25.2 Using the higher-order terms in the series (25.3.23), show that the input impedance $Z_{\text {in }}=$ $R+j X$ of a small dipole is given as follows to order $(k l)^{4}$, where $L=\ln (2 a / l)$:

$$
R=\frac{\eta}{2 \pi}\left[\frac{1}{12}(k l)^{2}+\frac{1}{360}(k l)^{4}\right], \quad X=\frac{\eta}{2 \pi}\left[\frac{4(1+L)}{k l}-\frac{1}{3}\left(L+\frac{2}{3}\right)(k l)-\frac{1}{180}\left(L-\frac{11}{30}\right)(k h)^{3}\right]
$$

25.3 Consider a small dipole with a linear current given by Eq. (25.3.25). Determine the radiation vector, and the radiated electric and magnetic fields at a far distance r from the dipole. Calculate the radiated power $P_{\text {rad }}$ by integrating the radial Poynting vector over a large sphere. Then identify the radiation resistance R through the definition:

$$
P_{\mathrm{rad}}=\frac{1}{2} R\left|I_{0}\right|^{2}
$$

and show R is the same as that given by Eq. (25.3.24)

A. Physical Constants

We use SI units throughout this text. Simple ways to convert between SI and other popular units, such as Gaussian, may be found in Refs. [123-126].

The Committee on Data for Science and Technology (CODATA) of NIST maintains the values of many physical constants [112]. The most current values can be obtained from the CODATA web site [1823]. Some commonly used constants are listed below:

quantity	symbol	value	units
speed of light in vacuum	\mathcal{C}_{0}, c	299792458	$\mathrm{~m} \mathrm{~s}^{-1}$
permittivity of vacuum	ϵ_{0}	$8.854187817 \times 10^{-12}$	$\mathrm{~F} \mathrm{~m}^{-1}$
permeability of vacuum	μ_{0}	$4 \pi \times 10^{-7}$	$\mathrm{H} \mathrm{m}^{-1}$
characteristic impedance	η_{0}, Z_{0}	376.730313461	Ω
electron charge	e	$1.602176462 \times 10^{-19}$	C
electron mass	m_{e}	$9.109381887 \times 10^{-31}$	kg
Boltzmann constant	k	$1.380650324 \times 10^{-23}$	$\mathrm{~J} \mathrm{~K}^{-1}$
Avogadro constant	N_{A}, L	$6.022141994 \times 10^{23}$	$\mathrm{~mol}^{-1}$
Planck constant	h	$6.62606876 \times 10^{-34}$	$\mathrm{~J} / \mathrm{Hz}^{2}$
Gravitational constant	G	6.67259×10^{-11}	$\mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
Earth mass	M_{\oplus}	5.972×10^{24}	$\mathrm{~kg}^{2}$
Earth equatorial radius	a_{e}	6378	km

In the table, the constants c, μ_{0} are taken to be exact, whereas ϵ_{0}, η_{0} are derived from the relationships:

$$
\epsilon_{0}=\frac{1}{\mu_{0} c^{2}}, \quad \eta_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=\mu_{0} c
$$

The energy unit of electron volt (eV) is defined to be the work done by an electron in moving across a voltage of one volt, that is, $1 \mathrm{eV}=1.602176462 \times 10^{-19} \mathrm{C} \cdot 1 \mathrm{~V}$, or

$$
1 \mathrm{eV}=1.602176462 \times 10^{-19} \mathrm{~J}
$$

In units of $\mathrm{eV} / \mathrm{Hz}$, Planck's constant h is:

$$
h=4.13566727 \times 10^{-15} \mathrm{eV} / \mathrm{Hz}=1 \mathrm{eV} / 241.8 \mathrm{THz}
$$

that is, 1 eV corresponds to a frequency of 241.8 THz , or a wavelength of $1.24 \mu \mathrm{~m}$.

B. Electromagnetic Frequency Bands

The ITU^{\dagger} divides the radio frequency (RF) spectrum into the following frequency and wavelength bands in the range from 30 Hz to 3000 GHz :

RF Spectrum					
	band designations	frequency	wavelength		
ELF	Extremely Low Frequency	$30-300$	Hz	$1-10$	Mm
VF	Voice Frequency	$300-3000$	Hz	$100-1000$	km
VLF	Very Low Frequency	$3-30$	kHz	$10-100$	km
LF	Low Frequency	$30-300$	kHz	$1-10$	km
MF	Medium Frequency	$300-3000$	kHz	$100-1000$	m
HF	High Frequency	$3-30$	MHz	$10-100$	m
VHF	Very High Frequency	$30-300$	MHz	$1-10$	m
UHF	Ultra High Frequency	$300-3000$	MHz	$10-100$	cm
SHF	Super High Frequency	$3-30$	GHz	$1-10$	cm
EHF	Extremely High Frequency	$30-300$	GHz	$1-10$	mm
	Submillimeter	$300-3000$	GHz	$100-1000$	$\mu \mathrm{~m}$

An alternative subdivision of the low-frequency bands is to designate the bands $3-30 \mathrm{~Hz}, 30-300 \mathrm{~Hz}$, and $300-3000 \mathrm{~Hz}$ as extremely low frequency (ELF), super low frequency (SLF), and ultra low frequency (ULF), respectively.

Microwaves span the $300 \mathrm{MHz}-300 \mathrm{GHz}$ frequency range. Typical microwave and satellite communication systems and radar use the $1-30 \mathrm{GHz}$ band. The $30-300 \mathrm{GHz}$ EHF band is also referred to as the millimeter band.

The $1-100 \mathrm{GHz}$ range is subdivided further into the subbands shown on the right.

Microwave Bands band		
L	$1-2$	GHz
frequency		

Some typical RF applications are as follows. AM radio is broadcast at 535-1700 kHz falling within the MF band. The HF band is used in short-wave radio, navigation, amateur, and CB bands. FM radio at $88-108 \mathrm{MHz}$, ordinary TV, police, walkie-talkies, and remote control occupy the VHF band.

Cell phones, personal communication systems (PCS), pagers, cordless phones, global positioning systems (GPS), RF identification systems (RFID), UHF-TV channels, microwave ovens, and long-range surveillance radar fall within the UHF band.

[^0]The SHF microwave band is used in radar (traffic control, surveillance, tracking, missile guidance, mapping, weather), satellite communications, direct-broadcast satellite (DBS), and microwave relay systems. Multipoint multichannel (MMDS) and local multipoint (LMDS) distribution services, fall within UHF and SHF at 2.5 GHz and 30 GHz .

Industrial, scientific, and medical (ISM) bands are within the UHF and low SHF, at 900 $\mathrm{MHz}, 2.4 \mathrm{GHz}$, and 5.8 GHz. Radio astronomy occupies several bands, from UHF to L-W microwave bands.

Beyond RF, come the infrared (IR), visible, ultraviolet (UV), X-ray, and γ-ray bands. The IR range extends over $3-300 \mathrm{THz}$, or $1-100 \mu \mathrm{~m}$. Many IR applications fall in the $1-20 \mu \mathrm{~m}$ band. For example, optical fiber communications typically use laser light at $1.55 \mu \mathrm{~m}$ or 193 THz because of the low fiber losses at that frequency. The UV range lies beyond the visible band, extending typically over 10-400 nm .

band	wavelength	frequency	energy
infrared	$100-1 \mu \mathrm{~m}$	$3-300 \mathrm{THz}$	
ultraviolet	$400-10 \mathrm{~nm}$	$750 \mathrm{THz}-30 \mathrm{PHz}$	
X-Ray	$10 \mathrm{~nm}-100 \mathrm{pm}$	$30 \mathrm{PHz}-3 \mathrm{EHz}$	$0.124-124 \mathrm{keV}$
γ-ray	$<100 \mathrm{pm}$	$>3 \mathrm{EHz}$	$>124 \mathrm{keV}$

The CIE † defines the visible spectrum to be the wavelength range $380-780 \mathrm{~nm}$, or 385-789 THz. Colors fall within the following typical wavelength/frequency ranges:

	Visible Spectrum	
color	wavelength	frequency
red	$780-620 \mathrm{~nm}$	$385-484 \mathrm{THz}$
orange	$620-600 \mathrm{~nm}$	$484-500 \mathrm{THz}$
yellow	$600-580 \mathrm{~nm}$	$500-517 \mathrm{THz}$
green	$580-490 \mathrm{~nm}$	$517-612 \mathrm{THz}$
blue	$490-450 \mathrm{~nm}$	$612-667 \mathrm{THz}$
violet	$450-380 \mathrm{~nm}$	$667-789 \mathrm{THz}$

X-ray frequencies fall in the PHz (petahertz) range and γ-ray frequencies in the EHz (exahertz) range. ${ }^{\ddagger}$ X-rays and γ-rays are best described in terms of their energy, which is related to frequency through Planck's relationship, $E=h f$. X-rays have typical energies of the order of keV , and γ-rays, of the order of MeV and beyond. By comparison, photons in the visible spectrum have energies of a couple of eV .

The earth's atmosphere is mostly opaque to electromagnetic radiation, except for three significant "windows", the visible, the infrared, and the radio windows. These three bands span the wavelength ranges of $380-780 \mathrm{~nm}, 1-12 \mu \mathrm{~m}$, and $5 \mathrm{~mm}-20 \mathrm{~m}$, respectively.

Within the 1-10 $\mu \mathrm{m}$ infrared band there are some narrow transparent windows. For the rest of the IR range ($1-1000 \mu \mathrm{~m}$), water and carbon dioxide molecules absorb infrared radiation-this is responsible for the Greenhouse effect. There are also some minor transparent windows for 17-40 and 330-370 $\mu \mathrm{m}$.

[^1]Beyond the visible band, ultraviolet and X-ray radiation are absorbed by ozone and molecular oxygen (except for the ozone holes.)

C. Vector Identities and Integral Theorems

Algebraic Identities

$$
\begin{align*}
|\boldsymbol{A}|^{2}|\boldsymbol{B}|^{2} & =|\boldsymbol{A} \cdot \boldsymbol{B}|^{2}+|\boldsymbol{A} \times \boldsymbol{B}|^{2} \tag{C.1}\\
(\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{C} & =(\boldsymbol{B} \times \boldsymbol{C}) \cdot \boldsymbol{A}=(\boldsymbol{C} \times \boldsymbol{A}) \cdot \boldsymbol{B} \tag{C.2}\\
\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C}) & =\boldsymbol{B}(\boldsymbol{A} \cdot \boldsymbol{C})-\boldsymbol{C}(\boldsymbol{A} \cdot \boldsymbol{B}) \tag{С.3}\\
(\boldsymbol{A} \times \boldsymbol{B}) \cdot(\boldsymbol{C} \times \boldsymbol{D}) & =(\boldsymbol{A} \cdot \boldsymbol{C})(\boldsymbol{B} \cdot \boldsymbol{D})-(\boldsymbol{A} \cdot \boldsymbol{D})(\boldsymbol{B} \cdot \boldsymbol{C}) \\
(\boldsymbol{A} \times \boldsymbol{B}) \times(\boldsymbol{C} \times \boldsymbol{D}) & =[(\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{D}] \boldsymbol{C}-[(\boldsymbol{A} \times \boldsymbol{B}) \cdot \boldsymbol{C}] \boldsymbol{D} \tag{С.4}\\
\boldsymbol{A} & =\hat{\mathbf{n}} \times(\boldsymbol{A} \times \hat{\mathbf{n}})+(\hat{\mathbf{n}} \cdot \boldsymbol{A}) \hat{\mathbf{n}}=\boldsymbol{A}_{\perp}+\boldsymbol{A}_{\|} \tag{C.5}
\end{align*}
$$

where $\hat{\mathbf{n}}$ is any unit vector, and $\boldsymbol{A}_{\perp}, \boldsymbol{A}_{\|}$are the components of \boldsymbol{A} perpendicular and parallel to $\hat{\mathbf{n}}$. Note also that $\hat{\mathbf{n}} \times(\boldsymbol{A} \times \hat{\mathbf{n}})=(\hat{\mathbf{n}} \times \boldsymbol{A}) \times \hat{\mathbf{n}}$. A three-dimensional vector can equally well be represented as a column vector:

$$
\boldsymbol{a}=a_{x} \hat{\mathbf{x}}+a_{y} \hat{\mathbf{y}}+a_{z} \hat{\mathbf{z}} \quad \Leftrightarrow \quad \boldsymbol{a}=\left[\begin{array}{l}
a_{x} \tag{С.7}\\
a_{y} \\
b_{z}
\end{array}\right]
$$

Consequently, the dot and cross products may be represented in matrix form:

$$
\begin{align*}
\boldsymbol{a} \cdot \boldsymbol{b} & \Leftrightarrow \quad \boldsymbol{a}^{T} \boldsymbol{b}=\left[a_{x}, a_{y}, a_{z}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \tag{С.8}\\
\boldsymbol{a} \times \boldsymbol{b} & \Leftrightarrow \quad A \boldsymbol{b}=\left[\begin{array}{rrr}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\begin{array}{l}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right] \tag{С.9}
\end{align*}
$$

The cross-product matrix A satisfies the following identity:

$$
\begin{equation*}
A^{2}=\boldsymbol{a} \boldsymbol{a}^{T}-\left(\boldsymbol{a}^{T} \boldsymbol{a}\right) I \tag{C.10}
\end{equation*}
$$

where I is the 3×3 identity matrix. Applied to a unit vector $\hat{\mathbf{n}}$, this identity reads:

$$
I=\hat{\mathbf{n}} \hat{\mathbf{n}}^{T}-\hat{N}^{2}, \quad \text { where } \hat{\mathbf{n}}=\left[\begin{array}{l}
\hat{n}_{x} \tag{C.11}\\
\hat{n}_{y} \\
\hat{n}_{z}
\end{array}\right], \quad \hat{N}=\left[\begin{array}{ccc}
0 & -\hat{n}_{z} & \hat{n}_{y} \\
\hat{n}_{z} & 0 & -\hat{n}_{X} \\
-\hat{n}_{y} & \hat{n}_{x} & 0
\end{array}\right], \quad \hat{\mathbf{n}}^{T} \hat{\mathbf{n}}=1
$$

This corresponds to the matrix form of the parallel/transverse decomposition (C.6). Indeed, we have $\boldsymbol{a}_{\|}=\hat{\mathbf{n}}\left(\hat{\mathbf{n}}^{T} \boldsymbol{a}\right)$ and $\boldsymbol{a}_{\perp}=(\hat{\mathbf{n}} \times \boldsymbol{a}) \times \hat{\mathbf{n}}=-\hat{\mathbf{n}} \times(\hat{\mathbf{n}} \times \boldsymbol{a})=-\hat{N}(\hat{N} \boldsymbol{a})=-\hat{N}^{2} \boldsymbol{a}$. Therefore, $\boldsymbol{a}=I \boldsymbol{a}=\left(\hat{\mathbf{n}} \hat{\mathbf{n}}^{T}-\hat{N}^{2}\right) \boldsymbol{a}=\boldsymbol{a}_{\|}+\boldsymbol{a}_{\perp}$.

Differential Identities

$$
\begin{align*}
& \nabla \times(\nabla \psi)=0 \tag{С.12}\\
& \nabla \cdot(\nabla \times \boldsymbol{A})=0 \tag{С.13}\\
& \nabla \cdot(\psi \boldsymbol{A})=\boldsymbol{A} \cdot \nabla \psi+\psi \nabla \cdot \boldsymbol{A} \tag{C.14}\\
& \nabla \times(\psi \boldsymbol{A})=\psi \nabla \times \boldsymbol{A}+\nabla \psi \times \boldsymbol{A} \tag{C.15}\\
& \nabla(\boldsymbol{A} \cdot \boldsymbol{B})=(\boldsymbol{A} \cdot \nabla) \boldsymbol{B}+(\boldsymbol{B} \cdot \nabla) \boldsymbol{A}+\boldsymbol{A} \times(\nabla \times \boldsymbol{B})+\boldsymbol{B} \times(\nabla \times \boldsymbol{A}) \tag{C.16}\\
& \nabla \cdot(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{B} \cdot(\nabla \times \boldsymbol{A})-\boldsymbol{A} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B}) \tag{C.17}\\
& \nabla \times(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{A}(\nabla \cdot \boldsymbol{B})-\boldsymbol{B}(\nabla \cdot \boldsymbol{A})+(\boldsymbol{B} \cdot \nabla) \boldsymbol{A}-(\boldsymbol{A} \cdot \nabla) \boldsymbol{B} \tag{C.18}\\
& \nabla \times(\nabla \times \boldsymbol{A})=\nabla(\nabla \cdot \boldsymbol{A})-\nabla^{2} \boldsymbol{A} \tag{С.19}\\
& \nabla_{x} \nabla B_{x}+A_{y} \nabla B_{y}+A_{z} \nabla B_{z}=(\boldsymbol{A} \cdot \nabla) \boldsymbol{B}+\boldsymbol{A} \times(\nabla \times \boldsymbol{B}) \tag{С.20}\\
& B_{x} \nabla A_{x}+B_{y} \nabla A_{y}+B_{z} \nabla A_{z}=(\boldsymbol{B} \cdot \nabla) \boldsymbol{A}+\boldsymbol{B} \times(\nabla \times \boldsymbol{A}) \tag{C.21}\\
&(\hat{\mathbf{n}} \times \nabla) \times \boldsymbol{A}=\hat{\mathbf{n}} \times(\nabla \times \boldsymbol{A})+(\hat{\mathbf{n}} \cdot \nabla) \boldsymbol{A}-\hat{\mathbf{n}}(\nabla \cdot \boldsymbol{A}) \tag{С.22}\\
& \boldsymbol{\nabla} \times(\hat{\mathbf{n}} \cdot \nabla) \boldsymbol{E}-\boldsymbol{E}(\hat{\mathbf{n}} \cdot \nabla \psi)=[(\hat{\mathbf{n}} \cdot \nabla)(\psi \boldsymbol{E})+\hat{\mathbf{n}} \times(\nabla \times(\psi \boldsymbol{E}))-\hat{\mathbf{n}} \nabla \cdot(\psi \boldsymbol{E})] \\
&+[\hat{\mathbf{n}} \psi \nabla \cdot \boldsymbol{E}-(\hat{\mathbf{n}} \times \boldsymbol{E}) \times \nabla \psi-\psi \hat{\mathbf{n}} \times(\nabla \times \boldsymbol{E})-(\hat{\mathbf{n}} \cdot \boldsymbol{E}) \nabla \psi] \tag{С.23}
\end{align*}
$$

With $\boldsymbol{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}, r=|\boldsymbol{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$, and the unit vector $\hat{\mathbf{r}}=\boldsymbol{r} / r$, we have:

$$
\begin{equation*}
\nabla r=\hat{\mathbf{r}}, \quad \nabla r^{2}=2 \boldsymbol{r}, \quad \nabla \frac{1}{r}=-\frac{\hat{\mathbf{r}}}{r^{2}}, \quad \nabla \cdot \boldsymbol{r}=3, \quad \nabla \times \boldsymbol{r}=0, \quad \nabla \cdot \hat{\mathbf{r}}=\frac{2}{r} \tag{C.24}
\end{equation*}
$$

Integral Theorems for Closed Surfaces

The theorems involve a volume V surrounded by a closed surface S. The divergence or Gauss' theorem is:

$$
\begin{equation*}
\int_{V} \nabla \cdot \boldsymbol{A} d V=\oint_{S} \boldsymbol{A} \cdot \hat{\mathbf{n}} d S \quad \text { (Gauss' divergence theorem) } \tag{C.25}
\end{equation*}
$$

where $\hat{\mathbf{n}}$ is the outward normal to the surface. Green's first and second identities are:

$$
\begin{gather*}
\int_{V}\left[\varphi \nabla^{2} \psi+\nabla \varphi \cdot \nabla \psi\right] d V=\oint_{S} \varphi \frac{\partial \psi}{\partial n} d S \tag{C.26}\\
\int_{V}\left[\varphi \nabla^{2} \psi-\psi \nabla^{2} \varphi\right] d V=\oint_{S}\left(\varphi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \varphi}{\partial n}\right) d S \tag{C.27}
\end{gather*}
$$

where $\frac{\partial}{\partial n}=\hat{\mathbf{n}} \cdot \nabla$ is the directional derivative along $\hat{\mathbf{n}}$. Some related theorems are:

$$
\begin{gather*}
\int_{V} \nabla^{2} \psi d V=\oint_{S} \hat{\mathbf{n}} \cdot \nabla \psi d S=\oint_{S} \frac{\partial \psi}{\partial n} d S \tag{C.28}\\
\int_{V} \nabla \psi d V=\oint_{S} \psi \hat{\mathbf{n}} d S \tag{C.29}\\
\int_{V} \nabla^{2} \boldsymbol{A} d V=\oint_{S}(\hat{\mathbf{n}} \cdot \nabla) \boldsymbol{A} d S=\oint_{S} \frac{\partial \boldsymbol{A}}{\partial n} d S \tag{С.30}\\
\oint_{S}(\hat{\mathbf{n}} \times \nabla) \times \boldsymbol{A} d S=\oint_{S}[\hat{\mathbf{n}} \times(\boldsymbol{\nabla} \times \boldsymbol{A})+(\hat{\mathbf{n}} \cdot \nabla) \boldsymbol{A}-\hat{\mathbf{n}}(\nabla \cdot \boldsymbol{A})] d S=0 \tag{C.31}\\
\int_{V} \nabla \times \boldsymbol{A} d V=\oint_{S} \hat{\mathbf{n}} \times \boldsymbol{A} d S \tag{C.32}
\end{gather*}
$$

Using Eqs. (C.23) and (C.31), we find:

$$
\begin{align*}
& \oint_{S}\left(\psi \frac{\partial \boldsymbol{E}}{\partial n}-\boldsymbol{E} \frac{\partial \psi}{\partial n}\right) d S= \\
& \quad=\oint_{S}[\hat{\mathbf{n}} \psi \nabla \cdot \boldsymbol{E}-(\hat{\mathbf{n}} \times \boldsymbol{E}) \times \nabla \psi-\psi \hat{\mathbf{n}} \times(\nabla \times \boldsymbol{E})-(\hat{\mathbf{n}} \cdot \boldsymbol{E}) \nabla \psi] d S \tag{С.33}
\end{align*}
$$

The vectorial forms of Green's identities are [1293,1289]:

$$
\begin{gather*}
\int_{V}(\nabla \times \boldsymbol{A} \cdot \boldsymbol{\nabla} \times \boldsymbol{B}-\boldsymbol{A} \cdot \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{B}) d V=\oint_{S} \hat{\mathbf{n}} \cdot(\boldsymbol{A} \times \boldsymbol{\nabla} \times \boldsymbol{B}) d S \tag{C.34}\\
\int_{V}(\boldsymbol{B} \cdot \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{A}-\boldsymbol{A} \cdot \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{B}) d V=\oint_{S} \hat{\mathbf{n}} \cdot(\boldsymbol{A} \times \boldsymbol{\nabla} \times \boldsymbol{B}-\boldsymbol{B} \times \boldsymbol{\nabla} \times \boldsymbol{A}) d S \tag{C.35}
\end{gather*}
$$

Integral Theorems for Open Surfaces

Stokes' theorem involves an open surface S and its boundary contour C :

$$
\int_{S} \hat{\mathbf{n}} \cdot \nabla \times \boldsymbol{A} d S=\oint_{C} \boldsymbol{A} \cdot d \mathbf{l} \quad \text { (Stokes' theorem) }
$$

where $d \mathbf{l}$ is the tangential path length around C. Some related theorems are:

$$
\begin{gather*}
\int_{S}[\psi \hat{\mathbf{n}} \cdot \nabla \times \boldsymbol{A}-(\hat{\mathbf{n}} \times \boldsymbol{A}) \cdot \nabla \psi] d S=\oint_{C} \psi \boldsymbol{A} \cdot d \mathbf{l} \tag{C.37}\\
\int_{S}[(\nabla \psi) \hat{\mathbf{n}} \cdot \boldsymbol{\nabla} \times \boldsymbol{A}-((\hat{\mathbf{n}} \times \boldsymbol{A}) \cdot \nabla) \nabla \psi] d S=\oint_{C}(\nabla \psi) \boldsymbol{A} \cdot d \mathbf{l} \\
\int_{S} \hat{\mathbf{n}} \times \nabla \psi d S=\oint_{C} \psi d \mathbf{l}
\end{gather*}
$$

$$
\begin{gather*}
\int_{S}(\hat{\mathbf{n}} \times \nabla) \times \boldsymbol{A} d S=\int_{S}[\hat{\mathbf{n}} \times(\nabla \times \boldsymbol{A})+(\hat{\mathbf{n}} \cdot \nabla) \boldsymbol{A}-\hat{\mathbf{n}}(\nabla \cdot \boldsymbol{A})] d S=\oint_{C} d \mathbf{l} \times \boldsymbol{A} \\
\int_{S} \hat{\mathbf{n}} d S=\frac{1}{2} \oint_{C} \boldsymbol{r} \times d \mathbf{l} \tag{C.41}
\end{gather*}
$$

Eq. (C.41) is a special case of (C.40). Using Eqs. (C.23) and (C.40) we find:

$$
\begin{align*}
& \int_{S}\left(\psi \frac{\partial \boldsymbol{E}}{\partial n}-\boldsymbol{E} \frac{\partial \psi}{\partial n}\right) d S+\oint_{C} \psi \boldsymbol{E} \times d \mathbf{l}= \tag{C.42}\\
& \quad=\int_{S}[\hat{\mathbf{n}} \psi \nabla \cdot \boldsymbol{E}-(\hat{\mathbf{n}} \times \boldsymbol{E}) \times \nabla \psi-\psi \hat{\mathbf{n}} \times(\nabla \times \boldsymbol{E})-(\hat{\mathbf{n}} \cdot \boldsymbol{E}) \nabla \psi] d S
\end{align*}
$$

Stokes and Divergence Theorems in 2-D

$$
\begin{align*}
& \int_{S}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{y}}{\partial x}\right) d S=\oint_{C}\left(A_{x} d x+A_{y} d y\right) \\
& \int_{S} \hat{\mathbf{z}} \cdot \nabla_{\perp} \times \boldsymbol{A} d S=\oint_{C} \boldsymbol{A} \cdot \boldsymbol{d} \mathbf{l}
\end{align*}
$$

where, $\boldsymbol{A}=\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}, d \mathbf{l}=\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y$, and $\nabla_{\perp}=\hat{\mathbf{x}} \partial_{x}+\hat{\mathbf{y}} \partial_{y}$, and taking S to lie on the $x y$ plane. Replacing $\boldsymbol{A}=\hat{\mathbf{z}} \times \boldsymbol{B}$, or, setting, $B_{x}=A_{y}, B_{y}=-A_{x}$, and noting that $d \mathbf{l} \times \hat{\mathbf{z}}=\hat{\mathbf{n}} d l$, where $\hat{\mathbf{n}}$ is the outward normal to C,

$$
\begin{align*}
& \int_{S}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}\right) d S=\oint_{C}\left(B_{x} d y-B_{y} d x\right) \\
& \int_{S} \nabla_{\perp} \cdot \boldsymbol{B} d S=\oint_{C} \boldsymbol{B} \cdot \hat{\mathbf{n}} d l
\end{align*}
$$

and as consequence of (C.44), we have for a scalar ψ,

$$
\begin{equation*}
\int_{S} \nabla_{\perp} \psi d S=\oint_{C} \psi \hat{\mathbf{n}} d l \quad \underbrace{S}_{C} d \boldsymbol{l} \tag{C.45}
\end{equation*}
$$

D. Green's Functions

The Green's functions for the three-dimensional Laplace and Helmholtz equations, and for the one-dimensional Helmholtz equation, are listed below (the two-dimensional case is discussed at the end of this section):

$$
\begin{array}{ll}
\nabla^{2} g(\boldsymbol{r})=-\delta^{(3)}(\boldsymbol{r}) & \Rightarrow g(\boldsymbol{r})=\frac{1}{4 \pi r} \\
\left(\nabla^{2}+k^{2}\right) G(\boldsymbol{r})=-\delta^{(3)}(\boldsymbol{r}) & \Rightarrow \quad G(\boldsymbol{r})=\frac{e^{-j k r}}{4 \pi r} \tag{D.2}
\end{array}
$$

$$
\begin{equation*}
\left(\partial_{z}^{2}+k^{2}\right) G(z)=-\delta(z) \quad \Rightarrow \quad G(z)=\frac{e^{-j k|z|}}{2 j k} \tag{D.3}
\end{equation*}
$$

where $r=|\boldsymbol{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. Eqs. (D.2) and (D.3) are appropriate for describing outgoing waves. We considered other versions of (D.3) in Sec. 24.3. A more general identity satisfied by the Green's function $g(\boldsymbol{r})$ of Eq. (D.1) is as follows (for a proof, see Refs. [143,144]):

$$
\begin{equation*}
\partial_{i} \partial_{j} g(\boldsymbol{r})=-\frac{1}{3} \delta_{i j} \delta^{(3)}(\boldsymbol{r})+\frac{3 x_{i} x_{j}-r^{2} \delta_{i j}}{r^{4}} g(\boldsymbol{r}) \quad i, j=1,2,3 \tag{D.4}
\end{equation*}
$$

where $\partial_{i}=\partial / \partial x_{i}$ and x_{i} stands for any of x, y, z. By summing the i, j indices, Eq. (D.4) reduces to (D.1). Using this identity, we find for the Green's function $G(\boldsymbol{r})=e^{-j k r} / 4 \pi r$:

$$
\begin{equation*}
\partial_{i} \partial_{j} G(\boldsymbol{r})=-\frac{1}{3} \delta_{i j} \delta^{(3)}(\boldsymbol{r})+\left[\left(j k+\frac{1}{r}\right) \frac{3 x_{i} x_{j}-r^{2} \delta_{i j}}{r^{3}}-k^{2} \frac{x_{i} x_{j}}{r^{2}}\right] G(\boldsymbol{r}) \tag{D.5}
\end{equation*}
$$

This reduces to Eq. (D.2) upon summing the indices. For any fixed vector p, Eq. (D.5) is equivalent to the vectorial identity:
$\nabla \times \nabla \times[\mathbf{p} G(\boldsymbol{r})]=\frac{2}{3} \mathbf{p} \delta^{(3)}(\boldsymbol{r})+\left[\left(j k+\frac{1}{r}\right) \frac{3 \hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \mathbf{p})-\mathbf{p}}{r^{2}}+k^{2} \hat{\mathbf{r}} \times(\mathbf{p} \times \hat{\mathbf{r}})\right] G(\boldsymbol{r})(\mathrm{D} .6)$
The second term on the right is simply the left-hand side evaluated at points away from the origin, thus, we may write:

$$
\begin{equation*}
\nabla \times \nabla \times[\mathbf{p} G(\boldsymbol{r})]=\frac{2}{3} \mathbf{p} \delta^{(3)}(\boldsymbol{r})+[\nabla \times \nabla \times[\mathbf{p} G(\boldsymbol{r})]]_{\boldsymbol{r} \neq 0} \tag{D.7}
\end{equation*}
$$

Then, Eq. (D.7) implies the following integrated identity, where ∇ is with respect to r : $\nabla \times \nabla \times \int_{V} \boldsymbol{P}\left(\boldsymbol{r}^{\prime}\right) G\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) d V^{\prime}=\frac{2}{3} \boldsymbol{P}(\boldsymbol{r})+\int_{V}\left[\nabla \times \nabla \times\left[\boldsymbol{P}\left(\boldsymbol{r}^{\prime}\right) G\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\right]\right]_{\boldsymbol{r} \neq \boldsymbol{r}} d V^{\prime}(\mathrm{D} .8)$ and \boldsymbol{r} is assumed to lie within V. If \boldsymbol{r} is outside V, then the term $2 \boldsymbol{P}(\boldsymbol{r}) / 3$ is absent.

Technically, the integrals in (D.8) are principal-value integrals, that is, the limits as $\delta \rightarrow 0$ of the integrals over $V-V_{\delta}(\boldsymbol{r})$, where $V_{\delta}(\boldsymbol{r})$ is an excluded small sphere of radius δ centered about \boldsymbol{r}. The $2 \boldsymbol{P}(\boldsymbol{r}) / 3$ term has a different form if the excluded volume $V_{\delta}(\boldsymbol{r})$ has shape other than a sphere or a cube. See Refs. [1419,499,511,638] and [138-142] for the definitions and properties of such principal value integrals.

Another useful result is the so-called Weyl representation or plane-wave-spectrum representation [22,26,1419,27,555] of the outgoing Helmholtz Green's function $G(\boldsymbol{r})$:

$$
\begin{equation*}
G(\boldsymbol{r})=\frac{e^{-j k r}}{4 \pi r}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-j\left(k_{x} x+k_{y} y\right)} e^{-j k_{z}|z|}}{2 j k_{z}} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} \tag{D.9}
\end{equation*}
$$

where $k_{z}^{2}=k^{2}-k_{\perp}^{2}$, with $k_{\perp}=\sqrt{k_{x}^{2}+k_{y}^{2}}$. In order to correspond to either outgoing waves or decaying evanescent waves, k_{Z} must be defined more precisely as follows:

$$
k_{Z}=\left\{\begin{array}{rll}
\sqrt{k^{2}-k_{\perp}^{2}}, & \text { if } k_{\perp}<k, & \text { (propagating modes) } \tag{D.10}\\
-j \sqrt{k_{\perp}^{2}-k^{2}}, & \text { if } k_{\perp}>k, & \text { (evanescent modes) }
\end{array}\right.
$$

The propagating modes are important in radiation problems and conventional imaging systems, such as Fourier optics [1422]. The evanescent modes are important in the new subject of near-field optics, in which objects can be probed and imaged at nanometer scales improving the resolution of optical microscopy by factors of ten. Some near-field optics references are [534-554,1339-1342,1350-1353].

To prove (D.9), we consider the 2D spatial Fourier transform of $G(\boldsymbol{r})$ and its inverse. Indicating explicitly the dependence on the coordinates x, y, z, we must have:

$$
\begin{align*}
\hat{G}\left(k_{x}, k_{y}, z\right) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x, y, z) e^{j\left(k_{x} x+k_{y} y\right)} d x d y=\frac{e^{-j k_{z}|z|}}{2 j k_{z}} \tag{D.11}\\
G(x, y, z) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{G}\left(k_{x}, k_{y}, z\right) e^{-j\left(k_{x} x+k_{y} y\right)} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}}
\end{align*}
$$

Writing $\delta^{(3)}(\boldsymbol{r})=\delta(x) \delta(y) \delta(z)$ and using the inverse Fourier transform:

$$
\delta(x) \delta(y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j\left(k_{x} x+k_{y} y\right)} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}}
$$

we find from Eq. (D.2) that $\hat{G}\left(k_{x}, k_{y}, z\right)$ must satisfy the one-dimensional Helmholtz Green's function equation (D.3), with $k_{z}^{2}=k^{2}-k_{x}^{2}-k_{y}^{2}=k^{2}-k_{\perp}^{2}$, that is,

$$
\begin{equation*}
\left(\partial_{z}^{2}+k_{z}^{2}\right) \hat{G}\left(k_{x}, k_{y}, z\right)=-\delta(z) \tag{D.12}
\end{equation*}
$$

whose outgoing/evanescent solution is $\hat{G}\left(k_{x}, k_{y}, z\right)=e^{-j k_{z}|z|} / 2 j k_{z}$, from (D.3).
A more direct proof of (D.9) is to use cylindrical coordinates, $k_{x}=k_{\perp} \cos \psi, k_{y}=$ $k_{\perp} \sin \psi, x=\rho \cos \phi, y=\rho \sin \phi$, where $k_{\perp}^{2}=k_{x}^{2}+k_{y}^{2}$ and $\rho^{2}=x^{2}+y^{2}$. It follows that $k_{x} x+k_{y} y=k_{\perp} \rho \cos (\phi-\psi)$. Setting $d x d y=\rho d \rho d \phi=r d r d \phi$, the latter following from $r^{2}=\rho^{2}+z^{2}$, we obtain from Eq. (D.11) after replacing $\rho=\sqrt{r^{2}-z^{2}}$:

$$
\begin{aligned}
\hat{G}\left(k_{x}, k_{y}, z\right) & =\iint \frac{e^{-j k r}}{4 \pi r} e^{j\left(k_{x} x+k_{y} y\right)} d x d y=\iint \frac{e^{-j k r}}{4 \pi r} e^{j k_{\perp} \rho \cos (\phi-\psi)} r d r d \phi \\
& =\frac{1}{2} \int_{|z|}^{\infty} d r e^{-j k r} \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{j k_{\perp} \rho \cos (\phi-\psi)}=\frac{1}{2} \int_{|z|}^{\infty} d r e^{-j k r} J_{0}\left(k_{\perp} \sqrt{r^{2}-z^{2}}\right)
\end{aligned}
$$

where we used the integral representation (18.9.2) of the Bessel function $J_{0}(x)$. Looking up the last integral in the table of integrals [1791], we find:

$$
\begin{equation*}
\hat{G}\left(k_{x}, k_{y}, z\right)=\frac{1}{2} \int_{|z|}^{\infty} d r e^{-j k r} J_{0}\left(k_{\perp} \sqrt{r^{2}-z^{2}}\right)=\frac{e^{-j k_{z}|z|}}{2 j k_{z}} \tag{D.13}
\end{equation*}
$$

where k_{z} must be defined exactly as in Eq. (D.10). A direct consequence of (D.11) is the following result:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j\left(k_{x} x^{\prime}+k_{y} y^{\prime}\right)} G\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) d x^{\prime} d y^{\prime}=e^{-j\left(k_{x} x+k_{y} y\right)} \frac{e^{-j k_{z}\left|z-z^{\prime}\right|}}{2 j k_{z}} \tag{D.14}
\end{equation*}
$$

One can also show the integral:

$$
\int_{0}^{\infty} e^{-j k_{z}^{\prime} z^{\prime}} \frac{e^{-j k_{z}\left|z-z^{\prime}\right|}}{2 j k_{z}} d z^{\prime}= \begin{cases}\frac{e^{-j k_{z}^{\prime} z}}{k_{Z}^{\prime 2}-k_{Z}^{2}}-\frac{e^{-j k_{z} z}}{2 k_{z}\left(k_{z}^{\prime}-k_{z}\right)}, & \text { for } z \geq 0 \tag{D.15}\\ -\frac{e^{j k_{z} z}}{2 k_{z}\left(k_{z}^{\prime}+k_{z}\right)}, & \text { for } z<0\end{cases}
$$

The proof is obtained by splitting the integral over the sub-intervals $[0, z]$ and $[z, \infty)$. To handle the limits at infinity, k_{z}^{\prime} must be assumed to be slightly lossy, that is, $k_{z}^{\prime}=\beta_{z}-j \alpha_{z}$, with $\alpha_{z}>0$. Eqs. (D.14) and (D.15) can be combined into:

$$
\int_{V_{+}} e^{-j \boldsymbol{k}^{\prime} \cdot r^{\prime}} G\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) d V^{\prime}= \begin{cases}\frac{e^{-j \boldsymbol{k}^{\prime} \cdot \boldsymbol{r}}}{k^{\prime 2}-k^{2}}-\frac{e^{-j \boldsymbol{k} \cdot \boldsymbol{r}}}{2 k_{Z}\left(k_{z}^{\prime}-k_{z}\right)}, & \text { for } z \geq 0 \tag{D.16}\\ -\frac{e^{-j k_{-} \cdot \boldsymbol{r}}}{2 k_{z}\left(k_{Z}^{\prime}+k_{z}\right)}, & \text { for } z<0\end{cases}
$$

where V_{+}is the half-space $z \geq 0$, and $\boldsymbol{k}, \boldsymbol{k}_{-}, \boldsymbol{k}^{\prime}$ are wave-vectors with the same k_{x}, k_{y} components, but different $k_{z} \mathrm{~s}$:

$$
\begin{align*}
\boldsymbol{k} & =k_{x} \hat{\mathbf{x}}+k_{y} \hat{\mathbf{y}}+k_{z} \hat{\mathbf{z}} \\
\boldsymbol{k}_{-} & =k_{x} \hat{\mathbf{x}}+k_{y} \hat{\mathbf{y}}-k_{z} \hat{\mathbf{z}} \tag{D.17}\\
\boldsymbol{k}^{\prime} & =k_{x} \hat{\mathbf{x}}+k_{y} \hat{\mathbf{y}}+k_{z}^{\prime} \hat{\mathbf{z}}
\end{align*}
$$

where we note that $k^{\prime 2}-k^{2}=\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{\prime 2}\right)-\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=k_{z}^{\prime 2}-k_{z}^{2}$.
The Green's function results (D.8)-(D.17) are used in the discussion of the EwaldOseen extinction theorem in Sec. 15.6.

A related Weyl-type representation is obtained by differentiating Eq. (D.9) with respect to z. Assuming that $z \geq 0$ and interchanging differentiation and integration (and multiplying by -2), we obtain the identity:

$$
\begin{equation*}
-2 \frac{\partial}{\partial z}\left(\frac{e^{-j k r}}{4 \pi r}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j k_{x} x} e^{-j k_{y} y} e^{-j k_{z} z} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}}, \quad z \geq 0 \tag{D.18}
\end{equation*}
$$

This just means that the left-hand side is the two-dimensional inverse Fourier transform of $e^{-j k_{z} z}$ with k_{z} given by Eq. (D.10). Replacing r by $\boldsymbol{r}-\boldsymbol{r}^{\prime}$, and r by $R=\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$, and noting that $\partial_{z^{\prime}}=-\partial_{z}$, we also obtain:

$$
\begin{equation*}
2 \frac{\partial}{\partial z^{\prime}}\left(\frac{e^{-j k R}}{4 \pi R}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j k_{x}\left(x-x^{\prime}\right)} e^{-j k_{y}\left(y-y^{\prime}\right)} e^{-j k_{z}\left(z-z^{\prime}\right)} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} \tag{D.19}
\end{equation*}
$$

This result establishes the equivalence between the Rayleigh-Sommerfeld diffraction formula and the plane-wave spectrum representation as discussed in Sec. 19.2. For the vector diffraction case, we also need the derivatives of G with respect to the transverse coordinates x, y. Differentiating (D.9) with respect to x (or with respect to y), we have:

$$
\begin{equation*}
-2 \frac{\partial}{\partial x}\left(\frac{e^{-j k r}}{4 \pi r}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{k_{x}}{k_{z}} e^{-j k_{x} x} e^{-j k_{y} y} e^{-j k_{z} z} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}}, \quad z \geq 0 \tag{D.20}
\end{equation*}
$$

Setting $z=0$ in (D.18), we also obtain the special result,

$$
\begin{equation*}
-\left.2 \frac{\partial}{\partial z}\left(\frac{e^{-j k r}}{4 \pi r}\right)\right|_{z=0}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j k_{x} x} e^{-j k_{y} y} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}}=\delta(x) \delta(y) \tag{D.21}
\end{equation*}
$$

This can also be derived by integrating Eq. (D.2) with respect to Z over the interval $-\epsilon \leq Z \leq \epsilon$ and taking the limit as $\epsilon \rightarrow 0$, invoking the continuity of $G(r)$ (but not $\partial G / \partial z)$ with respect to Z,

$$
\begin{aligned}
&\left(\partial_{x}^{2}+\partial_{y}^{2}+k^{2}\right) \int_{-\epsilon}^{\epsilon} G(r) d z+\left.\frac{\partial G}{\partial z}\right|_{z=-\epsilon} ^{z=\epsilon}=-\delta(x) \delta(y) \int_{-\epsilon}^{\epsilon} \delta(z) d z, \quad \text { or, } \\
&\left.2 \frac{\partial G}{\partial z}\right|_{z=0}=-\delta(x) \delta(y)
\end{aligned}
$$

Two-Dimensional Green's functions

The Green's function for the two-dimensional Helmholtz equation will be needed in our discussion of line sources and one-dimensional apertures, such as narrow slits or strips. In order to develop the corresponding 2-D version of the plane-wave spectrum Weyl representation, we will assume that the one-dimensional line source is along the x direction, the propagation is perpendicularly to x towards the z direction, and that there is no dependence on the y coordinate. Because of our assumed $e^{j \omega t}$ time dependence, the outgoing Green's function of the 2-D Helmholtz equation will be: ${ }^{\dagger}$

$$
\begin{equation*}
\left(\partial_{x}^{2}+\partial_{Z}^{2}+k^{2}\right) G(x, z)=-\delta(x) \delta(z) \quad \Rightarrow \quad G(x, z)=-\frac{j}{4} H_{0}^{(2)}(k r) \tag{D.22}
\end{equation*}
$$

where $r=\sqrt{x^{2}+z^{2}}$ and $H_{0}^{(2)}(k r)$ is the order-0 Hankel function of second kind. For definitions and properties of Bessel and Hankel functions, see [1790] or [1822]. Several properties of Hankel functions were also discussed in Sec. 10.15 and 10.19.

The outgoing Green's function of the Helmholtz equation must satisfy the Sommerfeld radiation condition for outgoing waves, which reads in d-dimensions,

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left[r^{(d-1) / 2}\left(\frac{\partial G}{\partial r}+j k G\right)\right]=0 \quad \text { (Sommerfeld radiation condition) } \tag{D.23}
\end{equation*}
$$

This condition is easily verified for Eq. (D.2) in the 3D-case $(d=3)$. In the 2D-case $(d=2)$, it follows from the asymptotic behavior of the Hankel function $H_{0}^{(2)}(k r)$,

$$
\begin{equation*}
H_{0}^{(2)}(k r) \simeq \sqrt{\frac{2}{\pi k r}} e^{-j\left(k r-\frac{\pi}{4}\right)}, \quad \text { for large } r \tag{D.24}
\end{equation*}
$$

To show (D.22), we consider the 1-D Fourier transform of $G(x, z)$ with respect to the variable x,

$$
\begin{equation*}
\hat{G}\left(k_{x}, z\right)=\int_{-\infty}^{\infty} G(x, z) e^{j k_{x} x} d x \quad \Leftrightarrow \quad G(x, z)=\int_{-\infty}^{\infty} \hat{G}\left(k_{x}, z\right) e^{-j k_{x} x} \frac{d k_{x}}{2 \pi} \tag{D.25}
\end{equation*}
$$

${ }^{\dagger}$ for $e^{-j \omega t}$ time dependence, we must choose, $G(x, z)=\frac{j}{4} H_{0}^{(1)}(k r)$.

Transforming the 2-D Helmholtz equation (D.22), we obtain the following 1-D Helmholtz equation that has the same propagating/evanescent Green's function as (D.12),
$\left(-k_{x}^{2}+\partial_{z}^{2}+k^{2}\right) \hat{G}\left(k_{x}, z\right)=\left(\partial_{z}^{2}+k_{z}^{2}\right) \hat{G}\left(k_{x}, z\right)=-\delta(z) \quad \Rightarrow \quad \hat{G}\left(k_{x}, z\right)=\frac{e^{-j k_{z}|z|}}{2 j k_{z}} \quad$ (D. 26$)$
where $k_{z}^{2}=k^{2}-k_{x}^{2}$, with k_{z} given by the evanescent square-root,

$$
k_{z}=\left\{\begin{align*}
\sqrt{k^{2}-k_{x}^{2}}, & \text { if }\left|k_{x}\right|<k \tag{D.27}\\
-j \sqrt{k_{x}^{2}-k^{2}}, & \text { if }\left|k_{x}\right|>k
\end{align*}\right.
$$

Thus, to find $G(x, z)$ we need to find the inverse Fourier transform of (D.26). But we note that the Hankel function $H_{0}^{(2)}\left(k \sqrt{x^{2}+z^{2}}\right)$, considered as a function of x, has the following forward and inverse 1-D Fourier transform,

$$
\begin{align*}
& \int_{-\infty}^{\infty} H_{0}^{(2)}\left(k \sqrt{x^{2}+z^{2}}\right) e^{j k_{x} x} d x=\frac{2 e^{-j k_{z}|z|}}{k_{z}} \\
& H_{0}^{(2)}\left(k \sqrt{x^{2}+z^{2}}\right)=\int_{-\infty}^{\infty} \frac{2 e^{-j k_{x} x} e^{-j k_{z}|z|}}{k_{z}} \frac{d k_{x}}{2 \pi} \tag{D.28}
\end{align*}
$$

where k_{z} is defined exactly as in (D.27). The transform pair (D.28) can be looked up in Bateman [1640]-see pair \#42 and its erratum in Sect.1.13, p.56, of Ref. [1640], or from the combination of pairs \#35 and \#41, together with the following definitions of the half-integer-order Hankel and modified Bessel functions,

$$
\begin{equation*}
H_{-1 / 2}^{(2)}(u)=\sqrt{\frac{2}{\pi u}} e^{-j u}, \quad K_{-1 / 2}(u)=\sqrt{\frac{\pi}{2 u}} e^{-u} \tag{D.29}
\end{equation*}
$$

Multiplying both sides of (D.28) by $-j / 4$, we then obtain $G(x, z)$ and its plane-wave spectrum or Weyl representation,
$G(x, z)=-\frac{j}{4} H_{0}^{(2)}(k r)=\int_{-\infty}^{\infty} \frac{e^{-j k_{x} x} e^{-j k_{z}|z|}}{2 j k_{z}} \frac{d k_{x}}{2 \pi}$
(2D Weyl representation)
with $r=\sqrt{x^{2}+z^{2}}$. This is analogous to (D.9), but without the $d k_{y}$ integration. The 2-D versions of the differentiated Weyl representations (D.18) and (D.20) are as follows and will be used to develop the 2-D versions of the Rayleigh-Sommerfeld diffraction formulas,

$$
\begin{align*}
& -2 \frac{\partial G(x, z)}{\partial z}=\int_{-\infty}^{\infty} e^{-j k_{x} x} e^{-j k_{z} z} \frac{d k_{x}}{2 \pi} \\
& -2 \frac{\partial G(x, z)}{\partial x}=\int_{-\infty}^{\infty} \frac{k_{x}}{k_{z}} e^{-j k_{x} x} e^{-j k_{z} z} \frac{d k_{x}}{2 \pi} \quad \text { for } z \geq 0
\end{align*}
$$

A quicker way of deriving (D.30) is to start with the 3-D Green's function (D.2), denoted here by $G_{3}(x, y, z)=e^{-j k R} /(4 \pi R), R=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+y^{2}}$, where $r=\sqrt{x^{2}+z^{2}}$, and define the 2-D Green's function by integrating out the y-variable,

$$
\begin{equation*}
G(x, z)=\int_{-\infty}^{\infty} G_{3}(x, y, z) d y=\int_{-\infty}^{\infty} \frac{e^{-j k R}}{4 \pi R} d y \tag{D.32}
\end{equation*}
$$

Integrating over y both sides of the 3-D Helmholtz equation for $G_{3}(x, y, z)$, we have,

$$
\begin{aligned}
& \left(\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}+k^{2}\right) G_{3}(x, y, z)=-\delta(x) \delta(y) \delta(z) \\
& \left(\partial_{x}^{2}+\partial_{z}^{2}+k^{2}\right) \int_{-\infty}^{\infty} G_{3}(x, y, z) d y+\left[\partial_{y} G_{3}(x, y, z)\right]_{y=-\infty}^{y=\infty}=-\delta(x) \delta(z) \int_{-\infty}^{\infty} \delta(y) d y
\end{aligned}
$$

and since, $\left.\partial_{y} G_{3}(x, y, z)\right|_{y= \pm \infty}=0,^{\dagger}$ we obtain,

$$
\begin{equation*}
\left(\partial_{x}^{2}+\partial_{z}^{2}+k^{2}\right) G(x, z)=-\delta(x) \delta(z) \tag{D.33}
\end{equation*}
$$

The plane-wave spectrum representation of $G(x, z)$ can be derived by inserting the Weyl representation for $G_{3}(x, y, z)$ into the definition (D.32),

$$
\begin{align*}
G(x, z) & =\int_{-\infty}^{\infty} G_{3}(x, y, z) d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-j k_{x} x} e^{-j k_{y} y} e^{-j k_{z}|z|}}{2 j k_{z}} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-j k_{x} x} e^{-j k_{z}|z|}}{2 j k_{z}}(2 \pi) \delta\left(k_{y}\right) \frac{d k_{x} d k_{y}}{(2 \pi)^{2}}=\int_{-\infty}^{\infty} \frac{e^{-j k_{x} x} e^{-j k_{z}|z|}}{2 j k_{z}} \frac{d k_{x}}{2 \pi} \tag{D.34}
\end{align*}
$$

where we used the delta-function representation,

$$
\int_{-\infty}^{\infty} e^{-j k_{y} y} d y=(2 \pi) \delta\left(k_{y}\right)
$$

and the k_{y} integration in (D.34) sets $k_{y}=0$ into the definition (D.10) of k_{z} so that the resulting k_{z} is given by (D.27). By combining the standard integral representations of the zero-order Bessel functions [1822], we obtain the representation of the Hankel function, $H_{0}^{(2)}=J_{0}-j Y_{0}$, for $r>0$,

$$
\begin{align*}
J_{0}(k r) & =\frac{1}{\pi} \int_{-\infty}^{\infty} \sin (k r \cosh (u)) d u \\
Y_{0}(k r) & =-\frac{1}{\pi} \int_{-\infty}^{\infty} \cos (k r \cosh (u)) d u \tag{D.35}\\
-\frac{j}{4} H_{0}^{(2)}(k r) & =\frac{1}{4 \pi} \int_{-\infty}^{\infty} e^{-j k r \cosh (u)} d u
\end{align*}
$$

Changing variables from u to $y=r \sinh (u)$, we may verify Eq. (D.32),

$$
-\frac{j}{4} H_{0}^{(2)}(k r)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} e^{-j k r \cosh (u)} d u=\int_{-\infty}^{\infty} \frac{e^{-j k \sqrt{r^{2}+y^{2}}}}{4 \pi \sqrt{r^{2}+y^{2}}} d y
$$

E. Coordinate Systems

The definitions of cylindrical and spherical coordinates were given in Sec. 15.8. The expressions of the gradient, divergence, curl, Laplacian operators, and delta functions are given below in cartesian, cylindrical, and spherical coordinates.
${ }^{\dagger}$ note that, $\partial_{y} G_{3}(x, y, z)=-\frac{y}{R} \frac{e^{-j k R}}{4 \pi R}\left(j k+\frac{1}{R}\right), R=\sqrt{x^{2}+y^{2}+z^{2}}$.

Cartesian Coordinates

$$
\begin{aligned}
& \nabla \psi=\hat{\mathbf{x}} \frac{\partial \psi}{\partial x}+\hat{\mathbf{y}} \frac{\partial \psi}{\partial y}+\hat{\mathbf{z}} \frac{\partial \psi}{\partial z} \\
& \nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}} \\
& \nabla \cdot \boldsymbol{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
& \boldsymbol{\nabla} \times \boldsymbol{A}=\hat{\mathbf{x}}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{\mathbf{y}}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\hat{\mathbf{z}}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \\
&=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial_{z}} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
& \delta^{(3)}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right) \delta\left(z-z^{\prime}\right)
\end{aligned}
$$

Cylindrical Coordinates

$$
\begin{aligned}
\nabla \psi & =\hat{\boldsymbol{\rho}} \frac{\partial \psi}{\partial \rho}+\hat{\boldsymbol{\phi}} \frac{1}{\rho} \frac{\partial \psi}{\partial \phi}+\hat{\mathbf{z}} \frac{\partial \psi}{\partial z} \\
\nabla^{2} \psi & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}} \\
\nabla \cdot \boldsymbol{A} & =\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z} \\
\nabla \times \boldsymbol{A} & =\hat{\boldsymbol{\rho}}\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right)+\hat{\boldsymbol{\phi}}\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right)+\hat{\mathbf{z}} \frac{1}{\rho}\left(\frac{\partial\left(\rho A_{\phi}\right)}{\partial \rho}-\frac{\partial A_{\rho}}{\partial \phi}\right) \\
\delta^{(3)}(\boldsymbol{r} & \left.-\boldsymbol{r}^{\prime}\right)=\frac{1}{\rho} \delta\left(\rho-\rho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right) \delta\left(z-z^{\prime}\right)
\end{aligned}
$$

Spherical Coordinates

$$
\begin{align*}
\nabla \psi & =\hat{\mathbf{r}} \frac{\partial \psi}{\partial r}+\hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial \psi}{\partial \theta}+\hat{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \\
\nabla^{2} \psi & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \tag{E.3c}\\
& \begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{A}=\hat{\mathbf{r}} \frac{1}{r \sin \theta}\left(\frac{\partial\left(\sin \theta A_{\phi}\right)}{\partial \theta}-\frac{\partial A_{\theta}}{\partial \phi}\right) & +\hat{\boldsymbol{\theta}} \frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial\left(r A_{\phi}\right)}{\partial r}\right) \quad \text { (E.3d) } \\
& +\hat{\boldsymbol{\phi}} \frac{1}{r}\left(\frac{\partial\left(r A_{\theta}\right)}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\right)
\end{aligned} \\
& \begin{array}{r}
\delta^{(3)}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)=\frac{1}{r^{2} \sin \theta} \delta\left(r-r^{\prime}\right) \delta\left(\theta-\theta^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)
\end{array}
\end{align*}
$$

Transformations Between Coordinate Systems

The different coordinate conventions are summarized in Fig. E. 1 below. A vector \boldsymbol{A} can be expressed component-wise in the three coordinate systems as:

$$
\begin{align*}
\boldsymbol{A} & =\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z} \\
& =\hat{\boldsymbol{\rho}} A_{\rho}+\hat{\boldsymbol{\phi}} A_{\phi}+\hat{\mathbf{z}} A_{z} \tag{E.4}\\
& =\hat{\mathbf{r}} A_{r}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}
\end{align*}
$$

Fig. E. 1 Cartesian, cylindrical, and spherical coordinate conventions.
The components in one coordinate system can be expressed in terms of the components of another by using the following relationships between the unit vectors, which were also given in Eqs. (15.8.1)-(15.8.3):

$$
\begin{array}{lll}
x=\rho \cos \phi & \hat{\boldsymbol{\rho}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi & \hat{\mathbf{x}}=\hat{\boldsymbol{\rho}} \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\
y=\rho \sin \phi & \hat{\boldsymbol{\phi}}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi & \hat{\mathbf{y}}=\hat{\boldsymbol{\rho}} \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\
\rho=r \sin \theta & \hat{\mathbf{r}}=\hat{\mathbf{z}} \cos \theta+\hat{\boldsymbol{\rho}} \sin \theta & \hat{\mathbf{z}}=\hat{\mathbf{r}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \\
z=r \cos \theta & \hat{\boldsymbol{\theta}}=-\hat{\mathbf{z}} \sin \theta+\hat{\boldsymbol{\rho}} \cos \theta & \hat{\boldsymbol{\rho}}=\hat{\mathbf{r}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta
\end{array}
$$

$$
\begin{array}{cc}
x=r \sin \theta \cos \phi & \hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi \sin \theta+\hat{\mathbf{y}} \sin \phi \sin \theta+\hat{\mathbf{z}} \cos \theta \\
y=r \sin \theta \sin \phi & \hat{\boldsymbol{\theta}}=\hat{\mathbf{x}} \cos \phi \cos \theta+\hat{\mathbf{y}} \sin \phi \cos \theta-\hat{\mathbf{z}} \sin \theta \\
z=r \cos \theta & \hat{\boldsymbol{\phi}}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\
\hat{\mathbf{x}}=\hat{\mathbf{r}} \sin \theta \cos \phi+\hat{\boldsymbol{\theta}} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\
\hat{\mathbf{y}}=\hat{\mathbf{r}} \sin \theta \sin \phi+\hat{\boldsymbol{\theta}} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\
\hat{\mathbf{z}}=\hat{\mathbf{r}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \tag{E.8}
\end{array}
$$

For example, to express the spherical components $A_{r}, A_{\theta}, A_{\phi}$ in terms of the cartesian components, we proceed as follows:

$$
\begin{aligned}
& A_{r}=\hat{\mathbf{r}} \cdot \boldsymbol{A}=\hat{\mathbf{r}} \cdot\left(\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}\right)=(\hat{\mathbf{r}} \cdot \hat{\mathbf{x}}) A_{x}+(\hat{\mathbf{r}} \cdot \hat{\mathbf{y}}) A_{y}+(\hat{\mathbf{r}} \cdot \hat{\mathbf{z}}) A_{z} \\
& A_{\theta}=\hat{\boldsymbol{\theta}} \cdot \boldsymbol{A}=\hat{\boldsymbol{\theta}} \cdot\left(\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}\right)=(\hat{\boldsymbol{\theta}} \cdot \hat{\mathbf{x}}) A_{x}+(\hat{\boldsymbol{\theta}} \cdot \hat{\mathbf{y}}) A_{y}+(\hat{\boldsymbol{\theta}} \cdot \hat{\mathbf{z}}) A_{z} \\
& A_{\phi}=\hat{\boldsymbol{\phi}} \cdot \boldsymbol{A}=\hat{\boldsymbol{\phi}} \cdot\left(\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}\right)=(\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{x}}) A_{x}+(\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{y}}) A_{y}+(\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}}) A_{z}
\end{aligned}
$$

The dot products can be read off Eq. (E.7), resulting in:

$$
\begin{align*}
& A_{r}=\cos \phi \sin \theta A_{x}+\sin \phi \sin \theta A_{y}+\cos \theta A_{z} \\
& A_{\theta}=\cos \phi \cos \theta A_{x}+\sin \phi \cos \theta A_{y}-\sin \theta A_{z} \tag{E.9}\\
& A_{\phi}=-\sin \phi A_{x}+\cos \phi A_{y}
\end{align*}
$$

Similarly, using Eq. (E.6) the cylindrical components A_{ρ}, A_{z} can be expressed in terms of spherical components as:

$$
\begin{align*}
& A_{\rho}=\hat{\boldsymbol{\rho}} \cdot \boldsymbol{A}=\hat{\boldsymbol{\rho}} \cdot\left(\hat{\mathbf{r}} A_{r}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}\right)=\sin \theta A_{r}+\cos \theta A_{\theta} \\
& A_{z}=\hat{\mathbf{z}} \cdot \boldsymbol{A}=\hat{\mathbf{z}} \cdot\left(\hat{\mathbf{r}} A_{r}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}\right)=\cos \theta A_{r}-\cos \theta A_{\theta} \tag{E.10}
\end{align*}
$$

F. Fresnel Integrals

The Fresnel functions $C(x)$ and $S(x)$ are defined by [1790]:

$$
\begin{equation*}
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t, \quad S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t \tag{F.1}
\end{equation*}
$$

They may be combined into the complex function:

$$
\begin{equation*}
\mathcal{F}(x)=C(x)-j S(x)=\int_{0}^{x} e^{-j \pi t^{2} / 2} d t \tag{F.2}
\end{equation*}
$$

$C(x), S(x)$, and $\mathcal{F}(x)$ are odd functions of x and have the asymptotic values:

$$
\begin{equation*}
C(\infty)=S(\infty)=\frac{1}{2}, \quad \mathcal{F}(\infty)=\frac{1-j}{2} \tag{F.3}
\end{equation*}
$$

At $x=0$, we have $\mathcal{F}(0)=0$ and $\mathcal{F}^{\prime}(0)=1$, so that the Taylor series approximation is $\mathcal{F}(x) \simeq x$, for small x. The asymptotic expansions of $C(x), S(x)$, and $\mathcal{F}(x)$ are for large positive x :

$$
\begin{align*}
& \mathcal{F}(x)=\frac{1-j}{2}+\frac{j}{\pi x} e^{-j \pi x^{2} / 2} \\
& C(x)=\frac{1}{2}+\frac{1}{\pi x} \sin \left(\frac{\pi}{2} x^{2}\right) \tag{F.4}\\
& S(x)=\frac{1}{2}-\frac{1}{\pi x} \cos \left(\frac{\pi}{2} x^{2}\right)
\end{align*}
$$

Associated with $C(x)$ and $S(x)$ are the type-2 Fresnel integrals:

$$
\begin{equation*}
C_{2}(x)=\int_{0}^{x} \frac{\cos t}{\sqrt{2 \pi t}} d t, \quad S_{2}(x)=\int_{0}^{x} \frac{\sin t}{\sqrt{2 \pi t}} d t \tag{F.5}
\end{equation*}
$$

They are combined into the complex function:

$$
\begin{equation*}
\mathcal{F}_{2}(x)=C_{2}(x)-j S_{2}(x)=\int_{0}^{x} \frac{e^{-j t}}{\sqrt{2 \pi t}} d t \tag{F.6}
\end{equation*}
$$

The two types are related by, if $x \geq 0$:

$$
\begin{equation*}
C(x)=C_{2}\left(\frac{\pi}{2} x^{2}\right), \quad S(x)=S_{2}\left(\frac{\pi}{2} x^{2}\right), \quad \mathcal{F}(x)=\mathcal{F}_{2}\left(\frac{\pi}{2} x^{2}\right) \tag{F.7}
\end{equation*}
$$

and if $x<0$, we set $\mathcal{F}(x)=-\mathcal{F}(-x)=-\mathcal{F}_{2}\left(\pi x^{2} / 2\right)$.
The Fresnel function $\mathcal{F}_{2}(x)$ can be evaluated numerically using Boersma's approximation [1308], which achieves a maximum error of 10^{-9} over all x. The algorithm approximates the function $\mathcal{F}_{2}(x)$ as follows:

$$
\mathcal{F}_{2}(x)= \begin{cases}e^{-j x} \sqrt{\frac{x}{4}} \sum_{n=0}^{11}\left(a_{n}+j b_{n}\right)\left(\frac{x}{4}\right)^{n}, & \text { if } \quad 0 \leq x \leq 4 \tag{F.8}\\ \frac{1-j}{2}+e^{-j x} \sqrt{\frac{4}{x}} \sum_{n=0}^{11}\left(c_{n}+j d_{n}\right)\left(\frac{4}{x}\right)^{n}, & \text { if } \quad x>4\end{cases}
$$

where the coefficients $a_{n}, b_{n}, c_{n}, d_{n}$ are given in [1308]. Consistency with the small- and large- x expansions of $\mathcal{F}(x)$ requires that $a_{0}+j b_{0}=\sqrt{8 / \pi}$ and $c_{0}+j d_{0}=j / \sqrt{8 \pi}$. We have implemented Eq. (F.8) with the MATLAB function fcs 2 :

$$
\mathrm{F} 2=\mathrm{fcs2}(\mathrm{x}) ; \quad \% \text { Fresnel integrals } \mathcal{F}_{2}(x)=C_{2}(x)-j S_{2}(x)
$$

The ordinary Fresnel integral $\mathcal{F}(x)$ can be computed with the help of Eq. (F.7). The MATLAB function fcs calculates $\mathcal{F}(x)$ for any vector of values x by calling fcs2:

```
F=fcs(x); %Fresnel integrals \mathcal{F}(x)=C(x)-jS(x)
```

In calculating the radiation patterns of pyramidal horns, it is desired to calculate a Fresnel diffraction integral of the type:

$$
F_{0}(\nu, \sigma)=\int_{-1}^{1} e^{j \pi v \xi} e^{-j(\pi / 2) \sigma^{2} \xi^{2}} d \xi
$$

Making the variable change $t=\sigma \xi-v / \sigma$, this integral can be computed in terms of the Fresnel function $\mathcal{F}(x)=C(x)-j S(x)$ as follows:

$$
\begin{equation*}
F_{0}(\nu, \sigma)=\frac{1}{\sigma} e^{j(\pi / 2)\left(\nu^{2} / \sigma^{2}\right)}\left[\mathcal{F}\left(\frac{\nu}{\sigma}+\sigma\right)-\mathcal{F}\left(\frac{\nu}{\sigma}-\sigma\right)\right] \tag{F.10}
\end{equation*}
$$

where we also used the oddness of $\mathcal{F}(x)$. The value of Eq. (F.9) at $v=0$ is:

$$
\begin{equation*}
F_{0}(0, \sigma)=\frac{1}{\sigma}[\mathcal{F}(\sigma)-\mathcal{F}(-\sigma)]=2 \frac{\mathcal{F}(\sigma)}{\sigma} \tag{F.11}
\end{equation*}
$$

Eq. (F.10) assumes that $\sigma \neq 0$. If $\sigma=0$, the integral (F.9) reduces to the sinc function:

$$
\begin{equation*}
F_{0}(v, 0)=2 \frac{\sin (\pi v)}{\pi v} \tag{F.12}
\end{equation*}
$$

From either (F.11) or (F.12), we find $F_{0}(0,0)=2$. A related integral that is also required in the theory of horns is the following:

$$
\begin{equation*}
F_{1}(\nu, \sigma)=\int_{-1}^{1} \cos \left(\frac{\pi \xi}{2}\right) e^{j \pi v \xi} e^{-j(\pi / 2) \sigma^{2} \xi^{2}} d \xi \tag{F.13}
\end{equation*}
$$

Writing $\cos (\pi \xi / 2)=\left(e^{j \pi \xi / 2}+e^{-j \pi \xi / 2}\right) / 2$, the integral $F_{1}(\nu, s)$ can be expressed in terms of $F_{0}(\nu, \sigma)$ as follows:

$$
\begin{equation*}
F_{1}(v, \sigma)=\frac{1}{2}\left[F_{0}(v+0.5, \sigma)+F_{0}(v-0.5, \sigma)\right] \tag{F.14}
\end{equation*}
$$

It can be verified easily that $F_{0}(0.5, \sigma)=F_{0}(-0.5, \sigma)$, therefore, the value of $F_{1}(\nu, \sigma)$ at $v=0$ will be given by:

$$
\begin{equation*}
F_{1}(0, \sigma)=F_{0}(0.5, \sigma)=\frac{1}{\sigma} e^{j \pi /\left(8 \sigma^{2}\right)}\left[\mathcal{F}\left(\frac{1}{2 \sigma}+\sigma\right)-\mathcal{F}\left(\frac{1}{2 \sigma}-\sigma\right)\right] \tag{F.15}
\end{equation*}
$$

Using the asymptotic expansion (F.4), we find the expansion valid for small σ :

$$
\begin{equation*}
\mathcal{F}\left(\frac{1}{2 \sigma} \pm \sigma\right)=\frac{1-j}{2} \mp \frac{2 \sigma}{\pi} e^{-j \pi /\left(8 \sigma^{2}\right)}, \quad \text { for small } \sigma \tag{F.16}
\end{equation*}
$$

For $\sigma=0$, the integral $F_{1}(\nu, \sigma)$ reduces to the double-sinc function:

$$
\begin{array}{r}
F_{1}(v, 0)=\int_{-1}^{1} \cos \left(\frac{\pi \xi}{2}\right) e^{j \pi v \xi} d \xi=\frac{1}{2}\left[F_{0}(v+0.5,0)+F_{0}(v-0.5,0)\right] \\
=\frac{\sin (\pi(v+0.5))}{\pi(v+0.5)}+\frac{\sin (\pi(v-0.5))}{\pi(v-0.5)}=\frac{4}{\pi} \frac{\cos (\pi v)}{1-4 v^{2}} \tag{F.17}
\end{array}
$$

From either Eq. (F.16) or (F.17), we find $F_{1}(0,0)=4 / \pi$.
The MATLAB function diffint can be used to evaluate both Eq. (F.9) and (F.13) for any vector of values v and any vector of positive numbers σ, including $\sigma=0$. It calls fcs to evaluate the diffraction integral (F.9) according to Eq. (F.10). Its usage is:

$$
\begin{array}{ll}
\text { F0 }=\operatorname{diffint}(v, \text { sigma }, 0) ; & \text { \% diffraction integral } F_{0}(v, \sigma) \text {, Eq. (F.9) } \\
\text { F1 }=\operatorname{diffint}(v, \text { sigma, } 1) ; & \% \text { diffraction integral } F_{1}(v, \sigma), \text { Eq. (F.13) }
\end{array}
$$

The vectors v , sigma can be entered either as rows or columns, but the result will be a matrix of size length $(v) \times$ length (sigma). The integral $F_{0}(v, \sigma)$ can also be calculated by the simplified call:

F0 = diffint(v,sigma);
\% diffraction integral $F_{0}(\nu, \sigma)$, Eq. (F.9)
Actually, the most general syntax of diffint is as follows:
$F=\operatorname{diffint}(v$, sigma $, \mathrm{a}, \mathrm{c} 1, \mathrm{c} 2) ; \quad \%$ diffraction integral $F(v, \sigma, a)$, Eq. (F.18)
It evaluates the more general integral:

$$
\begin{equation*}
F(v, \sigma, a)=\int_{c_{1}}^{c_{2}} \cos \left(\frac{\pi \xi a}{2}\right) e^{j \pi v \xi} e^{-j(\pi / 2) \sigma^{2} \xi^{2}} d \xi \tag{F.18}
\end{equation*}
$$

For $a=0$, we have:

$$
\begin{equation*}
F(v, \sigma, 0)=\frac{1}{\sigma} e^{j(\pi / 2)\left(v^{2} / \sigma^{2}\right)}\left[\mathcal{F}\left(\frac{v}{\sigma}-\sigma c_{1}\right)-\mathcal{F}\left(\frac{v}{\sigma}-\sigma c_{2}\right)\right] \tag{F.19}
\end{equation*}
$$

For $a \neq 0$, we can express $F(\nu, \sigma, a)$ in terms of $F(\nu, \sigma, 0)$:

$$
\begin{equation*}
F(v, \sigma, a)=\frac{1}{2}[F(v+0.5 a, \sigma, 0)+F(v-0.5 a, \sigma, 0)] \tag{F.20}
\end{equation*}
$$

For $a=0$ and $\sigma=0, F(\nu, \sigma, a)$ reduces to the complex sinc function:

$$
\begin{equation*}
F(v, 0,0)=\frac{e^{j \pi v c_{2}}-e^{j \pi v c_{1}}}{j \pi v}=\left(c_{2}-c_{1}\right) \frac{\sin \left(\pi\left(c_{2}-c_{1}\right) v / 2\right)}{\pi\left(c_{2}-c_{1}\right) v / 2} e^{j \pi\left(c_{2}+c_{1}\right) v / 2} \tag{F.21}
\end{equation*}
$$

In Sommerfeld's half-space and knife-edge diffraction problems discussed in Sections 18.14 and 18.15 , the following function represents the diffraction coefficient,

$$
\begin{equation*}
D(v)=\frac{1}{1-j} \int_{-\infty}^{v} e^{-j \pi u^{2} / 2} d u=\frac{1}{1-j}\left[\mathcal{F}(v)+\frac{1-j}{2}\right] \tag{F.22}
\end{equation*}
$$

It is defined for any real v and satisfies the properties,

$$
\begin{gather*}
D(v)+D(-v)=1 \tag{F.23}\\
D(-\infty)=0, \quad D(0)=\frac{1}{2}, \quad D(\infty)=1 \tag{F.24}
\end{gather*}
$$

The MATLAB function diffr.m calculates $D(v)$ at any vector of (real) values of v. It has usage:

$\mathrm{D}=\operatorname{diffr}(\mathrm{v}) ; \quad \%$ knife-edge diffraction coefficient $D(v)$

It may also be quickly defined as an anonymous MATLAB function in terms of fcs,

$$
\text { diffr }=@(v)(f c s(v)+(1-j) / 2) /(1-j)
$$

The following integral, which was originally considered by Sommerfeld in his solution of the half-space problem, can be expressed in terms of the function $D(v)$,

$$
\begin{align*}
I(\phi) & \equiv \frac{1}{\pi} \int_{0}^{\infty} \frac{\cos (\phi / 2) \cosh (t / 2)}{\cos \phi+\cosh t} e^{-j k \rho \cosh t} d t \\
& =\operatorname{sign}(v) \cdot e^{j k \rho \cos \phi} \cdot[1-D(|v|)], \quad v=\sqrt{\frac{4 k \rho}{\pi}} \cos \left(\frac{\phi}{2}\right) \tag{F.25}
\end{align*}
$$

where $k \rho>0$ and ϕ is a real angle, such that $\cos (\phi / 2) \neq 0$, or, $\cos \phi \neq-1$. Equivalently,

$$
I(\phi)=\left\{\begin{align*}
e^{j k \rho \cos \phi} \cdot[1-D(v)]=e^{j k \rho \cos \phi} \cdot D(-v), & \text { if } v>0 \tag{F.26}\\
-e^{j k \rho \cos \phi} \cdot[1-D(-v)]=-e^{j k \rho \cos \phi} \cdot D(v), & \text { if } v<0
\end{align*}\right.
$$

where we used the property (F.23). The value at $\cos (\phi / 2)=0$ is discussed below. To show Eq. (F.25), we change variables to, $s=\sinh (t / 2), c=\cos (\phi / 2)$. Then, doubling the range of integration and using the identities,

$$
\cos \phi=2 \cos ^{2}\left(\frac{\phi}{2}\right)-1, \quad \cosh t=2 \sinh ^{2}\left(\frac{t}{2}\right)+1
$$

the integral is transformed into,

$$
\begin{equation*}
I(\phi)=e^{j k \rho \cos \phi} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{c}{c^{2}+s^{2}} e^{-2 j k \rho\left(c^{2}+s^{2}\right)} d s \tag{F.27}
\end{equation*}
$$

Following Sommerfeld [1287], we divide out the factor $e^{j k \rho \cos \phi}$, and differentiate with respect to ρ,

$$
\frac{d}{d \rho}\left[I(\phi, k \rho) e^{-j k \rho \cos \phi}\right]=\frac{-j c k}{\pi} e^{-2 j k \rho c^{2}} \int_{-\infty}^{\infty} e^{-2 j k \rho s^{2}} d s=-\frac{1}{1-j} \frac{c k}{\sqrt{\pi k \rho}} e^{-2 j k \rho c^{2}}
$$

where we used the definite integral,

$$
\int_{-\infty}^{\infty} e^{-2 j k \rho s^{2}} d s=\frac{1-j}{2} \sqrt{\frac{\pi}{k \rho}}
$$

Introducing the variable $v=|c| \sqrt{4 k \rho / \pi}$, we note that, $d v / d \rho=|c k| / \sqrt{\pi k \rho}$. Noting that, $c=\operatorname{sign}(c)|c|$, we may change variables from ρ to v and rewrite (F.28) as,

$$
\begin{equation*}
\frac{d}{d v}\left[I(\phi) e^{-j k \rho \cos \phi}\right]=-\operatorname{sign}(c) \frac{1}{1-j} e^{-j \pi v^{2} / 2} \tag{F.29}
\end{equation*}
$$

Integrating with respect to v, and fixing the integration constant by requiring that $I(\phi)$ vanish as $\rho \rightarrow \infty$ or $v \rightarrow \infty$, we obtain the required result,

$$
I(\phi) e^{-j k \rho \cos \phi}=1-\frac{1}{1-j} \int_{-\infty}^{v} e^{-j \pi u^{2} / 2} d u=1-D(v)
$$

where here, $v=\sqrt{4 k \rho / \pi}|\cos (\phi / 2)|$. Regarding the value at $c=0$, we may distinguish the limits as $c \rightarrow \pm 0$. Using the following limit for the delta-function,

$$
\lim _{c \rightarrow \pm 0} \frac{1}{\pi} \frac{c}{c^{2}+s^{2}}= \pm \delta(s)
$$

then, Eq. (F.27) has the following limiting values, noting that $\cos \phi=2 c^{2}-1=-1$,

$$
\lim _{c \rightarrow \pm 0} I(\phi)=\lim _{c \rightarrow \pm 0} e^{j k \rho \cos \phi} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{c}{c^{2}+s^{2}} e^{-2 j k \rho\left(c^{2}+s^{2}\right)} d s= \pm \frac{1}{2} e^{-j k \rho}
$$

These are consistent with the limits of Eq. (F.26) since $D(0)=1 / 2$.

G. Exponential, Sine, and Cosine Integrals

Several antenna calculations, such as mutual impedances and directivities, can be reduced to the exponential integral, which is defined as follows [1790]:

$$
\begin{equation*}
E_{1}(z)=\int_{z}^{\infty} \frac{e^{-u}}{u} d u=e^{-z} \int_{0}^{\infty} \frac{e^{-t}}{z+t} d t \quad \text { (exponential integral) } \tag{G.1}
\end{equation*}
$$

where z is a complex number with phase restricted such that $|\arg z|<\pi$. This range allows pure imaginary z 's. The built-in MATLAB function expint evaluates $E_{1}(z)$ at an array of z 's. Related to $E_{1}(z)$ are the sine and cosine integrals:

$$
\begin{array}{ll}
S_{i}(z)=\int_{0}^{z} \frac{\sin u}{u} d u & \text { (sine integral) } \\
C_{i}(z)=\gamma+\ln z+\int_{0}^{z} \frac{\cos u-1}{u} d u & \text { (cosine integral) } \tag{G.2}
\end{array}
$$

where γ is the Euler constant $\gamma=0.5772156649 \ldots$. A related cosine integral is:

$$
\begin{equation*}
C_{\mathrm{in}}(z)=\int_{0}^{z} \frac{1-\cos u}{u} d u=\gamma+\ln z-C_{i}(z) \tag{G.3}
\end{equation*}
$$

For $z \geq 0$, the sine and cosine integrals are related to $E_{1}(z)$ by [1790]:

$$
\begin{align*}
& S_{i}(z)=\frac{E_{1}(j z)-E_{1}(-j z)}{2 j}+\frac{\pi}{2}=\operatorname{Im}\left[E_{1}(j z)\right]+\frac{\pi}{2} \\
& C_{i}(z)=-\frac{E_{1}(j z)+E_{1}(-j z)}{2}=-\operatorname{Re}\left[E_{1}(j z)\right]
\end{align*}
$$

while for $z \leq 0$, we have $S_{i}(z)=-S_{i}(-z)$ and $C_{i}(z)=C_{i}(-z)+j \pi$. Conversely, we have for $z>0$:

$$
\begin{equation*}
E_{1}(j z)=-C_{i}(z)+j\left(S_{i}(z)-\frac{\pi}{2}\right)=-\gamma-\ln (z)+C_{\text {in }}(z)+j\left(S_{i}(z)-\frac{\pi}{2}\right) \tag{G.5}
\end{equation*}
$$

The MATLAB functions Si, Ci, Cin evaluate the sine and cosine integrals at any vector of z 's by using the relations (G.4) and the built-in function expint:

$$
\begin{array}{ll}
y=\operatorname{Si}(z) ; & \text { \% sine integral, Eq. (G.2) } \\
y=C i(z) ; & \text { \% sine integral, Eq. (G.2) } \\
y=\operatorname{Cin}(z) ; & \text { \% sine integral, Eq. (G.3) }
\end{array}
$$

A related integral that appears in calculating mutual and self impedances is what may be called a "Green's function integral":

$$
\begin{equation*}
\operatorname{Gi}\left(d, z_{0}, h, s\right)=\int_{0}^{h} \frac{e^{-j k R}}{R} e^{-j k s z} d z, \quad R=\sqrt{d^{2}+\left(z-z_{0}\right)^{2}}, \quad s= \pm 1 \tag{G.6}
\end{equation*}
$$

This integral can be reduced to the exponential integral by the change of variables:

$$
\nu=j k\left(R+s\left(z-z_{0}\right)\right) \quad \Rightarrow \quad s \frac{d v}{v}=\frac{d z}{R}
$$

which gives

$$
\int_{0}^{h} \frac{e^{-j k R}}{R} e^{-j k s z} d z=s e^{-j k s z_{0}} \int_{v_{0}}^{v_{1}} \frac{e^{-u}}{u} d u, \quad \text { or, }
$$

$$
\begin{equation*}
\operatorname{Gi}\left(d, z_{0}, h, s\right)=\int_{0}^{h} \frac{e^{-j k R}}{R} e^{-j k s z} d z=s e^{-j k s z_{0}}\left[E_{1}\left(j u_{0}\right)-E_{1}\left(j u_{1}\right)\right] \tag{G.7}
\end{equation*}
$$

where

$$
\begin{array}{ll}
v_{0}=j u_{0}, & u_{0}=k\left[\sqrt{d^{2}+z_{0}^{2}}-s z_{0}\right] \\
v_{1}=j u_{1}, & u_{1}=k\left[\sqrt{d^{2}+\left(h-z_{0}\right)^{2}}+s\left(h-z_{0}\right)\right]
\end{array}
$$

The function Gi evaluates Eq. (G.7), where z_{0}, s, and the resulting integral J, can be vectors of the same dimension. Its usage is:

$$
\mathrm{J}=\mathrm{Gi}(\mathrm{~d}, \mathrm{z0}, \mathrm{~h}, \mathrm{~s}) ; \quad \% \text { Green's function integral, Eq. (G.7) }
$$

Another integral that appears commonly in antenna work is:

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\cos (\alpha \cos \theta)-\cos \alpha}{\sin \theta} d \theta=S_{i}(2 \alpha) \sin \alpha-C_{\text {in }}(2 \alpha) \cos \alpha \tag{G.8}
\end{equation*}
$$

Its proof is straightforward by first changing variables to $z=\cos \theta$, then using partial fraction expansion, and finally changing variables to $u=\alpha(1+z)$, and using the definitions (G.2) and (G.3):

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{\cos (\alpha \cos \theta)-\cos \alpha}{\sin \theta} d \theta=\int_{-1}^{1} \frac{\cos (\alpha z)-\cos \alpha}{1-z^{2}} d z \\
& =\frac{1}{2} \int_{-1}^{1} \frac{\cos (\alpha z)-\cos \alpha}{1+z} d z+\frac{1}{2} \int_{-1}^{1} \frac{\cos (\alpha z)-\cos \alpha}{1-z} d z=\int_{-1}^{1} \frac{\cos (\alpha z)-\cos \alpha}{1+z} d z \\
& =\int_{0}^{2 \alpha} \frac{\cos (u-\alpha)-\cos \alpha}{u} d u=\sin \alpha \int_{0}^{2 \alpha} \frac{\sin u}{u} d u-\cos \alpha \int_{0}^{2 \alpha} \frac{1-\cos u}{u} d u
\end{aligned}
$$

H. Stationary Phase Approximation

The Fresnel integrals find also application in the stationary-phase approximation for evaluating integrals. We note first that Eqs. (F.2) and (F.3) imply,

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{ \pm j \pi t^{2} / 2} d t=1 \pm j=\sqrt{2} e^{ \pm j \frac{\pi}{4}} \tag{H.1}
\end{equation*}
$$

and by changing variables of integration, we have the following integral, for any real α,

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{j \alpha x^{2} / 2} d x=\sqrt{\frac{2 \pi}{|\alpha|}} e^{j \operatorname{sign}(\alpha) \frac{\pi}{4}}=\sqrt{\frac{\pi}{|\alpha|}}(1+j \operatorname{sign}(\alpha)) \tag{H.2}
\end{equation*}
$$

The stationary-phase approximation is a way to approximate integrals of the following form, in the limit of the positive parameter $p \rightarrow \infty$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) e^{j p \phi(x)} d x \tag{H.3}
\end{equation*}
$$

where $f(x), \phi(x)$ are real-valued. To simplify the notation, we will set $p=1$. One can always replace $\phi(x)$ by $p \phi(x)$ in what follows. The stationary-phase approximation can then be stated as follows:

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) e^{j \phi(x)} d x \simeq e^{j \operatorname{sign}\left(\phi^{\prime \prime}\left(x_{0}\right)\right) \frac{\pi}{4}} \sqrt{\frac{2 \pi}{\left|\phi^{\prime \prime}\left(x_{0}\right)\right|}} f\left(x_{0}\right) e^{j \phi\left(x_{0}\right)} \tag{H.4}
\end{equation*}
$$

where x_{0} is a stationary point of the phase $\phi(x)$, that is, the solution of $\phi^{\prime}\left(x_{0}\right)=0$, where for simplicity we assume that there is only one such point (otherwise, one has a sum of terms like (H.4), one for each solution of $\phi^{\prime}(x)=0$). Eq. (H.4) is obtained by expanding $\phi(x)$ in Taylor series about the stationary point $x=x_{0}$ and keeping only up to the quadratic term:

$$
\phi(x) \simeq \phi\left(x_{0}\right)+\phi^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} \phi^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}=\phi\left(x_{0}\right)+\frac{1}{2} \phi^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

Making this approximation in the integral and assuming that $f(x)$ is slowly varying in the neighborhood of x_{0}, we may replace $f(x)$ by its value at x_{0} :

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) e^{j \phi(x)} d x & \simeq \int_{-\infty}^{\infty} f\left(x_{0}\right) e^{j\left(\phi\left(x_{0}\right)+\phi^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} / 2\right)} d x \\
& =f\left(x_{0}\right) e^{j \phi\left(x_{0}\right)} \int_{-\infty}^{\infty} e^{j \phi^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} / 2} d x
\end{aligned}
$$

and Eq. (H.4) is obtained by applying Eq. (H.2) to the above integral. The generalization to two dimensions is straightforward, the objective being to evaluate double-integrals of the following form in the limit, $p \rightarrow \infty$,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{j p \phi(x, y)} d x d y
$$

As before, we will set $p=1$. The phase function $\phi(x, y)$ is now expanded about a stationary point $\left(x_{0}, y_{0}\right)$, at which the partial derivatives of $\phi(x, y)$ vanish,

$$
\begin{equation*}
\frac{\partial \phi\left(x_{0}, y_{0}\right)}{\partial x}=\frac{\partial \phi\left(x_{0}, y_{0}\right)}{\partial y}=0 \tag{H.5}
\end{equation*}
$$

The Taylor series expansion about the point $\left(x_{0}, y_{0}\right)$ can be written as the quadratic form,

$$
\begin{aligned}
\phi(x, y) & \simeq \phi\left(x_{0}, y_{0}\right)+\frac{1}{2}\left[\alpha\left(x-x_{0}\right)^{2}+2 \gamma\left(x-x_{0}\right)\left(y-y_{0}\right)+\beta\left(y-y_{0}\right)^{2}\right] \\
& =\phi\left(x_{0}, y_{0}\right)+\frac{1}{2}\left[x-x_{0}, y-y_{0}\right]\left[\begin{array}{ll}
\alpha & \gamma \\
\gamma & \beta
\end{array}\right]\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right] \\
& =\phi\left(x_{0}, y_{0}\right)+\frac{1}{2} X^{T} \Phi X, \quad \text { where } \quad X=\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right], \quad \Phi=\left[\begin{array}{ll}
\alpha & \gamma \\
\gamma & \beta
\end{array}\right]
\end{aligned}
$$

and α, β, γ denote the second derivatives at $\left(x_{0}, y_{0}\right)$, that is,

$$
\alpha=\frac{\partial^{2} \phi\left(x_{0}, y_{0}\right)}{\partial x^{2}}, \quad \gamma=\frac{\partial^{2} \phi\left(x_{0}, y_{0}\right)}{\partial x \partial y}, \quad \beta=\frac{\partial^{2} \phi\left(x_{0}, y_{0}\right)}{\partial y^{2}}
$$

The stationary-phase approximation becomes then,

$$
\iint_{-\infty}^{\infty} f(x, y) e^{j \phi(x, y)} d x d y \simeq f\left(x_{0}, y_{0}\right) e^{j \phi\left(x_{0}, y_{0}\right)} \iint_{-\infty}^{\infty} e^{j \frac{1}{2} x^{T} \Phi x} d x d y
$$

The above double integral can be reduced to the product of two integrals of the form of Eq. (H.2). The resulting approximation then takes the form:

$$
\begin{equation*}
\iint_{-\infty}^{\infty} f(x, y) e^{j \phi(x, y)} d x d y \simeq e^{j(\sigma+1) \tau \frac{\pi}{4}} \frac{2 \pi}{\sqrt{|\operatorname{det} \Phi|}} f\left(x_{0}, y_{0}\right) e^{j \phi\left(x_{0}, y_{0}\right)} \tag{H.6}
\end{equation*}
$$

where σ, τ are the signs of the determinant and trace of Φ, that is,

$$
\begin{align*}
\sigma & =\operatorname{sign}(\operatorname{det} \Phi)=\operatorname{sign}\left(\alpha \beta-\gamma^{2}\right) \\
\tau & =\operatorname{sign}(\operatorname{tr} \Phi)=\operatorname{sign}(\alpha+\beta) \tag{H.7}
\end{align*}
$$

In particular, the phase factor takes the following three possible values, depending on whether the stationary point $\left(x_{0}, y_{0}\right)$ is a local minimum, a local maximum, or a saddle point of $\phi(x, y)$,

$$
e^{j(\sigma+1) T \frac{\pi}{4}}=\left\{\begin{array}{rll}
j, & \text { if } \operatorname{det} \Phi>0, & \operatorname{tr} \Phi>0, \tag{H.8}\\
-j, & \text { if } \operatorname{det} \Phi>0, & \operatorname{tr} \Phi<0, \\
\text { (minimum) } \\
1, & \text { if } \operatorname{det} \Phi<0, & \text { (saddle) }
\end{array}\right.
$$

In Eq. (H.8), the conditions $\operatorname{tr} \Phi \lessgtr 0$ can be replaced by the equivalent conditions $\alpha \lessgtr 0$, or by, $\beta \lessgtr 0$. This follows from the fact that, $\alpha \beta=\gamma^{2}+\operatorname{det} \Phi$, so that if $\operatorname{det} \Phi>0$, then $\alpha \beta>0$, and α, β must have the same sign and hence the same sign as, $\operatorname{tr} \Phi=\alpha+\beta$. Thus, τ can be replaced by $\operatorname{sign}(\alpha)$ in (H.6).

The evaluation of the quadratic-phase integral $\iint_{-\infty}^{\infty} e^{j \frac{1}{2} X^{T} \Phi X} d x d y$ can be done in two ways, leading to Eq. (H.6). First, by the method of "completing the squares", and second, using the eigenvalue decomposition of the matrix Φ. In the first method, we note the following quadratic form identity (assuming $\alpha \neq 0$),

$$
\begin{aligned}
& \frac{1}{2} X^{T} \Phi X=\frac{1}{2}\left[\alpha\left(x-x_{0}\right)^{2}+2 \gamma\left(x-x_{0}\right)\left(y-y_{0}\right)+\beta\left(y-y_{0}\right)^{2}\right] \\
& \quad=\frac{1}{2} \alpha\left(x-x_{0}+\frac{\gamma}{\alpha}\left(y-y_{0}\right)\right)^{2}+\frac{1}{2} \frac{\alpha \beta-\gamma^{2}}{\alpha}\left(y-y_{0}\right)^{2}=\frac{1}{2} \alpha \xi^{2}+\frac{1}{2} \frac{\operatorname{det} \Phi}{\alpha} \eta^{2} \\
& \text { where } \xi=x-x_{0}+\frac{\gamma}{\alpha}\left(y-y_{0}\right), \quad \eta=y-y_{0}
\end{aligned}
$$

and $d x d y=d \xi d \eta$. Thus, using Eq. (H.2),

$$
\begin{array}{r}
\iint_{-\infty}^{\infty} e^{j \frac{1}{2} X^{T} \Phi X} d x d y=\int_{-\infty}^{\infty} e^{j \alpha \xi^{2} / 2} d \xi \cdot \int_{-\infty}^{\infty} e^{j \frac{\operatorname{det} \Phi}{\alpha} \eta^{2} / 2} d \eta \\
\quad=\sqrt{\frac{2 \pi}{|\alpha|}} e^{j \operatorname{sign}(\alpha) \frac{\pi}{4}} \cdot \sqrt{\frac{2 \pi}{|\operatorname{det} \Phi| /|\alpha|}} e^{j \operatorname{sign}(\operatorname{det} \Phi / \alpha) \frac{\pi}{4}}
\end{array}
$$

and noting that, $\operatorname{sign}\left(\frac{\operatorname{det} \Phi}{\alpha}\right)=\operatorname{sign}(\alpha) \cdot \operatorname{sign}(\operatorname{det} \Phi)=\operatorname{sign}(\alpha) \cdot \sigma$, we obtain,

$$
\iint_{-\infty}^{\infty} e^{j \frac{1}{2} X^{T} \Phi X} d x d y=e^{j(\sigma+1) \operatorname{sign}(\alpha) \frac{\pi}{4}} \frac{2 \pi}{\sqrt{|\operatorname{det} \Phi|}}
$$

which leads to an equivalent expression to (H.6). In the eigenvalue method, the realsymmetric matrix Φ is diagonalized by a real orthogonal matrix V, that is, $\Phi=V \Lambda V^{T}$, where $\Lambda=\operatorname{diag}\left\{\lambda_{+}, \lambda_{-}\right\}$, with the two real eigenvalues given by,

$$
\lambda_{ \pm}=\frac{\alpha+\beta \pm \sqrt{(\alpha-\beta)^{2}+4 \gamma^{2}}}{2}
$$

Then, the quadratic form splits with respect to the two orthogonal directions as follows,
$\frac{1}{2} X^{T} \Phi X=\frac{1}{2} X^{T}\left(V \Lambda V^{T}\right) X=\frac{1}{2} \lambda_{+} u_{+}^{2}+\frac{1}{2} \lambda_{-} u_{-}^{2}, \quad$ with $\quad\left[\begin{array}{l}u_{+} \\ u_{-}\end{array}\right]=V^{T} X=V^{T}\left[\begin{array}{l}x-x_{0} \\ y-y_{0}\end{array}\right]$
and the quadratic phase integral becomes the product of two single ones,
$\iint_{-\infty}^{\infty} e^{j \frac{1}{2} X^{T} \Phi X} d x d y=\iint_{-\infty}^{\infty} e^{j \frac{1}{2} \lambda_{+} u_{+}^{2}+j \frac{1}{2} \lambda_{-} u_{-}^{2}} d u_{+} d u_{-}=e^{j\left(\operatorname{sign}\left(\lambda_{+}\right)+\operatorname{sign}\left(\lambda_{-}\right)\right) \frac{\pi}{4}} \sqrt{\frac{(2 \pi)^{2}}{\left|\lambda_{+} \lambda_{-}\right|}}$
where $d x d y=d u_{+} d u_{-}$, since $|\operatorname{det} V|=1$. The equivalence to (H.6) follows now by recognizing that, $\operatorname{det} \Phi=\lambda_{+} \lambda_{-}, \operatorname{tr} \Phi=\lambda_{+}+\lambda_{-}$, and that,

$$
\operatorname{sign}\left(\lambda_{+}\right)+\operatorname{sign}\left(\lambda_{-}\right)=\left(\operatorname{sign}\left(\lambda_{+} \lambda_{-}\right)+1\right) \cdot \operatorname{sign}\left(\lambda_{+}+\lambda_{-}\right)=(\sigma+1) \cdot \tau
$$

When $\operatorname{det} \Phi=\lambda_{+} \lambda_{-}>0$, there can be two cases, either, $\lambda_{+}>0$ and $\lambda_{-}>0$, leading to a local minimum of $\phi(x, y)$ at the stationary point $\left(x_{0}, y_{0}\right)$, or, $\lambda_{+}<0$ and $\lambda_{-}<0$, leading to a local maximum. Similarly, if $\operatorname{det} \Phi<0$, then λ_{+}, λ_{-}must have opposite signs, corresponding to a saddle point.

For more information and subtleties of the stationary phase method, the reader may consult references [1632-1639].

I. Gauss-Legendre and Double-Exponential Quadrature

In many parts of this book it is necessary to perform numerical integration. GaussLegendre quadrature is one of the best integration methods, and we have implemented it with the MATLAB functions quadr and quadrs. Below, we give a brief description of the method. ${ }^{\dagger}$ The integral over an interval $[a, b]$ is approximated by a sum of the form:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \simeq \sum_{i=1}^{N} w_{i} f\left(x_{i}\right) \tag{I.1}
\end{equation*}
$$

where w_{i}, x_{i} are appropriate weights and evaluation points (nodes). This can be written in the vectorial form:

$$
\int_{a}^{b} f(x) d x \simeq \sum_{i=1}^{N} w_{i} f\left(x_{i}\right)=\left[w_{1}, w_{2}, \ldots, w_{N}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \tag{I.2}\\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]=\mathbf{w}^{T} f(\mathbf{x})
$$

The function quadr returns the column vectors of weights \mathbf{w} and nodes \mathbf{x}, with usage:

$$
[w, x]=\text { quadr }(a, b, N) ; \quad \% \text { Gauss-Legendre quadrature }
$$

The function quadrs allows the splitting of the interval $[a, b]$ into subintervals, computes N weights and nodes in each subinterval, and concatenates them to form the overall weight and node vectors \mathbf{w}, \mathbf{x} :

$$
[\mathrm{w}, \mathrm{x}]=\text { quadrs }(\mathrm{ab}, \mathrm{~N}) ; \quad \% \text { Gauss-Legendre quadrature over subintervals }
$$

where $a b$ is an array of endpoints that define the subintervals, for example,

$$
\begin{array}{ll}
\mathrm{ab}=[a, b], & \text { single interval } \\
\mathrm{ab}=[a, c, b], & \text { two subintervals, }[a, c] \text { and }[c, b] \\
\mathrm{ab}=[a, c, d, b], & \text { three subintervals, }[a, c],[c, d], \text { and }[d, b] \\
\mathrm{ab}=a: c: b, & \text { subintervals, }[a, a+c, a+2 c, \ldots, a+M c], \text { with } a+M c=b
\end{array}
$$

As an example, consider the following function and its exact integral:

$$
\begin{equation*}
f(x)=e^{x}+\frac{1}{x}, \quad J=\int_{1}^{2} f(x) d x=e^{2}-e^{1}+\ln 2=5.36392145 \tag{I.3}
\end{equation*}
$$

This integral can be evaluated numerically by the MATLAB code:

$$
\begin{array}{ll}
N=5 ; & \text { \% number of weights and nodes } \\
{[w, x]=\text { quadr }(1,2, N) ;} & \text { \% calculate weights and nodes for the interval }[1,2] \\
f=\exp (x)+1 . / x ; & \text { \% evaluate } f(x) \text { at the node vector } \\
J=w^{\prime * f} & \text { \% approximate integral }
\end{array}
$$

This produces the exact value with a 4.23×10^{-7} percentage error. If the integration interval is split in two, say, $[1,1.5]$ and $[1.5,2]$, then the second line above can be replaced by

[^2]$[w, x]=$ quadrs $([1,1.5,2], N) ; \quad \%$ or by, $[w, x]=$ quadrs $(1: 0.5: 2, N)$;
which has a percentage error of 1.28×10^{-9}. Next, we discuss the theoretical basis of the method.

The interval $[a, b]$ can be replaced by the standardized interval $[-1,1]$ with the transformation from $a \leq x \leq b$ to $-1 \leq z \leq 1$:

$$
\begin{equation*}
x=\left(\frac{b-a}{2}\right) z+\left(\frac{b+a}{2}\right) \tag{I.4}
\end{equation*}
$$

If w_{i} and z_{i} are the weights and nodes with respect to the interval $[-1,1]$, then those with respect to $[a, b]$ can be constructed simply as follows, for $i=1,2, \ldots, N$:

$$
\begin{align*}
x_{i} & =\left(\frac{b-a}{2}\right) z_{i}+\left(\frac{b+a}{2}\right) \\
w_{i}^{\chi} & =\left(\frac{b-a}{2}\right) w_{i} \tag{I.5}
\end{align*}
$$

where the scaling of the weights follows from the scaling of the differentials $d x=$ $d z(b-a) / 2$, so the value of the integral (I.1) is preserved by the transformation.

Gauss-Legendre quadrature is nicely tied with the theory of orthogonal polynomials over the interval $[-1,1]$, which are the Legendre polynomials. For N-point quadrature, the nodes $z_{i}, i=1,2, \ldots, N$ are the N roots of the Legendre polynomial $P_{N}(z)$, which all lie in the interval $[-1,1]$. The method is justified by the following theorem:

For any polynomial $P(z)$ of degree at most $2 N-1$, the quadrature formula (I.1) is satisfied exactly, that is,

$$
\begin{equation*}
\int_{-1}^{1} P(z) d z=\sum_{i=1}^{N} w_{i} P\left(z_{i}\right) \tag{I.6}
\end{equation*}
$$

provided that the z_{i} are the N roots of the Legendre polynomial $P_{N}(z)$.
The Legendre polynomials $P_{n}(z)$ are obtained via the process of Gram-Schmidt orthogonalization of the non-orthogonal monomial basis $\left\{1, z, z^{2}, \ldots, z^{n} \ldots\right\}$. Orthogonality is defined with respect to the following inner product over the interval $[-1,1]$:

$$
\begin{equation*}
(f, g)=\int_{-1}^{1} f(z) g(z) d z \tag{I.7}
\end{equation*}
$$

The standard definition of the Legendre polynomials is:

$$
\begin{equation*}
P_{n}(z)=\frac{1}{2^{n} n!} \frac{d^{n}}{d z^{n}}\left[\left(z^{2}-1\right)^{n}\right], \quad n=0,1,2, \ldots \tag{I.8}
\end{equation*}
$$

The first few of them are listed below:

$$
\begin{align*}
& P_{0}(z)=1 \\
& P_{1}(z)=z \\
& P_{2}(z)=(3 / 2)\left[z^{2}-(1 / 3)\right] \tag{I.9}\\
& P_{3}(z)=(5 / 2)\left[z^{3}-(3 / 5) z\right] \\
& P_{4}(z)=(35 / 8)\left[z^{4}-(6 / 7) z^{2}+(3 / 35)\right]
\end{align*}
$$

They are normalized such that $P_{n}(1)=1$ and are mutually orthogonal with respect to (I.7), but do not have unit norm:

$$
\begin{equation*}
\left(P_{n}, P_{m}\right)=\int_{-1}^{1} P_{n}(z) P_{m}(z) d z=\frac{2}{2 n+1} \delta_{n m} \tag{I.10}
\end{equation*}
$$

Moreover, they satisfy the three-term recurrence relation:

$$
\begin{equation*}
z P_{n}(z)=\left(\frac{n}{2 n+1}\right) P_{n-1}(z)+\left(\frac{n+1}{2 n+1}\right) P_{n+1}(z) \tag{I.11}
\end{equation*}
$$

The Gram-Schmidt orthogonalization process of the monomial basis $f_{n}(z)=z^{n}$ is the following order-recursive construction:

$$
\begin{aligned}
& \text { initialize } P_{0}(z)=f_{0}(z)=1 \\
& \text { for } n=1,2,3, \ldots \text {, do } \\
& \qquad P_{n}(z)=f_{n}(z)-\sum_{k=0}^{n-1} \frac{\left(f_{n}, P_{k}\right)}{\left(P_{k}, P_{k}\right)} P_{k}(z)
\end{aligned}
$$

A few steps of the construction will clarify it:

$$
P_{1}(z)=f_{1}(z)-\frac{\left(f_{1}, P_{0}\right)}{\left(P_{0}, P_{0}\right)} P_{0}(z)=z
$$

where $\left(f_{1}, P_{0}\right)=(z, 1)=\int_{-1}^{1} z d z=0$. Then, construct P_{2} by:

$$
P_{2}(z)=f_{2}(z)-\frac{\left(f_{2}, P_{0}\right)}{\left(P_{0}, P_{0}\right)} P_{0}(z)-\frac{\left(f_{2}, P_{1}\right)}{\left(P_{1}, P_{1}\right)} P_{1}(z)
$$

where now we have $\left(f_{2}, P_{1}\right)=\left(z^{2}, z\right)=\int_{-1}^{1} z^{3} d z=0$, and

$$
\left(f_{2}, P_{0}\right)=\left(z^{2}, 1\right)=\int_{-1}^{1} z^{2} d z=\frac{2}{3}, \quad\left(P_{0}, P_{0}\right)=(1,1)=\int_{-1}^{1} d z=2
$$

Therefore,

$$
P_{2}(z)=z^{2}-\frac{2 / 3}{2}=z^{2}-\frac{1}{3}
$$

Then, normalize it such that $P_{2}(1)=1$, and so on. For our discussion, we are going to renormalize the Legendre polynomials to unit norm. Because of (I.10), this amounts to multiplying the standard $P_{n}(z)$ by the factor $\sqrt{(2 n+1) / 2}$. Thus, we re-define:

$$
\begin{equation*}
P_{n}(z)=\sqrt{\frac{2 n+1}{2}} \frac{1}{2^{n} n!} \frac{d^{n}}{d z^{n}}\left[\left(z^{2}-1\right)^{n}\right], \quad n=0,1,2, \ldots \tag{I.12}
\end{equation*}
$$

Thus, (I.10) becomes $\left(P_{n}, P_{m}\right)=\delta_{n m}$. In particular, we note that now

$$
\begin{equation*}
P_{0}(z)=\frac{1}{\sqrt{2}} \tag{I.13}
\end{equation*}
$$

By introducing the same scaling factors into each term of the recurrence (I.11), we find that the renormalized $P_{n}(z)$ satisfy:

$$
\begin{equation*}
z P_{n}(z)=\alpha_{n} P_{n-1}(z)+\alpha_{n+1} P_{n+1}(z), \quad \alpha_{n}=\frac{n}{\sqrt{4 n^{2}-1}} \tag{I.14}
\end{equation*}
$$

This relationship can be assumed to be valid also at $n=0$, provided we define $P_{-1}(z)=0$. For each order n, the Gram-Schmidt procedure replaces the non-orthogonal monomial basis by the orthonormalized Legendre basis:

$$
\left\{1, z, z^{2}, \ldots, z^{n}\right\} \Leftrightarrow\left\{P_{0}(z), P_{1}(z), P_{2}(z), \ldots, P_{n}(z)\right\}
$$

Thus, any polynomial $Q(z)$ of degree n can be expanded uniquely in either basis:

$$
Q(z)=\sum_{k=0}^{n} q_{k} z^{k}=\sum_{k=0}^{n} c_{k} P_{k}(z)
$$

with the expansion coefficients calculated from $c_{k}=\left(Q, P_{k}\right)$. This also implies that if $Q(z)$ has order $n-1$ then, it will be orthogonal to $P_{n}(z)$.

Next, we turn to the proof of the basic Gauss-Legendre result (I.6). Given a polynomial $P(z)$ of order $2 N-1$, we can expand it uniquely in the form:

$$
\begin{equation*}
P(z)=P_{N}(z) Q(z)+R(z) \tag{I.15}
\end{equation*}
$$

where $Q(z)$ and $R(z)$ are the quotient and remainder of the division by the Legendre polynomial $P_{N}(z)$, and both will have order $N-1$. Then, the integral of $P(z)$ can be written in inner-product notation as follows:

$$
\int_{-1}^{1} P(z) d z=(P, 1)=\left(P_{N} Q+R, 1\right)=\left(P_{N} Q, 1\right)+(R, 1)=\left(Q, P_{N}\right)+(R, 1)
$$

But $\left(Q, P_{N}\right)=0$ because $Q(z)$ has order $N-1$ and $P_{N}(z)$ is orthogonal to all such polynomials. Thus, the integral of $P(z)$ can be expressed only in terms of the integral of the remainder polynomial $R(z)$, which has order $N-1$:

$$
\begin{equation*}
\int_{-1}^{1} P(z) d z=(P, 1)=(R, 1)=\int_{-1}^{1} R(z) d z \tag{I.16}
\end{equation*}
$$

The right-hand side of the integration rule (I.6) can also be expressed in terms of $R(z)$:

$$
\begin{equation*}
\sum_{i=1}^{N} w_{i} P\left(z_{i}\right)=\sum_{i=1}^{N} w_{i} P_{N}\left(z_{i}\right) Q\left(z_{i}\right)+\sum_{i=1}^{N} w_{i} R\left(z_{i}\right) \tag{I.17}
\end{equation*}
$$

and, because we assumed that $P_{N}\left(z_{i}\right)=0$,

$$
\begin{equation*}
\sum_{i=1}^{N} w_{i} P\left(z_{i}\right)=\sum_{i=1}^{N} w_{i} R\left(z_{i}\right) \tag{I.18}
\end{equation*}
$$

Thus, combining (I.16) and (I.18), we obtain the following condition, which is equivalent to Eq. (I.6),

$$
\begin{equation*}
\int_{-1}^{1} R(z) d z=\sum_{i=1}^{N} w_{i} R\left(z_{i}\right) \tag{I.19}
\end{equation*}
$$

Because $R(z)$ is an arbitrary polynomial of degree $N-1$, and has only N coefficients, this condition can be satisfied with a common set of N weights w_{i} for all such $R(z)$. If we had not assumed initially that the z_{i} were the zeros of $P_{N}(z)$, and took them to be an arbitrary set of N distinct points in $[-1,1]$, then (I.19) would read as

$$
\int_{-1}^{1} R(z) d z=\sum_{i=1}^{N} w_{i} P_{N}\left(z_{i}\right) Q\left(z_{i}\right)+\sum_{i=1}^{N} w_{i} R\left(z_{i}\right)
$$

In order for this to be satisfied for all $R(z)$ and all $Q(z)$, then (I.19) must still be satisfied by setting $Q(z)=0$, which fixes the weights w_{i}. Therefore, the first term in the right-hand side must be zero for all polynomials $Q(z)$ of degree $N-1$, and one can show that this implies that $P_{N}\left(z_{i}\right)=0$, that is, the z_{i} must be the zeros of $P_{N}(z)$.

Condition (I.19) can be used to determine the weights by expanding $R(z)$ into either the monomial basis or the Legendre basis, that is, because $R(z)$ has degree $N-1$:

$$
\begin{equation*}
R(z)=\sum_{k=0}^{N-1} r_{k} z^{k}=\sum_{k=0}^{N-1} c_{k} P_{k}(z) \tag{I.20}
\end{equation*}
$$

Inserting, for example, the monomial basis into (I.19) and matching the coefficients of r_{k} on either side, we obtain the system of N equations for the weights:

$$
\begin{equation*}
\sum_{i=1}^{N} z_{i}^{k} w_{i}=\int_{-1}^{1} z^{k} d z=\frac{1+(-1)^{k}}{k+1}, \quad k=0,1, \ldots, N-1 \tag{I.21}
\end{equation*}
$$

Defining the matrix $F_{k i}=Z_{i}^{k}$ and the vector $u_{k}=\left[1+(-1)^{k}\right] /(k+1)$, we may write (I.21) in the compact matrix form:

$$
\begin{equation*}
F \mathbf{w}=\mathbf{u} \quad \Rightarrow \quad \mathbf{w}=F^{-1} \mathbf{u} \tag{I.22}
\end{equation*}
$$

Alternatively, we may use the Legendre basis, which is more elegant. The left hand side of (I.19) will receive contribution only from the $k=0$ term because P_{0} is orthogonal to all the succeeding P_{k}. Indeed, using the definition (I.13), we have:

$$
\int_{-1}^{1} R(z) d z=(R, 1)=\sqrt{2}\left(R, P_{0}\right)=\sqrt{2} \sum_{k=0}^{N-1} c_{k}\left(P_{K}, P_{0}\right)=\sqrt{2} \sum_{k=0}^{N-1} c_{k} \delta_{k 0}=\sqrt{2} c_{0}
$$

The right-hand side of (I.19) may be written as follows. Defining the $N \times N$ ma$\operatorname{trix} P_{k i}=P_{k}\left(z_{i}\right), i=1,2 \ldots, N$, and $k=0,1, \ldots, N-1$, and the row vector $\mathbf{c}^{T}=$ [$c_{0}, c_{1}, \ldots, c_{N-1}$] of expansion coefficients, we have,

$$
\sum_{i=1}^{N} w_{i} R\left(z_{i}\right)=\sum_{k=0}^{N-1} \sum_{i=1}^{N} c_{k} P_{k}\left(z_{i}\right) w_{i}=\mathbf{c}^{T} P \mathbf{w}
$$

Thus, (I.19) now reads, where $\mathbf{u}_{0}=[1,0,0, \ldots, 0]^{T}$:

$$
\mathbf{c}^{T} P \mathbf{w}=\sqrt{2} c_{0}=\sqrt{2} \mathbf{c}^{T} \mathbf{u}_{0}
$$

Because the vector \mathbf{c} is arbitrary, we must have the condition:

$$
\begin{equation*}
P \mathbf{w}=\sqrt{2} \mathbf{u}_{0} \quad \Rightarrow \quad \mathbf{w}=\sqrt{2} P^{-1} \mathbf{u}_{0} \tag{I.23}
\end{equation*}
$$

The matrix P has some rather interesting properties. First, it has mutually orthogonal columns. Second, these columns are the eigenvectors of a Hermitian tridiagonal matrix whose eigenvalues are the zeros z_{i}. Thus, the problem of finding both z_{i} and w_{i} is reduced to an eigenvalue problem.

These eigenvalue properties follow from the recursion (I.14) of the normalized Legendre polynomials. For $n=0,1,2,3$, the recursion reads explicitly:

$$
\begin{aligned}
& z P_{0}(z)=\alpha_{1} P_{1}(z) \\
& z P_{1}(z)=\alpha_{1} P_{0}(z)+\alpha_{2} P_{2}(z) \\
& z P_{2}(z)=\alpha_{2} P_{1}(z)+\alpha_{3} P_{3}(z) \\
& z P_{3}(z)=\alpha_{3} P_{2}(z)+\alpha_{4} P_{4}(z)
\end{aligned}
$$

which can be written in matrix form:

$$
z\left[\begin{array}{c}
P_{0}(z) \\
P_{1}(z) \\
P_{2}(z) \\
P_{3}(z)
\end{array}\right]=\left[\begin{array}{cccc}
0 & \alpha_{1} & 0 & 0 \\
\alpha_{1} & 0 & \alpha_{2} & 0 \\
0 & \alpha_{2} & 0 & \alpha_{3} \\
0 & 0 & \alpha_{3} & 0
\end{array}\right]\left[\begin{array}{c}
P_{0}(z) \\
P_{1}(z) \\
P_{2}(z) \\
P_{3}(z)
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\alpha_{4} P_{4}(z)
\end{array}\right]
$$

and more generally,
$Z\left[\begin{array}{c}P_{0}(z) \\ P_{1}(z) \\ P_{2}(z) \\ \vdots \\ P_{N-2}(z) \\ P_{N-1}(z)\end{array}\right]=\left[\begin{array}{cccccc}0 & \alpha_{1} & 0 & 0 & \cdots & 0 \\ \alpha_{1} & 0 & \alpha_{2} & 0 & \cdots & 0 \\ 0 & \alpha_{2} & 0 & \alpha_{3} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \alpha_{N-2} & 0 & \alpha_{N-1} \\ 0 & \cdots & 0 & 0 & \alpha_{N-1} & 0\end{array}\right]\left[\begin{array}{c}P_{0}(z) \\ P_{1}(z) \\ P_{2}(z) \\ \vdots \\ P_{N-2}(z) \\ P_{N-1}(z)\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \alpha_{N} P_{N}(z)\end{array}\right]$

Now, if z is replaced by the i th zero z_{i} of $P_{N}(z)$, the last column will vanish and we obtain the eigenvalue equation:

$$
\left[\begin{array}{cccccc}
0 & \alpha_{1} & 0 & 0 & \cdots & 0 \tag{I.24}\\
\alpha_{1} & 0 & \alpha_{2} & 0 & \cdots & 0 \\
0 & \alpha_{2} & 0 & \alpha_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \alpha_{N-2} & 0 & \alpha_{N-1} \\
0 & \cdots & 0 & 0 & \alpha_{N-1} & 0
\end{array}\right]\left[\begin{array}{c}
P_{0}\left(z_{i}\right) \\
P_{1}\left(z_{i}\right) \\
P_{2}\left(z_{i}\right) \\
\vdots \\
P_{N-2}\left(z_{i}\right) \\
P_{N-1}\left(z_{i}\right)
\end{array}\right]=z_{i}\left[\begin{array}{c}
P_{0}\left(z_{i}\right) \\
P_{1}\left(z_{i}\right) \\
P_{2}\left(z_{i}\right) \\
\vdots \\
P_{N-2}\left(z_{i}\right) \\
P_{N-1}\left(z_{i}\right)
\end{array}\right]
$$

Denoting the above tridiagonal matrix by A and the column of $P_{k}\left(z_{i}\right)$'s by \mathbf{p}_{i}, we may write compactly:

$$
\begin{equation*}
A \mathbf{p}_{i}=z_{i} \mathbf{p}_{i}, \quad i=1,2, \ldots, N \tag{I.25}
\end{equation*}
$$

Thus, the eigenvalues of A are the zeros z_{i} and the corresponding eigenvectors are the columns \mathbf{p}_{i} of the matrix P that we introduced in (I.23). Because the zeros Z_{i} are distinct and A is a Hermitian matrix, its eigenvectors will be mutually orthogonal:

$$
\begin{equation*}
\mathbf{p}_{i}^{T} \mathbf{p}_{j}=d_{i}^{2} \delta_{i j} \tag{I.26}
\end{equation*}
$$

where $d_{i}=\left\|\mathbf{p}_{i}\right\|$ are the norms of the vectors \mathbf{p}_{i}. It follows that the orthonormalized eigenvectors of A will be $\boldsymbol{v}_{i}=\mathbf{p}_{i} / d_{i}$, and the orthogonal matrix of eigenvectors having the \boldsymbol{v}_{i} as columns will be $V=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}\right]$, or, expressed in terms of the matrix P and the diagonal matrix $D=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{N}\right\}$:

$$
\begin{equation*}
V=P D^{-1} \tag{I.27}
\end{equation*}
$$

Replacing P in (I.23) by $P=V D$ and using the orthogonality $V^{T} V=I$ of the eigenvector matrix, or $V^{-1}=V^{T}$, we obtain the solution:

$$
\begin{equation*}
\mathbf{w}=\sqrt{2} D^{-1} V^{T} \mathbf{u}_{0} \quad \Rightarrow \quad w_{i}=\sqrt{2} d_{i}^{-1}\left(v_{i}^{T} \mathbf{u}_{0}\right) \tag{I.28}
\end{equation*}
$$

The matrix D can itself be expressed in terms of V by noting that the top entry of \mathbf{p}_{i} is $P_{0}\left(z_{i}\right)=1 / \sqrt{2}$, and therefore, it follows from $\boldsymbol{v}_{i}=\mathbf{p}_{i} / d_{i}$ that the top entry of \boldsymbol{v}_{i} will be $\boldsymbol{v}_{i}^{T} \mathbf{u}_{0}=1 /\left(\sqrt{2} d_{i}\right)$, or, $d_{i}^{-1}=\sqrt{2}\left(\boldsymbol{v}_{i}^{T} \mathbf{u}_{0}\right)$. It finally follows from Eq. (I.28) that

$$
\begin{equation*}
w_{i}=d_{i}^{-2}=2\left(\boldsymbol{v}_{i}^{T} \mathbf{u}_{0}\right)^{2} \tag{I.29}
\end{equation*}
$$

In MATLAB language, $\boldsymbol{v}_{i}^{T} \mathbf{u}_{0}=V(1, i)$, that is, the first row of V. Because the eigenvectors of the Hermitian matrix A are real-valued and unique up to a sign, Eq. (I.29) allows the unique determination of the weights from the eigenvector matrix V.

The above discussion leads to two possible implementations of the MATLAB function quadr. In the first, we obtain the coefficients of the Legendre polynomial $P_{N}(z)$, find its zeros using the built-in function root, and then solve the linear equation (I.22) for the weights. The second approach, implemented by the function quadr2 and the related function quadrs2, determines z_{i}, w_{i} from the eigenvalue problem of the matrix A.

Tanh-Sinh Double-Exponential Quadrature

Another quadrature integration procedure is the so-called double-exponential or, tanhsinh rule. ${ }^{\dagger}$ It is particularly effective in handling end-point singularities. According to this rule, the integral of a function $f(x)$ over the interval $[a, b]$ is approximated by the sum,

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \sum_{i=-N}^{N} w_{i} f\left(x_{i}\right) \tag{I.30}
\end{equation*}
$$

with weights w_{i} and quadrature points x_{i} derived from,

[^3]\[

$$
\begin{align*}
t_{i} & =h i, \quad-N \leq i \leq N \\
x_{i} & =\left(\frac{b-a}{2}\right) \tanh \left(\frac{\pi}{2} \sinh \left(t_{i}\right)\right)+\left(\frac{b+a}{2}\right) \tag{I.31}\\
w_{i} & =\left(\frac{b-a}{2}\right) \frac{h \pi}{2} \frac{\cosh \left(t_{i}\right)}{\cosh ^{2}\left(\frac{\pi}{2} \sinh \left(t_{i}\right)\right)}
\end{align*}
$$
\]

The spacing h and number N are determined from the rules:

$$
\begin{equation*}
h=2^{-M}, \quad N=6 \cdot 2^{M} \tag{I.32}
\end{equation*}
$$

where M is selected by the user, with typical values $M=4-8$. The MATLAB function quadts.m implements Eqs. (I.31)-(I.32) and returns the column vectors of weights w_{i} and quadrature points x_{i}.

```
[w,x] = quadts (a,b,M); % tanh-sinh double-exponential quadrature
```

For the same example of Eq. (I.3), the following code segment illustrates the usage of the function,

M=3;

$[w, x]=$ quadts $(1,2, M)$;
$\mathrm{f}=\exp (\mathrm{x})+1 . / \mathrm{x}$;
$\mathrm{J}=\mathrm{w}$ '*f;
\% approximate integral
For $M=2$ and $M=3$, it produces the exact value with 6.87×10^{-10} and 1.66×10^{-14} percentage errors.

If the integrand has singularities at the end-points a, b of the integration interval, then replacing the interval $[a, b]$ by $[a+\epsilon, b]$ or $[a, b-\epsilon]$ often works well. This is done, for example, in the implementation of the Bethe-Bouwkamp function BBnum.m, described in Sec. 19.12.

J. Prolate Spheroidal Wave Functions

Prolate spheroidal wave functions (PSWF) of order zero provide an ideal basis for representing bandlimited signals that are also maximally concentrated in a finite time interval. They were extensively studied by Slepian, Pollak, and Landau in a series of papers [1643-1647] and have since been applied to a wide variety of applications, such as signal extrapolation, deconvolution, communication systems, waveform design, antennas, diffraction-limited optical systems, laser resonators, and acoustics.

In this Appendix, we summarize their properties and provide a MATLAB function for their computation. We will use them in Sec. 20.22 in our discussion of superresolution and its dual, supergain, and their relationship to superoscillations. Further details may be found in references [1643-1679].

Definition

The PSWF functions are defined with respect to two intervals: a frequency interval, $\left[-\omega_{0}, \omega_{0}\right](\mathrm{rad} / \mathrm{sec})$, over which they are bandlimited, and a time interval, $\left[-t_{0}, t_{0}\right]$ (sec), over which they are concentrated (but not limited to).

For notational convenience let us define the following three function spaces: (a) the space \mathcal{L}_{∞}^{2} of functions $f(t)$ that are square-integrable over the real line, $-\infty<t<\infty$, (b) the space $\mathcal{L}_{t_{0}}^{2}$ of functions $f(t)$ that are square-integrable over the finite interval [$\left.-t_{0}, t_{0}\right]$, and (c) the subspace $\mathcal{B} \omega_{0}$ of \mathcal{L}_{∞}^{2} of bandlimited functions $f(t)$ whose Fourier transform $\hat{f}(\omega)$ vanishes outside the interval $\left[-\omega_{0}, \omega_{0}\right]$, that is, $\hat{f}(\omega)=0$ for $|\omega|>$ ω_{0}, so that they are representable in the form,

$$
\begin{equation*}
f(t)=\int_{-\omega_{0}}^{\omega_{0}} \hat{f}(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}, \quad \hat{f}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \tag{J.1}
\end{equation*}
$$

The PSWF functions, denoted here by $\psi_{n}(t)$ with $n=0,1,2, \ldots$, belong to the subspace $\mathcal{B}_{\omega_{0}}$ and are defined by the following equivalent expansions in terms of Legendre polynomials or spherical Bessel functions:

$$
\begin{equation*}
\psi_{n}(t)=\sqrt{\frac{\lambda_{n}}{t_{0}}} \sum_{k} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}\left(\frac{t}{t_{0}}\right)=\sqrt{\frac{c}{2 \pi t_{0}}} \sum_{k} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k-n} j_{k}\left(\omega_{0} t\right) \tag{J.2}
\end{equation*}
$$

for $n=0,1,2, \ldots$, where $\beta_{n k}$ are the expansion coefficients, c is the time-bandwidth product, $c=t_{0} \omega_{0}$, and λ_{n} are the positive eigenvalues (listed in decreasing order) and $\psi_{n}(t)$ the corresponding eigenfunctions of the following linear integral operator with the sinc-kernel:

$$
\begin{equation*}
\int_{-t_{0}}^{t_{0}} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} \psi_{n}\left(t^{\prime}\right) d t^{\prime}=\lambda_{n} \psi_{n}(t) \quad n=0,1,2, \ldots, \quad \text { for all } t \tag{J.3}
\end{equation*}
$$

The Legendre polynomial expansion in (J.2) is numerically accurate for $|t| \leq t_{0}$, whereas the spherical Bessel function expansion is valid for all t, and we use that in our MATLAB implementation. The unnormalized Legendre polynomials $P_{k}(x)$ were defined in Eq. (I.8) of Appendix I. The normalized Legendre polynomials are $\sqrt{k+\frac{1}{2}} P_{k}(x)$. The spherical Bessel functions $j_{k}(x)$ are defined in terms of the ordinary Bessel functions of half-integer order:

$$
\begin{equation*}
j_{k}(x)=\sqrt{\frac{\pi}{2 x}} J_{k+\frac{1}{2}}(x) \tag{J.4}
\end{equation*}
$$

The eigenvalues λ_{n} are distinct and lie in the interval, $0<\lambda_{n}<1$. Typically, they have values near unity, $\lambda_{n} \geqq 1$, for $n=0,1,2, \ldots$, up to about the so-called Shannon number, $N_{\mathcal{C}}=2 c / \pi$, and after that they drop rapidly towards zero. The Shannon number represents roughly the number of degrees of freedom for characterizing a signal of total frequency bandwidth $\Omega=2 \omega_{0}$ and total time duration $T=2 t_{0}$. If F is the total bandwidth in Hz , that is, $F=\Omega / 2 \pi$, then, $N_{c}=F T$,

$$
\begin{equation*}
N_{c}=\frac{2 c}{\pi}=\frac{2 \omega_{0} t_{0}}{\pi}=\frac{2 \omega_{0} 2 t_{0}}{2 \pi}=\frac{\Omega T}{2 \pi}=F T \tag{J.5}
\end{equation*}
$$

Since, $j_{k}\left(\omega_{0} t\right)=j_{k}\left(c t / t_{0}\right)$, we note that up to a scale factor, $\psi_{n}(t)$ is a function of c and the scaled variable $\eta=t / t_{0}$. Indeed, we have, $\psi_{n}(t)=t_{0}^{-1 / 2} \phi_{n}\left(c, t / t_{0}\right)$, where,

$$
\begin{equation*}
\phi_{n}(c, \eta)=\sqrt{\lambda_{n}} \sum_{k} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}(\eta)=\sqrt{\frac{c}{2 \pi}} \sum_{k} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k-n} j_{k}(c \eta) \tag{J.6}
\end{equation*}
$$

We will also use the following notation to indicate explicitly the dependence on the parameters t_{0}, ω_{0} and $c=t_{0} \omega_{0}$,

$$
\begin{equation*}
\psi_{n}\left(t_{0}, \omega_{0}, t\right)=\frac{1}{\sqrt{t_{0}}} \phi_{n}\left(c, \frac{t}{t_{0}}\right) \tag{J.7}
\end{equation*}
$$

The k-summation in (J.2) goes over $0 \leq k<\infty$. However, k takes only even values, $k=0,2,4, \ldots$, when n is even or zero, and only odd values, $k=1,3,5, \ldots$, when n is odd. This also implies that $\psi_{n}(t)$ is an even function of t, if n is even, and odd in t, if n is odd, so that, $\psi_{n}(-t)=(-1)^{n} \psi_{n}(t)$. The expansion coefficients $\beta_{n k}$ are real-valued and because n, k have the same parity, i.e., $n-k$ is even, it follows that the number i^{k-n} will be real, $i^{k-n}=(-1)^{(k-n) / 2}$. Therefore, all $\psi_{n}(t)$ are real-valued.

The k-summation can be extended to all $k \geq 0$ by redefining the expansion coefficients $\beta_{n k}$ for all k by appropriately interlacing zeros as follows:

The expansion coefficients are chosen to satisfy the orthogonality property,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \beta_{n k} \beta_{m k}=\delta_{n m} \quad n, m=0,1,2, \ldots \tag{J.9}
\end{equation*}
$$

This particular normalization is computationally convenient and enables the orthogonality properties of the $\psi_{n}(t)$ functions, that is, Eqs. (J.24) and (J.26). The coefficients $\beta_{n k}$ may be constructed as the orthonormal eigenvectors of a real symmetric tridiagonal matrix as we discuss below. We note also that for large t, the PSWF functions behave like sinc-functions [1643,1658],

$$
\begin{equation*}
\psi_{n}(t) \approx \sqrt{\frac{2 c}{\pi \lambda_{n}}} \psi_{n}\left(t_{0}\right) \frac{\sin \left(\omega_{0} t-\frac{1}{2} \pi n\right)}{\omega_{0} t}, \quad \text { for large }|t| \tag{J.10}
\end{equation*}
$$

This follows from the asymptotic expansion of the spherical Bessel functions,

$$
j_{k}(x) \approx \frac{\sin \left(x-\frac{1}{2} \pi k\right)}{x}, \quad \text { for large }|x|
$$

Fourier Transform

The bandlimited Fourier transform of $\psi_{n}(t)$ can be constructed as follows. First, we note that $P_{k}(x)$ and $j_{k}(x)$ satisfy the following Fourier transform relationships [1822]:

$$
\begin{align*}
& \int_{-1}^{1} e^{j \omega t} \pi i^{-k} P_{k}(\omega) \frac{d \omega}{2 \pi}=j_{k}(t), \quad \text { for all real } t \\
& \int_{-\infty}^{\infty} e^{-j \omega t} j_{k}(t) d t=\pi i^{-k} P_{k}(\omega) \cdot \chi_{1}(\omega)= \begin{cases}\pi i^{-k} P_{k}(\omega), & |\omega|<1 \\
0, & |\omega|>1\end{cases} \tag{J.11}
\end{align*}
$$

where $\chi_{1}(\omega)$ is the indicator function for the interval $[-1,1]$, defined in terms of the unit-step function $u(x)$ as follows for a more general interval [$-\omega_{0}, \omega_{0}$],'

$$
\chi \omega_{0}(\omega)=u\left(\omega_{0}-|\omega|\right)= \begin{cases}1, & |\omega|<\omega_{0} \tag{J.12}\\ 0, & |\omega|>\omega_{0}\end{cases}
$$

It follows that the Fourier transform $\hat{j}_{k}(\omega)$ of $j_{k}\left(\omega_{0} t\right)$ is bandlimited over $\left[-\omega_{0}, \omega_{0}\right]$,

$$
\begin{align*}
\hat{j}_{k}(\omega) & =\int_{-\infty}^{\infty} e^{-j \omega t} j_{k}\left(\omega_{0} t\right) d t=\frac{\pi}{\omega_{0} i^{k}} P_{k}\left(\frac{\omega}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega) \\
j_{k}\left(\omega_{0} t\right) & =\int_{-\omega_{0}}^{\omega_{0}} e^{j \omega t} \hat{j}_{k}(\omega) \frac{d \omega}{2 \pi}=\int_{-\omega_{0}}^{\omega_{0}} e^{j \omega t} \frac{\pi}{\omega_{0} i^{k}} P_{k}\left(\frac{\omega}{\omega_{0}}\right) \frac{d \omega}{2 \pi} \tag{J.13}
\end{align*}
$$

In fact, the functions $j_{k}\left(\omega_{0} t\right)$, like the $\psi_{n}(t)$, form a complete and orthogonal basis of the subspace $\mathcal{B}_{\omega_{0}}$, see [1678,1679]. Their mutual orthogonality follows from Parseval's identity and the orthogonality property (I.10) of the Legendre polynomials:

$$
\begin{equation*}
\int_{-\infty}^{\infty} j_{k}\left(\omega_{0} t\right) j_{n}\left(\omega_{0} t\right) d t=\int_{-\omega_{0}}^{\omega_{0}} \hat{j}_{k}^{*}(\omega) \hat{j}_{n}(\omega) \frac{d \omega}{2 \pi}=\frac{\pi}{\omega_{0}} \frac{\delta_{k n}}{2 k+1} \tag{J.14}
\end{equation*}
$$

The bandlimited Fourier transform $\hat{\psi}_{n}(\omega)$ of $\psi_{n}(t)$ can now be obtained by Fouriertransforming the spherical Bessel function expansion in (J.2), then using (J.13), and comparing the result with the Legendre expansion of (J.2), that is,

$$
\begin{aligned}
& \hat{\psi}_{n}(\omega)=\sqrt{\frac{c}{2 \pi t_{0}}} \sum_{k} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k-n} \hat{j}_{k}(\omega) \\
& \quad=\sqrt{\frac{c}{2 \pi t_{0}}} \sum_{k} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k-n} \frac{\pi}{\omega_{0} i^{k}} P_{k}\left(\frac{\omega}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega) \\
& \quad=\frac{2 \pi}{\omega_{0}} \frac{1}{\mu_{n}} \underbrace{\sqrt{\frac{\lambda_{n}}{t_{0}}} \sum_{k} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}\left(\frac{\omega}{\omega_{0}}\right)}_{\psi_{n}\left(\omega t_{0} / \omega_{0}\right)} \cdot \chi \omega_{0}(\omega)=\frac{2 \pi}{\omega_{0}} \frac{1}{\mu_{n}} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega)
\end{aligned}
$$

where μ_{n} was defined in terms of λ_{n} as follows:

$$
\begin{equation*}
\mu_{n}=i^{n}\left|\mu_{n}\right|, \quad\left|\mu_{n}\right|=\sqrt{\frac{2 \pi \lambda_{n}}{c}} \Rightarrow \lambda_{n}=\frac{c}{2 \pi}\left|\mu_{n}\right|^{2} \tag{J.15}
\end{equation*}
$$

[^4]Thus, we find that $\hat{\psi}_{n}(\omega)$ is a scaled version of $\psi_{n}(t)$ itself,

$$
\begin{equation*}
\hat{\psi}_{n}(\omega)=\int_{-\infty}^{\infty} e^{-j \omega t} \psi_{n}(t) d t=\frac{2 \pi}{\omega_{0}} \frac{1}{\mu_{n}} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega) \tag{J.16}
\end{equation*}
$$

The inverse Fourier transform brings out more clearly the meaning of μ_{n} :

$$
\begin{equation*}
\psi_{n}(t)=\int_{-\omega_{0}}^{\omega_{0}} e^{j \omega t} \hat{\psi}_{n}(\omega) \frac{d \omega}{2 \pi} \Rightarrow \int_{-\omega_{0}}^{\omega_{0}} e^{j \omega t} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \frac{d \omega}{\omega_{0}}=\mu_{n} \psi_{n}(t) \tag{J.17}
\end{equation*}
$$

for all t. By changing variables to $\omega \rightarrow t \omega_{0} / t_{0}$ and $t \rightarrow \omega t_{0} / \omega_{0}$, we also have,

$$
\begin{equation*}
\int_{-t_{0}}^{t_{0}} e^{j \omega t} \psi_{n}(t) \frac{d t}{t_{0}}=\mu_{n} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \quad \text { for all } \omega \tag{J.18}
\end{equation*}
$$

If (J.17) is written in terms of the scaled function $\phi_{n}(\eta)$ of (J.6), then, μ_{n} is the eigenvalue and $\phi_{n}(\eta)$ the eigenfunction of the following integral operator with exponential kernel:

$$
\begin{equation*}
\int_{-1}^{1} e^{j c n \xi} \phi_{n}(\xi) d \xi=\mu_{n} \phi_{n}(\eta) \quad n=0,1,2, \ldots, \quad \text { and all } \eta \tag{J.19}
\end{equation*}
$$

Similarly, (J.3) reads as follows with respect to $\phi_{n}(\eta)$,

$$
\begin{equation*}
\int_{-1}^{1} \frac{\sin (c(\eta-\xi))}{\pi(\eta-\xi)} \phi_{n}(\xi) d \xi=\lambda_{n} \phi_{n}(\eta) \quad \text { for all } \eta \tag{J.20}
\end{equation*}
$$

Eqs. (J.3) and (J.15) can be derived from Eqs. (J.17) and (J.18). Indeed, multiplying both sides of (J.17) by μ_{n}^{*} and taking the complex conjugate of (J.18), we have,

$$
\begin{aligned}
& \left|\mu_{n}\right|^{2} \psi_{n}(t)=\int_{-\omega_{0}}^{\omega_{0}} \mu_{n}^{*} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) e^{j \omega t} \frac{d \omega}{\omega_{0}}=\int_{-\omega_{0}}^{\omega_{0}}\left[\int_{-t_{0}}^{t_{0}} e^{-j \omega t^{\prime}} \psi_{n}\left(t^{\prime}\right) \frac{d t^{\prime}}{t_{0}}\right] e^{j \omega t} \frac{d \omega}{\omega_{0}} \\
& =\frac{2 \pi}{t_{0} \omega_{0}} \int_{-t_{0}}^{t_{0}}\left[\int_{-\omega_{0}}^{\omega_{0}} e^{j \omega\left(t-t^{\prime}\right)} \frac{d \omega}{2 \pi}\right] \psi_{n}\left(t^{\prime}\right) d t^{\prime}=\frac{2 \pi}{c} \int_{-t_{0}}^{t_{0}} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} \psi_{n}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

where we used the sinc-function transform,

$$
\begin{equation*}
\frac{\sin \left(\omega_{0} t\right)}{\pi t}=\int_{-\infty}^{\infty} \chi \omega_{0}(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}=\int_{-\omega_{0}}^{\omega_{0}} e^{j \omega t} \frac{d \omega}{2 \pi} \tag{J.21}
\end{equation*}
$$

Eq. (J.3) follows now by multiplying both sides by $c / 2 \pi$ and using the definition (J.15). Any function $f(t)$ in $\mathcal{B} \omega_{0}$ with a bandlimited Fourier transform $\hat{f}(\omega)$ over [$-\omega_{0}, \omega_{0}$] satisfies a similar sinc-kernel integral equation, but over the infinite time interval, $-\infty<$ $t<\infty$. Indeed, using the convolution theorem of Fourier transforms and (J.21), we have,

$$
f(t)=\int_{-\omega_{0}}^{\omega_{0}} \hat{f}(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}=\int_{-\infty}^{\infty} \chi \omega_{0}(\omega) \hat{f}(\omega) e^{j \omega t} \frac{d \omega}{2 \pi}=\int_{-\infty}^{\infty} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} f\left(t^{\prime}\right) d t^{\prime}
$$

that is, for $f(t) \in \mathcal{B} \omega_{0}$ and for all t,

$$
\begin{equation*}
f(t)=\int_{-\infty}^{\infty} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} f\left(t^{\prime}\right) d t^{\prime} \tag{J.22}
\end{equation*}
$$

Thus, because they lie in $\mathcal{B} \omega_{0}$, all $\psi_{n}(t)$ satisfy a similar condition,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} \psi_{n}\left(t^{\prime}\right) d t^{\prime}=\psi_{n}(t), \quad \text { for all } t \tag{J.23}
\end{equation*}
$$

Orthogonality and Completeness Properties

The PSWF functions $\psi_{n}(t)$ satisfy dual orthogonality and completeness properties, that is, the $\psi_{n}(t)$ functions form an orthogonal and complete basis for both $\mathcal{L}_{t_{0}}^{2}$ and $\mathcal{B} \omega_{0}$. With respect to the space $\mathcal{L}_{t_{0}}^{2}$, we have,

$$
\begin{align*}
& \int_{-t_{0}}^{t_{0}} \psi_{n}(t) \psi_{m}(t) d t=\lambda_{n} \delta_{n m} \tag{J.24}\\
& \quad \text { (orthogonality) } \tag{J.25}\\
& \sum_{n=0}^{\infty} \frac{1}{\lambda_{n}} \psi_{n}(t) \psi_{n}\left(t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \quad \text { (completeness) }
\end{align*}
$$

for $t, t^{\prime} \in\left[-t_{0}, t_{0}\right]$. And, with respect to the subspace $\mathcal{B}_{\omega_{0}}$, we have for the infinite time interval, $-\infty<t<\infty$,

$$
\begin{gather*}
\int_{-\infty}^{\infty} \psi_{n}(t) \psi_{m}(t) d t=\delta_{n m} \tag{J.26}\\
\sum_{n=0}^{\infty} \psi_{n}(t) \psi_{n}\left(t^{\prime}\right)=\frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} \tag{J.27}
\end{gather*} \text { for all } t, t^{\prime}
$$

Eq. (J.24) can be derived from the Legendre expansion in (J.2) as a consequence of the normalization condition (J.9) and the Legendre polynomial orthogonality (I.10). Similarly, (J.26) can be derived from the spherical Bessel function expansion and (J.14).

The sinc-kernel in (J.27) plays the role of the identity operator for functions in $\mathcal{B} \omega_{0}$, as implied by (J.22). Taking the limit $t^{\prime} \rightarrow t$ on both sides of (J.27), we obtain the following relationship, valid for all t,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \psi_{n}^{2}(t)=\frac{\omega_{0}}{\pi} \tag{J.28}
\end{equation*}
$$

Integrating this over $\left[-t_{0}, t_{0}\right]$ and using (J.24) for $n=m$, we obtain the sums,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \lambda_{n}=\frac{2 c}{\pi}=N_{C} \quad \Rightarrow \quad \sum_{n=0}^{\infty}\left|\mu_{n}\right|^{2}=4 \tag{J.29}
\end{equation*}
$$

Another identity can be derived from (J.27) by taking Fourier transforms of both sides with respect to the variable t^{\prime} and using the delay theorem of Fourier transforms on the right-hand-side, resulting in,

$$
\begin{gather*}
e^{-j \omega t} \cdot \chi \omega_{0}(\omega)=\sum_{n=0}^{\infty} \psi_{n}(t) \hat{\psi}_{n}(\omega)=\frac{2 \pi}{\omega_{0}} \chi_{\omega_{0}}(\omega) \sum_{n=0}^{\infty} \frac{1}{\mu_{n}} \psi_{n}(t) \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right), \\
\frac{2 \pi}{\omega_{0}} \sum_{n=0}^{\infty} \frac{1}{\mu_{n}} \psi_{n}(t) \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right)=e^{-j \omega t}, \quad \text { for all } t \text { and }|\omega|<\omega_{0} \tag{J.30}
\end{gather*}
$$

and in particular, setting $\omega=0$, we have for all t,

$$
\begin{equation*}
\frac{2 \pi}{\omega_{0}} \sum_{n=0}^{\infty} \frac{1}{\mu_{n}} \psi_{n}(0) \psi_{n}(t)=1 \tag{J.31}
\end{equation*}
$$

Eqs. (J.27)-(J.31) are demonstrated in Examples J.1-J.2. The completeness property (J.25) can also be derived by complex-conjugating both sides of (J.30) and taking Fourier transforms with respect to the variable t, denoting the corresponding frequency by ω^{\prime}, with $\left|\omega^{\prime}\right|<\omega_{0}$,

$$
\begin{aligned}
& \frac{2 \pi}{\omega_{0}} \sum_{n=0}^{\infty} \frac{1}{\mu_{n}^{*}} \hat{\psi}_{n}\left(\omega^{\prime}\right) \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right)=2 \pi \delta\left(\omega-\omega^{\prime}\right), \quad \text { or, } \\
& \frac{(2 \pi)^{2}}{\omega_{0}^{2}} \sum_{n=0}^{\infty} \frac{1}{\left|\mu_{n}\right|^{2}} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \psi_{n}\left(\frac{\omega^{\prime} t_{0}}{\omega_{0}}\right)=2 \pi \delta\left(\omega-\omega^{\prime}\right)
\end{aligned}
$$

or, using the relationship, $\left|\mu_{n}\right|^{2}=2 \pi \lambda_{n} / c$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \psi_{n}\left(\frac{\omega^{\prime} t_{0}}{\omega_{0}}\right)=\delta\left(\frac{\omega t_{0}}{\omega_{0}}-\frac{\omega^{\prime} t_{0}}{\omega_{0}}\right) \tag{J.32}
\end{equation*}
$$

for $\omega, \omega^{\prime} \in\left[-\omega_{0}, \omega_{0}\right]$. This becomes equivalent to Eq. (J.25) after replacing, $\omega t_{0} / \omega_{0} \rightarrow$ t and $\omega^{\prime} t_{0} / \omega_{0} \rightarrow t^{\prime}$, with $t, t^{\prime} \in\left[-t_{0}, t_{0}\right]$. In a similar fashion, Eq. (J.24) can be derived by applying Parseval's identity to (J.26).

Signal Restoration

Another application is in signal restoration, such as image restoration through a finiteaperture diffraction-limited optical system, involving the inversion of the sinc-kernel over the finite interval $\left[-t_{0}, t_{0}\right]$, that is, finding a kernel function, say, $K\left(t, t^{\prime}\right)$, that performs the inverse operation,

$$
\begin{equation*}
g(t)=\int_{t_{0}}^{t_{0}} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} f\left(t^{\prime}\right) d t^{\prime} \Rightarrow f(t)=\int_{-t_{0}}^{t_{0}} K\left(t, t^{\prime}\right) g\left(t^{\prime}\right) d t^{\prime} \tag{J.33}
\end{equation*}
$$

for $|t| \leq t_{0}$. It is easily verified that $K\left(t, t^{\prime}\right)$ is given formally by [1569], ${ }^{\dagger}$

$$
\begin{equation*}
K\left(t, t^{\prime}\right)=\sum_{n} \frac{1}{\lambda_{n}^{2}} \psi_{n}(t) \psi_{n}\left(t^{\prime}\right), \quad \text { for } t, t^{\prime} \in\left[-t_{0}, t_{0}\right] \tag{J.34}
\end{equation*}
$$

[^5]The operation of $K\left(t, t^{\prime}\right)$ on the sinc-kernel generates the identity kernel, that is,

$$
\begin{equation*}
\int_{-t_{0}}^{t_{0}} K\left(t, t^{\prime \prime}\right) \frac{\sin \left(\omega_{0}\left(t^{\prime \prime}-t^{\prime}\right)\right)}{\pi\left(t^{\prime \prime}-t^{\prime}\right)} d t^{\prime \prime}=\delta\left(t-t^{\prime}\right), \quad \text { for } t, t^{\prime} \in\left[-t_{0}, t_{0}\right] \tag{J.35}
\end{equation*}
$$

Indeed, using (J.24), (J.25), (J.27), and (J.34), we have,

$$
\begin{array}{rl}
\int_{-t_{0}}^{t_{0}} & K\left(t, t^{\prime \prime}\right) \frac{\sin \left(\omega_{0}\left(t^{\prime \prime}-t^{\prime}\right)\right)}{\pi\left(t^{\prime \prime}-t^{\prime}\right)} d t^{\prime \prime}= \\
& =\int_{-t_{0}}^{t_{0}}\left[\sum_{n} \frac{1}{\lambda_{n}^{2}} \psi_{n}(t) \psi_{n}\left(t^{\prime \prime}\right)\right]\left[\sum_{m} \psi_{m}\left(t^{\prime \prime}\right) \psi_{m}\left(t^{\prime}\right)\right] d t^{\prime \prime} \\
& =\sum_{n} \sum_{m} \frac{1}{\lambda_{n}^{2}} \psi_{n}(t) \underbrace{\left[\int_{-t_{0}}^{t_{0}} \psi_{n}\left(t^{\prime \prime}\right) \psi_{m}\left(t^{\prime \prime}\right) d t^{\prime \prime}\right]}_{\lambda_{n} \delta_{n m}} \psi_{m}\left(t^{\prime}\right) \\
& =\sum_{n} \frac{1}{\lambda_{n}} \psi_{n}(t) \psi_{n}\left(t^{\prime}\right)=\delta\left(t-t^{\prime}\right), \quad \text { for } t, t^{\prime} \in\left[-t_{0}, t_{0}\right]
\end{array}
$$

Such inversion method will most surely fail in practice if there is even a tiny amount of noise in the observed data. Suppose, for example, that we add a small noise component $v(t)$ to Eq. (J.33),

$$
\begin{equation*}
g(t)=\int_{t_{0}}^{t_{0}} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\pi\left(t-t^{\prime}\right)} f\left(t^{\prime}\right) d t^{\prime}+v(t) \tag{J.36}
\end{equation*}
$$

then, the restored signal will be,

$$
f_{\text {rest }}(t)=\int_{-t_{0}}^{t_{0}} K\left(t, t^{\prime}\right) g\left(t^{\prime}\right) d t^{\prime}=f(t)+\int_{-t_{0}}^{t_{0}} K\left(t, t^{\prime}\right) v\left(t^{\prime}\right) d t^{\prime} \equiv f(t)+u(t)
$$

where the noise $v(t)$ and its inverse-filtered version $u(t)$ can be expanded in the following forms over $\left[-t_{0}, t_{0}\right]$,

$$
v(t)=\sum_{n} v_{n} \psi_{n}(t) \Rightarrow u(t)=\int_{-t_{0}}^{t_{0}} K\left(t, t^{\prime}\right) v\left(t^{\prime}\right) d t^{\prime}=\sum_{n} \frac{v_{n}}{\lambda_{n}} \psi_{n}(t)
$$

Thus, even if all the v_{n} were tiny, the ratios v_{n} / λ_{n} can become very large, because the λ_{n} tend to zero for large n, and the filtered noise $u(t)$ will be amplified and may completely mask the desired signal component $f(t)$.

A way out of this, which provides only an approximation to the inverse kernel, is to limit the summation over n to those eigenvalues λ_{n} that are large and near unity, that is, for n less than about the Shannon number N_{C}. For example, using $M+1$ terms, with M near N_{c}, we have the following approximation to $K\left(t, t^{\prime}\right)$ and to the delta function in (J.35), for t, t^{\prime} in $\left[-t_{0}, t_{0}\right.$],

$$
\begin{equation*}
\hat{K}\left(t, t^{\prime}\right)=\sum_{n=0}^{M} \frac{1}{\lambda_{n}^{2}} \psi_{n}(t) \psi_{n}\left(t^{\prime}\right) \tag{J.37}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\delta}\left(t, t^{\prime}\right)=\int_{-t_{0}}^{t_{0}} \hat{K}\left(t, t^{\prime \prime}\right) \frac{\sin \left(\omega_{0}\left(t^{\prime \prime}-t^{\prime}\right)\right)}{\pi\left(t^{\prime \prime}-t^{\prime}\right)} d t^{\prime \prime}=\sum_{n=0}^{M} \frac{1}{\lambda_{n}} \psi_{n}(t) \psi_{n}\left(t^{\prime}\right) \tag{J.38}
\end{equation*}
$$

where $\hat{\delta}\left(t, t^{\prime}\right)$ approximates $\delta\left(t-t^{\prime}\right)$, for $t, t^{\prime} \in\left[-t_{0}, t_{0}\right]$. With $f(t)$ expanded as,

$$
\begin{equation*}
f(t)=\sum_{n=0}^{\infty} f_{n} \psi_{n}(t), \quad|t| \leq t_{0} \tag{J.39}
\end{equation*}
$$

it follows that the restoration approximations correspond to the finite sums,

$$
\begin{equation*}
f_{\text {rest }}(t)=\hat{f}(t)+\hat{u}(t)=\sum_{n=0}^{M} f_{n} \psi_{n}(t)+\sum_{n=0}^{M} \frac{v_{n}}{\lambda_{n}} \psi_{n}(t) \tag{J.40}
\end{equation*}
$$

Keeping only a finite number of terms is a form of regularization of the inverse filtering operation. Other regularization schemes are possible, for example, the Tikhonovtype regularization approximating $\delta\left(t-t^{\prime}\right)$ over $\left[-t_{0}, t_{0}\right]$,

$$
\begin{equation*}
\hat{\delta}\left(t, t^{\prime}\right)=\sum_{n=0}^{\infty} \frac{\lambda_{n}}{\lambda_{n}^{2}+\varepsilon^{2}} \psi_{n}(t) \psi_{n}\left(t^{\prime}\right) \tag{J.41}
\end{equation*}
$$

where ε small regularization parameter, $\varepsilon^{2} \ll 1$. The summation in (J.41) effectively cuts off as soon as $\lambda_{n} \approx \varepsilon$, while it behaves like (J.38) for $1 \geq \lambda_{n} \gg \varepsilon$.

Setting $t^{\prime}=0$ in Eqs. (J.25), (J.38), and (J.41), we obtain the following bandlimited approximations to a delta function $\delta(t)$, over the finite interval $\left[-t_{0}, t_{0}\right.$],

$$
\begin{align*}
& \delta(t)=\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}} \psi_{n}(0) \psi_{n}(t), \quad-t_{0} \leq t \leq t_{0} \tag{J.42}\\
& \hat{\delta}(t)=\sum_{n=0}^{M} \frac{1}{\lambda_{n}} \psi_{n}(0) \psi_{n}(t), \quad-t_{0} \leq t \leq t_{0} \tag{J.43}\\
& \hat{\delta}(t)=\sum_{n=0}^{\infty} \frac{\lambda_{n}}{\lambda_{n}^{2}+\varepsilon^{2}} \psi_{n}(0) \psi_{n}(t), \quad-t_{0} \leq t \leq t_{0} \tag{J.44}
\end{align*}
$$

Given that $\delta(t)$ has a flat spectrum extending over $-\infty<\omega<\infty$, referring to a "bandlimited" delta function is an oxymoron. However, the above expressions approximate $\delta(t)$ only over the finite interval, $-t_{0} \leq t \leq t_{0}$, while they have bandlimited spectrum over $-\omega_{0}<\omega<\omega_{0}$. Outside the $\left[-t_{0}, t_{0}\right.$] interval, they result in extremely large values. In fact, these expressions provide the ultimate example of superoscillations [1619-1631], which are bandlimited signals that, over a finite time interval, appear to oscillate faster than their highest frequency, but typically, exhibit much higher values outside that interval. Indeed, the above $\delta(t)$ is the fastest varying signal in [$-t_{0}, t_{0}$] while at the same time it remains bandlimited.

Example J. 3 explores the approximation of Eq. (J.43). We will use it in Sec. 20.22 in the design of superresolving pupil masks for achieving highly focused fields, and in the design of supergain aperture antennas for achieving very high directivity.

Representation and Extrapolation of Bandlimited Functions

If a function $f(t)$ is bandlimited over $\left[-\omega_{0}, \omega_{0}\right]$, then the completeness of the $\psi_{n}(t)$ basis implies that $f(t)$ can be expanded in the following form, for all t,

$$
\begin{equation*}
f(t)=\sum_{n} c_{n} \psi_{n}(t), \quad \text { with } \quad c_{n}=\int_{-\infty}^{\infty} \psi_{n}(t) f(t) d t \tag{J.45}
\end{equation*}
$$

Using the expansion (J.45) and the orthogonality property (J.24), we may obtain an alternative way of calculating the coefficients c_{n} that involves knowledge of $f(t)$ only over the finite interval $\left[-t_{0}, t_{0}\right]$,

$$
\begin{equation*}
c_{n}=\frac{1}{\lambda_{n}} \int_{-t_{0}}^{t_{0}} \psi_{n}(t) f(t) d t \tag{J.46}
\end{equation*}
$$

Thus, once c_{n} are determined, $f(t)$ can be extrapolated outside $\left[-t_{0}, t_{0}\right]$ using (J.45). The validity of this procedure rests on the assumption that $f(t)$ is a bandlimited function in $\mathcal{B}_{\omega_{0}}$ and a segment of it is known over the interval $\left[-t_{0}, t_{0}\right]$.

If $f(t)$ is an arbitrary function in $\mathcal{L}_{t_{0}}^{2}$, but is not necessarily a segment of a bandlimited function in $\mathcal{B}_{\omega_{0}}$, then the orthogonality and completeness properties (J.24) and (J.25) still allow an expansion in the following form, but valid only for $|t| \leq t_{0}$,

$$
\begin{equation*}
f(t)=\sum_{n} c_{n} \psi_{n}(t), \quad \text { with } \quad c_{n}=\frac{1}{\lambda_{n}} \int_{-t_{0}}^{t_{0}} \psi_{n}(t) f(t) d t \tag{J.47}
\end{equation*}
$$

The attempt to extrapolate $f(t)$ beyond $\left[-t_{0}, t_{0}\right]$ using (J.47) could diverge and lead to extremely large values for $f(t)$ outside the $\left[-t_{0}, t_{0}\right]$ interval. This, again, is an example of superoscillations.

The representation (J.45) of a bandlimited function $f(t)$ in the $\psi_{n}(t)$ basis is convenient, but is not the only one. One could also expand $f(t)$ in the spherical Bessel function basis $j_{n}\left(\omega_{0} t\right)$, or in the familiar sinc-function basis that appears in the sampling theorem. We summarize these expansions and their Fourier transforms below.

The expansion coefficients c_{n} can be expressed either in the time domain or in the frequency domain. Let $f(t)$ be in $\mathcal{B} \omega_{0}$ with a bandlimited Fourier transform $\hat{f}(\omega)$, then, in the $\psi_{n}(t)$ basis,

$$
\begin{align*}
f(t) & =\sum_{n} c_{n} \psi_{n}(t) \\
\hat{f}(\omega) & =\sum_{n} c_{n} \frac{2 \pi}{\omega_{0}} \frac{1}{\mu_{n}} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega) \tag{J.48}
\end{align*}
$$

with,
$c_{n}=\int_{-\infty}^{\infty} \psi_{n}(t) f(t) d t=\frac{1}{\lambda_{n}} \int_{-t_{0}}^{t_{0}} \psi_{n}(t) f(t) d t=\frac{1}{\mu_{n}^{*}} \int_{-\omega_{0}}^{\omega_{0}} \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \hat{f}(\omega) \frac{d \omega}{\omega_{0}}$
Similarly, in the $j_{n}\left(\omega_{0} t\right)$ basis, with Legendre polynomial Fourier transform,

$$
\begin{align*}
f(t) & =\sum_{n} c_{n} j_{n}\left(\omega_{0} t\right) \\
\hat{f}(\omega) & =\sum_{n} c_{n} \frac{\pi}{\omega_{0} i^{n}} P_{n}\left(\frac{\omega}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega) \tag{J.50}
\end{align*}
$$

with,

$$
\begin{equation*}
c_{n}=\frac{(2 n+1) \omega_{0}}{\pi} \int_{-\infty}^{\infty} j_{n}\left(\omega_{0} t\right) f(t) d t=\frac{i^{n}(2 n+1)}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} \hat{f}(\omega) P_{n}\left(\frac{\omega}{\omega_{0}}\right) d \omega \tag{J.51}
\end{equation*}
$$

and in the sinc-function basis, with $T_{s}=\pi / \omega_{0}$ denoting the sampling time interval,

$$
\begin{align*}
& f(t)=\sum_{n} c_{n} \frac{\sin \left(\omega_{0}\left(t-n T_{s}\right)\right)}{\pi\left(t-n T_{S}\right)}=T_{s} \sum_{n} f\left(n T_{s}\right) \frac{\sin \left(\omega_{0}\left(t-n T_{s}\right)\right)}{\pi\left(t-n T_{S}\right)} \tag{J.52}\\
& \hat{f}(\omega)=\sum_{n} c_{n} e^{-j \omega n T_{s}} \cdot \chi \omega_{0}(\omega)=T_{s} \sum_{n} f\left(n T_{s}\right) e^{-j \omega n T_{s}} \cdot \chi \omega_{0}(\omega)
\end{align*}
$$

with,

$$
\begin{equation*}
c_{n}=T_{s} f\left(n T_{s}\right)=T_{s} \int_{-\omega_{0}}^{\omega_{0}} \hat{f}(\omega) e^{j \omega n T_{s}} \frac{d \omega}{2 \pi} \tag{J.53}
\end{equation*}
$$

Note that the sinc-basis satisfies the orthogonality condition:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\sin \left(\omega_{0}\left(t-n T_{s}\right)\right)}{\pi\left(t-n T_{s}\right)} \frac{\sin \left(\omega_{0}\left(t-m T_{s}\right)\right)}{\pi\left(t-m T_{s}\right)} d t=\frac{1}{T_{s}} \delta_{n m} \tag{J.54}
\end{equation*}
$$

The result, $c_{n}=T_{S} f\left(n T_{S}\right)$, follows from (J.54) by applying (J.22) at $t=n T_{s}$, indeed,

$$
\begin{aligned}
f\left(n T_{s}\right) & =\int_{-\infty}^{\infty} \frac{\sin \left(\omega_{0}\left(t-n T_{s}\right)\right)}{\pi\left(t-n T_{s}\right)} f(t) d t \\
& =\int_{-\infty}^{\infty} \frac{\sin \left(\omega_{0}\left(t-n T_{s}\right)\right)}{\pi\left(t-n T_{s}\right)}\left[\sum_{m} c_{m} \frac{\sin \left(\omega_{0}\left(t-m T_{s}\right)\right)}{\pi\left(t-m T_{s}\right)}\right] d t \\
& =\sum_{m} c_{m} \int_{-\infty}^{\infty} \frac{\sin \left(\omega_{0}\left(t-n T_{s}\right)\right)}{\pi\left(t-n T_{s}\right)} \frac{\sin \left(\omega_{0}\left(t-m T_{s}\right)\right)}{\pi\left(t-m T_{s}\right)} d t \\
& =\sum_{m} c_{m} \frac{1}{T_{s}} \delta_{n m}=\frac{c_{n}}{T_{s}} \quad \Rightarrow \quad c_{n}=T_{s} f\left(n T_{s}\right)
\end{aligned}
$$

Up to the factor T_{s}, the c_{n} are the time samples of $f(t)$, and $\hat{f}(\omega)$ in (J.52) is recognized as the central Nyquist replica of the DTFT of the discrete-time signal $f\left(n T_{s}\right)$. Moreover, Eq. (J.53) is the inverse DTFT of $\hat{f}(\omega)$ integrated over the Nyquist interval.

The Shannon number can be understood with the help of (J.52). In this context, we are assuming that the bandlimited function $f(t)$ is sampled at its Nyquist rate, which is $2 \omega_{0}$ in units of radians $/ \mathrm{sec}$, or, $f_{s}=2 \omega_{0} / 2 \pi=\omega_{0} / \pi$ in samples $/ \mathrm{sec}$, so that the sampling time interval is $T_{s}=1 / f_{s}=\pi / \omega_{0}$ in seconds. Thus, the sampling rate f_{s} plays the role of F in (J.5).

Because $f(t)$ is frequency-limited, it cannot be time-limited. However, if we assume that the most significant time samples of $f(t)$ are contained within a total time interval T, say, $0 \leq n T_{s} \leq T$, then the maximum time index, and hence the number of significant time samples will be, $n_{\max } T_{s}=T$, or, $n_{\max }=T / T_{s}=f_{s} T$, that is, the Shannon number.

Energy Concentration Properties

Consider a bandlimited signal $f(t)$ in $\mathcal{B}_{\omega_{0}}$ with an expansion of the form (J.48),

$$
f(t)=\sum_{n} c_{n} \psi_{n}(t), \quad \text { with } c_{n}=\int_{-\infty}^{\infty} \psi_{n}(t) f(t) d t=\frac{1}{\lambda_{n}} \int_{-t_{0}}^{t_{0}} \psi_{n}(t) f(t) d t
$$

Then, its energy contained in $\left[-t_{0}, t_{0}\right]$ and in the infinite interval are given by the norms,

$$
\begin{equation*}
\int_{-t_{0}}^{t_{0}} f^{2}(t) d t=\sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2}, \quad \int_{-\infty}^{\infty} f^{2}(t) d t=\sum_{n=0}^{\infty} c_{n}^{2} \tag{J.56}
\end{equation*}
$$

The proportion of the total energy contained in the interval $\left[-t_{0}, t_{0}\right]$ is the ratio,

$$
\begin{equation*}
\mathcal{R}(f)=\frac{\int_{-t_{0}}^{t_{0}} f^{2}(t) d t}{\int_{-\infty}^{\infty} f^{2}(t) d t}=\frac{\sum_{n=0}^{\infty} \lambda_{n} c_{n}^{2}}{\sum_{n=0}^{\infty} c_{n}^{2}} \tag{J.57}
\end{equation*}
$$

In the context of designing apodization functions in Sec. 20.12, it is known as the "encircled energy" ratio, while in the context of superdirective antennas, its inverse is known as Taylor's supergain or superdirectivity ratio [1602].

The following extremal properties of the PSWF functions can be derived from (J.57). Because the eigenvalues λ_{n} are in decreasing order, $1>\lambda_{0}>\lambda_{1}>\lambda_{2}>\cdots>0$, it is easily seen that $\mathcal{R}(f)$ is maximized when $c_{0} \neq 0$, and $c_{n}=0$, for $n \geq 1$, that is, when $f(t)=\psi_{0}(t)$, and the maximized value is $\mathcal{R}\left(\psi_{0}\right)=\lambda_{0}$. This follows from the inequality,

$$
\lambda_{0}-\mathcal{R}(f)=\frac{\sum_{n=1}^{\infty}\left(\lambda_{0}-\lambda_{n}\right) c_{n}^{2}}{\sum_{n=0}^{\infty} c_{n}^{2}} \geq 0
$$

with equality realized when $c_{n}=0$ for all $n \geq 1$. Similarly, among all the functions in $\mathcal{B}_{\omega_{0}}$ that are orthogonal to $\psi_{0}(t)$, the energy ratio $\mathcal{R}(f)$ is maximized when $f(t)=$ $\psi_{1}(t)$, with maximum value $\mathcal{R}\left(\psi_{1}\right)=\lambda_{1}$. In this case the \mathcal{c}_{0} term is absent because of the orthogonality to ψ_{0}, and $\mathcal{R}(f)$ becomes,

$$
\mathcal{R}(f)=\frac{\sum_{n=1}^{\infty} \lambda_{n} c_{n}^{2}}{\sum_{n=1}^{\infty} c_{n}^{2}} \Rightarrow \lambda_{1}-\mathcal{R}(f)=\frac{\sum_{n=2}^{\infty}\left(\lambda_{1}-\lambda_{n}\right) c_{n}^{2}}{\sum_{n=1}^{\infty} c_{n}^{2}} \geq 0
$$

More generally, among all the functions in $\mathcal{B}_{\omega_{0}}$ that are simultaneously orthogonal to $\psi_{0}(t), \psi_{1}(t), \ldots, \psi_{n-1}(t)$, the function $f(t)=\psi_{n}(t)$ maximizes $\mathcal{R}(f)$ with maximum value $\mathcal{R}\left(\psi_{n}\right)=\lambda_{n}$.

If $f(t)$ is not necessarily bandlimited in $\mathcal{B}_{\omega_{0}}$ then, as we mentioned earlier, its values outside the interval $\left[-t_{0}, t_{0}\right]$ could become very large causing the energy concentration ratio $\mathcal{R}(f)$ to become very small.

Thus, a related optimization problem is to find that function $g(t)$ in $\mathcal{B}_{\omega_{0}}$ that has a prescribed value of the energy ratio, say, $\mathcal{R}(g)=\mathcal{R}_{0}<1$, and provides the best approximation to a given $f(t)$ within the $\left[-t_{0}, t_{0}\right]$ interval. Using a mean-square criterion, the problem can be stated as finding $g(t) \in \mathcal{B}_{\omega_{0}}$ that minimizes the following performance index subject to the energy ratio constraint,

$$
\begin{equation*}
\mathcal{J}=\int_{-t_{0}}^{t_{0}}(f(t)-g(t))^{2}=\min , \quad \text { subject to } \quad \mathcal{R}_{0}=\frac{\int_{-t_{0}}^{t_{0}} g^{2}(t) d t}{\int_{-\infty}^{\infty} g^{2}(t) d t} \tag{J.58}
\end{equation*}
$$

or equivalently, we may introduce a Lagrange multiplier μ for the constraint,

$$
\begin{equation*}
\mathcal{J}=\int_{-t_{0}}^{t_{0}}(f(t)-g(t))^{2}+\mu\left(\mathcal{R}_{0} \int_{-\infty}^{\infty} g^{2}(t)-\int_{-t_{0}}^{t_{0}} g^{2}(t) d t\right)=\min \tag{J.59}
\end{equation*}
$$

Expand $f(t)$ and $g(t)$ in the $\psi_{n}(t)$ basis,

$$
\begin{array}{ll}
f(t)=\sum_{n} f_{n} \psi_{n}(t), & \text { for }|t| \leq t_{0} \\
g(t)=\sum_{n} g_{n} \psi_{n}(t), & \text { for all } t \tag{J.60}
\end{array}
$$

where f_{n} may be assumed to be known since $f(t)$ is given. Then, (J.59) becomes,

$$
\begin{equation*}
\mathcal{J}=\sum_{n} \lambda_{n}\left(g_{n}-f_{n}\right)^{2}+\mu\left(\mathcal{R}_{0} \sum_{n} g_{n}^{2}-\sum_{n} \lambda_{n} g_{n}^{2}\right)=\min \tag{J.61}
\end{equation*}
$$

The minimization condition with respect to g_{n} gives,

$$
\begin{gather*}
\frac{\partial \mathcal{J}}{\partial g_{n}}=0 \Rightarrow \quad \lambda_{n}\left(g_{n}-f_{n}\right)+\mu\left(\mathcal{R}_{0}-\lambda_{n}\right) g_{n}=0, \quad \text { or, } \\
g_{n}=\frac{\lambda_{n} f_{n}}{\lambda_{n}+\mu\left(\mathcal{R}_{0}-\lambda_{n}\right)} \tag{J.62}
\end{gather*}
$$

with the Lagrange multiplier μ determined by solving the constraint equation,

$$
\begin{gather*}
\mathcal{R}_{0} \sum_{n} g_{n}^{2}-\sum_{n} \lambda_{n} g_{n}^{2}=\sum_{n}\left(\mathcal{R}_{0}-\lambda_{n}\right) g_{n}^{2}=0, \quad \text { or, } \\
\sum_{n}\left(\mathcal{R}_{0}-\lambda_{n}\right)\left[\frac{\lambda_{n} f_{n}}{\lambda_{n}+\mu\left(\mathcal{R}_{0}-\lambda_{n}\right)}\right]^{2}=0 \tag{J.63}
\end{gather*}
$$

Computation

The numerical computation of $\psi_{n}(t)$ is based on keeping only a finite number of terms in the summation of Eq. (J.2), e.g., $0 \leq k \leq K-1$,
$\psi_{n}(t)=\sqrt{\frac{\lambda_{n}}{t_{0}}} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}\left(\frac{t}{t_{0}}\right)=\sqrt{\frac{c}{2 \pi t_{0}}} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k-n} j_{k}\left(\omega_{0} t\right)$
where K is chosen to be sufficiently large. In practice, the choice, $K=2 N+30$, is adequate [1670], where $N=M+1$ is the number of PSWF functions to be calculated, that is, $\psi_{n}(t), n=0,1,2, \ldots, M$.

The computation of $\beta_{n k}$ is based on the observation [1643] that the PSWF functions $\psi_{n}(t)$ are also the eigenfunctions of the following Sturm-Liouville differential operator eigenproblem, that arises in solving the Helmholtz equation in spheroidal coordinates,

$$
\begin{equation*}
\left[\left(t^{2}-t_{0}^{2}\right) \frac{d^{2}}{d t^{2}}+2 t \frac{d}{d t}+\omega_{0}^{2} t^{2}\right] \psi_{n}(t)=\chi_{n} \psi_{n}(t), \quad n=0,1,2, \ldots \tag{J.65}
\end{equation*}
$$

The eigenvalues χ_{n} are real and positive and when listed in increasing order, they match the eigenvalues λ_{n} of Eq. (J.3) listed in decreasing order, that is, we have the correspondence,

$$
\begin{aligned}
& 0<\chi_{0}<\chi_{1}<\lambda_{2}<\ldots, \\
& 1>\lambda_{0}>\lambda_{1}>\lambda_{2}>\ldots,
\end{aligned}
$$

There is extensive literature on the computation of the PSWF solutions of (J.65), including its generalization to higher order PSWFs, with implementations in FORTRAN, MATLAB, and Mathematica [1654-1677].

Our MATLAB implementation is based on Rhodes [1658] who gives normalizationindependent expressions, Hodge [1660] who was the first to suggest using a tridiagonal eigenvalue problem for calculating the coefficients $\beta_{n k}$, Kozin et al. [1662] who applied Hodge's method specifically to order-zero PSWFs, and Xiao et al [1664] and Boyd [1670] for some more recent implementations. Accurate computation of the eigenvalues λ_{n} and eigenfunctions $\psi_{n}(t)$ is very demanding for large values of c and large values of n because the λ_{n} quickly get smaller than the machine epsilon, even using double precision as in MATLAB.

If one inserts the Legendre polynomial expansion of Eq. (J.2) into (J.65), one finds that the coefficients $\beta_{n k}$ satisfy the following recursion formula, for $k \geq 0$,

$$
\begin{equation*}
A_{k, k-2} \beta_{n, k-2}+A_{k, k} \beta_{n k}+A_{k, k+2} \beta_{n, k+2}=\chi_{n} \beta_{n k} \tag{J.66}
\end{equation*}
$$

where the first term is present only for $k \geq 2$, and,

$$
\begin{array}{ll}
A_{k, k}=k(k+1)+c^{2} \cdot \frac{2 k(k+1)-1}{(2 k+3)(2 k-1)}, & k \geq 0 \\
A_{k, k+2}=c^{2} \cdot \frac{(k+2)(k+1)}{(2 k+3) \sqrt{(2 k+1)(2 k+5)}}, & k \geq 0 \\
A_{k, k-2}=A_{k-2, k}=c^{2} \cdot \frac{k(k-1)}{(2 k-1) \sqrt{(2 k-3)(2 k+1)}}, & k \geq 2
\end{array}
$$

If a finite number of coefficients is kept, such as, $K=2 N+30$, then, we may define a $K \times K$ symmetric tridiagonal matrix A whose main diagonal is $A_{k, k}$, for $k=0,1, \ldots, K-1$, and whose upper and lower second diagonals are given by $A_{k, k+2}$, for $k=0,1, \ldots, K-3$. For example, if $K=8$, the matrix will have the following structure,

$$
A=\left[\begin{array}{cccccccc}
A_{00} & 0 & A_{02} & 0 & 0 & 0 & 0 & 0 \\
0 & A_{11} & 0 & A_{13} & 0 & 0 & 0 & 0 \\
A_{02} & 0 & A_{22} & 0 & A_{24} & 0 & 0 & 0 \\
0 & A_{13} & 0 & A_{33} & 0 & A_{35} & 0 & 0 \\
0 & 0 & A_{24} & 0 & A_{44} & 0 & A_{46} & 0 \\
0 & 0 & 0 & A_{35} & 0 & A_{55} & 0 & A_{57} \\
0 & 0 & 0 & 0 & A_{46} & 0 & A_{66} & 0 \\
0 & 0 & 0 & 0 & 0 & A_{57} & 0 & A_{77}
\end{array}\right]
$$

The difference equation (J.65) is equivalent then to the following eigenvalue equation, where the coefficients $\beta_{n, k}$ are arranged into the corresponding eigenvectors,

$$
A \boldsymbol{\beta}_{n}=X_{n} \boldsymbol{\beta}_{n}, \quad \boldsymbol{\beta}_{n}=\left[\begin{array}{c}
\beta_{n, 0} \tag{J.68}\\
\beta_{n, 1} \\
\vdots \\
\beta_{n, K-1}
\end{array}\right]
$$

Because A is real and symmetric, its eigenvectors may be chosen to be real-valued and orthonormal, that is, satisfying Eq. (J.9). And because of the particular structure of A, having only a nonzero second upper/lower subdiagonal, every other element of the eigenvectors may be set to zero, that is, $\beta_{n, k}=0$, if $n-k$ is odd. For example, if $K=8$, the eigenvectors, will have the following structure,

$$
\underset{n=0,2,4,6}{\boldsymbol{\beta}_{n, \mathrm{even}}}=\left[\begin{array}{c}
\beta_{n 0} \\
0 \\
\beta_{n 2} \\
0 \\
\beta_{n 4} \\
0 \\
\beta_{n 6} \\
0
\end{array}\right], \quad \boldsymbol{\beta}_{n, \text { odd }}=\left[\begin{array}{c}
0 \\
\beta_{n 1} \\
0 \\
\beta_{n 3} \\
0 \\
\beta_{n 5} \\
0 \\
\beta_{n 7}
\end{array}\right]
$$

MATLAB can very efficiently and accurately solve the above tridiagonal eigenvalue problem using the built-in function eig, and obtain all K eigenvectors $\boldsymbol{\beta}_{n}$ and eigenvalues χ_{n} (even for very large values of c, K, e.g., $c=100, K=1000$).

Once the $K \times K$ eigenvalue problem (J.68) is solved, we may retain the first $M+1$ eigenvectors $\boldsymbol{\beta}_{n}$, for $n=0,1, \ldots, M$, that are needed in the computation of $\psi_{n}(t)$. One still has the task of determining the corresponding eigenvalues λ_{n} of the eigenproblem (J.3). Since λ_{n} appears in (J.2), we may solve for it by evaluating both sides of (J.64) at a particular value of t. It's is simpler to solve for μ_{n} and then calculate λ_{n} from (J.15) Multiplying both sides of (J.64) by $i^{n} \sqrt{2 \pi t_{0} / c}$, we obtain the relationship:

$$
\begin{equation*}
i^{n} \sqrt{\frac{2 \pi t_{0}}{c}} \psi_{n}(t)=\mu_{n} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}\left(\frac{t}{t_{0}}\right)=\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k} j_{k}\left(\omega_{0} t\right) \tag{J.69}
\end{equation*}
$$

One obvious choice is to set $t=t_{0}$, and since $P_{n}(1)=1$, we may solve for μ_{n},

$$
\begin{equation*}
\mu_{n}=\frac{\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k} j_{k}(c)}{\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}}} \quad n=0,1, \ldots, M \tag{J.70}
\end{equation*}
$$

Another choice is to set $t=0$, resulting in

$$
\begin{equation*}
\mu_{n} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}(0)=\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k} j_{k}(0) \tag{J.71}
\end{equation*}
$$

However, this works only for n even, because if n and k are odd, both $P_{k}(0)$ and $j_{k}(0)$ are zero. In this case, one may work with the time derivative of both sides of (J.64),

$$
\begin{gathered}
\mu_{n} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} \frac{1}{t_{0}} P_{k}^{\prime}\left(\frac{t}{t_{0}}\right)=\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k} \omega_{0} j_{k}^{\prime}\left(\omega_{0} t\right), \quad \text { or, } \\
\mu_{n} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}^{\prime}\left(\frac{t}{t_{0}}\right)=\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k} c j_{k}^{\prime}\left(\omega_{0} t\right)
\end{gathered}
$$

Evaluating this at $t=0$ will work for n odd, but not for n even,

$$
\begin{equation*}
\mu_{n} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} P_{k}^{\prime}(0)=\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k} c j_{k}^{\prime}(0) \tag{J.72}
\end{equation*}
$$

We may add (J.71) and (J.72) together to get a combined formula that works for all n, even or odd, and solve for μ_{n},

$$
\begin{equation*}
\mu_{n}=\frac{\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k}\left[j_{k}(0)+c j_{k}^{\prime}(0)\right]}{\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}}\left[P_{k}(0)+P_{k}^{\prime}(0)\right]} \quad n=0,1, \ldots, M \tag{J.73}
\end{equation*}
$$

The spherical Bessel functions $j_{k}(x)$ for $k \geq 0$ have the following limiting behavior,

$$
j_{k}(x) \underset{x \rightarrow 0}{\longrightarrow} \frac{x^{k}}{1 \cdot 3 \cdot 5 \cdots(2 k+1)} \quad \Rightarrow \quad j_{k}(0)=\delta_{k}= \begin{cases}1, & k=0 \tag{J.74}\\ 0, & k \neq 0\end{cases}
$$

The derivative, $j_{k}^{\prime}(x)$, can be computed from the recursion:

$$
\begin{equation*}
j_{k}^{\prime}(x)=\frac{k j_{k-1}(x)-(k+1) j_{k+1}(x)}{2 k+1} \tag{J.75}
\end{equation*}
$$

and using the result (J.74),

$$
j_{k}^{\prime}(0)=\frac{k \delta_{k-1}-(k+1) \delta_{k+1}}{2 k+1}=\frac{1}{3} \delta_{k-1}
$$

Using (J.74) and (J.76), the numerator in (J.73) simplifies to the $k=0$ and $k=1$ terms,

$$
\begin{equation*}
\mu_{n}=\frac{\sqrt{2} \beta_{n 0}+\sqrt{\frac{2}{3}} \text { ic } \beta_{n 1}}{\sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}}\left[P_{k}(0)+P_{k}^{\prime}(0)\right]} \quad n=0,1, \ldots, M \tag{J.77}
\end{equation*}
$$

The quantities, $P_{k}(0), P_{k}^{\prime}(0)$, can be calculated in terms of gamma-functions,

$$
\begin{equation*}
P_{k}(0)=\frac{\sqrt{\pi}}{\Gamma\left(\frac{k}{2}+1\right) \Gamma\left(\frac{1}{2}-\frac{k}{2}\right)}, \quad P_{k}^{\prime}(0)=k P_{k-1}(0)=\frac{-2 \sqrt{\pi}}{\Gamma\left(\frac{k}{2}+\frac{1}{2}\right) \Gamma\left(-\frac{k}{2}\right)} \tag{J.78}
\end{equation*}
$$

These are valid for all $k \geq 0$ and give $P_{k}(0)=0$, for odd k, and $P_{k}^{\prime}(0)=0$, for even k. Moreover, they can be implemented as vectorized functions in MATLAB. For a given n, either the left or the right terms will be non-zero in the numerator and denominator of (J.77). We have found that the choice (J.77) produces more accurate results than (J.70) for moderate values of c, M, up to about, $c=50, M=50$.

The following MATLAB function, pswf.m, implements the above computational steps. It also computes the derivatives $\psi_{n}^{\prime}(t)$. It has usage:

$$
\begin{aligned}
& {[\text { Psi } \mathrm{La}, \mathrm{dPsi}, \mathrm{Chi}, \mathrm{~B}]=\operatorname{pswf}(\mathrm{t} 0, \mathrm{w} 0, \mathrm{M}, \mathrm{t}) ; \quad \text { \% prolate spheroidal wave functions }} \\
& {[\text { Psi } \mathrm{La}, \mathrm{dPsi}, \mathrm{Chi}, \mathrm{~B}]=\operatorname{pswf}(\mathrm{t} 0, \mathrm{w} 0, \mathrm{M}, \mathrm{t}, \mathrm{~K}) ;}
\end{aligned}
$$

t0 = time limit, [-t0, t0], (sec)
$\mathrm{w}_{0}=$ freq limit, $[-\mathrm{w} 0, \mathrm{w} 0],(\mathrm{rad} / \mathrm{sec})$
$M=\max$ order computed, evaluating psi_n(t), $n=0,1, \ldots, M$
$\mathrm{t}=$ length-L vector of time instants (sec), e.g., $\mathrm{t}=[\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tL}]$
Psi $=(M+1) \times L$ matrix of prolate function values
La $=(M+1) \times 1$ vector of eigenvalues
dPsi $=(M+1) x L$ matrix of derivatives of prolate functions
Chi $=(M+1) \times 1$ vector of eigenvalues of spheroidal differential operator
$B \quad=(M+1) x K$ matrix of expansion coefficients
$\mathrm{K}=$ number of expansion terms (default, $\mathrm{K}=2 * \mathrm{~N}+30, \mathrm{~N}=\mathrm{M}+1$)
For a given maximum order M and time vector $t=\left[t_{1}, t_{2}, \ldots, t_{L}\right]$, the output matrix Psi contains the computed values $\psi_{n}\left(t_{i}\right)$, arranged into an $(M+1) \times L$ matrix,

$$
\Psi=\left[\begin{array}{ccccc}
\psi_{0}\left(t_{1}\right) & \psi_{0}\left(t_{2}\right) & \psi_{0}\left(t_{3}\right) & \cdots & \psi_{0}\left(t_{L}\right) \\
\psi_{1}\left(t_{1}\right) & \psi_{1}\left(t_{2}\right) & \psi_{1}\left(t_{3}\right) & \cdots & \psi_{1}\left(t_{L}\right) \\
\psi_{2}\left(t_{1}\right) & \psi_{2}\left(t_{2}\right) & \psi_{2}\left(t_{3}\right) & \cdots & \psi_{2}\left(t_{L}\right) \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\psi_{M}\left(t_{1}\right) & \psi_{M}\left(t_{2}\right) & \psi_{M}\left(t_{3}\right) & \cdots & \psi_{M}\left(t_{L}\right)
\end{array}\right]
$$

The output dPsi contains the derivatives $\psi_{n}^{\prime}\left(t_{i}\right)$ arranged in a similar fashion. The outputs La, Chi are column vectors containing the eigenvalues $\lambda_{n}, \chi_{n}, n=0,1, \ldots, M$.

The $(M+1) \times K$ matrix B contains the expansion coefficients, $B_{n k}=\beta_{n k}$, in its rows, with the appropriate interlacing of zeros for even or odd n, that is,

$$
B=\left[\begin{array}{cccccccc}
\beta_{0,0} & 0 & \beta_{0,2} & 0 & \beta_{0,4} & 0 & \cdots & \beta_{0, K-1} \\
0 & \beta_{1,1} & 0 & \beta_{1,3} & 0 & \beta_{1,5} & \cdots & \beta_{1, K-1} \\
\beta_{2,0} & 0 & \beta_{2,2} & 0 & \beta_{2,4} & 0 & \cdots & \beta_{2, K-1} \\
0 & \beta_{3,1} & 0 & \beta_{3,3} & 0 & \beta_{3,5} & \cdots & \beta_{3, K-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots
\end{array}\right]
$$

The eigenvector matrix is actually the transposed, $B^{T}=\left[\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{M}\right]$, which satisfies the eigenvalue equation, $A B^{T}=B^{T} \mathcal{X}$, where $\mathcal{X}=\operatorname{diag}\left\{\chi_{0}, \chi_{1}, \ldots, \chi_{M}\right\}$, and the orthonormality property,

$$
B B^{T}=I_{M+1} \quad \Rightarrow \quad \sum_{k=0}^{K-1} \beta_{n k} \beta_{m k}=\delta_{n m}, \quad n, m=0,1, \ldots, M
$$

The required spherical Bessel function computations are implemented by the MATLAB function, spherj.m, which also computes the derivatives using the recursion (J.75). It arranges its output similarly to pswf, and has usage:

$$
[\mathrm{J}, \mathrm{dJ}]=\operatorname{spherj}(\mathrm{k}, \mathrm{x}) ; \quad \text { \% spherical Bessel functions and derivatives }
$$

The derivatives, $\psi_{n}^{\prime}(t)$, are computed using the expansion,

$$
\begin{equation*}
\psi_{n}^{\prime}(t)=\sqrt{\frac{c}{2 \pi t_{0}}} \sum_{k=0}^{K-1} \beta_{n k} \sqrt{k+\frac{1}{2}} 2 i^{k-n} \omega_{0} j_{k}^{\prime}\left(\omega_{0} t\right) \tag{J.79}
\end{equation*}
$$

The functions pswf and spherj are included in the EWA-toolbox of this book, and work well for parameter values up to about $c=50$ and $M=50$. A related function that evaluates Legendre polynomials and can be used in the Legendre expansion of Eq. (J.2) is the function legpol with usage:

$$
P=1 \text { egpo } 1(N, x) ; \quad \text { \% evaluates Legendre polynomials of orders } n=0: N
$$

Example J.1: The following MATLAB code illustrates the usage of the pswf function and reproduces the data tables and plots from Rhodes [1658] for the case $c=6$.
t0=1; w0=6; c=t0*w0; M=13;
$\mathrm{t}=$ linspace $(-5,5,501)$;
[Psi,La,dPsi,Chi] = pswf(t0,w0, M,t);
\% calculate the first 14 PSWFs
figure; plot(t,Psi(1:4,:)); \% plot first four PSWFs

The following graph plots the first four PSWFs, $\psi_{n}(t), n=0,1,2,3$.

The following table contains the values of the quantities $\chi_{n}, \mu_{n}, \lambda_{n}$ for $n=0,1, \ldots, 13$, as well the values of the sum, $\psi_{n}(0)+\psi_{n}^{\prime}(0)$, which represents either $\psi_{n}(0)$ if n is even, or $\psi_{n}^{\prime}(0)$ id n is odd. They agree with those in [1658].

| n | chi_n | \|mu_n | | psi_n(0)+psi_n'(0) | 1 lambda_n |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $5.208269160 \mathrm{e}+00$ | $1.023276504 \mathrm{e}+00$ | $1.631136822 \mathrm{e}-03$ | $9.999018826 \mathrm{e}-01$ |
| 1 | $1.600044275 \mathrm{e}+01$ | $1.021309607 \mathrm{e}+00$ | -5.777995494e-02 | $9.960616433 \mathrm{e}-01$ |
| 2 | $2.535647864 \mathrm{e}+01$ | $9.922435547 \mathrm{e}-01$ | $3.539393687 \mathrm{e}-02$ | $9.401733902 \mathrm{e}-01$ |
| 3 | $3.320419949 \mathrm{e}+01$ | 8.229938914e-01 | $4.428586710 \mathrm{e}-01$ | $6.467919492 \mathrm{e}-01$ |
| 4 | $4.072019427 \mathrm{e}+01$ | $4.659781027 \mathrm{e}-01$ | -3.045590356e-01 | $2.073492169 \mathrm{e}-01$ |
| 5 | $4.977371213 \mathrm{e}+01$ | $1.693510361 \mathrm{e}-01$ | -7.517787765e-01 | $2.738716624 \mathrm{e}-02$ |
| 6 | $6.118075690 \mathrm{e}+01$ | $4.524678973 \mathrm{e}-02$ | $7.141707743 \mathrm{e}-01$ | $1.955000734 \mathrm{e}-03$ |
| 7 | $7.485286653 \mathrm{e}+01$ | $9.966212672 \mathrm{e}-03$ | $5.750889706 \mathrm{e}-01$ | 9.484876556e-05 |
| 8 | $9.065115937 \mathrm{e}+01$ | $1.897100693 \mathrm{e}-03$ | -1.117460330e+00 | $3.436783286 \mathrm{e}-06$ |
| 9 | $1.085154453 \mathrm{e}+02$ | 3.192404741e-04 | $3.163806610 \mathrm{e}-02$ | $9.732115989 \mathrm{e}-08$ |
| 10 | $1.284188799 \mathrm{e}+02$ | $4.820488557 \mathrm{e}-05$ | $1.196006265 \mathrm{e}+00$ | 2.218980545e-09 |
| 11 | $1.503474435 \mathrm{e}+02$ | $6.605196410 \mathrm{e}-06$ | -9.118593645e-01 | $4.166226284 \mathrm{e}-11$ |
| 12 | $1.742930029 \mathrm{e}+02$ | 8.286721621e-07 | -5.384541132e-01 | 6.557478591e-13 |
| 13 | $2.002505133 \mathrm{e}+02$ | $9.588946460 \mathrm{e}-08$ | $1.423257002 \mathrm{e}+00$ | $8.780377122 \mathrm{e}-15$ |

The table was generated by the MATLAB code,
$\mathrm{n}=(0: M)$,
Mu $=\operatorname{sqrt}\left(2 * \mathrm{pi} / \mathrm{c}^{*}\right.$ La $) ; \quad$ \% calculate $\left|m u _n\right|$ from 1a_n
$P=\operatorname{Psi}(:, 1)+\operatorname{dPsi}(:, 1) ; \quad$ \% interlace psi_n(0) and its derivative psi_n' (0)
|mu_n|
psi_n(0)+psi_n'’(0)
lambda_n\n')
fprintf('
chi_n
fprintf('\%3d \%1.9e \%1.9e \% 1.9e \%1.9e\n', [n,Chi,Mu,P,La]')

The Shannon number is $N_{C}=2 C / \pi=3.8194$. We observe in the above table how quickly the eigenvalues λ_{n} decay towards zero for $n>N_{c}$. The following figure plots λ_{n} and the dividing line at N_{c} (the eigenvalues have been joined by a smooth curve to guide the eye.)
eigenvalues λ_{n}

The following MATLAB code tests the relationships (J.28) and (J.29) for $M=13$ and $M=25$. The graphs plot the quantity,

$$
F_{M}(t)=\frac{\pi}{\omega_{0}} \sum_{n=0}^{M} \psi_{n}^{2}(t)
$$

which should tend to unity as M increases and more terms are included in the sum.
$\mathrm{F}=\operatorname{sum}(P s i . \wedge 2) * p i / w 0$

$$
\% \text { test: pi/w0 * \sum_n psi_n(t)^2 = } 1
$$

figure; plot(t,F,'b-')

$$
\begin{aligned}
& \mathrm{Nc}=2 * \mathrm{c} / \mathrm{pi} ; \\
& \text { Err }=\text { abs (sum(La)-Nc) }
\end{aligned}
$$

\% gets better as M is increased
\% $\mathrm{Nc}=3.8197$, Shannon number \% $E r r=1.3323 \mathrm{e}-15$, for $\mathrm{M}=13$
$F_{M}(t), M=25$

Example J.2: This example tests the relationships (J.27) and (J.31). Setting $t^{\prime}=0$ in (J.27), we obtain the limit,

$$
\lim _{M \rightarrow \infty} F_{M}(t)=\frac{\sin \left(\omega_{0} t\right)}{\pi t}, \quad \text { where } \quad F_{M}(t)=\sum_{n=0}^{M} \psi_{n}(0) \psi_{n}(t)
$$

Similarly we have the limit of (J.31),

$$
\lim _{M \rightarrow \infty} G_{M}(t)=1, \quad \text { where } \quad G_{M}(t)=\frac{2 \pi}{\omega_{0}} \sum_{n=0}^{M} \frac{1}{\mu_{n}} \psi_{n}(0) \psi_{n}(t)
$$

The following MATLAB code computes and plots $F_{M}(t), G_{M}(t)$ for $M=4$ and $M=20$ for the case $t_{0}=1, \omega_{0}=6$,

$$
\begin{aligned}
& \mathrm{t} 0=1 ; \mathrm{w} 0=6 ; c=\mathrm{t} 0 * \mathrm{w} 0 \\
& \mathrm{t}=\mathrm{linspace}(-4,4,801)
\end{aligned}
$$

for $M=[4,20]$
[Psi,La] = pswf(to $, \mathrm{w} 0, \mathrm{M}, \mathrm{t})$;
Psi0 = Psi (: , t==0);
$\mathrm{F}=\mathrm{Psi0}{ }^{\prime}$ * Psi;
figure; plot (t,F,'b-', t, $\operatorname{sinc}(w 0 * t / p i) * w 0 / p i, ' r: ') ;$
$\mathrm{n}=(0: M)$ ';
Mu $=1 . \wedge n . * \operatorname{sqrt}(2 * \mathrm{pi} * \mathrm{La} / \mathrm{c})$;
$\mathrm{G}=(2 * \mathrm{pi} / \mathrm{w} 0)$ * Psi0' ${ }^{(12 a g(1 . / M u)}$ * Psi;
figure; plot(t,G,'b-');
end

The convergence of $F_{M}(t)$ is very quick and one can barely distinguish the approximation from the exact sinc function on the graphs (see the color graphs in the PDF book file). $\quad \square$

Example J.3: Here we explore the bandlimited approximation (J.43) of a delta function over a limited time interval. Let us denote the approximation by,

$$
\begin{equation*}
\delta_{M}(t)=\sum_{n=0}^{M} \frac{1}{\lambda_{n}} \psi_{n}(0) \psi_{n}(t) \tag{J.81}
\end{equation*}
$$

The following MATLAB code segment evaluates and plots $\delta_{M}(t)$ for the following values of the parameters: $t_{0}=1, \omega_{0}=4 \pi$, and the cases, $M=20$ and $M=30$.

$$
\begin{aligned}
& \text { t0 }=1 ; \text { w0 }=4 * \text { pi } ; \\
& \mathrm{t}=1 \text { inspace }(-2,2,401) ;
\end{aligned}
$$

$$
\text { for } M=[20,30]
$$

$$
[\text { Psi }, \text { La }]=\operatorname{pswf}(t 0, w 0, \mathrm{M}, \mathrm{t}) \text {; }
$$

$$
\text { Psi0 }=\operatorname{Psi}(:, t==0) \text {; }
$$

$$
F=P s i 0 \text { ' * diag(1./La) * Psi; }
$$

\% the summation in (J.81)
figure; plot(t,F, 'b-','linewidth',2); axis([-2,2,-10,20]); x7abe1('\itt');
end

Because $\psi_{n}(t)=(-1)^{n} \psi_{n}(-t)$, it follows that $\psi_{n}(0)=0$ for odd n and the summation in (J.81) can be restricted to even n 's. However, in the MATLAB implementation above it is much simpler to keep all terms. The following graphs plot $\delta_{M}(t)$ versus t, over the interval $-2 t_{0} \leq t \leq 2 t_{0}$.

To display the incredibly large values outside the interval, $\left[-t_{0}, t_{0}\right]$, we have also plotted the absolute values $\left|\delta_{M}(t)\right|$ using a semi-log scale. Within the $\left[-t_{0}, t_{0}\right]$ interval, the peak around $t=0$ approximating $\delta(t)$ becomes narrower with increasing M.

We note that since the maximum frequency is $f_{0}=\omega_{0} /(2 \pi)=2$ in cycles per unit time, the approximation $\delta_{M}(t)$ clearly oscillates several times faster than f_{0} over the $\left[-t_{0}, t_{0}\right.$] interval, exhibiting a superoscillatory behavior [1619-1631].
The bandlimited Fourier transform of the approximation (J.81) is obtained from the Fourier transform of $\psi_{n}(t)$,

$$
\Delta_{M}(\omega)=\int_{-\infty}^{\infty} e^{-j \omega t} \delta_{M}(t) d t=\sum_{n=0}^{M} \frac{1}{\lambda_{n}} \psi_{n}(0) \hat{\psi}_{n}(\omega)
$$

or, using (J.16),

$$
\begin{align*}
\Delta_{M}(\omega) & =\sum_{n=0}^{M} \frac{2 \pi}{\omega_{0} \lambda_{n} \mu_{n}} \psi_{n}(0) \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega) \\
& =\sqrt{\frac{2 \pi t_{0}}{\omega_{0}}} \sum_{n=0}^{M} \frac{1}{i^{n} \lambda_{n}^{3 / 2}} \psi_{n}(0) \psi_{n}\left(\frac{\omega t_{0}}{\omega_{0}}\right) \cdot \chi \omega_{0}(\omega) \tag{J.82}
\end{align*}
$$

The following MATLAB code computes and plots $\Delta_{M}(\omega)$ over $\left[-\omega_{0}, \omega_{0}\right]$ for the same parameter values, $t_{0}=1, \omega_{0}=4 \pi$, and $M=20,30$.

$$
\mathrm{t} 0=1 ; \mathrm{w} 0=4 * \mathrm{pi} ;
$$

$w=1$ inspace $(-1,1,401) ; \quad \%$ normalized frequency, $w=$ omega/omega_0

```
for M = [20,30]
    [Psi,La] = pswf(t0,w0,M,w*t0);
    Psi0 = Psi(:,w==0);
    n = (0:M)';
    D = sqrt(2*pi*t0/w0) * Psi0' * diag(1./i.^n./La.^(3/2)) * Psi;
    DO = abs(D(w==0));
    figure; plot(w,D/DO, 'b-','linewidth',2);
    axis([-1.05, 1.05, -8, 8]);
end
```


For plotting purposes, the spectrum is normalized to its magnitude at $\omega=0$, that is, the quantity $\Delta_{M}(\omega) / \Delta_{0}$ is plotted, where $\Delta_{0}=\left|\Delta_{M}(0)\right|$. The computed values of Δ_{0} and hence the values of $\Delta_{M}(\omega)$ in absolute scales are huge, indeed, we have, $\Delta_{0}=2.5897 \times 10^{7}$ and $\Delta_{0}=3.1503 \times 10^{16}$ for the two cases of $M=20$ and $M=30$, respectively.
We will revisit this type of example in Sec. 20.22 in our discussion of superresolving optical systems and the design of superdirective aperture antennas.
In the optics context, we must map the variables (t, ω) to the spatial variables $\left(x, k_{x}\right)$, with the optical system introducing bandlimiting in the wavenumber domain k_{x}. The sharp focusing of the delta-function approximation $\delta_{M}(x)$ is accompanied by huge values outside a specified "field-of-view" interval $\left[-x_{0}, x_{0}\right]$ which plays the role of $\left[-t_{0}, t_{0}\right]$. Such huge values can be blocked with additional aperture stops provided the object fits within this field of view.
In the context of aperture-limited antennas, we must remap the variables (t, ω) onto the spatial variables $\left(k_{x}, x\right)$, so that $\delta_{M}(t)$ maps into $\delta_{M}\left(k_{x}\right)$ and becomes the radiation pattern of the antenna as a function of the wavenumber k_{x}. The Fourier spectrum $\Delta_{M}(\omega)$ maps onto the aperture-limited field distribution $\Delta_{M}(x)$ as a function of distance x along the finite antenna, limited to an interval $-a \leq x \leq a$, where $2 a$ is the length of the antenna. Although in principle one can design an aperture antenna that has high directivity, approxmating $\delta\left(k_{x}\right)$, the extremely large values of the aperture distribution $\Delta_{M}(x)$, make such designs effectively unrealizable in practice.

The role of the bandwidth interval $\left[-\omega_{0}, \omega_{0}\right]$ is played by the space interval $[-a, a]$, while the role of $\left[-t_{0}, t_{0}\right]$ is played by the visible region of the wavenumber interval, $\left[-k_{0}, k_{0}\right]$, where k_{0} is the free-space wavenumber, $k_{0}=2 \pi / \lambda$. Although the visible radiation pattern
is limited to $\left|k_{x}\right| \leq k_{0}$, and emulates a sharp radiation pattern $\delta_{M}\left(k_{x}\right)$, the rest of the pattern over the invisible region $\left|k_{x}\right|>k_{0}$ takes on very large values as we saw in this example. These are associated with very large reactive power stored in the vicinity of the antenna.

Further discussion of these issues is presented in Sec. 20.22. We note also that the superresolution examples of Barnes [1569] can be reproduced by changing the parameters to $\omega_{0}=4$ and $M=[2,4,6,8]$ in the above MATLAB segments, while the supergain design example of Kritikos [1616] is reproduced by the choice, $t_{0}=1, \omega_{0}=6, M=8$.

K. Lorentz Transformations

According to Einstein's special theory of relativity [474], Lorentz transformations describe the transformation between the space-time coordinates of two coordinate systems moving relative to each other at constant velocity. Maxwell's equations remain invariant under Lorentz transformations. This is demonstrated below.

Let the two coordinate frames be S and S^{\prime}. By convention, we may think of S as the "fixed" laboratory frame with respect to which the frame S^{\prime} is moving at a constant velocity \boldsymbol{v}. For example, if \boldsymbol{v} is in the z-direction, the space-time coordinates $\{t, x, y, z\}$ of S are related to the coordinates $\left\{t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right\}$ of S^{\prime} by the Lorentz transformation:

t^{\prime}	$=\gamma\left(t-\frac{v}{c^{2}} z\right)$
z^{\prime}	$=\gamma(z-v t)$
x^{\prime}	$=x$
y^{\prime}	$=y$

where $\quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$

where c is the speed of light in vacuum. Defining the scaled quantities $\tau=c t$ and $\beta=v / c$, the above transformation and its inverse, obtained by replacing β by $-\beta$, may be written as follows:

These transformations are also referred to as Lorentz boosts to indicate the fact that one frame is boosted to move relative to the other. Interchanging the roles of z and x, or z and y, one obtains the Lorentz transformations for motion along the x or y directions, respectively. Eqs. (K.1) may be expressed more compactly in matrix form:

$$
\mathrm{x}^{\prime}=L \mathrm{x} \text {, where } \mathrm{x}=\left[\begin{array}{c}
\tau \tag{K.2}\\
x \\
y \\
z
\end{array}\right], \quad \mathrm{x}^{\prime}=\left[\begin{array}{c}
\boldsymbol{\tau}^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right], \quad L=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]
$$

Such transformations leave the quadratic form $\left(c^{2} t^{2}-x^{2}-y^{2}-z^{2}\right)$ invariant, that is,

$$
\begin{equation*}
c^{2} t^{\prime 2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}=c^{2} t^{2}-x^{2}-y^{2}-z^{2} \tag{K.3}
\end{equation*}
$$

Introducing the diagonal metric matrix $G=\operatorname{diag}(1,-1,-1,-1)$, we may write the quadratic form as follows, where x^{T} denotes the transposed vector, that is, the row vector $\mathrm{x}^{T}=[\tau, x, y, z]$:

$$
\begin{equation*}
\mathrm{x}^{T} G \mathrm{x}=\tau^{2}-x^{2}-y^{2}-z^{2}=c^{2} t^{2}-x^{2}-y^{2}-z^{2} \tag{K.4}
\end{equation*}
$$

More generally, a Lorentz transformation is defined as any linear transformation $x^{\prime}=$ $L \times$ that leaves the quadratic form $x^{T} G \times$ invariant. The invariance condition requires that: $x^{\prime T} G x^{\prime}=x^{T} L^{T} G L x=x^{T} G x$, or

$$
\begin{equation*}
L^{T} G L=G \tag{K.5}
\end{equation*}
$$

In addition to the Lorentz boosts of Eq. (K.1), the more general transformations satisfying (K.5) include rotations of the three spatial coordinates, as well as time or space reflections. For example, a rotation has the form:

$$
L=\left[\begin{array}{l|lll}
1 & 0 & 0 & 0 \\
\hline 0 & & & \\
0 & & R & \\
0 & & &
\end{array}\right]
$$

where R is a 3×3 orthogonal rotation matrix, that is, $R^{T} R=I$, where I is the 3×3 identity matrix. The most general Lorentz boost corresponding to arbitrary velocity $\boldsymbol{v}=\left[v_{x}, v_{y}, v_{z}\right]^{T}$ is given by:

$$
L=\left[\begin{array}{c|c}
\gamma & -\gamma \boldsymbol{\beta}^{T} \tag{K.6}\\
\hline-\gamma \boldsymbol{\beta} & I+\frac{\gamma^{2}}{\gamma+1} \boldsymbol{\beta} \boldsymbol{\beta}^{T}
\end{array}\right], \quad \text { where } \boldsymbol{\beta}=\frac{\boldsymbol{v}}{c}, \quad \gamma=\frac{1}{\sqrt{1-\boldsymbol{\beta}^{T} \boldsymbol{\beta}}}
$$

When $\boldsymbol{v}=[0,0, v]^{T}$, or $\boldsymbol{\beta}=[0,0, \beta]^{T}$, Eq. (K.6) reduces to (K.1). Defining $\beta=|\boldsymbol{\beta}|=$ $\sqrt{\boldsymbol{\beta}^{T} \boldsymbol{\beta}}$ and the unit vector $\hat{\boldsymbol{\beta}}=\boldsymbol{\beta} / \beta$, and using the relationship $\gamma^{2} \beta^{2}=\gamma^{2}-1$, it can be verified that the spatial part of the matrix L can be written in the form:

$$
\begin{equation*}
I+\frac{\gamma^{2}}{\gamma+1} \boldsymbol{\beta} \boldsymbol{\beta}^{T}=I+(\gamma-1) \hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}^{T} \tag{K.7}
\end{equation*}
$$

The set of matrices L satisfying Eq. (K.5) forms a group called the Lorentz group. In particular, the z-directed boosts of Eq. (K.2) form a commutative subgroup. Denoting these boosts by $L(\beta)$, the application of two successive boosts by velocity factors $\beta_{1}=$ ν_{1} / c and $\beta_{2}=\nu_{2} / c$ leads to the combined boost $L(\beta)=L\left(\beta_{1}\right) L\left(\beta_{2}\right)$, where:

$$
\begin{equation*}
\beta=\frac{\beta_{1}+\beta_{2}}{1+\beta_{1} \beta_{2}} \Leftrightarrow v=\frac{v_{1}+v_{2}}{1+v_{1} v_{2} / c^{2}} \tag{K.8}
\end{equation*}
$$

with $\beta=v / c$. Eq. (K.8) is Einstein's relativistic velocity addition theorem. The same group property implies also that $L^{-1}(\beta)=L(-\beta)$. The proof of Eq. (K.8) follows from the following condition, where $\gamma_{1}=1 / \sqrt{1-\beta_{1}^{2}}$ and $\gamma_{2}=1 / \sqrt{1-\beta_{2}^{2}}$:
$\left[\begin{array}{cccc}\gamma & 0 & 0 & -\gamma \beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma \beta & 0 & 0 & \gamma\end{array}\right]=\left[\begin{array}{cccc}\gamma_{1} & 0 & 0 & -\gamma_{1} \beta_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma_{1} \beta_{1} & 0 & 0 & \gamma_{1}\end{array}\right]\left[\begin{array}{cccc}\gamma_{2} & 0 & 0 & -\gamma_{2} \beta_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma_{2} \beta_{2} & 0 & 0 & \gamma_{2}\end{array}\right]$

A four-vector is a four-dimensional vector that transforms like the vector x under Lorentz transformations, that is, its components with respect to the two moving frames S and S^{\prime} are related by:

$$
a^{\prime}=L a, \text { where } a=\left[\begin{array}{l}
a_{0} \tag{K.9}\\
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right], \quad a^{\prime}=\left[\begin{array}{c}
a_{0}^{\prime} \\
a_{x}^{\prime} \\
a_{y}^{\prime} \\
a_{z}^{\prime}
\end{array}\right]
$$

For example, under the z-directed boost of Eq. (K.1), the four-vector a will transform as:

$$
\begin{array}{|l|}
\hline a_{0}^{\prime}=\gamma\left(a_{0}-\beta a_{z}\right) \tag{K.10}\\
a_{z}^{\prime}=\gamma\left(a_{z}-\beta a_{0}\right) \\
a_{x}^{\prime}=a_{x} \\
a_{y}^{\prime}=a_{y}
\end{array} \Leftrightarrow \quad \begin{aligned}
& a_{0}=\gamma\left(a_{0}^{\prime}+\beta a_{z}^{\prime}\right) \\
& a_{z}=\gamma\left(a_{z}^{\prime}+\beta a_{0}^{\prime}\right) \\
& a_{x}=a_{x}^{\prime} \\
& a_{y}^{\prime}=a_{y}^{\prime}
\end{aligned}
$$

Four-vectors transforming according to Eq. (K.9) are referred to as contravariant. Under the general Lorentz boost of Eq. (K.6), the spatial components of a that are transverse to the direction of the velocity vector v remain unchanged, whereas the parallel component transforms as in Eq. (K.10), that is, the most general Lorentz boost transformation for a four-vector takes the form:

$$
\begin{align*}
& a_{0}^{\prime}=\gamma\left(a_{0}-\beta a_{\|}\right) \\
& a_{\|}^{\prime}=\gamma\left(a_{\|}-\beta a_{0}\right) \tag{K.11}
\end{align*}
$$

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta=|\boldsymbol{\beta}|, \quad \boldsymbol{\beta}=\frac{v}{c}
$$

where $\boldsymbol{a}_{\|}=\hat{\boldsymbol{\beta}}^{T} \boldsymbol{a}$ and $\boldsymbol{a}=\left[a_{x}, a_{y}, a_{z}\right]^{T}$ is the spatial part of a. Then,

$$
\boldsymbol{a}_{\|}=\hat{\boldsymbol{\beta}} \boldsymbol{a}_{\|}=\hat{\boldsymbol{\beta}}\left(\hat{\boldsymbol{\beta}}^{T} \boldsymbol{a}\right) \text { and } \boldsymbol{a}_{\perp}=\boldsymbol{a}-\boldsymbol{a}_{\|}=\boldsymbol{a}-\hat{\boldsymbol{\beta}} \boldsymbol{a}_{\|}
$$

Setting $\boldsymbol{\beta}=\beta \hat{\boldsymbol{\beta}}$ and using Eq. (K.7), the Lorentz transformation (K.6) gives:

$$
\left[\begin{array}{c}
a_{0}^{\prime} \\
\boldsymbol{a}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\gamma & -\gamma \beta \hat{\boldsymbol{\beta}}^{T} \\
-\gamma \beta \hat{\boldsymbol{\beta}} & I+(\gamma-1) \hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}^{T}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
\boldsymbol{a}
\end{array}\right]=\left[\begin{array}{c}
\gamma\left(a_{0}-\beta a_{\|}\right) \\
\boldsymbol{a}-\hat{\boldsymbol{\beta}} a_{\|}+\hat{\boldsymbol{\beta}} \gamma\left(a_{\|}-\beta a_{0}\right)
\end{array}\right]
$$

from which Eq. (K.11) follows.
For any two four-vectors a, b, the quadratic form $a^{T} G b$ remains invariant under Lorentz transformations, that is, $a^{\prime T} G b^{\prime}=a^{T} G b$, or,

$$
a_{0}^{\prime} b_{0}^{\prime}-\boldsymbol{a}^{\prime} \cdot \boldsymbol{b}^{\prime}=a_{0} b_{0}-\boldsymbol{a} \cdot \boldsymbol{b}, \quad \text { where } \quad a=\left[\begin{array}{c}
a_{0} \tag{K.12}\\
\boldsymbol{a}
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{0} \\
\boldsymbol{b}
\end{array}\right]
$$

Some examples of four-vectors are given in the following table:

four-vector	a_{0}	a_{x}	a_{y}	a_{z}
time and space	$c t$	x	y	z
frequency and wavenumber	ω / c	k_{x}	k_{y}	k_{z}
energy and momentum	E / c	p_{x}	p_{y}	p_{z}
charge and current densities	$c \rho$	J_{x}	J_{y}	J_{z}
scalar and vector potentials	φ	$c A_{x}$	$c A_{y}$	$c A_{z}$

For example, under the z-directed boost of Eq. (K.1), the frequency-wavenumber transformation will be as follows:

$$
\begin{align*}
& \omega^{\prime}=\gamma\left(\omega-\beta c k_{z}\right) \\
& k_{z}^{\prime}=\gamma\left(k_{z}-\frac{\beta}{c} \omega\right) \tag{K.14}\\
& k_{x}^{\prime}=k_{x} \\
& k_{y}^{\prime}=k_{y}
\end{align*} \Leftrightarrow\left[\begin{array}{l}
\omega=\gamma\left(\omega^{\prime}+\beta c k_{z}^{\prime}\right) \\
k_{z}=\gamma\left(k_{z}^{\prime}+\frac{\beta}{c} \omega^{\prime}\right) \\
k_{x}=k_{x}^{\prime} \\
k_{y}=k_{y}^{\prime}
\end{array}, \quad \beta c=v, \quad \frac{\beta}{c}=\frac{v}{c^{2}}\right.
$$

where we rewrote the first equations in terms of ω instead of ω / c. The change in frequency due to motion is the basis of the Doppler effect. The invariance property (K.12) applied to the space-time and frequency-wavenumber four-vectors reads:

$$
\begin{equation*}
\omega^{\prime} t^{\prime}-\boldsymbol{k}^{\prime} \cdot \boldsymbol{r}^{\prime}=\omega t-\boldsymbol{k} \cdot \boldsymbol{r} \tag{K.15}
\end{equation*}
$$

This implies that a uniform plane wave remains a uniform plane wave in all reference frames moving at a constant velocity relative to each other. Similarly, the charge and current densities transform as follows:

$$
\begin{align*}
& c \rho^{\prime}=\gamma\left(c \rho-\beta J_{z}\right) \tag{K.16}\\
& J_{z}^{\prime}=\gamma\left(J_{z}-\beta c \rho\right) \\
& J_{x}^{\prime}=J_{x} \\
& J_{y}^{\prime}=J_{y}
\end{aligned} \Leftrightarrow \begin{aligned}
& c \rho=\gamma\left(c \rho^{\prime}+\beta J_{z}^{\prime}\right) \\
& J_{z}=\gamma\left(J_{z}^{\prime}+\beta c \rho^{\prime}\right) \\
& J_{x}=J_{x}^{\prime} \\
& J_{y}=J_{y}^{\prime}
\end{align*}
$$

Because Eq. (K.5) implies that $L^{-T}=G L G$, we are led to define four-vectors that transform according to L^{-T}. Such four-vectors are referred to as being covariant. Given any contravariant 4 -vector a, we define its covariant version by $\bar{a}=G a$. This operation simply reverses the sign of the spatial part of a :

$$
\bar{a}=G a=\left[\begin{array}{rr}
1 & 0 \tag{K.17}\\
0 & -I
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a
\end{array}\right]=\left[\begin{array}{c}
a_{0} \\
-a
\end{array}\right]
$$

The vector \bar{a} transforms as follows:

$$
\begin{equation*}
\bar{a}^{\prime}=G a^{\prime}=G L a=(G L G)(G a)=L^{-T} \bar{a} \tag{K.18}
\end{equation*}
$$

where we used the property that $G^{2}=I_{4}$, the 4×4 identity matrix. The most important covariant vector is the four-dimensional gradient:

$$
\partial_{x}=\left[\begin{array}{l}
\partial_{\tau} \tag{K.19}\\
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right]=\left[\begin{array}{l}
\partial_{\tau} \\
\nabla
\end{array}\right]
$$

Because $x^{\prime}=L x$, it follows that $\partial_{x^{\prime}}=L^{-T} \partial_{x}$. Indeed, we have component-wise:

$$
\frac{\partial}{\partial \mathrm{x}_{i}}=\sum_{j} \frac{\partial \mathrm{x}_{j}^{\prime}}{\partial \mathrm{x}_{i}} \frac{\partial}{\partial \mathrm{x}_{j}^{\prime}}=\sum_{j} L_{j i} \frac{\partial}{\partial \mathrm{x}_{j}^{\prime}} \quad \Rightarrow \quad \partial_{\mathrm{x}}=L^{T} \partial_{\mathrm{x}^{\prime}} \quad \Rightarrow \quad \partial_{\mathrm{x}^{\prime}}=L^{-T} \partial_{\mathrm{x}}
$$

For the z-directed boost of Eq. (K.1), we have $L^{-T}=L^{-1}$, which gives:

$$
\begin{align*}
& \partial_{\tau^{\prime}}=\gamma\left(\partial_{\tau}+\beta \partial_{z}\right) \\
& \partial_{z^{\prime}}=\gamma\left(\partial_{z}+\beta \partial_{\tau}\right) \\
& \partial_{x^{\prime}}=\partial_{x} \\
& \partial_{y^{\prime}}=\partial_{y}
\end{align*} \Leftrightarrow\left[\begin{array}{l}
\partial_{\tau}=\gamma\left(\partial_{\tau^{\prime}}-\beta \partial_{z^{\prime}}\right) \\
\partial_{z}=\gamma\left(\partial_{z^{\prime}}-\beta \partial_{\tau^{\prime}}\right) \tag{K.20}\\
\partial_{x}=\partial_{x^{\prime}} \\
\partial_{y}=\partial_{y^{\prime}}
\end{array}\right.
$$

The four-dimensional divergence of a four-vector is a Lorentz scalar. For example, denoting the current density four-vector by $J=\left[c \rho, J_{x}, J_{y}, J_{z}\right]^{T}$, the charge conservation law involves the four-dimensional divergence:

$$
\partial_{t} \rho+\nabla \cdot \boldsymbol{J}=\left[\partial_{\tau}, \partial_{x}, \partial_{y}, \partial_{z}\right]\left[\begin{array}{c}
c \rho \tag{K.21}\\
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right]=\partial_{x}^{T} J
$$

Under a Lorentz transformation, this remains invariant, and therefore, if it is zero in one frame it will remain zero in all frames. Using $\partial_{\mathrm{x}}^{T}=\partial_{\mathrm{x}^{\prime}}^{T} L$, we have:

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot \boldsymbol{J}=\partial_{\mathrm{x}}^{T} J=\partial_{x^{\prime}}^{T} L J=\partial_{x^{\prime}} J^{\prime}=\partial_{t^{\prime}} \rho^{\prime}+\nabla^{\prime} \cdot \boldsymbol{J}^{\prime} \tag{K.22}
\end{equation*}
$$

Although many quantities in electromagnetism transform like four-vectors, such as the space-time or the frequency-wavenumber vectors, the actual electromagnetic fields do not. Rather, they transform like six-vectors or rank-2 antisymmetric tensors.

A rank- 2 tensor is represented by a 4×4 matrix, say F. Its Lorentz transformation properties are the same as the transformation of the product of a column and a row four-vector, that is, F transforms like the quantity $a b^{T}$, where a, b are column fourvectors. This product transforms like $a^{\prime} b^{T}=L\left(a b^{T}\right) L^{T}$. Thus, a general second-rank tensor transforms as follows:

$$
\begin{equation*}
F^{\prime}=L F L^{T} \tag{K.23}
\end{equation*}
$$

An antisymmetric rank-2 tensor F defines, and is completely defined by, two threedimensional vectors, say $\boldsymbol{a}=\left[a_{x}, a_{y}, a_{z}\right]^{T}$ and $\boldsymbol{b}=\left[b_{x}, b_{y}, b_{z}\right]^{T}$. Its matrix form is:

$$
F=\left[\begin{array}{cccc}
0 & -a_{x} & -a_{y} & -a_{z} \tag{K.24}\\
a_{x} & 0 & -b_{z} & b_{y} \\
a_{y} & b_{z} & 0 & -b_{x} \\
a_{z} & -b_{y} & b_{x} & 0
\end{array}\right]
$$

Given the tensor F, one may define its covariant version through $\bar{F}=G F G$, and its dual, denoted by \tilde{F} and obtained by the replacements $\boldsymbol{a} \rightarrow \boldsymbol{b}$ and $\boldsymbol{b} \rightarrow-\boldsymbol{a}$, that is,

$$
\bar{F}=\left[\begin{array}{cccc}
0 & a_{x} & a_{y} & a_{z} \tag{K.25}\\
-a_{x} & 0 & -b_{z} & b_{y} \\
-a_{y} & b_{z} & 0 & -b_{x} \\
-a_{z} & -b_{y} & b_{x} & 0
\end{array}\right], \quad \tilde{F}=\left[\begin{array}{cccc}
0 & -b_{x} & -b_{y} & -b_{z} \\
b_{x} & 0 & a_{z} & -a_{y} \\
b_{y} & -a_{z} & 0 & a_{x} \\
b_{z} & a_{y} & -a_{x} & 0
\end{array}\right]
$$

Thus, \bar{F} corresponds to the pair $(-\boldsymbol{a}, \boldsymbol{b})$, and \tilde{F} to $(\boldsymbol{b},-\boldsymbol{a})$. Their Lorentz transformation properties are:

$$
\begin{equation*}
\bar{F}^{\prime}=L^{-T} \bar{F} L^{-1}, \quad \tilde{F}^{\prime}=L \tilde{F} L^{T} \tag{K.26}
\end{equation*}
$$

Thus, the dual \tilde{F} transforms like F itself. For the z-directed boost of Eq. (K.1), it follows from (K.23) that the two vectors $\boldsymbol{a}, \boldsymbol{b}$ transform as follows:

$$
\begin{array}{ll}
a_{x}^{\prime}=\gamma\left(a_{x}-\beta b_{y}\right) & b_{x}^{\prime}=\gamma\left(b_{x}+\beta a_{y}\right) \\
a_{y}^{\prime}=\gamma\left(a_{y}+\beta b_{x}\right) & b_{y}^{\prime}=\gamma\left(b_{y}-\beta a_{x}\right) \tag{K.27}\\
a_{z}^{\prime}=a_{z} & b_{z}^{\prime}=b_{z}
\end{array}
$$

These are obtained by equating the expressions:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & -a_{x}^{\prime} & -a_{y}^{\prime} & -a_{z}^{\prime} \\
a_{x}^{\prime} & 0 & -b_{z}^{\prime} & b_{y}^{\prime} \\
a_{y}^{\prime} & b_{z}^{\prime} & 0 & -b_{x}^{\prime} \\
a_{z}^{\prime} & -b_{y}^{\prime} & b_{x}^{\prime} & 0
\end{array}\right]=} \\
& =\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
0 & -a_{x} & -a_{y} & -a_{z} \\
a_{x} & 0 & -b_{z} & b_{y} \\
a_{y} & b_{z} & 0 & -b_{x} \\
a_{z} & -b_{y} & b_{x} & 0
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]
\end{aligned}
$$

More generally, under the boost transformation (K.6), it can be verified that the components of $\boldsymbol{a}, \boldsymbol{b}$ parallel and perpendicular to \boldsymbol{v} transform as follows:

$$
\begin{align*}
& \boldsymbol{a}_{\perp}^{\prime}=\gamma\left(\boldsymbol{a}_{\perp}+\boldsymbol{\beta} \times \boldsymbol{b}_{\perp}\right) \\
& \boldsymbol{b}_{\perp}^{\prime}=\gamma\left(\boldsymbol{b}_{\perp}-\boldsymbol{\beta} \times \boldsymbol{a}_{\perp}\right) \\
& \boldsymbol{a}_{\|}^{\prime}=\boldsymbol{a}_{\|} \tag{K.28}\\
& \boldsymbol{b}_{\|}^{\prime}=\boldsymbol{b}_{\|}
\end{align*}
$$

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta=|\boldsymbol{\beta}|, \quad \boldsymbol{\beta}=\frac{\boldsymbol{v}}{c}
$$

Thus, in contrast to Eq. (K.11) for a four-vector, the parallel components remain unchanged while the transverse components change. A pair of three-dimensional vectors ($\boldsymbol{a}, \boldsymbol{b}$) transforming like Eq. (K.28) is referred to as a six-vector.

It is evident also that Eqs. (K.28) remain invariant under the duality transformation $\boldsymbol{a} \rightarrow \boldsymbol{b}$ and $\boldsymbol{b} \rightarrow-\boldsymbol{a}$, which justifies Eq. (K.26). Some examples of ($\boldsymbol{a}, \boldsymbol{b}$) six-vector pairs defining an antisymmetric rank-2 tensor are as follows:

\boldsymbol{a}	\boldsymbol{b}
\boldsymbol{E}	$C \boldsymbol{B}$
$c \boldsymbol{D}$	\boldsymbol{H}
$c \boldsymbol{P}$	$-\boldsymbol{M}$

where $\boldsymbol{P}, \boldsymbol{M}$ are the polarization and magnetization densities defined through the relationships $\boldsymbol{D}=\epsilon_{0} \boldsymbol{E}+\boldsymbol{P}$ and $\boldsymbol{B}=\mu_{0}(\boldsymbol{H}+\boldsymbol{M})$. Thus, the $(\boldsymbol{E}, \boldsymbol{B})$ and $(\boldsymbol{D}, \boldsymbol{H})$ fields have the following Lorentz transformation properties:

$$
\begin{array}{|l}
\boldsymbol{E}_{\perp}^{\prime}=\gamma\left(\boldsymbol{E}_{\perp}+c \boldsymbol{\beta} \times \boldsymbol{B}_{\perp}\right) \tag{K.30}\\
\boldsymbol{B}_{\perp}^{\prime}=\gamma\left(\boldsymbol{B}_{\perp}-\frac{1}{c} \boldsymbol{\beta} \times \boldsymbol{E}_{\perp}\right) \\
\boldsymbol{E}_{\|}^{\prime}=\boldsymbol{E}_{\|} \\
\boldsymbol{B}_{\|}^{\prime}=\boldsymbol{B}_{\|}
\end{array} \quad \begin{aligned}
& \boldsymbol{H}_{\perp}^{\prime}=\gamma\left(\boldsymbol{H}_{\perp}-c \boldsymbol{\beta} \times \boldsymbol{D}_{\perp}\right) \\
& \boldsymbol{D}_{\perp}^{\prime}=\gamma\left(\boldsymbol{D}_{\perp}+\frac{1}{c} \boldsymbol{\beta} \times \boldsymbol{H}_{\perp}\right) \\
& \boldsymbol{H}_{\|}^{\prime}=\boldsymbol{H}_{\|} \\
& \boldsymbol{D}_{\|}^{\prime}=\boldsymbol{D}_{\|} \\
& \hline
\end{aligned}
$$

where we may replace $c \boldsymbol{\beta}=\boldsymbol{v}$ and $\boldsymbol{\beta} / c=\boldsymbol{v} / c^{2}$. Note that the two groups of equations transform into each other under the usual duality transformations: $\boldsymbol{E} \rightarrow \boldsymbol{H}, \boldsymbol{H} \rightarrow-\boldsymbol{E}$, $\boldsymbol{D} \rightarrow \boldsymbol{B}, \boldsymbol{B} \rightarrow-\boldsymbol{D}$. For the z-directed boost of Eq. (K.1), we have from Eq. (K.30):

$$
\begin{align*}
& E_{x}^{\prime}=\gamma\left(E_{x}-c \beta B_{y}\right) \\
& E_{y}^{\prime}=\gamma\left(E_{y}+c \beta B_{x}\right) \tag{K.31}\\
& B_{x}^{\prime}=\gamma\left(B_{x}+\frac{1}{c} \beta E_{y}\right) \\
& B_{y}^{\prime}=\gamma\left(B_{y}-\frac{1}{c} \beta E_{x}\right) \\
& E_{z}^{\prime}=E_{z} \\
& B_{z}^{\prime}=B_{z}
\end{aligned} \quad \begin{aligned}
& H_{x}^{\prime}=\gamma\left(H_{x}+c \beta D_{y}\right) \\
& H_{y}^{\prime}=\gamma\left(H_{y}-c \beta D_{x}\right) \\
& D_{x}^{\prime}=\gamma\left(D_{x}-\frac{1}{c} \beta H_{y}\right) \\
& D_{y}^{\prime}=\gamma\left(D_{y}+\frac{1}{c} \beta H_{x}\right) \\
& H_{z}^{\prime}=H_{z} \\
& D_{z}^{\prime}=D_{z}
\end{align*}
$$

Associated with a six-vector $(\boldsymbol{a}, \boldsymbol{b})$, there are two scalar invariants: the quantities $(\boldsymbol{a} \cdot \boldsymbol{b})$ and $(\boldsymbol{a} \cdot \boldsymbol{a}-\boldsymbol{b} \cdot \boldsymbol{b})$. Their invariance follows from Eq. (K.28). Thus, the scalars $(\boldsymbol{E} \cdot \boldsymbol{B}),\left(\boldsymbol{E} \cdot \boldsymbol{E}-\boldsymbol{c}^{2} \boldsymbol{B} \cdot \boldsymbol{B}\right),(\boldsymbol{D} \cdot \boldsymbol{H}),\left(c^{2} \boldsymbol{D} \cdot \boldsymbol{D}-\boldsymbol{H} \cdot \boldsymbol{H}\right)$ remain invariant under Lorentz transformations. In addition, it follows from (K.30) that the quantity $(\boldsymbol{E} \cdot \boldsymbol{D}-\boldsymbol{B} \cdot \boldsymbol{H})$ is invariant.

Given a six-vector $(\boldsymbol{a}, \boldsymbol{b})$ and its dual $(\boldsymbol{b},-\boldsymbol{a})$, we may define the following fourdimensional "current" vectors that are dual to each other:

$$
J=\left[\begin{array}{c}
\boldsymbol{\nabla} \cdot \boldsymbol{a} \tag{K.32}\\
\nabla \times \boldsymbol{b}-\partial_{\tau} \boldsymbol{a}
\end{array}\right], \quad \tilde{J}=\left[\begin{array}{c}
\nabla \cdot \boldsymbol{b} \\
-\nabla \times \boldsymbol{a}-\partial_{\tau} \boldsymbol{b}
\end{array}\right]
$$

It can be shown that both J and \tilde{J} transform as four-vectors under Lorentz transformations, that is, $J^{\prime}=L J$ and $\tilde{J}^{\prime}=L \tilde{J}$, where $J^{\prime}, \tilde{J}^{\prime}$ are defined with respect to the
coordinates of the S^{\prime} frame

$$
J^{\prime}=\left[\begin{array}{c}
\nabla^{\prime} \cdot \boldsymbol{a}^{\prime} \tag{K.33}\\
\nabla^{\prime} \times \boldsymbol{b}^{\prime}-\partial_{\tau^{\prime}} \boldsymbol{a}^{\prime}
\end{array}\right], \quad \tilde{J}^{\prime}=\left[\begin{array}{c}
\nabla^{\prime} \cdot \boldsymbol{b}^{\prime} \\
-\nabla^{\prime} \times \boldsymbol{a}^{\prime}-\partial_{\tau^{\prime}} \boldsymbol{b}^{\prime}
\end{array}\right]
$$

The calculation is straightforward but tedious. For example, for the z-directed boost (K.1), we may use Eqs. (K.20) and (K.27) and the identity $\gamma^{2}\left(1-\beta^{2}\right)=1$ to show:

$$
\begin{aligned}
J_{x}^{\prime} & =\left(\nabla^{\prime} \times \boldsymbol{b}^{\prime}-\partial_{\tau^{\prime}} \boldsymbol{a}^{\prime}\right)_{x}=\partial_{y^{\prime}} b_{z}^{\prime}-\partial_{z^{\prime}} b_{y}^{\prime}-\partial_{\tau^{\prime}} a_{x}^{\prime} \\
& =\partial_{y} b_{z}-\gamma^{2}\left(\partial_{z}+\beta \partial_{\tau}\right)\left(b_{y}-\beta a_{x}\right)-\gamma^{2}\left(\partial_{\tau}+\beta \partial_{z}\right)\left(a_{x}-\beta b_{y}\right) \\
& =\partial_{y} b_{z}-\partial_{z} b_{y}-\partial_{\tau} a_{x}=\left(\nabla \times \boldsymbol{b}-\partial_{\tau} \boldsymbol{a}\right)_{x}=J_{x}
\end{aligned}
$$

Similarly, we have:

$$
\begin{aligned}
J_{0}^{\prime} & =\nabla^{\prime} \cdot \boldsymbol{a}^{\prime}=\partial_{x^{\prime}} a_{x}^{\prime}+\partial_{y^{\prime}} a_{y}^{\prime}+\partial_{z^{\prime}} a_{z}^{\prime} \\
& =\gamma \partial_{x}\left(a_{x}-\beta b_{y}\right)+\gamma \partial_{y}\left(a_{y}+\beta b_{x}\right)+\gamma\left(\partial_{z}+\beta \partial_{\tau}\right) a_{z} \\
& =\gamma\left[\left(\partial_{x} a_{x}+\partial_{y} a_{y}+\partial_{z} a_{z}\right)-\beta\left(\partial_{x} b_{y}-\partial_{y} b_{x}-\partial_{\tau} a_{z}\right)\right]=\gamma\left(J_{0}-\beta J_{z}\right)
\end{aligned}
$$

In this fashion, one can show that J and \tilde{J} satisfy the Lorentz transformation equations (K.10) for a four-vector. To see the significance of this result, we rewrite Maxwell's equations, with magnetic charge and current densities $\rho_{m}, \boldsymbol{J}_{m}$ included, in the fourdimensional forms:

$$
\left[\begin{array}{c}
\nabla \cdot c \boldsymbol{D} \tag{K.34}\\
\nabla \times \boldsymbol{H}-\partial_{\tau} c \boldsymbol{D}
\end{array}\right]=\left[\begin{array}{c}
c \rho \\
\boldsymbol{J}
\end{array}\right], \quad\left[\begin{array}{c}
\nabla \cdot c \boldsymbol{B} \\
-\nabla \times \boldsymbol{E}-\partial_{\tau} c \boldsymbol{B}
\end{array}\right]=\left[\begin{array}{c}
c \rho_{m} \\
\boldsymbol{J}_{m}
\end{array}\right]
$$

Thus, applying the above result to the six-vector ($c \boldsymbol{D}, \boldsymbol{H}$) and to the dual of ($\boldsymbol{E}, \boldsymbol{c} \boldsymbol{B}$) and assuming that the electric and magnetic current densities transform like fourvectors, it follows that Maxwell's equations remain invariant under Lorentz transformations, that is, they retain their form in the moving system:

$$
\left[\begin{array}{c}
\nabla^{\prime} \cdot c \boldsymbol{D}^{\prime} \tag{K.35}\\
\nabla^{\prime} \times \boldsymbol{H}^{\prime}-\partial_{\boldsymbol{\tau}^{\prime}} c \boldsymbol{D}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
c \rho^{\prime} \\
\boldsymbol{J}^{\prime}
\end{array}\right], \quad\left[\begin{array}{c}
\boldsymbol{\nabla}^{\prime} \cdot c \boldsymbol{B}^{\prime} \\
-\boldsymbol{\nabla}^{\prime} \times \boldsymbol{E}^{\prime}-\partial_{\tau^{\prime}} c \boldsymbol{B}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
c \rho_{m}^{\prime} \\
\boldsymbol{J}_{m}^{\prime}
\end{array}\right]
$$

The Lorentz transformation properties of the electromagnetic fields allow one to solve problems involving moving media, such as the Doppler effect, reflection and transmission from moving boundaries, and so on. The main technique for solving such problems is to transform to the frame (here, S^{\prime}) in which the boundary is at rest, solve the reflection problem in that frame, and transform the results back to the laboratory frame by using the inverse of Eq. (K.30).

This procedure was discussed by Einstein in his 1905 paper on special relativity in connection to the Doppler effect from a moving mirror. To quote [474]: "All problems in the optics of moving bodies can be solved by the method here employed. What is essential is that the electric and magnetic force of the light which is influenced by a moving body, be transformed into a system of co-ordinates at rest relatively to the body. By this means all problems in the optics of moving bodies will be reduced to a series of problems in the optics of stationary bodies."

L. MATLAB Functions

The MATLAB functions are grouped by category. They are available from the web page: www.ece.rutgers.edu/~orfanidi/ewa.

Multilayer Dielectric Structures

brewster	- calculates Brewster and critical angles
fresne1	- Fresnel reflection coefficients for isotropic or birefringent media
n 2 r	- refractive indices to reflection coefficients of M-layer structure
r2n	- reflection coefficients to refractive indices of M-7ayer structure

multidie1 - reflection response of isotropic or birefringent multilayer structures multidiel1 - simplified version of multidiel for isotropic layers
multidiel2 - reflection response of lossy isotropic multilayer dielectric structures omniband - bandwidth of omnidirectional mirrors and Brewster polarizers omniband2 - bandwidth of birefringent multilayer mirrors
sne 1

- calculates refraction angles from Snel’s law for birefringent media

Quarter-Wavelength Transformers

bkwrec - order-decreasing backward layer recursion - from a, b to r
frwrec - order-increasing forward layer recursion - from r to A,B
chebtr - Chebyshev broadband reflectionless quarter-wave transformer chebtr2 - Chebyshev broadband reflection1ess quarter-wave transformer
chebtr3 - Chebyshev broadband reflectionless quarter-wave transformer

Dielectric Waveguides

dguide - TE modes in dielectric slab waveguide
dslab - solves for the TE-mode cutoff wavenumbers in a dielectric slab
dguide3 - TE and TM modes in asymmetric 3-slab dielectric waveguide

Plasmonic Waveguides

drude	- Drude-Lorentz model for Silver, Gold, Copper, Aluminum
dmda	- asymmetric DMD plasmonic waveguide - iterative solution
dmds	- symmetric DMD plasmonic waveguide - iterative solution
dmdcut	- cutoff width for asymmetric DMD guides
pwg	- plasmonic waveguide solution for symmetric guides
pwga	- plasmonic waveguide solution for asymmetric guides
pwgpower - transmitted power in plasmonic waveguide	

Sommerfeld and Goubau Wires

sommer	- solve characteristic equation for Sommerfeld wire
goubau	- solve characteristic equation of Goubau line
goubatt	- Goubau line attenuation
gcut	- cutoff function for Goubau line
attw	- characteristic equation of Attwood surface waveguide
attwatt	- attenuation of Attwood surface waveguide
$J 01$	$-J 0(z) / J 1(z)$ approximation for large imag(z)

Transmission Lines

g2z

- reflection coefficient to impedance transformation	
lmin	- impedance to reflection coefficient transformation

mstripa	- mind locations of voltage minima and maxima
mstripr	- microstrip analysis (calculates Z , eff from w/h)
mstrips	- microstrip synthesis with refinement (calculates w/h from Z)
multiline - reflection response of multi-segment transmission line	

swr	- standing wave ratio
tsection	- T-section equivalent of a length-1 transmission line segment
gprop	- reflection coefficient propagation
vprop	- wave impedance propagation
zprop	- wave impedance propagation

Impedance Matching

qwt1 - quarter wavelength transformer with series segment
qwt2 - quarter wavelength transformer with $1 / 8$-wavelength shunt stub
qwt3 - quarter wavelength transformer with shunt stub of adjustable length
dualband - two-section dual-band Chebyshev impedance transformer dualbw - two-section dual-band transformer bandwidths
stub1 - single-stub matching
stub2 - double-stub matching
stub3 - triple-stub matching
onesect - one-section impedance transformer
twosect - two-section impedance transformer

pi2t	- Pi to T transformation
t2pi	- Pi to T transformation
lmatch	- L-section reactive conjugate matching network
pmatch	- Pi-section reactive conjugate matching network

S-Parameters

gin - input reflection coefficient in terms of S-parameters
gout - output reflection coefficient in terms of S-parameters
nfcirc - constant noise figure circle
nfig - noise figure of two-port
sgain - transducer, available, and operating power gains of two-port
sgcirc - stability and gain circles
smat - S-parameters to S-matrix
smatch - simultaneous conjugate match of a two-port
smith - draw basic Smith chart
smithcir - add stability and constant gain circles on Smith chart
sparam - stability parameters of two-port
circint - circle intersection on Gamma-plane
circtan - point of tangency between the two circles

Linear Antenna Functions

dipdir - dipole directivity
dmax - computes directivity and beam solid angle of $g(t h)$ gain
dipole - gain of center-fed linear dipole of length L
traveling - gain of traveling-wave antenna of length L
vee - gain of traveling-wave vee antenna
rhombic - gain of traveling-wave rhombic antenna
king - King's 3-term sinusoidal approximation
kingeval - evaluate King's 3-term sinusoidal current approximation kingfit - fits a sampled current to King's 2-term sinusoidal approximation
kingprime - converts King's 3-term coefficients from unprimed to primed form
hbasis - basis functions for Hallen equation
hdelta - solve Hallen's equation with delta-gap input
hfield - solve Hallen's equation with arbitrary incident E-field
hmat - Hallen impedance matrix with method of moments and point-matching
hwrap - wraps a Toeplitz impedance matrix to half its size
kerne1 - thin-wire kernel computation for Hallen equation
pfield - solve Pocklington's equation with arbitrary incident E-field
pmat - Pocklington impedance matrix with method of moments and point-matching
hcoupled - solve Hallen's equation for 2D array of non-identical paralle1 dipoles hcoupled2 - solve Hallen's equation for 2D array of identical paralle1 dipoles
gain2d - normalized gain of 2D array of parallel dipoles with Hallen currents
gain2s - normalized gain of 2D array of parallel dipoles with sinusoidal currents
imped - mutual impedance between two parallel standing-wave dipoles
imped2 - mutual impedance between two paralle1 standing-wave dipoles
impedmat - mutual impedance matrix of array of parallel dipole antennas
resonant - calculates the length of a resonant dipole antenna
yagi - simplified Yagi-Uda array design

Aperture Antenna Functions

BBnum - computation of fields in Bethe-Bouwkamp model
BBfar - far fields in Bethe-Bouwkamp model
BBnear - near fields in Bethe-Bouwkamp mode1
diffint - generalized Fresnel diffraction integral
diffr - knife-edge diffraction coefficient
dsinc - the double-sinc function $\cos \left(\mathrm{pi}^{*} \mathrm{x}\right) /(1-4 * x \wedge 2)$
fcs - Fresnel integrals $C(x)$ and $S(x)$
fcs2 - type-2 Fresne1 integrals C2 (x) and S2 (x)
jinc - jinc and "shifted" jinc function
talbot - Gauss sums for fractional Talbot effect
tbw - Taylor's one-parameter window
tnb1 - Taylor's n-bar window (1-D)
tnb2 - Taylor's n-bar window (2-D)
hband - horn antenna 3-dB width
heff - aperture efficiency of horn antenna
hgain - horn antenna H-plane and E-plane gains
hopt - optimum horn antenna design
hsigma - optimum sigma parametes for horn antenna

Antenna Array Functions

gain1d - normalized gain computation for 1D equally-spaced isotropic array
bwidth - beamwidth mapping from psi-space to phi-space
binomial - binomial array weights
dolph - Dolph-Chebyshev array weights
dolph2 - Riblet-Pritchard version of Dolph-Chebyshev
dolph3 - DuHamel version of endfire Dolph-Chebyshev
multibeam - multibeam array design
prol

- prolate array design
prolmat - prolate matrix
scan - scan array with given scanning phase
sector - sector beam array design
steer - steer array towards given angle
taylornb - Taylor n-bar line source array design
taylor1p - Taylor 1-parameter array design
taylorbw - Taylor B-parameter and beamwidth
uniform - uniform array weights
woodward - Woodward-Lawson-Butler beams
ville - Villeneuve array design
chebarray - Bresler's Chebyshev array design method (written by P. Simon)

Gain Plotting Functions

abp - polar gain plot in absolute units
abz - azimuthal gain plot in absolute units
ab2p - polar gain plot in absolute units - $2 *$ pi angle range
abz2 - azimuthal gain plot in absolute units - 2pi angle range
dbp - polar gain plot in dB
dbz - azimuthal gain plot in dB
dbp2 - polar gain plot in $\mathrm{dB}-2 *$ pi angle range
dbz2 - azimuthal gain plot in dB - 2pi angle range
abadd - add gain in absolute units
abadd2 - add gain in absolute units - 2pi angle range
dbadd - add gain in dB
dbadd2 - add gain in dB - 2pi angle range
addbwp - add $3-\mathrm{dB}$ angle beamwidth in polar plots
addbwz - add 3-dB angle beamwidth in azimuthal plots
addcirc - add grid circle in polar or azimuthal plots
addline - add grid ray line in azimuthal or polar plots
addray - add ray in azimuthal or polar plots

Miscellaneous Utility Functions

$\mathrm{ab} \quad-\mathrm{dB}$ to absolute power units
$\mathrm{db} \quad$ - absolute power to $d B$ units
c2p - complex number to phasor form
p2c - phasor form to complex number
d2r - degrees to radians
r2d - radians to degrees
dtft - DTFT of a signal x at a frequency vector w
10 - modified Bessel function of 1st kind and 0th order
etac - polarization ellipse parameters

- calculate wavenumber and characteristic impedance
poly2 - specialized version of poly with increased accuracy
quadr - Gauss-Legendre quadrature weights and evaluation points
quadrs - quadrature weights and evaluation points on subintervals
quadr2 - Gauss-Legendre quadrature weights and evaluation points
quadrs2 - quadrature weights and evaluation points on subintervals
quadts - tanh-sinh, double-exponential, quadrature
$\mathrm{Ci} \quad$ - cosine integral $\mathrm{Ci}(z)$
Cin - cosine integral Cin(z)
Si - sine integral Si(z)
Gi - Green's function integral
pswf - prolate spheroidal wave functions
spherj - spherical Bessel functions
legpol - evaluate Legendre polynomials
sinhc - hyperbolic sinc function
asinhc - inverse hyperbolic sinc function
sqrte - evanescent SQRT for waves problems
flip - flip a column, a row, or both
blockmat - manipulate block matrices
upulse - generates trapezoidal, rectangular, triangular pulses, or a unit-step ustep - unit-step or rising unit-step function
dnv - dn elliptic function at a vector of moduli
snv - sn elliptic function at a vector of modul
ellipK - complete elliptic integral of first kind at a vector of moduli
ellipE - complete elliptic integral of second kind at a vector of moduli
landenv - Landen transformations of a vector of elliptic moduli

MATLAB Movies

grvmovie1 - pulse propagation with slow and negative group velocity ($v_{g}<0$)
grvmovie2 - pulse propagation with slow and fast group velocity ($v_{g}>c$) pulsemovie - step and pulse propagation on terminated transmission lines pulse2movie - step propagation on two cascaded lines
RLCmovie - step getting reflected off a reactive termination
TDRmovie - fault location by time-domain reflectometry
xtalkmovie - crosstalk signals on coupled transmission lines
dipmovie - electric field pattern of radiating Hertzian dipole

[^0]: ${ }^{\dagger}$ International Telecommunication Union.

[^1]: ${ }^{\dagger}$ Commission Internationale de l'Eclairage (International Commission on Illumination.)
 ${ }^{\ddagger} 1 \mathrm{THz}=10^{12} \mathrm{~Hz}, 1 \mathrm{PHz}=10^{15} \mathrm{~Hz}$ (petahertz), $1 \mathrm{EHz}=10^{18} \mathrm{~Hz}$ (exahertz).

[^2]: ${ }^{\dagger}$ J. Stoer and R. Burlisch, Introduction to Numerical Analysis, Springer, NY, (1980); and, G. H. Golub and J. H. Welsch, "Calculation of Gauss Quadrature Rules," Math. Comput., 23, 221 (1969).

[^3]: H. Takahasi and M. Mori, "Double exponential formulas for numerical integration," Publications Res. Inst. Math. Sci., Kyoto Univ., 9, 721 (1974). See also, D. H. Bailey, K. Jeyabalan, and X. S. Li, "A Comparison of Three High-Precision Quadrature Schemes," Experimental Math., 14, 317 (2005), and, A. G. Polimeridis and J. R. Mosig, "Evaluation of Weakly Singular Integrals Via Generalized Cartesian Product Rules Based on the Double Exponential Formula," IEEE Trans. Antennas Propagat., 58, 1980 (2010).

[^4]: ${ }^{\dagger} \chi \omega_{0}(\omega)$ may be defined to have the value $\frac{1}{2}$ at $\omega= \pm \omega_{0}$ corresponding to the unit-step value $u(0)=\frac{1}{2}$.

[^5]: ${ }^{\dagger}$ A more precise meaning may be given to (J.34) by the regularized versions discussed below.

