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25.2 Using the higher-order terms in the series (25.3.23), show that the input impedance Zin =
R+ jX of a small dipole is given as follows to order (kl)4, where L = ln(2a/l):

R = η
2π

[
1

12
(kl)2+ 1

360
(kl)4

]
, X = η

2π

[
4(1+ L)
kl

− 1

3

(
L+ 2

3

)
(kl)− 1

180

(
L− 11

30

)
(kh)3

]

25.3 Consider a small dipole with a linear current given by Eq. (25.3.25). Determine the radiation
vector, and the radiated electric and magnetic fields at a far distance r from the dipole. Cal-
culate the radiated power Prad by integrating the radial Poynting vector over a large sphere.
Then identify the radiation resistance R through the definition:

Prad = 1

2
R|I0|2

and show R is the same as that given by Eq. (25.3.24)

26
Appendices

A. Physical Constants

We use SI units throughout this text. Simple ways to convert between SI and other
popular units, such as Gaussian, may be found in Refs. [123–126].

The Committee on Data for Science and Technology (CODATA) of NIST maintains
the values of many physical constants [112]. The most current values can be obtained
from the CODATA web site [1823]. Some commonly used constants are listed below:

quantity symbol value units

speed of light in vacuum c0, c 299 792 458 m s−1

permittivity of vacuum ε0 8.854 187 817× 10−12 F m−1

permeability of vacuum μ0 4π× 10−7 H m−1

characteristic impedance η0, Z0 376.730 313 461 Ω

electron charge e 1.602 176 462× 10−19 C
electron mass me 9.109 381 887× 10−31 kg

Boltzmann constant k 1.380 650 324× 10−23 J K−1

Avogadro constant NA,L 6.022 141 994× 1023 mol−1

Planck constant h 6.626 068 76× 10−34 J/Hz

Gravitational constant G 6.672 59× 10−11 m3 kg−1s−2

Earth mass M⊕ 5.972× 1024 kg
Earth equatorial radius ae 6378 km

In the table, the constants c, μ0 are taken to be exact, whereas ε0, η0 are derived
from the relationships:

ε0 = 1

μ0c2
, η0 =

√
μ0

ε0
= μ0c

The energy unit of electron volt (eV) is defined to be the work done by an electron
in moving across a voltage of one volt, that is, 1 eV = 1.602 176 462× 10−19 C · 1 V, or

1 eV = 1.602 176 462× 10−19 J
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In units of eV/Hz, Planck’s constant h is:

h = 4.135 667 27× 10−15 eV/Hz = 1 eV/241.8 THz

that is, 1 eV corresponds to a frequency of 241.8 THz, or a wavelength of 1.24 μm.

B. Electromagnetic Frequency Bands

The ITU† divides the radio frequency (RF) spectrum into the following frequency and
wavelength bands in the range from 30 Hz to 3000 GHz:

RF Spectrum

band designations frequency wavelength

ELF Extremely Low Frequency 30–300 Hz 1–10 Mm
VF Voice Frequency 300–3000 Hz 100–1000 km
VLF Very Low Frequency 3–30 kHz 10–100 km
LF Low Frequency 30–300 kHz 1–10 km
MF Medium Frequency 300–3000 kHz 100–1000 m
HF High Frequency 3–30 MHz 10–100 m
VHF Very High Frequency 30–300 MHz 1–10 m
UHF Ultra High Frequency 300–3000 MHz 10–100 cm
SHF Super High Frequency 3–30 GHz 1–10 cm
EHF Extremely High Frequency 30–300 GHz 1–10 mm

Submillimeter 300-3000 GHz 100–1000 μm

An alternative subdivision of the low-frequency
bands is to designate the bands 3–30 Hz, 30–300 Hz,
and 300–3000 Hz as extremely low frequency (ELF),
super low frequency (SLF), and ultra low frequency
(ULF), respectively.

Microwaves span the 300 MHz–300 GHz fre-
quency range. Typical microwave and satellite com-
munication systems and radar use the 1–30 GHz
band. The 30–300 GHz EHF band is also referred to
as the millimeter band.

The 1–100 GHz range is subdivided further into
the subbands shown on the right.

Microwave Bands

band frequency

L 1–2 GHz
S 2–4 GHz
C 4–8 GHz
X 8–12 GHz
Ku 12–18 GHz
K 18–27 GHz
Ka 27–40 GHz
V 40–75 GHz
W 80–100 GHz

Some typical RF applications are as follows. AM radio is broadcast at 535–1700
kHz falling within the MF band. The HF band is used in short-wave radio, navigation,
amateur, and CB bands. FM radio at 88–108 MHz, ordinary TV, police, walkie-talkies,
and remote control occupy the VHF band.

Cell phones, personal communication systems (PCS), pagers, cordless phones, global
positioning systems (GPS), RF identification systems (RFID), UHF-TV channels, microwave
ovens, and long-range surveillance radar fall within the UHF band.

†International Telecommunication Union.
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The SHF microwave band is used in radar (traffic control, surveillance, tracking, mis-
sile guidance, mapping, weather), satellite communications, direct-broadcast satellite
(DBS), and microwave relay systems. Multipoint multichannel (MMDS) and local multi-
point (LMDS) distribution services, fall within UHF and SHF at 2.5 GHz and 30 GHz.

Industrial, scientific, and medical (ISM) bands are within the UHF and low SHF, at 900
MHz, 2.4 GHz, and 5.8 GHz. Radio astronomy occupies several bands, from UHF to L–W
microwave bands.

Beyond RF, come the infrared (IR), visible, ultraviolet (UV), X-ray, and γ-ray bands.
The IR range extends over 3–300 THz, or 1–100 μm. Many IR applications fall in the
1–20 μm band. For example, optical fiber communications typically use laser light at
1.55 μm or 193 THz because of the low fiber losses at that frequency. The UV range lies
beyond the visible band, extending typically over 10–400 nm.

band wavelength frequency energy

infrared 100–1 μm 3–300 THz
ultraviolet 400–10 nm 750 THz–30 PHz
X-Ray 10 nm–100 pm 30 PHz–3 EHz 0.124–124 keV
γ-ray < 100 pm > 3 EHz > 124 keV

The CIE† defines the visible spectrum to be the wavelength range 380–780 nm, or
385–789 THz. Colors fall within the following typical wavelength/frequency ranges:

Visible Spectrum

color wavelength frequency

red 780–620 nm 385–484 THz
orange 620–600 nm 484–500 THz
yellow 600–580 nm 500–517 THz
green 580–490 nm 517–612 THz
blue 490–450 nm 612–667 THz
violet 450–380 nm 667–789 THz

X-ray frequencies fall in the PHz (petahertz) range and γ-ray frequencies in the EHz
(exahertz) range.‡ X-rays and γ-rays are best described in terms of their energy, which is
related to frequency through Planck’s relationship, E = hf . X-rays have typical energies
of the order of keV, andγ-rays, of the order of MeV and beyond. By comparison, photons
in the visible spectrum have energies of a couple of eV.

The earth’s atmosphere is mostly opaque to electromagnetic radiation, except for
three significant “windows”, the visible, the infrared, and the radio windows. These
three bands span the wavelength ranges of 380-780 nm, 1-12 μm, and 5 mm–20 m,
respectively.

Within the 1-10 μm infrared band there are some narrow transparent windows. For
the rest of the IR range (1–1000μm), water and carbon dioxide molecules absorb infrared
radiation—this is responsible for the Greenhouse effect. There are also some minor
transparent windows for 17–40 and 330–370 μm.

†Commission Internationale de l’Eclairage (International Commission on Illumination.)
‡1 THz = 1012 Hz, 1 PHz = 1015 Hz (petahertz), 1 EHz = 1018 Hz (exahertz).
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Beyond the visible band, ultraviolet and X-ray radiation are absorbed by ozone and
molecular oxygen (except for the ozone holes.)

C. Vector Identities and Integral Theorems

Algebraic Identities

|A|2|B|2 = |A · B|2 + |A× B|2 (C.1)

(A× B)·C = (B× C)·A = (C× A)·B (C.2)

A× (B× C) = B (A · C)−C (A · B) (BAC-CAB rule) (C.3)

(A× B)·(C×D) = (A · C)(B ·D)−(A ·D)(B · C) (C.4)

(A× B)×(C×D) = [
(A× B)·D]C− [

(A× B)·C]D (C.5)

A = n̂× (A× n̂)+(n̂ · A)n̂ = A⊥ + A‖ (C.6)

where n̂ is any unit vector, and A⊥, A‖ are the components of A perpendicular and
parallel to n̂. Note also that n̂ × (A × n̂)= (n̂ × A)×n̂. A three-dimensional vector can
equally well be represented as a column vector:

a = axx̂+ ayŷ+ azẑ � a =
⎡
⎢⎣ axay
bz

⎤
⎥⎦ (C.7)

Consequently, the dot and cross products may be represented in matrix form:

a · b � aTb = [ax, ay, az]
⎡
⎢⎣ bxby
bz

⎤
⎥⎦ = axbx + ayby + azbz (C.8)

a× b � Ab =
⎡
⎢⎣ 0 −az ay
az 0 −ax

−ay ax 0

⎤
⎥⎦
⎡
⎢⎣ bxby
bz

⎤
⎥⎦ =

⎡
⎢⎣ aybz − azbyazbx − axbz
axby − aybx

⎤
⎥⎦ (C.9)

The cross-product matrix A satisfies the following identity:

A2 = aaT − (aTa)I (C.10)

where I is the 3×3 identity matrix. Applied to a unit vector n̂, this identity reads:

I = n̂n̂T − N̂2 , where n̂ =
⎡
⎢⎣ n̂xn̂y
n̂z

⎤
⎥⎦ , N̂ =

⎡
⎢⎣ 0 −n̂z n̂y
n̂z 0 −n̂x

−n̂y n̂x 0

⎤
⎥⎦ , n̂Tn̂ = 1 (C.11)

This corresponds to the matrix form of the parallel/transverse decomposition (C.6).
Indeed, we have a‖ = n̂(n̂Ta) and a⊥ = (n̂× a)×n̂ = −n̂× (n̂× a)= −N̂(N̂a)= −N̂2a .
Therefore, a = Ia = (n̂n̂T − N̂2)a = a‖ + a⊥ .
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Differential Identities

∇∇∇× (∇∇∇ψ) = 0 (C.12)

∇∇∇ · (∇∇∇× A) = 0 (C.13)

∇∇∇ · (ψA) = A ·∇∇∇ψ+ψ∇∇∇ · A (C.14)

∇∇∇× (ψA) = ψ∇∇∇× A+∇∇∇ψ× A (C.15)

∇∇∇(A · B) = (A ·∇∇∇)B+ (B ·∇∇∇)A+ A× (∇∇∇× B)+B× (∇∇∇× A) (C.16)

∇∇∇ · (A× B) = B · (∇∇∇× A)−A · (∇∇∇× B) (C.17)

∇∇∇× (A× B) = A(∇∇∇ · B)−B(∇∇∇ · A)+(B ·∇∇∇)A− (A ·∇∇∇)B (C.18)

∇∇∇× (∇∇∇× A) =∇∇∇(∇∇∇ · A)−∇2A (C.19)

Ax∇∇∇Bx +Ay∇∇∇By +Az∇∇∇Bz = (A ·∇∇∇)B+ A× (∇∇∇× B) (C.20)

Bx∇∇∇Ax + By∇∇∇Ay + Bz∇∇∇Az = (B ·∇∇∇)A+ B× (∇∇∇× A) (C.21)

(n̂×∇∇∇)×A = n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A) (C.22)

ψ(n̂ ·∇∇∇)E− E (n̂ ·∇∇∇ψ)= [
(n̂ ·∇∇∇)(ψE)+ n̂× (∇∇∇× (ψE)

)− n̂∇∇∇ · (ψE)
]

+ [
n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ] (C.23)

With r = x x̂+ y ŷ+ z ẑ, r = |r| = √
x2 + y2 + z2, and the unit vector r̂ = r/r, we have:

∇∇∇r = r̂ , ∇∇∇r2 = 2r , ∇∇∇1

r
= − r̂

r2
, ∇∇∇ · r = 3 , ∇∇∇× r = 0 , ∇∇∇ · r̂ = 2

r
(C.24)

Integral Theorems for Closed Surfaces

The theorems involve a volume V surrounded by a closed surface S. The divergence or
Gauss’ theorem is:

∫
V
∇∇∇ · AdV =

∮
S

A · n̂ dS (Gauss’ divergence theorem) (C.25)

where n̂ is the outward normal to the surface. Green’s first and second identities are:

∫
V

[
ϕ∇2ψ+∇∇∇ϕ ·∇∇∇ψ]dV = ∮

S
ϕ
∂ψ
∂n
dS (C.26)

∫
V

[
ϕ∇2ψ−ψ∇2ϕ

]
dV =

∮
S

(
ϕ
∂ψ
∂n

−ψ∂ϕ
∂n

)
dS (C.27)
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where
∂
∂n

= n̂ ·∇∇∇ is the directional derivative along n̂. Some related theorems are:

∫
V
∇2ψdV =

∮
S

n̂ ·∇∇∇ψdS =
∮
S

∂ψ
∂n
dS (C.28)

∫
V
∇∇∇ψdV =

∮
S
ψ n̂dS (C.29)

∫
V
∇2AdV =

∮
S
(n̂ ·∇∇∇)AdS =

∮
S

∂A

∂n
dS (C.30)

∮
S
(n̂×∇∇∇)×AdS =

∮
S

[
n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A)

]
dS = 0 (C.31)

∫
V
∇∇∇× AdV =

∮
S

n̂× AdS (C.32)

Using Eqs. (C.23) and (C.31), we find:

∮
S

(
ψ
∂E

∂n
− E

∂ψ
∂n

)
dS =

=
∮
S

[
n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ]dS

(C.33)

The vectorial forms of Green’s identities are [1293,1289]:∫
V
(∇∇∇× A ·∇∇∇× B− A ·∇∇∇×∇∇∇× B)dV =

∮
S

n̂ · (A×∇∇∇× B)dS (C.34)

∫
V
(B ·∇∇∇×∇∇∇× A− A ·∇∇∇×∇∇∇× B)dV =

∮
S

n̂ · (A×∇∇∇× B− B×∇∇∇× A)dS (C.35)

Integral Theorems for Open Surfaces

Stokes’ theorem involves an open surface S and its boundary contour C:

∫
S

n̂ ·∇∇∇× AdS =
∮
C

A · dl (Stokes’ theorem) (C.36)

where dl is the tangential path length around C. Some related theorems are:∫
S

[
ψ n̂ ·∇∇∇× A− (n̂× A)·∇∇∇ψ]dS = ∮

C
ψA · dl (C.37)

∫
S

[
(∇∇∇ψ) n̂ ·∇∇∇× A− (

(n̂× A)·∇∇∇)∇∇∇ψ]dS = ∮
C
(∇∇∇ψ)A · dl (C.38)

∫
S

n̂×∇∇∇ψdS =
∮
C
ψdl (C.39)

1272 26. Appendices

∫
S
(n̂×∇∇∇)×AdS =

∫
S

[
n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A)

]
dS =

∮
C
dl× A (C.40)

∫
S

n̂dS = 1

2

∮
C

r× dl (C.41)

Eq. (C.41) is a special case of (C.40). Using Eqs. (C.23) and (C.40) we find:

∫
S

(
ψ
∂E

∂n
− E

∂ψ
∂n

)
dS+

∮
C
ψE× dl =

=
∫
S

[
n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ]dS

(C.42)

Stokes and Divergence Theorems in 2-D∫
S

(
∂Ay
∂x

− ∂Ay
∂x

)
dS =

∮
C

(
Axdx+Ay dy

)
∫
S

ẑ ·∇∇∇⊥ × AdS =
∮
C

A · dl

(Stokes) (C.43)

where, A = x̂Ax + ŷAy, dl = x̂dx + ŷdy, and ∇∇∇⊥ = x̂∂x + ŷ∂y, and taking S to lie
on the xy plane. Replacing A = ẑ× B, or, setting, Bx = Ay, By = −Ax, and noting that
dl× ẑ = n̂dl, where n̂ is the outward normal to C,

∫
S

(
∂Bx
∂x

+ ∂By
∂y

)
dS =

∮
C

(
Bx dy − By dx

)
∫
s
∇∇∇⊥ · B dS =

∮
C

B · n̂ dl

(divergence) (C.44)

and as consequence of (C.44), we have for a scalar ψ,

∫
S
∇∇∇⊥ψ dS =

∮
C
ψ n̂dl (C.45)

D. Green’s Functions

The Green’s functions for the three-dimensional Laplace and Helmholtz equations, and
for the one-dimensional Helmholtz equation, are listed below (the two-dimensional case
is discussed at the end of this section):

∇∇∇2g(r)= −δ(3)(r) ⇒ g(r)= 1

4πr
(D.1)

(∇∇∇2 + k2)G(r)= −δ(3)(r) ⇒ G(r)= e
−jkr

4πr
(D.2)
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(
∂2
z + k2)G(z)= −δ(z) ⇒ G(z)= e

−jk|z|

2jk
(D.3)

where r = |r| = √
x2 + y2 + z2. Eqs. (D.2) and (D.3) are appropriate for describing

outgoing waves. We considered other versions of (D.3) in Sec. 24.3. A more general
identity satisfied by the Green’s function g(r) of Eq. (D.1) is as follows (for a proof, see
Refs. [143,144]):

∂i∂jg(r)= −1

3
δij δ(3)(r)+3xixj − r2δij

r4
g(r) i, j = 1,2,3 (D.4)

where ∂i = ∂/∂xi and xi stands for any of x, y, z. By summing the i, j indices, Eq. (D.4)
reduces to (D.1). Using this identity, we find for the Green’s function G(r)= e−jkr/4πr :

∂i∂jG(r)= −1

3
δij δ(3)(r)+

[(
jk+ 1

r
)3xixj − r2δij

r3
− k2 xixj

r2

]
G(r) (D.5)

This reduces to Eq. (D.2) upon summing the indices. For any fixed vector p, Eq. (D.5)
is equivalent to the vectorial identity:

∇∇∇×∇∇∇× [
pG(r)

] = 2

3
pδ(3)(r)+

[(
jk+ 1

r
)3r̂(r̂ · p)−p

r2
+ k2 r̂× (p× r̂)

]
G(r) (D.6)

The second term on the right is simply the left-hand side evaluated at points away
from the origin, thus, we may write:

∇∇∇×∇∇∇× [
pG(r)

] = 2

3
pδ(3)(r)+

[
∇∇∇×∇∇∇× [

pG(r)
]]

r �=0
(D.7)

Then, Eq. (D.7) implies the following integrated identity, where∇∇∇ is with respect to r :

∇∇∇×∇∇∇×
∫
V

P(r′)G(r−r′)dV′ = 2

3
P(r)+

∫
V

[
∇∇∇×∇∇∇×[P(r′)G(r−r′)

]]
r′ �=r

dV′ (D.8)

and r is assumed to lie within V. If r is outside V, then the term 2P(r)/3 is absent.
Technically, the integrals in (D.8) are principal-value integrals, that is, the limits as

δ→ 0 of the integrals over V−Vδ(r), whereVδ(r) is an excluded small sphere of radius
δ centered about r. The 2P(r)/3 term has a different form if the excluded volumeVδ(r)
has shape other than a sphere or a cube. See Refs. [1419,499,511,638] and [138–142]
for the definitions and properties of such principal value integrals.

Another useful result is the so-called Weyl representation or plane-wave-spectrum
representation [22,26,1419,27,555] of the outgoing Helmholtz Green’s function G(r):

G(r)= e
−jkr

4πr
=
∫∞
−∞

∫∞
−∞
e−j(kxx+kyy)e−jkz|z|

2jkz
dkx dky
(2π)2

(D.9)

where k2
z = k2 − k2⊥, with k⊥ =

√
k2
x + k2

y. In order to correspond to either outgoing
waves or decaying evanescent waves, kz must be defined more precisely as follows:
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kz =
⎧⎨
⎩

√
k2 − k2⊥ , if k⊥ < k , (propagating modes)

−j
√
k2⊥ − k2 , if k⊥ > k , (evanescent modes)

(D.10)

The propagating modes are important in radiation problems and conventional imag-
ing systems, such as Fourier optics [1422]. The evanescent modes are important in the
new subject of near-field optics, in which objects can be probed and imaged at nanometer
scales improving the resolution of optical microscopy by factors of ten. Some near-field
optics references are [534–554,1339–1342,1350–1353].

To prove (D.9), we consider the 2D spatial Fourier transform of G(r) and its inverse.
Indicating explicitly the dependence on the coordinates x, y, z, we must have:

Ĝ(kx, ky, z) =
∫∞
−∞

∫∞
−∞
G(x, y, z)ej(kxx+kyy)dxdy = e

−jkz|z|

2jkz

G(x, y, z) =
∫∞
−∞

∫∞
−∞
Ĝ(kx, ky, z)e−j(kxx+kyy)

dkx dky
(2π)2

(D.11)

Writing δ(3)(r)= δ(x)δ(y)δ(z) and using the inverse Fourier transform:

δ(x)δ(y)=
∫∞
−∞

∫∞
−∞
e−j(kxx+kyy)

dkx dky
(2π)2

,

we find from Eq. (D.2) that Ĝ(kx, ky, z) must satisfy the one-dimensional Helmholtz
Green’s function equation (D.3), with k2

z = k2 − k2
x − k2

y = k2 − k2⊥, that is,

(
∂2
z + k2

z
)
Ĝ(kx, ky, z)= −δ(z) (D.12)

whose outgoing/evanescent solution is Ĝ(kx, ky, z)= e−jkz|z|/2jkz, from (D.3).
A more direct proof of (D.9) is to use cylindrical coordinates, kx = k⊥ cosψ, ky =

k⊥ sinψ, x = ρ cosφ, y = ρ sinφ, where k2⊥ = k2
x + k2

y and ρ2 = x2 + y2. It follows that
kxx+ kyy = k⊥ρ cos(φ−ψ). Setting dxdy = ρdρdφ = r dr dφ, the latter following
from r2 = ρ2 + z2, we obtain from Eq. (D.11) after replacing ρ = √r2 − z2:

Ĝ(kx, ky, z) =
∫ ∫

e−jkr

4πr
ej(kxx+kyy)dxdy =

∫ ∫
e−jkr

4πr
ejk⊥ρ cos(φ−ψ)r dr dφ

= 1

2

∫∞
|z|
dr e−jkr

∫ 2π

0

dφ
2π
ejk⊥ρ cos(φ−ψ) = 1

2

∫∞
|z|
dr e−jkr J0

(
k⊥

√
r2 − z2

)
where we used the integral representation (18.9.2) of the Bessel function J0(x). Looking
up the last integral in the table of integrals [1791], we find:

Ĝ(kx, ky, z)= 1

2

∫∞
|z|
dr e−jkr J0

(
k⊥

√
r2 − z2

) = e−jkz|z|
2jkz

(D.13)

where kz must be defined exactly as in Eq. (D.10). A direct consequence of (D.11) is the
following result:

∫∞
−∞

∫∞
−∞
e−j(kxx

′+kyy′)G(r− r′)dx′dy′ = e−j(kxx+kyy) e
−jkz|z−z′|

2jkz
(D.14)
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One can also show the integral:

∫∞
0
e−jk

′
zz′ e

−jkz|z−z′|

2jkz
dz′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−jk′zz

k′2z − k2
z
− e−jkzz

2kz(k′z − kz) , for z ≥ 0

− ejkzz

2kz(k′z + kz) , for z < 0

(D.15)

The proof is obtained by splitting the integral over the sub-intervals [0, z] and
[z,∞). To handle the limits at infinity, k′z must be assumed to be slightly lossy, that is,
k′z = βz − jαz, with αz > 0. Eqs. (D.14) and (D.15) can be combined into:

∫
V+
e−j k

′·r′G(r− r′)dV′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−j k
′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz) , for z ≥ 0

− e−j k−·r

2kz(k′z + kz) , for z < 0

(D.16)

where V+ is the half-space z ≥ 0, and k, k−, k′ are wave-vectors with the same kx, ky
components, but different kzs:

k = kx x̂+ ky ŷ+ kz ẑ

k− = kx x̂+ ky ŷ− kz ẑ

k′ = kx x̂+ ky ŷ+ k′z ẑ

(D.17)

where we note that k′2 − k2 = (k2
x + k2

y + k′2z )−(k2
x + k2

y + k2
z)= k′2z − k2

z.
The Green’s function results (D.8)–(D.17) are used in the discussion of the Ewald-

Oseen extinction theorem in Sec. 15.6.
A related Weyl-type representation is obtained by differentiating Eq. (D.9) with re-

spect to z. Assuming that z ≥ 0 and interchanging differentiation and integration (and
multiplying by −2), we obtain the identity:

−2
∂
∂z

(
e−jkr

4πr

)
=
∫∞
−∞

∫∞
−∞
e−jkxx e−jkyye−jkzz

dkx dky
(2π)2

, z ≥ 0 (D.18)

This just means that the left-hand side is the two-dimensional inverse Fourier trans-
form of e−jkzz with kz given by Eq. (D.10). Replacing r by r− r′, and r by R = |r− r′|,
and noting that ∂z′ = −∂z, we also obtain:

2
∂
∂z′

(
e−jkR

4πR

)
=
∫∞
−∞

∫∞
−∞
e−jkx(x−x

′) e−jky(y−y
′)e−jkz(z−z

′) dkx dky
(2π)2

, z ≥ z′ (D.19)

This result establishes the equivalence between the Rayleigh-Sommerfeld diffraction
formula and the plane-wave spectrum representation as discussed in Sec. 19.2. For the
vector diffraction case, we also need the derivatives of G with respect to the transverse
coordinates x, y. Differentiating (D.9) with respect to x (or with respect to y), we have:

−2
∂
∂x

(
e−jkr

4πr

)
=
∫∞
−∞

∫∞
−∞
kx
kz
e−jkxx e−jkyye−jkzz

dkx dky
(2π)2

, z ≥ 0 (D.20)
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Setting z = 0 in (D.18), we also obtain the special result,

−2
∂
∂z

(
e−jkr

4πr

)∣∣∣∣∣
z=0

=
∫∞
−∞

∫∞
−∞
e−jkxx e−jkyy

dkx dky
(2π)2

= δ(x)δ(y) (D.21)

This can also be derived by integrating Eq. (D.2) with respect to z over the interval
−ε ≤ z ≤ ε and taking the limit as ε → 0, invoking the continuity of G(r) (but not
∂G/∂z) with respect to z,

(
∂2
x + ∂2

y + k2) ∫ ε
−ε
G(r)dz+ ∂G

∂z

∣∣∣∣z=ε
z=−ε

= −δ(x)δ(y)
∫ ε
−ε
δ(z)dz , or,

2
∂G
∂z

∣∣∣∣
z=0

= −δ(x)δ(y)

Two-Dimensional Green’s functions

The Green’s function for the two-dimensional Helmholtz equation will be needed in
our discussion of line sources and one-dimensional apertures, such as narrow slits or
strips. In order to develop the corresponding 2-D version of the plane-wave spectrum
Weyl representation, we will assume that the one-dimensional line source is along the x
direction, the propagation is perpendicularly to x towards the z direction, and that there
is no dependence on the y coordinate. Because of our assumed ejωt time dependence,
the outgoing Green’s function of the 2-D Helmholtz equation will be:†

(
∂2
x + ∂2

z + k2)G(x, z)= −δ(x)δ(z) ⇒ G(x, z)= − j
4
H(2)0 (kr) (D.22)

where r = √x2 + z2 and H(2)0 (kr) is the order-0 Hankel function of second kind. For
definitions and properties of Bessel and Hankel functions, see [1790] or [1822]. Several
properties of Hankel functions were also discussed in Sec. 10.15 and 10.19.

The outgoing Green’s function of the Helmholtz equation must satisfy the Sommer-
feld radiation condition for outgoing waves, which reads in d-dimensions,

lim
r→∞

[
r(d−1)/2

(
∂G
∂r

+ jkG
)]

= 0 (Sommerfeld radiation condition) (D.23)

This condition is easily verified for Eq. (D.2) in the 3D-case (d = 3). In the 2D-case
(d = 2), it follows from the asymptotic behavior of the Hankel function H(2)0 (kr),

H(2)0 (kr)�
√

2

πkr
e−j(kr−

π
4 ) , for large r (D.24)

To show (D.22), we consider the 1-D Fourier transform ofG(x, z) with respect to the
variable x,

Ĝ(kx, z)=
∫∞
−∞
G(x, z)ejkxx dx � G(x, z)=

∫∞
−∞
Ĝ(kx, z)e−jkxx

dkx
2π

(D.25)

†for e−jωt time dependence, we must choose, G(x, z)= j
4 H

(1)
0 (kr).
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Transforming the 2-D Helmholtz equation (D.22), we obtain the following 1-D Helmholtz
equation that has the same propagating/evanescent Green’s function as (D.12),

(−k2
x + ∂2

z + k2)Ĝ(kx, z)= (
∂2
z + k2

z
)
Ĝ(kx, z)= −δ(z) ⇒ Ĝ(kx, z)= e

−jkz|z|

2jkz
(D.26)

where k2
z = k2 − k2

x, with kz given by the evanescent square-root,

kz =
⎧⎨
⎩

√
k2 − k2

x , if |kx| < k
−j

√
k2
x − k2 , if |kx| > k

(D.27)

Thus, to find G(x, z) we need to find the inverse Fourier transform of (D.26). But we
note that the Hankel function H(2)0

(
k
√
x2 + z2

)
, considered as a function of x, has the

following forward and inverse 1-D Fourier transform,∫∞
−∞
H(2)0

(
k
√
x2 + z2

)
ejkxx dx = 2e−jkz|z|

kz

H(2)0

(
k
√
x2 + z2

) = ∫∞
−∞

2e−jkxxe−jkz|z|

kz
dkx
2π

(D.28)

where kz is defined exactly as in (D.27). The transform pair (D.28) can be looked up in
Bateman [1640]—see pair #42 and its erratum in Sect.1.13, p.56, of Ref. [1640], or from
the combination of pairs #35 and #41, together with the following definitions of the
half-integer-order Hankel and modified Bessel functions,

H(2)−1/2(u)=
√

2

πu
e−ju , K−1/2(u)=

√
π
2u
e−u (D.29)

Multiplying both sides of (D.28) by −j/4, we then obtain G(x, z) and its plane-wave
spectrum or Weyl representation,

G(x, z)= − j
4
H(2)0 (kr)=

∫∞
−∞
e−jkxx e−jkz|z|

2jkz
dkx
2π

(2D Weyl representation) (D.30)

with r = √
x2 + z2. This is analogous to (D.9), but without the dky integration. The

2-D versions of the differentiated Weyl representations (D.18) and (D.20) are as follows
and will be used to develop the 2-D versions of the Rayleigh-Sommerfeld diffraction
formulas,

−2
∂G(x, z)
∂z

=
∫∞
−∞
e−jkxx e−jkzz

dkx
2π

−2
∂G(x, z)
∂x

=
∫∞
−∞
kx
kz
e−jkxx e−jkzz

dkx
2π

for z ≥ 0 (D.31)

A quicker way of deriving (D.30) is to start with the 3-D Green’s function (D.2),
denoted here by G3(x, y, z)= e−jkR/(4πR), R = √

x2 + y2 + z2 = √
r2 + y2, where

r = √x2 + z2, and define the 2-D Green’s function by integrating out the y-variable,

G(x, z)=
∫∞
−∞
G3(x, y, z)dy =

∫∞
−∞
e−jkR

4πR
dy (D.32)
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Integrating over y both sides of the 3-D Helmholtz equation for G3(x, y, z), we have,

(
∂2
x + ∂2

y + ∂2
z + k2)G3(x, y, z)= −δ(x)δ(y)δ(z)

(
∂2
x + ∂2

z + k2) ∫∞
−∞
G3(x, y, z)dy +

[
∂yG3(x, y, z)

]y=∞
y=−∞

= −δ(x)δ(z)
∫∞
−∞
δ(y)dy

and since, ∂yG3(x, y, z)
∣∣
y=±∞ = 0,† we obtain,

(
∂2
x + ∂2

z + k2)G(x, z)= −δ(x)δ(z) (D.33)

The plane-wave spectrum representation of G(x, z) can be derived by inserting the
Weyl representation for G3(x, y, z) into the definition (D.32),

G(x, z) =
∫∞
−∞
G3(x, y, z)dy =

∫∞
−∞

∫∞
−∞

∫∞
−∞
e−jkxxe−jkyye−jkz|z|

2jkz
dkx dky
(2π)2

dy

=
∫∞
−∞

∫∞
−∞
e−jkxxe−jkz|z|

2jkz
(2π)δ(ky)

dkx dky
(2π)2

=
∫∞
−∞
e−jkxx e−jkz|z|

2jkz
dkx
2π

(D.34)

where we used the delta-function representation,∫∞
−∞
e−jkyydy = (2π)δ(ky)

and the ky integration in (D.34) sets ky = 0 into the definition (D.10) of kz so that the
resulting kz is given by (D.27). By combining the standard integral representations of the
zero-order Bessel functions [1822], we obtain the representation of the Hankel function,
H(2)0 = J0 − jY0, for r > 0,

J0(kr) = 1

π

∫∞
−∞

sin
(
kr cosh(u)

)
du

Y0(kr) = − 1

π

∫∞
−∞

cos
(
kr cosh(u)

)
du

− j
4
H(2)0 (kr) = 1

4π

∫∞
−∞
e−jkr cosh(u) du

(D.35)

Changing variables from u to y = r sinh(u), we may verify Eq. (D.32),

− j
4
H(2)0 (kr)= 1

4π

∫∞
−∞
e−jkr cosh(u) du =

∫∞
−∞

e−jk
√
r2+y2

4π
√
r2 + y2

dy

E. Coordinate Systems

The definitions of cylindrical and spherical coordinates were given in Sec. 15.8. The
expressions of the gradient, divergence, curl, Laplacian operators, and delta functions
are given below in cartesian, cylindrical, and spherical coordinates.

†note that, ∂yG3(x, y, z)= − yR
e−jkR
4πR

(
jk+ 1

R

)
, R =

√
x2 + y2 + z2.
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Cartesian Coordinates

∇∇∇ψ = x̂
∂ψ
∂x

+ ŷ
∂ψ
∂y

+ ẑ
∂ψ
∂z

∇2ψ = ∂
2ψ
∂x2

+ ∂
2ψ
∂y2

+ ∂
2ψ
∂z2

∇∇∇ · A = ∂Ax
∂x

+ ∂Ay
∂y

+ ∂Az
∂z

∇∇∇× A = x̂

(
∂Az
∂y

− ∂Ay
∂z

)
+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)
+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)

=

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣
δ(3)(r− r′)= δ(x− x′)δ(y − y′)δ(z− z′)

(E.1)

Cylindrical Coordinates

∇∇∇ψ = ρ̂ρρ ∂ψ
∂ρ

+ φ̂φφ 1

ρ
∂ψ
∂φ

+ ẑ
∂ψ
∂z

(E.2a)

∇2ψ = 1

ρ
∂
∂ρ

(
ρ
∂ψ
∂ρ

)
+ 1

ρ2

∂2ψ
∂φ2

+ ∂
2ψ
∂z2

(E.2b)

∇∇∇ · A = 1

ρ
∂(ρAρ)
∂ρ

+ 1

ρ
∂Aφ
∂φ

+ ∂Az
∂z

(E.2c)

∇∇∇× A = ρ̂ρρ
(

1

ρ
∂Az
∂φ

− ∂Aφ
∂z

)
+ φ̂φφ

(
∂Aρ
∂z

− ∂Az
∂ρ

)
+ ẑ

1

ρ

(
∂(ρAφ)
∂ρ

− ∂Aρ
∂φ

)
(E.2d)

δ(3)(r− r′)= 1

ρ
δ(ρ− ρ′)δ(φ−φ′)δ(z− z′) (E.2e)

Spherical Coordinates

∇∇∇ψ = r̂
∂ψ
∂r

+ θ̂θθ 1

r
∂ψ
∂θ

+ φ̂φφ 1

r sinθ
∂ψ
∂φ

(E.3a)

∇2ψ = 1

r2

∂
∂r

(
r2 ∂ψ
∂r

)
+ 1

r2 sinθ
∂
∂θ

(
sinθ

∂ψ
∂θ

)
+ 1

r2 sin2 θ
∂2ψ
∂φ2

(E.3b)
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∇∇∇ · A = 1

r2

∂(r2Ar)
∂r

+ 1

r sinθ
∂(sinθAθ)

∂θ
+ 1

r sinθ
∂Aφ
∂φ

(E.3c)

∇∇∇× A = r̂
1

r sinθ

(
∂(sinθAφ)

∂θ
− ∂Aθ
∂φ

)
+ θ̂θθ 1

r

(
1

sinθ
∂Ar
∂φ

− ∂(rAφ)
∂r

)
(E.3d)

+ φ̂φφ 1

r

(
∂(rAθ)
∂r

− ∂Ar
∂θ

)

δ(3)(r− r′)= 1

r2 sinθ
δ(r − r′)δ(θ− θ′)δ(φ−φ′) (E.3e)

Transformations Between Coordinate Systems

The different coordinate conventions are summarized in Fig. E.1 below. A vector A can
be expressed component-wise in the three coordinate systems as:

A = x̂Ax + ŷAy + ẑAz

= ρ̂ρρAρ + φ̂φφAφ + ẑAz

= r̂Ar + θ̂θθAθ + φ̂φφAφ

(E.4)

Fig. E.1 Cartesian, cylindrical, and spherical coordinate conventions.

The components in one coordinate system can be expressed in terms of the compo-
nents of another by using the following relationships between the unit vectors, which
were also given in Eqs. (15.8.1)–(15.8.3):

x = ρ cosφ
y = ρ sinφ

ρ̂ρρ = x̂ cosφ+ ŷ sinφ
φ̂φφ = −x̂ sinφ+ ŷ cosφ

x̂ = ρ̂ρρ cosφ− φ̂φφ sinφ
ŷ = ρ̂ρρ sinφ+ φ̂φφ cosφ

(E.5)

ρ = r sinθ
z = r cosθ

r̂ = ẑ cosθ+ ρ̂ρρ sinθ
θ̂θθ = −ẑ sinθ+ ρ̂ρρ cosθ

ẑ = r̂ cosθ− θ̂θθ sinθ
ρ̂ρρ = r̂ sinθ+ θ̂θθ cosθ

(E.6)
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x = r sinθ cosφ
y = r sinθ sinφ
z = r cosθ

r̂ = x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ
θ̂θθ = x̂ cosφ cosθ+ ŷ sinφ cosθ− ẑ sinθ
φ̂φφ = −x̂ sinφ+ ŷ cosφ

(E.7)

x̂ = r̂ sinθ cosφ+ θ̂θθ cosθ cosφ− φ̂φφ sinφ
ŷ = r̂ sinθ sinφ+ θ̂θθ cosθ sinφ+ φ̂φφ cosφ
ẑ = r̂ cosθ− θ̂θθ sinθ

(E.8)

For example, to express the spherical components Ar,Aθ,Aφ in terms of the carte-
sian components, we proceed as follows:

Ar = r̂ · A = r̂ · (x̂Ax + ŷAy + ẑAz)= (r̂ · x̂)Ax + (r̂ · ŷ)Ay + (r̂ · ẑ)Az

Aθ = θ̂θθ · A = θ̂θθ · (x̂Ax + ŷAy + ẑAz)= (θ̂θθ · x̂)Ax + (θ̂θθ · ŷ)Ay + (θ̂θθ · ẑ)Az

Aφ = φ̂φφ · A = φ̂φφ · (x̂Ax + ŷAy + ẑAz)= (φ̂φφ · x̂)Ax + (φ̂φφ · ŷ)Ay + (φ̂φφ · ẑ)Az

The dot products can be read off Eq. (E.7), resulting in:

Ar = cosφ sinθAx + sinφ sinθAy + cosθAz

Aθ = cosφ cosθAx + sinφ cosθAy − sinθAz

Aφ = − sinφAx + cosφAy

(E.9)

Similarly, using Eq. (E.6) the cylindrical componentsAρ,Az can be expressed in terms
of spherical components as:

Aρ = ρ̂ρρ · A = ρ̂ρρ · (r̂Ar + θ̂θθAθ + φ̂φφAφ)= sinθAr + cosθAθ

Az = ẑ · A = ẑ · (r̂Ar + θ̂θθAθ + φ̂φφAφ)= cosθAr − cosθAθ
(E.10)

F. Fresnel Integrals

The Fresnel functions C(x) and S(x) are defined by [1790]:

C(x)=
∫ x

0
cos

(
π
2
t2
)
dt , S(x)=

∫ x
0

sin
(
π
2
t2
)
dt (F.1)

They may be combined into the complex function:

F(x)= C(x)−jS(x)=
∫ x

0
e−jπt

2/2 dt (F.2)

C(x), S(x), and F(x) are odd functions of x and have the asymptotic values:

C(∞)= S(∞)= 1

2
, F(∞)= 1− j

2
(F.3)
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At x = 0, we have F(0)= 0 and F′(0)= 1, so that the Taylor series approximation
is F(x)� x, for small x. The asymptotic expansions of C(x), S(x), and F(x) are for
large positive x:

F(x) = 1− j
2

+ j
πx
e−jπx

2/2

C(x) = 1

2
+ 1

πx
sin

(
π
2
x2
)

S(x) = 1

2
− 1

πx
cos

(
π
2
x2
)

(F.4)

Associated with C(x) and S(x) are the type-2 Fresnel integrals:

C2(x)=
∫ x

0

cos t√
2πt

dt , S2(x)=
∫ x

0

sin t√
2πt

dt (F.5)

They are combined into the complex function:

F2(x)= C2(x)−jS2(x)=
∫ x

0

e−jt√
2πt

dt (F.6)

The two types are related by, if x ≥ 0:

C(x)= C2

(
π
2
x2
)
, S(x)= S2

(
π
2
x2
)
, F(x)= F2

(
π
2
x2
)

(F.7)

and if x < 0, we set F(x)= −F(−x)= −F2(πx2/2).
The Fresnel function F2(x) can be evaluated numerically using Boersma’s approx-

imation [1308], which achieves a maximum error of 10−9 over all x. The algorithm
approximates the function F2(x) as follows:

F2(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
e−jx

√x
4

11∑
n=0

(an + jbn)
(
x
4

)n
, if 0 ≤ x ≤ 4

1− j
2

+ e−jx
√

4

x

11∑
n=0

(cn + jdn)
(

4

x

)n
, if x > 4

(F.8)

where the coefficients an, bn, cn, dn are given in [1308]. Consistency with the small- and
large-x expansions of F(x) requires that a0 + jb0 =

√
8/π and c0 + jd0 = j/

√
8π. We

have implemented Eq. (F.8) with the MATLAB function fcs2:

F2 = fcs2(x); % Fresnel integrals F2(x) = C2(x)−jS2(x)

The ordinary Fresnel integral F(x) can be computed with the help of Eq. (F.7). The
MATLAB function fcs calculates F(x) for any vector of values x by calling fcs2:

F = fcs(x); % Fresnel integrals F(x) = C(x)−jS(x)

In calculating the radiation patterns of pyramidal horns, it is desired to calculate a
Fresnel diffraction integral of the type:

F0(v,σ)=
∫ 1

−1
ejπvξ e−j(π/2)σ

2 ξ2
dξ (F.9)
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Making the variable change t = σξ−v/σ, this integral can be computed in terms of
the Fresnel function F(x)= C(x)−jS(x) as follows:

F0(v,σ)= 1

σ
ej(π/2)(v

2/σ2)
[
F
(
v
σ
+σ

)
−F

(
v
σ
−σ

)]
(F.10)

where we also used the oddness of F(x). The value of Eq. (F.9) at v = 0 is:

F0(0, σ)= 1

σ
[F(σ)−F(−σ)] = 2

F(σ)
σ

(F.11)

Eq. (F.10) assumes that σ �= 0. If σ = 0, the integral (F.9) reduces to the sinc function:

F0(v,0)= 2
sin(πv)
πv

(F.12)

From either (F.11) or (F.12), we find F0(0,0)= 2. A related integral that is also
required in the theory of horns is the following:

F1(v,σ)=
∫ 1

−1
cos

(
πξ
2

)
ejπvξ e−j(π/2)σ

2 ξ2
dξ (F.13)

Writing cos(πξ/2)= (ejπξ/2+ e−jπξ/2)/2, the integral F1(v, s) can be expressed in
terms of F0(v,σ) as follows:

F1(v,σ)= 1

2

[
F0(v+ 0.5, σ)+F0(v− 0.5, σ)

]
(F.14)

It can be verified easily thatF0(0.5, σ)= F0(−0.5, σ), therefore, the value ofF1(v,σ)
at v = 0 will be given by:

F1(0, σ)= F0(0.5, σ)= 1

σ
ejπ/(8σ

2)
[
F
(

1

2σ
+σ

)
−F

(
1

2σ
−σ

)]
(F.15)

Using the asymptotic expansion (F.4), we find the expansion valid for small σ:

F
(

1

2σ
±σ

)
= 1− j

2
∓ 2σ
π
e−jπ/(8σ

2) , for small σ (F.16)

For σ = 0, the integral F1(v,σ) reduces to the double-sinc function:

F1(v,0)=
∫ 1

−1
cos

(
πξ
2

)
ejπvξ dξ = 1

2

[
F0(v+ 0.5,0)+F0(v− 0.5,0)

]

= sin
(
π(v+ 0.5)

)
π(v+ 0.5)

+ sin
(
π(v− 0.5)

)
π(v− 0.5)

= 4

π
cos(πv)
1− 4v2

(F.17)

From either Eq. (F.16) or (F.17), we find F1(0,0)= 4/π.
The MATLAB function diffint can be used to evaluate both Eq. (F.9) and (F.13) for

any vector of values v and any vector of positive numbers σ, including σ = 0. It calls
fcs to evaluate the diffraction integral (F.9) according to Eq. (F.10). Its usage is:

1284 26. Appendices

F0 = diffint(v,sigma,0); % diffraction integral F0(v,σ), Eq. (F.9)

F1 = diffint(v,sigma,1); % diffraction integral F1(v,σ), Eq. (F.13)

The vectors v,sigma can be entered either as rows or columns, but the result will
be a matrix of size length(v) x length(sigma). The integral F0(v,σ) can also be
calculated by the simplified call:

F0 = diffint(v,sigma); % diffraction integral F0(v,σ), Eq. (F.9)

Actually, the most general syntax of diffint is as follows:

F = diffint(v,sigma,a,c1,c2); % diffraction integral F(v,σ, a), Eq. (F.18)

It evaluates the more general integral:

F(v,σ, a)=
∫ c2

c1

cos
(
πξa

2

)
ejπvξ e−j(π/2)σ

2 ξ2
dξ (F.18)

For a = 0, we have:

F(v,σ,0)= 1

σ
ej(π/2)(v

2/σ2)
[
F
(
v
σ
−σc1

)
−F

(
v
σ
−σc2

)]
(F.19)

For a �= 0, we can express F(v,σ, a) in terms of F(v,σ,0):

F(v,σ, a)= 1

2

[
F(v+ 0.5a,σ,0)+F(v− 0.5a,σ,0)

]
(F.20)

For a = 0 and σ = 0, F(v,σ, a) reduces to the complex sinc function:

F(v,0,0)= e
jπvc2 − ejπvc1

jπv
= (c2 − c1)

sin
(
π(c2 − c1)v/2

)
π(c2 − c1)v/2

ejπ(c2+c1)v/2 (F.21)

In Sommerfeld’s half-space and knife-edge diffraction problems discussed in Sec-
tions 18.14 and 18.15, the following function represents the diffraction coefficient,

D(v)= 1

1− j
∫ v
−∞
e−jπu

2/2 du = 1

1− j
[
F(v)+1− j

2

]
(F.22)

It is defined for any real v and satisfies the properties,

D(v)+D(−v)= 1 (F.23)

D(−∞)= 0 , D(0)= 1

2
, D(∞)= 1 (F.24)

The MATLAB function diffr.m calculatesD(v) at any vector of (real) values of v. It
has usage:
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D = diffr(v); % knife-edge diffraction coefficient D(v)

It may also be quickly defined as an anonymous MATLAB function in terms of fcs,

diffr = @(v) (fcs(v) + (1-j)/2) / (1-j);

The following integral , which was originally considered by Sommerfeld in his solu-
tion of the half-space problem, can be expressed in terms of the function D(v),

I(φ) ≡ 1

π

∫∞
0

cos(φ/2)cosh(t/2)
cosφ+ cosh t

e−jkρ cosh t dt

= sign(v)·ejkρ cosφ · [1−D(|v|)] , v =
√

4kρ
π

cos
(
φ
2

) (F.25)

where kρ > 0 andφ is a real angle, such that cos(φ/2)�= 0, or, cosφ �= −1. Equivalently,

I(φ)=
⎧⎨
⎩ ejkρ cosφ · [1−D(v)] = ejkρ cosφ ·D(−v), if v > 0

−ejkρ cosφ · [1−D(−v)] = −ejkρ cosφ ·D(v), if v < 0
(F.26)

where we used the property (F.23). The value at cos(φ/2)= 0 is discussed below. To
show Eq. (F.25), we change variables to, s = sinh(t/2), c = cos(φ/2). Then, doubling
the range of integration and using the identities,

cosφ = 2 cos2(φ
2

)− 1 , cosh t = 2 sinh2( t
2

)+ 1

the integral is transformed into,

I(φ)= ejkρ cosφ 1

2π

∫∞
−∞

c
c2 + s2 e

−2jkρ(c2+s2) ds (F.27)

Following Sommerfeld [1287], we divide out the factor ejkρ cosφ, and differentiate
with respect to ρ,

d
dρ

[
I(φ, kρ)e−jkρ cosφ

]
= −jck

π
e−2jkρc2

∫∞
−∞
e−2jkρs2 ds = − 1

1− j
ck√
πkρ

e−2jkρc2

(F.28)
where we used the definite integral,∫∞

−∞
e−2jkρs2 ds = 1− j

2

√
π
kρ

Introducing the variable v = |c|√4kρ/π, we note that, dv/dρ = |ck|/√πkρ. Noting
that, c = sign(c)|c|, we may change variables from ρ to v and rewrite (F.28) as,

d
dv

[
I(φ)e−jkρ cosφ

]
= −sign(c)

1

1− j e
−jπv2/2 (F.29)

Integrating with respect to v, and fixing the integration constant by requiring that
I(φ) vanish as ρ→∞ or v →∞, we obtain the required result,

I(φ)e−jkρ cosφ = 1− 1

1− j
∫ v
−∞
e−jπu

2/2 du = 1−D(v)
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where here, v = √
4kρ/π

∣∣cos(φ/2)
∣∣. Regarding the value at c = 0, we may distinguish

the limits as c→ ±0. Using the following limit for the delta-function,

lim
c→±0

1

π
c

c2 + s2 = ±δ(s)

then, Eq. (F.27) has the following limiting values, noting that cosφ = 2c2 − 1 = −1,

lim
c→±0

I(φ)= lim
c→±0

ejkρ cosφ 1

2π

∫∞
−∞

c
c2 + s2 e

−2jkρ(c2+s2) ds = ±1

2
e−jkρ

These are consistent with the limits of Eq. (F.26) since D(0)= 1/2.

G. Exponential, Sine, and Cosine Integrals

Several antenna calculations, such as mutual impedances and directivities, can be re-
duced to the exponential integral, which is defined as follows [1790]:

E1(z)=
∫∞
z

e−u

u
du = e−z

∫∞
0

e−t

z+ t dt (exponential integral) (G.1)

where z is a complex number with phase restricted such that |argz| < π. This range
allows pure imaginary z’s. The built-in MATLAB function expint evaluates E1(z) at an
array of z’s. Related to E1(z) are the sine and cosine integrals:

Si(z)=
∫ z

0

sinu
u
du (sine integral)

Ci(z)= γ+ lnz+
∫ z

0

cosu− 1

u
du (cosine integral)

(G.2)

where γ is the Euler constant γ = 0.5772156649... . A related cosine integral is:

Cin(z)=
∫ z

0

1− cosu
u

du = γ+ lnz−Ci(z) (G.3)

For z ≥ 0, the sine and cosine integrals are related to E1(z) by [1790]:

Si(z)= E1(jz)−E1(−jz)
2j

+ π
2
= Im

[
E1(jz)

]+ π
2

Ci(z)= −E1(jz)+E1(−jz)
2

= −Re
[
E1(jz)

] (G.4)

while for z ≤ 0, we have Si(z)= −Si(−z) andCi(z)= Ci(−z)+jπ. Conversely, we have
for z > 0:

E1(jz)= −Ci(z)+j
(
Si(z)−π

2

) = −γ− ln(z)+Cin(z)+j
(
Si(z)−π

2

)
(G.5)

The MATLAB functions Si, Ci, Cin evaluate the sine and cosine integrals at any
vector of z’s by using the relations (G.4) and the built-in function expint:
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y = Si(z); % sine integral, Eq. (G.2)

y = Ci(z); % sine integral, Eq. (G.2)

y = Cin(z); % sine integral, Eq. (G.3)

A related integral that appears in calculating mutual and self impedances is what
may be called a “Green’s function integral”:

Gi(d, z0, h, s)=
∫ h

0

e−jkR

R
e−jksz dz , R =

√
d2 + (z− z0)2 , s = ±1 (G.6)

This integral can be reduced to the exponential integral by the change of variables:

v = jk(R+ s(z− z0)
) ⇒ s

dv
v
= dz
R

which gives

∫ h
0

e−jkR

R
e−jksz dz = se−jksz0

∫ v1

v0

e−u

u
du , or,

Gi(d, z0, h, s)=
∫ h

0

e−jkR

R
e−jksz dz = se−jksz0

[
E1(ju0)−E1(ju1)

]
(G.7)

where

v0 = ju0 , u0 = k
[√
d2 + z2

0 − sz0

]

v1 = ju1 , u1 = k
[√
d2 + (h− z0)2 + s(h− z0)

]
The function Gi evaluates Eq. (G.7), where z0, s, and the resulting integral J, can be

vectors of the same dimension. Its usage is:

J = Gi(d,z0,h,s); % Green’s function integral, Eq. (G.7)

Another integral that appears commonly in antenna work is:

∫ π
0

cos(α cosθ)− cosα
sinθ

dθ = Si(2α)sinα−Cin(2α)cosα (G.8)

Its proof is straightforward by first changing variables to z = cosθ, then using
partial fraction expansion, and finally changing variables to u = α(1 + z), and using
the definitions (G.2) and (G.3):

∫ π
0

cos(α cosθ)− cosα
sinθ

dθ =
∫ 1

−1

cos(αz)− cosα
1− z2

dz

= 1

2

∫ 1

−1

cos(αz)− cosα
1+ z dz+ 1

2

∫ 1

−1

cos(αz)− cosα
1− z dz =

∫ 1

−1

cos(αz)− cosα
1+ z dz

=
∫ 2α

0

cos(u−α)− cosα
u

du = sinα
∫ 2α

0

sinu
u
du− cosα

∫ 2α

0

1− cosu
u

du
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H. Stationary Phase Approximation

The Fresnel integrals find also application in the stationary-phase approximation for
evaluating integrals. We note first that Eqs. (F.2) and (F.3) imply,∫∞

−∞
e±jπt

2/2 dt = 1± j = √2e±j
π
4 (H.1)

and by changing variables of integration, we have the following integral, for any real α,

∫∞
−∞
ejαx

2/2dx =
√

2π
|α| e

j sign(α)π4 =
√
π
|α|

(
1+ jsign(α)

)
(H.2)

The stationary-phase approximation is a way to approximate integrals of the follow-
ing form, in the limit of the positive parameter p→∞,

∫∞
−∞
f(x)ejpφ(x)dx (H.3)

where f(x),φ(x) are real-valued. To simplify the notation, we will set p = 1. One can
always replace φ(x) by pφ(x) in what follows. The stationary-phase approximation
can then be stated as follows:

∫∞
−∞
f(x)ejφ(x)dx � ej sign(φ′′(x0)) π4

√
2π∣∣φ′′(x0)

∣∣ f(x0)ejφ(x0) (H.4)

where x0 is a stationary point of the phase φ(x), that is, the solution of φ′(x0)= 0,
where for simplicity we assume that there is only one such point (otherwise, one has
a sum of terms like (H.4), one for each solution of φ′(x)= 0). Eq. (H.4) is obtained by
expanding φ(x) in Taylor series about the stationary point x = x0 and keeping only up
to the quadratic term:

φ(x)� φ(x0)+φ′(x0)(x− x0)+1

2
φ′′(x0)(x− x0)2= φ(x0)+1

2
φ′′(x0)(x− x0)2

Making this approximation in the integral and assuming that f(x) is slowly varying
in the neighborhood of x0, we may replace f(x) by its value at x0:∫∞

−∞
f(x)ejφ(x)dx �

∫∞
−∞
f(x0)ej

(
φ(x0)+φ′′(x0)(x−x0)2/2

)
dx

= f(x0)ejφ(x0)
∫∞
−∞
ejφ

′′(x0)(x−x0)2/2dx

and Eq. (H.4) is obtained by applying Eq. (H.2) to the above integral. The generalization
to two dimensions is straightforward, the objective being to evaluate double-integrals of
the following form in the limit, p→∞,∫∞

−∞

∫∞
−∞
f(x, y)ejpφ(x,y)dxdy



H. Stationary Phase Approximation 1289

As before, we will set p = 1. The phase function φ(x, y) is now expanded about a
stationary point (x0, y0), at which the partial derivatives of φ(x, y) vanish,

∂φ(x0, y0)
∂x

= ∂φ(x0, y0)
∂y

= 0 (H.5)

The Taylor series expansion about the point (x0, y0) can be written as the quadratic
form,

φ(x, y) � φ(x0, y0)+1

2

[
α(x− x0)2+2γ(x− x0)(y − y0)+β(y − y0)2]

= φ(x0, y0)+1

2

[
x− x0, y − y0]

[
α γ
γ β

][
x− x0

y − y0

]

= φ(x0, y0)+1

2
XTΦX , where X =

[
x− x0

y − y0

]
, Φ =

[
α γ
γ β

]

and α,β,γ denote the second derivatives at (x0, y0), that is,

α = ∂
2φ(x0, y0)
∂x2

, γ = ∂
2φ(x0, y0)
∂x∂y

, β = ∂
2φ(x0, y0)
∂y2

The stationary-phase approximation becomes then,∫∫∞
−∞
f(x, y)ejφ(x,y)dxdy � f(x0, y0)ejφ(x0,y0)

∫∫∞
−∞
ej

1
2X

TΦXdxdy

The above double integral can be reduced to the product of two integrals of the form
of Eq. (H.2). The resulting approximation then takes the form:

∫∫∞
−∞
f(x, y)ejφ(x,y)dxdy � ej(σ+1)τπ4

2π√|detΦ| f(x0, y0)ejφ(x0,y0) (H.6)

where σ,τ are the signs of the determinant and trace of Φ, that is,

σ = sign(detΦ)= sign(αβ− γ2)

τ = sign(trΦ)= sign(α+ β) (H.7)

In particular, the phase factor takes the following three possible values, depending
on whether the stationary point (x0, y0) is a local minimum, a local maximum, or a
saddle point of φ(x, y),

ej(σ+1)τπ4 =

⎧⎪⎪⎨
⎪⎪⎩
j, if detΦ > 0, trΦ > 0, (minimum)

−j, if detΦ > 0, trΦ < 0, (maximum)

1, if detΦ < 0, (saddle)

(H.8)

In Eq. (H.8), the conditions trΦ ≶ 0 can be replaced by the equivalent conditions α ≶ 0,
or by, β ≶ 0. This follows from the fact that, αβ = γ2+detΦ, so that if detΦ > 0, then
αβ > 0, and α,β must have the same sign and hence the same sign as, trΦ = α + β.
Thus, τ can be replaced by sign(α) in (H.6).
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The evaluation of the quadratic-phase integral

∫∫∞
−∞
ej

1
2X

TΦXdxdy can be done in

two ways, leading to Eq. (H.6). First, by the method of “completing the squares”, and
second, using the eigenvalue decomposition of the matrix Φ. In the first method, we
note the following quadratic form identity (assuming α �= 0),

1

2
XTΦX = 1

2

[
α(x− x0)2+2γ(x− x0)(y − y0)+β(y − y0)2]

= 1

2
α
(
x− x0 + γα(y − y0)

)2

+ 1

2

αβ− γ2

α
(y − y0)2= 1

2
αξ2 + 1

2

detΦ
α

η2

where ξ = x− x0 + γα(y − y0) , η = y − y0

and dxdy = dξdη. Thus, using Eq. (H.2),∫∫∞
−∞
ej

1
2X

TΦXdxdy =
∫∞
−∞
ejαξ

2/2 dξ ·
∫∞
−∞
ej

detΦ
α η2/2 dη

=
√

2π
|α| e

j sign(α)π4 ·
√

2π
|detΦ|/|α| e

j sign(detΦ/α)π4

and noting that, sign
(

detΦ
α

)
= sign(α)·sign(detΦ)= sign(α)·σ, we obtain,∫∫∞

−∞
ej

1
2X

TΦXdxdy = ej(σ+1)sign(α)π4
2π√|detΦ|

which leads to an equivalent expression to (H.6). In the eigenvalue method, the real-
symmetric matrix Φ is diagonalized by a real orthogonal matrix V, that is, Φ = VΛVT,
where Λ = diag{λ+, λ−}, with the two real eigenvalues given by,

λ± = α+ β±
√
(α− β)2+4γ2

2

Then, the quadratic form splits with respect to the two orthogonal directions as follows,

1

2
XTΦX = 1

2
XT(VΛVT)X = 1

2
λ+ u2++

1

2
λ− u2− , with

[
u+
u−

]
= VTX = VT

[
x− x0

y − y0

]

and the quadratic phase integral becomes the product of two single ones,∫∫∞
−∞
ej

1
2X

TΦXdxdy =
∫∫∞
−∞
ej

1
2λ+ u

2++j 1
2λ− u

2−du+ du− = ej(sign(λ+)+sign(λ−)) π4

√
(2π)2

|λ+λ−|
where dxdy = du+ du−, since |detV| = 1. The equivalence to (H.6) follows now by
recognizing that, detΦ = λ+λ−, trΦ = λ+ + λ−, and that,

sign(λ+)+sign(λ−)=
(
sign(λ+λ−)+1

) · sign(λ+ + λ−)= (σ + 1)·τ
When detΦ = λ+λ− > 0, there can be two cases, either, λ+ > 0 and λ− > 0, leading

to a local minimum of φ(x, y) at the stationary point (x0, y0), or, λ+ < 0 and λ− < 0,
leading to a local maximum. Similarly, if detΦ < 0, then λ+, λ− must have opposite
signs, corresponding to a saddle point.

For more information and subtleties of the stationary phase method, the reader may
consult references [1632–1639].



I. Gauss-Legendre and Double-Exponential Quadrature 1291

I. Gauss-Legendre and Double-Exponential Quadrature

In many parts of this book it is necessary to perform numerical integration. Gauss-
Legendre quadrature is one of the best integration methods, and we have implemented
it with the MATLAB functions quadr and quadrs. Below, we give a brief description of
the method.† The integral over an interval [a, b] is approximated by a sum of the form:

∫ b
a
f(x)dx �

N∑
i=1

wi f(xi) (I.1)

where wi, xi are appropriate weights and evaluation points (nodes). This can be written
in the vectorial form:

∫ b
a
f(x)dx �

N∑
i=1

wi f(xi)= [w1,w2, . . . ,wN]

⎡
⎢⎢⎢⎢⎢⎣
f(x1)
f(x2)

...
f(xN)

⎤
⎥⎥⎥⎥⎥⎦ = wTf(x) (I.2)

The function quadr returns the column vectors of weights w and nodes x, with usage:

[w,x] = quadr(a,b,N); % Gauss-Legendre quadrature

The function quadrs allows the splitting of the interval [a, b] into subintervals,
computes N weights and nodes in each subinterval, and concatenates them to form the
overall weight and node vectors w,x:

[w,x] = quadrs(ab,N); % Gauss-Legendre quadrature over subintervals

where ab is an array of endpoints that define the subintervals, for example,

ab = [a, b] , single interval
ab = [a, c, b] , two subintervals, [a, c] and [c, b]
ab = [a, c, d, b] , three subintervals, [a, c], [c, d], and [d, b]
ab = a : c : b , subintervals, [a, a+c, a+2c, . . . , a+Mc], with a+Mc = b

As an example, consider the following function and its exact integral:

f(x)= ex + 1

x
, J =

∫ 2

1
f(x)dx = e2 − e1 + ln 2 = 5.36392145 (I.3)

This integral can be evaluated numerically by the MATLAB code:

N = 5; % number of weights and nodes

[w,x] = quadr(1,2,N); % calculate weights and nodes for the interval [1,2]
f = exp(x) + 1./x; % evaluate f(x) at the node vector

J = w’*f % approximate integral

This produces the exact value with a 4.23×10−7 percentage error. If the integration
interval is split in two, say, [1,1.5] and [1.5,2], then the second line above can be
replaced by

†J. Stoer and R. Burlisch, Introduction to Numerical Analysis, Springer, NY, (1980); and, G. H. Golub and
J. H. Welsch, “Calculation of Gauss Quadrature Rules,” Math. Comput., 23, 221 (1969).
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[w,x] = quadrs([1,1.5,2],N); % or by, [w,x] = quadrs(1:0.5:2, N);

which has a percentage error of 1.28×10−9. Next, we discuss the theoretical basis of
the method.

The interval [a, b] can be replaced by the standardized interval [−1,1] with the
transformation from a ≤ x ≤ b to −1 ≤ z ≤ 1:

x =
(
b− a

2

)
z+

(
b+ a

2

)
(I.4)

Ifwi and zi are the weights and nodes with respect to the interval [−1,1], then those
with respect to [a, b] can be constructed simply as follows, for i = 1,2, . . . ,N:

xi =
(
b− a

2

)
zi +

(
b+ a

2

)

wxi =
(
b− a

2

)
wi

(I.5)

where the scaling of the weights follows from the scaling of the differentials dx =
dz(b− a)/2, so the value of the integral (I.1) is preserved by the transformation.

Gauss-Legendre quadrature is nicely tied with the theory of orthogonal polynomials
over the interval [−1,1], which are the Legendre polynomials. For N-point quadrature,
the nodes zi, i = 1,2, . . . ,N are the N roots of the Legendre polynomial PN(z), which
all lie in the interval [−1,1]. The method is justified by the following theorem:

For any polynomial P(z) of degree at most 2N − 1, the quadrature formula (I.1) is
satisfied exactly, that is, ∫ 1

−1
P(z)dz =

N∑
i=1

wiP(zi) (I.6)

provided that the zi are the N roots of the Legendre polynomial PN(z).
The Legendre polynomials Pn(z) are obtained via the process of Gram-Schmidt or-

thogonalization of the non-orthogonal monomial basis {1, z, z2, . . . , zn . . . }. Orthogo-
nality is defined with respect to the following inner product over the interval [−1,1]:

(f, g)=
∫ 1

−1
f(z)g(z)dz (I.7)

The standard definition of the Legendre polynomials is:

Pn(z)= 1

2nn!

dn

dzn
[
(z2 − 1)n

]
, n = 0,1,2, . . . (I.8)

The first few of them are listed below:

P0(z) = 1

P1(z) = z
P2(z) = (3/2)

[
z2 − (1/3)]

P3(z) = (5/2)
[
z3 − (3/5)z]

P4(z) = (35/8)
[
z4 − (6/7)z2 + (3/35)

]
(I.9)
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They are normalized such that Pn(1)= 1 and are mutually orthogonal with respect
to (I.7), but do not have unit norm:

(Pn, Pm)=
∫ 1

−1
Pn(z)Pm(z)dz = 2

2n+ 1
δnm (I.10)

Moreover, they satisfy the three-term recurrence relation:

zPn(z)=
(

n
2n+ 1

)
Pn−1(z)+

(
n+ 1

2n+ 1

)
Pn+1(z) (I.11)

The Gram-Schmidt orthogonalization process of the monomial basis fn(z)= zn is
the following order-recursive construction:

initialize P0(z)= f0(z)= 1

for n = 1,2,3, . . . , do

Pn(z)= fn(z)−
n−1∑
k=0

(fn, Pk)
(Pk, Pk)

Pk(z)

A few steps of the construction will clarify it:

P1(z)= f1(z)− (f1, P0)
(P0, P0)

P0(z)= z

where (f1, P0)= (z,1)=
∫ 1

−1
zdz = 0. Then, construct P2 by:

P2(z)= f2(z)− (f2, P0)
(P0, P0)

P0(z)− (f2, P1)
(P1, P1)

P1(z)

where now we have (f2, P1)= (z2, z)=
∫ 1

−1
z3dz = 0, and

(f2, P0)= (z2,1)=
∫ 1

−1
z2dz = 2

3
, (P0, P0)= (1,1)=

∫ 1

−1
dz = 2

Therefore,

P2(z)= z2 − 2/3
2
= z2 − 1

3

Then, normalize it such that P2(1)= 1, and so on. For our discussion, we are going
to renormalize the Legendre polynomials to unit norm. Because of (I.10), this amounts
to multiplying the standard Pn(z) by the factor

√
(2n+ 1)/2. Thus, we re-define:

Pn(z)=
√

2n+ 1

2

1

2nn!

dn

dzn
[
(z2 − 1)n

]
, n = 0,1,2, . . . (I.12)

Thus, (I.10) becomes (Pn, Pm)= δnm. In particular, we note that now

P0(z)= 1√
2

(I.13)
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By introducing the same scaling factors into each term of the recurrence (I.11), we
find that the renormalized Pn(z) satisfy:

zPn(z)= αnPn−1(z)+αn+1Pn+1(z) , αn = n√
4n2 − 1

(I.14)

This relationship can be assumed to be valid also at n = 0, provided we define
P−1(z)= 0. For each order n, the Gram-Schmidt procedure replaces the non-orthogonal
monomial basis by the orthonormalized Legendre basis:{

1, z, z2, . . . , zn
}
�

{
P0(z), P1(z), P2(z), . . . , Pn(z)

}
Thus, any polynomial Q(z) of degree n can be expanded uniquely in either basis:

Q(z)=
n∑
k=0

qkzk =
n∑
k=0

ckPk(z)

with the expansion coefficients calculated from ck = (Q,Pk). This also implies that if
Q(z) has order n− 1 then, it will be orthogonal to Pn(z).

Next, we turn to the proof of the basic Gauss-Legendre result (I.6). Given a polynomial
P(z) of order 2N − 1, we can expand it uniquely in the form:

P(z)= PN(z)Q(z)+R(z) (I.15)

where Q(z) and R(z) are the quotient and remainder of the division by the Legendre
polynomial PN(z), and both will have order N − 1. Then, the integral of P(z) can be
written in inner-product notation as follows:∫ 1

−1
P(z)dz = (P,1)= (PNQ +R,1)= (PNQ,1)+(R,1)= (Q,PN)+(R,1)

But (Q,PN)= 0 because Q(z) has order N − 1 and PN(z) is orthogonal to all such
polynomials. Thus, the integral of P(z) can be expressed only in terms of the integral
of the remainder polynomial R(z), which has order N − 1:∫ 1

−1
P(z)dz = (P,1)= (R,1)=

∫ 1

−1
R(z)dz (I.16)

The right-hand side of the integration rule (I.6) can also be expressed in terms of R(z):

N∑
i=1

wiP(zi)=
N∑
i=1

wiPN(zi)Q(zi)+
N∑
i=1

wiR(zi) (I.17)

and, because we assumed that PN(zi)= 0,

N∑
i=1

wiP(zi)=
N∑
i=1

wiR(zi) (I.18)

Thus, combining (I.16) and (I.18), we obtain the following condition, which is equiv-
alent to Eq. (I.6), ∫ 1

−1
R(z)dz =

N∑
i=1

wiR(zi) (I.19)
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BecauseR(z) is an arbitrary polynomial of degreeN−1, and has onlyN coefficients,
this condition can be satisfied with a common set of N weights wi for all such R(z). If
we had not assumed initially that the zi were the zeros of PN(z), and took them to be
an arbitrary set of N distinct points in [−1,1], then (I.19) would read as

∫ 1

−1
R(z)dz =

N∑
i=1

wiPN(zi)Q(zi)+
N∑
i=1

wiR(zi)

In order for this to be satisfied for all R(z) and all Q(z), then (I.19) must still be
satisfied by setting Q(z)= 0, which fixes the weights wi. Therefore, the first term in
the right-hand side must be zero for all polynomials Q(z) of degreeN−1, and one can
show that this implies that PN(zi)= 0, that is, the zi must be the zeros of PN(z).

Condition (I.19) can be used to determine the weights by expanding R(z) into either
the monomial basis or the Legendre basis, that is, because R(z) has degree N − 1:

R(z)=
N−1∑
k=0

rkzk =
N−1∑
k=0

ckPk(z) (I.20)

Inserting, for example, the monomial basis into (I.19) and matching the coefficients
of rk on either side, we obtain the system of N equations for the weights:

N∑
i=1

zki wi =
∫ 1

−1
zkdz = 1+ (−1)k

k+ 1
, k = 0,1, . . . ,N − 1 (I.21)

Defining the matrix Fki = zki and the vector uk =
[
1+(−1)k

]
/(k+1), we may write

(I.21) in the compact matrix form:

Fw = u ⇒ w = F−1u (I.22)

Alternatively, we may use the Legendre basis, which is more elegant. The left hand
side of (I.19) will receive contribution only from the k = 0 term because P0 is orthogonal
to all the succeeding Pk. Indeed, using the definition (I.13), we have:

∫ 1

−1
R(z)dz = (R,1)= √2 (R,P0)=

√
2
N−1∑
k=0

ck(PK, P0)=
√

2
N−1∑
k=0

ckδk0 =
√

2 c0

The right-hand side of (I.19) may be written as follows. Defining the N×N ma-
trix Pki = Pk(zi), i = 1,2 . . . ,N, and k = 0,1, . . . ,N − 1, and the row vector cT =
[c0, c1, . . . , cN−1] of expansion coefficients, we have,

N∑
i=1

wiR(zi)=
N−1∑
k=0

N∑
i=1

ckPk(zi)wi = cTPw

Thus, (I.19) now reads, where u0 = [1,0,0, . . . ,0]T:

cTPw = √2 c0 =
√

2 cTu0
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Because the vector c is arbitrary, we must have the condition:

Pw = √2 u0 ⇒ w = √2P−1u0 (I.23)

The matrixP has some rather interesting properties. First, it has mutually orthogonal
columns. Second, these columns are the eigenvectors of a Hermitian tridiagonal matrix
whose eigenvalues are the zeros zi. Thus, the problem of finding both zi and wi is
reduced to an eigenvalue problem.

These eigenvalue properties follow from the recursion (I.14) of the normalized Leg-
endre polynomials. For n = 0,1,2,3, the recursion reads explicitly:

zP0(z) = α1P1(z)

zP1(z) = α1P0(z)+α2P2(z)

zP2(z) = α2P1(z)+α3P3(z)

zP3(z) = α3P2(z)+α4P4(z)

which can be written in matrix form:

z

⎡
⎢⎢⎢⎣
P0(z)
P1(z)
P2(z)
P3(z)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 α1 0 0
α1 0 α2 0
0 α2 0 α3

0 0 α3 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
P0(z)
P1(z)
P2(z)
P3(z)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
0
0

α4P4(z)

⎤
⎥⎥⎥⎦

and more generally,

z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0(z)
P1(z)
P2(z)

...
PN−2(z)
PN−1(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 0 0 · · · 0
α1 0 α2 0 · · · 0
0 α2 0 α3 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 αN−2 0 αN−1

0 · · · 0 0 αN−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0(z)
P1(z)
P2(z)

...
PN−2(z)
PN−1(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0

αNPN(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, if z is replaced by the ith zero zi of PN(z), the last column will vanish and we
obtain the eigenvalue equation:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 0 0 · · · 0
α1 0 α2 0 · · · 0
0 α2 0 α3 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 αN−2 0 αN−1

0 · · · 0 0 αN−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0(zi)
P1(zi)
P2(zi)

...
PN−2(zi)
PN−1(zi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= zi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0(zi)
P1(zi)
P2(zi)

...
PN−2(zi)
PN−1(zi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(I.24)

Denoting the above tridiagonal matrix by A and the column of Pk(zi)’s by pi, we
may write compactly:

Api = zipi , i = 1,2, . . . ,N (I.25)
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Thus, the eigenvalues of A are the zeros zi and the corresponding eigenvectors are
the columns pi of the matrix P that we introduced in (I.23). Because the zeros zi are
distinct and A is a Hermitian matrix, its eigenvectors will be mutually orthogonal:

pTi pj = d2
i δij (I.26)

where di = ‖pi‖ are the norms of the vectors pi. It follows that the orthonormalized
eigenvectors of A will be vi = pi/di, and the orthogonal matrix of eigenvectors having
the vi as columns will be V = [v1, v2, . . . , vN], or, expressed in terms of the matrix P
and the diagonal matrix D = diag{d1, d2, . . . , dN}:

V = PD−1 (I.27)

Replacing P in (I.23) by P = VD and using the orthogonality VTV = I of the eigen-
vector matrix, or V−1 = VT, we obtain the solution:

w = √2D−1VTu0 ⇒ wi =
√

2d−1
i (v

T
i u0) (I.28)

The matrix D can itself be expressed in terms of V by noting that the top entry of pi
is P0(zi)= 1/

√
2, and therefore, it follows from vi = pi/di that the top entry of vi will

be vTi u0 = 1/(
√

2di), or, d−1
i = √2(vTi u0). It finally follows from Eq. (I.28) that

wi = d−2
i = 2(vTi u0)2 (I.29)

In MATLAB language, vTi u0 = V(1, i), that is, the first row of V. Because the eigen-
vectors of the Hermitian matrix A are real-valued and unique up to a sign, Eq. (I.29)
allows the unique determination of the weights from the eigenvector matrix V.

The above discussion leads to two possible implementations of the MATLAB function
quadr. In the first, we obtain the coefficients of the Legendre polynomial PN(z), find its
zeros using the built-in function root, and then solve the linear equation (I.22) for the
weights. The second approach, implemented by the function quadr2 and the related
function quadrs2, determines zi,wi from the eigenvalue problem of the matrix A.

Tanh-Sinh Double-Exponential Quadrature

Another quadrature integration procedure is the so-called double-exponential or, tanh-
sinh rule.† It is particularly effective in handling end-point singularities. According to
this rule, the integral of a function f(x) over the interval [a, b] is approximated by the
sum, ∫ b

a
f(x)dx ≈

N∑
i=−N

wi f(xi) (I.30)

with weights wi and quadrature points xi derived from,

†H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Publications Res.
Inst. Math. Sci., Kyoto Univ., 9, 721 (1974). See also, D. H. Bailey, K. Jeyabalan, and X. S. Li, “A Comparison
of Three High-Precision Quadrature Schemes,” Experimental Math., 14, 317 (2005), and, A. G. Polimeridis
and J. R. Mosig, “Evaluation of Weakly Singular Integrals Via Generalized Cartesian Product Rules Based on
the Double Exponential Formula,” IEEE Trans. Antennas Propagat., 58, 1980 (2010).
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ti = hi , −N ≤ i ≤ N

xi =
(
b− a

2

)
tanh

(
π
2

sinh(ti)
)
+
(
b+ a

2

)

wi =
(
b− a

2

)
hπ
2

cosh(ti)

cosh2
(
π
2

sinh(ti)
)

(I.31)

The spacing h and number N are determined from the rules:

h = 2−M , N = 6 · 2M (I.32)

where M is selected by the user, with typical values M = 4–8. The MATLAB function
quadts.m implements Eqs. (I.31)–(I.32) and returns the column vectors of weights wi
and quadrature points xi.

[w,x] = quadts(a,b,M); % tanh-sinh double-exponential quadrature

For the same example of Eq. (I.3), the following code segment illustrates the usage
of the function,

M=3;
[w,x] = quadts(1,2,M);
f = exp(x) + 1./x;
J = w’*f; % approximate integral

ForM = 2 andM = 3, it produces the exact value with 6.87×10−10 and 1.66×10−14

percentage errors.
If the integrand has singularities at the end-points a,b of the integration interval,

then replacing the interval [a, b] by [a+ε, b] or [a, b−ε] often works well. This is
done, for example, in the implementation of the Bethe-Bouwkamp function BBnum.m,
described in Sec. 19.12.

J. Prolate Spheroidal Wave Functions

Prolate spheroidal wave functions (PSWF) of order zero provide an ideal basis for repre-
senting bandlimited signals that are also maximally concentrated in a finite time inter-
val. They were extensively studied by Slepian, Pollak, and Landau in a series of papers
[1643–1647] and have since been applied to a wide variety of applications, such as sig-
nal extrapolation, deconvolution, communication systems, waveform design, antennas,
diffraction-limited optical systems, laser resonators, and acoustics.

In this Appendix, we summarize their properties and provide a MATLAB function for
their computation. We will use them in Sec. 20.22 in our discussion of superresolution
and its dual, supergain, and their relationship to superoscillations. Further details may
be found in references [1643–1679].
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Definition

The PSWF functions are defined with respect to two intervals: a frequency interval,
[−ω0,ω0] (rad/sec), over which they are bandlimited, and a time interval, [−t0, t0]
(sec), over which they are concentrated (but not limited to).

For notational convenience let us define the following three function spaces: (a) the
space L2∞ of functions f(t) that are square-integrable over the real line, −∞ < t < ∞,
(b) the space L2

t0 of functions f(t) that are square-integrable over the finite interval
[−t0, t0], and (c) the subspace Bω0 of L2∞ of bandlimited functions f(t) whose Fourier
transform f̂ (ω) vanishes outside the interval [−ω0,ω0], that is, f̂ (ω)= 0 for |ω| >
ω0, so that they are representable in the form,

f(t)=
∫ω0

−ω0

f̂ (ω)ejωt
dω
2π

, f̂(ω)=
∫∞
−∞
f(t)e−jωt dt (J.1)

The PSWF functions, denoted here by ψn(t) with n = 0,1,2, . . . , belong to the sub-
space Bω0 and are defined by the following equivalent expansions in terms of Legendre
polynomials or spherical Bessel functions:

ψn(t)=
√
λn
t0

∑
k
βnk

√
k+ 1

2 Pk
(
t
t0

)
=
√

c
2πt0

∑
k
βnk

√
k+ 1

2 2ik−n jk
(
ω0t

)
(J.2)

for n = 0,1,2, . . . , where βnk are the expansion coefficients, c is the time-bandwidth
product, c = t0ω0, and λn are the positive eigenvalues (listed in decreasing order) and
ψn(t) the corresponding eigenfunctions of the following linear integral operator with
the sinc-kernel:

∫ t0
−t0

sin
(
ω0(t − t′)

)
π(t − t′) ψn(t′)dt′ = λnψn(t) n = 0,1,2, . . . , for all t (J.3)

The Legendre polynomial expansion in (J.2) is numerically accurate for |t| ≤ t0,
whereas the spherical Bessel function expansion is valid for all t, and we use that in our
MATLAB implementation. The unnormalized Legendre polynomials Pk(x) were defined

in Eq. (I.8) of Appendix I. The normalized Legendre polynomials are
√
k+ 1

2 Pk(x). The
spherical Bessel functions jk(x) are defined in terms of the ordinary Bessel functions of
half-integer order:

jk(x)=
√
π
2x
J
k+ 1

2
(x) (J.4)

The eigenvalues λn are distinct and lie in the interval, 0 < λn < 1. Typically, they
have values near unity, λn � 1, for n = 0,1,2, . . . , up to about the so-called Shannon
number, Nc = 2c/π, and after that they drop rapidly towards zero. The Shannon
number represents roughly the number of degrees of freedom for characterizing a signal
of total frequency bandwidthΩ = 2ω0 and total time duration T = 2t0. If F is the total
bandwidth in Hz, that is, F = Ω/2π, then, Nc = FT,

Nc = 2c
π
= 2ω0t0

π
= 2ω0 2t0

2π
= ΩT

2π
= FT (J.5)
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Since, jk(ω0t)= jk(ct/t0), we note that up to a scale factor, ψn(t) is a function of
c and the scaled variable η = t/t0. Indeed, we have, ψn(t)= t−1/2

0 φn(c, t/t0), where,

φn(c,η)=
√
λn

∑
k
βnk

√
k+ 1

2 Pk(η)=
√
c

2π

∑
k
βnk

√
k+ 1

2 2ik−n jk(cη) (J.6)

We will also use the following notation to indicate explicitly the dependence on the
parameters t0,ω0 and c = t0ω0,

ψn(t0,ω0, t)= 1√
t0
φn

(
c,
t
t0

)
(J.7)

The k-summation in (J.2) goes over 0 ≤ k < ∞. However, k takes only even values,
k = 0,2,4, . . . , when n is even or zero, and only odd values, k = 1,3,5, . . . , when n is
odd. This also implies thatψn(t) is an even function of t, if n is even, and odd in t, if n
is odd, so that, ψn(−t)= (−1)nψn(t). The expansion coefficients βnk are real-valued
and because n, k have the same parity, i.e., n−k is even, it follows that the number ik−n

will be real, ik−n = (−1)(k−n)/2. Therefore, all ψn(t) are real-valued.
The k-summation can be extended to all k ≥ 0 by redefining the expansion coeffi-

cients βnk for all k by appropriately interlacing zeros as follows:

βnk =
[
βn0, 0, βn2, 0, βn4, 0, · · · ] (n even)[
0, βn1, 0, βn3, 0, βn5, · · · ] (n odd)

(J.8)

The expansion coefficients are chosen to satisfy the orthogonality property,

∞∑
k=0

βnkβmk = δnm n,m = 0,1,2, . . . (J.9)

This particular normalization is computationally convenient and enables the orthog-
onality properties of theψn(t) functions, that is, Eqs. (J.24) and (J.26). The coefficients
βnk may be constructed as the orthonormal eigenvectors of a real symmetric tridiagonal
matrix as we discuss below. We note also that for large t, the PSWF functions behave
like sinc-functions [1643,1658],

ψn(t)≈
√

2c
πλn

ψn(t0)
sin

(
ω0t − 1

2πn
)

ω0t
, for large |t| (J.10)

This follows from the asymptotic expansion of the spherical Bessel functions,

jk(x)≈
sin

(
x− 1

2πk
)

x
, for large |x|
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Fourier Transform

The bandlimited Fourier transform of ψn(t) can be constructed as follows. First, we
note that Pk(x) and jk(x) satisfy the following Fourier transform relationships [1822]:∫ 1

−1
ejωt π i−k Pk(ω)

dω
2π

= jk(t) , for all real t

∫∞
−∞
e−jωt jk(t)dt = πi−k Pk(ω)·χ1(ω)=

⎧⎨
⎩πi

−k Pk(ω) , |ω| < 1

0 , |ω| > 1

(J.11)

where χ1(ω) is the indicator function for the interval [−1,1], defined in terms of the
unit-step function u(x) as follows for a more general interval [−ω0,ω0],†

χω0(ω)= u
(
ω0 − |ω|

) =
⎧⎨
⎩1 , |ω| < ω0

0 , |ω| > ω0
(J.12)

It follows that the Fourier transform ĵk(ω) of jk(ω0t) is bandlimited over [−ω0,ω0],

ĵk(ω) =
∫∞
−∞
e−jωt jk(ω0t)dt = π

ω0 ik
Pk

(
ω
ω0

)
· χω0(ω)

jk(ω0t) =
∫ω0

−ω0

ejωt ĵk(ω)
dω
2π

=
∫ω0

−ω0

ejωt
π
ω0 ik

Pk
(
ω
ω0

)
dω
2π

(J.13)

In fact, the functions jk(ω0t), like theψn(t), form a complete and orthogonal basis
of the subspace Bω0 , see [1678,1679]. Their mutual orthogonality follows from Parse-
val’s identity and the orthogonality property (I.10) of the Legendre polynomials:∫∞

−∞
jk(ω0t) jn(ω0t)dt =

∫ω0

−ω0

ĵ∗k (ω)ĵn(ω)
dω
2π

= π
ω0

δkn
2k+ 1

(J.14)

The bandlimited Fourier transform ψ̂n(ω) ofψn(t) can now be obtained by Fourier-
transforming the spherical Bessel function expansion in (J.2), then using (J.13), and com-
paring the result with the Legendre expansion of (J.2), that is,

ψ̂n(ω)=
√

c
2πt0

∑
k
βnk

√
k+ 1

2 2ik−n ĵk(ω)

=
√

c
2πt0

∑
k
βnk

√
k+ 1

2 2ik−n
π
ω0 ik

Pk
(
ω
ω0

)
· χω0(ω)

= 2π
ω0

1

μn

√
λn
t0

∑
k
βnk

√
k+ 1

2 Pk
(
ω
ω0

)
︸ ︷︷ ︸

ψn(ωt0/ω0)

·χω0(ω)=
2π
ω0

1

μn
ψn

(
ωt0
ω0

)
· χω0(ω)

where μn was defined in terms of λn as follows:

μn = in |μn| , |μn| =
√

2πλn
c

⇒ λn = c
2π

|μn|2 (J.15)

† χω0(ω)may be defined to have the value 1
2 atω = ±ω0 corresponding to the unit-step valueu(0)= 1

2 .
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Thus, we find that ψ̂n(ω) is a scaled version of ψn(t) itself,

ψ̂n(ω)=
∫∞
−∞
e−jωt ψn(t)dt = 2π

ω0

1

μn
ψn

(
ωt0
ω0

)
· χω0(ω) (J.16)

The inverse Fourier transform brings out more clearly the meaning of μn:

ψn(t)=
∫ω0

−ω0

ejωt ψ̂n(ω)
dω
2π

⇒
∫ω0

−ω0

ejωt ψn
(
ωt0
ω0

)
dω
ω0

= μnψn(t) (J.17)

for all t. By changing variables toω→ tω0/t0 and t →ωt0/ω0, we also have,

∫ t0
−t0
ejωt ψn(t)

dt
t0
= μnψn

(
ωt0
ω0

)
for allω (J.18)

If (J.17) is written in terms of the scaled functionφn(η) of (J.6), then, μn is the eigen-
value and φn(η) the eigenfunction of the following integral operator with exponential
kernel: ∫ 1

−1
ejcηξ φn(ξ)dξ = μn φn(η) n = 0,1,2, . . . , and all η (J.19)

Similarly, (J.3) reads as follows with respect to φn(η),

∫ 1

−1

sin
(
c(η− ξ))
π(η− ξ) φn(ξ)dξ = λn φn(η) for all η (J.20)

Eqs. (J.3) and (J.15) can be derived from Eqs. (J.17) and (J.18). Indeed, multiplying
both sides of (J.17) by μ∗n and taking the complex conjugate of (J.18), we have,

|μn|2ψn(t)=
∫ω0

−ω0

μ∗n ψn
(
ωt0
ω0

)
ejωt

dω
ω0

=
∫ω0

−ω0

[∫ t0
−t0
e−jωt

′
ψn(t′)

dt′

t0

]
ejωt

dω
ω0

= 2π
t0ω0

∫ t0
−t0

[∫ω0

−ω0

ejω(t−t
′) dω

2π

]
ψn(t′)dt′ = 2π

c

∫ t0
−t0

sin
(
ω0(t − t′)

)
π(t − t′) ψn(t′)dt′

where we used the sinc-function transform,

sin(ω0t)
πt

=
∫∞
−∞
χω0(ω)e

jωt dω
2π

=
∫ω0

−ω0

ejωt
dω
2π

(J.21)

Eq. (J.3) follows now by multiplying both sides by c/2π and using the definition (J.15).
Any function f(t) in Bω0 with a bandlimited Fourier transform f̂ (ω) over [−ω0,ω0]
satisfies a similar sinc-kernel integral equation, but over the infinite time interval, −∞ <
t <∞. Indeed, using the convolution theorem of Fourier transforms and (J.21), we have,

f(t)=
∫ω0

−ω0

f̂ (ω)ejωt
dω
2π

=
∫∞
−∞
χω0(ω)f̂(ω)e

jωt dω
2π

=
∫∞
−∞

sin
(
ω0(t − t′)

)
π(t − t′) f(t′)dt′



J. Prolate Spheroidal Wave Functions 1303

that is, for f(t)∈ Bω0 and for all t,

f(t)=
∫∞
−∞

sin
(
ω0(t − t′)

)
π(t − t′) f(t′)dt′ (J.22)

Thus, because they lie in Bω0 , all ψn(t) satisfy a similar condition,

∫∞
−∞

sin
(
ω0(t − t′)

)
π(t − t′) ψn(t′)dt′ = ψn(t) , for all t (J.23)

Orthogonality and Completeness Properties

The PSWF functionsψn(t) satisfy dual orthogonality and completeness properties, that
is, the ψn(t) functions form an orthogonal and complete basis for both L2

t0 and Bω0 .
With respect to the space L2

t0 , we have,

∫ t0
−t0
ψn(t)ψm(t)dt = λn δnm (orthogonality) (J.24)

∞∑
n=0

1

λn
ψn(t)ψn(t′)= δ(t − t′) (completeness) (J.25)

for t, t′ ∈ [−t0, t0]. And, with respect to the subspaceBω0 , we have for the infinite time
interval, −∞ < t <∞,

∫∞
−∞
ψn(t)ψm(t)dt = δnm (J.26)

∞∑
n=0

ψn(t)ψn(t′)= sin
(
ω0(t − t′)

)
π(t − t′) for all t, t′ (J.27)

Eq. (J.24) can be derived from the Legendre expansion in (J.2) as a consequence of
the normalization condition (J.9) and the Legendre polynomial orthogonality (I.10). Sim-
ilarly, (J.26) can be derived from the spherical Bessel function expansion and (J.14).

The sinc-kernel in (J.27) plays the role of the identity operator for functions in Bω0 ,
as implied by (J.22). Taking the limit t′ → t on both sides of (J.27), we obtain the
following relationship, valid for all t,

∞∑
n=0

ψ2
n(t)=

ω0

π
(J.28)

Integrating this over [−t0, t0] and using (J.24) for n =m, we obtain the sums,

∞∑
n=0

λn = 2c
π
= Nc ⇒

∞∑
n=0

|μn|2 = 4 (J.29)
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Another identity can be derived from (J.27) by taking Fourier transforms of both
sides with respect to the variable t′ and using the delay theorem of Fourier transforms
on the right-hand-side, resulting in,

e−jωt · χω0(ω)=
∞∑
n=0

ψn(t)ψ̂n(ω)= 2π
ω0
χω0(ω)

∞∑
n=0

1

μn
ψn(t)ψn

(
ωt0
ω0

)
, or,

2π
ω0

∞∑
n=0

1

μn
ψn(t)ψn

(
ωt0
ω0

)
= e−jωt , for all t and |ω| < ω0 (J.30)

and in particular, settingω = 0, we have for all t,

2π
ω0

∞∑
n=0

1

μn
ψn(0)ψn(t)= 1 (J.31)

Eqs. (J.27)–(J.31) are demonstrated in Examples J.1–J.2. The completeness property
(J.25) can also be derived by complex-conjugating both sides of (J.30) and taking Fourier
transforms with respect to the variable t, denoting the corresponding frequency byω′,
with |ω′| < ω0,

2π
ω0

∞∑
n=0

1

μ∗n
ψ̂n(ω′)ψn

(
ωt0
ω0

)
= 2πδ(ω−ω′) , or,

(2π)2

ω2
0

∞∑
n=0

1

|μn|2 ψn
(
ωt0
ω0

)
ψn

(
ω′t0
ω0

)
= 2πδ(ω−ω′)

or, using the relationship, |μn|2 = 2πλn/c,
∞∑
n=0

1

λn
ψn

(
ωt0
ω0

)
ψn

(
ω′t0
ω0

)
= δ

(
ωt0
ω0

− ω
′t0
ω0

)
(J.32)

forω,ω′ ∈ [−ω0,ω0]. This becomes equivalent to Eq. (J.25) after replacing,ωt0/ω0 →
t andω′t0/ω0 → t′, with t, t′ ∈ [−t0, t0]. In a similar fashion, Eq. (J.24) can be derived
by applying Parseval’s identity to (J.26).

Signal Restoration

Another application is in signal restoration, such as image restoration through a finite-
aperture diffraction-limited optical system, involving the inversion of the sinc-kernel
over the finite interval [−t0, t0], that is, finding a kernel function, say, K(t, t′), that
performs the inverse operation,

g(t)=
∫ t0
t0

sin
(
ω0(t − t′)

)
π(t − t′) f(t′)dt′ ⇒ f(t)=

∫ t0
−t0
K(t, t′)g(t′)dt′ (J.33)

for |t| ≤ t0. It is easily verified that K(t, t′) is given formally by [1569],†

K(t, t′)=
∑
n

1

λ2
n
ψn(t)ψn(t′) , for t, t′ ∈ [−t0, t0] (J.34)

†A more precise meaning may be given to (J.34) by the regularized versions discussed below.
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The operation of K(t, t′) on the sinc-kernel generates the identity kernel, that is,

∫ t0
−t0
K(t, t′′)

sin
(
ω0(t′′ − t′)

)
π(t′′ − t′) dt′′ = δ(t − t′) , for t, t′ ∈ [−t0, t0] (J.35)

Indeed, using (J.24), (J.25), (J.27), and (J.34), we have,

∫ t0
−t0
K(t, t′′)

sin
(
ω0(t′′ − t′)

)
π(t′′ − t′) dt′′ =

=
∫ t0
−t0

[∑
n

1

λ2
n
ψn(t)ψn(t′′)

][∑
m
ψm(t′′)ψm(t′)

]
dt′′

=
∑
n

∑
m

1

λ2
n
ψn(t)

[∫ t0
−t0
ψn(t′′)ψm(t′′)dt′′

]
︸ ︷︷ ︸

λnδnm

ψm(t′)

=
∑
n

1

λn
ψn(t)ψn(t′)= δ(t − t′) , for t, t′ ∈ [−t0, t0]

Such inversion method will most surely fail in practice if there is even a tiny amount
of noise in the observed data. Suppose, for example, that we add a small noise compo-
nent v(t) to Eq. (J.33),

g(t)=
∫ t0
t0

sin
(
ω0(t − t′)

)
π(t − t′) f(t′)dt′ + v(t) (J.36)

then, the restored signal will be,

frest(t)=
∫ t0
−t0
K(t, t′)g(t′)dt′ = f(t)+

∫ t0
−t0
K(t, t′)v(t′)dt′ ≡ f(t)+u(t)

where the noise v(t) and its inverse-filtered version u(t) can be expanded in the fol-
lowing forms over [−t0, t0],

v(t)=
∑
n
vn ψn(t) ⇒ u(t)=

∫ t0
−t0
K(t, t′)v(t′)dt′ =

∑
n

vn
λn
ψn(t)

Thus, even if all the vn were tiny, the ratios vn/λn can become very large, because
the λn tend to zero for large n, and the filtered noise u(t) will be amplified and may
completely mask the desired signal component f(t).

A way out of this, which provides only an approximation to the inverse kernel, is to
limit the summation over n to those eigenvalues λn that are large and near unity, that
is, for n less than about the Shannon number Nc. For example, usingM+ 1 terms, with
M nearNc, we have the following approximation to K(t, t′) and to the delta function in
(J.35), for t, t′ in [−t0, t0],

K̂(t, t′)=
M∑
n=0

1

λ2
n
ψn(t)ψn(t′) (J.37)
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δ̂(t, t′)=
∫ t0
−t0
K̂(t, t′′)

sin
(
ω0(t′′ − t′)

)
π(t′′ − t′) dt′′ =

M∑
n=0

1

λn
ψn(t)ψn(t′) (J.38)

where δ̂(t, t′) approximates δ(t − t′), for t, t′ ∈ [−t0, t0]. With f(t) expanded as,

f(t)=
∞∑
n=0

fnψn(t) , |t| ≤ t0 (J.39)

it follows that the restoration approximations correspond to the finite sums,

frest(t)= f̂ (t)+û(t)=
M∑
n=0

fnψn(t)+
M∑
n=0

vn
λn
ψn(t) (J.40)

Keeping only a finite number of terms is a form of regularization of the inverse fil-
tering operation. Other regularization schemes are possible, for example, the Tikhonov-
type regularization approximating δ(t − t′) over [−t0, t0],

δ̂(t, t′)=
∞∑
n=0

λn
λ2
n + ε2

ψn(t)ψn(t′) (J.41)

where ε small regularization parameter, ε2 � 1. The summation in (J.41) effectively
cuts off as soon as λn ≈ ε, while it behaves like (J.38) for 1 ≥ λn� ε.

Setting t′ = 0 in Eqs. (J.25), (J.38), and (J.41), we obtain the following bandlimited
approximations to a delta function δ(t), over the finite interval [−t0, t0],

δ(t)=
∞∑
n=0

1

λn
ψn(0)ψn(t) , −t0 ≤ t ≤ t0 (J.42)

δ̂(t)=
M∑
n=0

1

λn
ψn(0)ψn(t) , −t0 ≤ t ≤ t0 (J.43)

δ̂(t)=
∞∑
n=0

λn
λ2
n + ε2

ψn(0)ψn(t) , −t0 ≤ t ≤ t0 (J.44)

Given that δ(t) has a flat spectrum extending over −∞ < ω < ∞, referring to a
“bandlimited” delta function is an oxymoron. However, the above expressions approx-
imate δ(t) only over the finite interval, −t0 ≤ t ≤ t0, while they have bandlimited
spectrum over −ω0 < ω < ω0. Outside the [−t0, t0] interval, they result in extremely
large values. In fact, these expressions provide the ultimate example of superoscillations
[1619–1631], which are bandlimited signals that, over a finite time interval, appear to
oscillate faster than their highest frequency, but typically, exhibit much higher values
outside that interval. Indeed, the above δ(t) is the fastest varying signal in [−t0, t0]
while at the same time it remains bandlimited.

Example J.3 explores the approximation of Eq. (J.43). We will use it in Sec. 20.22 in
the design of superresolving pupil masks for achieving highly focused fields, and in the
design of supergain aperture antennas for achieving very high directivity.
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Representation and Extrapolation of Bandlimited Functions

If a function f(t) is bandlimited over [−ω0,ω0], then the completeness of the ψn(t)
basis implies that f(t) can be expanded in the following form, for all t,

f(t)=
∑
n
cnψn(t) , with cn =

∫∞
−∞
ψn(t)f(t)dt (J.45)

Using the expansion (J.45) and the orthogonality property (J.24), we may obtain an
alternative way of calculating the coefficients cn that involves knowledge of f(t) only
over the finite interval [−t0, t0],

cn = 1

λn

∫ t0
−t0
ψn(t)f(t)dt (J.46)

Thus, once cn are determined, f(t) can be extrapolated outside [−t0, t0] using (J.45).
The validity of this procedure rests on the assumption that f(t) is a bandlimited function
in Bω0 and a segment of it is known over the interval [−t0, t0].

If f(t) is an arbitrary function inL2
t0 , but is not necessarily a segment of a bandlimited

function in Bω0 , then the orthogonality and completeness properties (J.24) and (J.25)
still allow an expansion in the following form, but valid only for |t| ≤ t0,

f(t)=
∑
n
cnψn(t) , with cn = 1

λn

∫ t0
−t0
ψn(t)f(t)dt (J.47)

The attempt to extrapolate f(t) beyond [−t0, t0] using (J.47) could diverge and lead
to extremely large values for f(t) outside the [−t0, t0] interval. This, again, is an exam-
ple of superoscillations.

The representation (J.45) of a bandlimited function f(t) in the ψn(t) basis is con-
venient, but is not the only one. One could also expand f(t) in the spherical Bessel
function basis jn(ω0t), or in the familiar sinc-function basis that appears in the sam-
pling theorem. We summarize these expansions and their Fourier transforms below.

The expansion coefficients cn can be expressed either in the time domain or in the
frequency domain. Let f(t) be inBω0 with a bandlimited Fourier transform f̂ (ω), then,
in the ψn(t) basis,

f(t) =
∑
n
cnψn(t)

f̂(ω) =
∑
n
cn

2π
ω0

1

μn
ψn

(
ωt0
ω0

)
· χω0(ω)

(J.48)

with,

cn =
∫∞
−∞
ψn(t)f(t)dt = 1

λn

∫ t0
−t0
ψn(t)f(t)dt = 1

μ∗n

∫ω0

−ω0

ψn
(
ωt0
ω0

)
f̂ (ω)

dω
ω0

(J.49)

Similarly, in the jn(ω0t) basis, with Legendre polynomial Fourier transform,
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f(t) =
∑
n
cn jn(ω0t)

f̂(ω) =
∑
n
cn

π
ω0 in

Pn
(
ω
ω0

)
· χω0(ω)

(J.50)

with,

cn = (2n+ 1)ω0

π

∫∞
−∞
jn(ω0t) f(t)dt = i

n(2n+ 1)
2π

∫ω0

−ω0

f̂ (ω)Pn
(
ω
ω0

)
dω (J.51)

and in the sinc-function basis, with Ts = π/ω0 denoting the sampling time interval,

f(t) =
∑
n
cn

sin
(
ω0(t − nTs)

)
π(t − nTs) = Ts

∑
n
f(nTs)

sin
(
ω0(t − nTs)

)
π(t − nTs)

f̂(ω) =
∑
n
cn e−jωnTs · χω0(ω)= Ts

∑
n
f(nTs) e−jωnTs · χω0(ω)

(J.52)

with,

cn = Ts f(nTs)= Ts
∫ω0

−ω0

f̂ (ω)ejωnTs
dω
2π

(J.53)

Note that the sinc-basis satisfies the orthogonality condition:

∫∞
−∞

sin
(
ω0(t − nTs)

)
π(t − nTs)

sin
(
ω0(t −mTs)

)
π(t −mTs) dt = 1

Ts
δnm (J.54)

The result, cn = Ts f(nTs), follows from (J.54) by applying (J.22) at t = nTs, indeed,

f(nTs) =
∫∞
−∞

sin
(
ω0(t − nTs)

)
π(t − nTs) f(t)dt

=
∫∞
−∞

sin
(
ω0(t − nTs)

)
π(t − nTs)

[∑
m
cm

sin
(
ω0(t −mTs)

)
π(t −mTs)

]
dt

=
∑
m
cm

∫∞
−∞

sin
(
ω0(t − nTs)

)
π(t − nTs)

sin
(
ω0(t −mTs)

)
π(t −mTs) dt

=
∑
m
cm

1

Ts
δnm = cnTs ⇒ cn = Ts f(nTs)

Up to the factor Ts, the cn are the time samples of f(t), and f̂ (ω) in (J.52) is rec-
ognized as the central Nyquist replica of the DTFT of the discrete-time signal f(nTs).
Moreover, Eq. (J.53) is the inverse DTFT of f̂ (ω) integrated over the Nyquist interval.

The Shannon number can be understood with the help of (J.52). In this context, we
are assuming that the bandlimited function f(t) is sampled at its Nyquist rate, which
is 2ω0 in units of radians/sec, or, fs = 2ω0/2π = ω0/π in samples/sec, so that the
sampling time interval is Ts = 1/fs = π/ω0 in seconds. Thus, the sampling rate fs
plays the role of F in (J.5).
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Because f(t) is frequency-limited, it cannot be time-limited. However, if we assume
that the most significant time samples of f(t) are contained within a total time interval
T, say, 0 ≤ nTs ≤ T, then the maximum time index, and hence the number of significant
time samples will be, nmaxTs = T, or, nmax = T/Ts = fsT, that is, the Shannon number.

Energy Concentration Properties

Consider a bandlimited signal f(t) in Bω0 with an expansion of the form (J.48),

f(t)=
∑
n
cnψn(t) , with cn =

∫∞
−∞
ψn(t)f(t)dt = 1

λn

∫ t0
−t0
ψn(t)f(t)dt (J.55)

Then, its energy contained in [−t0, t0] and in the infinite interval are given by the norms,

∫ t0
−t0
f2(t)dt =

∞∑
n=0

λn c2
n ,

∫∞
−∞
f2(t)dt =

∞∑
n=0

c2
n (J.56)

The proportion of the total energy contained in the interval [−t0, t0] is the ratio,

R(f)=

∫ t0
−t0
f2(t)dt

∫∞
−∞
f2(t)dt

=

∞∑
n=0

λn c2
n

∞∑
n=0

c2
n

(J.57)

In the context of designing apodization functions in Sec. 20.12, it is known as the
“encircled energy” ratio, while in the context of superdirective antennas, its inverse is
known as Taylor’s supergain or superdirectivity ratio [1602].

The following extremal properties of the PSWF functions can be derived from (J.57).
Because the eigenvalues λn are in decreasing order, 1 > λ0 > λ1 > λ2 > · · · > 0, it is
easily seen that R(f) is maximized when c0 �= 0, and cn = 0, for n ≥ 1, that is, when
f(t)= ψ0(t), and the maximized value isR(ψ0)= λ0. This follows from the inequality,

λ0 −R(f)=

∞∑
n=1

(λ0 − λn)c2
n

∞∑
n=0

c2
n

≥ 0

with equality realized when cn = 0 for all n ≥ 1. Similarly, among all the functions
in Bω0 that are orthogonal to ψ0(t), the energy ratio R(f) is maximized when f(t)=
ψ1(t), with maximum value R(ψ1)= λ1. In this case the c0 term is absent because of
the orthogonality to ψ0, and R(f) becomes,

R(f)=

∞∑
n=1

λn c2
n

∞∑
n=1

c2
n

⇒ λ1 −R(f)=

∞∑
n=2

(λ1 − λn)c2
n

∞∑
n=1

c2
n

≥ 0
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More generally, among all the functions inBω0 that are simultaneously orthogonal to
ψ0(t),ψ1(t), . . . ,ψn−1(t), the function f(t)= ψn(t) maximizes R(f) with maximum
value R(ψn)= λn.

If f(t) is not necessarily bandlimited inBω0 then, as we mentioned earlier, its values
outside the interval [−t0, t0] could become very large causing the energy concentration
ratio R(f) to become very small.

Thus, a related optimization problem is to find that function g(t) in Bω0 that has a
prescribed value of the energy ratio, say,R(g)= R0 < 1, and provides the best approx-
imation to a given f(t) within the [−t0, t0] interval. Using a mean-square criterion, the
problem can be stated as finding g(t)∈ Bω0 that minimizes the following performance
index subject to the energy ratio constraint,

J =
∫ t0
−t0

(
f(t)−g(t))2 = min , subject to R0 =

∫ t0
−t0
g2(t)dt

∫∞
−∞
g2(t)dt

(J.58)

or equivalently, we may introduce a Lagrange multiplier μ for the constraint,

J =
∫ t0
−t0

(
f(t)−g(t))2 + μ

(
R0

∫∞
−∞
g2(t)−

∫ t0
−t0
g2(t)dt

)
= min (J.59)

Expand f(t) and g(t) in the ψn(t) basis,

f(t)=
∑
n
fn ψn(t) , for |t| ≤ t0

g(t)=
∑
n
gn ψn(t) , for all t

(J.60)

where fn may be assumed to be known since f(t) is given. Then, (J.59) becomes,

J =
∑
n
λn(gn − fn)2+μ

(
R0

∑
n
g2
n −

∑
n
λn g2

n

)
= min (J.61)

The minimization condition with respect to gn gives,

∂J
∂gn

= 0 ⇒ λn(gn − fn)+μ(R0 − λn)gn = 0 , or,

gn = λn fn
λn + μ(R0 − λn) (J.62)

with the Lagrange multiplier μ determined by solving the constraint equation,

R0

∑
n
g2
n −

∑
n
λn g2

n =
∑
n
(R0 − λn)g2

n = 0 , or,

∑
n
(R0 − λn)

[
λn fn

λn + μ(R0 − λn)

]2

= 0 (J.63)
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Computation

The numerical computation ofψn(t) is based on keeping only a finite number of terms
in the summation of Eq. (J.2), e.g., 0 ≤ k ≤ K − 1,

ψn(t)=
√
λn
t0

K−1∑
k=0

βnk
√
k+ 1

2 Pk
(
t
t0

)
=
√

c
2πt0

K−1∑
k=0

βnk
√
k+ 1

2 2ik−n jk
(
ω0t

)
(J.64)

where K is chosen to be sufficiently large. In practice, the choice, K = 2N + 30, is
adequate [1670], where N = M + 1 is the number of PSWF functions to be calculated,
that is, ψn(t), n = 0,1,2, . . . ,M.

The computation of βnk is based on the observation [1643] that the PSWF functions
ψn(t) are also the eigenfunctions of the following Sturm-Liouville differential operator
eigenproblem, that arises in solving the Helmholtz equation in spheroidal coordinates,[

(t2 − t20)
d2

dt2
+ 2t

d
dt
+ω2

0 t2
]
ψn(t)= χnψn(t) , n = 0,1,2, . . . (J.65)

The eigenvalues χn are real and positive and when listed in increasing order, they
match the eigenvalues λn of Eq. (J.3) listed in decreasing order, that is, we have the
correspondence,

0 < χ0 < χ1 < χ2 < . . . ,
1 > λ0 > λ1 > λ2 > . . . ,

There is extensive literature on the computation of the PSWF solutions of (J.65),
including its generalization to higher order PSWFs, with implementations in FORTRAN,
MATLAB, and Mathematica [1654–1677].

Our MATLAB implementation is based on Rhodes [1658] who gives normalization-
independent expressions, Hodge [1660] who was the first to suggest using a tridiagonal
eigenvalue problem for calculating the coefficients βnk, Kozin et al. [1662] who applied
Hodge’s method specifically to order-zero PSWFs, and Xiao et al [1664] and Boyd [1670]
for some more recent implementations. Accurate computation of the eigenvalues λn
and eigenfunctions ψn(t) is very demanding for large values of c and large values of n
because theλn quickly get smaller than the machine epsilon, even using double precision
as in MATLAB.

If one inserts the Legendre polynomial expansion of Eq. (J.2) into (J.65), one finds
that the coefficients βnk satisfy the following recursion formula, for k ≥ 0,

Ak,k−2 βn,k−2 +Ak,k βnk +Ak,k+2 βn,k+2 = χn βnk (J.66)

where the first term is present only for k ≥ 2, and,

Ak,k = k(k+ 1)+ c2 · 2k(k+ 1)−1

(2k+ 3)(2k− 1)
, k ≥ 0

Ak,k+2 = c2 · (k+ 2)(k+ 1)
(2k+ 3)

√
(2k+ 1)(2k+ 5)

, k ≥ 0

Ak,k−2 = Ak−2,k = c2 · k(k− 1)
(2k− 1)

√
(2k− 3)(2k+ 1)

, k ≥ 2

(J.67)
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If a finite number of coefficients is kept, such as, K = 2N+30, then, we may define a
K×K symmetric tridiagonal matrixAwhose main diagonal isAk,k, for k = 0,1, . . . , K−1,
and whose upper and lower second diagonals are given byAk,k+2, for k = 0,1, . . . , K−3.
For example, if K = 8, the matrix will have the following structure,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 0 A02 0 0 0 0 0
0 A11 0 A13 0 0 0 0
A02 0 A22 0 A24 0 0 0
0 A13 0 A33 0 A35 0 0
0 0 A24 0 A44 0 A46 0
0 0 0 A35 0 A55 0 A57

0 0 0 0 A46 0 A66 0
0 0 0 0 0 A57 0 A77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The difference equation (J.65) is equivalent then to the following eigenvalue equation,
where the coefficients βn,k are arranged into the corresponding eigenvectors,

Aβββn = χnβββn , βββn =

⎡
⎢⎢⎢⎢⎢⎣
βn,0
βn,1
...
βn,K−1

⎤
⎥⎥⎥⎥⎥⎦ (J.68)

Because A is real and symmetric, its eigenvectors may be chosen to be real-valued
and orthonormal, that is, satisfying Eq. (J.9). And because of the particular structure of
A, having only a nonzero second upper/lower subdiagonal, every other element of the
eigenvectors may be set to zero, that is, βn,k = 0, if n−k is odd. For example, if K = 8,
the eigenvectors, will have the following structure,

βββn,even

n=0,2,4,6

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βn0

0
βn2

0
βn4

0
βn6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, βββn,odd

n=1,3,5,7

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
βn1

0
βn3

0
βn5

0
βn7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

MATLAB can very efficiently and accurately solve the above tridiagonal eigenvalue
problem using the built-in function eig, and obtain allK eigenvectorsβββn and eigenvalues
χn (even for very large values of c,K, e.g., c = 100, K = 1000).

Once the K×K eigenvalue problem (J.68) is solved, we may retain the first M + 1
eigenvectors βββn, for n = 0,1, . . . ,M, that are needed in the computation of ψn(t). One
still has the task of determining the corresponding eigenvalues λn of the eigenproblem
(J.3). Since λn appears in (J.2), we may solve for it by evaluating both sides of (J.64) at
a particular value of t. It’s is simpler to solve for μn and then calculate λn from (J.15).
Multiplying both sides of (J.64) by in

√
2πt0/c, we obtain the relationship:

in
√

2πt0
c
ψn(t)= μn

K−1∑
k=0

βnk
√
k+ 1

2 Pk
(
t
t0

)
=
K−1∑
k=0

βnk
√
k+ 1

2 2ik jk
(
ω0t

)
(J.69)
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One obvious choice is to set t = t0, and since Pn(1)= 1, we may solve for μn,

μn =

K−1∑
k=0

βnk
√
k+ 1

2 2ik jk(c)

K−1∑
k=0

βnk
√
k+ 1

2

n = 0,1, . . . ,M (J.70)

Another choice is to set t = 0, resulting in

μn
K−1∑
k=0

βnk
√
k+ 1

2 Pk(0)=
K−1∑
k=0

βnk
√
k+ 1

2 2ik jk(0) (J.71)

However, this works only for n even, because if n and k are odd, both Pk(0) and jk(0)
are zero. In this case, one may work with the time derivative of both sides of (J.64),

μn
K−1∑
k=0

βnk
√
k+ 1

2

1

t0
P′k

(
t
t0

)
=
K−1∑
k=0

βnk
√
k+ 1

2 2ik ω0 j′k
(
ω0t

)
, or,

μn
K−1∑
k=0

βnk
√
k+ 1

2 P
′
k

(
t
t0

)
=
K−1∑
k=0

βnk
√
k+ 1

2 2ik c j′k
(
ω0t

)
Evaluating this at t = 0 will work for n odd, but not for n even,

μn
K−1∑
k=0

βnk
√
k+ 1

2 P
′
k(0)=

K−1∑
k=0

βnk
√
k+ 1

2 2ik c j′k(0) (J.72)

We may add (J.71) and (J.72) together to get a combined formula that works for all n,
even or odd, and solve for μn,

μn =

K−1∑
k=0

βnk
√
k+ 1

2 2ik
[
jk(0)+c j′k(0)

]
K−1∑
k=0

βnk
√
k+ 1

2

[
Pk(0)+P′k(0)

] n = 0,1, . . . ,M (J.73)

The spherical Bessel functions jk(x) for k ≥ 0 have the following limiting behavior,

jk(x) −→
x→0

xk

1 · 3 · 5 · · · (2k+ 1)
⇒ jk(0)= δk =

⎧⎨
⎩1, k = 0

0, k �= 0
(J.74)

The derivative, j′k(x), can be computed from the recursion:

j′k(x)=
k jk−1(x)−(k+ 1)jk+1(x)

2k+ 1
(J.75)

and using the result (J.74),

j′k(0)=
kδk−1 − (k+ 1)δk+1

2k+ 1
= 1

3
δk−1 (J.76)
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Using (J.74) and (J.76), the numerator in (J.73) simplifies to the k = 0 and k = 1 terms,

μn =
√

2βn0 +
√

2

3
icβn1

K−1∑
k=0

βnk
√
k+ 1

2

[
Pk(0)+P′k(0)

] n = 0,1, . . . ,M (J.77)

The quantities, Pk(0), P′k(0), can be calculated in terms of gamma-functions,

Pk(0)=
√
π

Γ
(
k
2
+ 1

)
Γ
(

1

2
− k

2

) , P′k(0)= kPk−1(0)= −2
√
π

Γ
(
k
2
+ 1

2

)
Γ
(
−k

2

) (J.78)

These are valid for all k ≥ 0 and give Pk(0)= 0, for odd k, and P′k(0)= 0, for even k.
Moreover, they can be implemented as vectorized functions in MATLAB. For a given n,
either the left or the right terms will be non-zero in the numerator and denominator of
(J.77). We have found that the choice (J.77) produces more accurate results than (J.70)
for moderate values of c,M, up to about, c = 50,M = 50.

The following MATLAB function, pswf.m, implements the above computational steps.
It also computes the derivatives ψ′n(t). It has usage:

[Psi,La,dPsi,Chi,B] = pswf(t0,w0,M,t); % prolate spheroidal wave functions

[Psi,La,dPsi,Chi,B] = pswf(t0,w0,M,t,K);

t0 = time limit, [-t0,t0], (sec)

w0 = freq limit, [-w0,w0], (rad/sec)

M = max order computed, evaluating psi_n(t), n = 0,1,...,M

t = length-L vector of time instants (sec), e.g., t = [t1,t2,...,tL]

Psi = (M+1)xL matrix of prolate function values

La = (M+1)x1 vector of eigenvalues

dPsi = (M+1)xL matrix of derivatives of prolate functions

Chi = (M+1)x1 vector of eigenvalues of spheroidal differential operator

B = (M+1)xK matrix of expansion coefficients

K = number of expansion terms (default, K=2*N+30, N=M+1)

For a given maximum orderM and time vector t = [t1, t2, . . . , tL], the output matrix
Psi contains the computed values ψn(ti), arranged into an (M + 1)×L matrix,

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(t1) ψ0(t2) ψ0(t3) · · · ψ0(tL)
ψ1(t1) ψ1(t2) ψ1(t3) · · · ψ1(tL)
ψ2(t1) ψ2(t2) ψ2(t3) · · · ψ2(tL)

...
...

... · · · ...
ψM(t1) ψM(t2) ψM(t3) · · · ψM(tL)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The output dPsi contains the derivatives ψ′n(ti) arranged in a similar fashion. The
outputs La,Chi are column vectors containing the eigenvalues λn,χn, n = 0,1, . . . ,M.
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The (M + 1)×K matrix B contains the expansion coefficients, Bnk = βnk, in its rows,
with the appropriate interlacing of zeros for even or odd n, that is,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β0,0 0 β0,2 0 β0,4 0 · · · β0,K−1

0 β1,1 0 β1,3 0 β1,5 · · · β1,K−1

β2,0 0 β2,2 0 β2,4 0 · · · β2,K−1

0 β3,1 0 β3,3 0 β3,5 · · · β3,K−1

...
...

...
...

...
... · · · ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The eigenvector matrix is actually the transposed, BT = [
βββ0, βββ1, . . . , βββM

]
, which

satisfies the eigenvalue equation, ABT = BTX, where X = diag{χ0, χ1, . . . , χM}, and
the orthonormality property,

BBT = IM+1 ⇒
K−1∑
k=0

βnkβmk = δnm , n,m = 0,1, . . . ,M

The required spherical Bessel function computations are implemented by the MAT-
LAB function, spherj.m, which also computes the derivatives using the recursion (J.75).
It arranges its output similarly to pswf, and has usage:

[J,dJ] = spherj(k,x); % spherical Bessel functions and derivatives

The derivatives, ψ′n(t), are computed using the expansion,

ψ′n(t)=
√

c
2πt0

K−1∑
k=0

βnk
√
k+ 1

2 2ik−nω0 j′k
(
ω0t

)
(J.79)

The functions pswf and spherj are included in the EWA-toolbox of this book, and
work well for parameter values up to about c = 50 andM = 50. A related function that
evaluates Legendre polynomials and can be used in the Legendre expansion of Eq. (J.2)
is the function legpol with usage:

P = legpol(N,x); % evaluates Legendre polynomials of orders n=0:N

Example J.1: The following MATLAB code illustrates the usage of the pswf function and repro-
duces the data tables and plots from Rhodes [1658] for the case c = 6.

t0=1; w0=6; c=t0*w0; M=13;

t = linspace(-5,5,501);

[Psi,La,dPsi,Chi] = pswf(t0,w0,M,t); % calculate the first 14 PSWFs

figure; plot(t,Psi(1:4,:)); % plot first four PSWFs
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The following graph plots the first four PSWFs, ψn(t), n = 0,1,2,3.
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The following table contains the values of the quantities χn,μn, λn for n = 0,1, . . . ,13, as
well the values of the sum, ψn(0)+ψ′n(0), which represents either ψn(0) if n is even, or
ψ′n(0) id n is odd. They agree with those in [1658].

n chi_n |mu_n| psi_n(0)+psi_n’(0) lambda_n
----------------------------------------------------------------------------
0 5.208269160e+00 1.023276504e+00 1.631136822e-03 9.999018826e-01
1 1.600044275e+01 1.021309607e+00 -5.777995494e-02 9.960616433e-01
2 2.535647864e+01 9.922435547e-01 3.539393687e-02 9.401733902e-01
3 3.320419949e+01 8.229938914e-01 4.428586710e-01 6.467919492e-01
4 4.072019427e+01 4.659781027e-01 -3.045590356e-01 2.073492169e-01
5 4.977371213e+01 1.693510361e-01 -7.517787765e-01 2.738716624e-02
6 6.118075690e+01 4.524678973e-02 7.141707743e-01 1.955000734e-03
7 7.485286653e+01 9.966212672e-03 5.750889706e-01 9.484876556e-05
8 9.065115937e+01 1.897100693e-03 -1.117460330e+00 3.436783286e-06
9 1.085154453e+02 3.192404741e-04 3.163806610e-02 9.732115989e-08
10 1.284188799e+02 4.820488557e-05 1.196006265e+00 2.218980545e-09
11 1.503474435e+02 6.605196410e-06 -9.118593645e-01 4.166226284e-11
12 1.742930029e+02 8.286721621e-07 -5.384541132e-01 6.557478591e-13
13 2.002505133e+02 9.588946460e-08 1.423257002e+00 8.780377122e-15

The table was generated by the MATLAB code,

n = (0:M)’;
Mu = sqrt(2*pi/c*La); % calculate |mu_n| from la_n
P = Psi(:,1) + dPsi(:,1); % interlace psi_n(0) and its derivative psi_n’(0)

fprintf(’ n chi_n |mu_n| psi_n(0)+psi_n’’(0) lambda_n\n’)
fprintf(’----------------------------------------------------------------------------\n’)
fprintf(’%3d %1.9e %1.9e % 1.9e %1.9e\n’, [n,Chi,Mu,P,La]’)
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The Shannon number is Nc = 2c/π = 3.8194. We observe in the above table how quickly
the eigenvalues λn decay towards zero for n > Nc. The following figure plots λn and the
dividing line at Nc (the eigenvalues have been joined by a smooth curve to guide the eye.)
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The following MATLAB code tests the relationships (J.28) and (J.29) forM = 13 andM = 25.
The graphs plot the quantity,

FM(t)= π
ω0

M∑
n=0

ψ2
n(t) (J.80)

which should tend to unity asM increases and more terms are included in the sum.

F = sum(Psi.^2) * pi/w0; % test: pi/w0 * \sum_n psi_n(t)^2 = 1
figure; plot(t,F,’b-’) % gets better as M is increased

Nc = 2*c/pi; % Nc = 3.8197, Shannon number
Err = abs(sum(La)-Nc); % Err = 1.3323e-15, for M=13
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Example J.2: This example tests the relationships (J.27) and (J.31). Setting t′ = 0 in (J.27), we
obtain the limit,

lim
M→∞

FM(t)= sin(ω0t)
πt

, where FM(t)=
M∑
n=0

ψn(0)ψn(t)

Similarly we have the limit of (J.31),

lim
M→∞

GM(t)= 1 , where GM(t)= 2π
ω0

M∑
n=0

1

μn
ψn(0)ψn(t)

The following MATLAB code computes and plots FM(t),GM(t) forM = 4 andM = 20 for
the case t0 = 1,ω0 = 6,

t0 = 1; w0 = 6; c = t0*w0;
t = linspace(-4,4,801);

for M = [4,20]
[Psi,La] = pswf(t0,w0,M,t);
Psi0 = Psi(:,t==0);

F = Psi0’ * Psi;

figure; plot(t,F,’b-’, t,sinc(w0*t/pi)*w0/pi,’r:’);

n = (0:M)’;
Mu = i.^n .* sqrt(2*pi*La/c);
G = (2*pi/w0) * Psi0’ * diag(1./Mu) * Psi;

figure; plot(t,G,’b-’);
end
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The convergence of FM(t) is very quick and one can barely distinguish the approximation
from the exact sinc function on the graphs (see the color graphs in the PDF book file). ��

Example J.3: Here we explore the bandlimited approximation (J.43) of a delta function over a
limited time interval. Let us denote the approximation by,

δM(t)=
M∑
n=0

1

λn
ψn(0)ψn(t) (J.81)

The following MATLAB code segment evaluates and plots δM(t) for the following values
of the parameters: t0 = 1,ω0 = 4π, and the cases,M = 20 andM = 30.

t0 = 1; w0 = 4*pi;
t = linspace(-2,2,401);

for M = [20,30]
[Psi,La] = pswf(t0,w0,M,t);
Psi0 = Psi(:,t==0);

F = Psi0’ * diag(1./La) * Psi; % the summation in (J.81)

figure; plot(t,F, ’b-’,’linewidth’,2);
axis([-2,2,-10,20]); xlabel(’\itt’);

end

Because ψn(t)= (−1)nψn(−t), it follows that ψn(0)= 0 for odd n and the summation
in (J.81) can be restricted to even n’s. However, in the MATLAB implementation above it
is much simpler to keep all terms. The following graphs plot δM(t) versus t, over the
interval −2t0 ≤ t ≤ 2t0.

To display the incredibly large values outside the interval, [−t0, t0], we have also plotted
the absolute values

∣∣δM(t)∣∣ using a semi-log scale. Within the [−t0, t0] interval, the peak
around t = 0 approximating δ(t) becomes narrower with increasingM.

1320 26. Appendices

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

15

20

t

δ
M

(t),  M = 20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

15

20

t

δ
M

(t),  M = 30

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−5

10
0

10
5

10
10

10
15

t

|δ
M

(t)|,  M = 20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−5

10
0

10
5

10
10

10
15

t

|δ
M

(t)|,  M = 30

We note that since the maximum frequency is f0 = ω0/(2π)= 2 in cycles per unit time,
the approximation δM(t) clearly oscillates several times faster than f0 over the [−t0, t0]
interval, exhibiting a superoscillatory behavior [1619–1631].

The bandlimited Fourier transform of the approximation (J.81) is obtained from the Fourier
transform of ψn(t),

ΔM(ω)=
∫ ∞
−∞
e−jωt δM(t)dt =

M∑
n=0

1

λn
ψn(0)ψ̂n(ω)

or, using (J.16),

ΔM(ω) =
M∑
n=0

2π
ω0 λn μn

ψn(0)ψn
(
ωt0
ω0

)
· χω0(ω)

=
√

2πt0
ω0

M∑
n=0

1

in λ3/2
n
ψn(0)ψn

(
ωt0
ω0

)
· χω0(ω)

(J.82)

The following MATLAB code computes and plots ΔM(ω) over [−ω0,ω0] for the same
parameter values, t0 = 1,ω0 = 4π, andM = 20,30.

t0 = 1; w0 = 4*pi;
w = linspace(-1,1,401); % normalized frequency, w = omega/omega_0
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for M = [20,30]
[Psi,La] = pswf(t0,w0,M,w*t0);
Psi0 = Psi(:,w==0);
n = (0:M)’;

D = sqrt(2*pi*t0/w0) * Psi0’ * diag(1./i.^n./La.^(3/2)) * Psi;

D0 = abs(D(w==0));

figure; plot(w,D/D0, ’b-’,’linewidth’,2);
axis([-1.05, 1.05, -8, 8]);

end

−1 −0.5 0 0.5 1
−8

−4

0

4

8

ω / ω
0

ba
n

dl
im

it
ed

 s
pe

ct
ru

m

Δ
M

(ω) / Δ
0
 ,  M = 20

 

 
 Δ

0
 = 2.59e+07

−1 −0.5 0 0.5 1
−8

−4

0

4

8

ω / ω
0

ba
n

dl
im

it
ed

 s
pe

ct
ru

m

Δ
M

(ω) / Δ
0
 ,  M = 30

 

 
 Δ

0
 = 3.15e+16

For plotting purposes, the spectrum is normalized to its magnitude at ω = 0, that is, the
quantity ΔM(ω)/Δ0 is plotted, where Δ0 =

∣∣ΔM(0)∣∣. The computed values of Δ0 and
hence the values ofΔM(ω) in absolute scales are huge, indeed, we have,Δ0 = 2.5897×107

and Δ0 = 3.1503×1016 for the two cases ofM = 20 andM = 30, respectively.

We will revisit this type of example in Sec. 20.22 in our discussion of superresolving optical
systems and the design of superdirective aperture antennas.

In the optics context, we must map the variables (t,ω) to the spatial variables (x, kx), with
the optical system introducing bandlimiting in the wavenumber domain kx. The sharp fo-
cusing of the delta-function approximation δM(x) is accompanied by huge values outside
a specified “field-of-view” interval [−x0, x0] which plays the role of [−t0, t0]. Such huge
values can be blocked with additional aperture stops provided the object fits within this
field of view.

In the context of aperture-limited antennas, we must remap the variables (t,ω) onto the
spatial variables (kx, x), so that δM(t) maps into δM(kx) and becomes the radiation pat-
tern of the antenna as a function of the wavenumber kx. The Fourier spectrum ΔM(ω)
maps onto the aperture-limited field distribution ΔM(x) as a function of distance x along
the finite antenna, limited to an interval−a ≤ x ≤ a, where 2a is the length of the antenna.

Although in principle one can design an aperture antenna that has high directivity, approx-
imating δ(kx), the extremely large values of the aperture distribution ΔM(x), make such
designs effectively unrealizable in practice.

The role of the bandwidth interval [−ω0,ω0] is played by the space interval [−a,a], while
the role of [−t0, t0] is played by the visible region of the wavenumber interval, [−k0, k0],
where k0 is the free-space wavenumber, k0 = 2π/λ. Although the visible radiation pattern
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is limited to |kx| ≤ k0, and emulates a sharp radiation pattern δM(kx), the rest of the
pattern over the invisible region |kx| > k0 takes on very large values as we saw in this
example. These are associated with very large reactive power stored in the vicinity of the
antenna.

Further discussion of these issues is presented in Sec. 20.22. We note also that the super-
resolution examples of Barnes [1569] can be reproduced by changing the parameters to
ω0 = 4 and M = [2,4,6,8] in the above MATLAB segments, while the supergain design
example of Kritikos [1616] is reproduced by the choice, t0 = 1,ω0 = 6,M = 8. ��

K. Lorentz Transformations

According to Einstein’s special theory of relativity [474], Lorentz transformations de-
scribe the transformation between the space-time coordinates of two coordinate sys-
tems moving relative to each other at constant velocity. Maxwell’s equations remain
invariant under Lorentz transformations. This is demonstrated below.

Let the two coordinate frames be S and S′. By convention, we may think of S as
the “fixed” laboratory frame with respect to which the frame S′ is moving at a constant
velocity v. For example, if v is in the z-direction, the space-time coordinates {t, x, y, z}
of S are related to the coordinates {t′, x′, y′, z′} of S′ by the Lorentz transformation:

t′ = γ(t − v
c2
z
)

z′ = γ(z− vt)
x′ = x
y′ = y

, where γ = 1√
1− v2/c2

where c is the speed of light in vacuum. Defining the scaled quantities τ = ct and
β = v/c, the above transformation and its inverse, obtained by replacing β by −β, may
be written as follows:

τ′ = γ(τ− βz)
z′ = γ(z− βτ)
x′ = x
y′ = y

�

τ = γ(τ′ + βz′)
z = γ(z′ + βτ′)
x = x′
y = y′

(K.1)

These transformations are also referred to as Lorentz boosts to indicate the fact that
one frame is boosted to move relative to the other. Interchanging the roles of z and x, or
z and y, one obtains the Lorentz transformations for motion along the x or y directions,
respectively. Eqs. (K.1) may be expressed more compactly in matrix form:

x′ = Lx , where x =

⎡
⎢⎢⎢⎣
τ
x
y
z

⎤
⎥⎥⎥⎦ , x′ =

⎡
⎢⎢⎢⎣
τ′

x′

y′

z′

⎤
⎥⎥⎥⎦ , L =

⎡
⎢⎢⎢⎣
γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ

⎤
⎥⎥⎥⎦ (K.2)

Such transformations leave the quadratic form (c2t2 − x2 − y2 − z2) invariant, that is,
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c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2 (K.3)

Introducing the diagonal metric matrix G = diag(1,−1,−1,−1), we may write the
quadratic form as follows, where xT denotes the transposed vector, that is, the row
vector xT = [τ, x, y, z]:

xTGx = τ2 − x2 − y2 − z2 = c2t2 − x2 − y2 − z2 (K.4)

More generally, a Lorentz transformation is defined as any linear transformation x′ =
Lx that leaves the quadratic form xTGx invariant. The invariance condition requires
that: x′TGx′ = xTLTGLx = xTGx, or

LTGL = G (K.5)

In addition to the Lorentz boosts of Eq. (K.1), the more general transformations
satisfying (K.5) include rotations of the three spatial coordinates, as well as time or
space reflections. For example, a rotation has the form:

L =

⎡
⎢⎢⎢⎣

1 0 0 0
0
0 R
0

⎤
⎥⎥⎥⎦

where R is a 3×3 orthogonal rotation matrix, that is, RTR = I, where I is the 3×3
identity matrix. The most general Lorentz boost corresponding to arbitrary velocity
v = [vx, vy, vz]T is given by:

L =

⎡
⎢⎢⎣
γ −γβββT

−γβββ I + γ2

γ+ 1
ββββββT

⎤
⎥⎥⎦ , where βββ = v

c
, γ = 1√

1−βββTβββ
(K.6)

When v = [0,0, v]T, or βββ = [0,0, β]T, Eq. (K.6) reduces to (K.1). Defining β = |βββ| =√
βββTβββ and the unit vector β̂ββ = βββ/β, and using the relationship γ2β2 = γ2 − 1, it can be

verified that the spatial part of the matrix L can be written in the form:

I + γ2

γ+ 1
ββββββT = I + (γ− 1)β̂βββ̂ββ

T
(K.7)

The set of matrices L satisfying Eq. (K.5) forms a group called the Lorentz group. In
particular, the z-directed boosts of Eq. (K.2) form a commutative subgroup. Denoting
these boosts by L(β), the application of two successive boosts by velocity factors β1 =
v1/c and β2 = v2/c leads to the combined boost L(β)= L(β1)L(β2), where:

β = β1 + β2

1+ β1β2
� v = v1 + v2

1+ v1v2/c2
(K.8)

with β = v/c. Eq. (K.8) is Einstein’s relativistic velocity addition theorem. The same
group property implies also that L−1(β)= L(−β). The proof of Eq. (K.8) follows from

the following condition, where γ1 = 1/
√

1− β2
1 and γ2 = 1/

√
1− β2

2:
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⎡
⎢⎢⎢⎣
γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

γ1 0 0 −γ1β1

0 1 0 0
0 0 1 0

−γ1β1 0 0 γ1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

γ2 0 0 −γ2β2

0 1 0 0
0 0 1 0

−γ2β2 0 0 γ2

⎤
⎥⎥⎥⎦

A four-vector is a four-dimensional vector that transforms like the vector x under
Lorentz transformations, that is, its components with respect to the two moving frames
S and S′ are related by:

a′ = La , where a =

⎡
⎢⎢⎢⎣
a0

ax
ay
az

⎤
⎥⎥⎥⎦ , a′ =

⎡
⎢⎢⎢⎣
a′0
a′x
a′y
a′z

⎤
⎥⎥⎥⎦ (K.9)

For example, under the z-directed boost of Eq. (K.1), the four-vector a will transform as:

a′0 = γ(a0 − βaz)
a′z = γ(az − βa0)
a′x = ax
a′y = ay

�

a0 = γ(a′0 + βa′z)
az = γ(a′z + βa′0)
ax = a′x
a′y = a′y

(K.10)

Four-vectors transforming according to Eq. (K.9) are referred to as contravariant.
Under the general Lorentz boost of Eq. (K.6), the spatial components of a that are trans-
verse to the direction of the velocity vector v remain unchanged, whereas the parallel
component transforms as in Eq. (K.10), that is, the most general Lorentz boost transfor-
mation for a four-vector takes the form:

a′0 = γ(a0 − βa‖)
a′‖ = γ(a‖ − βa0)

a′⊥ = a⊥

γ = 1√
1− β2

, β = |βββ| , βββ = v

c
(K.11)

where a‖ = β̂ββTa and a = [ax, ay, az]T is the spatial part of a. Then,

a‖ = β̂ββa‖ = β̂ββ(β̂ββTa) and a⊥ = a− a‖ = a− β̂ββa‖
Setting βββ = ββ̂ββ and using Eq. (K.7), the Lorentz transformation (K.6) gives:

[
a′0
a′

]
=
⎡
⎣ γ −γββ̂ββT

−γββ̂ββ I + (γ− 1)β̂βββ̂ββ
T

⎤
⎦[
a0

a

]
=
[

γ(a0 − βa‖)
a− β̂ββa‖ + β̂ββγ(a‖ − βa0)

]

from which Eq. (K.11) follows.
For any two four-vectors a,b, the quadratic form aTGb remains invariant under

Lorentz transformations, that is, a′TGb′ = aTGb, or,

a′0b′0 − a′ · b′ = a0b0 − a · b , where a =
[
a0

a

]
, b =

[
b0

b

]
(K.12)
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Some examples of four-vectors are given in the following table:

four-vector a0 ax ay az

time and space ct x y z

frequency and wavenumber ω/c kx ky kz
energy and momentum E/c px py pz
charge and current densities cρ Jx Jy Jz
scalar and vector potentials ϕ cAx cAy cAz

(K.13)

For example, under the z-directed boost of Eq. (K.1), the frequency-wavenumber
transformation will be as follows:

ω′ = γ(ω− βckz)
k′z = γ

(
kz − βcω

)
k′x = kx
k′y = ky

�

ω = γ(ω′ + βck′z)
kz = γ

(
k′z +

β
c
ω′)

kx = k′x
ky = k′y

, βc = v , β
c
= v
c2

(K.14)

where we rewrote the first equations in terms of ω instead of ω/c. The change in
frequency due to motion is the basis of the Doppler effect. The invariance property
(K.12) applied to the space-time and frequency-wavenumber four-vectors reads:

ω′t′ − k′ · r′ =ωt − k · r (K.15)

This implies that a uniform plane wave remains a uniform plane wave in all reference
frames moving at a constant velocity relative to each other. Similarly, the charge and
current densities transform as follows:

cρ′ = γ(cρ− βJz)
J′z = γ(Jz − βcρ)
J′x = Jx
J′y = Jy

�

cρ = γ(cρ′ + βJ′z)
Jz = γ(J′z + βcρ′)
Jx = J′x
Jy = J′y

(K.16)

Because Eq. (K.5) implies that L−T = GLG, we are led to define four-vectors that
transform according to L−T. Such four-vectors are referred to as being covariant. Given
any contravariant 4-vector a, we define its covariant version by ā = Ga. This operation
simply reverses the sign of the spatial part of a:

ā = Ga =
[

1 0
0 −I

][
a0

a

]
=
[
a0

−a

]
(K.17)

The vector ā transforms as follows:

ā′ = Ga′ = GLa = (GLG)(Ga)= L−Tā (K.18)
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where we used the property that G2 = I4, the 4×4 identity matrix. The most important
covariant vector is the four-dimensional gradient:

∂x =

⎡
⎢⎢⎢⎣
∂τ
∂x
∂y
∂z

⎤
⎥⎥⎥⎦ =

[
∂τ
∇∇∇

]
(K.19)

Because x′ = Lx, it follows that ∂x′ = L−T∂x. Indeed, we have component-wise:

∂
∂xi

=
∑
j

∂x′j
∂xi

∂
∂x′j

=
∑
j
Lji

∂
∂x′j

⇒ ∂x = LT∂x′ ⇒ ∂x′ = L−T∂x

For the z-directed boost of Eq. (K.1), we have L−T = L−1, which gives:

∂τ′ = γ(∂τ + β∂z)
∂z′ = γ(∂z + β∂τ)
∂x′ = ∂x
∂y′ = ∂y

�

∂τ = γ(∂τ′ − β∂z′)
∂z = γ(∂z′ − β∂τ′)
∂x = ∂x′
∂y = ∂y′

(K.20)

The four-dimensional divergence of a four-vector is a Lorentz scalar. For example,
denoting the current density four-vector by J = [cρ, Jx, Jy, Jz]T, the charge conserva-
tion law involves the four-dimensional divergence:

∂tρ+∇∇∇ · J = [∂τ, ∂x, ∂y, ∂z]

⎡
⎢⎢⎢⎣
cρ
Jx
Jy
Jz

⎤
⎥⎥⎥⎦ = ∂Tx J (K.21)

Under a Lorentz transformation, this remains invariant, and therefore, if it is zero
in one frame it will remain zero in all frames. Using ∂Tx = ∂Tx′L, we have:

∂tρ+∇∇∇ · J = ∂Tx J = ∂Tx′LJ = ∂x′J′ = ∂t′ρ′ +∇∇∇′ · J ′ (K.22)

Although many quantities in electromagnetism transform like four-vectors, such as
the space-time or the frequency-wavenumber vectors, the actual electromagnetic fields
do not. Rather, they transform like six-vectors or rank-2 antisymmetric tensors.

A rank-2 tensor is represented by a 4×4 matrix, say F. Its Lorentz transformation
properties are the same as the transformation of the product of a column and a row
four-vector, that is, F transforms like the quantity abT, where a,b are column four-
vectors. This product transforms like a′b′T = L(abT)LT. Thus, a general second-rank
tensor transforms as follows:

F′ = LFLT (K.23)

An antisymmetric rank-2 tensor F defines, and is completely defined by, two three-
dimensional vectors, say a = [ax, ay, az]T and b = [bx, by, bz]T . Its matrix form is:

F =

⎡
⎢⎢⎢⎣

0 −ax −ay −az
ax 0 −bz by
ay bz 0 −bx
az −by bx 0

⎤
⎥⎥⎥⎦ (K.24)
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Given the tensor F, one may define its covariant version through F̄ = GFG, and its
dual, denoted by F̃ and obtained by the replacements a → b and b → −a, that is,

F̄ =

⎡
⎢⎢⎢⎣

0 ax ay az
−ax 0 −bz by
−ay bz 0 −bx
−az −by bx 0

⎤
⎥⎥⎥⎦ , F̃ =

⎡
⎢⎢⎢⎣

0 −bx −by −bz
bx 0 az −ay
by −az 0 ax
bz ay −ax 0

⎤
⎥⎥⎥⎦ (K.25)

Thus, F̄ corresponds to the pair (−a,b), and F̃ to (b,−a). Their Lorentz transfor-
mation properties are:

F̄′ = L−TF̄L−1 , F̃′ = LF̃LT (K.26)

Thus, the dual F̃ transforms like F itself. For the z-directed boost of Eq. (K.1), it
follows from (K.23) that the two vectors a,b transform as follows:

a′x = γ(ax − βby)
a′y = γ(ay + βbx)
a′z = az

b′x = γ(bx + βay)
b′y = γ(by − βax)
b′z = bz

(K.27)

These are obtained by equating the expressions:

⎡
⎢⎢⎢⎣

0 −a′x −a′y −a′z
a′x 0 −b′z b′y
a′y b′z 0 −b′x
a′z −b′y b′x 0

⎤
⎥⎥⎥⎦ =

=

⎡
⎢⎢⎢⎣
γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 −ax −ay −az
ax 0 −bz by
ay bz 0 −bx
az −by bx 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ

⎤
⎥⎥⎥⎦

More generally, under the boost transformation (K.6), it can be verified that the com-
ponents of a,b parallel and perpendicular to v transform as follows:

a ′⊥ = γ(a⊥ +βββ× b⊥)

b ′⊥ = γ(b⊥ −βββ× a⊥)

a ′‖ = a‖

b ′‖ = b‖

γ = 1√
1− β2

, β = |βββ| , βββ = v

c
(K.28)

Thus, in contrast to Eq. (K.11) for a four-vector, the parallel components remain un-
changed while the transverse components change. A pair of three-dimensional vectors
(a,b) transforming like Eq. (K.28) is referred to as a six-vector.

It is evident also that Eqs. (K.28) remain invariant under the duality transformation
a → b and b → −a, which justifies Eq. (K.26). Some examples of (a,b) six-vector pairs
defining an antisymmetric rank-2 tensor are as follows:
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a b

E cB
cD H
cP −M

(K.29)

where P,M are the polarization and magnetization densities defined through the rela-
tionships D = ε0E+ P and B = μ0(H+M). Thus, the (E,B) and (D,H) fields have the
following Lorentz transformation properties:

E ′⊥ = γ(E⊥ + cβββ× B⊥)

B ′⊥ = γ(B⊥ −
1

c
βββ× E⊥)

E ′‖ = E‖

B ′‖ = B‖

H ′⊥ = γ(H⊥ − cβββ×D⊥)

D ′⊥ = γ(D⊥ +
1

c
βββ×H⊥)

H ′
‖ = H‖

D ′
‖ = D‖

(K.30)

where we may replace cβββ = v and βββ/c = v/c2. Note that the two groups of equations
transform into each other under the usual duality transformations: E → H, H → −E,
D → B, B → −D. For the z-directed boost of Eq. (K.1), we have from Eq. (K.30):

E′x = γ(Ex − cβBy)
E′y = γ(Ey + cβBx)

B′x = γ(Bx +
1

c
βEy)

B′y = γ(By −
1

c
βEx)

E′z = Ez
B′z = Bz

H′x = γ(Hx + cβDy)
H′y = γ(Hy − cβDx)

D′x = γ(Dx −
1

c
βHy)

D′y = γ(Dy +
1

c
βHx)

H′z = Hz
D′z = Dz

(K.31)

Associated with a six-vector (a,b), there are two scalar invariants: the quantities
(a · b) and (a · a − b · b). Their invariance follows from Eq. (K.28). Thus, the scalars
(E · B), (E · E − c2B · B), (D · H), (c2D · D − H · H) remain invariant under Lorentz
transformations. In addition, it follows from (K.30) that the quantity (E · D− B ·H) is
invariant.

Given a six-vector (a,b) and its dual (b,−a), we may define the following four-
dimensional “current” vectors that are dual to each other:

J =
[

∇∇∇ · a
∇∇∇× b− ∂τa

]
, J̃ =

[
∇∇∇ · b

−∇∇∇× a− ∂τb

]
(K.32)

It can be shown that both J and J̃ transform as four-vectors under Lorentz trans-
formations, that is, J′ = LJ and J̃′ = LJ̃, where J′, J̃′ are defined with respect to the
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coordinates of the S′ frame:

J′ =
[

∇∇∇′ · a ′

∇∇∇′ × b ′ − ∂τ′a ′
]
, J̃′ =

[
∇∇∇′ · b ′

−∇∇∇′ × a ′ − ∂τ′b ′
]

(K.33)

The calculation is straightforward but tedious. For example, for the z-directed boost
(K.1), we may use Eqs. (K.20) and (K.27) and the identity γ2(1− β2)= 1 to show:

J′x =
(∇∇∇′ × b ′ − ∂τ′a ′

)
x = ∂y′b′z − ∂z′b′y − ∂τ′a′x

= ∂ybz − γ2(∂z + β∂τ)(by − βax)−γ2(∂τ + β∂z)(ax − βby)
= ∂ybz − ∂zby − ∂τax =

(∇∇∇× b− ∂τa
)
x = Jx

Similarly, we have:

J′0 =∇∇∇′ · a ′ = ∂x′a′x + ∂y′a′y + ∂z′a′z
= γ∂x(ax − βby)+γ∂y(ay + βbx)+γ(∂z + β∂τ)az
= γ[(∂xax + ∂yay + ∂zaz)−β(∂xby − ∂ybx − ∂τaz)] = γ(J0 − βJz)

In this fashion, one can show that J and J̃ satisfy the Lorentz transformation equa-
tions (K.10) for a four-vector. To see the significance of this result, we rewrite Maxwell’s
equations, with magnetic charge and current densities ρm, Jm included, in the four-
dimensional forms:[

∇∇∇ · cD
∇∇∇×H− ∂τcD

]
=
[
cρ
J

]
,

[
∇∇∇ · cB

−∇∇∇× E− ∂τcB
]
=
[
cρm
Jm

]
(K.34)

Thus, applying the above result to the six-vector (cD,H) and to the dual of (E, cB)
and assuming that the electric and magnetic current densities transform like four-
vectors, it follows that Maxwell’s equations remain invariant under Lorentz transfor-
mations, that is, they retain their form in the moving system:[

∇∇∇′ · cD ′

∇∇∇′ ×H ′ − ∂τ′cD ′

]
=
[
cρ′

J ′

]
,

[
∇∇∇′ · cB ′

−∇∇∇′ × E ′ − ∂τ′cB ′
]
=
[
cρ′m
J ′m

]
(K.35)

The Lorentz transformation properties of the electromagnetic fields allow one to
solve problems involving moving media, such as the Doppler effect, reflection and trans-
mission from moving boundaries, and so on. The main technique for solving such prob-
lems is to transform to the frame (here, S′) in which the boundary is at rest, solve the
reflection problem in that frame, and transform the results back to the laboratory frame
by using the inverse of Eq. (K.30).

This procedure was discussed by Einstein in his 1905 paper on special relativity in
connection to the Doppler effect from a moving mirror. To quote [474]: “All problems
in the optics of moving bodies can be solved by the method here employed. What is
essential is that the electric and magnetic force of the light which is influenced by a
moving body, be transformed into a system of co-ordinates at rest relatively to the
body. By this means all problems in the optics of moving bodies will be reduced to a
series of problems in the optics of stationary bodies.”
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L. MATLAB Functions

The MATLAB functions are grouped by category. They are available from the web page:
www.ece.rutgers.edu/~orfanidi/ewa.

Multilayer Dielectric Structures

brewster - calculates Brewster and critical angles
fresnel - Fresnel reflection coefficients for isotropic or birefringent media

n2r - refractive indices to reflection coefficients of M-layer structure
r2n - reflection coefficients to refractive indices of M-layer structure

multidiel - reflection response of isotropic or birefringent multilayer structures
multidiel1 - simplified version of multidiel for isotropic layers
multidiel2 - reflection response of lossy isotropic multilayer dielectric structures
omniband - bandwidth of omnidirectional mirrors and Brewster polarizers
omniband2 - bandwidth of birefringent multilayer mirrors

snel - calculates refraction angles from Snel’s law for birefringent media

Quarter-Wavelength Transformers

bkwrec - order-decreasing backward layer recursion - from a,b to r
frwrec - order-increasing forward layer recursion - from r to A,B

chebtr - Chebyshev broadband reflectionless quarter-wave transformer
chebtr2 - Chebyshev broadband reflectionless quarter-wave transformer
chebtr3 - Chebyshev broadband reflectionless quarter-wave transformer

Dielectric Waveguides

dguide - TE modes in dielectric slab waveguide
dslab - solves for the TE-mode cutoff wavenumbers in a dielectric slab
dguide3 - TE and TM modes in asymmetric 3-slab dielectric waveguide

Plasmonic Waveguides

drude - Drude-Lorentz model for Silver, Gold, Copper, Aluminum
dmda - asymmetric DMD plasmonic waveguide - iterative solution
dmds - symmetric DMD plasmonic waveguide - iterative solution
dmdcut - cutoff width for asymmetric DMD guides
pwg - plasmonic waveguide solution for symmetric guides
pwga - plasmonic waveguide solution for asymmetric guides
pwgpower - transmitted power in plasmonic waveguide

Sommerfeld and Goubau Wires

sommer - solve characteristic equation for Sommerfeld wire
goubau - solve characteristic equation of Goubau line
goubatt - Goubau line attenuation
gcut - cutoff function for Goubau line
attw - characteristic equation of Attwood surface waveguide
attwatt - attenuation of Attwood surface waveguide
J01 - J0(z)/J1(z) approximation for large imag(z)
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Transmission Lines

g2z - reflection coefficient to impedance transformation
z2g - impedance to reflection coefficient transformation
lmin - find locations of voltage minima and maxima

mstripa - microstrip analysis (calculates Z,eff from w/h)
mstripr - microstrip synthesis with refinement (calculates w/h from Z)
mstrips - microstrip synthesis (calculates w/h from Z)

multiline - reflection response of multi-segment transmission line

swr - standing wave ratio
tsection - T-section equivalent of a length-l transmission line segment

gprop - reflection coefficient propagation
vprop - wave impedance propagation
zprop - wave impedance propagation

Impedance Matching

qwt1 - quarter wavelength transformer with series segment
qwt2 - quarter wavelength transformer with 1/8-wavelength shunt stub
qwt3 - quarter wavelength transformer with shunt stub of adjustable length

dualband - two-section dual-band Chebyshev impedance transformer
dualbw - two-section dual-band transformer bandwidths

stub1 - single-stub matching
stub2 - double-stub matching
stub3 - triple-stub matching

onesect - one-section impedance transformer
twosect - two-section impedance transformer

pi2t - Pi to T transformation
t2pi - Pi to T transformation
lmatch - L-section reactive conjugate matching network
pmatch - Pi-section reactive conjugate matching network

S-Parameters

gin - input reflection coefficient in terms of S-parameters
gout - output reflection coefficient in terms of S-parameters
nfcirc - constant noise figure circle
nfig - noise figure of two-port
sgain - transducer, available, and operating power gains of two-port
sgcirc - stability and gain circles
smat - S-parameters to S-matrix
smatch - simultaneous conjugate match of a two-port
smith - draw basic Smith chart
smithcir - add stability and constant gain circles on Smith chart
sparam - stability parameters of two-port
circint - circle intersection on Gamma-plane
circtan - point of tangency between the two circles
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Linear Antenna Functions

dipdir - dipole directivity
dmax - computes directivity and beam solid angle of g(th) gain
dipole - gain of center-fed linear dipole of length L
traveling - gain of traveling-wave antenna of length L
vee - gain of traveling-wave vee antenna
rhombic - gain of traveling-wave rhombic antenna

king - King’s 3-term sinusoidal approximation
kingeval - evaluate King’s 3-term sinusoidal current approximation
kingfit - fits a sampled current to King’s 2-term sinusoidal approximation
kingprime - converts King’s 3-term coefficients from unprimed to primed form

hbasis - basis functions for Hallen equation
hdelta - solve Hallen’s equation with delta-gap input
hfield - solve Hallen’s equation with arbitrary incident E-field
hmat - Hallen impedance matrix with method of moments and point-matching
hwrap - wraps a Toeplitz impedance matrix to half its size
kernel - thin-wire kernel computation for Hallen equation
pfield - solve Pocklington’s equation with arbitrary incident E-field
pmat - Pocklington impedance matrix with method of moments and point-matching

hcoupled - solve Hallen’s equation for 2D array of non-identical parallel dipoles
hcoupled2 - solve Hallen’s equation for 2D array of identical parallel dipoles

gain2d - normalized gain of 2D array of parallel dipoles with Hallen currents
gain2s - normalized gain of 2D array of parallel dipoles with sinusoidal currents
imped - mutual impedance between two parallel standing-wave dipoles
imped2 - mutual impedance between two parallel standing-wave dipoles
impedmat - mutual impedance matrix of array of parallel dipole antennas
resonant - calculates the length of a resonant dipole antenna
yagi - simplified Yagi-Uda array design

Aperture Antenna Functions

BBnum - computation of fields in Bethe-Bouwkamp model
BBfar - far fields in Bethe-Bouwkamp model
BBnear - near fields in Bethe-Bouwkamp model

diffint - generalized Fresnel diffraction integral
diffr - knife-edge diffraction coefficient
dsinc - the double-sinc function cos(pi*x)/(1-4*x^2)
fcs - Fresnel integrals C(x) and S(x)
fcs2 - type-2 Fresnel integrals C2(x) and S2(x)

jinc - jinc and "shifted" jinc function

talbot - Gauss sums for fractional Talbot effect

tbw - Taylor’s one-parameter window
tnb1 - Taylor’s n-bar window (1-D)
tnb2 - Taylor’s n-bar window (2-D)

hband - horn antenna 3-dB width
heff - aperture efficiency of horn antenna
hgain - horn antenna H-plane and E-plane gains
hopt - optimum horn antenna design
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hsigma - optimum sigma parametes for horn antenna

Antenna Array Functions

gain1d - normalized gain computation for 1D equally-spaced isotropic array
bwidth - beamwidth mapping from psi-space to phi-space
binomial - binomial array weights
dolph - Dolph-Chebyshev array weights
dolph2 - Riblet-Pritchard version of Dolph-Chebyshev
dolph3 - DuHamel version of endfire Dolph-Chebyshev
multibeam - multibeam array design
prol - prolate array design
prolmat - prolate matrix
scan - scan array with given scanning phase
sector - sector beam array design
steer - steer array towards given angle
taylornb - Taylor n-bar line source array design
taylor1p - Taylor 1-parameter array design
taylorbw - Taylor B-parameter and beamwidth
uniform - uniform array weights
woodward - Woodward-Lawson-Butler beams
ville - Villeneuve array design

chebarray - Bresler’s Chebyshev array design method (written by P. Simon)

Gain Plotting Functions

abp - polar gain plot in absolute units
abz - azimuthal gain plot in absolute units
ab2p - polar gain plot in absolute units - 2*pi angle range
abz2 - azimuthal gain plot in absolute units - 2pi angle range

dbp - polar gain plot in dB
dbz - azimuthal gain plot in dB
dbp2 - polar gain plot in dB - 2*pi angle range
dbz2 - azimuthal gain plot in dB - 2pi angle range

abadd - add gain in absolute units
abadd2 - add gain in absolute units - 2pi angle range
dbadd - add gain in dB
dbadd2 - add gain in dB - 2pi angle range
addbwp - add 3-dB angle beamwidth in polar plots
addbwz - add 3-dB angle beamwidth in azimuthal plots
addcirc - add grid circle in polar or azimuthal plots
addline - add grid ray line in azimuthal or polar plots
addray - add ray in azimuthal or polar plots

Miscellaneous Utility Functions

ab - dB to absolute power units
db - absolute power to dB units

c2p - complex number to phasor form
p2c - phasor form to complex number

d2r - degrees to radians
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r2d - radians to degrees

dtft - DTFT of a signal x at a frequency vector w
I0 - modified Bessel function of 1st kind and 0th order
ellipse - polarization ellipse parameters
etac - eta and c
wavenum - calculate wavenumber and characteristic impedance
poly2 - specialized version of poly with increased accuracy

quadr - Gauss-Legendre quadrature weights and evaluation points
quadrs - quadrature weights and evaluation points on subintervals
quadr2 - Gauss-Legendre quadrature weights and evaluation points
quadrs2 - quadrature weights and evaluation points on subintervals
quadts - tanh-sinh, double-exponential, quadrature

Ci - cosine integral Ci(z)
Cin - cosine integral Cin(z)
Si - sine integral Si(z)
Gi - Green’s function integral

pswf - prolate spheroidal wave functions
spherj - spherical Bessel functions
legpol - evaluate Legendre polynomials

sinhc - hyperbolic sinc function
asinhc - inverse hyperbolic sinc function
sqrte - evanescent SQRT for waves problems

flip - flip a column, a row, or both
blockmat - manipulate block matrices
upulse - generates trapezoidal, rectangular, triangular pulses, or a unit-step
ustep - unit-step or rising unit-step function

dnv - dn elliptic function at a vector of moduli
snv - sn elliptic function at a vector of moduli
ellipK - complete elliptic integral of first kind at a vector of moduli
ellipE - complete elliptic integral of second kind at a vector of moduli
landenv - Landen transformations of a vector of elliptic moduli

MATLAB Movies

grvmovie1 - pulse propagation with slow and negative group velocity (vg < 0)
grvmovie2 - pulse propagation with slow and fast group velocity (vg > c)
pulsemovie - step and pulse propagation on terminated transmission lines
pulse2movie - step propagation on two cascaded lines
RLCmovie - step getting reflected off a reactive termination
TDRmovie - fault location by time-domain reflectometry
xtalkmovie - crosstalk signals on coupled transmission lines
dipmovie - electric field pattern of radiating Hertzian dipole


