In text line above Eq. (2.13.12), instead of, $k^2 = \omega^2 \mu \epsilon = \omega^2 |\mu \epsilon|^2 e^{-j(\theta_c + \theta_a)}$, read, $k^2 = \omega^2 \mu \epsilon = \omega^2 |\mu \epsilon| e^{-j(\theta_c + \theta_a)}$.

In text line above Eq. (3.10.24), instead of, $T_{\text{compr}} = 2\pi T/\omega_0 = 1/B$, read, $T_{\text{compr}} = 2\pi / T \omega_0 = 1/B$.

In paragraph below Eq. (5.4.11), instead of “can be can be”, read, “can be”.

In Eq. (8.6.23), instead of, $n_l n_{M+2-i} = n_a n_b$, read, $n_l n_{M+1-i} = n_a n_b$, with a similar correction in the first line of p.234, that is, read, $Y_a Y_{M+1-i} = Y_a Y_b$, and, $Z_a Z_{M+1-i} = Z_a Z_b$.

Fourth text line from the bottom, instead of, “Using Eq. (7.5.5),” read, “Using Eq. (7.5.5) with $x n^2$ replaced by $x n^2 / n L$ in ρ_{TM}.”

In paragraph below Eq. (7.14.3), instead of, “we write (7.15.2)”, read, “we write (7.15.1)”.

In Eq. (7.15.15), the factor, $\sin^2 \theta_a$, should be, $\sin \theta_a$.

Third text line from the bottom, instead of, $\theta_0 = \sin(n_a \sin(\theta_a) / n_1)$, read, $\theta_0 = \sin(n_a \sin(\theta_a) / n_1)$

Text line below Eq. (8.5.3), instead of, “Sec. 7.7,” read, “Sec. 7.11”.

In Eq. (8.6.9), the ratios, $\frac{1 - \rho_{TM} \Gamma}{1 - \rho_{TM}}$, should be multiplied by a factor of E_0.

Last text line, instead of, $\alpha'_2 = \sqrt{\alpha_2^2 + k_0 (1 - n^2)}$, read, $\alpha'_2 = \sqrt{\alpha_2^2 + k_0^2 (1 - n^2)}$.

Example 8.8.2, uses the values, $n_H = 3$, $n_L = 1.38$, and, $L_L = 0.15$, and also instead of, $[F_1, F_2] = [1.0933, 1.3891]$, read, $[F_1, F_2] = [1.0933, 1.3791]$.

Third text line below Eq. (8.10.16), instead of, “$\rho_{TM} = \rho_{TE}$ at all angles of incidence”, read, “$\rho_{TM} = \rho_{TE}$ at all angles of incidence in the multilayer case – see for example, Eq.(8.13.3)”
p.377. In line 4 below Eq. (9.5.8), instead of $\sin k_x$, read, $\sin k_xx$. And, in the last equation below Eq. (9.5.9), the expression for H_2 should be corrected to read,

$$H_2 = \frac{1}{\eta TM} E_1 = -\frac{j \omega k_x}{\omega_c k_c} \frac{1}{\eta} E_0$$

p.396. In Eq. (9.11.37), instead of $\sin \theta^2 c$, read, $\sin^2 \theta c$.

p.600. Replace $\zeta^2 - 2$ by $\zeta^2 - 2 - \frac{1}{\omega_c}$ in the denominator of the second term of the first equation in Eq. (12.2.1).

p.606. Eq. (12.4.6) should read,

$$a_1(z) e^{-j \beta z} = \begin{bmatrix} \cos \sigma z - j \frac{\delta}{\sigma} \sin \sigma z & - \frac{\kappa}{\sigma} \sin \sigma z \\ - j \frac{\kappa}{\sigma} \sin \sigma z & \cos \sigma z + j \frac{\delta}{\sigma} \sin \sigma z \end{bmatrix} \begin{bmatrix} a_1(0) \\ a_2(0) \end{bmatrix}$$

p.609. The factor U_{12} in the numerator of Eq. (12.5.12) should be conjugated, U_{12}^\ast.

p.647. In the third formula from the top, the right-hand-side should be,

$$g_2 L \left(e_{\text{max}}/e - 1 \right)$$

Similarly, the right-hand-side of Eq.(13.10.6) should be,

$$g_2 L \left(e_{\text{max}}/e_{\text{min}} - 1 \right)$$

And, the expression for b in Eq.(13.10.7) should be,

$$b = \cot \beta l_2 \pm g_L \sqrt{\left(e_{\text{max}}/e_{\text{min}} - 1 \right)}$$

p.650. In the penultimate paragraph of Example 13.11.1, $X_2 = 1/j \omega C$ and $X_1 = j \omega L$, should be replaced by, $X_2 = -1/j \omega C$ and $X_1 = \omega L$.

And in the last paragraph, $X_2 = j \omega L$ and $X_1 = 1/j \omega C$, should be replaced by, $X_2 = \omega L$ and $X_1 = -1/j \omega C$.

p.656. In Example 13.12.3, the solution for Q_{min} should be, $Q_{\text{min}} = \sqrt{200/50 - 1} = 1.73$.

p.670. In Eq. (14.4.5), the expression, $S_{22}a_1 + S_{22} \Gamma_L b_2$, should read, $S_{21}a_1 + S_{22} \Gamma_L b_2$.

p.672. In Eq.(14.5.8), the bottom equation should be corrected to read,

$$\Gamma_{\text{out}} = S_{22} + \frac{S_{12} S_{22} \Gamma_G}{1 - S_{11} \Gamma_G} = \frac{S_{22} - \Delta \Gamma \Gamma_G}{1 - S_{11} \Gamma_G}$$

The same correction also applies to Eq.(14.8.1) on p.687.

p.673. The first line of the equation below Eq. (14.5.9) should read,

$$1 - |\Gamma_{\text{in}}|^2 = 1 - \left| \frac{S_{11} - \Delta \Gamma \Gamma_L}{1 - S_{22} \Gamma_L} \right|^2 = \frac{|1 - S_{22} \Gamma_L|^2 - |S_{11} - \Delta \Gamma \Gamma_L|^2}{|1 - S_{22} \Gamma_L|^2}$$

p.694. In Example 14.10.1, the numerical values of Z_G and Z_L should be interchanged, that is,

$$Z_L = 69.21 + 14.42 j \Omega, \quad Z_G = 23.15 - 24.02 j \Omega$$

p.698. In second paragraph from the top, instead of "corresponding matched load", read, "corresponding matched generator".

p.704. The two-line MATLAB code above Fig. 14.12.2 should read,
\[gG = \text{smatch}(S); \]
\[F = nfig(F_{\text{min}}, \text{rn}, g_{\text{opt}}, gG); \]

p.723. In lines 3 & 4 below Eq. (15.6.2), the term, \(k_x \hat{z} \), should be changed to, \(k_x \hat{x} \).

p.755. After Eq. (16.7.1), the Boltzmann constant should read, \(k = 1.3806 \times 10^{-23} \text{ W/Hz K} \).

p.765. In the last line of Example 16.8.3, the calculated value of \(G/T \) should be, 24.2082 dB.

p.782. In line 3 from the top, instead of “Appendix F”, read, “Appendix G”.

p.852. The last equation should have a double integral, i.e.,
\[E(x, y, z) \approx 2j k \cos \theta \frac{e^{-jkr}}{4\pi r} \int_{-\infty}^{\infty} E(x', y', 0) e^{k_x x' + k_y y'} \, dx' \, dy' \]

p.855. The first of Eqs. (19.4.7) should read, \(\hat{E}(k_x) = \int_{-\infty}^{\infty} E(x, 0) e^{jk_x x} \, dx \).

p.869. And in p.870, a minus sign should be inserted in the right-hand sides of Eqs. (19.8.19) and (19.8.25) for the quantities, \(F_x, F_y, A_x, A_y \).

p.887. In the top equation, instead of \(-3\pi/2\), read \(-\pi/2\), and in the line below it, instead of, “shadow region”, read, “transmission region”.

p.888. And in p.889, replace all instances of, \(\cosh(\theta +jt) \), by, \(\cos(\theta +jt) \).

p.897. Multiply the right-most side of Eq. (19.11.23) by a factor of 2.

p.899. In the 2nd text line above Eq. (19.11.36), instead of, (19.11.32), read, (19.11.34).

p.901. In Eq. (19.11.46), third equation, instead of, \(E_{\text{rad}} = -2j k \hat{r} \times F^l_{\text{rad}} = \cdots \), read, \(E_{\text{rad}} = -jk \hat{r} \times F^l_{\text{rad}} = \cdots \), also in the second line below Eq. (19.11.48), instead of, (19.11.49), read, (19.11.48).

p.903. In Eq. (19.11.58), the right-hand side of \(P_y \) should be multiplied by \((-1)\).

p.904. In Eq. (19.11.65) and in the equation preceding it, instead of, \(e^{k_y y'} \), read, \(e^{jk_y y'} \).

p.909. The summation in Eq. (19.12.24) should be, \(\sum_{n=-\infty}^{\infty} \).

p.926. In the first integral above Eq. (20.1.15), replace \(dz \) by \(dy \).

p.927. In the last integral of Eq. (20.1.16), replace \(dx \) by \(dx' \).

p.927. The right-hand sides of Eq. (20.1.17), Eq. (20.1.18), and of the equation below Eq. (20.1.18), should be multiplied by a factor of \(E_0 \).

p.931. In Eq. (20.2.2), the exponential, \(e^{-nk_\bot x} \), should be changed to, \(e^{-jn k_\bot x} \). And, at the bottom equation, instead of, \(e^{im' z/2\pi t} \big|_{z=\pm 2\pi t} \), read, \(e^{im' z/2\pi t} \big|_{z=2\pi t} \).

p.935. In the third line of Example 20.2.2, instead of, \(|E(x, z_{pq}|, \) read, \(|E(x, z_{pq})| \)

p.953. In the second line from the top, instead of, \(k_\bot = |k_\bot|, \) read, \(k_\bot = |k_\bot| \).

p.967. In the fourth line of Example 20.11.2, replace both instances of \(u_\bot \) by \(v_\bot \).
p.984. Eq. (20.15.8) should read, \[\sigma = \frac{\tilde{n}}{\sqrt{A^2 + (\tilde{n} - \frac{1}{2})^2}}. \] The square root in the denominator is also missing in Eq. (20.19.6) on p.998.

p.1001. The \(m \)-summations in Eqs. (20.20.3) and (20.20.4) should be, \[\sum_{m=-\infty}^{\infty}. \]

p.1001. All the phase exponentials, \(e^{i\pi m/N}, e^{2i\pi jm/N}, e^{2i\pi np}, \) in Eq. (20.20.5), and Eqs. (20.20.6) and (20.20.7) on p.1002, should be complex conjugated.

p.1002. The \(p \)-summation in Eq. (20.20.7) should be, \[\sum_{p \neq 0}. \] And, in the first line below Eq. (20.20.7), instead of, “the \(p \geq 1 \) terms”, read, “the \(p \neq 0 \) terms”

p.1021. In the text line before Eq (20.22.13), instead of, \(\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_M \), read, \(\lambda_0 \geq \lambda_1 \geq \cdots \geq \lambda_M \).

p.1032. In the fourth line of the section Focusing of Plane Waves, instead of “low-frequency evanescent modes”, read, “higher-frequency evanescent modes”.

p.1049. In line 1 below Eq. (21.3.3), instead of, \(F_1(v,s) \), read, \(F_1(v,\sigma) \).

p.1050. Inside the integral of the equation preceding Eq. (21.3.5), instead of, \(e^{j\pi v \xi}, \) read, \(e^{j\pi v \chi} \).

p.1051. In Eq. (21.3.15), instead of, \(f_0(v_y, \sigma_a), \) read, \(f_0(v_y, \sigma_b) \).

p.1062. In the second equation of Eq. (21.6.5), instead of, \(z, \) read, \(\bar{z} \). And, in the equation below the fourth text paragraph, instead of, \(F_{m,24} = \hat{x} \cdots, \) read, \(F_{m,24} = -\hat{x} \cdots \). Moreover, in Eq. (21.6.7), instead of \(F_{m,12}, \) read, \(F_{m,13} \).

p.1071. In last line of third paragraph of Section 21.9, instead of, \(\hat{x}' = -\hat{z}, \) read, \(\hat{x}' = -\hat{z} \).

p.1100. Line 2 of Sec. 22.4, instead of “see Fig. 22.3.4”, read, “see Fig. 22.1.1”.

p.1143. The first line of the MATLAB code at the bottom of the page should be, \[[a, \ dph] = \text{binomial}(0.5, \ 90, \ 7); \]

p.1148. Example 23.9.1 shows the case of a 5-element array. The 7-element case corresponds to the following changes in the code, table, and weights,

\[
[a, \ dph] = \text{dolph}(0.5, \ 90, \ 7, \ 20);
\]

\[
\begin{array}{ccc}
 i & \chi_i & \psi_i & z_i \\
 1 & 0.9659 & 1.0826 & 0.4691 + 0.8832j \\
 2 & 0.7071 & 1.7852 & -0.2127 + 0.9771j \\
 3 & 0.2588 & 2.6782 & -0.8945 + 0.4470j \\
 4 & -0.2588 & 3.6050 & -0.8945 - 0.4470j \\
 5 & -0.7071 & 4.4980 & -0.2127 - 0.9771j \\
 6 & -0.9659 & 5.2006 & 0.4691 - 0.8832j \\
\end{array}
\]

\[
\chi_0 = 1.1270, \quad w = [1, \ 1.2764, \ 1.6837, \ 1.8387, \ 1.6837, \ 1.6837, \ 1.2764, \ 1]
\]

In penultimate line of Example 23.9.2, instead of \(R = 20 \), read, \(R = 25 \).

p.1149. Line 4 below the table, instead of \(kd < \pi/2 \), read, \(kd < \pi \).
p.1158. Line 6 above Eq. (23.10.10), instead of \(y = \sinh(x)x \), read, \(y = \sinh(x)/x \).
Line 2 above Eq. (23.10.11), instead of “is \(\psi \)-space”, read, “in \(\psi \)-space”.

p.1168. and p.1169, the MATLAB function, multibeam, should be, multibeam.

p.1197. Line 5 from bottom, “Then, Eq. (24.9.3)”, should read, “Then, Eq. (24.8.9)”.

p.1210. In the bottom integral of Eq. (24.12.15), instead of \(dy \), read \(dz \).

p.1237. Line 2, instead of, Appendix F, read, Appendix G.
Line 4, instead of, range \([-h_1, h_1]\), read, range \([-h_2, h_2]\).
Upper limit of the integral in Eq. (25.3.14) should be \(h_2 \) instead of \(h_1 \).
In the equation below Eq. (25.3.14), \(u_1 \) should read,
\[
u_1 = k \left[\sqrt{d^2 + (h_2 - z_0)^2} + s(h_2 - z_0) \right]
\]
Eq. (25.3.16) should be read,
\[
\int_{-h_2}^{h_2} F(z) \, dz = \sum_{i=1}^{12} c_i G(z_i, s_i)
\]
and the table below it should read,

\[
\begin{array}{ccc|ccc|}
 i & z_i & s_i & c_i & i & z_i & s_i & c_i \\
1 & h_1 - b & 1 & c_1 & 7 & h_1 - b & -1 & c_1^* \\
2 & -h_1 + b & 1 & c_1 & 8 & -h_1 + b & -1 & c_1^* \\
3 & -h_1 - b & 1 & c_1 & 9 & -h_1 - b & -1 & c_1^* \\
4 & h_1 + b & 1 & c_1 & 10 & h_1 + b & -1 & c_1^* \\
5 & b & 1 & -2c_1 \cos k h_1 & 11 & -b & -1 & -2c_1^* \cos k h_1 \\
6 & -b & 1 & -2c_1 \cos k h_1 & 12 & -b & -1 & -2c_1^* \cos k h_1 \\
\end{array}
\]
The function \texttt{imped2.m} contained in \texttt{ewa.zip} has been updated accordingly.

p.1244. In the three equations between Eq. (25.5.8) and (25.5.9), \(\cos (k h \cos \theta) \), should read, \(\cos (k h \cos \theta) \).

p.1273. Eq. (D.6) in Appendix D should read,
\[
\nabla \times \nabla \times \left[p G(r) \right] = \frac{2}{3} p \delta^{(3)}(r) + \left[(jk + \frac{1}{r}) \frac{3 \hat{r} \cdot \hat{r} p - p}{r} + k^2 \hat{r} \times (p \times \hat{r}) \right] G(r)
\]

p.1285. In Eq. (F.28) of Appendix F, the quantity \(I(\phi, k \rho) \) should be replaced by \(I(\phi) \).