289 (2009).

[1166] R. E. Carrillo and K. E. Barner, “Iteratively re-weighted least squares for sparse signal
reconstruction from noisy measurements,” 43rd IEEE Conf. Inform. Sci. Syst., CISS 2009,
p. 448.

[1167] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing and best k-term approxima-
tion,” J. Amer. Math. Soc., 22, 211 (2009).

[1168] E. J. Candès and Y. Plan, “Near-ideal model selection by �1 minimization,” Ann. Statist.,
37, 2145 (2009).

[1169] M. J. Wainwright, “Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery
Using �1-Constrained Quadratic Programming (Lasso),” IEEE Trans. Inform. Th., 55, 2183
(2009).

[1170] I. Daubechies, M. Fornasier, and I. Loris, “Accelerated Projected Gradient Method for Linear
Inverse Problems with Sparsity Constraints,” J. Fourier Anal. Appl., 14, 764 (2008).

[1171] I. Daubechies, et al., “Iteratively reweighted least squares minimization for sparse recov-
ery,” Comm. Pure Appl. Math., 63, 1 (2010).

[1172] D. Wipf and S. Nagarajan, “Iterative reweighted �1 and �2 methods for finding sparse
solutions,” IEEE J. Selected Topics Sig. Process., 4, 317 (2010).

[1173] E. Van Den Berg, et al., “Algorithm 890: Sparco: A testing framework for sparse recon-
struction,” ACM Trans. Math. Softw., 35, 29 (2009). Sparco web site:
http://www.cs.ubc.ca/labs/scl/sparco/

[1174] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing, Springer, 2010.

[1175] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data, Springer, 2011.

REFERENCES 1489

[1176] J. Yang, and Y. Zhang, “Alternating direction algorithms for �1-problems in compressive
sensing,” SIAM J. Sci. Comp., 33, 250 (2011). YALL1 package available from:
http://yall1.blogs.rice.edu/

[1177] E. J. Candès, et al. “Robust Principal Component Analysis?,” J. Assoc. Comput. Mach., 58,
11 (2011).

[1178] D. Hardoon and J. Shawe-Taylor, “Sparse canonical correlation analysis,” Mach. Learn. 83,
331 (2011).

[1179] Z. Ma, “Sparse principal component analysis and iterative thresholding,” Ann. Stat., 41,
772 (2013).

[1180] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast Image Recovery Using Vari-
able Splitting and Constrained Optimization,” IEEE Trans. Image Process., 19, 2345 (2010);
and “An Augmented Lagrangian Approach to the Constrained Optimization Formulation
of Imaging Inverse Problems,” ibid., 20, 68 (2011). SALSA software available from:
http://cascais.lx.it.pt/~mafonso/salsa.html

[1181] S. Boyd, et al., “Distributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends in Machine Learning, 3(1), 3(1), 1
(2011); see also, http://stanford.edu/~boyd/admm.html.

[1182] N. Parikh and S. Boyd, “Proximal Algorithms,” Foundations and Trends in Optimization, 1,
123 (2013).

[1183] F. Bach, et al., “Optimization with Sparsity-Inducing Penalties,” Foundations and Trends
in Machine Learning, 4(1), 1 (2012).

[1184] Y-B Zhao and D. Li, “Reweighted �1-minimization for sparse solutions to underdetermined
linear systems,” SIAM J. Optim., 22, 1065 (2012).

[1185] J. Mairal and B. Yu, “Complexity analysis of the lasso regularization path,” arXiv, arXiv
preprint: 1205.0079 (2012).

[1186] I. Selesnick, 2012, “Introduction to Sparsity in Signal Processing,” OpenStax-CNX web site,
https://cnx.org/content/m43545/latest, including MATLAB examples using SALSA
[1180].

[1187] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Birkhäuser,
2013.

[1188] J. P. Brooks, J. H. Dulá, and E. L. Boone, “A Pure L1-norm Principal Component Analysis,”
Comput. Stat. Data Anal., 61, 83 (2013).

[1189] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems,
2/e, Academic Press, 2013.

[1190] R. J. Tibshirani, “The lasso problem and uniqueness,” Electr. J. Statist., 7, 1456 (2013).

[1191] D. Ba, et al., “Convergence and Stability of Iteratively Re-weighted Least Squares Algo-
rithms,” IEEE Trans. Signal Process., 62, 183 (2014).

[1192] I. Rish and G. Grabarnik, Sparse Modeling: Theory, Algorithms, and Applications, Chapman
and Hall/CRC, 2014.

[1193] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The Lasso
and Generalizations, CRC Press, 2015.

[1194] C. F.Mecklenbräuker, P. Gerstoft, and E. Zöchmann, “c-LASSO and its dual for sparse signal
estimation from array data,” Sig. Process., 130, 204 (2017).

[1195] http://dsp.rice.edu/cs, Compressive Sensing Resources.

1490 REFERENCES

[1196] MATLAB packages for solving the L1 regularization and related problems:

Mathworks https://www.mathworks.com/help/stats/lasso-and-elastic-net.html
https://www.mathworks.com/help/stats/lasso.html

ADMM http://stanford.edu/~boyd/admm.html
CVX http://cvxr.com/cvx/

FISTA http://ie.technion.ac.il/~becka/papers/rstls_package.zip
Homotopy http://www.ece.ucr.edu/~sasif/homotopy/
L1-MAGIC https://statweb.stanford.edu/~candes/l1magic/

LARS https://publish.illinois.edu/xiaohuichen/code/lars/
https://sourceforge.net/projects/sparsemodels/files/LARS/

NESTA https://statweb.stanford.edu/~candes/nesta/
REGTOOLS http://www.imm.dtu.dk/~pcha/Regutools/

SALSA http://cascais.lx.it.pt/~mafonso/salsa.html
SOL http://web.stanford.edu/group/SOL/software.html

Sparco http://www.cs.ubc.ca/labs/scl/sparco/
SpaRSA http://www.lx.it.pt/~mtf/SpaRSA/

Sparselab https://sparselab.stanford.edu/
SPGL1 http://www.cs.ubc.ca/labs/scl/spgl1/
TwIST http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm
YALL1 http://yall1.blogs.rice.edu/

X-11 Seasonal Adjustment Method

[1197] J. Shiskin, A. Young, and J. Musgrave, “The X-11 Variant of the Census Method II Sea-
sonal Adjustment Program,” US Census Bureau, Technical Paper 15, (1967), available from
[1201].

[1198] E. B, Dagum, “The X-11-ARIMA Seasonal Adjustment Method,” Statistics, Canada, (1980),
available from [1201].

[1199] http://www.census.gov/srd/www/x12a/, US Census Bureau X-12-ARIMA Seasonal Ad-
justment Program.

[1200] http://www.census.gov/srd/www/sapaper/sapaper.html, US Census Bureau Sea-
sonal Adjustment Papers.

[1201] http://www.census.gov/srd/www/sapaper/historicpapers.html, Historical Papers
on X-11 and Seasonal Adjustment.

[1202] K. F. Wallis, “Seasonal Adjustment and Relations Between Variables,” J. Amer. Statist. As-
soc., 69, 18 (1974).

[1203] K. F. Wallis, “Seasonal Adjustment and Revision of Current Data: Linear Filters for the
X-11 Method,” J. Roy. Statist. Soc., Ser. A, 145, 74 (1982).

[1204] W. R. Bell and S. C. Hillmer, “Issues Involved with Seasonal Adjustment of Economic Time
Series,” J. Bus. Econ. Statist., 2, 291 (1984). Available on line from
http://www.census.gov/srd/papers/pdf/rr84-09.pdf.

[1205] W. R. Bell and B. C. Monsell, “X-11 Symmetric Linear Filters and their Transfer Functions,”
US Census Bureau, SRD Research Report, No. RR-92/15, (1992). Available online from the
web site [1200].

[1206] E. B. Dagum, N. Chhab, and K. Chiu, “Derivation and Properties of the X11ARIMA and
Census X11 Linear Filters,” J. Official Statist., 12, 329 (1996).

[1207] J. C. Musgrave, “A Set of Weights to End all End Weights,” Working paper, US Dept. Com-
merce, (1964), available online from [1201].

REFERENCES 1491

[1208] M. Doherty, “The Surrogate Henderson Filters in X-11”, Aust. N. Z. J. Stat., 43, 385 (2001),
originally circulated in 1996.

[1209] D. F. Findley, et al., “New Capabilities and Methods of the X-12-ARIMA Seasonal-
Adjustment Program,” J. Bus. Econ. Statist., 16, 127 (1998), with Comments, p.153.

[1210] D. Ladiray and B. Quenneville, Seasonal Adjustment with the X-11 Method, Lecture Notes
in Statistics No. 158, Springer-Verlag, New York, 2001. Available online from the web site
[1200] (in French and Spanish.)

[1211] A. G. Gray and P. J. Thomson, “On a Family of Finite Moving-Average Trend Filters for the
Ends of Series,” J. Forecasting, 21, 125 (2002).

[1212] B. Quenneville, D. Ladiray, and B. Lefrançois, “A Note on Musgrave Asymmetrical Trend-
Cycle Filters,” Int. J. Forecast., 19, 727 (2003).

[1213] D. F. Findley and D. E. K. Martin, “Frequency Domain Analysis of SEATS and X-11/X-12-
ARIMA Seasonal Adjustment Filters for Short and Moderate-Length Time Series,” J. Off,
Statist., 22, 1 (2006).

[1214] C. E. V. Leser, “Estimation of Quasi-Linear Trend and Seasonal Variation,” J. Amer. Statist.
Assoc., 58, 1033 (1963).

[1215] H. Akaike, “Seasonal Adjustment by a Bayesian Modeling,” J. Time Ser. Anal., 1, 1 (1980).

[1216] E. Schlicht, “A Seasonal Adjustment Principle and a Seasonal Adjustment Method Derived
from this Principle,” J. Amer. Statist. Assoc., 76, 374 (1981).

[1217] F. Eicker, “Trend-Seasonal Decomposition of Time Series as Whittaker-Henderson Gradu-
ation,” Statistics, 19, 313 (1988).

Model-Based Seasonal Adjustment

[1218] E. J. Hannan, “The Estimation of Seasonal Variation in Economic Time Series,” J. Amer.
Statist. Assoc., 58, 31 (1963).

[1219] E. J. Hannan, “The Estimation of Changing Seasonal Pattern,” J. Amer. Statist. Assoc., 59,
1063 (1964).

[1220] M. Nerlove, “Spectral Analysis of Seasonal Adjustment Procedures,” Econometrica, 32, 241
(1964).

[1221] J. P. Burman, “Moving Seasonal Adjustment of Economic Time Series,” J. Roy. Statist. Soc.,
Ser. A, 128, 534 (1965).

[1222] D. M. Grether and M. Nerlove, “Some Properties of “Optimal” Seasonal Adjustment,” Econo-
metrica, 38, 682 (1970).

[1223] G. E. P. Box, S. Hillmer, and G. C. Tiao, “Analysis and Modeling of Seasonal Time Series,”
(1978), available online from [1201].

[1224] J. P. Burman, “Seasonal Adjustment by Signal Extraction,” J. Roy. Statist. Soc., Ser. A, 143,
321 (1980).

[1225] S. C. Hillmer and G. C. Tiao, “An ARIMA-Model-Based Approach to Seasonal Adjustment,”
J. Amer. Statist. Assoc., 77, 63 (1982).

[1226] W. S. Cleveland, A. E, Freeny, and T. E. Graedel, “The Seasonal Component of Atmospheric
CO2: Information from New Approaches to the Decomposition of Seasonal Time Series,”
J. Geoph. Res., 88, 10934 (1983).

1492 REFERENCES

[1227] P. Burridge and K. F. Wallis, “Unobserved-Components Models for Seasonal Ajustment
Filters,” J. Bus. Econ. Statist., 2, 350 (1984).

[1228] G. Kitagawa and W. Gersch, “A Smoothness Priors-State Space Modeling of Time Series
with Trend and Seasonality,” J. Amer. Statist. Assoc., 79, 378 (1984).

[1229] R. B. Cleveland, et al., “STL: A Seasonal-Trend Decomposition Procedure Based on Loess,”
J. Official Statist., 6, 3 (1990).

[1230] G. Kitagawa and W. Gersch, Smoothness Priors Analysis of Time Series, Springer, New York,
1996.

[1231] V. Gómez and A. Maravall, “Programs TRAMO and SEATS. Instructions for the User (with
some updates),” Working Paper 9628, (Servicio de Estudios, Banco de España, 1996).

[1232] C. Planas, “The Analysis of Seasonality In Economic Statistics: A Survey of Recent Devel-
opments,” Qüestió, 22, 157 (1998).

[1233] V. Gómez and A. Maravall, “Seasonal Adjustment and Signal Extraction in Eco-
nomic Time Series,” chapter 8, in A Course in Time Series Analysis, D. Peña,
G. C. Tiao, and R. S. Tsay, eds., Wiley, New York, 2001. Available online from
http://bde.es/servicio/software/tramo/sasex.pdf.

[1234] J. A.D. Aston, et al., “New ARIMA Models for Seasonal Time Series and Their Application
to Seasonal Adjustment and Forecasting,” US Census Bureau, (2007), available online from
[1200].

Unobserved Components Models

[1235] E. J. Hannan, “Measurement of a Wandering Signal Amid Noise,” J. Appl. Prob., 4, 90 (1967).

[1236] E. L. Sobel, “Prediction of a Noise-Distorted, Multivariate, Non-Stationary Signal,” J. Appl.
Prob., 4, 330 (1967).

[1237] W. P. Cleveland and G. C. Tiao, “Decomposition of Seasonal Time Series: A Model for the
Census X-11 Program,” J. Amer. Statist. Assoc., 71, 581 (1976).

[1238] D. A. Pierce, “Signal Extraction Error in Nonstationary Time Series,” Ann. Statist., 7, 1303
(1979).

[1239] W. Bell, “Signal Extraction for Nonstationary Time Series,” Ann. Statist., 12, 646 (1984),
with correction, ibid., 19, 2280 (1991).

[1240] A. Maravall, “A Note on Minimum Mean Squared Error Estimation of Signals with Unit
Roots,” J. Econ. Dynam. & Contr., 12, 589 (1988).

[1241] W. R. Bell and E. K. Martin, “Computation of Asymmetric Signal Extraction Filters and Mean
Squared Error for ARIMA Component Models,” J. Time Ser. Anal., 25, 603 (2004). Available
online from [1200].

[1242] S. Beveridge and C. Nelson, “A New Approach to Decomposition of Economic Time Series
into Permanent and Transitory Components with Particular Attention to Measurement of
the Business Cycle,” J. Monet. Econ., 7, 151 (1981).

[1243] V. Gómez and A. Maravall, “Estimation, Prediction, and Interpolation for Nonstationary
Series with the Kalman Filter,” J. Amer. Statist. Assoc. 89, 611 (1994).

[1244] P. Young, “Data-Based Mechanistic Modelling of Environmental, Ecological, Economic, and
Engineering Systems,” Environ. Model. & Soft., 13, 105 (1998).

REFERENCES 1493

[1245] V. Gómez, “Three Equivalent Methods for Filtering Finite Nonstationary Time Series,” J.
Bus. Econ. Stat., 17, 109 (1999).

[1246] A. C. Harvey and S. J. Koopman, “Signal Extraction and the Formulation of Unobserved
Components Modelsm” Econometr. J., 3, 84 (2000).

[1247] R. Kaiser and A. Maravall, Measuring Business Cycles in Economic Time Series, Lecture
Notes in Statistics, 154, Springer-Verlag, New York, 2001. Available online from
http://www.bde.es/servicio/software/tramo/mhpfilter.pdf.

[1248] E. Ghysels and D. R. Osborn, The Econometric Analysis of Seasonal Time Series, Cambridge
Univ. Press, Cambridge, 2001.

[1249] D. S. G. Pollock, “Filters for Short Non-Stationary Sequences,” J. Forecast., 20, 341 (2001).

[1250] R. Kaiser and A. Maravall, “Combining Filter Design with Model-Based Filtering (with an
Application to Business Cycle Estimation),” Int. J. Forecast., 21 691 (2005).

[1251] A. Harvey and G. De Rossi, “Signal Extraction,” in Palgrave Handbook of Econometrics, vol
1, K. Patterson and T. C. Mills, eds., 2006, Palgrave MacMillan, New York, 2006.

[1252] A. Harvey, “Forecasting with Unobserved Components Time Series Models,” Handbook
of Economic Forecasting, G. Elliot, C. Granger, and A. Timmermann, eds., North Holland,
2006.

[1253] D. S. G. Pollock, “Econometric Methods of Signal Extraction,” Comput. Statist. Data Anal.,
50, 2268 (2006).

[1254] M. Bujosa, A. Garcia-Ferrer, and P. C. Young, “Linear Dynamic Harmonic Regression,” Com-
put. Statist. Data Anal., 52, 999 (2007).

[1255] T. McElroy, “Matrix Formulas for Nonstationary ARIMA Signal Extraction,” Econometr. Th.,
24, 988 (2008).

[1256] M. Wildi, Real-Time Signal Extraction, Springer, New York, 2008. Available online from
www.idp.zhaw.ch/fileadmin/user_upload/engineering/_Institute_und_Zentren

/IDP/sonderthemen/sef/signalextraction/papers/IDP-WP-08Sep-01.pdf.

Random Number Generators

[1257] D. E. Knuth, The Art of Computer Programming, vol. 2, 2nd ed., Addison-Wesley, Reading,
MA, 1981.

[1258] P. Bratley, B. L. Fox, and L. Schrage, A Guide to Simulation, Springer-Verlag, New York,
1983.

[1259] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C,
2nd ed., Cambridge Univ. Press, New York, 1992.

[1260] S. K. Park and K. W. Miller, “Random Number Generators: Good Ones Are Hard to Find,”
Comm. ACM, 31, 1192 (1988).

[1261] B. D. Ripley, “Computer Generation of Random Variables: A Tutorial,” Int. Stat. Rev., 51,
301 (1983).

[1262] D. J. Best, “Some Easily Programmed Pseudo-Random Normal Generators,” Austr. Comput.
J., 11, 60 (1979).

[1263] C. A. Whitney, “Generating and Testing Pseudorandom Numbers,” BYTE, (October 1984),
p. 128.

1494 REFERENCES

[1264] S. Kirkpatrick and E. Stoll, “A Very Fast Shift-Register Sequence Random Number Genera-
tor,” J. Computational Phys., 40, 517 (1981).

[1265] G. Marsaglia, “A Current View of Random Number Generators,” in Proceedings, Computer
Science and Statistics, 16th Symposium on the Interface, L. Billard, ed., Elsevier, North-
Holland, 1985.

[1266] G. Marsaglia, “Toward a Universal Random Number Generator,” Statist. & Prob. Lett., 8, 35
(1990).

[1267] G. Marsaglia and A. Zaman, “A New Class of Random Number Generators,” Annals Appl.
Prob., 1, 462 (1991).

[1268] G. Marsaglia and A. Zaman, “Some Portable Very-Long Random Number Generators,” Com-
put. Phys., 8, 117 (1994).

[1269] P. Lewis, A. Goodman, and J. Miller, “A Pseudo-Random Number Generator for the Sys-
tem/360,” IBM Syst. J., 8, 136 (1969).

[1270] L. Schrage, “A More Portable Fortran Random Number Generator,” ACM Trans. Math. Soft.,
5, 132 (1979).

[1271] C. Bays and S. D. Durham, “Improving a Poor Random Number Generator,” ACM Trans.
Math. Soft., 2, 59 (1976).

[1272] G. Marsaglia and T. A. Bray, “On-line Random Number Generators and their Use in Com-
binations,” Comm. ACM, 11, 757 (1968).

[1273] B. A. Wichmann and I. D. Hill, “An Efficient and Portable Pseudo-Random Number Gener-
ator,” Appl. Stat., 31, 188 (1982).

[1274] B. A. Wichmann and D. Hill, “Building a Random Number Generator,” BYTE, March 1987,
p. 127.

[1275] D. Lorrain, “A Panoply of Stochastic Cannons,” in Ref. [113], p. 351.

[1276] Suggested by Dr. N. Moayeri, private communication, 1993.

[1277] W. A. Gardner, Introduction to Random Processes, 2nd ed., McGraw-Hill, New York, 1989.

1/f Noise

[1278] D. A. Bell, Noise and the Solid State, Halsted Press, (Wiley), New York, 1985.

[1279] M. Gardner, “White and Brown Music, Fractal Curves and One-Over-f Fluctuations,” Sci.
Amer., 288, 16 (1978).

[1280] M. S. Keshner, “1/f Noise,” Proc. IEEE, 70, 212 (1982).

[1281] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

[1282] W. H. Press, “Flicker Noise in Astronomy and Elsewhere,” Comments Astrophys., 7, no. 4,
103 (1978).

[1283] M. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, New York, 1991.

[1284] R. F. Voss and J. Clark, “1/f Noise in Music and Speech,” Nature, 258, no. 5533, 317 (1975).

[1285] R. F. Voss and J. Clark, “1/f Noise in Music: Music from 1/f Noise,” J. Acoust. Soc. Amer.,
63, 258 (1978).

[1286] B. J. West and M. Shlesinger, “The Noise in Natural Phenomena,” Amer. Scientist, 78, 40,
Jan-Feb, (1990).

REFERENCES 1495

[1287] A. van der Ziel, Noise in Solid State Devices and Circuits, Wiley, New York, 1986.

[1288] M. Reichbach, “Modeling 1/f Noise by DSP,” Graduate Special Problems Report, ECE De-
partment, Rutgers University, Fall 1993.

[1289] R. Bristow-Johnson, reported in comp.dsp newsgroup, Jan. 1995, and private communi-
cation.

Prolate Spheroidal Wave Functions

[1290] D. Slepian and H. O. Pollak, "Prolate Spheroidal Wave Functions, Fourier Analysis, and
Uncertainty—I", Bell Syst. Tech. J., 40, no.1, 43 (1961), available online from:
https://archive.org/details/bstj40-1-43

[1291] H. J. Landau and H. O. Pollak, “Prolate Spheroidal Wave Functions, Fourier Analysis and
Uncertainty—II,” Bell Syst. Tech. J., 40, no.1, 65 (1961), available online from:
https://archive.org/details/bstj40-1-65

[1292] H. J. Landau and H. O. Pollak, “Prolate Spheroidal Wave Functions, Fourier Analysis and
Uncertainty—III: The Dimension of the Space of Essentially Time- and Band-Limited Sig-
nals,” Bell Syst. Tech. J., 41, no.4, 1295 (1962), available online from:
https://archive.org/details/bstj41-4-1295

[1293] D. Slepian, “Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty—IV: Ex-
tensions to Many Dimensions; Generalized Prolate Spheroidal Functions,” Bell Syst. Tech. J.,
43, no.6, 3009 (1964), available online from: https://archive.org/details/bstj43-
6-3009

[1294] D. Slepian, “Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty—V: The
Discrete Case,” Bell Syst. Tech. J., 57, 1371 (1978). Available online from:
https://archive.org/details/bstj57-5-1371

[1295] D. Slepian, “Some Comments on Fourier Analysis, Uncertainty and Modeling,” SIAM Rev.,
25, 379 (1983).

[1296] D. Slepian and E. Sonnenblick, “Eigenvalues Associated with Prolate Spheroidal Wave Func-
tions of Zero Order,” Bell Syst. Tech. J., 44, no.8, 1745 (1965), available online from:
https://archive.org/details/bstj44-8-1745

[1297] D. Slepian, “On Bandwidth,” Proc. IEEE, 64, 292 (1976).

[1298] H. J. Landau, “An Overview of Time and Frequency Limiting,” in Fourier Techniques and
Applications, J. F. Price (ed.), Plenum, New York, 1985.

[1299] H. J. Landau, “Extrapolating a Band-Limited Function from its Samples Taken in a Finite
Interval,” IEEE Trans. Inform. Th., IT-32, 464 (1986).

[1300] B. R. Frieden, “Evaluation, Design and Extrapolation Methods for Optical Signals, Based
on Use of Prolate Functions,” Progr. Optics, 9, 311 (1971).

[1301] C. J. Bouwkamp, “On spheroidal wave functions of order zero,” J. Math. and Physics, 26,
79 (1947).

[1302] C. J. Bouwkamp, “On the theory of spheroidal wave functions of order zero,” Nederl. Akad.
Wetensch., Proc., p.931 (1950), online:
http://www.dwc.knaw.nl/DL/publications/PU00018840.pdf

[1303] C. J. Bouwkamp, “Theoretical and numerical treatment of diffraction through a circular
aperture,” IEEE Trans. Antennas Propagat., 18, 152 (1970).

1496 REFERENCES

[1304] C. Flammer, Spheroidal Wave Functions, Stanford Univ. Press, Stanford, CA, 1957.

[1305] D. R. Rhodes, “On the Spheroidal Functions,” J. Res. Nat. Bureau of Standards - B. Mathe-
matical Sciences, 74B, no. 3, 187 (1970), available online from:
http://nvlpubs.nist.gov/nistpubs/jres/74B/jresv74Bn3p187_A1b.pdf

[1306] F. W. J. Olver, et al, (Eds.), “NIST Handbook of Mathematical Functions,” Chapter 30, NIST
and Cambridge University Press, 2010, available online from: http://dlmf.nist.gov/30

[1307] D. B. Hodge, “Eigenvalues and Eigenfunctions of the Spheroidal Wave Equation,” J. Math.
Phys., 11, 2308 (1970).

[1308] T. A. Beu and R. I. Câmpeanu, “Prolate Radial Spheroidal Wave Functions,” Computer Phys.
Commun., 30, 177 (1983).

[1309] M. B. Kozin, V. V. Volkov, and D. I. Svergun, “A Compact Algorithm for Evaluating Linear
Prolate Functions,” IEEE Trans. Signal Proc., 45, 1075 (1997).

[1310] Le-Wei Li, et al., “Computations of spheroidal harmonics with complex arguments: A
review with an algorithm,” Phys. Rev. E, 58, 6792 (1998).

[1311] H. Xiao, V. Rokhlin, and N. Yarvin, “Prolate spheroidal wavefunctions, quadrature and
interpolation,” Inverse Problems, 17, 805 (2001).

[1312] F. A. Grünbaum and L. Miranian, “Magic of the prolate spheroidal functions in various
setups,” Proc. SPIE 4478, Wavelets: Applications in Signal and Image Processing IX, p.151,
Dec. 2001.

[1313] B. Larsson, T. Levitina, and E. J. Brändas, “On prolate spheroidal wave functions for signal
processing,” Int. J. Quantum Chem., 85, 392 (2001).

[1314] K. Khare and N. George, “Sampling theory approach to prolate spheroidal wavefunctions,”
J. Phys. A: Math. Gen., 36, 10011 (2003).

[1315] P. E. Falloon, P. C. Abbott, and J. B. Wang, “Theory and computation of spheroidal wave-
functions,” J. Phys. A: Math. Gen., 36, 5477 (2003).

[1316] I. C. Moore and M. Cada, “Prolate spheroidal wave functions, an introduction to the Slepian
series and its properties,” Appl. Comput. Harmon. Anal., 16, 208 (2004).

[1317] J. P. Boyd, “Algorithm 840: Computation of Grid Points, Quadrature Weights and Deriva-
tives for Spectral Element Methods Using Prolate Spheroidal Wave Functions-Prolate Ele-
ments,” ACM Trans. Math. Software, 31, no. 1, 149 (2005).

[1318] G. Walter and T. Soleski, “A new friendly method of computing prolate spheroidal wave
functions and wavelets,” Appl. Comput. Harmon. Anal., 19 432 (2005).

[1319] P. Kirby, “Calculation of spheroidal wave functions,” Computer Phys. Commun., 175, 465
(2006).

[1320] A. Karoui and T. Moumni, “New efficient methods of computing the prolate spheroidal
wave functions and their corresponding eigenvalues,” Appl. Comput. Harmon. Anal., 24,
269 (2008).

[1321] A. Karoui, “Unidimensional and bidimensional prolate spheroidal wave functions and ap-
plications,” J. Franklin Inst., 348, 1668 (2011).

[1322] J. A. Hogan and J. D. Lakey, Duration and Bandwidth Limiting: Prolate Functions, Sampling,
and Applications, Springer Birkhäuser, New York, 2012.

[1323] A. Osipov, V. Rokhlin, and H. Xiao, Prolate Spheroidal Wave Functions of Order Zero,
Springer, New York, 2013.

REFERENCES 1497

[1324] R. Adelman, N. A. Gumerov, and R. Duraiswami, “Software for Computing the Spheroidal
Wave Functions Using Arbitrary Precision Arithmetic,” arXiv:1408.0074 [cs.MS], 2014,
available online from: http://arxiv.org/abs/1408.0074

[1325] N. C. Gallagher, Jr. and G. L. Wise, “A Representation for Band-Limited Functions,” Proc.
IEEE, 63, 1624 (1975).

[1326] H-P Chang, T. K. Sarkar, and O. M. C. Pereira-Filho, “Antenna Pattern Synthesis Utilizing
Spherical Bessel Functions,” IEEE Trans. Antennas Propagat., 48, 853 (2000).

Superoscillations

[1327] F. Bond and C. Cahn, “On the sampling the zeros of bandwidth limited signals,” IRE Ttans.
Inform. Th., 4, 110 (1958).

[1328] M. V. Berry, “Faster than Fourier,” in Quantum Coherence and Reality, In Celebration of
the 60th Birthday of Yakir Aharonov, J. S. Anandan and J. L. Safko, eds., International
Conference on Fundamental Aspects of Quantum Theory, p.55, World Scientific, 1994.

[1329] W. Qiao, “A simple model of Aharonov-Berry’s superoscillations,” J. Phys. A: Math. Gen.,
29, 2257 (1996).

[1330] M. S. Calder and A. Kempf, “Analysis of superoscillatory wave functions,” J. Math. Phys.,
46, 012101 (2005).

[1331] P. J. S. G. Ferreira and A. Kempf, “Superoscillations: Faster Than the Nyquist Rate,” IEEE
Trans. Signal Proc., 54, 3732 (2006).

[1332] M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical super-
resolution without evanescent waves, J. Phys. A: Math. Gen., 39, 6965 (2006).

[1333] P. J. S. G. Ferreira, A. Kempf, and M. J. C. S. Reis, “Construction of Aharonov-Berry’s su-
peroscillations,” J. Phys. A: Math. Theor., 40, 5141 (2007).

[1334] F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev “Optical super-resolution
through super-oscillations,” J. Optics A, 9, S285 (2007)

[1335] M. R. Dennis, A. C. Hamilton, and J. Courtial, “Superoscillation in speckle patterns,” Opt.
Lett., 33, 2976 (2008).

[1336] Y. Aharonov, et al., “Some mathematical properties of superoscillations,” J. Phys. A: Math.
Theor., 44 365304 (2011).

[1337] E. Katzav and M. Schwartz, “Yield-Optimized Superoscillations,” IEEE Trans. Signal Proc.,
61, 3113 (2013).

[1338] D. G. Lee and P. J. S. G. Ferreira, “Direct Construction of Superoscillations," IEEE Trans.
Signal Proc., 62, 3125 (2014).

[1339] D. G. Lee and P. J. S. G. Ferreira, “Superoscillations With Optimum Energy Concentration,"
IEEE Trans. Signal Proc., 62, 4857 (2014).

[1340] M. V. Berry, “Superoscillations, Endfire and Supergain,” Ch.21 in D .C. Struppa and J.M.
Tollaksen, Eds., Quantum Theory: A Two-Time Success Story, Springer-Verlag Italia 2014.

Superresolution, Restoration, Degrees of Freedom

[1341] J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt., 14, 083001 (2012).

1498 REFERENCES

[1342] H. Wolter, “On Basic Analogies and Principal Differences Between Optical and Electronic
Information,” Progr. Optics, 1, 157 (1961).

[1343] J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am., 54, 931 (1964).

[1344] M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value anal-
ysis,” Opt. Acta, 29, 727 (1982); and, ibid., 29, 1599 (1982).

[1345] M. Bertero and C, de Mol, “Super-resolution by data inversion,” Progr. Optics, 36, 129
(1996).

[1346] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, CRC press, 1998.

[1347] M. Bertero and P. Boccacci, “Super-resolution in computational imaging,” Micron, 34, 265
(2003).

[1348] A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am., A-14, 547
(1997).

[1349] N. I. Zheludev, “What diffraction limit?,” Nature Mat., 7, 420 (2008).

[1350] F. M. Huang and N. I. Zheludev, “Super-Resolution without Evanescent Waves,” Nano Lett.,
9, 1249 (2009).

[1351] E. Rogers, et al., “A super-oscillatory lens optical microscope for subwavelength imaging,”
Nature Mat., 11, 432 (2012).

[1352] H. J. Hyvärinen, et al., “Limitations of superoscillation filters in microscopy applications,”
Opt. Lett., 37, 903 (2012).

[1353] A. M. H.Wong and G. V. Eleftheriades, “Adaptation of Schelkunoff’s Superdirective An-
tenna Theory for the Realization of Superoscillatory Antenna Arrays,” IEEE Ant. Wireless
Propag. Lett., 9, 315 (2010).

[1354] K. G. Makris and D. Psaltis, “Superoscillatory diffraction-free beams,” Opt. Lett., 36, 4335
(2011).

[1355] A. M. H. Wong and G. V. Eleftheriades, “Temporal Pulse Compression Beyond the Fourier
Transform Limit,” IEEE Trans. Microwave Theory Tech., 59 2173 (2011).

[1356] A. M. H. Wong and G. V. Eleftheriades, “Advances in Imaging Beyond the Diffraction Limit,”
Photonics J., IEEE, 4, 586 (2012).

[1357] E. Greenfield, et al., “Experimental generation of arbitrarily shaped diffractionless super-
oscillatory optical beams,” Opt. Express, 21, 13425 (2013).

[1358] A. M. H. Wong and G. V. Eleftheriades, “Superoscillations without Sidebands: Power-
Efficient Sub-Diffraction Imaging with Propagating Waves,” Scientific Reports, 5, no.8449,
1 (2015).

[1359] R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta, 21, 709
(1974).

[1360] A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE
Trans. Circ. Syst., 22, 735 (1975).

[1361] C. Pask, “Simple optical theory of super-resolution,” J. Opt. Soc. Am., 66, 68 (1976).

[1362] G. A. Viano, “On the extrapolation of optical image data,” J. Math. Phys., 17, 1160 (1976).

[1363] M. Bertero, C. de Mol, and G. A. Viano, “On the problems of object restoration and image
extrapolation in optics,” J. Math. Phys., 20, 509 (1979).

[1364] C. K. Rushforth and R. L. Frost, “Comparison of some algorithms for reconstructing space-
limited images,” J. Opt. Soc. Am., 70, 1539 (1980).

REFERENCES 1499

[1365] C. W. Barnes, “Object Restoration in a Diffraction-Limited Imaging System,” J. Opt. Soc.
Am., 56, 575 (1966).

[1366] B. R. Frieden, “Band-Unlimited Reconstruction of Optical Objects and Spectra,” J. Opt. Soc.
Am., 57, 1013 (1967).

[1367] R. B. Frieden, “On arbitrarily perfect imagery with a finite aperture,” em J. Mod. Opt., 16,
795 (1969).

[1368] W. Lukosz, “Optical Systems with Resolving Powers Exceeding the Classical Limit,” J. Opt.
Soc. Am., 56, 1463 (1966); see also, part II, ibid., 57, 932 (1967);

[1369] C. K. Rushford and R. W. Harris, “Restoration, Resolution, and Noise,” J. Opt. Soc. Am., 58,
539 (1968).

[1370] J. A. Bucklew and B. E. A. Saleh, “Theorem for high-resolution high-contrast image syn-
thesis,” J. Opt. Soc. Am., A-2, 1233 (1985).

[1371] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery,” SIAM J. Math.,
49, 906 (1989).

[1372] R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,”
J. Opt. Soc. Am., A-17, 892 (2000).

[1373] M. I. Kolobov and C. Fabre, “Quantum Limits on Optical Resolution,” Phys. Rev. Lett., 85
3789 (2000).

[1374] V. N. Beskrovnyy and M. I. Kolobov, “Quantum limits of super-resolution in reconstruction
of optical objects,” Phys. Rev., A-71, 043802 (2005).

[1375] M. I. Kolobov and V. N. Beskrovnyy, “Quantum theory of super-resolution for optical sys-
tems with circular apertures,” Opt. Commun., 264, 9 (2006).

[1376] V. N. Beskrovnyy and M. I. Kolobov, “Quantum-statistical analysis of superresolution for
optical systems with circular symmetry,” Phys. Rev., A-78, 043824 (2008);

[1377] C. L. Matson and D. W. Tyler, “Primary and secondary superresolution by data inversion,”
Opt. Express, 14, 456 (2006).

[1378] M. Z. Nashed, “Operator-Theoretic and Computational Approaches to Ill-Posed Problems
with Applications to Antenna Theory,” IEEE Trans. Antennas Propagat., AP-29, 220 (1981).

[1379] F. Yaman, V. G. Yakhno, and R. Potthast, “A Survey on Inverse Problems for Applied Sci-
ences,” Mathematical Problems in Engineering, vol. 2013 (2013), Article ID 976837, avail-
able online from: http://www.hindawi.com/journals/mpe/2013/976837/

[1380] G. C. Sherman, “Integral-Transform Formulation of Diffraction Theory,” J. Opt. Soc. Am.,
57, 1490 (1967).

[1381] J. R. Shewell and E. Wold, “Inverse Diffraction and a New Reciprocity Theorem,” J. Opt.
Soc. Am.,, 58, 1596 (1968).

[1382] J. J. Stamnes, “Focusing of two-dimensional waves,” J. Opt. Soc. Am., 71, 15 (1981).

[1383] J. J. Stamnes, “Focusing of a perfect wave and the Airy pattern formula,” Opt. Commun.,
37, 311 (1981).

[1384] J. J. Stamnes, Waves in Focal Regions, Taylor & Francis Group, New York, 1986.

[1385] M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, Wiley, New York, 1991.

[1386] J. J. Stamnes and H. A. Eide, “Exact and approximate solutions for focusing of two-
dimensional waves,” J. Opt. Soc. Am., A-15, 1285 (1998), and p.1292, and p.1308.

1500 REFERENCES

[1387] R. Merlin, “Radiationless Electromagnetic Interference: Evanescent-Field Lenses and Per-
fect Focusing,” Science, 217, 927 (2007).

[1388] A. Grbic and R. Merlin, “Near-Field Focusing Plates and Their Design,” IEEE Trans. Antennas
Propagat., 56, 3159 (2008).

[1389] L. E. Helseth, “The almost perfect lens and focusing of evanescent waves,” Opt. Commun.,
281, 1981 (2008).

[1390] L. E. Helseth, “Focusing of evanescent vector waves,” Opt. Commun., 283, 29 (2010).

[1391] M. F. Imani and A. Grbic, “An analytical investigation of near-field plates,” Metamaterials,
4, 104 (2010).

[1392] A. Grbic, et al., “Near-Field Plates: Metamaterial Surfaces/Arrays for Subwavelength Fo-
cusing and Probing,” Proc. IEEE, 99, 1806 (2011).

[1393] M. F. Imani and A. Grbic, “Planar Near-Field Plates,” IEEE Trans. Antennas Propagat., 61,
5425 (2013).

Superdirectivity

[1394] C. W. Oseen, “Die Einsteinsche Nadelstichstrahlung und die Maxwellschen Gleichungen,’
Ann. Physik, 69, 202 (1922).

[1395] C. J. Bouwkamp and N. G. de Bruijn, “The problem of optimum antenna current distribu-
tion,” Philips Res. Rep., 1, 135 (1945/46); available online from,
https://pure.tue.nl/ws/files/4289258/597471.pdf

[1396] P. M. Woodward, “A method of calculating the field over a plane aperture required to
produce a given polar diagram,” J. IEE, Part IIIA, 93, 1554 (1946).

[1397] P. M. Woodward and J. D. Lawson, “The theoretical precision with which an arbitrary
radiation-pattern may be obtained from a source of finite size,” J. IEE, Part III, 95, 363
(1948).

[1398] T. T. Taylor, “Design of Line-Source Antennas for Narrow Beamwidth and Low Side Lobes,”
IRE Trans. Antennas Propagat., AP-3, 16 (1955).

[1399] T. T. Taylor, “Design of Circular Apertures for Narrow Beamwidth and Low Side Lobes,”
IRE Trans. Antennas Propagat., AP-8, 17 (1960).

[1400] R. Hansen, “Tables of Taylor distributions for circular aperture antennas,” IRE Trans.
Antennas Propagat., AP-8, 23 (1960).

[1401] R. C. Rudduck and D. C. F. Wu, “Directive Gain of Circular Taylor Patterns,” Radio Sci., 6,
1117 (1971).

[1402] R. C. Hansen, “A one-parameter circular aperture distribution with narrow beamwidth and
low side lobes,” IEEE Trans. Antennas Propagat., AP-24, 477 (1976).

[1403] A. C. Ludwig, “Low Sidelobe Aperture Distributions for Blocked and Unblocked Circular
Apertures,” IEEE Trans. Antennas Propagat., AP-30, 933 (1982).

[1404] N. Yaru, “A Note on Super-Gain Antenna Arrays,” Proc. IRE, 39, 1081 (1951).

[1405] D. R. Rhodes, “The Optimum Line Source for the Best Mean-Square Approximation to a
Given Radiation Pattern,” IEEE Trans. Antennas Propagat., AP-11, 440 (1963).

[1406] T. S. Fong, “Eigenelements of the Finite Fourier Transform and their Application to An-
tenna Pattern Synthesis,” Report No. P67-93, Hughes Aircraft Co., Culver City, Ca, 1966;
available online from,
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0655791

REFERENCES 1501

[1407] T. S. Fong, “On the Problem of Optimum Antenna Aperture Distribution,” J. Franklin Inst.,
283, 235 (1967).

[1408] D. R. Rhodes, “On an Optimum Line Source for Maximum Directivity,” IEEE Trans. Anten-
nas Propagat., AP-19, 485 (1971).

[1409] D. R. Rhodes, “On a class of optimum aperture distributions for pattern shaping,” IEEE
Trans. Antennas Propagat., 20, 262 (1972).

[1410] D. R. Rhodes, “On the quality factor of strip and line source antennas and its relationship
to superdirectivity ratio,” IEEE Trans. Antennas Propagat., 20, 318 (1972).

[1411] H. N. Kritikos and M. R. Dresp, “Aperture Synthesis and Supergain,” Proc. IEEE, 52, 1052
(1964).

[1412] H. N. Kritikos, M. R. Dresp, and K. C. Lang, “Interference Suppression Studies, Studies
of Antenna Side-lobe Reduction,” Moore School of Electrical Engineering, University of
Pennsylvania, Oct. 1964. Available online from:
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0609076

[1413] G. J. Buck and J. J. Gustincic, “Resolution Limitations of a Finite Aperture,” IEEE Trans.
Antennas Propagat., AP-15, 376 (1967).

[1414] R. L. Kirlin, “Optimum resolution gain with prolate spheroidal wave functions,” J. Opt. Soc.
Am., 64, 404 (1974).

Neural Networks

[1415] Neural Network, Wikipedia, including history of neural networks,
https://en.wikipedia.org/wiki/Neural_network

see also, article on Backpropagation
https://en.wikipedia.org/wiki/Backpropagation

[1416] M. T. Hagan, et al, Neural Network Design, available freely from,
http://hagan.okstate.edu/nnd.html

[1417] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016, available from,
http://www.deeplearningbook.org.

[1418] M. Nielsen, Neural Networks and Deep Learning, 2019, free online book,
neuralnetworksanddeeplearning.com

[1419] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, online book, 2022,
d2l.ai/index.html

[1420] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks,” Advances in Neural Information Processing Systems 25 (NIPS), 2012.

[1421] S. Mallat, “Understanding deep convolutional networks,” Phil. Trans. R. Soc., A374,
20150203 (2016).

[1422] Shallow Neural Networks Bibliography, The Mathworks, 2022
www.mathworks.com/help/deeplearning/ug/shallow-neural-networks-

bibliography.html

[1423] Bibliography on “Convolutional Neural Networks, Design, Implementation Issues,”
www.visionbib.com/bibliography/pattern652imnn1.html see also, “Annotated
Computer Vision Bibliography,” www.visionbib.com/bibliography/contents.html

[1424] L. Fausett, Fundamentals of Neural Networks, Prentice Hall, 1994.

1502 REFERENCES

[1425] S. Haykin, Neural Networks, IEEE Press, 1994.

[1426] F-A. Luo and R. Unbehauen, Applied Neural Networks for Signal Processing, Cambridge
Univ. Press, 1997.

[1427] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, 323, 533 (1986). See also, “Learning Internal Representations
by Error Propagation,” in D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge,
MA, 1986. For the historical roots of backpropagation see, P. Werbos, The Roots of Back-
propagation: From Ordered Derivatives to Neural Networks and Political Forecasting, Wiley,
1994, and also P. Werbos, “Backpropagation Through Time: What It Does and How to Do
It,” Proc. IEEE, 78, 1550 (1990), and also, Y. Le Cun, “Une procedure d’apprentissage pour
reseau a seuil assymetrique,” Cognitiva, 85, 599 (1985), and, D. B. Parker, “Learning-logic:
Casting the cortex of the human brain in silicon,” Technical Report TR-47, Center for Com-
putational Research in Economics and Management Science, MIT, 1985.

[1428] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control
Signals Syst., 2, 303 (1989).

[1429] K. Hornik, M. Stinchcombe, H. White “Multilayer feedforward networks are universal ap-
proximators,” Neural Networks, 2, 359 (1989); see also K. Hornik, “Approximation capa-
bilities of multilayer feedforward networks,” ibid, 4, 251 (1991); and also ibid., 6, 1069
(1993).

[1430] B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptive pattern recog-
nition,” Computer, 21, no.3, 25 (1988). See also, B. Widrow and M.A. Lehr, “30 years of
adaptive neural networks: perceptron, Madaline, and backpropagation,”, Proc. IEEE, 78,
1415 (1990).

[1431] A. Lapedes and R. Farber, “How neural nets work,” Neural Information Processing Systems,
1987. See also, “Nonlinear signal processing using neural networks: Prediction and system
modelling,” Technical Report LA-UR-87-2662, Los Alamos Lab., 1987.

[1432] A. S. Weigend, B. A. Huberman, and D, E. Rumelhart, “Predicting the Future: A Connec-
tionist Approach,” Int. J. Neural Syst., 1, 193 (1990).

[1433] N. A. Gershenfeld and A. S. Weigend, “The future of time series: learning and under-
standing,” In A. S. Weigend N. A. Gershenfeld (Eds.), Time Series Prediction: Forecasting the
Future and Understanding the Past, Addison-Wesley, Reading, 1993.

[1434] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: The
state of the art,” Int. J. Forecasting, 14, 35 (1998).

[1435] M. S. Gashler and S. C. Ashmore, “Modeling time series data with deep Fourier neural
networks,” Neurocomputing, 188, 3 (2016).

[1436] P. Lara-Benitez, M. Carranza-Garcia, and J. C. Riquelme, “An Experimental Review on Deep
Learning Architectures for Time Series Forecasting,” Int. J. Neural Syst., 31, 21300001
(2021).

[1437] Neural network software platforms and libraries

MATLAB, The Mathworks, www.mathworks.com

PyTorch, pytorch.org

TensorFlow, www.tensorflow.org

Keras, Xception, InceptionV3, keras.io

REFERENCES 1503

theano, pypi.org/project/Theano

OpenNN, www.opennn.net

FANN, leenissen.dk/fann/wp

DyNet, github.com/clab/dynet

Chainer, chainer.org

Apache MXNet, mxnet.apache.org

Waffles, waffles.sourceforge.net

ImageNet, www.image-net.org

CIFAR datasets, www.cs.toronto.edu/~kriz/cifar.html

MNIST handwritten digit databaseyann.lecun.com/exdb/mnist

Neural network software, Wikipedia,
en.wikipedia.org/wiki/Neural_network_software

Top 27 Artificial Neural Network Software in 2022
www.predictiveanalyticstoday.com/top-artificial-neural-network-software

Top 10 Libraries In C/C++ For Machine Learning,
analyticsindiamag.com/top-10-libraries-in-c-c-for-machine-learning

Index

1% time constant, 245, 300
3-bit parity problem, 1382, 1384
3-dB cutoff frequency, 507, 708, 711, 712
3-dB width, 255, 271, 515, 536, 713, 739, 741,

742, 746, 811, 812
6 dB per bit rule, 64
60 Hz noise, 261, 704, 738
60 dB time constant, 245, 806, 813, 821

A/D converter, 53, 62
delta-sigma, 67, 688
flash or parallel, 84
subranging, 84, 93
successive approximation, 76, 84

accumulation-distribution, 1255
activation functions, 1378
adaptive signal processing, 95, 99, 813, 832
ADC, see A/D converter
aliased frequency, 11
aliasing, 5, 8, 10, 34, 432

examples of, 11–25
in rotational motion, 26

alternating-step response, 249
amplitude modulation, 796
analog

Bessel filters, 667
Butterworth filters, 58, 538, 665, 675
Chebyshev filters, 559
dither, 84
frequency response, 3
impulse response, 2
linear filtering, 3
linear system, 2
postfilter, 45
prefilter, 38
reconstructor, 10, 42, 623

antenna tracking system, 1037
anti-image postfilter, see postfilter
antialiasing prefilter, see prefilter
attenuation, 21, 39, 47

dB per decade, 39
dB per octave, 21, 40
of window sidelobes, 364

audio effects processor, 266, 801, 829
autocorrelation, 395

backpropagation algorithm, 1379

backward Euler, 996, 1014
bandpass filters, 550
bands, 1242

Bolinger, 1242
fixed-width, 1242
Keltner, 1242
projection, 1242
standard error, 1242
Starc, 1242

bandstop filters, 555
bandwidth selection, 1143
biasing, 416
bilinear transformation, 504, 996

for comb filters, 534, 741
biomedical signal processing, 738
bit reversal, 442
block convolution, 141, 449
block diagram, 111

for canonical form, 284
for cascade form, 295
for direct form, 277
for FIR filter, 161, 163
for second-order section, 282
for transposed form, 188, 328

block processing, 95, 120, 121
overlap-add method, 141, 453
overlap-save method, 453

Bolinger bands, 1242
BPDN, basis pursuit denoising, 1307
Butterworth moving average filters, 1228

C routines:
I0, modified Bessel function, 494
adc, A/D conversion, 80
allpass, allpass reverb, 816
bitrev, bit reversal, 444
blockcon, overlap-add, 143
can2, canonical form, 287
can3, canonical form, 311
can, canonical form, 285
cas2can, cascade to canonical, 308
cas, cascade form, 297
ccan2, circular canonical, 320
ccan, circular canonical, 314
ccas2, circular cascade, 321
ccas, circular cascade, 319
cdelay2, circular delay line, 183

1505

1506 INDEX

cdelay, circular delay line, 180
cfir1, circular FIR filtering, 178
cfir2, circular FIR filtering, 182
cfir, circular FIR filtering, 176
conv, convolution, 137
csos2, circular SOS, 321
csos, circular SOS, 318
dac, D/A conversion, 75
delay, delay operation, 158
delta, delta function, 140
dftmerge, DFT merge, 445
dir2, direct form, 280
dir, direct form, 278
dot, dot product, 168
fft, FFT, 443
fir2, FIR filtering, 169
fir3, FIR filtering, 171
fir, FIR filtering, 167
gdelay2, generalized delay, 785
gran, Gaussian random generator, 1393
ifft, inverse FFT, 446
lowpass, lowpass reverb, 819
modwrap, modulo-N reduction, 426
plain, plain reverb, 816
ran1f, 1/f noise generator, 1400
ranh, hold random generator, 1395
ranl, linearly interpolated, 1396
ran, uniform random generator, 1392
shuffle, shuffling in FFT, 443
sine, sinusoidal wavetable, 793
sos, second-order section, 294
square, square wavetable, 794
swap, swapping in FFT, 444
tap2, circular tap outputs, 183
tapi2, interpolated delay, 808
tapi, interpolated delay, 807
tap, circular tap outputs, 181
trapez, trapezoidal wavetable, 794
u, unit-step function, 81
wavgeni, wavetable generator, 792
wavgenr, wavetable generator, 792
wavgen, wavetable generator, 791
wrap2, circular index wrapping, 182
wrap, circular pointer wrapping, 176

canonical form, 230, 281
difference equations of, 284
sample processing algorithm, 285, 777

capital asset line, 1264
capital asset pricing model, CAPM, 1268
capital market line, 1268
CAPM, 1268
cascade form, 294

coefficient matrices, 296
internal states, 296
pipelining of, 313
processing time, 312
sample processing algorithm, 297

cascade to canonical, 301, 307

causality, 111, 402
and finitely anticausal filters, 112, 113
and interpolation filters, 112
and inverse filters, 112, 116
and off-line processing, 113
and real-time processing, 113
and smoothing filters, 112
and stability, 115, 267
in z-domain, 193, 199, 233

census X-11 decomposition filters, 1358
central limit theorem, 1393
Chaikin money flow, 1255
Chaikin oscillator, 1255
Chaikin volatility, 1255
Chande momentum oscillator, CMO, 1252
channels, 1242
Chebyshev window, 378, 390
chorusing, 809
chrominance signals, 751
circular

addressing, 121, 169, 172, 314
buffer, 172
canonical form, 315
cascade form, 319
convolution, 449
delay, 172, 180, 183
direct form, 176
pointer, 173
pointer index, 174
state vector, 174, 175, 181, 183
wrapping, 176, 177, 180, 182

classical seasonal decomposition, 1344
classical spectral analysis, 399
coefficient quantization, 353
COLA, see constant-overlap-add property
comb filters, 259, 263, 326, 534, 746

3-dB width, 746
complementarity property, 738
design, 534, 746
for digital reverb, 805
for noise reduction, 264
for signal enhancement, 264
in digital audio effects, 801
in digital TV, 749
sample processing algorithm of, 803

commodity channel index, CCI, 1255
complementarity, 471, 486, 490, 513, 738, 746,

756
complex poles, 2, 301, 769
compressors, see dynamics processors
computational resolution, see resolution
computer music

amplitude modulation, 796
frequency modulation, 783
musical instrument models, 783, 824
physical modeling, 783, 824
wavetable generators, 783

constant-overlap-add property, 886

INDEX 1507

control systems, 1030
antenna tracking system, 1037
cruise control, 1035
digital control systems, 1032
feedback control, 1030
inverted pendulum, 1048
PID control, 1032
thermostat control, 1053

convolution, 111, 120, 121
circular, 449
direct form of, 104, 121, 122
fast convolution example, 457
fast via FFT, 449
flip-and-slide form of, 130
for discrete-time systems, 104
in z-domain, 191
in continuous-time, 3, 43
in frequency domain, 207
LTI form of, 104, 121, 126
matched filtering example, 460
matrix form of, 128
of finite sequences, 122
of infinite sequences, 133
overlap-add method, 141, 453
overlap-save method, 453
table form of, 121, 124

coupled form generator, 771
cross validation, 1143
cruise control, 1035
cutoff frequency, 507
CVX package, 1264, 1290, 1307, 1370

D/A converter, 46, 53, 71
and reconstruction, 46
delta-sigma requantizer, 688, 694
natural binary, 72
offset binary, 73
two’s complement, 73

DAC, see D/A converter
DC gain, 138, 249
DCC compact cassette, 494
DCT, 905

compression system, 910
inverse DCT, 910
normalized DCT matrix, 909

decibels, dB, see attenuation
decimation, 622, 676

and delta-sigma quantizer, 689
and oversampling, 23, 676
averaging decimators, 679, 692
downsampled spectrum, 677
filter design, 678
filter specifications, 678
hold decimators, 679, 692
ideal, 678
Kaiser designs, 678, 692
multistage, 679
prefilter specifications, 680

sample processing algorithm, 679
deconvolution, 264, 452

of noisy data, 266
delay, 101, 154, 181

circular, 172, 180, 183
linear, wrapped, 172
linearly interpolated, 807
tapped, 160
update, 158, 173, 177

delta-sigma quantizer, 67, 688
decimator filter, 689
first-order model of, 689, 700
MASH architectures, 702
requantizer, 688, 694
second-order model of, 322, 701

DEMA filters, 733
detrended price oscillator, 1256
DFS, see discrete Fourier series
DFT, 360, 410

N-point DFT of length-L signal, 410
and DTFT, 410
and periodic signals, 432
biasing in computation of, 416
frequencies, 410
matrix, 418
matrix form of, 418
merging, 436, 445
modulo-N reduction, 421
negative frequencies, 370, 372, 414, 433
time wrapping, 421
twiddle factor, 419
zero padding, 413

DFT frequencies, 410, 412
difference equation, 111, 234, 277
differentiation filters, 1088
differentiator filter, 469, 499
digital audio effects, 182, 266, 800

chorusing, 809
comb filters, 801
delays, 801
dynamics processors, 829
echoes, 801
flanging, 806
linearly interpolated delay, 807
multitap delays, 825
phasing, 810
reverberation, 813
stereo imaging, 806, 846

digital reverberation, see reverberation
digital signal processor, 1, 53
digital TV, 749
direct form

difference equations of, 234, 277
for FIR filter, 160, 161, 163
for IIR filter, 227, 275
internal states, 276
sample processing algorithm, 278, 774

direct form I, see direct form

1508 INDEX

direct form II, see canonical form
directional movement system, 1253
discrete cosine transform, 360, 466, see DCT
discrete Fourier series, 18, 432
discrete Fourier transform, see DFT
discrete time

convolution, 104
filter, 53
Fourier transform, see DTFT
linear filtering, 55
linear system, 96
system, 95
system I/O rules, 96

discrete-time Fourier transform, 1104
discretization methods, 979

backward Euler, 996, 1014
bilinear transformation, 996
continuous-time systems, 979
first-order hold, 999, 1025
forced response, 983
forward Euler, 996, 1014
impulse invariance, 1024
initialization procedures, 981, 1006
observability matrix, 1007
ramp invariance, 1027
realizations, 999
sample processing, 999
sinusoidal response, 985
staircase reconstructor, 1022
starred Laplace transform, 1015
state-space realizations, 1003
step invariance, 1023
summary, 994
trapezoidal, 996, 1014
triangular hold, 1025
zero-order hold, 997, 1018

dither, 66, 84
and noise shaping, 688
example of, 87
Gaussian, 85
non-subtractive, 85
rectangular, 85
subtractive, 90
triangular, 85, 87

Dolph-Chebyshev window, 483
Donchian channels, 1242
downsampler, 677
DPSS window, 377, 388
DRC, see dynamics processors
DSP chips, 55, 169, 310, 355

examples of, 178
instruction time, 170
MACs, 169, 310, 313, 355
MFLOPS, 170, 313
MIPS, 171, 312, 313
processing time, 171, 178
quantization effects in, 355
wordlengths, 355

DSP system
building blocks of, 154
components of, 53
with oversampling, 71, 680

DTFT, 30, 202, 362, 1417
computation by Hörner’s rule, 373
and DFT, 410
and unit circle, 373, 412
and windowing, 362
at single frequency, 372
computation, 372
geometric interpretation of, 205
magnitude and phase, 207
negative frequencies, 370, 372, 414, 433
of length-L signal, 372
of rectangular window, 362
of windowed sinusoids, 365
periodicity of, 30

DTMF, 374, 768
dual-tone multi-frequency, see DTMF
dynamic momentum index, DMI, 1256
dynamic range control, see dynamics processors
dynamics processors, 829

adaptive processing, 832
attack time constants, 833
compression/expansion ratio, 830
compressor/expander model, 830
compressors, 829
duckers, 837
envelope detector, 830
expanders, 834
gain processors, 830, 831
gain smoothing, 833
level detectors, 830
limiters, 834
noise gates, 835
release time constants, 833

ECG processing, 738, 740–742
efficient frontier, 1261, 1266
elliptic filters, 576

analog, 593
degree equation, 590
digital, 605
elliptic rational function, 587
frequency transformations, 609
frequency-shifted realizations, 614
Jacobian elliptic functions, 580
Landen transformations, 591
MATLAB functions, 611

EMA, 708
improved, 710

EMA filters, 733
EMA initialization, 1198, 1225
EMA, exponential moving average, 1160
encircled energy, 1418
envelopes, 1242
equalizer

INDEX 1509

channel, 265
comb, 534
for multistage interpolation, 668
for staircase DAC, 661
graphic, 488, 523
matched Nyquist-frequency gain, 532
parametric, 254, 523, 849
postfilter, 47, 664
prefilter, 39
room acoustics, 265
shelving, 530, 532

error spectrum shaping, 355, 688
exact LPSM filters, 1068
expanders, see dynamics processors
exponential smoother, 710, 1160
exponentially weighted moving average, 708
exponentially-weighted moving average, 1160

fast convolution, 449
fast Fourier transform, see FFT
feedback system, 328
FFT, 360, 436

bit reversal, 442
computational cost, 438
decimation in time, 438
merging, 436, 441, 445
of real-valued signals, 466
shuffling, 441, 443

Fibonacci sequence, 270
filter

as state machine, 95
equivalent descriptions of, 111, 224
group delay, 241
internal state of a, 95
magnitude response, 240
phase delay, 241
phase response, 240
Q-factor, 739, 812

filter banks, 494
filter design

analog filters, 538
by pole/zero placement, 207
comb filters, 259, 534, 746
first-order, 252
for noise reduction, 704
for sampling rate conversion, 681
for signal enhancement, 704
frequency sampling, 498, 662, 666
notch filters, 258, 259, 742, 811
of FIR filters, 469
of IIR filters, 504
of Savitzky-Golay smoothers, 1058
parametric equalizers, 523
parametric resonators, 254
peaking filters, 519
second-order, 254, 258
window method, 469

filter lag, 721

filter scaling, 355
filtering, 3, 35, 55

adaptive, 95
by block processing, 95, 120
by sample processing, 95, 120
in direct form, 105, 106
in LTI form, 104
of random signals, 401

filtering methods in financial markets, 1209
FIR averager, 692, 714
FIR filter, 95, 104, 105, 120

block diagram, 161, 163
circular buffer, 176, 178, 182, 184
coefficients, 105
difference equations for, 234
direct form of, 159
in steady-state form, 132
length, 105
linear phase property of, 242
order, 105
sample processing algorithm for, 159, 161,

163, 167
taps, 105
weights, 105
window method, 469

FIR filter design, 469
approximation properties, 475
examples, 486–494
frequency sampling, 498, 662, 666
Gibbs phenomenon, 475
Hamming window, 477
ideal filters, 469
Kaiser window, 481
linear phase property, 474
Meteor design program, 499
Parks-McClellan method, 499
rectangular window, 472
window method, 469

first-order hold, 999, 1025
first-order IIR smoother, 708
fixed-width bands, 1242
flanging, 806
forecast oscillator, 1256
forecasting and state-space models, 1169
forward Euler, 996, 1014
Fourier transform, 2

discrete-time, DTFT, 30
of sampled signal, 30

frequency
aliased or perceived, 11, 26
and unit circle, 207
biasing, 416
DFT, 410
digital, 26, 203
leakage, 31, 362, 368
modulation, 783, 798
negative, 28, 370, 372, 414, 433
Nyquist, 6

1510 INDEX

resolution, 360, 366
response, 3, 111, 203
spectrum, 2, 202
units used in DSP, 28

frequency sampling design, 498, 662, 666

generalized cross-validation, 1143
generalized double EMA, GDEMA, 1231
generalized efficient frontier, 1270
generator, see waveform generators
geometric series

finite, 37, 72, 134, 197, 247, 717, 803
infinite, 17, 36, 114, 193, 194, 197, 198,

425, 708, 773, 804, 815, 818
Gibbs phenomenon, 475
graphic equalizers, 488, 523
group delay, 241, 721
guard band, 34

Hahn orthogonal polynomials, 1118
Hamming window, 51, 366, 386, 477, 630, 654
hardware realizations, 169, 310
Henderson filters, 1082, 1108
hermitian property, 207
higher-order exponential smoothing, 1174
higher-order polynomial smoothing, 1170
highpass filters, 547
Hilbert transformer, 469
Hodrick-Prescott filters, 1272, 1279
hold interpolators, 647
Holt’s exponential smoothing, 1203
Hull moving average, 1231
Hörner’s rule, 91, 373

I/O rules, 96
IIR filter, 95, 104, 106

circular buffer, 315, 319
difference equations for, 106, 110, 234
transfer function of, 233

IIR filter design, 504
analog filters, 538
bandpass filters, 550
bandstop filters, 555
bilinear transformation, 504
Butterworth, 538
Chebyshev filters, 559–571
comb filters, 534
first-order filters, 507
higher-order filters, 536
highpass filters, 547
lowpass filters, 543
notch filters, 514
parametric equalizers, 523
peaking filters, 519
second-order filters, 514
specifications, 537

ILRS, integrated linear regression slope, 1212
impulse invariance, 1024

impulse response, 2, 102, 111, 224, 225, 233,
256, 264, 266, 268

indicator function, 1410
input-off transients, 131, 161, 823
input-on transients, 131, 161, 823
instantaneous gradient, 1162
instruction time, 170, 171, 178, 311
integrated linear regression slope, 1212
interference

60 Hz noise, 261, 264
periodic, 264

internal state, see state
interpolation, 622

4-fold, 626, 651
computational rate, 631
cutoff frequency, 629
DAC equalization, 661
filter design, 628
filter specifications, 625, 635
ideal, 636
in direct form, 628
in polyphase form, 622, 630, 632, 655
Kaiser designs, 638
linear and hold, 647
multistage designs, 639, 657
multistage equalization, 668
postfilter equalization, 664
postfilter specifications, 624, 664
sample processing algorithm, 635

interpolation filters, 1075
interpolation vs. smoothing splines, 1271
inverse z-transforms, 208
inverse DFT, 429, 430, 446
inverse DTFT, 30, 203, 241, 242, 364, 429, 1417

and Fourier series, 30, 204
inverse FFT, 446
inverse filters, 264

stable and causal, 267
inverse Fourier transform, 2, 430
inverse STFT, 886
inverted pendulum, 1048
IRLS, iterative reweighted least-squares, 1307
ISTFT, 886
iterative reweighted least-squares, IRLS, 1290, 1307

Kaiser window, 366, 387
for filter design, 481
for interpolator designs, 638
for spectral analysis, 366, 495
parameters, 484, 496
resolution, 495

Karplus-Strong string algorithm, 824
KBD windows, 918
Keltner bands, 1242
kernel machines, 1283
Krawtchouk polynomials, 1126

L0 trend indicator, 1239

INDEX 1511

L1 trend filtering, 1289
Landen transformations, 591
Laplace transform, 2

starred, 32, 1015
LASSO, least absolute shrinkage and selection

operator, 1307
lattice realizations, 331

filtering, 344
frequency response, 346
MATLAB functions, 343
normalized lattice, 341
quantization effects, 353
rearranged lattice, 339
stability test, 346
standard lattice, 333

lattice/ladder realizations, 331
leakage, 362, 368
leaky ReLU, 1378
Legendre polynomials, 1407
limiters, see dynamics processors
linear filtering, 3, 35, 55, 240
linear interpolators, 647
linear phase property, 242, 474, 707
linear regression, 1217
linear regression indicator, 1213
linear regression slope indicator, 1213
linear superposition, 3, 240
linear system, 2

in matrix form, 96
state space realization, 98

Linear time-invariant, see LTI system
linear trend FIR filters, 1172
linearity, 100, 240
linearly interpolated delay, 807
LMS algorithm, 1162
loan / mortgage amortization, 217
local level filters, 1213, 1233
local polynomial fitting, 1059
local polynomial interpolation, 1145
local polynomial modeling, 1136
local polynomial smoothing filters, 1058
local slope filters, 1213, 1233
loess smoothing, 1157
logistic function, 1378
loudspeaker crossover filters, 488
lowpass differentiator, 499
lowpass filters, 543
lowpass Hilbert transformer, 499
LPSM filters, 1058
LTI system, 95

anticausal, 111
causal, 111
double-sided, 111
equivalent descriptions of, 111, 224
FIR, 95
frequency response, 2
IIR, 95
impulse response, 2, 102

luminance signal, 751

MAC, 169, 171, 310, 313, 355
magnitude response, 207, 240
marginal stability, 202, 205, 250, 402
Market indicators:

accdist, accumulation/distribution line, 1252
atr, average true range, 1246
bbands, Bolinger bands, 1246
bma, Butterworth moving average, 1230
cci, commodity channel index, 1252
chosc, Chaikin oscillator, 1252
chvol, Chaikin volatility, 1252
cmflow, Chaikin money flow, 1252
cmo, Chande momentum oscillator, 1252
delay, d-fold delay, 1235
dema, double EMA, 1217
dirmov, directional movement system, 1252
dmi, dynamic momentum index, 1252
donch, Donchian channels, 1246
dpo, detrended price oscillator, 1252
ehma, exponential Hull moving average, 1235
fbands, fixed-width bands, 1246
forosc, forecast oscillator, 1252
gdema, generalized DEMA, 1235
hma, Hull moving average, 1235
ilrs, integrated linear regression slope, 1212
kbands, Keltner bands, 1246
l0trend, L0 trend indicator, 1240
lreg, linear regression indicators, level, slope,

R-square, standard-errors, 1220
mom, momentum, price rate of change, 1252
ohlcyy, OHLC chart with left/right y-axes,

1221
ohlc, open-high-low-close bar chart, 1221
pbands, projection bands & oscillator, 1246
pma2, quadratic PMA, 1214
pmaimp2, PMA2 impulse response, 1214
pmaimp, PMA impulse response, 1214
pma, predictive moving average, 1214
pnvi, positive/negative volume indices, 1252
prosc, price oscillator and MACD, 1252
psar, parabolic SAR, 1250
r2crit, R-square critical values, 1219
rsi, relative strength index, 1252
sebands, standard-error bands, 1246
sema, single EMA, 1217
shma, simple Hull moving average, 1235
sma, simple moving average, 1212
stbands, Starc bands, 1246
stdev, length-N standard deviation, 1242
stoch, stochastic, percent-K, percent-D, 1252
t3, Tillson’s T3 indicator, 1235
tcrit, t-distribution critical values, 1219
tdistr, cumulative t-distribution, 1219
tema, triple EMA, 1217
tma, triangular moving average, 1212
trix, TRIX oscillator, 1252

1512 INDEX

vema, variable-length EMA, 1252
vhfilt, Vertical horizontal filter, 1252
wema, Wilder’s EMA, 1228
wma, weighted moving average, 1212
yylim, adjust left/right y-axes limits, 1221
zema, zero-lag EMA, 1235
zigzag, zigzag indicator, 1238

market portfolio, 1268
Markowitz portfolio theory, 1259
maximally-flat filters, 1126
MDCT, 905, 913

data compression system, 906
inverse MDCT, 914
KBD window, 918
Princen-Bradley windows, 916
window construction, 918

MFLOPS, 170, 313
minimum roughness filters, 1102
minimum variance filters, 1082
MIPS, 171, 312, 313
missing data and outliers, 1131
modified Bessel function, 483, 494
modified DCT, 905, see MDCT
modulo addressing, see circular
modulo-N reduction, 421
moments in smoothing filters, 1086
momentum, 1251
momentum, price rate of change, 1253
moving average convergence divergence, MACD,

1254
moving average filter, see FIR filter
moving average filters, 1209

Butterworth, BMA, 1228
EMA, exponential, 1209
initialization, 1222
predictive, PMA, 1212
reduced lag, 1231
SMA, simple, 1209
TMA, triangular, 1209
WMA, weighted, 1209

multi-delay audio effects, 825
multiplier/accumulator, see MAC
multirate filter banks, 494
multirate signal processing, 99, 622
multistage equalization, 668
multistage interpolators, 639
multitap delay audio effects, 825
Musgrave asymmetric filters, 1362
musical instrument models, 783, 824

NAR, nonlinear autoregressive models, 1385
negative frequencies, 28, 370, 372, 414, 433
neural networks, 1376
neural networks for time series prediction, 1385
noise gates, see dynamics processors
noise reduction, 264, 704

comb filters for, 738
filter design for, 704

FIR averager, 710
first-order IIR smoother, 708
noise reduction ratio, 706
notch filters for, 738
SNR in, 706
time constant vs. group delay, 720, 724
transient response, 707

noise reduction ratio, 402, 706
noise shaping, 66, 688

dithered, 688
error spectrum shaping, 355, 688, 771
quantizer, 69, 688
quantizer comparisons, 70
requantizer, 688, 694

non-rectangular windows, 366
nonlinear signal processing, 99
notch and comb filters, 1320
notch and comb filters with fractional delay, 1326
notch filters, 258, 259, 514, 811

3-dB width, 811
for ECG processing, 738, 740, 742
phasing audio effects, 810
Q-factor, 812

notch polynomial, 260
NRR, see noise reduction ratio
NRR, noise reduction ratio, 402
Nyquist

frequency, 6
interval, 6, 203
rate, 6

OLA, see overlap-add reconstruction
optimum mean-variance portfolios, 1259
orthogonal polynomial bases, 1074
oscillator, see waveform generator
oscillators, 1251
overlap-add method, 141, 453
overlap-add reconstruction, 886
overlap-save method, 453
oversampling, 23, 66, 622, 625

and decimation, 23, 676
and interpolation, 622
and noise shaping, 66
and quantization, 68
digital filter, 625
DSP system, 71, 680
in CD and DAT players, 71, 623
in postfiltering, 53, 624, 664
in prefiltering, 24, 39
ratio, 68

parabolic SAR, 1242
parallel form, 222, 229, 494

processing time, 313
parametric equalizers, 254, 523

2nd order, 523
bandwidth definitions, 864
high-order, 849

INDEX 1513

high-order analog designs, 879
high-order Butterworth, 857
high-order Chebyshev type-1, 858
high-order Chebyshev type-2, 859
high-order elliptic, 861
MATLAB functions, 880
order determination, 863
realizations, 867

parametric resonators, 254, 519
parametric spectral analysis, 368
Parks-McClellan method, 499
Parseval’s equation, 204
partial fraction expansion, 208, 243

of z-transforms, 208
remove/restore method, 209

peaking filters, 519
Pell’s sequence, 271
perceptual coding, 494, 688
periodic interference, 264, 704
periodic signal extraction, 1319
periodogram, 395

averaging, 399
averaging and smoothing, 368
modified periodogram, 398
smoothing, 400

PF, PFE, see partial fraction expansion
phase delay, 241, 721
phase response, 207, 240
phase vocoder, 891
phasing, 810
physical modeling of instruments, 783, 824
physical resolution, see resolution
PID control, 1032
pipelining of cascade form, 313
pitch-scale modification, 896
PMA filters, 733
Poisson summation formula, 34
pole/zero designs

comb filters, 259
first-order filters, 252
notch filters, 258, 259
parametric resonators, 254
second-order filters, 254, 258

pole/zero pattern, 111, 205
polynomial interpolation filters, 1075
polynomial predictive filters, 1075
polyphase filters, 622, 627, 630, 632
portfolio with inequality constraints, 1263
portfolio with multiple constraints, 1269
positive/negative volume indices, 1255
postfilter, 45, 53, 624

and oversampling, 49, 624
Bessel, 667
Butterworth, 665, 675
equalized digitally, 47, 51, 664
specifications of, 46, 664

power spectrum, 395
predictive differentiation filters, 1088

predictive filters, 1075
predictive moving average filters, 1212
prefilter, 35, 38, 53, 623

and oversampling, 24, 39, 680
attenuation, 39
Butterworth, 58
equalized digitally, 39
ideal, 7, 38
practical, 18, 38
specifications of, 38, 680

price oscillator, 1254
Princen-Bradley windows, 916
processing time, 8, 171, 178, 311
projection bands, 1242
prolate spheroidal wave functions, 1406
PSWF, prolate spheroidal wave functions, 1406

Q-factor, 515, 739, 742, 748, 812
quantization, 62

and dithering, 66
and oversampling, 68
by rounding, 63, 78
by truncation, 63, 77
error, 63
granulation noise in, 66
noise, 65
noise shaping, 66
process, 62
signal-to-noise ratio, 64
width, 62

quantization effects
coefficient quantization, 353
coupled form, 771
error spectrum shaping, 355, 771
poles near unit circle, 771
roundoff error, 302, 353, 355

quantizer
6 dB per bit rule, 64
delta-sigma, 67
dynamic range of a, 64
error spectrum shaping, 688
error, average, 64
error, maximum, 64
error, root-mean-square, 64
full-scale range of, 62
noise model of a, 65, 82
noise shaping, 69, 688
noise shaping comparisons, 70
number of levels of a, 62
probabilistic interpretation of a, 64
resolution, 62
uniform, 62

R-square indicator, 1217
ramp invariance, 1027
random number generators, 810, 1389

1/f noise, 1399, 1400, 1404, 1405
Gaussian, 1389, 1393

1514 INDEX

general interpolator, 1399, 1404
hold interpolator, 1394, 1395
linear congruential, LCG, 1390
linearly interpolated, 810, 1396
low-frequency, 810, 1394
portable, 1391
uniform, 1389, 1392

random signals, 395
autocorrelation, 395
filtering of, 401
power spectrum, 395

random walk, 402
rate compressor, see downsampler
rate expander, see upsampler
reconstructor, 10, 42, 623

and D/A conversion, 46
ideal, 10, 43, 624
ideal impulse response of, 44
in interpolation, 44
staircase, 42, 44, 623
truncated impulse response of, 44, 629

rectangular window, 51, 361
in FIR filter design, 472
in spectral analysis, 362
sidelobes, 364
width, 363

reduced-lag moving average filters, 1231
region of convergence, 193, 195, 199

and causality, 199
and stability, 200

regularization and kernel machines, 1283
regularization filters, 1277
relative strength index, RSI, 1252
ReLU, rectified linear unit, 1378
resolution, 360, 366

and leakage, 362, 368
and mainlobe width, 363, 366, 367
and windowing, 360
computational, 414
of Kaiser window, 495
of non-rectangular windows, 367
physical, 362, 363, 367, 414
uncertainty principle, 362

resonators, see parametric resonators
reverberation, 182, 264, 813

60 dB time constant, 806, 813
allpass, 816
and comb filters, 805
early reflections, predelay, 813
gated and reversed, 814
late reflections, 813
lowpass, 818, 819
lowpass, time constants, 821, 823
plain, 805, 814, 816
plain, time constants, 821, 823
sample processing algorithm, 815
Schroeder’s reverberator, 817

risk aversion, 1263

risk premium, 1268
RLS algorithm, 1163
ROC, see region of convergence
roots of unity, 222, 412, 739, 780, 805, 821

and DFT, 412
roundoff error, 302, 353, 355

sample processing algorithm, 111, 120, 154
for allpass reverb, 815
for canonical form, 231, 285
for cascade form, 297
for circular canonical form, 315
for circular cascade form, 319
for circular FIR filter, 176, 184
for decimation, 679
for direct form, 227, 278
for FIR filtering, 159, 161, 163, 167, 168
for interpolation, 635
for lowpass reverb, 819
for multi-delay, 826
for multitap delay, 828
for parallel form, 230
for ringing delay, 826
for sample rate conversion, 685
for Schroeder’s reverb processor, 817
for transposed form, 232
for variable notch filters, 812

sampled signal, 29
flat-top sampled, 29, 60
ideally sampled, 29

sampling
aliasing due to, 5
and Poisson summation formula, 34
as modulation, 33
frequencies introduced by, 5
function, 33, 699
guard band, 34
hardware limits in, 8
ideal and practical, 29
Nyquist frequency, 6
Nyquist rate, 6
of periodic signals and DFT, 432
of sinusoids, 9, 35, 50
process, 4
rate, 5, 7
spectrum replication due to, 5
theorem, 5, 9, 44
time interval, 4

sampling rate conversion, 622, 681, 700
filter design for, 681
sample processing algorithm, 685

sampling theorem, 1417
Saramäki windows, 483
Savitzky-Golay smoothing filters, 1058
scaling, 355
Schroeder’s reverberator, 817
Schur-Cohn Stability Test, 346
seasonal decomposition filters, 1342

INDEX 1515

seasonal moving-average filters, 1352
seasonal Whittaker-Henderson decomposition, 1368
second-order section, 275, 282, 294, 318, 321

circular buffer form of, 318, 321
security market line, 1268
Shannon number, 1408, 1417
Sharpe ratio, 1265
shelving filters, 530, 532
short-time Fourier transform, 882, see STFT
sigma-delta, see delta-sigma
signal averaging, 1336
signal enhancement, 264, 704

comb filters, 738, 747
comb filters for TV, 749
filter design for, 704
noise reduction ratio, 706
notch filters, 738
of periodic signals, 747
SNR in, 706
transient response, 707

signal extraction, periodic, 1319
signal generators, see waveform generators
signal-to-noise ratio, 706
sinc kernel, 1407
single, double, triple EMA, 1191, 1215
sinusoidal generators, 767
sinusoidal response, 3, 239, 243

of FIR filters, 252
SMA filters, 733
smoothing filters, 710, 1058

exponential, 710, 1160
in spectroscopy, 1058, 1086
least-squares, 1058
moment constraints, 1086
polynomial data smoothing, 1058
Savitzky-Golay, 1058

smoothing parameter selection, 1186
smoothing splines, 1271
SNR, see signal-to-noise ratio
SOS, see second-order section
sparse seasonal Whittaker-Henderson decompo-

sition, 1370
sparse Whittaker-Henderson methods, 1289
spatial arrays, 393
spectrum, 2, 202

analysis, 360, 368
and z-transform, 31, 202
and pole/zero pattern, 205
and time windowing, 31
and unit circle, 202
computation, 31, 360
DTFT, DFT, 360
hermitian property of, 207
numerical approximation of, 31
of analog signal, 2, 4
of oversampled signal, 624
of periodic signal, 779
of sampled signal, 30, 202, 623

of video signal, 750
of windowed sinusoids, 365
parametric methods, 368
periodicity of, 30, 35, 203
power, 395
replicating transformation, 745
replication, 5, 7, 10, 32, 677, 699
statistical reliability of, 368

spherical Bessel functions, 1407
SRC, see sampling rate conversion
stability, 111, 114, 402

and causality, 115, 267
and inverse filters, 116, 264
condition, 114
in z-domain, 193, 200, 233, 244
marginal, 202, 205, 250
of multitap delays, 829

standard-error bands, 1242
Starc bands, 1242
state

circular, 173–175, 181, 183
initialization, 159
internal, 98, 129, 154, 158, 173, 227, 276
machine, 95

state space realization, 98, 120, 355
steady state, 3

frequency response, 3
sinusoidal response, 3

steady state response, 131, 133, 139, 239, 243
alternating-step response, 249
DC gain, 138, 249
for FIR filters, 131
for IIR filters, 239
unit-step response, 249

steady-state EMA, 1180
steepest descent, 1162
step invariance, 1023
STFT, 882

Bartlett window, 887
COLA property, 886
computation, 888
constant-overlap-add property, 886
definition, 883
hanning window, 887
inverse STFT, 886
overlap-add reconstruction, 886
phase vocoder, 891
phase vocoder model, 892
pitch-scale modification, 896
spectrogram, 884
STFT signal processing system, 887
time-scale modification, 891

stochastic oscillator, 1254
stock’s beta, 1268
sunspot time series, 403
sunspot time series prediction, 1384
superdirectivity ratio, Taylor’s, 1418
superoscillations, 1415

1516 INDEX

tangency portfolio, 1265
tapped delay line, see delay
TDAC, 913, 915, 917
technical analysis in financial markets, 1209
thermostat control, 1053
thricing, 1193
Tikhonov regularization, 1414
Tillson’s T3 indicator, 1231
time constant, 244, 300, 716, 806, 821, 823
time delay, 101
time invariance, 100, 101
time window, see windowing
time-bandwidth product, 1407
time-bandwidth tradeoffs, 729
time-domain aliasing cancellation, see TDAC
time-scale modification, 891
time-series forecast indicator, 1213
transfer function, 111, 225, 233, 277
transient response, 131, 133, 139, 242

in noise reduction filters, 707
in reverberation, 814, 823
input-off transients, 131, 161, 168
input-on transients, 131, 161
of FIR filters, 131, 252
of IIR filters, 242
time constant, 244

transposed form, 188, 328
for FIR filter, 188
for IIR filter, 231

transposed realization, 287
transversal filter, see FIR filter
trapezoidal, bilinear, Tustin transformation, 996,

1014
TRIX oscillator, 1257
Tukey’s twicing operation, 1193
twicing, 1193
twicing and zero-lag filters, 1194
twiddle factor, 419
two mutual fund theorem, 1262

unilateral z-transform, 215
unit circle

and DTFT, 373, 412
unit-step response, 249
upsampler, 628

variable and adaptive bandwidth, 1150
variable-length EMA. VEMA, 1257
vertical detail enhancement, 755, 759
vertical horizontal filter, VHF, 1253
video signal, 704, 751
video spectrum, 750
Vondrak filters, 1272

waveform generators, 110, 767, 772
periodic, 110, 264, 772
sinusoidal, 767

wavelets, 494

a trous operation, 946
analysis and synthesis filter banks, 946
analysis and synthesis with UWT, 967
decimated and undecimated filter banks,

967
denoising, 963
dilation equations, 933
discrete wavelet transform, 949
DWT in convolutional form, 960
DWT in matrix form, 952
fast DWT, 957
Haar & Daubechies scaling functions, 929
inverse DWT, 954
inverse UWT, 969
Mallat’s algorithm, 944
MATLAB functions, 975
multiresolution analysis, 928
multiresolution and filter banks, 944
multiresolution decomposition, 931, 962
orthogonal DWT transformation, 958
periodized DWT, 954
refinement equations, 933
scaling and wavelet filters, 935, 939
symmlets, 936
UWT denoising, 974
UWT matrices, 969
UWT multiresolution decomposition, 972
UWT, undecimated wavelet transform, 966
visushrink method, 965

wavetable
amplitude modulation, 796
circular, 767, 781
frequency modulation, 798
fundamental frequency of, 784
generator, 182, 767, 781, 787, 793
in computer music, 782, 783
linearly interpolated, 787
offset index, 785
oscillator, 793
synthesis, 182, 767, 782, 783, 793
waveshaping, 783, 824

weighted local polynomial modeling, 1136
weighted polynomial filters, 1102
WEMA, Wilder’s EMA, 1227
Whittaker-Henderson smoothing, 1272
windowing, 31, 360, 361, 367

Chebyshev window, 378, 390
DPSS window, 377, 388
Hamming window, 51, 366, 367, 386, 477
in frequency domain, 362
Kaiser window, 366, 387, 481
leakage, 31, 366, 368
rectangular, 361
rectangular window, 382
sidelobes, 364, 366
width, 366
window parameters, 374

wrapping in DFT, 421

INDEX 1517

z-transforms, 31, 190
and causality, 199
and stability, 200
basic properties of, 190
modulation property of, 223
pole/zero pattern of, 205
region of convergence, 193, 195, 199

zero padding in DFT, 413, 450
zero-lag EMA, 1231
zero-lag filters, 723, 1194
zero-order hold, 997, 1018
zigzag indicator, 1237

	isp2e-1up-2up-cover
	isp2e-2up-format

