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18.9 Consider a reflector antenna fed by a horn, as shown
on the right. A closed surface S = Sr + Sa is such
that the portion Sr caps the reflector and the portion
Sa is an aperture in front of the reflector. The feed
lies outside the closed surface, so that the volume V
enclosed by S is free of current sources.

Applying the Kottler version of the extinction theorem of Sec. 18.10 on the volume V, show
that for points r outsideV, the field radiated by the induced surface currents on the reflector
Sr is equal to the field radiated by the aperture fields on Sa, that is,

E rad(r) = 1

jωε

∫
Sr

[
k2G J s +

(
J s ·∇∇∇′

)∇∇∇′G]dS′
= 1

jωε

∫
Sa

[
k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωε(n̂× E )×∇∇∇′G]dS′

where the induced surface currents on the reflector are J s = n̂r ×H and Jms = −n̂r ×E, and
on the perfectly conducting reflector surface, we must have Jms = 0.

This result establishes the equivalence of the so-called aperture-field and current-distribution
methods for reflector antennas [1686]. See also Sec. 21.9.

18.10 Consider an x-polarized uniform plane wave incident obliquely on the straight-edge aperture
of Fig. 18.14.4, with a wave vector direction k̂1 = ẑ cosθ1 + ŷ sinθ1. First show that the
tangential fields at an aperture point r′ = x′ x̂+y′ ŷ on the aperture above the straight-edge
are given by:

Ea = x̂E0e−jky
′ sinθ1 , Ha = ŷ

E0

η0
cosθ1e−jky

′ sinθ1

Then, using Kottler’s formula (18.12.1), and applying the usual Fresnel approximations in
the integrand, as was done for the point source in Fig. 18.14.4, show that the diffracted
wave below the edge is given by Eqs. (18.14.23)–(18.14.25), except that the field at the edge
is Eedge = E0, and the focal lengths are in this case F = l2 and F′ = l2/ cos2 θ2

Finally, show that the asymptotic diffracted field (when l2 → ∞), is given near the forward
direction θ � 0 by:

E = Eedge
e−jkl2√
l2

1− j
2
√
πkθ

18.11 Assume that the edge in the previous problem is a perfectly conducting screen. Using the
field-equivalence principle with effective current densities on the aperture above the edge
J s = 0 and Jms = −2n̂× Ea, and applying the usual Fresnel approximations, show that the
diffracted field calculated by Eq. (18.4.1) is still given by Eqs. (18.14.23)–(18.14.25), except
that the factor cosθ1+ cosθ2 is replaced now by 2 cosθ2, and that the asymptotic field and
edge-diffraction coefficient are:

E = E0
e−jkl2√
l2
Dedge , Dedge = (1− j)2 cosθ2

4
√
πk(sinθ1 + sinθ2)

Show that this expression agrees with the exact Sommerfeld solution (18.15.26) at normal
incidence and near the forward diffracted direction.

19
Diffraction – Plane-Wave Spectrum

This chapter continues the previous one on radiation from apertures. The emphasis
is on Rayleigh-Sommerfeld diffraction theory, plane-wave spectrum representation for
scalar and vector fields, radiated and reactive power of apertures, integral equations
for apertures in conducting screens, revisiting the Sommerfeld half-plane problem us-
ing Wiener-Hopf factorization techniques, the Bethe-Bouwkamp model of diffraction by
small holes, and the Babinet principle.

19.1 Rayleigh-Sommerfeld Diffraction Theory

In this section, we recast Kirchhoff’s diffraction formula in a form that uses a Dirich-
let Green’s function (i.e., one that vanishes on the boundary surface) and obtain the
Rayleigh-Sommerfeld diffraction formula. In the next section, we show that this re-
formulation is equivalent to the plane-wave spectrum approach to diffraction, and use
it to justify the modified forms (18.1.2) and (18.1.3) of the field equivalence principle.
In Chap. 20, we use it to obtain the usual Fresnel and Fraunhofer approximations and
discuss a few applications from Fourier optics.

We will work with the scalar case, but the same method can be used for the vector
case. With reference to Fig. 19.1.1, we consider a scalar field E(r) that satisfies the
source-free Helmholtz equation, (∇2 + k2)E(r)= 0, over the right half-space z ≥ 0.

We consider a closed surface consisting of the surface S∞ of a sphere of very large
radius centered at the observation point r and bounded on the left by its intersection S
with the xy plane, as shown in the Fig. 19.1.1. Clearly, in the limit of infinite radius, the
volume V bounded by S+S∞ is the right half-space z ≥ 0, and S becomes the entire xy
plane. Applying Eq. (18.10.3) to volume V, we have:∫

V

[
G(∇′2E + k2E)−E (∇′2G+ k2G)

]
dV′ = −

∮
S+S∞

[
G
∂E
∂n′

− E ∂G
∂n′

]
dS′ (19.1.1)

The surface integral over S∞ can be ignored by noting that n̂ is the negative of the
radial unit vector and therefore, we have after adding and subtracting the term jkEG:

−
∫
S∞

[
G
∂E
∂n′

− E ∂G
∂n′

]
dS′ =

∫
S∞

[
G
(
∂E
∂r

+ jkE
)
− E

(
∂G
∂r

+ jkG
)]
dS′
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Fig. 19.1.1 Fields determined from their values on the xy-plane surface.

Assuming Sommerfeld’s outgoing radiation condition:

r
(
∂E
∂r

+ jkE
)
→ 0 , as r →∞

and noting that G = e−jkr/4πr also satisfies the same condition, it follows that the
above surface integral vanishes in the limit of large radius r. Then, in the notation of
Eq. (18.10.4), we obtain the standard Kirchhoff diffraction formula, where the planar
surface S is the entire xy plane,

E(r)uV(r)=
∫
S

[
E
∂G
∂n′

−G ∂E
∂n′

]
dS′ (19.1.2)

Thus, if r lies in the right half-space, the left-hand side will be equal to E(r), and if r
is in the left half-space, it will vanish. Given a point r = (x, y, z), we define its reflection
relative to the xy plane by r− = (x, y,−z). The distance between r− and a source point
r′ = (x′, y′, z′) can be written in terms of the distance between the original point r and
the reflected source point r′− = (x′, y′,−z′):

R− = |r− − r′| =
√
(x− x′)2+(y − y′)2+(z+ z′)2 = |r− r′−|

whereas
R = |r− r′| =

√
(x− x′)2+(y − y′)2+(z− z′)2

This leads us to define the reflected Green’s function:

G−(r, r′)= e−jkR−
4πR−

= G(r− r′−)= G(r− − r′) (19.1.3)
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and the Dirichlet Green’s function:

Gd(r, r′)= G(r, r′)−G−(r, r′)= e−jkR

4πR
− e

−jkR−
4πR−

(19.1.4)

For convenience, we may choose the origin to lie on the xy plane. Then, as shown
in Fig. 19.1.1, when the source point r′ lies on the xy plane (i.e., z′ = 0), the function
Gd(r, r′) will vanish because R = R−. Next, we apply Eq. (19.1.2) at the observation
point r in the right half-space and at its reflection in the left half-plane, where (19.1.2)
vanishes:

E(r) =
∫
S

[
E
∂G
∂n′

−G ∂E
∂n′

]
dS′ , at point r

0 =
∫
S

[
E
∂G−
∂n′

−G− ∂E∂n′
]
dS′ , at point r−

(19.1.5)

where G− stands for G(r− − r′). But on the xy plane boundary, G− = G so that if we
subtract the two expressions we may eliminate the term ∂E/∂n′, which is the reason
for using the Dirichlet Green’s function:

E(r)=
∫
S
E(r′)

∂
∂n′

(G−G−)dS′ =
∫
S
E(r′)

∂Gd
∂n′

dS′

On the xy plane, we have n̂ = ẑ, and therefore

∂G
∂n′

= ∂G
∂z′

∣∣∣∣
z′=0

and
∂G−
∂n′

= ∂G−
∂z′

∣∣∣∣
z′=0

= − ∂G
∂z′

∣∣∣∣
z′=0

Then, the two derivative terms double resulting in the Rayleigh-Sommerfeld (type-1)
diffraction integral [1286,1287]:

E(r)= 2

∫
S
E(r′)

∂G
∂z′

dS′ = −2
∂
∂z

∫
S
E(r′)GdS′ (Rayleigh-Sommerfeld) (19.1.6)

The indicated derivative of G can be expressed as follows:

−∂G
∂z

∣∣∣∣
z′=0

= ∂G
∂z′

∣∣∣∣
z′=0

= z
R

(
jk+ 1

R

)
e−jkR

4πR
(19.1.7)

To clarify the notation, we may write Eq. (19.1.6) in the more explicit form using (19.1.7),

E(x, y, z)= 2

∫∫∞
−∞

z
R

(
jk+ 1

R

)
e−jkR

4πR
E(x′, y′,0)dx′dy′ (19.1.8)

where R =
√
(x− x′)2+(y − y′)2+z2. For distances R	 λ, or equivalently, k	 1/R,

one obtains the approximation:

∂G
∂z′

∣∣∣∣
z′=0

= jk z
R
e−jkR

4πR
, for R	 λ (19.1.9)

This approximation will be used in Sec. 20.1 to obtain the standard Fresnel diffraction
representation. The quantity z/R is an “obliquity” factor and is usually omitted for
paraxial observation points that are near the z axis.
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Equation (19.1.8) expresses the field at any point in the right half-space (z ≥ 0) in
terms of its values on the xy plane. For z < 0, the sign in the right-hand side of (19.1.6)
must be reversed. This follows by using a left hemisphere enclosing the space z < 0, in
the limit of large radius, and noting that now n̂ = −ẑ, and assuming that E(x, y, z) still
satisfies the Helmholtz equation in z < 0. Thus, we have more generally,

E(x, y, z)= ∓2
∂
∂z

∫∫∞
−∞
E(x′, y′,0)G(R)dx′dy′ for z ≷ 0 (19.1.10)

Because R =
√
(x− x′)2+(y − y′)2+z2, it follows that

∫
S E(x′, y′,0)G(R)dx′dy′

will be an even function of z, and therefore, its z-derivative will be odd in z, and hence,
E(x, y, z) will be an even function of z. This is seen more explicitly by performing the
z-differentiation in (19.1.10), and noting that, ±z = |z| for z ≷ 0,

E(x, y, z)= 2

∫∫∞
−∞

|z|
R

(
jk+ 1

R

)
e−jkR

4πR
E(x′, y′,0)dx′dy′ , for all z

By adding, instead of subtracting, the two integrals in (19.1.5), we obtain the alterna-
tive (Neumann-type) Green’s function, Gs = G+G−, having vanishing derivative on the
boundary. This results in the so-called type-2 Rayleigh-Sommerfeld diffraction integral
that expresses E(x, y, z) in terms of its derivative at z = 0,

E(x, y, z)= ∓2

∫∫∞
−∞
G(R)

∂E(x′, y′,0)
∂z′

dx′dy′ for z ≷ 0 (19.1.11)

We will see in the next section that both Eqs. (19.1.10) and (19.1.11) follow from the
same plane-wave spectrum representation.

The derivation of (19.1.10) and (19.1.11) implicitly assumed that E(x, y, z) was con-
tinuous across the xy plane. When parts of the plane are replaced by a thin conducting
sheet, then some of the electromagnetic field components develop discontinuities across
the conducting parts. In such cases, where the limiting values E(x′, y′,±0) are different
from the two sides of z = 0, the above diffraction integrals must be replaced by,

E(x, y, z) = ∓2
∂
∂z

∫∫∞
−∞
E(x′, y′,±0)G(R)dx′dy′

E(x, y, z) = ∓2

∫∫∞
−∞
G(R)

∂E(x′, y′,±0)
∂z′

dx′dy′
for z ≷ 0 (19.1.12)

Eqs. (19.1.10) and (19.1.11) are also valid in the vectorial case for each component
of the electric field E(r). However, these components are not independent of each
other since they must satisfy ∇∇∇ · E = 0, and are also coupled to the magnetic field
through Maxwell’s equations. Taking into account these constraints, one arrives at the
vectorial versions of (19.1.10) known as Smythe’s diffraction formulas [1328], which are
actually equivalent to the Franz formulas of Sec. 18.12. For example, assuming that the
transverse components Ex, Ey are given by Eq. (19.1.10),

Ex(r)= ∓2

∫
S
Ex(r′)

∂G
∂z

dS′ , Ey(r)= ∓2

∫
S
Ey(r′)

∂G
∂z

dS′ (19.1.13)
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then, it is easy to verify that the following Ez component will satisfy the divergence
condition, ∂xEx + ∂yEy + ∂zEz = 0,

Ez(r)= ±2

∫
S

[
Ex(r′)

∂G
∂x

+ Ey(r′)∂G∂y
]
dS′ (19.1.14)

and indeed, Eqs. (19.1.13) and (19.1.14) are the Smythe formulas for the E field. We
pursue these issues further in Sec. 19.5.

Kirchhoff Approximation

In the practical application of the Rayleigh-Sommerfeld formulas, the xy plane consists
of an infinite opaque screen with an aperture A cut in it, as shown in Fig. 19.1.2.

Fig. 19.1.2 Aperture geometry, with R = |r− r′|, r = x̂x+ ŷy + ẑz, r′ = x̂x′ + ŷy′.

In the usual Kirchhoff approximation it is assumed that:

(a) the field is zero over the opaque screen, so that the integration in (19.1.6) is re-
stricted only over the aperture A.

(b) the field, E(r′), over the aperture is equal to the (known) incident field, say Einc(r),
from the left.

This results in a computable approximation for the diffracted field into the right half-
space z > 0,

E(r)= −2
∂
∂z

∫
A
Einc(r′)G(R)dS′ (Kirchhoff approximation) (19.1.15)

Generally, such approximations work well for apertures whose dimensions are large
compared to the wavelength λ. For apertures in conducting screens, the exact formula-
tion requires that one must first determine the correct aperture fields by solving certain
integral equations, and then apply the Rayleigh-Sommerfeld-Smythe formulas. We dis-
cuss these in Sec. 19.9.
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19.2 Plane-Wave Spectrum Representation

The plane-wave spectrum representation builds up a single-frequency propagating wave
E(x, y, z) as a linear combination of plane waves e−j(kxx+kyy+kzz).† The only assumption
is that the field must satisfy the wave equation, which becomes the three-dimensional
Helmholtz equation,

(∇2 + k2)E(x, y, z)= 0 , k = ω
c
=ω√με (19.2.1)

where c = 1/
√
με is the speed of light in the propagation medium (assumed here to be

homogeneous, isotropic, and lossless.) In solving the Helmholtz equation, one assumes
initially a solution of the form:

E(x, y, z)= Ê(kx, ky, z)e−jkxxe−jkyy

Inserting this into Eq. (19.2.1) and replacing, ∂x → −jkx and ∂y → −jky, we obtain:(
−k2

x − k2
y +

∂2

∂z2
+ k2

)
Ê(kx, ky, z)= 0

or, defining k2
z = k2 − k2

x − k2
y, we have:

∂2Ê(kx, ky, z)
∂z2

= −(k2 − k2
x − k2

y)Ê(kx, ky, z)= −k2
z Ê(kx, ky, z)

Its solution describing forward-moving waves (z ≥ 0) is:

Ê(kx, ky, z)= Ê(kx, ky)e−jkzz (19.2.2)

where Ê(kx, ky) is an arbitrary constant in the variable z.
If k2

x + k2
y < k2, the wavenumber kz is real-valued and the solution describes a

propagating wave. If k2
x + k2

y > k2, then kz is imaginary and the solution describes an
evanescent wave decaying with distance z. The two cases can be combined into one by
defining kz in terms of the evanescent square-root of Eq. (7.7.9) as follows:

kz =
⎧⎪⎨⎪⎩

√
k2 − k2

x − k2
y , if k2

x + k2
y ≤ k2

−j
√
k2
x + k2

y − k2 , if k2
x + k2

y > k2

(propagating)

(evanescent)
(19.2.3)

and choose the square-root branch, kz = k, when kx = ky = 0. In the evanescent case,
we have the decaying solution:

Ê(kx, ky, z)= Ê(kx, ky)e−z
√
k2
x+k2

y−k2 , z ≥ 0

Fig. 19.2.1 depicts the two regions on the kxky plane. The complete space dependence
is Ê(kx, ky)e−jkxx−jkyye−jkzz. The most general solution of Eq. (19.2.1) is obtained by
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Fig. 19.2.1 Propagating and evanescent regions on the kxky plane.

adding up such plane-waves, that is, by the spatial two-dimensional inverse Fourier
transform, for z ≥ 0,

E(x, y, z)=
∫∞
−∞

∫∞
−∞
Ê(kx, ky)e−jkxx−jkyye−jkzz

dkx dky
(2π)2

(19.2.4)

This is the plane-wave spectrum representation, also known as the angular spectrum
representation, see [1415,1419], and some of the original papers [1601,1423–1425].

Because kz is given by Eq. (19.2.3), this solution is composed, in general, of both
propagating and evanescent modes. Of course, for large z, only the propagating modes
survive. Setting z = 0, we recognize Ê(kx, ky) to be the spatial Fourier transform of the
field, E(x, y,0), at z = 0 on the xy plane:

E(x, y,0) =
∫∞
−∞

∫∞
−∞
Ê(kx, ky)e−jkxx−jkyy

dkx dky
(2π)2

Ê(kx, ky) =
∫∞
−∞

∫∞
−∞
E(x, y,0)ejkxx+jkyy dxdy

(19.2.5)

As in Chap. 3, we may give a system-theoretic interpretation to these results. Defin-
ing the “propagation” spatial filter, ĥ(kx, ky, z)= e−jkzz, then Eq. (19.2.2) reads:

Ê(kx, ky, z)= e−jkzzÊ(kx, ky)= ĥ(kx, ky, z)Ê(kx, ky) (19.2.6)

This multiplicative relationship in the wavenumber domain translates into a convo-
lutional equation in the space domain. Let h(x, y, z) denote the “impulse response” of
this filter, that is, the spatial inverse Fourier transform of ĥ(kx, ky, z)= e−jkzz,

h(x, y, z)=
∫∞
−∞

∫∞
−∞
e−jkxx−jkyye−jkzz

dkx dky
(2π)2

(19.2.7)

then, we may write Eq. (19.2.4) in the convolutional form:

E(x, y, z)=
∫∞
−∞

∫∞
−∞
h(x− x′, y − y′, z)E(x′, y′,0)dx′dy′ (19.2.8)

†As always, we use ejωt harmonic time dependence.
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Eq. (19.2.8) is equivalent to the Rayleigh-Sommerfeld formula (19.1.6). Indeed, it
follows from Eq. (D.19) of Appendix D that

h(x− x′, y − y′, z)= −2
∂G(R)
∂z

= 2
∂G(R)
∂z′

, G(R)= e−jkR

4πR
, R = |r− r′| (19.2.9)

with the understanding that z′ = 0, so that R = √
(x− x′)2+(y − y′)2+z2. Thus,

Eq. (19.2.8) takes the form of Eq. (19.1.6) or (19.1.8). The geometry was shown in
Fig. 19.1.2. We note also that at z = 0, we have h(x−x′, y−y′,0)= δ(x−x′)δ(y−y′).
This follows by setting z = 0 into (19.2.7), or from Eq. (D.21) of Appendix D. Thus,
Eq. (19.2.8) is consistent at z = 0.

To summarize, the Rayleigh-Sommerfeld and plane-wave spectrum representations
express a scalar field E(x, y, z) in terms of its boundary values E(x, y,0) on the xy
plane, or in terms of the 2-D Fourier transform Ê(kx, ky) of these boundary values,

E(x, y, z) = −2
∂
∂z

∫∫∞
−∞

e−jkR

4πR
E(x′, y′,0)dx′dy′

= 2

∫∫∞
−∞

z
R

(
jk+ 1

R

)
e−jkR

4πR
E(x′, y′,0)dx′dy′

=
∫∫∞
−∞
Ê(kx, ky)e−jkxx−jkyye−jkzz

dkx dky
(2π)2

(19.2.10)

with z ≥ 0 and R =
√
(x− x′)2+(y − y′)2+z2. For arbitrary z ≷ 0, we have,

E(x, y, z) = ∓2
∂
∂z

∫∫∞
−∞

e−jkR

4πR
E(x′, y′,0)dx′dy′

= 2

∫∫∞
−∞

|z|
R

(
jk+ 1

R

)
e−jkR

4πR
E(x′, y′,0)dx′dy′

=
∫∫∞
−∞
Ê(kx, ky)e−jkxx−jkyye−jkz|z|

dkx dky
(2π)2

(19.2.11)

Next, we show that the plane-wave representation (19.2.4) is equivalent to both the
type-1 and the type-2 Rayleigh-Sommerfeld formulas, Eqs. (19.1.6) and (19.1.11). We
note that Eq. (19.2.6) can be written as follows,

Ê(kx, ky, z)= e−jkzz · Ê(kx, ky)= 2jkz ·
[
e−jkzz

2jkz

]
· Ê(kx, ky)

or,
Ê(kx, ky, z)= 2jkz · Ĝ(kx, ky, z)·Ê(kx, ky) (19.2.12)

where Ĝ(kx, ky, z)= e−jkzz/(2jkz) is the 2-D Fourier transform of the Green’s function
G(r)= e−jkr/(4πr), for z ≥ 0. This follows from Eq. (D.11) of Appendix D. The factor
2jkz can be associated either with Ĝ(kx, ky, z), leading to Eq. (19.1.6), or with Ê(kx, ky)
leading to Eq. (19.1.11),

Ê(kx, ky, z)= 2jkz · Ĝ(kx, ky, z)︸ ︷︷ ︸
type-1

·Ê(kx, ky)= 2jkz · Ê(kx, ky)︸ ︷︷ ︸
type-2

·Ĝ(kx, ky, z) (19.2.13)
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We recognize that 2jkz · Ê(kx, ky) is the 2-D Fourier transform of the z-derivative
of E(x, y, z) at z = 0, indeed, by differentiating (19.2.4), we have,

− 2
∂E(x, y, z)

∂z
=
∫∫∞
−∞

2jkz · Ê(kx, ky) e−jkxx−jkyye−jkzz dkx dky(2π)2
(19.2.14)

and at z = 0,

− 2
∂E(x, y,0)

∂z
=
∫∫∞
−∞

2jkz · Ê(kx, ky) e−jkxx−jkyy dkx dky(2π)2
(19.2.15)

Thus, the inverse Fourier transform of the product of the transforms Ĝ(kx, ky, z)
and 2jkz Ê(kx, ky) in (19.2.13) becomes the convolutional form of Eq. (19.1.11).

19.3 Far-Field Diffraction Pattern

The far-field, or Fraunhofer, diffraction pattern is obtained in the limit of a large radial
distance r of the field observation point from the aperture. It can be derived using either
the Rayleigh-Sommerfeld integrals or by applying the stationary-phase approximation
to the plane-wave spectrum. We briefly discuss both approaches.

In Eq. (19.2.10), the quantity R = |r − r′| is the distance between the field point
at position r and the aperture point r′. If we assume that the aperture is finite, as in
Fig. 19.1.2, and we choose r	 r′, we may approximate R as follows,

R = |r− r′| =
√
r2 − 2r · r′ + r′2 ≈ r − r̂ · r′

where r̂ is the unit vector in the direction of the observation point r. We have used this
approximation before in Sec. 15.7, see for example Fig. 15.7.1. The far-field approxima-
tion then consists of making the following replacements in Eq. (19.2.10), and assuming
that r	 λ, or, k	 1/r,

z
R

(
jk+ 1

R

)
e−jkR

4πR
≈ z
r

(
jk+ 1

r

)
e−jk(r−r̂·r′)

4πr
≈ jk z

r
e−jkr

4πr
ejkr̂·r

′
(19.3.1)

where we replaced R ≈ r in the denominators, but kept the approximation R ≈ r− r̂ · r′

in the phase exponential. The unit vector r̂ is uniquely defined by the corresponding
polar and azimuthal angles θ,φ in the direction of r. Thus, z/r = cosθ, and defining
the wavevector k = kr̂, we have,

k = kr̂ = k(x̂ sinθ cosφ+ ŷ sinθ sinφ+ ẑ cosθ) ⇒
kx = k sinθ cosφ
ky = k sinθ sinφ
kz = k cosθ

(19.3.2)

Since r′ is restricted to the xy plane, we have, ejkr̂·r′=ekxx′+kyy′ . It follows that Eq. (19.2.10)
can be approximated in this limit by,

E(x, y, z)≈ 2jk cosθ
e−jkr

4πr

∫∞
−∞
E(x′, y′,0)ekxx

′+kyy′dx′dy′
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but the last factor is the 2-D Fourier transform of E(x′, y′,0) evaluated at the directional
wave vector, k = k r̂,

E(x, y, z)≈ 2jk cosθ
e−jkr

4πr
Ê(kx, ky)

∣∣∣∣
k=kr̂

(far-field diffraction pattern) (19.3.3)

The factor Ê(kx, ky) evaluated at k = k r̂ is a function of the angles θ,φ, and rep-
resents the essential angular pattern of the diffracted wave. The factor cosθ may be
viewed as an obliquity factor.

The same result can be obtained by using the stationary-phase approximation for
2-D integrals discussed in Appendix H. Let us rewrite Eq. (19.2.4) in the form,

E(x, y, z)=
∫∫∞
−∞
Ê(kx, ky)ejϕ(kx,ky)

dkx dky
(2π)2

, (19.3.4)

where we defined the phase function,

ϕ(kx, ky)= −k · r = −(kxx+ kyy + kzz) (19.3.5)

The stationary-phase approximation to the integral in (19.3.4) is given by Eq. (H.6),

∫∫∞
−∞
Ê(kx, ky)ejϕ(kx,ky)

dkx dky
(2π)2

≈ ej(σ+1)τπ4
2π√|detΦ|

Ê(k0
x, k0

y) ejϕ(k
0
x,k0

y)

(2π)2
(19.3.6)

where k0
x, k0

y are the stationary points of the phase function ϕ(kx, ky), that is, the so-
lutions of the equations,

∂ϕ
∂kx

= 0 ,
∂ϕ
∂ky

= 0 (19.3.7)

and where Φ is the matrix of second derivatives of ϕ evaluated at the stationary points
k0
x, k0

y, and σ,τ are the algebraic signs of the determinant and trace of Φ, that is,

Φ =

⎡⎢⎢⎢⎢⎢⎣
∂2ϕ(k0

x, k0
y)

∂kx2

∂2ϕ(k0
x, k0

y)
∂kx ∂ky

∂2ϕ(k0
x, k0

y)
∂kx ∂ky

∂2ϕ(k0
x, k0

y)
∂ky2

⎤⎥⎥⎥⎥⎥⎦ , σ = sign(detΦ) , τ = sign(trΦ) (19.3.8)

Since k2
z = k2 − k2

x − k2
y, the conditions (19.3.7) become,

∂ϕ
∂kx

= −x− z ∂kz
∂kx

= −x+ z kx
kz
= 0 ⇒ k0

x

k0
z
= x
z

∂ϕ
∂ky

= −y − z ∂kz
∂ky

= −y + z ky
kz
= 0 ⇒ k0

y

k0
z
= y
z

(19.3.9)

Putting these back into k2
z = k2 − k2

x − k2
y, gives the following solution,

k0
x = k

x
r
, k0

y = k
y
r
, k0

z = k
z
r
, r =

√
x2 + y2 + z2 (19.3.10)
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or, k0 = kr/r = k r̂, which is the same as (19.3.2). Therefore, the phase function
evaluated at k0 is, ϕ(k0

x, k0
y)= −k0 · r = −k r̂ · r = −kr.

The second derivatives are obtained by differentiating (19.3.9) one more time and
evaluating the result at k0, for example,

∂2ϕ
∂k2

x
= z ∂

∂kx

(
kx
kz

)
= z
kz

(
1+ k

2
x
k2
z

)∣∣∣∣∣
k=k 0

= r
k

(
1+ x

2

z2

)

and similarly,
∂2ϕ
∂kx∂ky

= r
k
xy
z2
,

∂2ϕ
∂k2

y
= r
k

(
1+ y

2

z2

)
It follows that, detΦ,σ,τ are,

detΦ = r4

k2z2
, σ = τ = 1

and since z > 0, the approximation (19.3.6) yields the same answer as (19.3.3),

E(x, y, z)≈ ej(σ+1)τπ4
2π√|detΦ|

Ê(k0
x, k0

y)ejϕ(k
0
x,k0

y)

(2π)2
= ej(1+1) π4

2π√
r4

k2z2

Ê(k0
x, k0

y)e−jkr

(2π)2

or,

E(x, y, z)= jk z
r
e−jkr

2πr
Ê(k0

x, k0
y)= 2jk cosθ

e−jkr

4πr
Ê(k0

x, k0
y)

19.4 One-Dimensional Apertures

The plane-wave spectrum representations and the Rayleigh-Sommerfeld diffraction for-
mulas apply also to the special case of one-dimensional line sources and apertures, such
as infinitely long narrow slits or strips, as shown for example in Fig. 19.4.1.

Fig. 19.4.1 Slit aperture with infinite length in the y-direction.

Specifically, we will assume that the one-dimensional aperture is along the x-direction
and the fields, E(x, z), depend only on the x, z coordinates and have no dependence on
the y-coordinate. We recall from Eqs. (D.22) and (D.32) of Appendix D that the 2-D
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outgoing Green’s function can be derived by integrating out the y-variable of the 3-D
Green’s function, that is,

G2(x− x′, z)= − j
4
H(2)0 (kρ)=

∫∞
−∞

e−jkR

4πR
dy′ (19.4.1)

where, ρ = √(x− x′)2+z2 and R = √(x− x′)2+(y − y′)2+z2.
Since E(x′, y′,0) does not depend on y′, we may integrate out the y′ variable in

Eq. (19.1.10) and use Eq. (19.4.1) to obtain the one-dimensional-aperture version of the
Rayleigh-Sommerfeld diffraction integral, for z > 0,

E(x, z)= −2
∂
∂z

∫∞
−∞
E(x′,0)G2(x− x′, z)dx′ (1-D apertures) (19.4.2)

The corresponding 1-D plane-wave spectrum representation can be derived with the
help of the Weyl representation of the G2 Green’s function derived in Eq. (D.30) of Ap-
pendix D, that is,

G2(x, z)= − j
4
H(2)0

(
k
√
x2 + z2

) = ∫∞
−∞

e−jkxx e−jkz|z|

2jkz
dkx
2π

(19.4.3)

which implies that, for z ≥ 0,

− 2
∂G2(x, z)

∂z
=
∫∞
−∞
e−jkxx e−jkzz

dkx
2π

(19.4.4)

with kz defined as in Eq. (D.27) in terms of the evanescent square root,

kz =
⎧⎪⎨⎪⎩

√
k2 − k2

x , if |kx| < k
−j
√
k2
x − k2 , if |kx| > k

(19.4.5)

It follows that the convolutional equation (19.4.2) can also be written as the inverse
1-D Fourier transform,

E(x, z)=
∫∞
−∞
Ê(kx) e−jkxx e−jkzz

dkx
2π

(19.4.6)

where Ê(kx) is the 1-D Fourier transform of E(x,0) at z = 0,

Ê(kx) =
∫∞
−∞
E(x,0) e−jkxx dx

E(x,0) =
∫∞
−∞
Ê(kx) e−jkxx

dkx
2π

(19.4.7)

ReplacingG2 in terms of the Hankel function and noting the differentiation property,
dH(2)0 (z)/dz = −H(2)1 (z), we may summarize the above results as follows,

E(x, z) = j
2

∂
∂z

∫∞
−∞
H(2)0 (kρ)E(x′,0)dx′

= − j
2

∫∞
−∞

kz
ρ
H(2)1 (kρ)E(x′,0)dx′

=
∫∞
−∞
Ê(kx) e−jkxx e−jkzz

dkx
2π

z ≥ 0

ρ =
√
(x− x′)2+z2

(19.4.8)

856 19. Diffraction – Plane-Wave Spectrum

The far-field approximation easily follows from (19.4.8), for large r = √x2 + z2,

E(x, z)≈ ej π4 cosθ

√
k

2πr
e−jkr Ê(k0

x) (far-field approximation) (19.4.9)

where k0
x = kx/r = k sinθ, k0

z = kz/r = k cosθ, cosθ = z/r. Eq. (19.4.9) can be
derived either by applying the stationary-phase method to the one-dimensional Fourier
integral (19.4.6), that is, Eq. (H.4) of Appendix H, or, by using the following asymptotic
expression for the Hankel function H(2)1 in (19.4.8),

H(2)1 (kρ)≈
√

2

πkρ
e−j(kρ−

3π
4 ) , for large ρ

and replacing the ρ in the exponential e−jkρ by the approximation,

ρ =
√
(x− x′)2+z2 =

√
r2 − 2xx′ + x′2 ≈ r − x

r
x′

and also replacing ρ by r in the other factors of (19.4.8).
In both the 3-D and 2-D cases, the radial dependence of the far field describes an out-

going spherical or cylindrical wave, while the angular pattern is given by the product of
the obliquity factor cosθ and the spatial Fourier transform of the aperture distribution
evaluated at the wavenumber k = k r̂.

19.5 Plane-Wave Spectrum–Vector Case

Next, we discuss the vector case for electromagnetic fields. To simplify the notation,
we define the two-dimensional transverse vectors r⊥ = x̂x + ŷy and k⊥ = x̂kx + ŷky,
as well as the transverse gradient ∇∇∇⊥ = x̂∂x + ŷ∂y, so that the full three-dimensional
gradient is,

∇∇∇ = x̂∂x + ŷ∂y + ẑ∂z =∇∇∇⊥ + ẑ∂z

In this notation, Eq. (19.2.6) reads, Ê(k⊥, z)= ĥ(k⊥, z)Ê(k⊥), with ĥ(k⊥, z)= e−jkzz.
The plane-wave spectrum representations (19.2.4) and (19.2.8) now are,†

E(r⊥, z) =
∫∞
−∞
Ê(k⊥) e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

=
∫∞
−∞
E(r⊥′,0)h(r⊥ − r⊥′, z)d2r⊥′

(19.5.1)

for z ≥ 0, where

Ê(k⊥)=
∫∞
−∞
ejk⊥·r⊥ E(r⊥,0)d2r⊥ (19.5.2)

and

†where the integral sign represents double integration; note also that in the literature one often sees the
notation k‖, r‖, with the subscript ‖meaning “parallel” to the interface, whereas our notation k⊥, r⊥ means
“perpendicular” to z.
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h(r⊥, z)=
∫∞
−∞
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

= −2
∂
∂z

(
e−jkr

4πr

)
, r =

√
r⊥·r⊥ + z2 (19.5.3)

In the vectorial case, E(r⊥, z) is replaced by a three-dimensional field, which can be
decomposed into its transverse x, y components and its longitudinal part along z:

E = x̂Ex + ŷEy︸ ︷︷ ︸
transverse part

+ẑEz ≡ E⊥ + ẑEz

The plane-wave spectrum representations apply separately to each component of E
and H, and can be written vectorially as follows, for z ≥ 0,

E(r⊥, z) =
∫∞
−∞

Ê(k⊥) e−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

H(r⊥, z) =
∫∞
−∞

Ĥ(k⊥) e−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

(19.5.4)

where Ê(k⊥), Ĥ(k⊥) are the 2-D Fourier transforms,

Ê(k⊥) =
∫∞
−∞
ejk⊥·r⊥ E(r⊥,0)d2r⊥

Ĥ(k⊥) =
∫∞
−∞
ejk⊥·r⊥ H(r⊥,0)d2r⊥

(19.5.5)

Because E must satisfy the source-free Gauss’s law, ∇∇∇ · E = 0, this imposes certain
constraints among the Fourier components, Ê(k⊥), that must be taken into account in
writing (19.5.4). Indeed, we have from (19.5.4)

∇∇∇ · E = −j
∫∞
−∞

k · Ê(k⊥) e−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

= 0

which requires that k · Ê(k⊥)= 0. Separating this into its transverse and longitudinal
parts, we have:

k · Ê = k⊥ · Ê⊥ + kzÊz = 0 , or,

Êz(k⊥)= −k⊥ · Ê⊥(k⊥)
kz

= −kxÊx(k⊥)+kyÊy(k⊥)
kz

(19.5.6)

It follows that the Fourier vector Ê(k⊥) must have the form:

Ê(k⊥)= Ê⊥(k⊥)+ẑ Êz(k⊥)= Ê⊥(k⊥)−ẑ
k⊥ · Ê⊥(k⊥)

kz
(19.5.7)

and it is expressible only in terms of its transverse components Ê⊥(k⊥). Thus, the
correct plane-wave spectrum representation for the E-field as well as that for the H-

858 19. Diffraction – Plane-Wave Spectrum

field become in the vector case, for z ≥ 0,

E(r⊥, z) =
∫∞
−∞

[
Ê⊥(k⊥)−ẑ

k⊥ · Ê⊥(k⊥)
kz

]
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

H(r⊥, z) = 1

ηk

∫∞
−∞

k×
[

Ê⊥(k⊥)−ẑ
k⊥ · Ê⊥(k⊥)

kz

]
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

(19.5.8)

where, k = k⊥+ ẑkz = x̂kx+ŷky+ ẑkz. The magnetic field was obtained from Faraday’s
law, ∇∇∇× E = −jωμH . Replacing, ωμ = kη, since k = ω√με and η = √

μ/ε, we have,
H =∇∇∇×E /(−jkη), which leads to the above expression for H by bringing the gradient
∇∇∇ inside the Fourier integral for E, and replacing it by∇∇∇ → −jk.

The plane-wave Fourier components for E and H form a right-handed vector triplet
together with the vector k,

Ê(k⊥) = Ê⊥(k⊥)−ẑ
k⊥ · Ê⊥(k⊥)

kz

Ĥ(k⊥) = 1

ηk
k×

[
Ê⊥(k⊥)−ẑ

k⊥ · Ê⊥(k⊥)
kz

]
= 1

ηk
k× Ê(k⊥)

(19.5.9)

Albeit complex-valued because of Eq. (19.2.3), the normalized vector k̂ = k/k can be
thought of as a unit vector, indeed, satisfying, k · k = k2

x + k2
y + k2

z = k2, or, k̂ · k̂ = 1.
It follows from (19.5.9), that k·Ĥ(k⊥)= 0 and k×Ĥ(k⊥)= −k Ê(k⊥)/η = −ωε Ê(k⊥),

which imply that Eqs. (19.5.8) satisfy the remaining Maxwell equations, that is,∇∇∇·H = 0
and∇∇∇×H = jωεE, in the right half-space z ≥ 0.

We could equally well have started with the tangential components of the magnetic
field on the aperture, H⊥(r⊥′,0), and the corresponding Fourier transform, Ĥ⊥(k⊥),
and have used the constraint∇∇∇ ·H = 0, or, k⊥ · Ĥ⊥(k⊥)+kzĤz(k⊥)= 0 , to obtain the
following alternative plane-wave spectrum representation, with the electric field derived
from, jωεE =∇∇∇×H, or, E = (η/jk)∇∇∇×H, for z ≥ 0,

H(r⊥, z) =
∫∞
−∞

[
Ĥ⊥(k⊥)−ẑ

k⊥ · Ĥ⊥(k⊥)
kz

]
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

E(r⊥, z) = −ηk
∫∞
−∞

k×
[

Ĥ⊥(k⊥)−ẑ
k⊥ · Ĥ⊥(k⊥)

kz

]
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

(19.5.10)

The plane-wave Fourier components still form a right-handed triplet with k,

Ĥ(k⊥) = Ĥ⊥(k⊥)−ẑ
k⊥ · Ĥ⊥(k⊥)

kz

Ê(k⊥) = −ηk k×
[

Ĥ⊥(k⊥)−ẑ
k⊥ · Ĥ⊥(k⊥)

kz

]
= −η

k
k× Ĥ(k⊥)

(19.5.11)

Eqs. (19.5.11) are entirely equivalent to (19.5.9), hence (19.5.10) are equivalent to
(19.5.8). Eqs. (19.5.10) could also be obtained quickly from (19.5.8) by a duality trans-
formation, that is, E → H, H → −E, η→ η−1.
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Example 19.5.1: Oblique Plane Wave. Here, we show that the plane-wave spectrum method
correctly generates an ordinary plane wave from its transverse values at an input plane.
Consider a TM electromagnetic wave propagating at an angle θ0 with respect to the z axis,
as shown in the figure below. The electric field at an arbitrary point, and its transverse
part evaluated on the plane z′ = 0, are given by

E(r⊥, z) = E0(x̂ cosθ0 − ẑ sinθ0)e−j(k
0
xx+k0

zz)

E⊥(r⊥′,0) = x̂E0 cosθ0 e−jk
0
xx′ = x̂E0 cosθ0e−jk

0⊥·r⊥′

k0
x = k sinθ0 , k0

y = 0 , k0
z = k cosθ0

k0
⊥ = x̂k0

x + ŷk0
y = x̂k sinθ0

It follows that the spatial Fourier transform of E⊥(r⊥′,0) will be

Ê⊥(k⊥,0)=
∫∞
−∞

x̂E0 cosθ0 e−jk
0⊥·r⊥′ ejk⊥·r⊥

′
d2r⊥′ = x̂E0 cosθ0(2π)2δ(k⊥ − k0

⊥)

Then, the integrand of Eq. (19.5.8) becomes

Ê⊥ − ẑ
k⊥ · Ê⊥
kz

= E0(x̂ cosθ0 − ẑ sinθ0)(2π)2δ(k⊥ − k0
⊥)

and Eq. (19.5.8) gives

E(r⊥, z) =
∫ ∞
−∞
E0(x̂ cosθ0 − ẑ sinθ0)(2π)2δ(k⊥ − k0

⊥)e−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

= E0(x̂ cosθ0 − ẑ sinθ0)e−j(k
0
xx+k0

zz)

which is the correct expression for the plane wave. For a TE wave a similar result holds. ��

One-Dimensional Apertures

As in Sec. 19.4, we assume that there is no y-dependence in the fields (see Fig. 19.4.1
for the geometry). The 2-D Fourier transforms of the 2-D aperture fields reduce to 1-D
Fourier transforms of 1-D fields:

Ê⊥(kx, ky) =
∫∞
−∞

E⊥(x,0)e−jkxx−jkyy dxdy

=
∫∞
−∞

E⊥(x,0)ejkxx dx ·
∫∞
−∞
ejkydy = Ê(kx)·2πδ(ky)

The δ(ky) factor effectively sets ky = 0 in the 2-D expressions and eliminates the
ky integrations, replacing (19.5.8) by,

E(x, z) =
∫∞
−∞

[
Ê⊥(kx)−ẑ

kx Êx(kx)
kz

]
e−jkzz e−jkxx

dkx
2π

H(x, z) = 1

ηk

∫∞
−∞

k×
[

Ê⊥(kx)−ẑ
kx Êx(kx)

kz

]
e−jkzz e−jkxx

dkx
2π

(19.5.12)
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where now, k = k⊥ + ẑkz = x̂kx + ẑkz, and hence, the constraint, k · Ê = 0, implies,

Êz = −k⊥·Ê⊥
kz

= −kx Êx
kz

(19.5.13)

We may rewrite (19.5.12) more explicitly in terms of the transverse Ex, Ey components,

E(x, z) =
∫∞
−∞

[
ŷÊy(kx)+ 1

kz
(x̂kz − ẑkx)Êx(kx)

]
e−jkxx−jkzz

dkx
2π

H(x, z) = 1

ηk

∫∞
−∞

[
(ẑkx − x̂kz)Êy(kx)+ŷ

k2

kz
Êx(kx)

]
e−jkxx−jkzz

dkx
2π

(19.5.14)

Thus, the Fourier components of the magnetic field are,

Ĥx = − kzηk Êy , Ĥy = k
ηkz

Êx , Ĥz = kx
ηk

Êy (19.5.15)

19.6 Far-Field Approximation, Radiation Pattern

The far-field approximation for the vector case is easily obtained by applying Eq. (19.3.3)
to each component of the E,H fields, that is, for large r,

E(r)≈ 2jk cosθ
e−jkr

4πr
Ê(k⊥)

∣∣∣∣
k=kr̂

(far-field radiation pattern) (19.6.1)

and similarly for H. Since k · Ê = 0 and k = k r̂, it follows that, r̂ · E(r)= 0, thus, the far
field has no radial component. The azimuthal and polar components are easily worked
out from (19.6.1) to be,

Eφ = 2jk
e−jkr

4πr
cosθ

[
Êy cosφ− Êx sinφ

]
Eθ = 2jk

e−jkr

4πr
[
Êx cosφ+ Êy sinφ

]
H = 1

η
r̂× E ⇒ Hφ = 1

η
Eθ , Hθ = − 1

η
Eφ

(19.6.2)

These are the same as Eqs. (18.4.10) and (18.4.12) of Chap. 18, if we recognize that
the quantity f(θ,φ) in those equations is nothing but f(θ,φ)= Ê⊥(k⊥) evaluated at
k = k r̂. In a similar fashion, we can show that the far-field approximation based on
(19.5.10) is equivalent to (18.4.11), where now we have, g(θ,φ)= Ĥ⊥(k⊥).

The cosθ factor is an obliquity factor and is sometimes referred to as an element
factor [1447]. The factors,

[
Êy cosφ− Êx sinφ

]
and

[
Êx cosφ+ Êy sinφ

]
, are referred

to as pattern space factors.
For the 1-D case described by Eq. (19.5.12), the far-field approximation follows by

applying the scalar result (19.4.9) to each component, that is, for large r = √x2 + z2,

E(r,θ)≈ ej π4 cosθ

√
k

2πr
e−jkr Ê(k0

x) (far-field approximation) (19.6.3)
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where, k0
x = k sinθ, k0

z = k cosθ, cosθ = z/r. Resolving these into the cylindrical
coordinate directions, r̂, θ̂θθ, ŷ, shown in Fig. 19.4.1, we have, E = θ̂θθEθ + ŷEy,

Ey(r,θ) = ej
π
4

√
k

2πr
e−jkr cosθ Êy(k0

x)

Eθ(r,θ) = ej
π
4

√
k

2πr
e−jkr Êx(k0

x)

(19.6.4)

For the magnetic field, we have, H = r̂× E /η = (ŷ Êθ − θ̂θθ Êy)/η,

Hθ(r,θ) = − 1

η
Ey = − 1

η
ej

π
4

√
k

2πr
e−jkr cosθ Êy(k0

x)

Hy(r,θ) = 1

η
Eθ = 1

η
ej

π
4

√
k

2πr
e−jkr Êx(k0

x)

(19.6.5)

19.7 Radiated and Reactive Power, Directivity

The z-component of the Poynting vector at the z = 0 plane is given by,

Sz = 1

2
E(r⊥,0)×H∗(r⊥,0)·ẑ (19.7.1)

The total power Prad transmitted through the aperture at z = 0, and radiated into the
right half-space, can be obtained by integrating the real part, Re[Sz], over the aperture.
Similarly, the integral of the imaginary part, Im[Sz], gives the reactive power Preact at
the aperture. Thus, we have,

Prad + jPreact =
∫∞
−∞
Sz d2r⊥ = 1

2

∫∞
−∞

E(r⊥,0)×H∗(r⊥,0)·ẑ d2r⊥ (19.7.2)

Applying the vectorial version of Parseval’s identity, we may express Eq. (19.7.2) as
an integral in the wavenumber domain of the corresponding 2-D Fourier transforms Ê, Ĥ
of E,H, which are defined in Eq. (19.5.8). Thus, we find,

Prad + jPreact = 1

2

∫∞
−∞

E(r⊥,0)×H∗(r⊥,0)·ẑ d2r⊥

= 1

2

∫∞
−∞

Ê(k⊥)×Ĥ
∗(k⊥)·ẑ d2k⊥

(2π)2

(19.7.3)

But the plane-wave Fourier components satisfy, Ĥ = k× Ê /ηk, where k = k⊥ + ẑkz.
The vector k⊥ is real-valued but kz becomes imaginary in the evanescent part of the
integral. Therefore, we may write, k∗ = k⊥+ẑk∗z = k+ẑ(k∗z −kz). Using the constraint,
k · Ê = 0, which implies, k∗ · Ê = Êz(k∗z − kz), it follows that,

Ê× Ĥ
∗ · ẑ = 1

ηk
Ê× (k∗ × Ê

∗)·ẑ = 1

ηk
[
k∗ |Ê|2 − Ê

∗ (k∗ · Ê)
] · ẑ

= 1

ηk
[
k∗z |Ê|2 − Ê∗z Êz(k∗z − kz)

] = 1

ηk
[
k∗z |Ê⊥|2 + kz|Êz|2

]
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Thus, Eq. (19.7.3) becomes,

Prad + jPreact = 1

2ηk

∫∞
−∞
[
k∗z |Ê⊥|2 + kz|Êz|2

] d2k⊥
(2π)2

(19.7.4)

Splitting the integration over the visible/propagating region, |k⊥| =
√
k2
x + k2

y ≤ k,

and over the invisible/evanescent region, |k⊥| =
√
k2
x + k2

y > k, and noting that kz is
real over the former, and imaginary, over the latter region, we may separate Prad, Preact,

Prad + jPreact = 1

2ηk

[∫
|k⊥|≤k

+
∫
|k⊥|>k

][
k∗z |Ê⊥|2 + kz|Êz|2

] d2k⊥
(2π)2

Prad = 1

2η

∫
|k⊥|≤k

[|Ê⊥|2 + |Êz|2] kzk d2k⊥
(2π)2

Preact = 1

2η

∫
|k⊥|>k

[|Ê⊥|2 − |Êz|2] jkzk d2k⊥
(2π)2

kz =
√
k2 − |k⊥|2

jkz =
√
|k⊥|2 − k2

(19.7.5)

In Sec. 18.6, we assumed that the transverse aperture fields were Huygens sources,
that is, H⊥(r⊥,0)= ẑ×E⊥(r⊥,0)/η. Under this assumption, the radiated power is given
approximately by,

Prad = 1

2

∫∞
−∞

Re
[
E⊥(r⊥,0)×H∗⊥(r⊥,0)

] · ẑ d2r⊥

= 1

2η

∫∞
−∞

∣∣E⊥(r⊥,0)
∣∣2 d2r⊥ = 1

2η

∫∞
−∞

|Ê⊥|2 d2k⊥
(2π)2

(19.7.6)

where we used Parseval’s identity in the last two integrals. Eq. (19.7.6) approximates
(19.7.5) for large apertures [19]. Indeed, Ê⊥ is typically highly peaked in the forward
direction, k⊥ = 0, or, kz = k, and hence, Êz = −k⊥ · Ê⊥/kz is small compared to Ê⊥ in
(19.7.5). Thus, the two expressions will agree, if we also assume that the contribution of
the invisible/evanescent region, |k⊥| > k, in (19.7.6) is small. However, such assumption
is not warranted in the so-called super-directive apertures where a huge amount of
reactive power resides in the invisible region.

An alternative way of calculating the radiated power is by integrating the radial
component of the Poynting vector over a hemisphere of very large radius in the right
half-space. At large radial distances, we may use the radiated fields given in (19.6.1),

Erad(r)= 2jk cosθ
e−jkr

4πr
Ê(k0

⊥)
∣∣∣∣

k0=kr̂
, Hrad(r)= 1

η
r̂× Erad (19.7.7)

The corresponding Poynting vector has only a radial component, since, r̂ · Erad = 0,

PPP = 1

2
Re
[
Erad ×H∗rad

] = 1

2η
Re
[
Erad × (r̂× E∗rad)

] = r̂
1

2η
|Erad|2 = r̂Pr (19.7.8)

Using spherical coordinates, the net power transmitted through the right-half hemi-
sphere of radius r will be given as follows,
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Prad =
∫
Pr dS =

∫ π/2
0

∫ 2π

0
Pr r2 sinθdθdφ =

∫ π/2
0

∫ 2π

0

1

2η
|Erad|2 r2 sinθdθdφ

=
∫ π/2

0

∫ 2π

0

1

2η

∣∣∣∣∣2jk cosθ
e−jkr

4πr
Ê(k0

⊥)

∣∣∣∣∣
2

r2 sinθdθdφ

= 1

2η(2π)2

∫ π/2
0

∫ 2π

0

∣∣Ê(k0
⊥)
∣∣2 k2 cos2 θ sinθdθdφ

Changing variables from θ,φ to kx = k sinθ cosφ, ky = k sinθ sinφ, and noting
that, dkx dky = k2 cosθ sinθdθdφ, and, kz = k cosθ, it follows that the last integral
can be transformed into that of Eq. (19.7.5).

The directivity in direction, θ,φ, is defined as follows in terms of the radiation
intensity (radiated power per unit solid angle), dP/dΩ = r2dP/dS = r2Pr ,

D(θ,φ)= dP/dΩ
Prad/4π

= 4π
r2Pr
Prad

= k2

π
cos2 θ

∣∣Ê(k0
⊥)
∣∣2∫

|k⊥|≤k

∣∣Ê(k⊥)
∣∣2 kz

k
d2k⊥
(2π)2

(19.7.9)

Assuming that the maximum directivity is in the forward direction, k⊥ = 0, we have,

Dmax = 4π
λ2

∣∣Ê⊥(0)
∣∣2∫

|k⊥|≤k

∣∣Ê(k⊥)
∣∣2 kz

k
d2k⊥
(2π)2

(19.7.10)

where we replaced, k2/π = 4π/λ2, and
∣∣Ê(0)

∣∣2 = ∣∣Ê⊥(0)
∣∣2

, since, Êz = −k⊥·Ê⊥/kz =
0, at k⊥ = 0. By comparison, the approximate expression (18.6.10) in Sec. 18.6 was,

Dmax = 4π
λ2

∣∣Ê⊥(0)
∣∣2∫∞

−∞

∣∣Ê⊥(k⊥)
∣∣2 d2k⊥
(2π)2

= 4π
λ2

∣∣∣∣∫∞−∞ E⊥(r⊥,0)d2r⊥
∣∣∣∣2

∫∞
−∞

∣∣E⊥(r⊥,0)
∣∣2 d2r⊥

(19.7.11)

Quite similar expressions hold also in the 1-D aperture case. The total radiated and
reactive powers (per unit y-length) are defined by integrating the z-component of the
Poynting vector over the x-aperture only. This gives,

P′rad + jP′react =
∫∞
−∞
Sz dx = 1

2ηk

∫∞
−∞
[
k∗z |Ê⊥|2 + kz|Êz|2

] dkx
2π

(19.7.12)

where the prime means “per unit y-length.” Then, (19.7.12) separates as,

P′rad =
1

2η

∫
|kx|≤k

[|Ê⊥|2 + |Êz|2] kzk dkx
2π

P′react =
1

2η

∫
|kx|>k

[|Ê⊥|2 − |Êz|2] jkzk dkx
2π

kz =
√
k2 − k2

x

jkz =
√
k2
x − k2

(19.7.13)
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It is convenient to rewrite these in a form that explicitly separates the TE and TM
components, that is, Ey and Hy, Using Eqs. (19.5.15), we find,

P′rad =
1

2η

∫
|kx|≤k

[|Êy|2 + |ηĤy|2] kzk dkx
2π

P′react =
1

2η

∫
|kx|>k

[|Êy|2 − |ηĤy|2] jkzk dkx
2π

kz =
√
k2 − k2

x

jkz =
√
k2
x − k2

(19.7.14)

Indeed, using Eqs. (19.5.15), we have in the visible region, |kx| ≤ k,

|Ê|2 = |Êx|2+|Êy|2+|Êz|2 = |Êy|2+|Êx|2+ k
2
x
k2
z
|Êx|2 = |Êy|2+ k

2

k2
z
|Êx|2 = |Êy|2+|ηĤy|2

Similarly, in the invisible region, |kx| > k, we have noting that |kz|2 = k2
x − k2,

|Ê⊥|2 − |Êz|2 = |Êy|2 + |Êx|2 − k2
x

|kz|2 |Êx|
2 = |Êy|2 − k

2

k2
z
|Êx|2 = |Êy|2 − |ηĤy|2

The same expression for P′rad can also be obtained by integrating the radial com-
ponent Pr of the Poynting vector over a semi-cylindrical surface of large radius r and
using the radiation fields (19.6.3). Fig. 19.7.1 illustrates the surface conventions in the
1-D and 2-D cases.

Fig. 19.7.1 Radiated power from 2-D and 1-D apertures.

The directivity may be defined in terms of the power density through the cylindrical
surface dS = rdθdy, that is,,

dP = Pr rdθdy
or, with P′ = dP/dy, using (19.6.3),

dP
dθdy

= dP′

dθ
= rPr = r 1

2η
|Erad|2 = r 1

2η

∣∣∣∣∣∣ej π4 cosθ

√
k

2πr
e−jkr Ê(k0

x)

∣∣∣∣∣∣
2

which gives for the directivity towards the θ-direction,

D(θ)= dP′/dθ
P′rad/2π

= k cos2 θ
∣∣Ê(k0

x)
∣∣2∫ k

−k

∣∣Ê(kx)
∣∣2 kz

k
dkx
2π

(19.7.15)
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where k0
x = k sinθ. We note that the denominator P′rad/2π in the above definition

represents the radiation intensity in the ideal cylindrically-isotropic case, that is,(
dP′

dθ

)
isotropic

= P′rad

2π

If the maximum directivity is towards the forward direction, θ = 0, or, k0
x = 0, then,

Êz = 0, and we find the following expression for the maximum directivity, expressible
also in terms of the TE and TM components,

Dmax = k
∣∣E⊥(0)

∣∣2∫ k
−k

∣∣Ê(kx)
∣∣2 kz

k
dkx
2π

= 2π
λ

∣∣Êy(0)∣∣2 + ∣∣ηĤy(0)∣∣2∫ k
−k
[|Êy(kx)|2 + |ηĤy(kx)|2] kzk dkx

2π
(19.7.16)

Finally, had we assumed that the aperture fields were Huygens sources, the maximum
directivity would be given by the analogous expression to (19.7.11),

Dmax = 2π
λ

∣∣Ê⊥(0)
∣∣2∫∞

−∞

∣∣Ê⊥(kx)
∣∣2 dkx

2π

= 2π
λ

∣∣∣∣∫∞−∞ E⊥(x,0)dx
∣∣∣∣2

∫∞
−∞

∣∣E⊥(x,0)
∣∣2 dx

(19.7.17)

For a finite-aperture of lengthL, extending over−L/2 ≤ x ≤ L/2, Eq. (19.7.17) is max-
imized when the aperture distribution E⊥(x,0) is uniform, resulting in the maximum
value, Dmax = 2πL/λ. This is the 1-D version of the 2-D result, Dmax = 4πA/λ2, for
uniform apertures that we derived in Sec. 18.6, under the approximation of Eq. (19.7.6).

19.8 Smythe Diffraction Formulas

The plane-wave representations Eqs. (19.5.8) or Eq. (19.5.10), can also be written convolu-
tionally in terms of the transverse components, E⊥(r⊥′,0),H⊥(r⊥′,0), on the z = 0 aper-
ture plane. The resulting Rayleigh-Sommerfeld type formulas are known as Smythe’s
formulas [1328].

From the Weyl representations (D.18) and (D.20) of Appendix D, we have withG(r)=
e−jkr/4πr, and r = |r| = √x2 + y2 + z2, and for z ≥ 0,

−2
∂G
∂z

=
∫∞
−∞
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

, −2∇∇∇⊥G =
∫∞
−∞

k⊥
kz
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

that is, we have the 2-D Fourier transforms with respect to r⊥,

Ĝ(k⊥, z)= e−jkzz

2jkz
, −2

∂̂G
∂z

= e−jkzz , −2%∇∇∇⊥G = k⊥
kz
e−jkzz (19.8.1)

We observe that in (19.5.8) the following products of Fourier transforms (in k⊥)
appear, which will become convolutions in the r⊥ domain:
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Ê⊥(k⊥)·e−jkzz = Ê⊥(k⊥)·
(
−2
∂̂G
∂z

)

Ê⊥(k⊥)·
(

k⊥
kz
e−jkzz

)
= Ê⊥(k⊥)·

(
−2%∇∇∇⊥G)

E(r⊥, z)=
∫∞
−∞

[
Ê⊥(k⊥)·

(
−2
∂̂G
∂z

)
− ẑ

[
Ê⊥(k⊥)·

(
−2%∇∇∇⊥G)]

]
e−jk⊥·r⊥

d2k⊥
(2π)2

It follows that (19.5.8) can be written convolutionally in the form:

E(r⊥, z)= −2

∫∞
−∞

[
E⊥(r⊥′,0)

∂G(R)
∂z

− ẑ
(

E⊥(r⊥′,0)·∇∇∇⊥G(R)
)]

d2r⊥′ (19.8.2)

where hereG(R)= e−jkR/4πRwithR = |r−r ′| and z′ = 0, that is,R = √|r⊥ − r⊥′|2 + z2.
Because E⊥(r⊥′,0) does not depend on r, it is straightforward to verify using some vector
identities that,

ẑ (∇∇∇⊥G · E⊥)−E⊥
∂G
∂z

=∇∇∇× (ẑ× E⊥G) (19.8.3)

This gives rise to Smythe’s formulas for the electric and magnetic fields, for z ≥ 0,

E(r⊥, z) = 2∇∇∇×
∫∞
−∞

ẑ× E⊥(r⊥′,0)G(R)d2r⊥′

H(r⊥, z) = 2j
ηk
∇∇∇×

(
∇∇∇×

∫∞
−∞

ẑ× E⊥(r⊥′,0)G(R)d2r⊥′
) (Smythe) (19.8.4)

with G(R)= e−jkR/4πR, and R = √|r⊥ − r⊥′|2 + z2. In a similar fashion, we obtain the
Smythe formulas for the alternative representation of Eq. (19.5.10), which can also be
obtained by applying a duality transformation to (19.8.4),

H(r⊥, z) = 2∇∇∇×
∫∞
−∞

ẑ×H⊥(r⊥′,0)G(R)d2r⊥′

E(r⊥, z) = 2η
jk
∇∇∇×

(
∇∇∇×

∫∞
−∞

ẑ×H⊥(r⊥′,0)G(R)d2r⊥′
) (19.8.5)

Perhaps a faster way of deriving Eqs. (19.8.4) is as follows. Working in the wavenum-
ber domain and using the constraint, k · Ê = kzÊz + k⊥ · Ê⊥ = 0, and some vector
identities, we obtain,

k×(ẑ×Ê⊥)= k×(ẑ×Ê)= (k·Ê)ẑ−(k·ẑ)Ê = −Êkz ⇒ Ê(k⊥)= −k× (ẑ× Ê⊥(k⊥)
)

kz

Recalling that, Ĝ(k⊥, z)= e−jkzz/(2jkz), is the 2-D Fourier transform of the Green’s
function G(r)= e−jkr/(4πr), for z ≥ 0, we can write the propagation filter in the form,

ĥ(k⊥, z)= e−jkzz = 2jkz ·
[
e−jkzz

2jkz

]
= 2jkz · Ĝ(k⊥, z) (19.8.6)
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Then, the Fourier transform of the propagated field becomes,

Ê(k⊥, z)= Ê(k⊥)e−jkzz = Ê(k⊥)·2jkz · Ĝ(k⊥, z)= −k× (ẑ× Ê⊥(k⊥)
)

kz
·2jkz · Ĝ(k⊥, z)

or,
Ê(k⊥, z)= −2 jk× (ẑ× Ê⊥(k⊥)

) · Ĝ(k⊥, z) (19.8.7)

Eq. (19.8.4) follows immediately from this by taking inverse Fourier transforms of
both sides and replacing −jk by∇∇∇.

Connection to Franz Formulas

The Smythe formulas can be also derived more directly by using the Franz formulas
(18.10.13) and making use of the extinction theorem as we did in Sec. 19.1 in the dis-
cussion of the Rayleigh-Sommerfeld formula.

Assuming z > 0, and applying (18.10.13) to the closed surface S+ S∞ of Fig. 19.1.1,
and dropping the S∞ term, it follows that the left-hand side of (18.10.13) will be zero
if the point r is not in the right half-space. In particular, it will be zero when evaluated
at the reflected point r− = r⊥ − ẑz in the left half-space. To simplify the notation, we
define the transverse electric and magnetic vector potentials:†

F(r) = 2

∫∞
−∞
[
ẑ× E⊥(r⊥′,0)

]
G(R)d2r⊥′

A(r) = 2

∫∞
−∞
[
ẑ×H⊥(r⊥′,0)

]
G(R)d2r⊥′

(19.8.8)

where we took S to be the xy plane with the unit vector n̂ = ẑ, and G(R)= e−jkR/4πR,
and R = √|r⊥ − r⊥′|2 + z2. Then, the Franz formulas, Eqs. (18.10.13) and (18.10.14), can
be written as follows, after setting ωμ = kη and ωε = k/η,

E(r) = 1

2

η
jk
∇∇∇× (∇∇∇× A)+ 1

2
∇∇∇× F

H(r) = 1

2

−1

jkη
∇∇∇× (∇∇∇× F)+ 1

2
∇∇∇× A

(19.8.9)

Noting that F,A are transverse and using some vector identities and the decompo-
sition∇∇∇ = ∇∇∇⊥ + ẑ∂z, we may rewrite the above in a form that explicitly separates the
transverse and longitudinal parts, so that if r is in the right half-space:

E(r) = 1

2

η
jk
[∇∇∇⊥(∇∇∇⊥ · A)−∇∇∇2A

]+ 1

2
ẑ× ∂zF︸ ︷︷ ︸

transverse

+ 1

2

η
jk
[
ẑ∂z(∇∇∇⊥ · A)

]+ 1

2
∇∇∇⊥ × F︸ ︷︷ ︸

longitudinal

H(r) = 1

2

−1

jkη
[∇∇∇⊥(∇∇∇⊥ · F)−∇∇∇2F

]+ 1

2
ẑ× ∂zA︸ ︷︷ ︸

transverse

+ 1

2

−1

jkη
[
ẑ∂z(∇∇∇⊥ · F)

]+ 1

2
∇∇∇⊥ × A︸ ︷︷ ︸

longitudinal

(19.8.10)

†In the notation of Eq. (18.10.12), we have F = −2Ams/ε and A = 2A s/μ.
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where we used the identity,

∇∇∇× (∇∇∇× A)=∇∇∇(∇∇∇ · A)−∇∇∇2A =∇∇∇⊥(∇∇∇⊥ · A)−∇∇∇2A︸ ︷︷ ︸
transverse

+ ẑ∂z(∇∇∇⊥ · A)︸ ︷︷ ︸
longitudinal

If r is chosen to be the reflected point r− in the left half-space, then G− = G and the
vectors F,A remain the same, but the gradient with respect to r− is now∇∇∇− =∇∇∇⊥− ẑ∂z,
arising from the replacement z→ −z. Thus, replacing ∂z → −∂z in (19.8.10) and setting
the result to zero, we have:

0 = 1

2

η
jk
[∇∇∇⊥(∇∇∇⊥ · A)−∇∇∇2A

]− 1

2
ẑ× ∂zF︸ ︷︷ ︸

transverse

+ 1

2

η
jk
[−ẑ∂z(∇∇∇⊥ · A)

]+ 1

2
∇∇∇⊥ × F︸ ︷︷ ︸

longitudinal

0 = 1

2

−1

jkη
[∇∇∇⊥(∇∇∇⊥ · F)−∇∇∇2F

]− 1

2
ẑ× ∂zA︸ ︷︷ ︸

transverse

+ 1

2

−1

jkη
[−ẑ∂z(∇∇∇⊥ · F)

]+ 1

2
∇∇∇⊥ × A︸ ︷︷ ︸

longitudinal

(19.8.11)
Separating (19.8.11) into its transverse and longitudinal parts, we have:

η
jk
[∇∇∇⊥(∇∇∇⊥ · A)−∇∇∇2A

] = ẑ× ∂zF , 1

2

η
jk
[
ẑ∂z(∇∇∇⊥ · A)

] =∇∇∇⊥ × F

−1

jkη
[∇∇∇⊥(∇∇∇⊥ · F)−∇∇∇2F

] = ẑ× ∂zA , −1

jkη
[
ẑ∂z(∇∇∇⊥ · F)

] =∇∇∇⊥ × A

(19.8.12)

Using these conditions into Eq. (19.8.10), we obtain the doubling of terms:

E(r) =∇∇∇⊥ × F+ ẑ× ∂zF = ∇∇∇× F

H(r) = −1

jkη
[∇∇∇⊥(∇∇∇⊥ · F)−∇∇∇2F+ ẑ∂z(∇∇∇⊥ · F)

] = −1

jkη
∇∇∇× (∇∇∇× F)

(19.8.13)

which are the same as Eqs. (19.8.4). Alternatively, we may express the diffracted fields
in terms of the values of the magnetic field at the xy surface:

E(r) = η
jk
[∇∇∇⊥(∇∇∇⊥ · A)−∇∇∇2A+ ẑ∂z(∇∇∇⊥ · A)

] = η
jk
∇∇∇× (∇∇∇× A)

H(r) = ∇∇∇⊥ × A+ ẑ× ∂zA = ∇∇∇× A

(19.8.14)

which are the same as (19.8.5).
By applying the operation (k2+∇∇∇2) to the definitions (19.8.8), and using the Green’s

function property, (k2+∇∇∇2)G(r− r′)= −δ(2)(r⊥ − r⊥′)δ(z−z′), applied at z′ = 0, we
find that F,A satisfy the Helmholtz equations,

∇∇∇2F+ k2F = −2
[
ẑ× E⊥(r⊥,0)

]
δ(z)

∇∇∇2A+ k2A = −2
[
ẑ×H⊥(r⊥,0)

]
δ(z)

(19.8.15)

According to the field-equivalence principle, the effective surface currents defined
in Eq. (18.10.8) are, Js = ẑ × H⊥ and Jms = −ẑ × E⊥, with the corresponding volume
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currents, Jsδ(z) and Jmsδ(z). We note that Eqs. (19.8.15) are the Helmholtz equations
(18.2.5) satisfied by the effective surface magnetic and electric vector potentials As,Ams,
driven by these volume currents as sources, that is,

∇2A+ k2A = −μ Jsδ(z)

∇2Am + k2Am = −ε Jmsδ(z)

where as we noted earlier, we have the identifications, F = −2Ams/ε and A = 2A s/μ.

Summary

Because z > 0, both F and A satisfy the homogeneous Helmholtz equation, so that
∇∇∇×(∇∇∇×F)=∇∇∇(∇∇∇·F)−∇2F =∇∇∇(∇∇∇·F)+k2F, and similarly for A. Thus, the expressions
for the EM fields, may be summarized as follows, in terms of F,

E =∇∇∇× F

−jkηH =∇∇∇× (∇∇∇× F)= k2F+∇∇∇(∇∇∇⊥ · F)
(19.8.16)

or, separating transverse and longitudinal parts,

E⊥ = ẑ× ∂zF
ẑEz =∇∇∇⊥ × F

−jkηH⊥ = k2F+∇∇∇⊥(∇∇∇⊥ · F)

−jkη ẑHz = ẑ∂z(∇∇∇⊥ · F)

(19.8.17)

and, writing them component-wise,

Ex = −∂zFy
Ey = ∂zFx
Ez = ∂xFy − ∂yFx

−jkηHx = k2Fx + ∂x(∂xFx + ∂yFy)
−jkηHy = k2Fy + ∂y(∂xFx + ∂yFy)
−jkηHz = ∂z(∂xFx + ∂yFy)

(19.8.18)

where the components Fx, Fy are given by the definitions (19.8.8),

Fx(r⊥, z) = 2

∫∞
−∞

Ey(r⊥′,0)G(R)d2r⊥′

Fy(r⊥, z) = −2

∫∞
−∞

Ex(r⊥′,0)G(R)d2r⊥′

R =
√
|r⊥ − r⊥′|2 + z2

(19.8.19)
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Another set of useful relationships follows from the transverse part of Faraday’s
law, that is, −jkηH⊥ = ∇∇∇⊥Ez × ẑ + ẑ × ∂zE⊥, or, ẑ × ∂zE⊥ = −jkηHT −∇∇∇⊥ × (ẑEz),
and written in terms of F, after using the identity,∇∇∇⊥ × (∇∇∇⊥ × F)=∇∇∇⊥(∇∇∇⊥ · F)−∇∇∇2⊥F,

ẑ× ∂zE⊥ = −jkηH⊥ −∇∇∇⊥ × (ẑEz)= k2F+∇∇∇⊥(∇∇∇⊥ · F)−∇∇∇⊥ × (∇∇∇⊥ × F) , or,

(k2 +∇∇∇2⊥)F = ẑ× ∂zE⊥ = −jkηH⊥ −∇∇∇⊥Ez × ẑ (19.8.20)

(k2 +∇∇∇2⊥)Fx = −∂zEy
(k2 +∇∇∇2⊥)Fy = ∂zEx

(19.8.21)

where ∇∇∇2⊥ = ∂2
x + ∂2

y. An analogous set of relationships is obtained in terms of the
magnetic vector potential A by applying a duality transformation to the above, that is,
E → H, H → −E, η→ η−1, and F → A,

H =∇∇∇× A

jkη−1E =∇∇∇× (∇∇∇× A)= k2A+∇∇∇(∇∇∇⊥ · A)
(19.8.22)

or, separating transverse and longitudinal parts,

H⊥ = ẑ× ∂zA
ẑHz =∇∇∇⊥ × A

jkη−1E⊥ = k2A+∇∇∇⊥(∇∇∇⊥ · A)

jkη−1 ẑEz = ẑ∂z(∇∇∇⊥ · A)

(19.8.23)

and, component-wise,

Hx = −∂zAy
Hy = ∂zAx
Hz = ∂xAy − ∂yAx

jkη−1Ex = k2Ax + ∂x(∂xAx + ∂yAy)
jkη−1Ey = k2Ay + ∂y(∂xAx + ∂yAy)
jkη−1Ez = ∂z(∂xAx + ∂yAy)

(19.8.24)

with Ax,Ay given by the definitions (19.8.8),

Ax(r⊥, z) = 2

∫∞
−∞

Hy(r⊥′,0)G(R)d2r⊥′

Ay(r⊥, z) = −2

∫∞
−∞

Hx(r⊥′,0)G(R)d2r⊥′

R =
√
|r⊥ − r⊥′|2 + z2

(19.8.25)
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and, moreover,

(k2 +∇∇∇2⊥)A = ẑ× ∂zH⊥ = jkη−1E⊥ −∇∇∇⊥Hz × ẑ (19.8.26)

(k2 +∇∇∇2⊥)Ax = −∂zHy
(k2 +∇∇∇2⊥)Ay = ∂zHx

(19.8.27)

with (19.8.26) following from the transverse part of Ampère’s law,

jkη−1E⊥ =∇∇∇⊥ × (ẑHz)+ẑ× ∂zH⊥ ⇒ ẑ× ∂zH⊥ = jkη−1E⊥ −∇∇∇⊥ × (ẑHz)
Equations (19.8.16)–(19.8.27) apply for z > 0. As we discussed in Sec. 19.1, for

arbitrary z ≷ 0 the fields might be different from the two sides of the z = 0 interface. In
such cases, the definitions (19.8.8) of the electric and magnetic vector potentials must
be modified to allow possibly different limiting values of the transverse fields at z = 0±,

F±(r⊥, z) = 2

∫∞
−∞
[
ẑ× E⊥(r⊥′,0±)

]
G(R)d2r⊥′

A±(r⊥, z) = 2

∫∞
−∞
[
ẑ×H⊥(r⊥′,0±)

]
G(R)d2r⊥′

(19.8.28)

Then, the Smythe formulas become, for z ≷ 0,

E⊥ = ±ẑ× ∂zF±
ẑEz = ±∇∇∇⊥ × F±

−jkηH⊥ = ±
[
k2F± +∇∇∇⊥(∇∇∇⊥ · F±)

]
−jkη ẑHz = ± ẑ∂z(∇∇∇⊥ · F±)

(19.8.29)

and,
H⊥ = ±ẑ× ∂zA±

ẑHz = ±∇∇∇⊥ × A±

jkη−1E⊥ = ±
[
k2A± +∇∇∇⊥(∇∇∇⊥ · A±)

]
jkη−1 ẑEz = ±ẑ∂z(∇∇∇⊥ · A±)

(19.8.30)

Let us explore these a bit further. If we assume that E⊥ is continuous across the plane
z = 0 (as would be the case for the scattered fields from planar conducting screens), that
is, E⊥(r⊥′,−0)= E⊥(r⊥′,+0), then, F+ = F−, and F becomes an even function of z, and
Eq. (19.8.29) reads in this case,

E⊥ = ±ẑ× ∂zF
ẑEz = ±∇∇∇⊥ × F

−jkηH⊥ = ±
[
k2F+∇∇∇⊥(∇∇∇⊥ · F)

]
−jkη ẑHz = ± ẑ∂z(∇∇∇⊥ · F)

for z ≷ 0 (19.8.31)
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Since the z-derivative of an even function is odd in z, it follows from Eq. (19.8.31)
that E⊥(r⊥, z) will be even in z, whereas Ez(r⊥, z) will be odd, and similarly, H⊥(r⊥, z)
will be odd, while Hz(r⊥, z) will be even.

But if H⊥ is odd, then, H⊥(r⊥′,−0)= −H⊥(r⊥′,+0), which implies that A− = −A+,
and A will be an odd function of z. Denoting A+ simply by A, we have A± = ±A, so that
the ± signs cancel out in Eq. (19.8.30), which can then be written as follows,

H⊥ = ẑ× ∂zA
ẑHz =∇∇∇⊥ × A

jkη−1E⊥ = k2A+∇∇∇⊥(∇∇∇⊥ · A)

jkη−1 ẑEz = ẑ∂z(∇∇∇⊥ · A)

for all z (19.8.32)

The derivation of Eqs. (19.8.31) and (19.8.32) was based on the assumption that
the E,H fields satisfied the homogeneous Helmholtz equations and the Sommerfeld
radiation condition in both half-spaces, z ≷ 0. But if there are sources of fields in z < 0,
but not in z > 0, then only the z > 0 part of these equations would hold.

The type of fields for which (19.8.31)–(19.8.32) hold for both half-spaces are those
that are generated by sources lying on the z = 0 plane, such as the scattered fields from
planar conducting screens that are generated by the induced currents on the conductors.

The implications of Eq. (19.8.31) and (19.8.32) for apertures in conducting screens
is discussed next.

19.9 Apertures in Conducting Screens

Consider an electromagnetic field E i,H i incident from z < 0 onto an infinitely thin per-
fectly conducting planar screen M in which an aperture A has been cut, as shown in
Fig. 19.9.1. The metallic part M and the aperture A make up the whole z = 0 plane.
In practice, a finite thickness and finite conductivity must be assumed for the conduct-
ing screen. However, this idealized version has served as a prototype for this sort of
diffraction problem.

The total fields consist of the incident fields E i,H i plus the scattered fields, say,
E s,H s, generated by the induced surface currents on the conducting part, and radiated
into the two half-spaces, z ≷ 0,

E = E i + E s

H = H i +H s (19.9.1)

The fields must satisfy the boundary conditions that the total tangential electric field
and total normal magnetic field be zero on the metallic part M, that is,

ẑ× E = ẑ× (E i + E s)= 0

ẑ ·H = ẑ · (H i +H s)= 0
on M (19.9.2)

In addition, for the particular planar geometry under consideration, the scattered
fields satisfy the following symmetry properties with respect to the z = 0 plane,
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Fig. 19.9.1 Aperture in planar conducting screen.

Esx, Esy,Hsz are even in z

Hsx,Hsy, Esz are odd in z
(19.9.3)

Such conditions have been used invariably in all treatments of diffraction and scat-
tering from such ideal planar conducting screens. They can be justified [41] by noting
that the induced surface currents, causing the scattered fields, are constrained to flow
on the infinitely thin conducting plane at z = 0 and have no z-component which would
break the symmetry. The surface currents are free to radiate equally on both sides of
the screen. See Ref. [1310] for a recent review of these symmetry properties.

The oddness of H s⊥, Esz together with their continuity across the aperture A implies
that they must vanish on A. On the other hand, they must be discontinuous on the
metallic part M. Thus, we have,

ẑ×H s = 0

ẑ · E s = 0
on A (19.9.4)

These imply that, on the apertureA, the corresponding components of the total field
must remain equal to those of the incident fields, that is,

ẑ×H = ẑ×H i

ẑ · E = ẑ · E i
on A (19.9.5)

Because the scattered fields E s,H s satisfy the homogeneous Helmholtz equations
on both sides z ≷ 0 and the symmetry properties (19.9.3), it follows that Eqs. (19.8.31)
and (19.8.32) will be applicable, that is, we have for z ≷ 0,

E s = ±∇∇∇× F s

−jkηH s = ±[k2F s +∇∇∇(∇∇∇⊥ · F s )
] H s =∇∇∇× As

jkη−1E s = k2As +∇∇∇(∇∇∇⊥ · As)
(19.9.6)
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where,

F s(r⊥, z) = 2

∫∞
−∞
[
ẑ× E s⊥(r⊥′,0)

]
G(R)d2r⊥′

As(r⊥, z) = 2

∫∞
−∞
[
ẑ×H s⊥(r⊥′,0+)

]
G(R)d2r⊥′

R =
√
|r⊥ − r⊥′|2 + z2 (19.9.7)

The left set is usually more convenient for dealing with small apertures in large
screens, whereas the right set is more convenient for scattering from small planar con-
ducting screens. Let us work with the left set first. Because E s⊥ = E⊥ − E i⊥, we may split
F s into the sum,

F s = 2

∫∞
−∞
[
ẑ× (E⊥ − E i⊥)

]
G(R)d2r⊥′ = F− F i

F(r⊥, z) = 2

∫∞
−∞
[
ẑ× E⊥(r⊥′,0)

]
G(R)d2r⊥′

F i(r⊥, z) = 2

∫∞
−∞
[
ẑ× E i⊥(r⊥′,0)

]
G(R)d2r⊥′

(19.9.8)

The integrations in (19.9.8) are over the entire A+M plane at z = 0. However, the
boundary conditions (19.9.2) require that ẑ × E⊥ = 0 on the conducting surface M,
therefore, we may restrict the integration for the F-term to be over the aperture A only,

F(r⊥, z)= 2

∫
A

[
ẑ× E⊥(r⊥′,0)

]
G(R)d2r⊥′ (19.9.9)

Replacing F s = F− F i in Eq. (19.9.6) we obtain,

E− E i = E s = ±∇∇∇× (F− F i) ⇒ E = E i ∓∇∇∇× F i ±∇∇∇× F , or,

E = E i ∓ E r ±∇∇∇× F , for z ≷ 0 (19.9.10)

where we defined E r =∇∇∇× F i for all z ≷ 0. For z > 0, E r is equal to the incident field,
E r = E i. Indeed, because we assumed that the sources generating the incident fields
E i,H i are in the left half-space z < 0 and that there are no such sources in z > 0, it
follows that E i would also satisfy (19.8.31), that is, E i =∇∇∇× F i, but only for z > 0.

For z < 0, the field E r is the field that would be reflected from the conducting screen
if that screen filled the entire z = 0 plane, as is depicted in Fig. 19.9.2.

This is most clearly seen by using the plane-wave spectrum representation for E i.
The convolutional equation (19.9.8) defining F i can be written in the wavenumber do-
main in the following form, for all z,

F i(r⊥, z) = 2

∫∞
−∞
[
ẑ× E i⊥(r⊥′,0)

]
G(R)d2r⊥′

= 2

∫∞
−∞
[
ẑ× Ê i⊥(k⊥)

]
e−jk⊥·r⊥

e−jkz|z|

2jkz
d2k⊥
(2π)2
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Fig. 19.9.2 Plane-wave components of incident and reflected waves.

where we used the Weyl representation forG(R) given by Eq. (D.9) of Appendix D, which
is valid for all z ≷ 0. Replacing |z| = ±zwhen z ≷ 0, we obtain the plane-wave spectrum
representation of the field E r =∇∇∇× F i,

E r(r⊥, z) = (∇∇∇⊥ + ẑ∂z)×
∫∞
−∞
[
ẑ× Ê i⊥(k⊥)

]
e−jk⊥·r⊥

e∓jkzz

jkz
d2k⊥
(2π)2

= −
∫∞
−∞

(k⊥ ± ẑkz)×
[
ẑ× Ê i⊥(k⊥)

]
kz

e−jk⊥·r⊥ e∓jkzz
d2k⊥
(2π)2

where the gradient, (∇∇∇⊥ + ẑ∂z), was replaced by, −j(k⊥ ± ẑkz), when brought inside

the integral. Using, k⊥ · Ê i⊥ + kzÊiz = 0, and some vector identities, we obtain the 2-D
Fourier transform of E r(r⊥, z),

Ê r(k⊥)= −(k⊥ ± ẑkz)×
[
ẑ× Ê i⊥(k⊥)

]
kz

= ±Ê i⊥ + ẑ Êiz

which shows that E r = −E i⊥ + ẑEiz, if z < 0, which is the reflected field, and E r = E i if
z > 0. The reflected wavenumber k r = k⊥−ẑkz is depicted in Fig. 19.9.2. In conclusion,
the total field of Eq. (19.9.10) is given by E = E i − E i +∇∇∇× F = ∇∇∇× F, if z > 0, and by
E = E i + E r −∇∇∇× F, if z < 0,

E =
⎧⎨⎩∇∇∇× F , for z > 0

E i + E r −∇∇∇× F , for z < 0
(19.9.11)

Defining the reflected magnetic field through, −jkηH r =∇∇∇×E r =∇∇∇×(∇∇∇×F i), we
again note that H r = H i if z > 0. Thus, from (19.9.6) we find the total magnetic field,

H =

⎧⎪⎪⎨⎪⎪⎩
− 1

jkη
[
k2F+∇∇∇(∇∇∇⊥ · F)

]
, for z > 0

H i +H r + 1

jkη
[
k2F+∇∇∇(∇∇∇⊥ · F)

]
, for z < 0

(19.9.12)
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The calculation of F from Eq. (19.9.9) requires knowledge of the transverse electric
field components, E⊥(r⊥′,0), on the aperture A, that is, for r⊥′ ∈ A. These can be
obtained, in principle, by enforcing the conditions (19.9.5). From Eqs. (19.9.11) and
(19.9.12), we have −jkηH⊥ = k2F + ∇∇∇⊥(∇∇∇⊥ · F) and Ez = ẑ · ∇∇∇⊥ × F for z ≥ 0.
Restricting these on A, and applying the conditions H⊥ = H i⊥ and Ez = Eiz, we obtain
the following integral equations for the unknowns E⊥(r⊥′,0),

k2F 0 +∇∇∇⊥(∇∇∇⊥ · F 0) = −jkηH i⊥

ẑ ·∇∇∇⊥ × F 0 = Eiz
on A (19.9.13)

where F 0 denotes the restriction of F on A, that is, with R0 = |r⊥ − r⊥′|, and r⊥ ∈ A,

F 0(r⊥)= 2

∫
A

[
ẑ× E⊥(r⊥′,0)

]
G(R0)d2r⊥′ (19.9.14)

Eqs. (19.9.13) read component-wise,

k2F0
x + ∂x(∂xF0

x + ∂yF0
y) = −jkηHix

k2F0
y + ∂y(∂xF0

x + ∂yF0
y) = −jkηHiy

∂xF0
y − ∂yF0

x = Eiz

on A (19.9.15)

An alternative set of integral equations is obtained from Eq. (19.8.20) by noting that
on A, we have, ẑ × ∂zE⊥ = −jkηH⊥ −∇∇∇⊥Ez × ẑ = −jkηH i⊥ −∇∇∇⊥Eiz × ẑ = ẑ × ∂zE i⊥.
Thus, Eqs. (19.9.13) can be replaced by,(

k2 +∇∇∇2⊥
)
F 0 = ẑ× ∂zE i⊥

ẑ ·∇∇∇⊥ × F 0 = Eiz
on A (19.9.16)

In principle, Eqs. (19.9.9)–(19.9.16) provide a complete solution to the diffraction
problem by an aperture, with all the boundary conditions properly taken into account.

By comparison, the Kirchhoff approximation consists of making the following ap-
proximation in the calculation of F in (19.9.9),

ẑ× E = ẑ× E i , on A
ẑ× E = 0 , on M

(19.9.17)

This amounts to replacing F by F i in (19.9.11) and (19.9.12) and, moreover, F i is
approximated by restricting its integration only to the aperture A. Thus, we have with
R = √|r⊥ − r⊥′|2 + z2, and z ≥ 0,

F i = 2

∫
A

[
ẑ× E i⊥(r⊥′,0)

]
G(R)d2r⊥′

E =∇∇∇× F i

−jkηH = k2F i +∇∇∇(∇∇∇⊥ · F i )

(Kirchhoff approximation) (19.9.18)
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The purpose of the integral equations (19.9.13) was to determine the correct bound-
ary values of the transverse electric field, ẑ× E , in the aperture A. The alternative pro-
cedure based on the magnetic potential As in Eq. (19.9.6) determines instead the correct
values of the scattered transverse magnetic field, ẑ×H s, on the conducting surface M.
Because ẑ×H s = 0 on the aperture A, the integral in the defining equation (19.9.7) for
As can be restricted to be over the conductorM only, that is, with R = √|r⊥ − r⊥′|2 + z2,

As(r⊥, z)= 2

∫
M

[
ẑ×H s⊥(r⊥′,0+)

]
G(R)d2r⊥′ (19.9.19)

The total fields are obtained from Eq. (19.9.6), for all z ≷ 0,

H = H i +H s = H i +∇∇∇× As

E = E i + E s = E i + η
jk
[
k2As +∇∇∇(∇∇∇⊥ · As)

] (19.9.20)

The boundary conditions (19.9.2) on the conductor M can be restated as,

ẑ× E s = −ẑ× E i

ẑ ·H s = −ẑ ·H i ⇒
E s⊥ = −E i⊥
Hsz = −Hiz

on M (19.9.21)

Restricting Eqs. (19.9.20) to the conductor surface M and using (19.9.21), we obtain
the following integral equations for the unknowns ẑ×H s⊥ on M,

k2A0 +∇∇∇⊥(∇∇∇⊥ · A0) = −jkη−1E i⊥

ẑ ·∇∇∇⊥ × A0 = −Hiz
on M (19.9.22)

where A0 denotes the restriction of As on M, that is, with R0 = |r⊥ − r⊥′|, and r⊥ ∈M,

A0(r⊥)= 2

∫
M

[
ẑ×H s⊥(r⊥′,0+)

]
G(R0)d2r⊥′ (19.9.23)

Component-wise, Eqs. (19.9.22) are,

k2A0
x + ∂x(∂xA0

x + ∂yA0
y) = −jkη−1Eix

k2A0
y + ∂y(∂xA0

x + ∂yA0
y) = −jkη−1Eiy

∂xA0
y − ∂yA0

x = −Hiz

on M (19.9.24)

An equivalent system of integral equations may be obtained by combining (19.9.22)
with Maxwell’s equations for E i on M, that is,

k2A0 +∇∇∇⊥(∇∇∇⊥ · A0)= −jkη−1E i⊥ = −ẑ× ∂zH i⊥ −∇∇∇⊥ × (ẑHiz)
= −ẑ× ∂zH i⊥ +∇∇∇⊥ × (∇∇∇⊥ × A0)= −ẑ× ∂zH i⊥ +∇∇∇⊥(∇∇∇⊥ · A0)−∇∇∇2⊥A0
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which leads to, (
k2 +∇∇∇2⊥

)
A0 = −ẑ× ∂zH i⊥

ẑ ·∇∇∇⊥ × A0 = −Hiz
on M (19.9.25)

Eqs. (19.9.19)–(19.9.25) provide an alternative procedure for solving the diffraction
problem. Because it involves integral equations over the metal surfaceM, the procedure
is convenient for dealing with scattering from small flat conducting objects over which
the integrations are more manageable. By contrast, the procedure based on Eqs. (19.9.9)–
(19.9.16) involves integral equations over the aperture A, and therefore, it is more ap-
propriate for small apertures.

In the next two sections, we discuss two examples illustrating the above procedures.
In Sec. 19.10, we revisit Sommerfeld’s exact solution of the half-plane problem and derive
it using the formalism of Eqs. (19.9.19)–(19.9.25). In Sec. 19.11, we discuss the Rayleigh-
Bethe-Bouwkamp approximate solution of diffraction by small holes using the formalism
of Eqs. (19.9.9)–(19.9.16).

With the exception of the Sommerfeld half-space problem and some of its relatives,
the integral equations (19.9.13) or (19.9.22) can only be solved numerically. An incom-
plete set references on the original formulation of such integral equations, on their
numerical solution, including Wiener-Hopf factorization methods, and on some appli-
cations is [1312–1372].

19.10 Sommerfeld’s Half-Plane Problem Revisited

The Sommerfeld half-plane problem was discussed in Sec. 18.15. Here, we reconsider
it by solving the integral equations (19.9.22) exactly using the plane-wave spectrum
representation and Wiener-Hopf factorization methods.

Fig. 19.10.1 Plane wave incident on conducting half-plane.

We discuss only the TE case, and to facilitate the comparison with Sec. 18.15, we
make only minor changes in notation, interchanging y and z. The geometry is depicted
in Fig. 19.10.1, where the conducting half-plane occupies the right-half (x ≥ 0) of the xy
plane.
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A TE plane wave is incident from z > 0 onto the conducting plane at an angleα with
respect to the x-axis, and we will assume that 0 ≤ α ≤ 90o,

E i = ŷEiy(x, z)= ŷE0 exp(jkixx+ jkizz)
kηH i = (x̂kiz − ẑkix

)
E0 exp(jkixx+ jkizz)

kix = k cosα, kiz = k sinα

(19.10.1)

Introducing polar coordinates, x = ρ cosθ, z = ρ sinθ, as shown in Fig. 19.10.1, the
Sommerfeld solution from Sec. 18.15 is given by,

Ey = −E0

[
ejkρ cosθr D(vr)−ejkρ cosθi D(vi)

]
(19.10.2)

where

θi = θ−α, vi =
√

4kρ
π

cos
θi
2

θr = θ+α, vr =
√

4kρ
π

cos
θr
2

(19.10.3)

and D(v) is the Fresnel diffraction coefficient, given in terms of the Fresnel integral
F(v) of Appendix F,

D(v)= 1

1− j
[

1− j
2

+F(v)
]
= 1

1− j
∫ v
−∞
e−jπu

2/2du (19.10.4)

The magnetic field is determined in terms of Ey from, jkηH = −∇∇∇× E,

jkηHx = ∂Ey
∂z

= sinθ
∂Ey
∂ρ

+ cosθ
1

ρ
∂Ey
∂θ

−jkηHz = ∂Ey
∂x

= cosθ
∂Ey
∂ρ

− sinθ
1

ρ
∂Ey
∂θ

(19.10.5)

Using (19.10.2), we find,

ηHx = E0 sinα
[
ejkρ cosθr D(vr)+ejkρ cosθi D(vi)

]
+ E0F(ρ)cos

θ
2

sin
α
2

ηHz = E0 cosα
[
ejkρ cosθr D(vr)−ejkρ cosθi D(vi)

]
+ E0F(ρ)sin

θ
2

sin
α
2

(19.10.6)

F(ρ)=
√

2

πkρ
e−jkρ−j

π
4 (19.10.7)

The corresponding scattered fields are, E s = E − E i, H s = H − H i. Noting that
kixx+ kizz = kρ cosθi, and using the identity, D(−v)= 1−D(v), we find,

Esy = −E0

[
ejkρ cosθr D(vr)+ejkρ cosθi D(−vi)

]
ηHsx = E0 sinα

[
ejkρ cosθr D(vr)−ejkρ cosθi D(−vi)

]
+ E0F(ρ)cos

θ
2

sin
α
2

ηHsz = E0 cosα
[
ejkρ cosθr D(vr)+ejkρ cosθi D(−vi)

]
+ E0F(ρ)sin

θ
2

sin
α
2

(19.10.8)
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We may verify explicitly the symmetry properties (19.9.3) and boundary conditions
(19.9.21). The replacement z→ −z amounts to the following substitutions,

θ→ 2π− θ , cos
θ
2
→ − cos

θ
2
, sin

θ
2
→ sin

θ
2

θi → 2π− θr , vi → −vr , cosθi → cosθr

θr → 2π− θi , vr → −vi , cosθr → cosθi

(19.10.9)

It follows then by inspection of Eqs. (19.10.8) that Esy,Hsz are even in z, and Hsx is
odd. Similarly, we can verify that on the conducting surface, θ = 0 or θ = 2π, we have
Esy = −Eiy and Hsz = −Hiz. We note also that Hsx vanishes on the aperture, that is, at
z = 0 and x < 0, or, θ = π.

Next, we carry out the procedure based on the integral equations (19.9.22). We
assume that there is no dependence on the y coordinate and that the only non-zero
field components are Ey,Hx,Hz. It follows that,

ẑ×H s⊥ = ẑ× x̂ Hsx = ŷHsx

and therefore, the vector potential As(x, z) defined in (19.9.19) will have only a y-
component, say, Asy(x, z), given by,

Asy(x, z)= 2

∫∞
0
Hsx(x′,0)G(R)dx′ dy′ , R =

√
(x− x′)2+(y − y′)2+z2

where the integration is only over the metal part, x ≥ 0, andHsx(x′,0) denotes the value
of the scattered field Hsx(x′, z′) on the transmitted side, z′ = 0−.

Integrating out the y dependence using Eq. (19.4.1), we may rewrite Asy in terms of

the 2-D Green’s function, G2(x, z)= − j
4 H

(2)
0

(
k
√
x2 + z2

)
,

Asy(x, z) = 2

∫∞
0
Hsx(x′,0)G2(x− x′, z)dx′

Asy(x,0) = 2

∫∞
0
Hsx(x′,0)G2(x− x′,0)dx′

(19.10.10)

The integral equation (19.9.22) has only a y-component, and because there is no
y-dependence (i.e., all y-derivatives are zero), it reads simply,

k2Ay(x,0)= −jkη−1Eiy(x,0) , for x ≥ 0

which can be rearranged as, jkηAsy(x,0)= Eiy(x,0), and more explicitly,

2jkη
∫∞

0
Hsx(x′,0)G2(x− x′,0)dx′ = E0 ejk

i
xx for x ≥ 0 (19.10.11)

Because of the restriction, x ≥ 0, this is an convolutional integral equation of the
Wiener-Hopf type and cannot be solved by simply taking Fourier transforms of both
sides—it can be solved by spectral factorization methods.
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The second of Eqs. (19.9.22) is automatically satisfied by virtue of Maxwell’s equa-
tions for E i,H i. We have, ∂xEiy(x,0)= jkixEiy(x,0)= −jkηHiz(x,0), which implies that,
∂xAsy(x,0)= −Hiz(x,0), as required by (19.9.22).

Once theHsx(x,0) is found, it determines Asy(x, z) for all z. Then, the scattered and
total electric fields can be found for all x, z from (19.9.20), remembering that ∂y = 0,

Esy(x, z) = −jkηAsy(x, z)

Ey(x, z) = Eiy(x, z)+Esy(x, z)= E0 ejk
i
xx+jkizz − jkηAsy(x, z)

(19.10.12)

The integral equation condition (19.10.11) is equivalent to the vanishing of the tan-
gential E-field on the conducting surface, that is, Ey(x,0) is a left-sided function, satis-
fying, Ey(x,0)= 0, for x ≥ 0.

The function Hsx(x′,0) is right-sided because it must vanish on the aperture side,
x′ < 0. Thus, the integration in (19.10.10) can be extended to the entire real-axis, and
we may use the plane-wave spectrum representation (19.4.3) of G2 to write Asy as a

Fourier integral, involving the as yet unknown Fourier transform Ĥsx(kx) of Hsx(x′,0),

Asy(x, z)= 2

∫∞
−∞
Hsx(x′,0)G2(x− x′, z)dx′ = 2

∫∞
−∞

Ĥsx(kx)
2jkz

e−jkxx−jkz|z|
dkx
2π

Asy(x, z) =
∫∞
−∞
Âsy(kx) e−jkxx−jkz|z|

dkx
2π

Asy(x,0) =
∫∞
−∞
Âsy(kx) e−jkxx

dkx
2π

Âsy(kx) =
Ĥsx(kx)
jkz

(19.10.13)

Setting z = 0 in (19.10.12) and taking Fourier transforms of both sides, and using
(19.10.13), we have,

Ey(x,0) = Eiy(x,0)−jkηAsy(x,0)

Êy(kx) = Êiy(kx)−kη
Ĥsx(kx)
kz

(19.10.14)

The Fourier transform of the input plane wave is,

Êiy(kx)=
∫∞
−∞
E0 ejkxx ejk

i
xx dx = 2πE0 δ(kx + kix) (19.10.15)

Our objective is to solve (19.10.14) for Ĥsx(kx). So far we know that Ey(x,0) is a
left-sided function, but its Fourier transform Êy(kx) is unknown, and we also know that
Ĥsx(kx) is the Fourier transform of a right-sided function. This information is enough
to solve (19.10.14).

Before delving into the solution, let us consider the analyticity properties of the
Fourier transforms of right-sided and left-sided functions. Given a right-sided function
f(x), that is, one that has support only for x ≥ 0 and vanishes for all x < 0, its Fourier
transform and its inverse will be denoted by,

F+(kx)=
∫∞

0
f(x)ejkxx dx ⇒ f(x)=

∫∞
−∞
F+(kx)e−jkxx

dkx
2π

(19.10.16)
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Let us assume that f(x) decays exponentially like e−εx for large positive x. Then,
it is straightforward to see that F+(kx) can be analytically continued in the complex
kx-plane to the region, Im(kx)> −ε. We will refer to this as the upper-half plane (UHP).
We have for large x > 0,

f(x)ejkxx → e−εxej[Re(kx)+j Im(kx)]x = ejRe(kx)x e−[Im(kx)+ε]x

which converges to zero if Im(kx)> −ε, rendering the integral F+(kx) convergent. Con-
versely, the analyticity of F+(kx) implies that f(x)will be a right-sided function, so that,
f(x)= 0 for x < 0. To see this, take x < 0 and replace the real-axis integration contour
by a closed contour C consisting of the real axis and an infinite upper semi-circle,

f(x)=
∫∞
−∞
F+(kx)e−jkxx

dkx
2π

=
∮
C
F+(kx)e−jkxx

dkx
2π

Since F+(kx) is analytic in the upper-half plane, the above contour integral will be
zero. The contribution of the infinite semi-circle is zero for x < 0. Indeed, let kx = Rejβ
be a point on that upper circle, so that 0 < β < π, then, since sinβ ≥ 0 and x < 0,

e−jkxx = e−j(R cosβ+jR sinβ)x = e−jRx cosβ e−R|x| sinβ → 0 , as R→∞

Similarly, a left-sided function f(x), i.e., one that vanishes for x > 0 and converges
exponentially to zero like e−ε|x| for x < 0, will have a Fourier transform that is regular
in the lower-half plane (LHP), Im(kx)< ε,

F−(kx)=
∫ 0

−∞
f(x)ejkxx dx ⇒ f(x)=

∫∞
−∞
F−(kx)e−jkxx

dkx
2π

(19.10.17)

More generally, the Fourier transform of a double-sided function that decays ex-
ponentially like e−ε|x|, can be split into the sum of its right-sided/UHP part and its
left-sided/LHP part,

F(kx)=
∫∞
−∞
f(x)ejkxx dx =

∫∞
0
f(x)ejkxx dx︸ ︷︷ ︸

upper

+
∫ 0

−∞
f(x)ejkxx dx︸ ︷︷ ︸

lower

= F+(kx)+F−(kx)

(19.10.18)
where F(kx) will now be analytic in the strip, −ε < Im(kx)< ε. The integration contour
of the inverse Fourier transform can be taken to be any line parallel to the real-axis as
long as it lies in that strip, for example, with, −ε < a < ε, we have,

f(x)=
∫ +∞+ja
−∞+ja

F(kx) e−jkxx
dkx
2π

(19.10.19)

The assumed exponential decay may be justified on physical grounds by allowing
a small amount of loss in the propagation medium, which effectively means that the
wavenumber kwill acquire a small negative imaginary part, that is, replacing, k→ k−jε.

The wavenumber kz =
√
k2 − k2

x is defined in terms of the evanescent square-root
for real-valued kx. But for complex kx, it must be defined by the square root branch such

that kz = kwhen kx = 0. When a small loss is introduced, we have, kz =
√
(k− jε)2−k2

x.
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The factors in kz have the following upper/lower half-plane analyticity properties and
provide an example of spectral factorization,

kz =
√
(k− jε)2−k2

x =
√
k− jε+ kx︸ ︷︷ ︸

lower-half plane

·
√
k− jε− kx︸ ︷︷ ︸

upper-half plane

(19.10.20)

We now turn to the solution of (19.10.14). Since Hsx(x,0) is right-sided its Fourier
transform, Ĥsx(kx) will be analytic in the upper-half plane, and since Ey(x,0) is left-
sided, its Fourier transform, Êy(kx), will be analytic in the lower-half plane. Thus,
assuming for a moment a more general incident field, the various terms in (19.10.14)
will have the following analyticity properties,

Êy(kx)︸ ︷︷ ︸
lower

= Êiy(kx)︸ ︷︷ ︸
strip

−kη Ĥ
s
x(kx)
kz︸ ︷︷ ︸

strip

(19.10.21)

Replacing kz by the factorization (19.10.20), kz =
√
k− kx

√
k+ kx, and multiplying

both sides by the LHP factor
√
k+ kx, we have,

√
k+ kx Êy(kx)︸ ︷︷ ︸

lower

=
√
k+ kx Êiy(kx)︸ ︷︷ ︸

strip

−kη Ĥsx(kx)√
k− kx︸ ︷︷ ︸
upper

Splitting the term,
√
k+ kx Êiy(kx) into its UHP and LHP parts as in (19.10.18), and

moving the LHP part to the left side, we obtain,

√
k+ kx Êy(kx)︸ ︷︷ ︸

lower

−
[√
k+ kx Êiy(kx)

]
−︸ ︷︷ ︸

lower

=
[√
k+ kx Êiy(kx)

]
+︸ ︷︷ ︸

upper

−kη Ĥsx(kx)√
k− kx︸ ︷︷ ︸
upper

(19.10.22)

This difference is simultaneously analytic in the upper and lower half planes, that
is, in the entire complex plane, and one may argue that it must be identically zero. See
[1316,1367] for a more precise justification, and [1371] for a more physical explanation
based on the edge behavior of the fields as x→ 0 at z = 0. Thus, we obtain,

kη
Ĥsx(kx)√
k− kx −

[√
k+ kx Êiy(kx)

]
+
= 0

√
k+ kx Êy(kx)−

[√
k+ kx Êiy(kx)

]
−
= 0

The solution for Ĥsx(kx), is then,

kη Ĥsx(kx)=
√
k− kx

[√
k+ kx Êiy(kx)

]
+

(19.10.23)

The solution for Êy(kx) is given by (19.10.21) with the found Ĥsx(kx). If we were to ig-
nore the right-sidedness instruction [ ]+, the solution would be, kη Ĥsx(kx)=

√
k− kx

√
k+ kx Êiy(kx)=
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kz Êiy(kx), and would correspond to the solution of the integral equation (19.10.11) if
that were valid for all x, not just x > 0.

For the particular incident plane wave case, we have,√
k+ kx Êiy(kx)= 2πE0

√
k+ kx δ(kx + kix)= 2πE0

√
k− kix δ(kx + kix)

where we replaced kx = −kix inside the square root as forced by the delta function.
Inverting this Fourier transform and resumming its right-sided part, we obtain,

[√
k+ kx Êiy(kx)

]
+
= E0

√
k− kix

∫∞
0
ej(kx+k

i
x)x dx = −E0

√
k− kix

j(kx + kix)
(19.10.24)

In performing this integral, we replaced, k → k − jε, so that kix = k cosα also
acquires a small imaginary part, being replaced by (k− jε)cosα = k cosα− jεα, where,
εα = ε cosα. Here, εα > 0, since we assumed 0 ≤ α ≤ π/2. It follows that with x > 0,
the exponential in (19.10.24) will converge to zero for, Im(kx)> εα,

ej(kx+k
i
x)x = ej[Re(kx)+k cosα]x e−[Im(kx)−εα]x → 0 , as x→∞

Inserting (19.10.24) into (19.10.23), we find,

kη Ĥsx(kx)= −
E0

√
k− kix

√
k− kx

j(kx + kix)
for Im(kx)> εα (19.10.25)

Recalling (19.10.13) and dividing by jkz, this also gives the Fourier transform, Âsy(kx),
of the vector potential Asy(x,0). Because 1/kz is analytic in the strip, −ε < Im(kx)< ε,
the resulting Fourier transform will be analytic in the intersection of the two regions
−ε < Im(kx)< ε and Im(kx)> εα, that is, εα < Im(kx)< ε,

kηÂsy(kx)=
kηĤsx(kx)

jkz
= kηĤsx(kx)
j
√
k− kx

√
k+ kx =

E0

√
k− kix√

k+ kx (kx + kix)
Thus, the Fourier transform of the scattered field Esy(x,0) will be,

Êsy(kx)= −jkηÂsy(kx)=
E0

√
k− kix

j
√
k+ kx (kx + kix)

for εα < Im(kx)< ε (19.10.26)

From the plane-wave spectrum representation, the Fourier transform of Esy(x, z)
will be, Êsy(kx) e−jkz|z|. Therefore, Esy(x, z) will be given by the corresponding inverse
Fourier transform, whose integration contour can be any horizontal line that lies in the
analyticity strip, εα < Im(kx)< ε,

Esy(x, z)=
1

2πj

∫
Ca

E0

√
k− kix√

k+ kx
(
kx + kix

) e−jkxx−jkz|z| dkx (19.10.27)
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whereCa is the horizontal line running from (−∞+ja) to (+∞+ja), where εα < a < ε,
as depicted by the red line in Fig. 19.10.2. It follows that total electric field will be,
Ey(x, z)= Eiy(x, z)+Esy(x, z), or,

Ey(x, z)= E0 ejk
i
xx+jkizz + 1

2πj

∫
Ca

E0

√
k− kix√

k+ kx
(
kx + kix

) e−jkxx−jkz|z| dkx (19.10.28)

We note that Ca runs below the branch point at kx = −k + jε, and above the pole
at kx = −kix + jεα, and above the branch point at kx = k − jε. In the limit ε → 0+,
the contour becomes the horizontal kx axis, but dented as shown in the bottom half of
Fig. 19.10.2.

Fig. 19.10.2 Integration contour Ca on kx-plane, and its limit as ε→ 0+.

Eqs. (19.10.27) and (19.10.28) provide an exact solution to the Sommerfeld half-
plane problem. We discuss next how this solution can be transformed into the form of
Eq. (19.10.2) or (19.10.8).

As shown in Fig. 19.10.3, the observation angle θ traces three possible regions: re-
flection, transmission, and shadow. For each value ofθ, the contourCa will be deformed
into the following contour on the kx-plane, defined parametrically for, −∞ < t <∞,

kx = k cos(θ+ jt)= k cosθ cosh t − jk sinθ sinh t (19.10.29)

This represents a hyperbola on the kx-plane because as follows from (19.10.29),(
Re(kx)
k cosθ

)2

−
(

Im(kx)
k sinθ

)2

= 1
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Fig. 19.10.3 Reflection (AB), transmission (BC), and shadow (CA) regions.

Fig. 19.10.4 Transformed contours for the cases, |θ−π| > α (top), and, |θ−π| < α (bottom).

The asymptotes of the hyperbola are the two straight lines with slopes ± tanθ, as
determined by the limits,

Im(kx)
Re(kx)

= tanθ tanh t → ± tanθ , as t → ±∞

The apex of the hyperbola is at the point, kx = k cosθ, corresponding to t = 0.
Depending on the sign of cosθ, the hyperbola actually has two branches denoted by C±
and depicted in Fig. 19.10.4, corresponding to the two cases, cosθ ≷ 0, or, equivalently
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to the two angle ranges (FAD) and (DEF ) of Fig. 19.10.3,

−3π
2
≤ θ ≤ π

2
and

π
2
≤ θ ≤ 3π

2

In particular, we note that over the shadow region, π −α ≤ θ ≤ π +α, the value
of cosθ is negative but has magnitude, | cosθ | > cosα, and therefore, the apex of the
C− hyperbola lies to the left of the pole at kx = −kix, whereas for the other values of θ
in the (DEF ) range, it lies to the right of the pole.

To transform the integral (19.10.27), we form a closed contour consisting of the Ca
axis, one of the hyperbolic contours C±, and upper and lower arcs at infinite radial
distances. The contribution of such arcs can be argued to be zero provided one closes
C+ as shown in Fig. 19.10.5, and C− as in Fig. 19.10.6.

Fig. 19.10.5 Right contour C+ for the cases,
π
2
≤ |θ−π| ≤ π.

Fig. 19.10.6 Left contour C− for, α ≤ |θ−π| < π
2

(left), and, |θ−π| ≤ α (right).

The integral (19.10.27) can then be calculated as,

Esy =
1

2πj

∫
Ca
= 1

2πj

∮
Ca+C±+arcs

− 1

2πj

∫
C±
= −R+ I (19.10.30)

where I represents the integral over C± (it is the same for either branch),

I = − 1

2πj

∫
C±

E0

√
k− kix√

k+ kx
(
kx + kix

) e−jkxx−jkz|z| dkx (19.10.31)
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and R represents the contribution of the closed contour, that is, −R is the residue of
the pole at kx = −kix, if the pole is enclosed†, while R is zero if the pole is not enclosed.
That residue, if it is non-zero, is calculated very simply as,

R = E0

√
k− kix√
k+ kx

e−jkxx−jkz|z|
∣∣∣∣∣∣
kx=−kix

= E0 ejk
i
xx−jkiz|z| (19.10.32)

Let us introduce the simplified notation, for the incident and reflected fields,

Ei = E0 ejk
i
xx+jkizz = E0 ejkρ cosθi

Er = E0 ejk
i
xx−jkizz = E0 ejkρ cosθr

(19.10.33)

In this notation, R takes on the following values in the three angle ranges,

R =

⎧⎪⎪⎨⎪⎪⎩
Er, reflection , 0 ≤ θ ≤ π−α
0 , transmission , π−α ≤ θ ≤ π+α
Ei, shadow , π+α ≤ θ ≤ 2π

(19.10.34)

Moreover, Esy of (19.10.8) can be expressed more simply as,

Esy = −
[
ErD(vr)+EiD(−vi)

]
(19.10.35)

In the evaluation of the contour integral I, we must decide how to define kz in the
exponential. Since, k2

z = k2 − k2
x and kx = k cos(θ+ jt), we have, kz = ±k sin(θ+ jt).

The proper sign of the square root must be decided by analytic continuation so that
kz = k when kx = 0. When z > 0, or, 0 ≤ θ ≤ π, we must choose kz = k sin(θ + jt),
because kx vanishes when θ = π/2 and t = 0. On the other hand, when z < 0, or,
π ≤ θ ≤ 2π, we must choose kz = −k sin(θ + jt), because now kx vanishes when
θ = 3π/2 and t = 0. In summary, we must choose, kz = sign(z)·k sin(θ + jt). Then,
regardless of the sign of z, the exponent becomes,

kxx+ kz|z| = k cos(θ+ jt)ρ cosθ+ k sin(θ+ jt)ρ sinθ = kρ cosh t

where we replaced, sign(z)·|z| = z, and used cylindrical coordinates for x, z. The
various factors in the integrand of I can be replaced now by,

dkx = −jk sin(θ+ jt)dt = −2jk sin
(
θ+ jt

2

)
cos

(
θ+ jt

2

)
dt

e−jkxx−jkz|z| = e−jkρ cosh t√
k− kix =

√
2k sin

α
2√

k+ kx =
√
k+ k cos(θ+ jt) =

√
2k cos

(
θ+ jt

2

)
kx + kix = k

[
cosh(θ+ jt)+ cosα

]
†minus sign because the contour runs clockwise
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The integral I in (19.10.31) is transformed then into,

I = E0

π

∫∞
−∞

sin
α
2

sin
(
θ+ jt

2

)
cosh(θ+ jt)+ cosα

e−jkρ cosh t dt (19.10.36)

Using some trigonometric identities, and the definitions θi = θ−α and θr = θ+α,
we rewrite I as,

I = E0

4π

∫∞
−∞

cos
(
θi + jt

2

)
− cos

(
θr + jt

2

)
cos

(
θi + jt

2

)
· cos

(
θr + jt

2

) e−jkρ cosh t dt

= E0

4π

∫∞
−∞

[
1

cos
(
θr + jt

2

) − 1

cos
(
θi + jt

2

)]e−jkρ cosh t dt

= E0

4π

∫∞
0

[
1

cos
(
θr + jt

2

) + 1

cos
(
θr − jt

2

) − 1

cos
(
θi + jt

2

) − 1

cos
(
θi − jt

2

)]e−jkρ cosh t dt

where in the last equation we split the integration range into−∞ < t < 0 and 0 < t <∞.
Recombining the terms and using some more trigonometric identities, we may cast I in
the form,

I = E0

π

∫∞
0

⎡⎢⎢⎣ cos
θr
2

cosh
t
2

cosθr + cosh t
−

cos
θi
2

cosh
t
2

cosθi + cosh t

⎤⎥⎥⎦e−jkρ cosh t dt (19.10.37)

Using the integral of Eq. (F.25) of Appendix F, we may express I in terms of the
Fresnel diffraction coefficient D(v),

I = E0 sign(vr)ejkρ cosθrD
(−|vr|)− E0 sign(vi)ejkρ cosθiD

(−|vi|)
where vr, vi were defined in Eq. (19.10.3). Thus, we finally have for Esy,

Esy = −R+ I = −R+ sign(vr)ErD
(−|vr|)− sign(vi)EiD

(−|vi|) (19.10.38)

We can now verify thatEsy agrees with the Sommerfeld expression, (19.10.35). Indeed,
over the reflection region, we have vi > 0, vr > 0, and R = Er , so that,

Esy = −Er + ErD(−vr)−EiD(−vi)= −
[
ErD(vr)+EiD(−vi)

]
where we used D(vr)= 1 − D(−vr). Over the transmission region, we have R = 0,
vi > 0, vr < 0, so that,

Esy = −ErD(vr)−EiD(−vi)= −
[
ErD(vr)+EiD(−vi)

]
where we replaced, −|vr| = vr . Finally, in the shadow region, we have R = Ei, vi < 0,
vr < 0, and we obtain, replacing, 1−D(vi)= D(−vi),

Esy = −Ei − ErD(vr)+EiD(vi)= −
[
ErD(vr)+EiD(−vi)

]
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Finally, we discuss dropping the contributions of the infinite arcs. Along such arcs,
we set kx = Rejβ with large radius R. The limits of β are determine by the asymptotes
of the hyperbolae, which lie at angles ±θ or π± θ with respect to the kx-axis.

Then, one must show that the exponential exp(−jkxx − jkz|z|) will converge to
zero in the limit R → ∞. This will be guaranteed if the exponent, −j(kxx+ kz|z|), has
negative real part along each arc. To verify this, we must consider six different cases
corresponding to the angle ranges AD, DB, BE, EC, CF, FA shown in Fig. 19.10.3.

For large kx, the wavenumber kz =
√
k2 − k2

x can be approximated by kz = ∓jkx,
where we must choose kz = −jkx for the upper-half plane arcs, and kz = jkx for the
lower-half plane ones. Below we summarize all possible cases. In each case, the limits
on β,θ imply that the required real part will be negative.

1. AD range: 0 ≤ θ ≤ π
2

, z ≥ 0, using C+, Fig. 19.10.5.

upper arc: kx = Rejβ , 0 ≤ β ≤ θ , kz = −jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β− θ)< 0

lower arc: kx = Rejβ , π ≤ β ≤ 2π− θ , kz = jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β+ θ)< 0

2. DB range:
π
2
≤ θ ≤ π−α, z ≥ 0, using C−, Fig. 19.10.6 right.

upper arc: kx = Rejβ , 0 ≤ β ≤ θ , kz = −jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β− θ)< 0

lower arc: kx = Rejβ , π ≤ β ≤ 2π− θ , kz = jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β+ θ)< 0

3. BE range: π−α ≤ θ ≤ π, z ≥ 0, using C−, Fig. 19.10.6 left.

upper arc: kx = Rejβ , 0 ≤ β ≤ θ , kz = −jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β− θ)< 0

lower arc: kx = Rejβ , π ≤ β ≤ 2π− θ , kz = jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β+ θ)< 0

4. EC range: π ≤ θ ≤ π+α, z ≤ 0, using C−, Fig. 19.10.6 left.

upper arc: kx = Rejβ , 0 ≤ β ≤ 2π− θ , kz = −jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β+ θ)< 0

lower arc: kx = Rejβ , π ≤ β ≤ θ , kz = jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β− θ)< 0
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5. CF range: π+α ≤ θ ≤ 3π
2

, z ≤ 0, using C−, Fig. 19.10.6 right.

upper arc: kx = Rejβ , 0 ≤ β ≤ 2π− θ , kz = −jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β+ θ)< 0

lower arc: kx = Rejβ , π ≤ β ≤ θ , kz = jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β− θ)< 0

6. FA range:
3π
2
≤ θ ≤ 2π, z ≤ 0, using C+, Fig. 19.10.5.

upper arc: kx = Rejβ , 0 ≤ β ≤ 2π− θ , kz = −jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β+ θ)< 0

lower arc: kx = Rejβ , π ≤ β ≤ θ , kz = jkx
Re
[−j(kxx+ kz|z|)] = Rρ sin(β− θ)< 0

19.11 Diffraction by Small Holes – Bethe-Bouwkamp Model

The problem of diffraction by an electrically small, subwavelength, circular hole in a
planar conducting screen has received a lot of attention because of its relevance in
near-field applications [534], such as scanning near-field optical microscopy (SNOM or
NSOM), as well as in electromagnetic compatibility, field penetration, and interference
applications. Even though the conducting screen is assumed to be infinitely-thin, per-
fectly conducting, and of infinite extent, this idealized problem has served as a useful
paradigm for small-aperture problems because of its simple analytical solution.

It was originally solved by Rayleigh [1312] for the special case of a normally incident
plane wave, then solved again by Bethe [1314] for arbitrary incident fields, and then
corrected by Bouwkamp [1322–1324] for incident plane waves. Meixner and Andrejewski
solved it exactly using spheroidal functions [1320]. References [1312–1372] discuss
this and other aperture problems; see also the following references [1373–1397] on the
phenomenon of extraordinary transmission by subwavelength apertures, which is not
explained by the simple Bethe-Bouwkamp model (see however, [1357].)

Rayleigh’s approach, which has been followed by all later treatments, was to ex-
pand the solution in power series in the variable ka, where k = 2π/λ is the free-space
wavenumber and a the hole radius, and keep only the lowest, first-order, terms in ka.
References [1334–1336] carry out such series expansion procedures in detail.

The terms “electrically small” and “subwavelength” refer to the condition, ka� 1,
or equivalently, a� λ, and can be thought of as a low-frequency approximation. In the
opposite, high-frequency-large-aperture, regime characterized by, ka 	 1, or, a 	 λ,
the usual Kirchhoff approximation becomes applicable.

In the next two sections, we derive the Bethe-Bouwkamp model by using Copson’s
method [1317,1318] to solve the integral equations (19.9.13) for the aperture tangential
electric field, and show that under certain conditions† the solution is actually valid for

†namely, that on the aperture, the transverse derivatives,∇∇∇⊥, of the incident fields are of order k.
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more general incident fields than just plane waves. We clarify the Bouwkamp correction
and explain why it is necessary for the near-fields and why it does not affect the far-zone
fields which are correctly derived from the Bethe solution. We determine the transmis-
sion characteristics of the small aperture and compare them with those of the Kirchhoff
approximation. Then, following the recent methods of Michalski and Mosig [1364], we
derive the plane-wave spectrum representation of the solution and use it to calculate the
diffracted fields to the right of the aperture, deriving closed-form expressions for both
the near and the far fields, and providing MATLAB functions for numerically calculating
the fields at any distance.

The geometry of the problem is illustrated in Fig. 19.11.1 below. The metallic screen
M is the xy-plane at z = 0, with the circular aperture A of radius a centered at the
origin. The incident fields E i,H i are assumed to be incident from the left half-space,
z < 0, and can have arbitrary orientation.

Fig. 19.11.1 Circular aperture at z = 0, incident fields from z < 0, field point at z ≥ 0.

We will use cylindrical coordinates defined by†

ρ = |r⊥| =
√
x2 + y2

φ = atan2(y, x)
�

x = ρ cosφ

y = ρ sinφ
(19.11.1)

with unit transverse vector, r̂⊥ = r⊥/|r⊥| = r⊥/ρ,

r⊥ = x̂x+ ŷy = x̂ρ cosφ+ ŷρ sinφ = ρr̂⊥
r̂⊥ = x̂ cosφ+ ŷ sinφ

(19.11.2)

We recall from Sec. 19.9 that the diffracted fields to the right of the aperture are
given by Smythe’s formulas, for z ≥ 0,

E =∇∇∇× F

−jkηH = k2F+∇∇∇(∇∇∇⊥ · F)
(19.11.3)

†atan2(y, x) is the four-quadrant arc tangent, atan(y/x), and is a built-in function in MATLAB.
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with the electric vector potential, F(r⊥, z), given in terms of the effective surface mag-
netic current, 2 ẑ× E⊥(r⊥′,0), where, R = √|r⊥ − r⊥′|2 + z2,

F(r⊥, z)= 2

∫
A

[
ẑ× E⊥(r⊥′,0)

]
G(R)d2r⊥′ = ẑ×

∫
A

E⊥(r⊥′,0)
e−jkR

2πR
d2r⊥′ (19.11.4)

The aperture tangential electric field, E⊥(r⊥′,0), is determined by the integral equations,

k2F 0 +∇∇∇⊥(∇∇∇⊥ · F 0) = −jkηH i⊥

ẑ ·∇∇∇⊥ × F 0 = Eiz
on A (19.11.5)

where F 0(r⊥) denotes the restriction of F(r⊥, z) on A, that is, at z = 0 ,

F 0(r⊥)= F(r⊥,0)= ẑ×
∫
A

E⊥(r⊥′,0)
e−jkR0

2πR0
d2r⊥′ (19.11.6)

with R0 = |r⊥ − r⊥′| and r⊥ ∈ A. Component-wise, Eqs. (19.11.5) read,

k2F0
x + ∂x(∂xF0

x + ∂yF0
y) = −jkηHix

k2F0
y + ∂y(∂xF0

x + ∂yF0
y) = −jkηHiy

∂xF0
y − ∂yF0

x = Eiz

on A (19.11.7)

The Bethe-Bouwkamp solution for E⊥(r⊥,0) is obtained by solving the integral equa-
tions (19.11.7) to first-order in ka. For points on the aperture (ρ ≤ a), it is given by,

E⊥(r⊥,0)= A r⊥
Δ(ρ)

+ B Δ(ρ)︸ ︷︷ ︸
Bethe

+CΔ(ρ)−(C · r⊥)r⊥
Δ(ρ)︸ ︷︷ ︸

Bouwkamp

, for ρ ≤ a (19.11.8)

where, Δ(ρ)=
√
a2 − ρ2, and the scalar A, and transverse vectors B,C, are constants

defined in terms of the incident field as follows,

A = 2

π
Eiz

B = 4

π
jkηH i⊥× ẑ

C = − 4

3π

[
∇∇∇⊥Eiz + jkηH i⊥× ẑ

]
⇒

Bx = 4

π
jkηHiy

By = − 4

π
jkηHix

Cx = − 4

3π

[
∂xEiz + jkηHiy

]
Cy = − 4

3π

[
∂yEiz − jkηHix

]
(19.11.9)

where, H i⊥, Eiz, ∇∇∇⊥Eiz, are the incident field values at the aperture center, (x, y)= (0,0).
The first two terms in (19.11.8) represent the original Bethe result, and the C-terms, the
Bouwkamp correction. Eq. (19.11.8) is valid only for ρ ≤ a. On the conducting part M,
the transverse fields must vanish, that is, E⊥(r⊥,0)= 0, for ρ > a, as required by the
boundary conditions.
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Noting that ∇∇∇⊥Δ = −r⊥/Δ and ∇∇∇⊥(C · r⊥)= C, the Bouwkamp correction can be
written as a complete transverse gradient—and this is the reason, as we see below, why
that term does not contribute to the far-zone fields [1324,1329],

E⊥(r⊥,0)= A r⊥
Δ(ρ)

+ B Δ(ρ)︸ ︷︷ ︸
Bethe

+∇∇∇⊥
[
(C · r⊥)Δ(ρ)

]︸ ︷︷ ︸
Bouwkamp

, for ρ ≤ a (19.11.10)

The expression (19.11.8) meets the additional regularity condition that the azimuthal
component (i.e., the φ-component) of E⊥ vanish at the edge of the aperture, that is, at
ρ = a. Indeed, resolving E⊥ into its radial and azimuthal components, we may write,
E⊥ = ρ̂ρρEρ + φ̂φφEφ, where ρ̂ρρ = r̂⊥. It follows that, r̂⊥ × E⊥ = ẑEφ, and since r̂⊥ × r⊥ = 0,
we have from (19.11.8),

ẑEφ = r̂⊥ × E⊥ = r̂⊥×(B+ C)Δ(ρ)= r̂⊥×(B+ C)
√
a2 − ρ2

which vanishes at ρ = a.
To derive (19.11.8) we follow Copson’s procedure [1317,1318] of assuming the func-

tional form of Eq. (19.11.8) and then fixing the coefficients A,B,C in order to satisfy the
integral equation (19.11.5). Working with the quantity F 0 × ẑ, we may write (19.11.6) in
the simpler form,

F 0(r⊥)× ẑ =
∫
A

E⊥(r⊥′,0)
e−jkR0

2πR0
d2r⊥′ , R0 = |r⊥ − r⊥′| (19.11.11)

Next, we carry out the Rayleigh procedure of expanding in powers of k and keeping
only first-order terms. To this order, we have,

e−jkR0

R0
≈ 1− jkR0

R0
= 1

R0
− jk

where we note that the quantity kR0 is of order ka because R0 = |r⊥ − r⊥′| remains less
than 2a since both r⊥, r⊥′ lie in A. If we also expand the desired solution E⊥ to order k,
that is, as a sum of terms of the form, E⊥ = E(0)⊥ +kE(1)⊥ +O(k2), then, to first-order in
k, Eq. (19.11.11) becomes,

F 0(r⊥)× ẑ =
∫
A

E(0)⊥ (r⊥′,0)+kE(1)⊥ (r⊥′,0)
2πR0

d2r⊥′ −
∫
A

jkE(0)⊥ (r⊥′,0)
2π

d2r⊥′

But the last term is simply a constant that can be ignored because it will have no
effect on the integral equations (19.11.7). Indeed, the term k2F 0 in (19.11.7) can be
dropped because it is of order k2, and since F 0 is differentiated in the rest of the terms,
the above constant will have no effect. Thus, the first-order expression for F 0 is,

F 0(r⊥)× ẑ =
∫
A

E⊥(r⊥′,0)
2πR0

d2r⊥′ , R0 = |r⊥ − r⊥′| (19.11.12)

The corresponding approximate integral equations to be solved, become,

∂x(∂xF0
x + ∂yF0

y) = −jkηHix
∂y(∂xF0

x + ∂yF0
y) = −jkηHiy

∂xF0
y − ∂yF0

x = Eiz

(19.11.13)
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Inserting (19.11.8) into (19.11.12), we obtain,

F 0(r⊥)×ẑ =
∫
A

[
A

r⊥′

Δ(ρ′)
+ B Δ(ρ′)+CΔ(ρ′)−(C · r⊥′)r⊥′

Δ(ρ′)

]
d2r⊥′

2πR0

The indicated integrals can done exactly; see for example, Refs. [1317] and [1334],

∫
A
Δ(ρ′)

d2r⊥′

2πR0
= π

4

(
a2 − 1

2
ρ2
)

∫
A

r⊥′

Δ(ρ′)
d2r⊥′

2πR0
= π

4
r⊥

∫
A

[
CΔ(ρ′)−(C · r⊥′)r⊥′

Δ(ρ′)

]
d2r⊥′

2πR0
= π

32

(
4a2 − 3ρ2)C− 3π

16
(C · r⊥) r⊥

(19.11.14)

Ignoring the constant terms in (19.11.14) for the same reasons as mentioned above,
we obtain the order-k approximation to F 0, for r⊥ ∈ A,

F 0(r⊥)× ẑ = π
4
A r⊥ − π

32

(
4B+ 3C

)
ρ2 − 3π

16
(C · r⊥) r⊥ (19.11.15)

and since, F 0(r⊥)× ẑ = x̂F0
y − ŷF0

x , we have component-wise,

F0
x = −

π
4
Ay + π

32
(4By + 3Cy)ρ2 + 3π

16
(Cx x+Cy y)y

F0
y =

π
4
Ax− π

32
(4Bx + 3Cx)ρ2 − 3π

16
(Cx x+Cy y)x

(19.11.16)

Remembering that, ρ2 = x2 + y2, we obtain the derivatives,

∂xF0
x + ∂yF0

y =
π
4

(
xBy − yBx) (19.11.17)

∂x
(
∂xF0

x + ∂yF0
y
) = π

4
By

∂y
(
∂xF0

x + ∂yF0
y
) = −π

4
Bx

∂xF0
y − ∂yF0

x =
π
2
A− π

4

[
x(Bx + 3Cx)+y(By + 3Cy)

]
(19.11.18)

The incident fields in the right-hand side of Eq. (19.11.13), being evaluated on A,
are also functions of r⊥. Because the aperture is small, Bethe assumed that they vary
little over A and replaced them with their values at the origin (x, y)= (0,0). But as a
small improvement, we may we expand them in Taylor series about the origin, so that
the integral equations (19.11.13) become for r⊥ ∈ A,

∂x(∂xF0
x + ∂yF0

y) = −jkηHix(r⊥)= −jkη
[
Hix(0)+r⊥·∇∇∇⊥Hix(0)

]
∂y(∂xF0

x + ∂yF0
y) = −jkηHiy(r⊥)= −jkη

[
Hiy(0)+r⊥·∇∇∇⊥Hiy(0)

]
∂xF0

y − ∂yF0
x = Eiz(r⊥)= Eiz(0)+r⊥·∇∇∇⊥Eiz(0)

(19.11.19)
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If we now make the reasonable assumption that the transverse derivatives ∇∇∇⊥ of
the fields are of order k,† then the gradient terms in the H i⊥ equations can be dropped
because they are being multiplied by jk, making them of order k2. On the other hand, the
gradient terms must be kept in the Eiz equation in order to have a consistent expansion
to first-order in k.† It follows then that the integral equations must be approximated to
first-order in k as follows, for (x, y)∈ A,

∂x(∂xF0
x + ∂yF0

y) = −jkηHix(0)
∂y(∂xF0

x + ∂yF0
y) = −jkηHiy(0)

∂xF0
y − ∂yF0

x = Eiz(0)+x∂xEiz(0)+y∂yEiz(0)
(19.11.20)

In order to satisfy the integral equations, the right-hand sides of Eqs. (19.11.18) and
(19.11.20) must match for all (x, y)∈ A, resulting in the following conditions on the
A,B,C constants, the solutions of which are precisely Eqs. (19.11.9),

π
4
By = −jkηHix(0) ,

π
4
(Bx + 3Cx)= −∂xEiz(0)

−π
4
Bx = −jkηHiy(0) ,

π
4
(By + 3Cy)= −∂yEiz(0)

π
2
A = Eiz(0)

Far-Field Approximation

Next, we discuss the far-zone radiation field approximation. Once the aperture fields E⊥
are known, one can in principle, calculate the vector potential for any point to the right
of the aperture,

F(r)= 2 ẑ×
∫
A

E⊥(r ′,0)G(R)d2r ′ , R = |r− r ′| =
√
|r⊥ − r⊥′|2 + z2 (19.11.21)

At large distances from the aperture, one would normally make the usual radiation-
field approximations,

R = |r− r ′| =
√
r2 + r′2 − 2r · r ′ ≈ r − r · r ′

r
= r − r̂ · r ′

G(R)= e−jkR

4πR
≈ e−jk(r−r̂·r ′)

4πr
= e−jkr

4πr
ejk·r

′ = G(r)ejk·r ′ , k = kr̂

As in Sec. 19.6, the resulting F can be expressed in terms of the 2-D Fourier transform
Ê⊥(k⊥) of the aperture fields E⊥(r⊥,0) evaluated at the wavenumber, k = kr̂,

F(r)= 2 ẑ× Ê⊥(k⊥)
∣∣∣

k=kr̂
·G(r) (19.11.22)

†For plane waves, this assumption is valid. More generally, it may be justified from Maxwell’s equations,
which suggest that the spatial derivatives are of order k, that is,∇∇∇× E i = −jkηH i and∇∇∇× ηH i = jkE i.
†Bethe had originally omitted these terms, but were later added by Bouwkamp.
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and replacing,∇∇∇ → −jk = −jk r̂, we obtain, the radiation field,

E rad =∇∇∇× F = −jk r̂× [ẑ× Ê⊥(k⊥)
]∣∣∣

k=kr̂
·G(r) (19.11.23)

which is equivalent to Eq. (19.6.1) obtained from the stationary-phase method. We carry
out this approach later on. Here we work directly in the space domain. Since the aperture
is small and kr′ is of order ka, one could make the further approximation, ejk·r ′ ≈
(1+ jk · r ′), and replace,

G(R)≈ G(r)ejk·r ′ ≈ G(r)(1+ jk · r ′
)

(19.11.24)

into (19.11.21),

F(r)= 2 ẑ×
∫
A

E⊥(r ′,0)
(
1+ jk · r ′

)
d2r ′G(r) (19.11.25)

The indicated integrations with respect to r ′ can be done exactly. However, a slightly
better approximation can obtained by expanding the entireG(R) in Taylor series around
the origin, that is,

G(R)= G(r− r ′)≈ G(r)−r ′ ·∇∇∇G(r) (19.11.26)

where∇∇∇G(r) is the gradient with respect to r,

G(r)= e−jkr

4πr
, ∇∇∇G(r)= −r̂

(
jk+ 1

r

)
e−jkr

4πr
= −r̂

(
jk+ 1

r

)
G(r) (19.11.27)

Using (19.11.26) into (19.11.21), and noting that r′ = r⊥′, we obtain,

F(r)= 2 ẑ×
∫
A

E⊥(r⊥′,0)
[
G(r)−r⊥′ ·∇∇∇⊥G(r)

]
d2r⊥′ (19.11.28)

This becomes equivalent to (19.11.21) when kr	 1. In that limit, the jk term wins
over the 1/r term in (19.11.27) and we have,∇∇∇G(r)≈ −jkr̂G(r)= −jkG(r). Inserting
(19.11.8) into (19.11.28), we must calculate the integrals,∫

A
E⊥(r⊥′,0)

[
G(r)−r⊥′ ·∇∇∇⊥G(r)

]
d2r⊥′ =

=
∫
A

[
A

r⊥′

Δ(ρ′)
+ B Δ(ρ′)+CΔ(ρ′)−(C · r⊥′)r⊥′

Δ(ρ′)

][
G(r)−r⊥′ ·∇∇∇⊥G(r)

]
d2r⊥′

=
∫
A

[
A

r⊥′

Δ(ρ′)
+ B Δ(ρ′)+∇∇∇′⊥

[
(C · r⊥′)Δ(ρ′)

]]
G(r)d2r⊥′ −

−
∫
A

[
A

r⊥′

Δ(ρ′)
+ B Δ(ρ′)+CΔ(ρ′)−(C · r⊥′)r⊥′

Δ(ρ′)

][
r⊥′ ·∇∇∇⊥G(r)

]
d2r⊥′

where in the first set of terms multiplying G(r), we replaced the Bouwkamp correction
terms by their equivalent expression as a gradient given in (19.11.10). The integral of
that term vanishes; indeed, using Eq. (C.45) of Appendix C, which is a consequence of
the 2-D divergence theorem, we have,∫

A
∇∇∇⊥

[
(C · r⊥)Δ(ρ)

]
d2r⊥ =

∮
C

[
(C · r⊥)Δ(ρ)

]
n̂dl = 0
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where the contour C is the periphery (ρ = a) of the aperture, where Δ(ρ) vanishes,
and also for this contour, n̂ is the unit vector in the radial direction r⊥.

Of the remaining terms in the above integrals, those that involve an odd number of
powers of r⊥′ are zero because of the symmetry of the integration range. Only two terms
finally survive, which can be integrated exactly,∫
A

E⊥(r⊥′,0)
[
G(r)−r⊥′ ·∇∇∇⊥G(r)

]
d2r⊥′ =

=
∫
A

[
B Δ(ρ′)G(r)−A r⊥′

Δ(ρ′)
r⊥′ ·∇∇∇⊥G(r)

]
d2r⊥′ = 2πa3

3

[
BG(r)−A∇∇∇⊥G(r)

]
These follow from the integrals,∫

A
Δ(ρ′)d2r⊥′ = 2πa3

3
,
∫
A

x′αx
′
β

Δ(ρ′)
d2r⊥′ = 2πa3

3
δαβ , α,β = 1,2

Thus, the far-field approximation to the vector potential (19.11.28) is,

F far(r)= 4πa3

3

[
ẑ×BG(r)−A ẑ×∇∇∇⊥G(r)

]
(19.11.29)

Noting that ẑ ×∇∇∇⊥G(r)= ẑ ×∇∇∇G(r), and replacing B,A in terms of the incident
fields, we obtain,

F far(r)= 8a3

3

[
2jkηH i⊥G(r)−Eiz ẑ×∇∇∇G(r)

]
(19.11.30)

This is recognized as the vector potential for the sum of an electric and a magnetic
dipole. Indeed, we recall from Sec. 15.5, Eqs. (15.5.4) and (15.5.8), that two electric and
magnetic dipoles, p,m, would have a combined vector potential,

F =∇∇∇G(r)×P− jkG(r)M , P = 1

ε
p , M = ηm (19.11.31)

Comparing this with (19.11.30) we conclude that, in the far zone, the small circular
hole acts as a combination of magnetic and electric dipoles given by,

M = −16a3

3
ηH i⊥ , P = 8a3

3
Eiz ẑ (19.11.32)

or component-wise,

Mx = −16a3

3
ηHix , My = −16a3

3
ηHiy , Pz = 8a3

3
Eiz (19.11.33)

The corresponding far-field electric and magnetic fields are then given by Eqs. (19.11.3),
which can be written in the dual form of Eqs. (15.5.5) and (15.5.9),

E far =∇∇∇×
[
∇∇∇G(r)×P− jkG(r)M

]
ηH far =∇∇∇×

[
∇∇∇G(r)×M+ jkG(r)P

] (19.11.34)
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For numerical evaluation, it is more convenient to rewrite (19.11.34) in the form,

E far =
[
k2P + (P ·∇∇∇)∇∇∇

]
G− jk∇∇∇G×M

ηH far =
[
k2M+(M ·∇∇∇)∇∇∇

]
G+ jk∇∇∇G× P

(19.11.35)

Radiation Pattern, Radiated Power, Transmission Coefficient

The far-field expressions (19.11.32) simplify considerably in the radiation zone, that is,
for kr	 1. Replacing,∇∇∇ → −jk, with k = kr̂, we obtain,

E rad = k2
[
r̂× (P× r̂)+M× r̂

] e−jkr
4πr

ηH rad = k2
[
r̂× (M× r̂)−P× r̂

] e−jkr
4πr

(radiation fields) (19.11.36)

and similarly, in this limit, the vector potential (19.11.29) becomes in the radiation zone,

F rad(r)= 4πa3

3
ẑ×

[
B+ jk⊥A

]
G(r) (19.11.37)

Comparing this with Eq. (19.11.22), we may identify the 2-D Fourier transform of
E⊥(r⊥,0) evaluated at k = k r̂,

Ê⊥(k⊥)= 2πa3

3

[
B+ jk⊥A

]
(19.11.38)

This will be verified below based on the exact expression (19.12.13) of Ê⊥(k⊥).
To clarify the terms “far” versus “radiation” fields, we note that because we assumed

that ka� 1, or, a� 1/k, we may distinguish two far-distance ranges:

(i) the far zone, a� r� 1/k
(ii) the radiation zone, 1/k� r

with the former evolving into the latter roughly when r = 1/k. The radiation fields go
down like 1/r, but the far-zone ones have also a 1/r2 dependence which dominates for
smaller r, but eventually disappears. Example 19.12.1 demonstrates this behavior.

As expected, the radiation fields satisfy, ηH rad = r̂× E rad, and do not have a radial
component. In spherical coordinates, we have, r̂ × (P × r̂)= θ̂θθPθ + φ̂φφPφ, and, P × r̂ =
θ̂θθPφ − φ̂φφPθ, and similarly for M, and therefore, Eqs. (19.11.36) read,

E rad = k2
[
θ̂θθ(Pθ +Mφ)−φ̂φφMθ

]
G(r)

ηH rad = k2
[
φ̂φφ(Pθ +Mφ)+θ̂θθMθ

]
G(r)

(radiation fields) (19.11.39)

where we note that Pφ = (φ̂φφ·ẑ)Pz = 0. Expressed in terms of the cartesian components
(19.11.33), the spherical components are as follows,

Pθ +Mφ = − sinθPz − sinφMx + cosφMy

Mθ = (cosφMx + sinφMy)cosθ
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and since, Eθ = k2(Pθ +Mφ)G and Eφ = −k2MθG,

Eθ = ηHφ = 4a3k2

3π

(
ηHix sinφ− ηHiy cosφ− 1

2
Eiz sinθ

)
e−jkr

r

Eφ = −ηHθ = 4a3k2

3π
(
ηHix cosφ+ ηHiy sinφ

)
cosθ

e−jkr

r

(19.11.40)

The time-averaged Poynting vector has only a radial component given by,

Pr = 1

2
Re
[
r̂ · E rad ×H∗rad

] = 1

2η

[
|Eθ|2 + |Eφ|2

]
=

= 8a6k4

9π2ηr2

[∣∣ηHix sinφ− ηHiy cosφ− 1

2
Eiz sinθ

∣∣2 + ∣∣ηHix cosφ+ ηHiy sinφ
∣∣2

cos2 θ
]

(19.11.41)
The corresponding radiation intensity will be,

dP
dΩ

= r2Pr = 8a6k4

9π2η

[∣∣ηHix sinφ− ηHiy cosφ− 1

2
Eiz sinθ

∣∣2 +

+ ∣∣ηHix cosφ+ ηHiy sinφ
∣∣2

cos2 θ
] (19.11.42)

It has a fairly complicated dependence on θ,φ. For example, a TM plane wave with
xz as the plane of incidence would have Hiy �= 0, but Hix = Eiz = 0, resulting in,

dP
dΩ

= 8a6k4

9π2η
(
cos2φ+ sin2φ cos2 θ

)|ηHiy|2 (19.11.43)

The radiated power is obtained by integrating (19.11.42) over all solid angles, dΩ =
sinθdθdφ, in the right hemisphere,

Prad =
∫ π/2

0

∫ 2π

0

dP
dΩ

sinθdθdφ

resulting in,

Prad = 64(ka)4

27π2
·πa2 · 1

2η

[
|ηH i⊥|2 +

1

4
|Eiz|2

]
(19.11.44)

Let us compare this with the predictions of the Kirchhoff approximation, which was
defined in Eq. (19.9.18), that is, with R = √|r⊥ − r⊥′|2 + z2, and z ≥ 0,

F i = 2

∫
A

[
ẑ× E i⊥(r⊥′,0)

]
G(R)d2r⊥′

E =∇∇∇× F i

−jkηH = k2F i +∇∇∇(∇∇∇⊥ · F i )

(19.11.45)
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In the radiation zone, we replace G(R)≈ G(r)ejk·r ′ , and∇∇∇ → −jk = −jkr̂, and obtain,

Ê i⊥ =
∫
A

E i⊥(r⊥′,0) ejk⊥·r⊥
′
d2r⊥′

F irad = 2 ẑ× Ê i⊥G(r)

E rad = −2jk r̂× F irad = −2jk r̂× (ẑ× Ê i⊥)G(r)

ηH rad = r̂× E rad

(19.11.46)

and in spherical coordinates,

Eθ = ηHφ = 2jk
(
Êix cosφ+ Êiy sinφ

) e−jkr
4πr

Eφ = −ηHθ = 2jk cosθ
(
Êiy cosφ− Êix sinφ

) e−jkr
4πr

(19.11.47)

Since the aperture is small, we may expand E i⊥(r⊥′,0) and the exponential ejk·r ′

in Taylor series about the origin and keep up to first-order terms in ka, obtaining the
approximation to the Fourier integral,

Ê i⊥ =
∫
A

E i⊥(r⊥′,0) ejk⊥·r⊥
′
d2r⊥′ ≈

∫
A

[
E i⊥(0)+(r⊥′ ·∇∇∇⊥)E i⊥(0)

] [
1+ jk⊥ · r⊥′

]
d2r⊥′

=
∫
A

[
E i⊥(0)+

(
r⊥′ ·∇∇∇⊥

)
E i⊥(0)

(
jk⊥ · r⊥′

)]
d2r⊥′

where the linear terms in r⊥′ were dropped because they do not contribute to the integral
by symmetry, and the remaining terms may be integrated to give,

Ê i⊥ = πa2
[

E i⊥(0)+
j
4

(
k⊥ ·∇∇∇⊥

)
E i⊥(0)

]
(19.11.48)

where the incident fields and their derivatives are evaluated at the origin (x, y)= (0,0).
Since the derivatives are already assumed to be of order k, the second term in (19.11.49)
is of order k2 and can be ignored. Problem 19.2 considers the effect of this term. Thus,
we will work with the approximation,

Ê i⊥ = πa2 E i⊥(0) ⇒ Êix = πa2 Eix(0) , Êix = πa2 Eiy(0) (19.11.49)

As before, the radiated power is obtained by integrating the radiation intensity over
all solid angles in the right hemisphere,

Prad =
∫ π/2

0

∫ 2π

0

dP
dΩ

sinθdθdφ =

=
∫ π/2

0

∫ 2π

0
r2 1

2η

[
|Eθ|2 + |Eφ|2

]
sinθdθdφ

(19.11.50)

The angle integrations can be done explicitly, where E i⊥ stands for E i⊥(0),

Prad = (ka)2

3
·πa2 · 1

2η
|E i⊥|2 (Kirchhoff approximation) (19.11.51)
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Comparing with (19.11.44), we note that the Bethe-Bouwkamp theory predicts a much
smaller radiated power — by a factor of (ka)2 — than ordinary Kirchhoff theory.

Two related concepts to the radiated power are the transmission cross section of the
aperture, defined as the radiated power divided by the magnitude of the time-averaged
Poynting vector of the incident fields, and the transmission coefficient, which is the trans-
mission cross section normalized by the area of the aperture, that is,∣∣PPP i∣∣ = ∣∣∣∣1

2
Re
[
E i ×H i∗]∣∣∣∣ (19.11.52)

σ = Prad∣∣PPP i
∣∣ , τ = σ

πa2
= Prad∣∣PPP i

∣∣ ·πa2
(19.11.53)

Thus, for Eqs. (19.11.44) and (19.11.50), we have,

τ = 64(ka)4

27π2
·
|ηH i⊥|2 +

1

4
|Eiz|2∣∣∣η Re

[
E i ×H i∗]∣∣∣ (Bethe-Bouwkamp)

τ = (ka)2

3
· |E i⊥|2∣∣η Re

[
E i ×H i∗]∣∣ (Kirchhoff approximation)

(19.11.54)

The second factors depend on the particulars of the incident fields. As an example,
consider an incident plane wave decomposed into a sum of a TE part (i.e., the E0 terms)
and a TM part (the H0 terms,) with TE/TM being defined with respect to the plane of
incidence, which may be taken to be the xz plane without loss of generality,

E i =
[

ŷE0 +
(
x̂kiz − ẑkix

) ηH0

k

]
e−jk

i
xx−jkizz

H i =
[

ŷH0 −
(
x̂kiz − ẑkix

) E0

ηk

]
e−jk

i
xx−jkizz

k i = x̂kix + ẑkiz

(19.11.55)

This may represent either a propagating plane wave or an evanescent one. For the
propagating case, if θi is the angle of incidence with respect to the z-axis, then,

kix = k sinθi , kiz = k cosθi =
√
k2 − |kix|2 (19.11.56)

For the evanescent case, we have kix ≥ k, and kiz is given by the evanescent square root,

kix ≥ k , kiz = −j
√
|kix|2 − k2 (19.11.57)

The plane wave satisfies, k i ·E i = k i ·H i = 0, and, ηkH i = k i×E i. Since kix is always
real-valued, but kiz may be complex, we have, k i∗ = x̂kix + ẑki∗z = k i + ẑ(ki∗z − kiz),
which implies, k i∗ · E i = k i · E i+Eiz(ki∗z −kiz)= Eiz(ki∗z −kiz)= −(ki∗z −kiz)ηH0kix/k.
Using these results, we obtain the time-averaged Poynting vector,

PPP i = 1

2
Re
[
E i ×H i∗] = 1

2kη
Re
[
E i × (k i∗ × E i∗)

] =
= 1

2kη
Re
[
k i∗

∣∣E i
∣∣2 − E i∗

(
k i∗ · E i

)] = 1

2kη
Re
[
k i∗

∣∣E i
∣∣2 − E i∗Eiz(ki∗z − kiz)

]
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From this and the definitions (19.11.55), we obtain the x, y, z components of the
Poynting vectorPPP i, which are valid for both the propagating and the evanescent cases,

Px = 1

2η
kix
k

[
|E0|2 + |ηH0|2

]

Py = 1

2η
kix
k

[
2 Im(kiz)

k
Im
[
E0ηH∗0

]]

Pz = 1

2η
Re(kiz)
k

[
|E0|2 + |ηH0|2 |k

i
x|2 + |kiz|2
k2

]
(19.11.58)

We note that, as expected, Pz = 0 in the evanescent case. The corresponding mag-

nitudes,
∣∣PPP i

∣∣ = √P2
x +P2

y +P2
z, are in the two cases,

∣∣PPP i∣∣ = 1

2η

[
|E0|2 + |ηH0|2

]
·Ki (19.11.59)

where the factor Ki is defined as,

Ki = 1 (propagating)

Ki = kix
k

⎡⎣1+
(

2 Im(kiz) Im
[
E0ηH∗0

]
k
[|E0|2 + |ηH0|2

] )2
⎤⎦1/2

(evanescent)
(19.11.60)

If the TE or TM fields are incident separately, or, if E0,H0 have the same phase, then,
Ki = kix/k in the evanescent case. Similarly, we can express the quantity,

∣∣ηH i⊥
∣∣2 + 1

4

∣∣Eiz∣∣2 = |kiz|2
k2

|E0|2 +
(

1+ 1

4

|kix|2
k2

)
|ηH0|2 (19.11.61)

Thus, the radiated power and the transmission coefficient for the Bethe-Bouwkamp
case can be written as,

Prad = 64(ka)4

27π2
·πa2 · 1

2η

[
|kiz|2
k2

|E0|2 +
(

1+ 1

4

|kix|2
k2

)
|ηH0|2

]
(19.11.62)

τ = 64(ka)4

27π2
·
|kiz|2
k2

|E0|2 +
(

1+ 1

4

|kix|2
k2

)
|ηH0|2

Ki
[
|E0|2 + |ηH0|2

] (19.11.63)

In particular, for the propagating case, we obtain Bethe’s result,

τ = 64(ka)4

27π2
·

cos2 θi |E0|2 +
(

1+ 1

4
sin2 θi

)
|ηH0|2

|E0|2 + |ηH0|2 (19.11.64)

Example 19.11.1: The phenomenon of extraordinary optical transmission [1373–1397] is not
observed in the idealized Bethe-Bouwkamp case, but requires more complicated structures
consisting of conductors of finite thickness or arrays of holes. One possible explanation
of the phenomenon is that it is due to the coupling of evanescent surface plasmons to the
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subwavelength holes. As a step in this direction, Petersson and Smith [1357] showed that
the transmission coefficient of an evanscent plane wave in the Bethe-Bouwkamp model is
much larger than for the case of ordinary propagating incident waves.

Here, we consider the same example of [1357], but our calculations correspond only to
their lowest-order results. The example has ka = π/100, and for the TE case, we set
E0 = 1, ηH0 = 0, and for TM, E0 = 0, ηH0 = 1. The following MATLAB code calculates τ
from Eq. (19.11.63) over the range, 0 ≤ kix/k ≤ 8 and plots τ/τ0, in the figure below, where
τ0 = 64(ka)4/(27π2)= 2.3395×10−7. The evanescent range corresponds to kix/k > 1.

ka = pi/100;
kx = linspace(0,8,161);
kz = sqrt(1-kx.^2).*(kx<=1) - j*sqrt(kx.^2-1).*(kx>1);
Ki = (kx<=1) + kx.*(kx>1);
tau0 = 64*(ka)^4/27/pi^2;

tau_te = abs(kz).^2 ./ Ki;
tau_tm = (1 + kx.^2/4) ./ Ki;

plot(kx,tau_te,’b-’, kx,tau_tm,’r--’);
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Example 19.11.2: Consider the Kirchhoff approximation of Eqs. (19.11.45)–(19.11.47) under
the incident plane wave of Eq. (19.11.55). In this case, the 2-D spatial Fourier transform
in Eq. (19.11.46) can be done exactly [1333] regardless of the size of the aperture. The
incident field at the aperture is, with kix = k sinθi, kiz = k cosθi,

E i⊥(r⊥′,0)=
(

x̂
kiz
k
ηH0 + ŷE0

)
e−jk

i
xx′

and its Fourier transform,

Ê i⊥(kx, ky)=
∫
A

E i⊥(r⊥′,0) ejk⊥·r⊥
′
d2r⊥′ =

(
x̂
kiz
k
ηH0 + ŷE0

)∫
A
ej(kx−k

i
x)x′+kyy′ dx′ dy′

The integral over the circular aperture can be done exactly,

f(kx, ky)=
∫
A
ej(kx−k

i
x)x′+kyy′ dx′ dy′ = πa2 · 2J1(q⊥a)

q⊥a
(19.11.65)
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where, q⊥ =
√
(kx − kix)2+k2

y, and J1 is the Bessel function of order-1. Thus, the Fourier
transform components are,

Êix(kx, ky) =
kiz
k
ηH0 · f(kx, ky)

Êiy(kx, ky) = E0 · f(kx, ky)
(19.11.66)

The radiation zone fields are obtained from (19.11.47),

Eθ = 2jk
(kiz
k
ηH0 cosφ+ E0 sinφ

)
·πa2 · 2J1(q⊥a)

q⊥a
· e

−jkr

4πr

Eφ = 2jk cosθ
(
E0 cosφ− k

i
z
k
ηH0 sinφ

)
·πa2 · 2J1(q⊥a)

q⊥a
· e

−jkr

4πr

(19.11.67)

Since in spherical coordinates, kx = k sinθ cosφ, ky = k sinθ sinφ, we have,

q⊥ =
√
(kx − kix)2+k2

y = k
√
(sinθ cosφ− sinθi)2+ sin2 θ sin2φ

= k
√

sin2 θ− 2 sinθ sinθi cosφ+ sin2 θi

If the r⊥′-dependence of the incident fields is ignored, that is, setting kix = 0 in the exponent
of Eq. (19.11.65), then, q⊥ = k sinθ, and one recovers the usual Airy pattern of a uniform
circular aperture, as we discussed in Sec. 18.9. ��

19.12 Plane-Wave Spectrum – Bethe-Bouwkamp Model

We saw in Sections 19.5 and 19.8 that Smythe’s diffraction formulas are equivalent to
the plane-wave spectrum representation, for z ≥ 0,

E(r⊥, z) =∇∇∇×
∫∞
−∞

ẑ× E⊥(r⊥′,0)
e−jkR

2πR
d2r⊥′

=
∫∞
−∞

[
Ê⊥(k⊥)+ ẑ Êz(k⊥)

]
e−jk⊥·r⊥ e−jkzz

d2k⊥
(2π)2

(19.12.1)

where,R = √|r⊥ − r⊥′|2 + z2, and, k = k⊥+ẑkz = x̂kx+ŷky+ẑkz, with the z-component
derived from the condition, k · Ê = 0,

Êz(k⊥)= −k⊥ · Ê⊥(k⊥)
kz

(19.12.2)

where Ê⊥(k⊥) is the 2-D Fourier transform of the aperture transverse field E⊥(r⊥,0),

Ê⊥(k⊥)=
∫∞
−∞

E⊥(r⊥,0) ejk⊥·r⊥ d2r⊥ (19.12.3)

Its inverse Fourier transform is,

E⊥(r⊥,0)=
∫∞
−∞

Ê⊥(k⊥) e−jk⊥·r⊥
d2k⊥
(2π)2

(19.12.4)
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Similarly, the magnetic field is given by,

H(r⊥, z)=
∫∞
−∞

Ĥ(k⊥) e−jk⊥·r⊥ e−jkzz
d2k⊥
(2π)2

(19.12.5)

where, the 2-D Fourier transform Ĥ(k⊥) is related to Ê⊥(k⊥) by,

kηĤ(k⊥)= k× Ê(k⊥)= k×
[
Ê⊥(k⊥)+ ẑ Êz(k⊥)

]
(19.12.6)

Since the Bethe-Bouwkamp field E⊥(r⊥,0) is known explicitly, its 2-D Fourier trans-
form Ê⊥(k⊥) can be determined analytically [1350–1353,1359,1360]. The spatial inte-
gration in (19.12.3) can be restricted to the aperture A only since E⊥ vanishes on the
conductor. Thus,

Ê⊥(k⊥)=
∫
A

[
A

r⊥
Δ(ρ)

+ B Δ(ρ)+CΔ(ρ)−(C · r⊥)r⊥
Δ(ρ)

]
ejk⊥·r⊥ d2r⊥ (19.12.7)

Let us introduce cylindrical coordinates for the transverse wavenumber, k⊥ = x̂kx+ŷky,

kρ = |k⊥| =
√
k2
x + k2

y

ψ = atan2(ky, kx)

k̂⊥ = k⊥
kρ

�

kx = kρ cosψ

ky = kρ sinψ

k̂⊥ = x̂ cosψ+ ŷ sinψ

(19.12.8)

The required 2-D Fourier transforms in Eq. (19.12.7) are all expressible in terms of
the spherical Bessel functions, j1(kρa), j2(kρa), of orders 1 and 2, which are defined
as follows (see also Appendix J),

j0(z) = sinz
z

j1(z) = −j′0(z)=
sinz− z cosz

z2

j2(z) = −z
(
j1(z)
z

)′
= (3− z2)sinz− 3z cosz

z3

(19.12.9)

where the prime denotes differentiation. They are connected by the identity,

j0(z)+j2(z)= 3j1(z)
z

(19.12.10)

The Fourier transforms of the individual terms in (19.12.7) are as follows,∫
A

r⊥
Δ(ρ)

ejk⊥·r⊥ d2r⊥ = 2πa2 · jk⊥
kρ

j1(kρa)

∫
A
Δ(ρ)ejk⊥·r⊥ d2r⊥ = 2πa2 · j1(kρa)

kρ∫
A

[
CΔ(ρ)−(C · r⊥)r⊥

Δ(ρ)

]
ejk⊥·r⊥ d2r⊥ = 2πa3 · k⊥(C · k⊥)

k2
ρ

j2(kρa)

(19.12.11)
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All of these are obtained from the following basic transform and its differentiation
with respect to kx and ky, (see Problem 19.4),∫

A

1

Δ(ρ)
ejk⊥·r⊥ d2r⊥ = 2πa · j0(kρa) (19.12.12)

Indeed, using the cylindrical coordinate definitions in (19.11.1) and (19.12.8), we
have, k⊥ · r⊥ = kρρ cos(φ−ψ), and∫

A

1

Δ(ρ)
ejk⊥·r⊥ d2r⊥ =

∫ a
0

∫ 2π

0

1√
a2 − ρ2

ejkρρ cos(φ−ψ) ρdρdφ =

=
∫ a

0

J0(kρρ)√
a2 − ρ2

2πρdρ = 2π · sin(kρa)
kρ

= 2πa · sin(kρa)
kρa

It follows now that the transform (19.12.7) of E⊥(r⊥,0) is,

Ê⊥(k⊥)= 2πa2 · jk⊥A+ B

kρ
j1(kρa)+ 2πa3 · k⊥(k⊥ · C)

k2
ρ

j2(kρa) (19.12.13)

and to clarify the notation, we write (19.12.13) component-wise,

Êx = 2πa2 · jkx A+ Bx
kρ

j1(kρa)+2πa3 · kx
(
kxCx + kyCy

)
k2
ρ

j2(kρa)

Êy = 2πa2 · jky A+ By
kρ

j1(kρa)+2πa3 · ky
(
kxCx + kyCy

)
k2
ρ

j2(kρa)

(19.12.14)

The transforms of the remaining field components are expressible in terms of Ê⊥(k⊥),

Êz = −k⊥ · Ê⊥
kz

= −2πa2 · jk
2
ρA+ k⊥ · B

kρkz
j1(kρa)− 2πa3 · k⊥ · C

kz
j2(kρa) (19.12.15)

Resolving (19.12.6) into transverse and longitudinal parts, we have,

ηĤz = ẑ · (k⊥ × Ê⊥)
k

= −2πa2 · ẑ · (B× k⊥)
kkρ

j1(kρa) (19.12.16)

η Ĥ⊥ × ẑ = kzÊ⊥ − k⊥Êz
k

= k2
z Ê⊥ − k⊥ kzÊz

kkz
= k2

z Ê⊥ + k⊥ (k⊥ · Ê⊥)
kkz

= (k2 − k2⊥) Ê⊥ + k⊥ (k⊥ · Ê⊥)
kkz

= k Ê⊥
kz

− k⊥ × (Ê⊥ × k⊥)
kkz

, or,

η Ĥ⊥ × ẑ = 2πka2 · j k⊥A+ B

kρkz
j1(kρa)+ 2πka3 · k⊥(C · k⊥)

k2
ρkz

j2(kρa)

− 2πa2 · k⊥ × (B× k⊥)
kkρkz

j1(kρa)
(19.12.17)
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In deriving the radiation fields of Eqs. (19.11.36) and (19.11.37), we kept terms up
to first order in ka. The same results can be obtained by taking the small-ka limit of
Eq. (19.12.13). Indeed, using the Taylor series expansions for j1, j2,

j1(z)≈ z
3
, j2(z)≈ z2

15
, for small z

we obtain the following approximation, where terms of order (ka)2 are ignored,

Ê⊥(k⊥) = 2πa2 · jk⊥A+ B

kρ
j1(kρa)+ 2πa3 · (k⊥ · C)k⊥

k2
ρ

j2(kρa)

≈ 2πa3

3

(
jk⊥A+ B

)+ 2πa5

15
(k⊥ · C)k⊥ ≈ 2πa3

3

(
jk⊥A+ B

)
which agrees with Eq. (19.11.38). The radiation fields are then obtained from Eq. (19.6.1),
which is equivalent to (19.11.36) and to (19.11.40),

E rad = 2jk cosθ Ê(k⊥)G(r)= 2jk cosθ
2πa3

3

(
jk⊥A+ B

) e−jkr
4πr

(19.12.18)

Besides obtaining the radiation fields, the usefulness of the plane-wave spectrum
representation lies in allowing the calculation of the fields at any distance z ≥ 0 from
the aperture by performing an inverse 2-D Fourier transform. The inverse transform for
any field component is,

E(r⊥, z)=
∫∞
−∞
Ê(k⊥) e−jk⊥·r⊥ e−jkzz

d2k⊥
(2π)2

(19.12.19)

Using cylindrical coordinates for both r⊥ and k⊥ as defined in Eqs. (19.11.1) and
(19.12.8), and noting that dkxdky = kρdkρdψ, and, k⊥·r⊥ = kρρ cos(ψ−φ), and that
kz depends only on kρ, we may rewrite (19.12.19) in the form,

E(ρ,φ, z)=
∫∞

0

∫ 2π

0
Ê(kρ,ψ)e−jkρρ cos(ψ−φ) e−jkzz

kρdkρdψ
(2π)2

and express it as a two-step process of first integrating with respect to the angle ψ and
then with respect to kρ,

Ẽ(ρ,φ, kρ) =
∫ 2π

0
Ê(kρ,ψ)e−jkρρ cos(ψ−φ) dψ

(2π)2

E(ρ,φ, z) =
∫∞

0
Ẽ(ρ,φ, kρ) e−jkzz kρdkρ

(19.12.20)
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Theψ-dependence is separated from the kρ-dependence in Ê, Ĥ. To see this, we may
rewrite Ê, Ĥ in terms of the angular unit vector, k̂⊥ = x̂ cosψ+ ŷ sinψ,

Ê⊥ = 2πa2 jk̂⊥Aj1 + 2πa2 B
j1
kρ
+ 2πa3 k̂⊥

(
k̂⊥ · C

)
j2

Êz = 2πa2A
kρ j1
jkz

− 2πa2 (jk̂⊥ · B
) j1
jkz

− 2πa3 (jk̂⊥ · C
)kρ j2
jkz

ηĤz = 2πa2 · jk̂⊥ · (B× ẑ)
jk

j1

ηĤ⊥ × ẑ = 2πjka2 jk̂⊥A
j1
jkz

+ 2πjka2 B
j1

jkzkρ
+ 2πjka3 k̂⊥

(
k̂⊥ · C

) j2
jkz

+ 2πa2 k̂⊥ × (B× k̂⊥)
jk

kρj1
jkz

(19.12.21)

where for simplicity, j1, j2 stand for j1(kρa), j2(kρa), and for a reason to become clear
later, in some terms we have multiplied and divided by j so that kz appears as, jkz.
The angular integrations over ψ can be done with the help of the following integrals
resulting in the ordinary Bessel functions of orders 0,1,2,

∫ 2π

0

dψ
2π

e−jkρρ cos(ψ−φ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

j k̂⊥

k̂⊥
(
C · k̂⊥

)
k̂⊥ × (B× k̂⊥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J0

r̂⊥ J1

C

2

(
J0 + J2

)− r̂⊥
(
C · r̂⊥

)
J2

B

2

(
J0 − J2

)+ r̂⊥
(
B · r̂⊥

)
J2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19.12.22)

where, r̂⊥ = x̂ cosφ+ŷ sinφ, and J0, J1, J2 stand for J0(kρρ), J1(kρρ), J2(kρρ). Equa-
tions (19.12.22) are consequences of the following relationship, for real z,∫ 2π

0

dψ
2π

e−jz cos(ψ−φ) e±jnψ = (−j)nJn(z) e±jnφ (19.12.23)

which is a consequence of the standard Fourier series expansion [1822],

ejz cosθ =
∞∑
n=0

jnJn(z) ejnθ (19.12.24)
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It follows that the angle integrations in Eqs. (19.12.21) will be,

Ẽ⊥ = a2 r̂⊥AJ1 j1 + a2 B
J0 j1
kρ

+ a3 C

2

(
J0 + J2

)
j2 − a3 r̂⊥

(
C · r̂⊥

)
J2 j2

Ẽz = a2A
kρJ0 j1
jkz

− a2 (B · r̂⊥
)J1 j1
jkz

− a3 (C · r̂⊥
)kρJ1 j2
jkz

ηH̃z = a2 · r̂⊥ · (B× ẑ)
jk

J1 j1

ηH̃⊥ × ẑ = jka2 r̂⊥A
J1 j1
jkz

+ jka2 B
J0 j1
jkzkρ

+ jka3 C

2

(
J0 + J2

)
j2

jkz
− jka3 r̂⊥

(
C · r̂⊥

) J2 j2
jkz

+ a2 B

2jk
kρ
(
J0 − J2

)
j1

jkz
+ a2 r̂⊥(B · r̂⊥)

jk
kρJ2 j1
jkz

(19.12.25)

The φ-dependence resides in r̂⊥, while all the other factors are functions of kρ.
The final step requires that all terms be multiplied by kρ e−jkzz and integrated over
kρ. Following Michalski and Mosig [1364], we introduce the following Hankel-transform
integrals, multiplied by enough factors of a to make them dimensionless,

Fpqnm(ρ, z)= ap−q+1
∫∞

0

(
kρ
)p(

jkz
)q Jn(kρρ) jm(kρa)e−jkzz dkρ (19.12.26)

With these definitions, the E-fields at the observation point (ρ,φ, z) are given by,

E⊥(ρ,φ, z) = r̂⊥AF10
11 + aB F00

01 +
aC

2

(
F10

02 + F10
22

)− a r̂⊥
(
C · r̂⊥

)
F10

22

Ez(ρ,φ, z) = AF21
01 − a

(
B · r̂⊥

)
F11

11 − a
(
C · r̂⊥

)
F21

12

(19.12.27)

It proves convenient to use the identity (19.12.10) to express the quantities F10
02, F

21
12,

in terms of the following F’s,
F10

02 = 3F00
01 − F10

00

F21
12 = 3F11

11 − F21
10

(19.12.28)

With these substitutions, the E-fields as well as the H-fields become,

E⊥ = r̂⊥AF10
11 + aB F00

01 +
aC

2

(
3F00

01 − F10
00 + F10

22

)− a r̂⊥
(
C · r̂⊥

)
F10

22

Ez = AF21
01 − a

(
B · r̂⊥

)
F11

11 − a
(
C · r̂⊥

)(
3F11

11 − F21
10

)
ηHz = r̂⊥ · (B× ẑ)

jk
F10

11

ηH⊥ × ẑ = jka r̂⊥AF11
11 +

B

2jk
(
F21

01 − F21
21

)+ r̂⊥(B · r̂⊥)
jk

F21
21

+ jka2 B F01
01 + jka2 C

2

(
F11

02 + F11
22

)− jka2 r̂⊥
(
C · r̂⊥

)
F11

22

(19.12.29)
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These expressions reduce to those of Ref. [1364] for the case of incident plane waves.

Near-Field Approximation

Closed-form expressions for the near fields in the Bethe-Bouwkamp model have been de-
rived for normal incidence by Bouwkamp [1322,1323] and Klimov and Letokhov [1350],
and for more general incident plane waves, by Michalski and Mosig [1364].

Here, we follow the approach of [1364] in which the Hankel-type integrals, Fpqnm(ρ, z),
in (19.12.29) are replaced by simple closed-form expressions when z is small. The limit
z→ 0 corresponds in the Fourier domain to the limit kρ →∞, so that kz can be replaced

by its evanescent limit, kz = −j
√
k2
ρ − k2 → −jkρ, or, jkz = kρ, and the Hankel integrals

can be approximated by,

Fpqnm(ρ, z) = ap−q+1
∫∞

0

(
kρ
)p(

jkz
)q Jn(kρρ) jm(kρa)e−jkzz dkρ −→

small z

≈ ap−q+1
∫∞

0

(
kρ
)p(

kρ
)q Jn(kρρ) jm(kρa)e−kρz dkρ

= ap−q+1
∫∞

0

(
kρ
)p−q Jn(kρρ) jm(kρa)e−kρz dkρ

Defining the integrals,

Ipnm(ρ, z)= ap+1
∫∞

0

(
kρ
)p Jn(kρρ) jm(kρa)e−kρz dkρ (19.12.30)

it follows that the small-z limit of the Hankel integrals is,

Fpqnm(ρ, z) −→
small z

Ip−qnm (ρ, z) (19.12.31)

Under these approximations, all the terms in Eq. (19.12.29) admit a closed-form
expression, with the exception of the last three terms of H⊥. However, because B,C
are of order k, as is evident from Eq. (19.11.9), these three terms, being multiplied by
ka2, will be of order (ka)2 and can be ignored. Making the replacements (19.12.31), the
near-field approximation then becomes,

E⊥ = r̂⊥AI1
11 + aB I0

01 +
aC

2

(
3I0

01 − I1
00 + I1

22

)− a r̂⊥
(
C · r̂⊥

)
I1

22

Ez = AI1
01 − a

(
B · r̂⊥

)
I0

11 − a
(
C · r̂⊥

)(
3I0

11 − I1
10

)
ηHz = r̂⊥ · (B× ẑ)

jk
I1

11

ηH⊥ × ẑ = jka r̂⊥AI0
11 +

B

2jk
(
I1

01 − I1
21

)+ r̂⊥(B · r̂⊥)
jk

I1
21

(19.12.32)
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The required Ipnm(ρ, z) functions are given by the following closed-form expressions
tabulated in [1364], and expressed in terms of oblate spheroidal coordinates ,

I0
01 = u− uv acot(v) , I1

01 = acot(v)− v
u2 + v2

I1
00 =

u
u2 + v2

, I0
11 =

ρ
2a

(
acot(v)− v

1+ v2

)
I1

10 =
ρ
a

v
(u2 + v2)(1+ v2)

, I1
11 =

ρ
a

u
(u2 + v2)(1+ v2)

I1
21 =

v(1− u2)
(u2 + v2)(1+ v2)

, I1
22 =

u(1− u2)
(u2 + v2)(1+ v2)

(19.12.33)

where u, v range over, 0 ≤ u ≤ 1 and 0 ≤ v <∞, and are defined via,

z = auv , ρ = a
√
(1− u2)(1+ v2) (19.12.34)

or, in terms of ρ, z,

r2 = ρ2 + z2 , d2 =
√
(r2 − a2)2+4a2z2

u =
√
d2 − (r2 − a2)

2a2
, v =

√
d2 + (r2 − a2)

2a2

(19.12.35)

On the z = 0 aperture plane, we have, r2 = ρ2, d2 = |ρ2 − a2|, and

u =
√
|ρ2 − a2| − (ρ2 − a2)

2a2
, v =

√
|ρ2 − a2| + (ρ2 − a2)

2a2

It follows that on the conducting surface, z = 0 and ρ > a, we have u = 0, and
Eqs. (19.12.33) imply that E⊥,Hz vanish, as required by the boundary conditions.

Similarly, on the aperture, z = 0 and ρ ≤ a, we have v = 0 and u = Δ(ρ)/a, and one
can verify that E⊥ is given by Eq. (19.11.8), and that Ez satisfies the condition Ez = Eiz
in the following (Taylor expansion) sense,

Ez(r⊥,0)= Eiz(r⊥,0)= Eiz(0)+ r⊥·∇∇∇⊥Eiz(0) (19.12.36)

Similarly, we find for H⊥,

H⊥(r⊥,0)= H i⊥(0)+
1

2
jkη−1Eiz(0) ẑ× r⊥ (19.12.37)

So that at the aperture center, H⊥(0,0)= H i⊥(0). The second term guarantees that
the z-component of Maxwell’s equation,∇∇∇× ηH = jkE, is satisfied at the center,

∂xHy(0,0)−∂yHx(0,0)= jkη−1Ez(0)= jkη−1Eiz(0) (19.12.38)
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MATLAB Functions

The following three MATLAB functions calculate the E,H fields at any observation point
(ρ,φ, z) to the right of the aperture, z ≥ 0,

[Ex,Ey,Ez,Hx,Hy,Hz] = BBnum(EHi,k,a,rho,phi,z); % fields in Bethe-Bouwkamp model

[Ex,Ey,Ez,Hx,Hy,Hz] = BBnear(EHi,k,a,rho,phi,z); % near fields

[Ex,Ey,Ez,Hx,Hy,Hz] = BBfar(EHi,k,a,rho,phi,z); % far fields

The function BBnum implements Eqs. (19.12.29) for calculating the fields at any z.
BBnear implements the near-field expressions (19.12.32) and (19.12.33), and, BBfar
implements the far-zone calculation based on Eqs. (19.11.35).

Their usage is illustrated in Example 19.12.1. In particular, the 1×5 input array, EHi,
holds the five incident field values at the aperture center, (x, y)= (0,0),

EHi =
[
ηHix , ηHiy , Eiz , ∂xEiz , ∂yEiz

]
The functions BBnum and BBnear require all five entries of EHi, whereas BBfar uses

only the first three. In these functions, z is a scalar, but ρ,φ can be vectors of same
size, or one of them a vector, the other a scalar. The outputs inherit the size of ρ or φ.

The numerical integration for the integrals Fpqnm in BBnum are carried out by splitting
the interval 0 ≤ kρ < ∞ in the two subintervals, 0 ≤ kρ ≤ k and k ≤ kρ < ∞. The
integral over [0, k] is evaluated using the tanh-sinh double-exponential quadrature rule
implemented by the MATLAB function QUADTS described in Appendix I. The integral over
[k,∞) is approximated using Gauss-Legendre quadrature with the function QUADRS also
from Appendix I. These work adequately for our purposes in this book. More accurate
integration procedures are employed in [1364].

The implementation of BBnear is straightforward using the functions (19.12.33). For
BBfar, we note that because the dipole moments M,P only have componentsMx,My, Pz,
we obtain the following explicit forms of Eqs. (19.11.35),

Ex = Pz ∂x∂zG+ jkMy∂zG

Ey = Pz ∂y∂zG− jkMx∂zG

Ez = k2PzG+ Pz∂2
zG+ jk(Mx∂yG−My∂xG)

ηHx = k2MxG+Mx∂2
xG+My∂y∂xG+ jkPz∂yG

ηHy = k2MyG+Mx∂x∂yG+My∂2
yG− jkPz∂xG

ηHz =Mx∂x∂zG+My∂y∂zG

(19.12.39)

The required first and second derivatives ofG(r) are given as follows, forα,β = 1,2,3,
and implemented internally in BBfar,

∂αG(r) = −xαr
(
jk+ 1

r

)
G(r)

∂α∂βG(r) =
[(
jk+ 1

r

)
3xαxβ − r2δαβ

r3
− k2 xαxβ

r2

]
G(r)

(19.12.40)
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Example 19.12.1: We consider the same example of Ref. [1364]. The incident field is assumed
to be TM, given by Eq. (19.11.55) with E0 = 0, ηH0 = 1, and incident at an angle θi =
30o. Fig. 19.12.1 plots in log-log scales the field magnitudes |ηHy| and |Ex along the
aperture axis as a function of the distance z spanning the range 10−2 ≤ z/a ≤ 102. The
z-component is plotted in Fig. 19.12.2.
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Fig. 19.12.1 Fields ηHy, Ex at x = y = 0 versus distance z from aperture.

10
−2

10
−1

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

z/a

|E
z|

 

 

 near field
 far field
 z = 1/k
 numerical

Fig. 19.12.2 Field Ez at x = y = 0 versus distance z from aperture.

The blue dots represent the numerical calculation using BBnum, the solid red lines are the
near fields computed with BBnear, and the dashed green lines represent the far fields
computed with BBfar. We note the point of transition at z = 1/k between the far and
radiation zones. The following MATLAB code illustrates the computation,

a=20; la=633; k=2*pi/la; thi=pi/6;
E0 = 0; H0 = 1;
kxi = k*sin(thi); kzi = k*cos(thi);
Hxi = -E0*kzi/k; Hyi = H0;
Ezi = -H0*kxi/k; dxEzi = -j*kxi*Ezi; dyEzi = 0;
EHi = [Hxi,Hyi,Ezi,dxEzi,dyEzi]; % input to BBnum
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r=0; phi=0;
z = logspace(-2,2,2001)*a;
z1 = z(1:50:end); % subset of z’s for BBnum
zk = 1/k; % turning point

for i=1:length(z1)
[Ex(i),Ey(i),Ez(i),Hx(i),Hy(i),Hz(i)] = BBnum(EHi,k,a,r,phi,z1(i));

end

[Exn,Eyn,Ezn,Hxn,Hyn,Hzn] = BBnear(EHi,k,a,r,phi,z);
[Exf,Eyf,Ezf,Hxf,Hyf,Hzf] = BBfar(EHi,k,a,r,phi,z);
[Exk,Eyk,Ezk,Hxk,Hyk,Hzk] = BBfar(EHi,k,a,r,phi,zk);

figure; loglog(z/a,abs(Hyn),’b-’, z/a,abs(Hyf),’g--’,...
zk/a, abs(Hyk),’mo’, z1/a,abs(Hy),’r.’);

figure; loglog(z/a,abs(Exn),’b-’, z/a,abs(Exf),’g--’,...
zk/a, abs(Exk),’mo’, z1/a,abs(Ex),’r.’);

Fig. 19.12.3 plots the real and imaginary parts of the fields, ηHy, Ex, Ez, at distance z =
a/10, along the cross sections at y = 0 and −3 ≤ x/a ≤ 3, and x = 0 and −3 ≤ y/a ≤ 3.
The following MATLAB code segment illustrates the computation,

x = linspace(-3,3,601)*a; y =0; % y = linspace(-3,3,601)*a; x =0;
r = sqrt(x.^2 + y.^2); ph = atan2(y,x);
z = a/10;

[Ex,Ey,Ez,Hx,Hy,Hz] = BBnum(EHi,k,a,r,ph,z);
% [Ex,Ey,Ez,Hx,Hy,Hz] = BBnear(EHi,k,a,r,ph,z); % alternative for small z

figure; plot(x/a,real(Ex),’b-’, x/a,imag(Ex),’r--’);
figure; plot(x/a,real(Hy),’b-’, x/a,imag(Hy),’r--’);
figure; plot(x/a,real(Ez),’b-’, x/a,imag(Ez),’r--’);

We should note that at the above short distance of z = a/10, the near-field approximation
function BBnear could as well have been used to calculate the fields. ��

19.13 Babinet Principle

The Babinet principle for electromagnetic fields [1291,1316] applies to a flat conducting
screen with an aperture cut in it.† The complementary screen is obtained by removing the
conducting screen and replacing the aperture by a conductor, as shown in Fig. 19.13.1.

Let M,A denote the metallic part and the aperture of the original problem, making
up the entire planar screen, S = M + A. Then the complementary screen has metallic
part Mc = A and aperture Ac =M, so that again, S =Mc +Ac.

We may assume that the aperture plane S is the xy plane, and suppose that the fields
E i,H i are incident from the left on the originalM+A screen resulting in the diffracted
fields E,H to the right of the aperture, z ≥ 0. Consider also the fields E ic,H i

c incident
on the complementary screen Mc + Ac, resulting in the diffracted fields Ec,Hc. Then,

†For a recent review, see Ref. [1311].
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Fig. 19.12.3 Fields ηHy, Ex, Ez at z = a/10 versus −3 ≤ x/a ≤ 3 and versus −3 ≤ y/a ≤ 3.

the boundary and symmetry conditions, Eqs. (19.9.2) and (19.9.4), imply the following
conditions on the tangential electric and magnetic fields in the two problems,

ẑ× E = 0 , on M ẑ× Ec = 0 , on Mc = A
ẑ×H = ẑ×H i , on A ẑ×Hc = ẑ×H i

c , on Ac =M (19.13.1)

Suppose now that the incident fields E ic,H i
c are chosen to be the duals of the E i,H i
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Fig. 19.13.1 Original and complementary metallic screen and aperture.

fields, that is, E ic = −ηH i and H i
c = η−1E i, or expressed in matrix form,[

E ic
H i
c

]
=
[

0 −η
η−1 0

]
︸ ︷︷ ︸

D

[
E i

H i

]
= D

[
E i

H i

]
(19.13.2)

Then, the last of Eqs. (19.13.1) implies that, ẑ×ηHc = ẑ×ηH i
c = ẑ×E i onM, which

can be added to the first equation, resulting in, ẑ×(E+ηHc)= ẑ×E i onM. Similarly, from
the second and third equations, we have, ẑ× (H−η−1Ec)= ẑ×H i−η−1ẑ×Ec = ẑ×H i

on A. Thus, the original and complementary problems must satisfy the conditions,

ẑ× (E+ ηHc)= ẑ× E i , on M

ẑ× (H− η−1Ec)= ẑ×H i , on A
(19.13.3)

These state that the tangential components of the total fields E tot = E + ηHc and
H tot = H − η−1Ec match those of the incident fields E i,H i over the entire xy plane,
with the E-fields matching over M and the H-fields over A. As a consequence of the
uniqueness theorem discussed below, it follows that the fields will match everywhere in
the right half-space, that is, E tot = E i, H tot = H i, for z ≥ 0,

E+ ηHc = E i

H− η−1Ec = H i (electromagnetic Babinet principle) (19.13.4)

This is the Babinet principle for electromagnetic fields. Eq. (19.13.4) may also be
written in matrix form with the help of the inverse of the duality matrixD of Eq. (19.13.2),
that is, D−1 = −D, [

E
H

]
+D−1

[
Ec
Hc

]
=
[

E i

H i

]
(19.13.5)

which, after multiplying both sides by D, can also be transformed into,[
Ec
Hc

]
+D

[
E
H

]
=
[

E ic
H i
c

]
(19.13.6)
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The operations of the Babinet principle are summarized pictorially in Fig. 19.13.2 in

which F stands for
[

E
H

]
, and the boxes labeled S, Sc represent the diffraction operations

of the original and complementary problems, and D, the duality transformations.

Fig. 19.13.2 Electromagnetic and scalar versions of the Babinet principle.

One may wonder why we formed the above particular linear combination of the H,Ec
fields in defining H tot ; the Ec could have been added with any weight and still satisfy
(19.13.3). In fact, the form of H tot is fixed by Maxwell’s equations once E tot is defined
as E tot = E+ ηHc. Indeed, from Maxwell equations of the individual parts, we have,

H tot = −∇∇∇× E tot

jkη
= −∇∇∇× E+ η∇∇∇×Hc

jkη
= −−jkηH+ ηjkη−1Ec

jkη
= H− η−1Ec

The proof of the Babinet principle rests on a particular form of the uniqueness the-
orem of electromagnetics [22] that states that the fields inside a volume are uniquely
determined by the tangential E-fields over a part of the enclosing boundary surface and
the tangentialH-fields over the rest of that surface. In the problem at hand, the volume
is taken to be the right half-space, bounded by the xy plane at z = 0 and an infinite
hemispherical surface as shown below and in Fig. 19.1.1.

The proof of the uniqueness theorem relies on the following additional assumptions:
(a) that there are no sources in the right half-space, (b) that the medium is slightly lossy,
and (c) that the fields satisfy the (outgoing) Sommerfeld radiation condition, that is,
having radial dependence of the form, e−jkr/r, for large r.

The lossy medium can be represented by adding a small negative imaginary part to
its dielectric constant and/or to its permittivity, that is, ε = εR − jεI and μ = μR − jμI,
and as a consequence, k = kR − jkI, where εI, μI, kI are small positive constants. The
lossless case is obtained in the limit of zero imaginary parts.

Working with the difference fields, δE = E tot−E i and δH = H tot−H i, the conditions
(19.13.3) become,

δE = E+ ηHc − E i

δH = H− η−1Ec −H i ⇒ ẑ× δE = 0 , on M

ẑ× δH = 0 , on A
(19.13.7)

The fields δE, δH satisfy the source-free Maxwell’s equations in z ≥ 0,

∇∇∇× δE = −jωμδH , ∇∇∇× δH = jωεδE ⇒ ∇∇∇× δH∗ = −jωε∗δE∗

from which we obtain the divergence of the complex Poynting vector,

∇∇∇ · (δE× δH∗
) = δH∗ ·∇∇∇× δE− δE ·∇∇∇× δH∗ = −jωμ∣∣δH

∣∣2 + jωε∗∣∣δE
∣∣2
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Integrating over the right half-space V bounded by the xy plane, M + A, and the
hemisphere S∞, and applying the divergence theorem, we obtain,∫

V

[
−jωμ∣∣δH

∣∣2 + jωε∗∣∣δE
∣∣2
]
dV =

=
∫
M+A+S∞

δE× δH∗ · n̂ dS =
∫
S∞
δE× δH∗ · n̂ dS+

+
∫
M

n̂× δE ·H∗ dS+
∫
A
δH∗ × n̂ · δE dS

The surface integral overS∞ is zero since the fields decay like e−jkr/r = e−jkRre−kIr/r
for large r. The surface integrals overM andA are zero because of Eqs. (19.13.7). Thus,
we obtain the following complex-valued condition and its real part,∫

V

[
−jωμ∣∣δH

∣∣2 + jωε∗∣∣δE
∣∣2
]
dV = 0∫

V

[
ωμI

∣∣δH
∣∣2 +ωεI

∣∣δE
∣∣2
]
dV = 0

(19.13.8)

Since εI, μI are non-negative with at least one of them being non-zero, it follows
from (19.13.8) that δE = δH = 0, which proves the Babinet principle. An equivalent way
of stating the principle is in terms of the scattered fields, E s = E− E i, H s = H− H i of
the original problem, or, E sc = Ec − E ic, H s

c = Hc −H i
c, of the complementary problem,

E s = −ηHc

H s = η−1Ec
and

E sc = ηH

H s
c = −η−1E

(19.13.9)

and, in matrix form,[
E s

H s

]
= D

[
Ec
Hc

]
and

[
E sc
H s
c

]
= D−1

[
E
H

]
(19.13.10)

In this form, it states that in order to find the scattered fields of the original problem,
one can instead solve the dual complementary problem with inputs chosen as the duals
of the incident fields of the original problem.

As an example, consider the problem of finding the scattered fields E sc ,H s
c off a

small circular conducting disk with given incident fields E ic,H i
c. This is complementary

to the problem of diffraction by a small hole whose solution was given by the Bethe-
Bouwkamp model of the previous two sections. Thus, the solution of the scattering
problem is obtained quickly by the following steps,[

E ic
H i
c

]
−→
D−1

[
E i

H i

]
−→

Bethe-Bouwkamp

[
E
H

]
−→
D−1

[
E sc
H s
c

]
In particular, the E,H fields at any distance z ≥ 0 are obtained from (19.12.29),

the near-fields from (19.12.32), and the far-fields from (19.11.32)–(19.11.35). The re-
quired Bethe-BouwkampA,B,C parameters of (19.11.9) depend on Eiz,Hix,Hiy which are
obtained from the duality transformation, E i = ηH i

c, H i = −η−1E ic, or,

Eiz = ηHicz , Hix = −
1

η
Eicx , Hiy = −

1

η
Eicy
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In the radiation zone, the fields map as follows via Eq. (19.13.9), first, for the circular
aperture as in (19.11.40), in spherical coordinates,

Eθ = ηHφ = 4a3k2

3π

(
ηHix sinφ− ηHiy cosφ− 1

2
Eiz sinθ

)
e−jkr

r

Eφ = −ηHθ = 4a3k2

3π
(
ηHix cosφ+ ηHiy sinφ

)
cosθ

e−jkr

r

(19.13.11)

second, for the scattered fields of the circular disk,

Escφ = −ηHscθ =
4a3k2

3π

(
−Eicx sinφ+ Eicy cosφ− 1

2
ηHicz sinθ

)
e−jkr

r

Escθ = ηHscφ =
4a3k2

3π
(
Eicx cosφ+ Eicy sinφ

)
cosθ

e−jkr

r

(19.13.12)

More generally, we can show that Eqs. (19.13.10) satisfy the required integral equa-
tions. In fact, Eqs. (19.9.13) for the original problem and (19.9.22) for the complementary
problem are essentially the same. Indeed, we have for the two problems,

on the aperture, A on the conductor, Mc = A

k2F 0 +∇∇∇⊥(∇∇∇⊥ · F 0)= −jkηH i⊥ k2A0
c +∇∇∇⊥(∇∇∇⊥ · A0

c )= −jkη−1E ic⊥

ẑ ·∇∇∇⊥ × F 0 = Eiz ẑ ·∇∇∇⊥ × A0
c = −Hicz

(19.13.13)

where F 0,A0
c are defined as follows, with R0 = |r⊥ − r⊥′|, and r⊥ ∈ A,

F 0(r⊥) = 2

∫
A

[
ẑ× E⊥(r⊥′,0)

]
G(R0)d2r⊥′

A0
c (r⊥) = 2

∫
Mc=A

[
ẑ×H s

c⊥(r⊥′,0+)
]
G(R0)d2r⊥′

(19.13.14)

But if we set, H s
c = −η−1E, and, E ic = −ηH i, H i

c = η−1E i, then we recognize that,
A0
c = −η−1F 0, and the two sets of integral equations in (19.13.13) become the same.

There is one minor difference between the aperture and the complementary scatter-
ing problem, namely, the transmission cross-section of the former is half as large as the
scattering cross-section of the latter.

In both cases, the cross-section is defined as the ratio of the radiated power to the
magnitude of the Poynting vector of the incident fields, as in Eq. (19.11.53),

σ = Prad∣∣PPP i
∣∣ , ∣∣PPP i∣∣ = ∣∣∣∣1

2
Re
[
E i ×H i∗]∣∣∣∣ (19.13.15)

The duality transformations between the two problems imply that the radiation in-
tensity, dP/dΩ, as well as

∣∣PPP i
∣∣ will be the same in the two problems, but the radiated

power of the scattering problem is defined by integrating dP/dΩ over the entire sphere,
whereas in the aperture case it is integrated over half of that, i.e., the right hemisphere.
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Scalar Babinet Principle

The Babinet principle for scalar fields [638,1287] is more straightforward than the elec-
tromagnetic version, as it involves the same (rather than dual) incident fields on the
original and complementary screens.

It can be proved quickly within the Kirchhoff approximation of Eq. (19.1.15). The
screens are depicted in Fig. 19.13.1, except that nowM,Mc are simply absorbing screens.
With the field Ei incident from the left, the Rayleigh-Sommerfeld diffraction integrals
for the original and complementary apertures, are,

E(r⊥, z) = −2
∂
∂z

∫
A
Ei(r⊥′,0)

e−jkR

4πR
dr⊥′

Ec(r⊥, z) = −2
∂
∂z

∫
Ac
Ei(r⊥′,0)

e−jkR

4πR
dr⊥′

(19.13.16)

with R = √|r⊥ − r⊥′|2 + z2 and z ≥ 0. Adding these up and invoking the Rayleigh-
Sommerfeld integral for the field Ei itself relative to the entire xy-plane, we obtain,

E(r⊥, z)+Ec(r⊥, z) = −2
∂
∂z

∫
A
Ei(r⊥′,0)

e−jkR

4πR
dr⊥′ − 2

∂
∂z

∫
Ac
Ei(r⊥′,0)

e−jkR

4πR
dr⊥′

= −2
∂
∂z

∫
A+Ac

Ei(r⊥′,0)
e−jkR

4πR
dr⊥′ = Ei(r⊥, z)

These operations are depicted in Fig. 19.13.2. Thus the scalar Babinet principle is,

E + Ec = Ei (scalar Babinet principle) (19.13.17)

19.14 Problems

19.1 The following two expressions were derived for the radiated electric field, first in Eq. (19.6.1)
using the stationary-phase method, and second in Eq. (19.11.23) applying the radiation field
approximation to the Smythe formula,

E rad = 2jk cosθ Ê(k⊥)·G(r)

E rad = −jk r̂× [ẑ× Ê⊥(k⊥)
] ·G(r) , G(r)= e−jkr

4πr

where k = k r̂. Show that these two expressions are equivalent.

19.2 Prove Eq. (19.11.48), and then show that if both terms are kept, the radiated power calculated
by (19.11.50) will be given by,

Prad = (ka)2

3
·πa2 · 1

2η

[
|E i⊥|2 + k2D

]
where the term D depends on the derivatives of the incident fields at the origin,

D = 1

80

[
2
∣∣∂xEix + ∂yEiy∣∣2 + ∣∣∂xEiy − ∂yEix∣∣2 + 3 Re

[
∂yEix ∂xEi∗y − ∂xEix ∂yEi∗y

]]
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19.3 Derive Eqs. (19.11.58)–(19.11.63) regarding an incident plane wave on a circular aperture.

19.4 Using the 2-D transform (19.12.12), and differentiating both sides with respect to kx, ky,
derive the following transforms,∫
A

xα
Δ(ρ)

ejk⊥·r⊥ d2r⊥ = −j ∂∂kα

[∫
A

1

Δ(ρ)
ejk⊥·r⊥ d2r⊥

]
= 2πa2 · jkα

kρ
j1(kρa)

∫
A

xαxβ
Δ(ρ)

ejk⊥·r⊥ d2r⊥ = − ∂2

∂kα ∂kβ

[∫
A

1

Δ(ρ)
ejk⊥·r⊥ d2r⊥

]

= 2πa2 ·
[
δαβ

j1(kρa)
kρ

− kαkβ
k2
ρ
a j2(kρa)

]
(19.14.1)

where α,β = 1,2. Then, derive the 2-D transforms in Eqs. (19.12.11).


