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332:580 – Electric Waves and Radiation
Exam 1 – October 8, 1997

1. A Doppler radar for measuring the speed of a vehicle may be modeled as
a uniform plane wave incident normally on a perfectly conducting surface
which is moving away from the source with a speed v.

By matching the boundary conditions at the moving conducting surface,
derive an expression for the Doppler frequency shift.

If the incident wave has frequency 9 GHz and the measured Doppler shift
is Δf = 2 kHz, determine the vehicle’s speed in km/hr.

2. A left-hand polarized plane wave represented by the phasor

E(z, t)= E0(x̂+ jŷ)ejωt−jkz

is normally incident from free space on a perfectly conducting wall at
z = 0. Determine the polarization of the reflected wave.

3. A uniform plane wave of frequency of 1.25 GHz is normally incident from
free space onto a fiberglass dielectric slab (ε = 4ε0, μ = μ0) of thickness
of 3 cm, as shown on the left figure below.

(a) What is the free-space wavelength of this wave in cm? What is its
wavelength inside the fiberglass?

(b) What percentage of the incident power is reflected backwards?

Next, an identical slab is inserted to the right of the first slab at a distance
of 6 cm, as shown on the right figure below.

(c) What percentage of incident power is now reflected back?
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4. A uniform plane wave of frequency ω is normally incident from the left
on a lossless dielectric slab ε of thickness l. We may assume that the
medium to the left and to the right of the slab is air.

Let R(ω) and T(ω) be the reflection response into the left and the trans-
mission response to the right, as shown. Determine expressions of R(ω)
and T(ω) as functions of frequency, and then show that they satisfy the
relationship:

|R(ω)|2 + |T(ω)|2 = 1

What does this relationship imply about energy conservation?

Hints
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Γ = η2 − η1

η2 + η1
, τ = 1+ Γ

Zin = ηηload coskl+ jη sinkl
η coskl+ jηload sinkl
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332:580 – Electric Waves and Radiation
Exam 2 – November 10, 1997

1. A unform plane wave is incident from free-space onto a planar dielectric
at an angle θ. The dielectric is non-magnetic and has refractive index n.
Let θt be the refracted angle into the dielectric. The reflection coefficient
for parallel polarization is given as follows:

Γ = n
2 cosθ−

√
n2 − sin2 θ

n2 cosθ+
√
n2 − sin2 θ

(a) Using Snell’s law, show that Γ can be re-expressed in the equivalent
forms:

Γ = n cosθ− cosθt
n cosθ+ cosθt

= sin(2θ)− sin(2θt)
sin(2θ)+ sin(2θt)

= tan(θ− θt)
tan(θ+ θt)

(b) Determine the expression, tanθB = n, for the Brewster angle by re-
quiring the condition θ+ θt = 90o.

2. A loss-free line of impedance Z0 is terminated at a load ZL = Z0 + jX,
which is not quite matched to the line. To properly match the line, a
short-circuited stub is connected across the main line at a distance of λ/4
from the load, as shown below. The stub has characteristic impedance Z0.

Find an equation that determines the length l of the stub in order that
there be no reflected waves into the main line. What is the length l (in
wavelengths λ) when X = Z0? When X = Z0/

√
3?

3. A 100-Ω lossless transmission line is terminated at an unknown load
impedance. The line is operated at a frequency corresponding to a wave-
length λ = 40 cm.

The standing wave ratio along this line is measured to be S = 3. The
distance from the load where there is a voltage minimum is measured to
be 5 cm. Based on these two measurements, determine the unkown load
impedance. [Hint: First determine Γ and note Γ = |Γ|ejθ.]
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4. A TE10 mode of frequency ω > ωc is propagated along a rectangular
waveguide of dimensions a,b. The longitudinal magnetic field is

Hz = H0 cos
(πx
a
)

(a) Determine expressions of the remaining field components Ey andHx.

(b) Determine expressions (in terms of H0,ω,a, b, etc.) for the time-
averaged power P transmitted down the guide, and for the electric
and magnetic energy densities per unit z-length, U′el and U′mag.

(c) Show that U′el = U′mag. And determine the total U′ = U′el +U′mag.

(d) Show that the velocity by which energy is propagated down the guide
is equal to the group velocity, that is, show

P
U′
= vg = c

√
1− ω

2
c

ω2

Hints

sin(α+β)= sinα cosβ+sinβ cosα, cos(α+β)= cosα cosβ−sinα sinβ

sinα cosβ = 1

2

[
sin(α+ β)+ sin(α− β)], sin(2α)= 2 sinα cosα

V(l)= VL 1+ Γe−2jβl

1+ Γ , S = 1+ |Γ|
1− |Γ| , Zin = Z0

ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

HT = − jβh2
∇THz , ET = ZTE HT × ẑ , ZTE = η√

1− ω
2
c

ω2
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332:580 – Electric Waves and Radiation
Final Exam – December 16, 1997

1. A transmission line with characteristic impedance Z0 must be matched
to a purely resistive load ZL. A segment of length l1 of another line of
characteristic impedance Z1 is inserted at a distance l0 from the load, as
shown below.

TakeZ0 = 50, Z1 = 100, ZL = 80Ω and let β0 and β1 be the wavenumbers
within the segments l0 and l1.

(a) Determine the values of the quantities cot(β1l1) and cot(β0l0) that
would guarantee matching.

(b) Not all possible resistive loads ZL can be matched by this method.
Show that the widest range of ZL that can be matched using the given
values of Z0 and Z1 is:

12.5 Ω < ZL < 200 Ω

[Hint: Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

. Work with normalized impedances.]

2. An antenna is transmitting power PT with gain GT. A receiving antenna
at a distance r has gain GR. Let λ be the operating wavelength. Assuming
that the two antennas are oriented towards the maximal gain of each other,
show that the received power is given by

PR = PTGTGRGF

whereGF = (λ/4πr)2 is the free-space “gain”. Be sure to explain carefully
where each factor comes from.
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3. Consider a mobile radio channel in which the transmitting antenna at the
base station is at height h1 from the ground and the receiving mobile
antenna is at heighth2, as shown below. The ray reflected from the ground
interferes with the direct ray and can cause substantial signal cancellation
at the receiving antenna.

Let r be the distance from the origin O to the receiving antenna R. You
may assume that h1 is in the z-direction.

The reflected ray may be thought of as originating from the image of the
transmitting antenna at −h1, as shown. Thus, we have an equivalent two-
element transmitting array. We assume that the currents on the actual and
image antennas are I(z) and ΓI(z), where Γ is the reflection coefficient
of the ground. It can be shown that for near-grazing angles of incidence
for the reflected wave, Γ � −1.

(a) Assuming that Γ is real-valued, determine the array factor A(θ) and
show that its magnitude square can be written in the form:

GA(θ)= |A(θ)|2 = (1+ Γ)2−4Γ sin2(kh1 cosθ)

where k = 2π/λ. Thus, the gain of the transmitting antenna is effec-
tively changed into GT → GTGA, and therefore, the received power
will be: PR = PTGTGRGFGA.

(b) Assuming r2 � h1h2 and Γ = −1, show that the received power of
part (a) takes the approximate form:

PR = PTGTGR h
2
1h

2
2

r4

Thus, it is falls like 1/r4, instead of the usual 1/r2.

(c) Assuming f = 800 MHz, h1 = 100 ft, h2 = 6 ft, and r = 3 mi, deter-
mine by how many dB the received power will be smaller as compared
to the power that would be received if there were no ground reflec-
tions at all.

6



332:580 – Electric Waves and Radiation
Exam 1 – October 12, 1998

1. Determine the polarization types of the following plane waves:

E(z) = E0(2x̂+ jŷ)e−jkz

E(z) = E0(jx̂+ 2ŷ)e+jkz

Express the first case as a linear combination of a left and a right circularly
polarized wave.

2. A uniform plane wave is obliquely incident from air onto a lossless dielec-
tric with refractive index n. Assuming perpendicular polarization, the
incident, reflected, and transmitted electric fields are given by:

E = ŷEy = E0 ŷe−jkx sinθ−jkz cosθ

E′′ = ŷE′′y = ρE0 ŷe−jkx sinθ+jkz cosθ

E′ = ŷE′y = τE0 ŷe−jk
′x sinθ′−jk′z cosθ′

where ρ,τ are the reflection and transmission coefficients, θ,θ′ are the
incident and refracted angles, and k′ = nk = nω/c0.

(a) Derive the following expressions for the z-components of the time-
averaged Poynting vectors for the transmitted, reflected, and refracted
waves:

Pz = |E0|2
2η0

cosθ , P′′z = −
|ρE0|2

2η0
cosθ , P′z =

|τE0|2
2η0

n cosθ′

[Hints: Identify k̂, k̂
′′
, k̂
′
. Recall that PPP = k̂ |E|2/2η0.]

(b) Assume the interface coincides with the xy plane at z = 0. The fol-
lowing two conditions express the continuity of the tangential elec-
tric field and energy flux in the z direction:

Ey + E′′y = E′y
Pz + P′′z = P′z

Using these two conditions, derive Snell’s law, sinθ = n sinθ′, and
the following expression for the reflection coefficient:

ρ = cosθ−
√
n2 − sin2 θ

cosθ+
√
n2 − sin2 θ

7

3. A plane wave is incident at an angle θ onto a planar interface separating a
lossless dielectric of refractive index n and air. The wave is incident from
the inside of the dielectric. The reflection coefficients for perpendicular
and parallel polarizations are given by:

ρ⊥ = cosθ−
√
n−2 − sin2 θ

cosθ+
√
n−2 − sin2 θ

, ρ‖ = n
−2 cosθ−

√
n−2 − sin2 θ

n−2 cosθ+
√
n−2 − sin2 θ

(a) Using these expressions, show that the Brewster angle and the criti-
cal angle for total internal reflection are given by tanθB = 1/n and
sinθc = 1/n.

(b) Show mathematically that always θB < θc, so that the Brewster angle
never corresponds to total internal reflection.

(c) Sketch a plot of the power reflection coefficients |ρ⊥|2 and |ρ‖|2
versus the incident angle θ in the range 0 ≤ θ ≤ 90o. Indicate the
angles θB and θc on your graph.

(d) When the incident angle is equal to the Brewster angle, show that the
perpendicular reflection coefficient is given by:

ρ⊥ = n
2 − 1

n2 + 1

4. Four identical dielectric slabs of thickness of 1 cm and dielectric constant
ε = 4ε0 are positioned as shown below. A uniform plane wave of fre-
quency of 3.75 GHz is incident normally onto the leftmost slab.

(a) Determine the power reflection coefficient |Γ|2 as a percentage.

(b) Determine |Γ|2 if slabs A and C are removed and replaced by air.

(c) Determine |Γ|2 if the air gap B between slabs A and C is filled with
the same dielectric, so that ABC is a single slab.
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332:580 – Electric Waves and Radiation
Exam 2 – November 23, 1998

1. It is required to match a lossless transmission line Z0 to a load ZL. To this
end, a quarter-wavelength transformer is connected at a distance l0 from
the load, as shown below. Let λ0 and λ be the operating wavelengths of
the line and the transformer segment.

Assume Z0 = 50 Ω. Verify that the required length l0 that will match the
complex load ZL = 40+30j Ω is l0 = λ/8. What is the value of Z1 in this
case?

2. The wavelength on a 50 Ω transmission line is 80 cm. Determine the load
impedance if the SWR on the line is 3 and the location of the first voltage
minimum is 10 cm from the load.

At what other distances from the load would one measure a voltage min-
imum? A voltage maximum?

3. A TE10 mode of frequencyω is propagated along an air-filled rectangular
waveguide of sides a and b. Let ωc = πc/a and h = π/a be the cutoff
frequency and cutoff wavenumber. The non-zero field components are
given by (the e−jβz factor is not shown):

Ey = E0 sin(hx), Hx = H1 sin(hx), Hz = H0 cos(hx)

(a) Derive the relationship of the constants H1,H0 to E0.

(b) By integrating the time-averaged volume energy densities over the
cross-sectional area of the guide, show that the electric and magnetic
energy densities per unit length along the guide are given by:

W′
e =

1

8
abε|E0|2 , W′

m =
1

8
abμ

(|H0|2 + |H1|2
)

(c) Show thatW′
e =W′

m. LetW′ =W′
e +W′

m = 2W′
e be the total energy

density per unit length. By multiplying W′ by the group velocity

vg = c
√

1−ω2
c/ω2, show that the total power transmitted down the

guide is given by

P = 1

4η
ab |E0|2

√
1−ω2

c/ω2

9

4. Explain why an “optimal” rectangular waveguide must have sides b = a/2
and must be operated at a frequency f = 1.5fc, where fc is the minimum
cutoff frequency.

5. An air-filled rectangular waveguide is used to transfer power to a radar
antenna. The guide must meet the following specifications:

The two lowest modes are TE10 and TE20. The operating frequency is 3
GHz and must lie exactly halfway between the cutoff frequencies of these
two modes. The maximum electric field within the guide may not exceed,
by a safety margin of 3, the breakdown field of air 3 MV/m.

(a) Determine the smallest dimensions a,b for such a waveguide, if the
transmitted power is required to be 1 MW.

(b) What are the dimensions a,b if the transmitted power is required to
be maximum? What is that maximum power in MW?

Hints

Z = Z0
ZL + jZ0 tankl
Z0 + jZL tankl

∫ a
0

sin2(πx/a)dx =
∫ a

0
cos2(πx/a)dx = a

2

cε = 1

η
, fc = c

2

√
m2

a2
+ n

2

b2

Hx = − jβh2
∂xHz , Ey = jωμh2

∂xHz
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332:580 – Electric Waves and Radiation
Final Exam – December 16, 1998

1. Three identical dielectric slabs of thickness of 1 cm and dielectric con-
stant ε = 4ε0 are positioned as shown below. A uniform plane wave of
frequency of 3.75 GHz is incident normally onto the leftmost slab.

(a) Determine the power reflection and transmission coefficients, |Γ|2
and |T|2, as percentages of the incident power.

(b) Determine |Γ|2 and |T|2 if the three slabs and air gaps are replaced
by a single slab of thickness of 7 cm.

2. A TE mode of frequency ω and wavenumber β is propagated along the
z-direction in a rectangular dielectric waveguide with refractive index n1.
The waveguide is surrounded by a cladding material of refractive index
n2 < n1, as shown below.

The longitudinal magnetic field component is given in the regions inside
and outside the guide as follows:

Hz(x)=
⎧⎪⎨
⎪⎩

H1 sin(h1x), −a ≤ x ≤ a
H2 e−α2x, x ≥ a
−H2 eα2x, x ≤ −a

(a) Determine similar expressions for the remaining field components.
Determine the relationship of h1,α2 toω,β.

(b) Applying the proper boundary conditions, determine the relation-
ship between the constants H1,H2 and the relationship between β
andω.
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3. A Hertzian dipole antenna has normalized power gain g(θ)= sin2 θ. De-
termine the 3-dB beam width of this antenna by setting up and solving the
defining conditions for this width.

4. In an earth-satellite-earth communication system, the uplink/downlink
distances are 36000 km. The uplink/downlink frequencies are 6/4 GHz.
The diameters of the earth and satellite antennas are 15 m and 0.5 m
with 60% aperture efficiencies. The transmitting earth antenna transmits
power of 1 kW. The satellite transponder gain is 90 dB. The satellite receiv-
ing antenna is looking down at an earth temperature of 300oK and has a
noisy receiver of effective noise temperature of 2700oK, whereas the earth
receiving antenna is looking up at a sky temperature of 50oK and uses a
high-gain LNA amplifier of noise temperature of 80oK (feedline losses may
be ignored.) The bandwidth is 30 MHz.

(a) Calculate all antenna gains in dB.

(b) Calculate the uplink and downlink free-space losses in dB.

(c) Calculate the amount of power received by the satellite in dBW. Cal-
culate the uplink signal to noise ratio in dB.

(d) Calculate the power received by the receiving earth antenna in dBW
and the downlink signal to noise ratio.

(e) Finally, calculate the total system signal to noise ratio in dB.

5. Four identical isotropic antennas are positioned on the xy-plane at the
four corners of a square of sides a, as shown below. Determine the array
factor A(φ) of this arrangement as a function of the azimuthal angle φ.
(Assume the look direction is on the xy-plane.)

12



332:580 – Electric Waves and Radiation
Exam 1 – October 13, 1999

1. We construct a makeshift antenna by wrapping aluminum foil around a
stick of wood. Aluminum foil has thickness of about 1/000 of an inch and
conductivity 3.5×107 S/m. The antenna will operate adequately if the foil
thickness is at least five skin depths at the operating frequency.

Will such an antenna be adequate for UHF reception at 900 MHz? For VHF
reception at 100 MHz? Do we need to wrap the foil around several times?

Can the VHF case be answered quickly based on the answer for the UHF
case, without having to recalculate everything?

[Hints: α = √πfμσ.]

2. Recent measurements (ca.1997) of the absorption coefficient α of water
over the visible spectrum show that it starts at about 0.01 nepers/m at 380
nm (violet) and decreases to a minimum value of 0.0044 nepers/m at 418
nm (blue) and then increases steadily reaching the value of 0.5 nepers/m
at 600 nm (red).

For each of the three wavelengths, determine the depth in meters at which
the light intensity has decreased to 1/10th its value at the surface of the
water.

[Hint: 8.8686 dB per delta.]

3. A 2.5 GHz wave is normally incident from air onto a dielectric slab of
thickness of 2 cm and refractive index of 1.5, as shown below. The medium
to the right of the slab has an index of 2.25.

(a) Derive an analytical expression of the reflectance |Γ(f)|2 as a func-
tion of frequency and sketch it versus f over the interval 0 ≤ f ≤ 10
GHz. What is the value of the reflectance at 2.5 GHz?

(b) Next, the 2-cm slab is moved to the left by a distance of 6 cm, creating
an air-gap between it and the rightmost dielectric. What is the value
of the reflectance at 2.5 GHz?
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4. An underwater object is viewed from air at an angle θ through a glass
plate, as shown below. Let z = z1 + z2 be the actual depth of the object
from the air surface, where z1 is the thickness of the glass plate, and
let n1, n2 be the refractive indices of the glass and water. Show that the
apparent depth of the object is given by:

z′ = z1 cosθ√
n2

1 − sin2 θ
+ z2 cosθ√

n2
2 − sin2 θ

[Hint: x = x1 + x2.]
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332:580 – Electric Waves and Radiation
Exam 2 – November 22, 1999

1. It is desired to design an air-filled rectangular waveguide operating at 5
GHz, whose group velocity is 0.8c. What are the dimensions a,b of the
guide (in cm) if it is also required to carry maximum power and have the
widest bandwidth possible? What is the cutoff frequency of the guide in
GHz and the operating bandwidth?

2. Show the following relationship between guide wavelength and group ve-
locity in an arbitrary air-filled waveguide:

vgλg = cλ

where λg = 2π/β and λ is the free-space wavelength.

3. A 75-ohm line is connected to an unknown load. Voltage measurements
along the line reveal that the maximum and minimum voltage values are
6 V and 2 V. It is observed that a voltage maximum occurs at the distance
from the load:

l = 0.5λ− λ
4π

atan(0.75)= 0.44879λ

Determine the reflection coefficient ΓL (in cartesian form) and the load
impedance ZL.

4. The Arecibo Observatory in Puerto Rico has a gigantic dish antenna of
diameter of 1000 ft (304.8 m). It transmits power of 2.5 MW at a frequency
of 430 MHz.

(a) Assuming a 60 percent effective area, what is its gain in dB?

(b) What is its beamwidth in degrees?

(c) If used as a radar and the minimum detectable received power is
−130 dBW, what is its maximum range for detecting a target of radar
cross-section of 1 m2?

5. For a highly directive antenna, show that the relationship between the
directivity D and the solid angle ΔΩ subtended by the beam is given by

D = 4π
ΔΩ

State the assumptions and approximations that are necessary to derive
this expression.
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332:580 – Electric Waves and Radiation
Final Exam – December 17, 1999

1. An underwater object is viewed from air at an angle θ through two glass
plates of refractive indices n1, n2 and thicknesses z1, z2, as shown below.
Let z3 be the depth of the object within the water.

Express the apparent depth z of the object in terms of the quantities θ,
n0, n1, n2, n3 and z1, z2, z3.

2. A conducting waveguide has a triangular cross section as shown below. A
TM mode has Ez field component given by Ez(x, y, )ejωt−jβz, where

Ez(x, y)= E0(sink1x sink2y − sink2x sink1y)

(a) Derive the relationship among the quantitiesω,β, k1, k2.

(b) Determine the remaining E-field components Ex(x, y), Ey(x, y).
(c) Assuming perfectly conducting walls, determine the possible values

of the constants k1, k2 such that the E-field boundary conditions are
satisfied on all three walls.

(d) Determine the possible values of the cutoff frequency fc of these
modes. Determine the lowest cutoff frequency.
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3. A load is connected to a generator by a 30-ft long 75-ohm RG-59/U coaxial
cable. The SWR is measured at the load and the generator and is found to
be equal to 3 and 2, respectively.

(a) Determine the attenuation of the cable in dB/ft.

(b) Assuming the load is resistive, what are all possible values of the
load impedance in ohm?

4. Eight isotropic antennas are arranged in a two-dimensional array pattern
around a square of sides λ×λ, as shown below, where λ is the operating
wavelength.

(a) Assuming equal array weights (i.e., unity weights) work out a real-
valued expression for the array factor A(φ) as a function of the
azimuthal angle φ, and show that it can also be expressed in the
form:

A(φ)= (2 cos(π cosφ)+1
)(

2 cos(π sinφ)+1
)− 1

(b) Make a rough polar plot of the array gain factor g(φ)= |A(φ)|2
versus angle 0 ≤ φ ≤ 360o (you may use dB or absolute scales.)

(c) How would you choose the eight array weights if the desired array
pattern is to be endfire along the x-direction? Along the y-direction?
Along the 45o direction? Provide a one-sentence justification for each
choice.

18



332:580 – Electric Waves and Radiation
Exam 1 – October 11, 2000

1. Using the BAC-CAB rule, prove the vector identity:

A× (B× C)+B× (C×A)+C× (A× B)= 0

2. A uniform plane wave, propagating in the z-direction in vacuum, has the
following electric field (where A > 0):

E(t, z)= A x̂ cos(ωt − kz)+2A ŷ sin(ωt − kz)
(a) Determine the vector phasor representing E(t, z) in the complex

form E = E0ejωt−jkz.
(b) Determine the polarization of this electric field (linear, circular, el-

liptic, left-handed, right-handed?)

(c) Determine the magnetic field H(t, z) in its real-valued form.

3. We wish to shield a piece of equipment from RF interference over the
frequency range 100 MHZ to 1 GHz. To this end, we put the equipment in
a box wrapped in aluminum foil.

How many sheets of aluminum foil should we wrap the box in, if it is
required that the external fields be attenuated by at least 70 dB inside the
box?

Assume that each aluminum foil sheet has thickness of 25.4 μm (one
thousandth of an inch) and conductivity σ = 3.5× 107 S/m.

4. The figure below shows three multilayer structures. The first, denoted
by (LH)3, consists of three identical bilayers, each bilayer consisting of
a low-index and a high-index quarter-wave layer, with indices nL = 1.38
and nH = 3.45. The second multilayer, denoted by (HL)3, is the same
as the first one, but with the order of the layers reversed. The third one,
denoted by (LH)3(LL)(HL)3 consists of the first two side-by-side and
separated by two low-index quarter-wave layers LL.

In all three cases, determine the overall reflection response Γ, as well as
the percentage of reflected power, at the design frequency at which the
individual layers are quarter-wave.
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332:580 – Electric Waves and Radiation
Take-Home Midterm Exam

Due Monday, December 4, 2000

Your answer to each of the following questions must be accompanied by at
least one page of text explaining your procedures. Attach any relevant graphs
to each page of text. Attach your MATLAB programs as an appendix to the
take-home exam.

Late exams or exams that have no explanatory text will not be accepted.
Please work alone. Send me e-mail if you have any questions of clarification.

In this test, you will carry out two low-noise microwave amplifier designs,
including the corresponding input and output matching networks. The first
design fixes the noise figure and finds the maximum gain that can be used. The
second design fixes the desired gain and finds the minimum noise figure that
may be achieved.

The Hewlett-Packard Agilent ATF-34143 PHEMT transistor is suitable for
low-noise amplifiers in cellular/PCS base stations, low-earth-orbit and multi-
point microwave distribution systems, and other low-noise applications.

The technical data on this transistor may be found in the attached pdf file,
ATF34143.pdf. See also the web page: www.agilent.com/view/rf.

At 2 GHz, its S-parameters and noise-figure data are as follows, for biasing
conditions of VDS = 4 V and IDS = 40 mA (see page 9 of the pdf file):

S11 = 0.700∠−150o , S12 = 0.081∠19o

S21 = 6.002∠73o , S22 = 0.210∠−150o

Fmin = 0.22 dB, rn = 0.09, ΓGopt = 0.66∠67o

1. At 2 GHz, the transistor is potentially unstable. Calculate the stability
parameters K,μ,Δ,D1,D2. Calculate the MSG in dB.

Draw a basic Smith chart and place on it the source and load stability
circles (display only a small portion of each circle outside the Smith chart.)

Then, determine the parts of the Smith chart that correspond to the source
and load stability regions.

2. For the given optimum reflection coefficient ΓGopt, calculate the corre-
sponding load reflection coefficient ΓLopt assuming a matched load.

Place the two points ΓGopt, ΓLopt on the above Smith chart and determine
whether they lie in their respective stability regions.

3. Calculate the available gain Ga,opt in dB that corresponds to ΓGopt.

Add the corresponding available gain circle to the above Smith chart. (Note
that the source stability circle and the available gain circles intersect the
Smith chart at the same points.)
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4. Add to your Smith chart the noise figure circles corresponding to the noise
figure values of F = 0.25,0.30,0.35 dB.

For the case F = 0.35 dB, calculate and plot the available gain Ga in dB
as ΓG traces the noise-figure circle. Determine the maximum value of Ga
and the corresponding value of ΓG.

Place on your Smith chart the available gain circle corresponding to this
maximumGa. Place also the corresponding point ΓG, which should be the
point of tangency between the gain and noise figure circles.

Calculate and place on the Smith chart the corresponding load reflection
coefficient ΓL = Γ∗out. Verify that the two points ΓG, ΓL lie in their respec-
tive stability regions.

In addition, for comparison purposes, place on your Smith chart the avail-
able gain circles corresponding to the values Ga = 15 and 16 dB.

5. The points ΓG and ΓL determined in the previous question achieve the
maximum gain for the given noise figure of F = 0.35 dB.

Design input and output stub matching networks that match the amplifier
to a 50-ohm generator and a 50-ohm load. Use “parallel/open” microstrip
stubs having 50-ohm characteristic impedance and alumina substrate of
relative permittivity of εr = 9.8.

Determine the stub lengths d, l in units of λ, the wavelength inside the
microstrip lines. Choose always the solution with the shortest total length
d+ l.
Determine the effective permittivity εeff of the stubs, the stub wavelength
λ in cm, and the width/height ratio, w/h. Then, determine the stub
lengths d, l in cm.

Finally, make a schematic of your final design that shows both the input
and output matching networks (as in Fig.10.8.3.)

6. The above design sets F = 0.35 dB and finds the maximum achievable
gain. Carry out an alternative design as follows. Start with a desired
available gain of Ga = 16 dB and draw the corresponding available gain
circle on your Smith chart.

As ΓG traces the portion of this circle that lies inside the Smith chart,
compute the corresponding noise figure F. (Points on the circle can be
parametrized by ΓG = c + rejφ, but you must keep only those that have
|ΓG| < 1.)

Find the minimum among these values of F in dB and calculate the corre-
sponding value of ΓG. Calculate the corresponding matched ΓL.
Add to your Smith chart the corresponding noise figure circle and place
on it the points ΓG and ΓL.

7. Design the appropriate stub matching networks as in part 5.
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332:580 – Electric Waves and Radiation
Final Exam – December 20, 2000

1. In an earth-satellite-earth communication system, the uplink/downlink
distances are 36000 km. The uplink/downlink frequencies are 6/4 GHz.
The diameters of the earth and satellite antennas are 20 m and 1 m with
60% aperture efficiencies. The transmitting earth antenna transmits power
of 1.5 kW. The satellite transponder gain is 85 dB. The satellite receiving
antenna is looking down at an earth temperature of 290oK and has a noisy
receiver of effective noise temperature of 3000oK, whereas the earth re-
ceiving antenna is looking up at a sky temperature of 60oK and uses a
high-gain LNA amplifier of noise temperature of 100oK (feedline losses
may be ignored.) The bandwidth is 30 MHz.

(a) Calculate all antenna gains in dB.

(b) Calculate the uplink and downlink free-space losses in dB.

(c) Calculate the amount of power received by the satellite in dBW. Cal-
culate the uplink signal to noise ratio in dB.

(d) Calculate the power received by the receiving earth antenna in dBW
and the downlink signal to noise ratio.

(e) Finally, calculate the total system signal to noise ratio in dB.

2. (a) Three identical isotropic antennas are placed at the corners of an
equilateral triangle whose base and height have lengths equal to λ/2.
The triangle lies on the xy-plane. Assuming unity array weights, de-
termine the array factor A(θ,φ).
Next, take θ = 90o, so that the array factor depends only onφ. How
would you choose the array weights if you want the radiation to be
directed broadside to the base?

(b) Determine the geometry (weights, locations, sides, etc.) of the array
of four isotropic antennas that has the following array factor:

A(θ,φ)= 4 cos(π sinθ sinφ)cos
(π

2
sinθ cosφ

)

[Hint: Use Euler’s formula and note that kxλ = 2π sinθ cosφ.]

3. A load is connected to a generator by a 20-meter long 50-ohm coaxial
cable. The SWR is measured at the load and the generator and is found to
be equal to 3 and 2, respectively.

(a) Determine the attenuation of the cable in dB/m.

(b) Assuming that the load is resistive, what are all possible values of the
load impedance in ohm? [Hint: the load impedance can be greater or
less than the cable impedance.]
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4. The electric field of the TE10 mode in a rectangular conducting waveguide
of sides a and b is given by:

Hz(x)= H0 coskcx , Hx(x)= H1 sinkcx , Ey(x)= E0 sinkcx

where b < a, kc = π/a, and the usual ejωt time-dependence is assumed.

(a) Inserting these expressions into Maxwell’s equations derive the rela-
tionships among the constants E0,H0,H1.

(b) By integrating the Poynting vector over the cross-sectional area of
the guide, show that the total transmitted power is given by:

PT = 1

4η
|E0|2ab

√
1− ω

2
c

ω2

5. A radar with EIRP of Pradar = PTGT is trying to detect an aircraft of radar
cross section σ. The aircraft is at a distance r from the radar and tries
to conceal itself by jamming the radar with an on-board jamming antenna
of EIRP of Pjammer = PJGJ. Assume that both the radar and the jamming
antennas are pointing in their direction of maximal gains.

(a) Derive an expression of the signal-to-jammer ratio S/J, where S rep-
resents the power received from the target back at the radar antenna
according to the radar equation, and J represents the power from the
jamming antenna received by the radar antenna. Express the ratio in
terms of Pradar, Pjammer, r, and σ.

(b) If detectability of the target in the presence of jamming requires at
least a 0-dB signal-to-jammer ratio (that is, S/J ≥ 1), show that the
maximum detectable distance is given by:

r =
√
Pradar

Pjammer

σ
4π
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332:580 – Electric Waves and Radiation
Exam 1 — October 9, 2002

1. (a) Consider a forward-moving wave in its real-valued form:

EEE(t, z)= x̂A cos(ωt − kz+φa)+ŷB cos(ωt − kz+φb)

Show that:

EEE(t +Δt, z+Δz)×EEE(t, z)= ẑAB sin(φa −φb)sin(ωΔt − kΔz)

(b) Determine the complex-phasor form of the following two real-valued
fields:

EEE(t, z) = 2 x̂ cos(ωt − kz)+3 ŷ sin(ωt − kz)
EEE(t, z) = 2 x̂ sin(ωt + kz)+3 ŷ cos(ωt + kz)

(c) Determine the propagation direction, sense of rotation, and polar-
ization type of both of the above fields.

2. Three dielectric slabs of thicknesses of 1 cm, 2 cm, and 3 cm, and dielectric
constant ε = 4ε0 are positioned as shown below. A uniform plane wave
of free-space wavelength of 8 cm is incident normally onto the left slab.

(a) Determine the power reflection and transmission coefficients, |Γ|2
and |T|2, as percentages of the incident power.

(b) Determine |Γ|2 and |T|2 if the middle slab is replaced by air.

(c) Give a one-line proof of the property |T|2 = 1− |Γ|2.

3. As shown below, light must be launched from air into an optical fiber at
an angle θ ≤ θa in order to propagate by total internal reflection.

(a) Show that the acceptance angle is given by:

sinθa =
√
n2
f − n2

c

na

(b) For a fiber of length l, show that the exiting ray, at the opposite end,
is exiting at the same angle θ as the incidence angle.
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(c) Show that the propagation delay time through this fiber, for a ray
entering at an angle θ, is given by:

t(θ)= t0n2
f√

n2
f − n2

a sin2 θ

where t0 = l/c0.

(d) What anglesθ correspond to the maximum and minimum delay times?
Show that the difference between the maximum and minimum delay
times is given by:

Δt = tmax − tmin = t0nf(nf − nc)nc

Such travel time delays cause “modal dispersion,” that can limit the
rate at which digital data may be transmitted (typically, the data rate
must be fbps ≤ 1/(2Δt) ).
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332:580 – Electric Waves and Radiation
Final Exam — December 23, 2002

1. It is desired to design an air-filled rectangular waveguide such that (a)
it operates only in the TE10 mode with the widest possible bandwidth,
(b) it can transmit the maximum possible power, and (c) the operating
frequency is 12 GHz and it lies in the middle of the operating band.

(a) What are the dimensions of the guide in cm?

(b) Taking the maximum allowed electric field to be 1 MV/m, that is, one-
third the dielectric strength of air, calculate the maximum power that
can be transmitted by this guide in MW.

2. A resonant dipole antenna operating in the 30-meter band is connected to
a transmitter by a 30-meter long lossless coaxial cable having velocity fac-
tor of 0.8 and characteristic impedance of 50 ohm. The wave impedance
at the transmitter end of the cable is measured to be 40 ohm. Determine
the input impedance of the antenna.

3. The array factor of a two-element array is given by:

g(φ)= ∣∣a0 + a1ejψ
∣∣2 = 1+ sinψ

2
, ψ = π

2
cosφ

where φ is the azimuthal angle (assume θ = 90o) and ψ, the digital
wavenumber. The array elements are along the x-axis at locations x0 = 0
and x1 = d.

(a) What is the spacing d in units of λ? Determine the values of the array
weights, a = [a0, a1], assuming that a0 is real-valued and positive.

(b) Determine the visible region and display it on the unit circle. Plot
|A(ψ)|2 versusψ over the visible region. Based on this plot, make a
rough sketch of the radiation pattern of the array (i.e., the polar plot
of g(φ) versus 0 ≤ φ ≤ 2π).

(c) Determine the exact 3-dB width of this array in angle space.

4. We showed in class that the directivity of a planar aperture antenna (with
Huygens source fields) is given as follows in terms of the aperture tangen-
tial electric field:

Dmax = 4πAeff

λ2
= 4π
λ2

∣∣∣∣
∫
A

Ea(x, y)dxdy
∣∣∣∣2

∫
A
|Ea(x, y)|2 dxdy

Evaluate this expression for the case of an open-ended waveguide of sides
a,b, whose aperture field is given by the TE10 mode. Evaluate also the
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corresponding aperture efficiency ea = Aeff/Aphys, where Aphys is the
physical area of the aperture.

5. A satellite to earth downlink (shown below) is operating at the carrier
frequency of 4 GHz. The distance between the two antennas is r = 36000
km. The bit rate is 10 Mb/s with bit error probability of Pe = 10−4 using
QPSK modulation. The satellite has transmitter power of 20 W and uses a
dish antenna that has a diameter of 0.5 m and aperture efficiency of 0.6.
The earth antenna has efficiency of 0.6 and antenna noise temperature
of 50 K. The output of the antenna is connected to an RF amplifier with
equivalent noise temperature of 1400 K.

(a) Assuming that no LNA is used, calculate the quantities Tsys, N0 =
kTsys, Eb/N0, and the received power PR in watts.

For QPSK modulation, we have the relationshipPe = erfc
(√
Eb/N0

)
/2

with inverse Eb/N0 = [erfinv(1 − 2Pe)]2. For the purposes of this
exam, the following equation provides an excellent approximation to
this inverse relationship over the range of 10−6 ≤ Pe ≤ 10−2:

(
Eb
N0

)
dB
= 0.0498P3 − 0.83P2 + 5.60P− 3.91 , P = − log10(Pe)

(b) Determine the gain GR in dB and the diameter of the earth receiving
antenna in meters.

(c) To improve the performance of the system, a low-noise amplifier
of gain of 40 dB and noise figure of 1.7 dB is inserted as shown.
Assuming that the data and bit error rates remain the same, what
would be the required gain and diameter of the receiving antenna?

(d) With the LNA present and assuming that the earth antenna diameter
remains as in part (b), what would be the new bit rate in Mb/s for the
same bit error probability?

Hints: kdB = −228.6, F = 1+Te/290, T12 = T1 +T2/G1.
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332:580 – Electric Waves and Radiation
Exam 1 — October 15, 2003

1. Determine the polarization type (left, right, linear, etc.) and the direction
of propagation of the following electric fields given in their phasor forms:

a. E(z)= [(1+ j√3)x̂+ 2 ŷ
]
e+jkz

b. E(z)= [(1+ j)x̂− (1− j)ŷ]e−jkz
c. E(z)= [x̂− ẑ+ j√2 ŷ

]
e−jk(x+z)/

√
2

2. A wave is normally incident from the left on a dielectric slab of refractive
index n1. The media to the left and right of the slab have indices na and
nb. Determine an expression for the reflection response Γ in terms of the
refractive indices na,n1, nb in the following two cases:

(a) When the operating wavelength is such that to make the slab a half-
wavelength slab.

(b) When the slab is a quarter-wavelength slab.

(c) Using the expression for Γ in part (a), explain why a half-wave slab is
sometimes referred to as an “absentee” layer.

3. Three identical dielectric slabs of thickness of 1 cm and dielectric constant
ε0 = 4ε0 are positioned as shown below. A uniform plane wave of free-
space wavelength of 8 cm is incident normally on the left slab.

(a) Determine the reflectance |Γ|2 and transmittance |T|2 as percentages
of the incident power.

(b) Repeat part (a) if the two air gaps are filled with the same dielectric
material resulting into a single thick slab of length of 7 cm.

4. A dielectric slab of thickness of l = 2 cm and refractive index n = 2
is immersed in air as shown below. A uniform plane wave of free-space
wavelength of 8 cm is incident on the left slab at an angle θ.
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(a) Show that the transverse reflection response has the form:

ΓT = ρT(1− e
−2jδ)

1− ρ2
Te−2jδ

what are ρT and δ as functions of the angle θ for the TE and TM
polarization cases and the above specific values of l, n, λ?

(b) At what angles do ΓTE and ΓTM vanish? Explain your reasoning.

(c) Draw a sketch of the reflectances |ΓTE|2 and |ΓTM|2 versus angle θ.
Indicate on your sketch the values of the reflectances at θ = 0o and
θ = 90o.

(d) Repeat parts (b,c) if the slab thickness is reduced to l = 1 cm.

Hints

EEE(0)×EEE(t)= ẑAB cosωt sinφ

Γi = ρi + Γi+1e−2jδi

1+ ρiΓi+1e−2jδi
, δi = 2π

f
f0
Li cosθi , Li = niliλ0

nTE = n cosθ , nTM = n
cosθ
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332:580 – Electric Waves and Radiation
Final Exam — December 17, 2003

1. A satellite to earth downlink (shown below) is operating at a carrier fre-
quency of f Hertz using QPSK modulation and achieving a bit rate of R
bits/sec with a bit error probability of Pe. With the LNA absent, the receiv-
ing earth antenna is connected directly to a noisy receiver with equivalent
noise temperature of Trec. Both antennas are dishes.

(a) A low-noise amplifier of very high gain GLNA and low noise temper-
ature TLNA is inserted between the earth antenna and the receiver.
Show that the presence of the LNA allows the link to be operated
(with the same error probability Pe) at the higher bit rate:

Rnew = R Ta +Trec

Ta +TLNA

where Ta is the earth antenna noise temperature, and TLNA � Trec.

(b) The equation in part (a) is an approximation. Derive the exact form
of that equation and discuss the nature of the approximation that
was made.

(c) How would the expression in part (a) change if, in addition to the
assumptions of part (a), the operating frequency f were to be dou-
bled? Explain your reasoning. How would (a) change if the transmit-
ter power PT were to double? If the distance r were to double?

(d) With the LNA present, and assuming that the bit rate R, error prob-
ability Pe, and f , PT, r remain the same, show that the diameter d
of the earth antenna can be lowered to the following value without
affecting performance:

dnew = d
√
Ta +TLNA

Ta +Trec

where the same approximation was made as in part (a).

2. A 50-ohm lossless transmission line with velocity factor of 0.8 and operat-
ing at a frequency of 15 MHz is connected to an unknown load impedance.
The voltage SWR is measured to be S = 3 + 2

√
2. A voltage maximum is

found at a distance of 1 m from the load.
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(a) Determine the unknown load impedance ZL.
(b) Suppose that the line is lossy and that it is connected to the load

found in part (a). Suppose that the SWR at a distance of 10 m from
the load is measured to be S = 3. What is the attenuation of the line
in dB/m?

3. It is desired to design an X-band air-filled rectangular waveguide such that
it operates only in the TE10 mode with the widest possible bandwidth, it
can transmit the maximum possible power, and the operating frequency
is 10 GHz and it lies in the middle of the operating band.

(a) What are the dimensions of the guide in cm?

(b) Taking the maximum allowed electric field to be 1.5 MV/m, that is,
one-half the dielectric strength of air, calculate the maximum power
that can be transmitted by this guide in kW.

(c) Calculate the power attenuation coefficient of this guide in dB/m.

4. A two-port network with scattering matrix S is connected to a generator
and load as shown below.

(a) Show that the presence of the generator and load implies the follow-
ing relationships among the input and output wave variables:

a1 = ΓGb1 + bG , a2 = ΓLb2

and determine bG in terms of VG, Z0, ZG (or, ΓG).

(b) Show that the reflection coefficient at the input of the two port is
given by:

Γin = S11 + ΓLS12S21

1− ΓLS22

(c) Show that the wave variables a1, b2 are given by:

a1 = bG
1− ΓGΓin

, b2 = S21bG
(1− ΓGS11)(1− ΓLS22)−ΓGΓLS12S21

(d) Show that the operating power gain is given by:

G = PL
Pin

=
1
2

(|b2|2 − |a2|2
)

1
2

(|a1|2 − |b1|2
) = 1

1− |Γin|2 |S21|2 1− |ΓL|2
|1− S22ΓL|2
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332:580 – Electric Waves and Radiation
Exam 1 — October 13, 2004

1. A uniform plane wave propagating in the z-direction has the following
real-valued electric field:

EEE(t, z)= x̂ cos(ωt − kz−π/4)+ŷ cos(ωt − kz+π/4)

(a) Determine the complex-phasor form of this electric field.

(b) Determine the corresponding magnetic field HHH(t, z) given in its real-
valued form.

(c) Determine the polarization type (left, right, linear, etc.) of this wave.

2. A single-frequency plane wave is incident obliquely from air onto a planar
interface with a medium of permittivity ε = 2ε0, as shown below. The
incident wave has the following phasor form:

E(z)=
(

x̂+ ẑ√
2
+ j ŷ

)
e−jk(z−x)/

√
2 (1)

(a) Determine the angle of incidence θ in degrees and decide which of
the two dashed lines in the figure represents the incident wave. More-
over, determine the angle of refraction θ′ in degrees and indicate the
refracted wave’s direction on the figure below.

(b) Write an expression for the reflected wave that is similar to Eq. (1), but
also includes the dependence on the TE and TM Fresnel reflection co-
efficients (please evaluate these coefficients numerically.) Similarly,
give an expression for the transmitted wave.

(c) Determine the polarization type (circular, elliptic, left, right, linear,
etc.) of the incident wave and of the reflected wave.
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3. A uniform plane wave is incident normally on a planar interface, as shown
below. The medium to the left of the interface is air, and the medium to the
right is lossy with an effective complex permittivity εc, complex wavenum-
ber k′ = β′ − jα′ = ω√μ0εc, and complex characteristic impedance
ηc =

√
μ0/εc. The electric field to the left and right of the interface has

the following form:

Ex =
⎧⎨
⎩
E0e−jkz + ρE0ejkz, z ≤ 0

τE0e−jk
′z, z ≥ 0

where ρ,τ are the reflection and transmission coefficients.

(a) Determine the magnetic field at both sides of the interface.

(b) Show that the Poynting vector only has a z-component, given as fol-
lows at the two sides of the interface:

P = |E0|2
2η0

(
1− |ρ|2) , P′ = |E0|2

2ωμ0
β′|τ|2e−2α′z

(c) Moreover, show that P = P′ at the interface, (i.e., at z = 0).

4. A radome protecting a microwave transmitter consists of a three-slab
structure as shown below. The medium to the left and right of the struc-
ture is air. At the carrier frequency of the transmitter, the structure is
required to be reflectionless, that is, Γ = 0.

(a) Assuming that all three slabs are quarter-wavelength at the design
frequency, what should be the relationship among the three refrac-
tive indices n1, n2, n3 in order to achieve a reflectionless structure?

(b) What should be the relationship among the refractive indicesn1, n2, n3

if the middle slab (i.e, n2) is half-wavelength but the other two are
still quarter-wavelength slabs?

(c) For case (a), suppose that the medium to the right has a slightly dif-
ferent refractive index from that of air, say, nb = 1+ε. Calculate the
small resulting reflection response Γ to first order in ε.

34



332:580 – Electric Waves and Radiation
Final Exam — December 22, 2004

1. In order to obtain a reflectionless interface between media na and nb, two
dielectric slabs of equal optical lengths L and refractive indices nb, na are
positioned as shown below. (The same technique can be used to connect
two transmission lines of impedances Za and Zb.)

A plane wave of frequency f is incident normally from medium na. Let
f0 be the frequency at which the structure must be reflectionless. Let L
be the common optical length normalized to the free-space wavelength
λ0 = c0/f0, that is, L = nala/λ0 = nblb/λ0.

(a) Show that the reflection response into medium na is given by:

Γ = ρ1− (1+ ρ2)e−2jδ + e−4jδ

1− 2ρ2e−2jδ + ρ2e−4jδ , ρ = na − nb
na + nb , δ = 2πL

f
f0

(b) Show that the interface will be reflectionless at frequency f0 provided
the optical lengths are chosen according to:

L = 1

4π
arccos

(
1+ ρ2

2

)

This is known as a twelfth-wave transformer because for ρ = 0, it
gives L = 1/12.

2. A lossless 50-ohm transmission line is connected to an unknown load
impedance. Voltage measurements along the line reveal that the maxi-
mum and minimum voltage values are 6 V and 2 V. Moreover, the closest
distance to the load at which a voltage minimum is observed has been
found to be such that: e2jβlmin = 0.6− 0.6j.

(a) Determine the load reflection coefficient ΓL and the impedance ZL.
(b) For a general lossless transmission line of characteristic impedance
Z0 connected to a load with a voltage standing wave ratio of S, show
that the wave impedances at the locations along the line at which we
observe voltage maxima or minima are given by:

Zmax = SZ0 , Zmin = 1

S
Z0
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3. The Voyager spacecraft is currently transmitting data to earth from a dis-
tance of 12 billion km. Its antenna diameter and aperture efficiency are
3.66 m and 60 %. The operating frequency is 8.415 GHz and Voyager’s
transmitter power is 18 W. Assume the same aperture efficiency for the
70-m receiving antenna at NASA’s deep-space network at Goldstone, CA.

(a) Calculate the spacecraft’s and earth’s antenna gains in dB. Calculate
also the free-space loss in dB.

(b) Calculate the achievable communication data rate in bits/sec between
Voyager and earth using QPSK modulation and assuming the follow-
ing: an overall transmission loss factor of 5 dB, a system noise tem-
perature of 25 K, an energy-per-bit to noise-spectral-density ratio of
Eb/N0 = 3.317 = 5.208 dB, which for QPSK corresponds to a bit-
error probability of Pe = 5×10−3.

4. A z-directed half-wave dipole is positioned in front of a 90o corner re-
flector at a distance d from the corner, as shown below. The reflecting
conducting sheets can be removed and replaced with three image dipoles
as shown. The image dipoles lying along the y-direction have opposite
currents compared to the original dipole, whereas the dipole along x has
the same phase.

(a) Thinking of the equivalent image problem as an array, determine its
array factor A(φ) as a function of the azimuthal angle φ on the
xy-plane.

(b) For the case d = λ/2, make a rough sketch of |A(φ)|2 versus φ in
the range 0 ≤ φ ≤ 45o. The 3-dB angle φ3 turns out to be close to
21o. Determine a more precise value for this angle.
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332:580 – Electric Waves and Radiation
Exam 1 — October 12, 2005

1. Determine the polarization type (left, right, linear, etc.) and the direction
of propagation of the following electric fields given in their real-valued
forms:

a. EEE(t, z)= x̂ cos(ωt − kz)+ŷ sin(ωt − kz)
b. EEE(t, z)= x̂ cos(ωt − kz)−ŷ sin(ωt − kz)
c. EEE(t, z)= x̂ sin(ωt − kz)+ŷ cos(ωt − kz)
d. EEE(t, z)= x̂ sin(ωt − kz)−ŷ cos(ωt − kz)

2. Consider the following linearly-polarized wave given in its real-valued
form, where A,B are positive amplitudes:

EEE(t, z)= Ax̂ cos(ωt − kz)+Bŷ cos(ωt − kz)

Show that it can be expressed as a linear combination of two circularly
polarized waves, one left- and the other right-circular. Express these
circularly-polarized waves in their real-valued forms. Moreover, show that
the right (resp. left) polarized wave can itself be written as the linear
combination of two separate right (resp. left) polarized waves, one having
amplitude A/2 and the other amplitude B/2.

3. A lossless dielectric slab of refractive index n1 and thickness l1 is posi-
tioned at a distance l2 from a semi-infinite dielectric of refractive index
n2, as shown below.

A uniform plane wave of free-space wavelength λ0 is incident normally on
the slab from the left. Assuming that the slab n1 is a quarter-wavelength
slab, determine the length l2 (in units of λ0) and the relationship be-
tween n1 and n2 in order that there be no reflected wave into the leftmost
medium (i.e., Γ1 = 0).

4. A TM polarized wave is incident from air onto a planar dielectric interface
at the Brewster angle θB, as shown below. Let θ′B be the refracted angle.
The right medium is lossless and has refractive index n.

(a) Derive expressions for θB and θ′B in terms of n.
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(b) Show that θB + θ′B = 90o and that the angle between the refracted
ray and the would-be reflected ray is 90o.

(c) By reversing the direction of the refracted ray, show that θ′B is the
Brewster angle for a wave going from the medium n into the air (in
the sense that there would be no TM reflected wave from the right of
the interface.)
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332:580 – Electric Waves and Radiation
Exam 2 — December 5, 2005

1. Consider a coaxial transmission line of inner and outer radii a and b. The
inner conductor is held at voltage V, and has a charge Q′ per unit length,
and a current I. The outer conductor is grounded (with charge −Q′ and
current −I.)

(a) Using Ampére’s and Gauss’ laws, show that the magnetic and electric
fields at a distance a ≤ r ≤ b are given by:

Hφ = I
2πr

, Er = Q′

2πεr

(b) Using these results, determine expressions for the inductance and
capacitance per unit length L′, C′.

2. A lossless 50-ohm transmission line is connected to an unknown load
impedance ZL. Voltage measurements along the line reveal that the max-
imum and minimum voltage values are (

√
2+1) volts and (

√
2−1) volts.

Moreover, a distance at which a voltage maximum is observed has been
found to be lmax = 15λ/16.

(a) Determine the load reflection coefficient ΓL and the impedance ZL.
(b) Determine a distance (in units of λ) at which a voltage minimum will

be observed.

(c) Let Zl be the wave impedance at a distance l from the load. Show
that it is bounded from above and below as follows, where Z0 is the
characteristic impedance of the line, and S, the standing wave ratio:

1

S
Z0 ≤ |Zl| ≤ SZ0

At what lengths l are the limits realized?

Hint:
∣∣|a| − |b|∣∣ ≤ |a+ b| ≤ |a| + |b|.

3. A 50-ohm transmission line is terminated at a load impedance:

ZL = 75+ j25 Ω

(a) What percentage of the incident power is reflected back into the line?

(b) In order to make the load reflectionless, a short-circuited 50-ohm
stub of length d is inserted in parallel at a distance l from the load.
What are the smallest values of the lengths d and l in units of the
wavelength λ that will make the load reflectionless? Show all work.
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332:580 – Electric Waves and Radiation
Final Exam — December 21, 2005

1. An open-ended waveguide operating in its TE10 mode is radiating into free
space from its open end.

Explain why the directivity of the radiating waveguide aperture is given
as follows, where Ey(x′) is the aperture electric field and the waveguide
sides are a > b:

Dmax = 4πAeff

λ2
= 4πb
λ2

∣∣∣∣∣
∫ a/2
−a/2

Ey(x′)dx′
∣∣∣∣∣

2

∫ a/2
−a/2

∣∣Ey(x′)∣∣2 dx′

By evaluating this expression, show that the aperture efficiency of this
waveguide is:

ea = Aeff

Aphys
= 8

π2
= 0.81

Hint: Make sure your expression for Ey(x′) satisfies the boundary condi-
tions at the waveguide walls.

2. A satellite to earth downlink (shown below) is operating at the carrier
frequency of 4 GHz. The distance between the two antennas is r = 40 000
km. The bit error probability is Pe = 10−5 using QPSK modulation. For
QPSK and this error probability, the quantity Eb/N0 is equal to 9.0946 (in
absolute units).

The satellite has transmitter power of 20 W and uses a dish antenna that
has a diameter of 0.5 m and aperture efficiency of 0.6. The earth antenna
has diameter of 5 m, efficiency of 0.6, and antenna noise temperature
of 50 K. The output of the antenna is connected to an RF amplifier with
equivalent noise temperature of 2000 K.

(a) Assuming that no LNA is used, calculate the system noise tempera-
ture Tsys at the output of the receiving antenna, the received power
PR in picowatts, and the maximum achievable data rate in Mb/sec.
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(b) It is desired to improved the performance of this system tenfold,
that is, to increase the maximum achievable data rate in Mb/sec by
a factor of 10. To this end, a low-noise amplifier of 40-dB gain is
inserted as shown. Determine the noise temperature of the LNA that
would guarantee such a performance improvement.

(c) What is the maximum noise temperature of the LNA that can achieve
such a 10-fold improvement, and at what LNA gain is it achieved?

3. A 50-ohm transmission line is terminated at the load impedance:

ZL = 40+ 80j Ω

(a) In order to make the load reflectionless, a quarter-wavelength trans-
former section of impedance Z1 is inserted between the line and
the load, as show below, and a λ/8 or 3λ/8 short-circuited stub of
impedance Z2 is inserted in parallel with the load.

Determine the characteristic impedances Z1 and Z2 and whether the
parallel stub should have length λ/8 or 3λ/8.

(b) In the general case of a shorted stub, show that the matching condi-
tions are equivalent to the following relationship among the quanti-
ties Z0, ZL, Z1, Z2:

ZL = Z0Z2
1Z

2
2 ± jZ2Z4

1

Z2
0Z

2
2 + Z4

1

where Z0, Z1, Z2 are assumed to be lossless. Determine which± sign
corresponds to λ/8 or 3λ/8 stub length.
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332:580 – Electric Waves and Radiation
332:481 – Electromagnetic Waves

Exam 1 — October 11, 2006

1. Ground-penetrating radar is used to detect underground objects. Assum-
ing that the earth has conductivity σ = 10−3 S/m, permittivity ε = 9ε0,
and permeability μ = μ0, determine the maximum depth of detecting an
object if detectability requires that the roundtrip attenuation (from the
surface to the object and back to the surface) is not greater than 30 dB.
The radar is operating at 900 MHz. [Hint: the roundtrip amplitude atten-
uation to depth z is e−2αz.]

2. Consider the two electric fields, one given in its real-valued form, and the
other, in its phasor form:

a. EEE(t, z)= x̂ sin(ωt + kz)+2ŷ cos(ωt + kz)
b. E(z)= [(1+ j)x̂− (1− j)ŷ]e−jkz

For both cases, determine the polarization of the wave (linear, circular,
left, right, etc.) and the direction of propagation.

For case (a), determine the field in its phasor form. For case (b), determine
the field in its real-valued form as a function of t, z.

3. In order to provide structural strength and thermal insulation, a radome is
constructed using two identical dielectric slabs of length d and refractive
index n, separated by an air-gap of length d2, as shown below.

Recall that a reflectionless single-layer radome requires that the dielectric
layer have half-wavelength thickness.

However, show that for the above dual-slab arrangement, either half- or
quarter-wavelength dielectric slabs may be used, provided that the middle
air-gap is chosen to be a half-wavelength layer, i.e., d2 = λ0/2, at the oper-
ating wavelength λ0. [Hint: Work with wave impedances at the operating
wavelength.]

4. For the previous problem, determine an expression of the reflection re-
sponse Γ at λ0 in terms of the refractive index n for the following two
choices of the air-gap length:

(a) d2 = λ0/4, quarter-wavelength.

(b) d2 = λ0/8, eighth-wavelength.

[Hint: As a test for n = 1.5, the value is Γ = −0.6701 for case (a), and
Γ = −0.4321− 0.3207j for case (b).]
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332:580 – Electric Waves and Radiation
Exam 2 — November 15, 2006

1. You are walking along the hallway in your classroom building wearing
polaroid sunglasses and looking at the reflection of a light fixture on the
waxed floor. Suddenly, at a distance d from the light fixture, the reflected
image momentarily disappears. Show that the refractive index of the re-
flecting floor can be determined from the ratio of distances:

n = d
h1 + h2

where h1 is your height and h2 that of the light fixture. You may assume
that light from the fixture is unpolarized, that is, a mixture of 50% TE
and 50% TM, and that the polaroid sunglasses are designed to filter out
horizontally polarized light. Explain your reasoning.

2. Design an X-band rectangular air-filled waveguide to be operated at 10
GHz. The operating frequency must lie in the middle of the operating
band. Calculate the guide dimensions in cm, the attenuation constant
in dB/m, and the maximum transmitted power in kW assuming that the
maximum allowable electric field is one-half of the dielectric strength of
air (3 MV/m). Assume copper walls with conductivity σ = 5.8×107 S/m.

3. The wavelength on a 50-ohm transmission line is 8 meters. Determine the
load impedance if the SWR on the line is 3 and the location of the first
voltage maximum is 1 meter from the load.

At what other distances from the load would one measure a voltage min-
imum? A voltage maximum?

4. A 10-volt generator with a 25-ohm internal impedance is connected to a
100-ohm load via a 6-meter long 50-ohm transmission line. The wave-
length on the line is 8 meters. Carry out the following calculations in the
stated order:

(a) Calculate the wave impedance Zd at the generator end of the line.
Then, using an equivalent voltage divider circuit, calculate the volt-
age and current Vd, Id. Then, calculate the forward and backward
voltages Vd+, Vd− from the knowledge of Vd, Id.

(b) Propagate Vd+, Vd− to the load end of the line to determine the val-
ues of the forward and backward voltages VL+, VL− at the load end.
Then, calculate the corresponding voltage and current VL, IL from
the knowledge of VL+, VL−.

(c) Assuming that the real-valued form of the generator voltage is

VG = 10 cos(ωt)

determine the real-valued forms of the quantities Vd,VL expressed
in the sinusoidal form A cos(ωt + θ).

Hint: ejπ = −1, ejπ/2 = j.
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332:580 – Electric Waves and Radiation
Final Exam — December 18, 2006

1. It is desired to design an air-filled rectangular waveguide operating at 3
GHz, whose group velocity is 0.6c.

(a) What are the dimensions a,b of the guide (in cm) if it is also required
to carry maximum power and have the widest possible bandwidth?

(b) What is the cutoff frequency of the guide in GHz and the operating
bandwidth?

2. The SWR on a lossy 50-ohm line is measured to be equal to 3 at distance
of 5 meters from the load, and equal to 4 at a distance of 1 meter from
the load.

(a) Determine the attenuation constant of the line in dB/m.

(b) Assuming that the load is purely resistive, determine the two possible
values of the load impedance. [Hint: one of the two values is 11.4
ohm.]

3. It is desired to match a transmission line with characteristic impedanceZ0

to a complex load ZL = RL+jXL. In order to make the load reflectionless,
a quarter-wavelength transformer section of impedance Z1 is inserted be-
tween the main line and the load, and a λ/8 or 3λ/8 open-circuited stub
of impedance Z2 is inserted in parallel with the load, as shown below.

(a) Determine expressions for Z1 and Z2 in terms of Z0, RL,XL. More-
over, depending on the sign of XL, decide when one should use a
λ/8 or a 3λ/8 stub. Please note that Z0, Z1, Z2 are real and positive
quantities.

(b) Are there any impedances ZL for which this method will not work?
What would be a simple modification of this method (i.e., still using
one or both of the λ/4 and λ/8 segments) that should be applied in
such cases?

4. A satellite to earth link (shown below) is operating at the carrier frequency
of 4 GHz. The data link employs QPSK modulation and achieves a bit-
error-rate probability of Pe = 10−6. The satellite has transmitter power of
20 W and uses a dish antenna that has a diameter of 0.5 m and aperture
efficiency of 0.6. The earth antenna has diameter of 2 m, efficiency of
0.6, and antenna noise temperature of 80 K. The satellite antenna is at a
distance of 40,000 km from the earth antenna.

The output of the receiving antenna is connected to a high-gain low noise
amplifier with gain of 40 dB and equivalent noise temperature of 200 K.
The output of the LNA is connected to an RF amplifier with equivalent
noise temperature of 1800 K.

For QPSK modulation, we have the relationship Pe = erfc
(√
Eb/N0

)
/2

with inverse Eb/N0 = [erfinv(1− 2Pe)]2. For the purposes of this exam,
the following equation provides an excellent approximation to this inverse
relationship over the range of 10−8 ≤ Pe ≤ 10−3:

Eb
N0

= −2.1969 log10(Pe)−1.8621

where Eb/N0 is in absolute units.

(a) Calculate the achievable communication data rateR in megabits/sec.

(b) If the LNA is removed, the performance of the system will deteriorate.
In an attempt to keep the data rate the same as in part (a), the satellite
transmitter power is increased to 80 W. Calculate the deteriorated
value of the bit-error-rate Pe in this case.



332:580 – Electric Waves and Radiation
332:481 – Electromagnetic Waves

Exam 1 — October 10, 2007

1. Ground-penetrating radar operating at 900 MHz is used to detect under-
ground objects, as shown in the figure below for a buried pipe. Assume
that the earth has conductivity σ = 10−3 S/m, permittivity ε = 9ε0, and
permeability μ = μ0. You may use the “weakly lossy dielectric” approxi-
mation.

(a) Determine the numerical value of the wavenumber k = β − jα in
meters−1, and the penetration depth δ = 1/α in meters.

(b) Determine the value of the complex refractive index nc = nr− jni of
the ground at 900 MHz.

(c) With reference to the above figure, explain why the electric field re-
turning back to the radar antenna after getting reflected by the buried
pipe is given by

∣∣∣∣Eret

E0

∣∣∣∣2

= exp

[
−4
√
h2 + d2

δ

]

where E0 is the transmitted signal, d is the depth of the pipe, and
h is the horizontal displacement of the antenna from the pipe. You
may ignore the angular response of the radar antenna and assume it
emits isotropically in all directions into the ground.

(d) The depth d may be determined by measuring the roundtrip time
t(h) of the transmitted signal at successive horizontal distances h.
Show that t(h) is given by:

t(h)= 2nr
c0

√
d2 + h2

where nr is the real part of the complex refractive index nc.
(e) Suppose t(h) is measured over the range −2 ≤ h ≤ 2 meters over

the pipe and its minimum recorded value is tmin = 0.2 μsec. What is
the depth d in meters?

2. A uniform plane wave propagating in vacuum along the z direction has
real-valued electric field components:

Ex(z, t)= cos(ωt − kz) , Ey(z, t)= 2 sin(ωt − kz)

(a) Its phasor form has the form E = (A x̂ + B ŷ)e±jkz. Determine the
numerical values of the complex-valued coefficientsA,B and the cor-
rect sign of the exponent.

(b) Determine the polarization of this wave (left, right, linear, etc.). Ex-
plain your reasoning.

3. Consider a lossy dielectric slab of thickness d and complex refractive in-
dex nc = nr − jni at an operating frequencyω, with air on both sides as
shown below.

(a) Let k = β−jα = k0nc and ηc = η0/nc be the corresponding complex
wavenumber and characteristic impedance of the slab, where k0 =
ω√μ0ε0 = ω/c0 and η0 =

√
μ0/ε0. Show that the transmission

response of the slab may be expressed as follows:

T = 1

coskd+ j 1

2

(
nc + 1

nc

)
sinkd

Hint: ρ1 = (ηc − η0)/(ηc + η0) and ρ2 = −ρ1.

(b) At the cell phone frequency of 900 MHz, the complex refractive in-
dex of concrete is nc = 2.5− 0.14j. Calculate the percentage of the
transmitted power through a 20-cm concrete wall. How is this per-
centage related to T and why?
Hint: cos(kd)= −1.14, sin(kd)= 0.55j, and 1/nc = 0.399+0.022j.

(c) Is there anything interesting about the choice d = 20 cm? Explain.
[Hint: c0 = 30 cm · GHz.]

4. Consider the slab of the previous problem. The tangential electric field
has the following form in the three regions z ≤ 0, 0 ≤ z ≤ d, and z ≥ d:

E(z)=

⎧⎪⎪⎨
⎪⎪⎩
e−jk0z + Γejk0z , if z ≤ 0

Ae−jkz + Bejkz , if 0 ≤ z ≤ d
Te−jk0(z−d) , if z ≥ d

where k0 and k were defined in the previous problem.

(a) What are the corresponding expressions for the magnetic fieldH(z)?
(b) Set up—but do not solve—four equations from which the four un-

knowns Γ,A,B,T may be determined.

50



332:580 – Electric Waves and Radiation
332:481 – Electromagnetic Waves

Exam 2 — November 14, 2007

1. A light ray enters a glass block from one side, suffers a total internal
reflection from the top side, and exits from the opposite side, as shown
below. The glass refractive index is n = 1.5.

(a) How is the exit angle θb related to the entry angle θa? Explain.

(b) Show that all rays, regardless of the entry angle θa, will suffer total
internal reflection at the top side.

(c) Suppose that the glass block is replaced by another dielectric with
refractive index n. What is the minimum value of n in order that all
entering rays will suffer total internal reflection at the top side?

2. A lossless 50-ohm transmission line of length d = 17 m is connected to an
unknown load ZL and to a generator VG = 10 volts having an unknown
internal impedance ZG, as shown below. The wavelength on the line is
λ = 8 m. The current and voltage on the line at the generator end are
measured and found to be Id = 40 mA and Vd = 6 volts.

(a) Determine the wave impedance Zd at the generator end, as well as
the generator’s internal impedance ZG.

(b) Determine the load impedance ZL.

(c) What percentage of the total power produced by the generator is
absorbed by the load?

3. The SWR on a lossy line is measured to be equal to 3 at a distance of 5
meters from the load, and equal to 4 at a distance of 1 meter from the
load. Determine the attenuation constant of the line in dB/m.

4. It is desired to match a line with characteristic impedance Z0 to a complex
load ZL = RL + jXL. In order to make the load reflectionless, a quarter-
wavelength section of impedance Z1 is inserted between the main line
and the load, and a λ/8 or 3λ/8 short-circuited stub of impedance Z2 is
inserted in parallel at the end of the line, as shown below.

(a) Show that the section characteristic impedances must be chosen as:

Z1 =
√
Z0RL , Z2 = Z0

RL
|XL|

Such segments are easily implemented with microstrip lines.

(b) Depending on the sign of XL, decide when one should use a λ/8 or
a 3λ/8 stub.

(c) The above scheme works if both RL and XL are non-zero. What
should we do if RL �= 0 and XL = 0? What should we do if RL = 0
and XL �= 0?
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332:580 – Electric Waves and Radiation
332:481 – Electromagnetic Waves
Final Exam — December 21, 2007

1. A satellite to earth downlink (shown below) is operating at the carrier
frequency of 4 GHz. The distance between the two antennas is r = 40 000
km. The bit error probability is Pe = 10−5 using QPSK modulation.

For QPSK modulation, we have the following relationship between the
bit-error-probability and Eb/N0 ratio, expressed in terms of the MATLAB
functions erfc and erfinv:

Pe = 1

2
erfc

(√
Eb
N0

)
�

Eb
N0

= [erfinv(1− 2Pe)
]2

The satellite has transmitter power of 20 W and uses a dish antenna that
has a diameter of 0.5 m and aperture efficiency of 0.6. The earth antenna
has diameter of 5 m, efficiency of 0.6, and antenna noise temperature
of 50 K. The output of the antenna is connected to an RF amplifier with
equivalent noise temperature of 2000 K.

(a) Assuming that no LNA is used, calculate the system noise tempera-
ture Tsys at the output of the receiving antenna, the received power
PR in picowatts, and the maximum achievable data rate in Mb/sec.

(b) It is desired to improved the performance of this system tenfold,
that is, to increase the maximum achievable data rate in Mb/sec by
a factor of 10. To this end, a low-noise amplifier of 40-dB gain is
inserted as shown. Determine the noise temperature of the LNA that
would guarantee such a performance improvement.

(c) What is the maximum noise temperature of the LNA that can achieve
such a 10-fold improvement, and at what LNA gain is it achieved?

2. A z-directed half-wave dipole is positioned in front of a 90o corner re-
flector at a distance d from the corner, as shown below. The reflecting
conducting sheets can be removed and replaced by three image dipoles of
alternating signs, as shown.
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(a) Thinking of the equivalent image problem as an array, determine an
analytical expression for the array factor A(θ,φ) as a function of
the polar and azimuthal angles θ,φ.

(b) For the values d = 0.5λ, d = λ, and d = 1.5λ, plot the azimuthal
pattern A(90o,φ) at polar angle θ = 90o and for −45o ≤ φ ≤ 45o.

(c) For the cases d = 0.5λ and d = 1.5λ, calculate the directivity D
(in dB and in absolute units) and compare it with the directivity of a
single half-wave dipole in the absence of the reflector.

(d) Suppose that the corner reflector is flattened into a conducting sheet
lying on the yz plane, i.e., the 90o angle between the sheets is re-
placed by a 180o angle. Repeat parts (a–c) in this case.

3. For this problem you will need to read ch.21 of the text and the attached
papers. A short summary is given below. The current on a thin linear
antenna is determined from the solution of Hallén’s integral equation,
which takes the following two forms for the cases of a delta-gap excitation
and for a plane wave incident on the antenna at an angleθ (see Fig. 21.2.1),

∫ h
−h
Z(z− z′)I(z′)dz′ = V(z)= C1 coskz+V0 sink|z|

∫ h
−h
Z(z− z′)I(z′)dz′ = V(z)= C1ejkz +C2e−jkz + 2E0

k sinθ
ejkz cosθ

where h is the half-length, h = l/2, of the antenna with length l, and the
other quantities are defined in Sections 21.1–21.3. The constants C1, C2

are determined by requiring that the current vanish at the antenna end-
points, that is, I(h)= I(−h)= 0.

In this problem, you will study the properties of the numerical solution
of these equations using the method of moments (MoM), and in particu-
lar, using a pulse-function basis and either point-matching or Galerkin’s
weighting functions. The MoM approach is as follows. The antenna is di-
vided into N = 2M + 1 segments of width Δ = l/N = 2h/(2M + 1) with
centers at the positions (see Fig. 21.7.1, type-1 case):

zm =mΔ , −M ≤m ≤M
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and the current is expanded into pulse-basis functions as in Eq. (21.8.2):

I(z′)=
M∑

m=−M
Im B(z′ − zm)

where

B(z′ − zm)=
⎧⎨
⎩ 1, if |z′ − zm| ≤ 1

2
Δ

0, otherwise

Substitution of I(z′) into the Hallén equation gives:

M∑
m=−M

Im
∫ h
−h
Z(z− z′)B(z′ − zm)dz′ = V(z)

Next, a local average is formed about each point z = zn = nΔ by using a
local weighting functionW(z− zn):
M∑

m=−M
Im
∫ h
−h

∫ h
−h
W(z−zn)Z(z−z′)B(z′−zm)dzdz′ =

∫ h
−h
W(z−zn)V(z)dz

This may be written in the N×N matrix form:

M∑
m=−M

ZnmIm = Vn , −M ≤ n ≤M

where

Znm =
∫ h
−h

∫ h
−h
W(z− zn)Z(z− z′)B(z′ − zm)dzdz′

Vn =
∫ h
−h
W(z− zn)V(z)dz

In the Galerkin method the weighting function is taken to be the same as
the basis function, and in the point-matching case, it is a delta function:

W(z− zn)= δ(z− zn) (point-matching)

W(z− zn)= B(z− zn) (Galerkin)

Thus, in the point-matching method, Znm and Vn will be:

Znm =
∫ Δ/2

−Δ/2
Z(zn − zm + x)dx and Vn = V(zn)
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so that Vn is given as follows in the delta-gap and plane-wave cases:

Vn = C1 coskzn +V0 sink|zn|

Vn = C1ejkzn +C2e−jkzn + 2E0

k sinθ
ejkzn cosθ

with zn = nΔ, −M ≤ n ≤M. Similarly, in the Galerkin case, we have:

Znm =
∫ Δ

−Δ

(
Δ− |x|)Z(zn − zm + x)dx

and Vn is given as follows in the delta-gap and plane-wave cases (where
δ(n) is the Kronecker delta):

Vn = 2

k
sin
kΔ

2

(
C1 coskzn +V0 sink|zn|

)+V0δ(n)
4

k
sin2 kΔ

4

Vn = 2

k
sin
kΔ

2

(
C1ejkzn +C2e−jkzn

)
+

2 sin
(
kΔ cosθ

2

)
k cosθ

2E0

k sinθ
ejkzn cosθ

The resulting N×N matrix equation for the current can be written in the
following compact forms in the delta-gap and plane-wave cases:

Z I = C1 c+V0 s (delta-gap)

Z I = C1 c1 +C2 c2 + E0 s (plane wave)

with appropriate definitions for the vectors c, s, c1, c2 depending on using
point-matching or the Galerkin method, where Z is the matrix [Znm] and
I is the N-dimensional vector of current samples:

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I−M
...
I−1

I0
I1
...
IM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sections 21.7–21.9 discuss how to solve these equations for I and the
constants C1, C2, subject to the end-conditions I−M = IM = 0. Note
that in the delta-gap case, the current is symmetric about its middle, and
therefore only the lower half of the vector I is needed. The text explains
how to wrap the linear system in half in this case.
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The matrix elements Znm can be written in the following simpler forms
that use only half of the integration ranges:

Znm =
∫ Δ/2

0

[
Z(zn − zm + x)+Z(zn − zm − x)

]
dx (point-match)

Znm =
∫ Δ

0
(Δ− x)[Z(zn − zm + x)+Z(zn − zm − x)]dx (Galerkin)

These integrals can be done numerically using Gauss-Legendre quadrature
integration. For example, using a J-point integration rule, we may write:

Znm =
J∑
j=1

[
Z(zn − zm + xj)+Z(zn − zm − xj)

]
wj

Znm =
J∑
j=1

(Δ− xj)
[
Z(zn − zm + xj)+Z(zn − zm − xj)

]
wj

where wj, xj are the quadrature weights and evaluation points, with re-
spect to the integration interval [0,Δ/2], or [0,Δ] in the second case,
and can be obtained by calling the MATLAB function quadr as follows
(the value J = 32 is recommended):

[w,x]= quadr(0,Δ/2, J) (point-matching)

[w,x]= quadr(0,Δ, J) (Galerkin)

The impedance kernel Z(z) is a scaled version of the Green’s function
kernel G(z)

Z(z)= jη
2π
G(z)

We will consider both the exact and the approximate thin-wire kernels.
For an antenna of radius a, the approximate kernel G(z) is defined as
follows (see Eq. 21.3.5):

Gapprox(z)= e
−jkR

R
, R =

√
z2 + a2

The exact kernel is defined by (see Eq. 21.1.2, for ρ = a):

Gexact(z)= 1

2π

∫ 2π

0

e−jkR

R
dφ, R =

√
z2 + 4a2 sin2 φ

2

A useful representation of the exact kernel is in terms of the elliptic in-
tegral of the first kind, K(κ), and the Jacobian elliptic function dn(z, κ)
(see the Wilton-Champagne paper):

Gexact(z)= 2K
πR

∫ 1

0
e−j kRdn(uK,κ) du
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where

K = K(κ) , κ = 2a
R
, R =

√
z2 + 4a2

Using this representation, an accurate computation of the exact and ap-
proximate kernels can be made with the function kernel, with usage:

G = kernel(z,a,’e’) (exact kernel)

G = kernel(z,a,’a’) (approximate kernel)

where z is a row vector of z-points and G is the corresponding row vector
of values G(z), and the quantities z, a must be entered in units of the
wavelength λ.

The exact kernel has a logarithmic singularity at z = 0, which follows from
the logarithmic singularity of K(κ) at κ = 1:

Gexact(z)� 1

πa
ln
(

4a
z

)

With the help of the function kernel, the Hallén impedance matrix Z can
be computed by the following program fragment for the point-matching
case:

L = 0.5; a = 0.005; M=50; % example values
J = 32; % number of quadrature points
D = L/(2*M+1); % segment width
f = zeros(1,2*M+1); % first row of Z

[w,x] = quadr(0,D/2,J); % quadrature weights and points

for m=0:2*M, % ker=’e’ or ’a’
G = kernel(x-m*D,a,ker) + kernel(x+m*D,a,ker); % G is a row
f(m+1) = G * w; % w is column

end

Z = toeplitz(f,f); % make it a Toeplitz matrix
Z = j*etac(1)/(2*pi) * Z; % eta = etac(1) = 377 ohm

A number of issues that have been discussed and debated for years re-
garding the solutions of Hallén’s equation are as follows:

1. The approximate kernel is non-singular at z = 0. Yet, the numeri-
cal solution of Halleń’s equation using the approximate kernel does
not converge and becomes unusable for increasing N and/or for in-
creasing radius a, whereas the solution based on the exact kernel
does converge.

2. In fact, it can be shown that under mild regularity assumptions on
I(z), the approximate-kernel Hallén equation for a delta-gap input
does not have a solution, whereas the one with the exact kernel does.
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3. The input impedance of the antenna, Z0 = V0/I(0), for the delta-
gap case does not converge to a constant value for the approximate
kernel as N increases, but it does so for the exact kernel. Generally,
numerical methods get the resistive part of Z0 fairly accurately, but
have a hard time for the reactive part.

4. The solution I(z) for the exact kernel in the delta-gap case has a
logarithmic singularity at z = 0 of the form:

I(z)� −j 4kaV0

η
ln
(
k|z|) , z � 0

Therefore, one may wonder if the numerical solutions have any use.
However, this logarithmic singularity is confined in a very narrow
range around z = 0 and for all other values of z, the exact-kernel
solution is accurate and useful.

5. King’s empirical three-term approximation for the current is very ac-
curate (except in the immediate vicinity of the logarithmic singular-
ity at z = 0), if fitted to the exact-kernel solution. The three-term
approximation can in turn be used to predict the far-field radiation
pattern of the antenna.

With the above preliminaries, please carry out the following computer ex-
periments that illustrate the above remarks and the properties of the nu-
merical solutions. Only the point-matching method will be considered—
the Galerkin method yielding comparable results.

(a) Consider a dipole antenna of length l = 0.5λ and radius a = 0.005λ.
For each of the values M = 20,50,100,200, solve Hallén’s equation
for a delta-gap input with voltage V0 = 1 volt using both the exact
and the approximate kernels. Plot the real and imaginary parts of
the current Im = I(zm) versus zm over the right half of the antenna,
that is, 0 ≤ zm ≤ h, where h = l/2.
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(b) King’s three-term approximation, fits the antenna current to the fol-
lowing sum of sinusoidal terms, each vanishing at the antenna end-
points z = ±h:

Is(z)= A1
(
sink|z|−sinkh

)+A2
(
coskz−coskh

)+A3
(
cos(kz/2)− cos(kh/2)

)
Do a least-squares fit of this expression to the computed current
samples Im of the exact kernel, that is, find the coefficientsA1,A2,A3

that minimize the error squared:

J =
M∑

m=−M

∣∣Is(zm)−Im∣∣2 = min

Then, place the evaluated points Is(zm) on the same graphs as in
part (a). Discuss how well or not the three-term approximation fits
the exact-kernel and the approximate-kernel current.

Repeat by using a two-term approximation, that is, setting A3 = 0
and minimizing the above error criterion only with respect toA1,A2.
Discuss how well or not the two-term approximation fits the exact-
kernel and the approximate-kernel current.

(c) To illustrate the logarithmic singularity near z = 0, evaluate the lim-
iting expression at the points zm,m = 1,2, . . . ,M, for M = 200 (the
point z0 = 0 is to be skipped):

Ilog(zm)= −j 4kaV0

η
ln
(
k|zm|

)+ const.

Adjust the constant so that this expression agrees with the exact-
kernel current at the point z1, that is, Ilog(z1)= I1. Then, plot the
imaginary parts of Im and Ilog(zm) versus zm. An example graph
and its zoomed version are shown at the top of the next page.

(d) Repeat parts (a–c) for the antenna radius a = 0.001 and then for
a = 0.008. Discuss the effect of changing the radius on the quality
of the solution, both for the exact and the approximate kernel cases.
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(e) Repeat parts (a–d) for the antenna length l = 1.0λ. Comment on the
success of the exact versus approximate kernel calculations versus
the parameters l, a,M.

(f) For each value of M and current solution Im, −M ≤ m ≤ M, the
input impedance of the antenna can be calculated from the center
sample I0, that is, Z0 = V0/I0. Similarly, the input admittance is:

Y0 = 1

Z0
= I0
V0

= G0 + jB0

where G0, B0 are its real and imaginary parts, that is, the input con-
ductance and susceptance.

For each of the valuesM = 1,2, . . . ,100, calculate the corresponding
conductance and susceptance, G0(M),B0(M), using the exact and
the approximate kernels and plot them versusM. Use the length and
radius l = 0.5λ and a = 0.005λ.
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This is a time-consuming question. It requires that you solve the
Hallén equation for each value of M for the exact and approximate
kernels and pick the center value I0. Discuss the convergence prop-
erties of the exact versus the approximate kernel calculation.
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