The Fundamental Physical Constants

Armed with new results, CODATA has recently updated its set of recommended values for the basic constants and conversion factors of physics and chemistry.

Peter J. Mohr and Barry N. Taylor

he Committee on Data for Science and Technology was established in 1966 as an interdisciplinary committee of the International Council of Scientific Unions (now the International Council of Science). Three years later, CO-DATA created the task group on fundamental constants to periodically provide the scientific and technological communities with a self-consistent set of internationally recommended values for the basic constants and conversion factors of physics and chemistry. Under the auspices of the task group, we have completed a new least-squares adjustment of those values-termed the 2002 adjustmentthat takes into account all relevant data available through 31 December 2002.¹ The accompanying tables give the 2002 CODATA recommended values resulting from that adjustment, except for some specialized x-ray-related quantities and various natural and atomic units.

The complete 2002 CODATA set of more than 300 recommended values, together with a detailed description of the data and their analysis, is given in reference 1. All of the values, as well as the correlation coefficients between any two constants, are available online in a searchable database provided by NIST's fundamental constants data center. The internet address is http://physics.nist.gov/constants.

The 2002 CODATA set replaces its immediate predecessor, which resulted from the 1998 adjustment,² also carried out under the auspices of the task group. Only four years have elapsed between the 31 December 1998 and 31 December 2002 closing dates of the two adjustments (12 years separated the 1998 adjustment and its predecessor), but a number of advances in experiment and theory have led to improvements in our knowledge of the values of the constants.

The new information includes measurements of the Newtonian constant of gravitation *G*; improved experimental values of the relative atomic masses of helium-4, oxygen-16, and cesium-133 (carbon-12 has a relative atomic mass of exactly 12, by definition); a more accurate value of the $1S_{1/2}$ - $2S_{1/2}$ transition frequency in hydrogen; a new result for the bound-state root-mean-square (rms)

Peter J. Mohr (mohr@nist.gov) and **Barry N. Taylor** (barry.taylor@nist.gov) are in the fundamental constants data center of the atomic physics division of the NIST Physics Laboratory in Gaithersburg, Maryland. Mohr, head of the FCDC, is the current chair of the CODATA task group on fundamental constants. Taylor is a NIST scientist emeritus and a member of the task group. charge radius of the proton $R_{\rm p}$; and highly accurate measurements related to the bound-state *g*-factor of the electron in the hydrogenic ions ${}^{12}{\rm C}^{5+}$ and ${}^{16}{\rm O}^{7+}$. Additional experimental refinements include a new, quite accurate measurement of the muon magnetic moment anomaly a_{μ} ; an accurate value, obtained from the atomic recoil frequency shift of photons absorbed and emitted by Cs atoms, for the quotient $h/m({}^{133}{\rm Cs})$, where h is the Planck constant and $m({}^{133}{\rm Cs})$ is the mass of the ${}^{133}{\rm Cs}$ atom; a result for the molar volume of silicon $V_{\rm m}({\rm Si})$; and new experimental findings concerning previous measurements of the $\{220\}$ lattice spacing of particular Si crystals.

Theorists have developed improved expressions for the hydrogen and deuterium energy levels, the electron and muon magnetic moment anomalies a_e and a_{μ} , the ground-state hyperfine splitting of muonium (that is, the μ^+e^- "atom"), and the electron bound-state g-factor in hydrogenic ions.

Consequences of new results

The new information available to the task group led to significant changes in both the values and the uncertainties of many of the fundamental constants. A few highlights follow. The new results for *G* agreed sufficiently well among themselves to convince the task group that an earlier, highly discrepant but credible result need no longer be considered in determining the recommended value. That decision led to a new recommended value of *G* with a relative standard uncertainty (that is, relative estimated standard deviation) $u_r = 1.5 \times 10^{-4}$. The new u_r is a factor of 10 smaller than that of the 1998 recommended value.

▶ Accurate measurements of the frequency ratios $f_s^{(12C^{5+})}/f_c^{(12C^{5+})}$ and $f_s^{(16O^{7+})}/f_c^{(16O^{7+})}$, together with the theoretical expression for the bound-state *g*-factor of the electron in each ion, have yielded values for the relative atomic mass of the electron $A_r(e)$ and the electron-to-proton mass ratio m_e/m_p with relative uncertainties of about 5×10^{-10} . (In the expressions for the frequency ratios, f_s is the precession, or "spin-flip," frequency of the electron in an applied magnetic flux density, and f_c is the cyclotron frequency of the ion in the same flux density.) Compared to the 1998 uncertainties, the new uncertainties represent a reduction by more than a factor of four.

▶ The new result for $V_{\rm m}({\rm Si})$ is credible, but inconsistent with four credible measurements of other quantities. Thus, one or more of the five results has a problem. We

present some details below about the discrepancy and how we dealt with it.

▶ The 1998 adjustment included input from three combined x-ray and optical-interferometer determinations of the {220} lattice spacing of particular Si crystals. Subsequently, it was discovered that two of those three experiments appeared to have problems, so the data from those experiments were not included in the 2002 adjustment. Removing these data eliminates the scatter in the finestructure-constant (α) values implied by the accurate x-ray measurement of h/m_n , where m_n is the neutron mass. Moreover, the value of α inferred from h/m_n now agrees well with values of α from other sources.

▶ An error was discovered in the eighth-order coefficient $A_1^{(8)}$ in the theoretical expression for the electron magnetic moment anomaly $a_e(th)$. That discovery has led to a fractional increase of 5.7×10^{-9} in the value for α implied by the experimental result for a_e , about 1.5 times the relative uncertainty of the 1998 a_e value of α . Other experiments also yield values for α . In particular, the new result for $h/m(^{133}Cs)$ has yielded a reduction of the uncertainty of the recommended value of α from $u_r = 3.7 \times 10^{-9}$ in 1998 to $u_r = 3.3 \times 10^{-9}$.

▶ The significant advances in the theory of hydrogen and deuterium energy levels and the improved value of R_p have eliminated a systematic deviation between theory and experiment observed in the 1998 adjustment. As a result, the CODATA set now includes recommended values for R_p and the bound-state rms charge radius of the deuteron R_d .

Data analysis

The 2002 adjustment is similar to the 1998 adjustment in many key respects. First, we treat all of the input data on an essentially equal footing, regardless of their uncertainties. Doing so allows us to properly consider all components of uncertainty and all significant correlations among the data. It also eliminates any arbitrary division of the data into different categories—such divisions generally occurred in adjustments before that of 1998.

Second, we used the standard least-squares algorithm to analyze the data rather than an extended algorithm that tries to take into account the "uncertainty of the uncertainty" assigned to an input datum. An extended algorithm was applied as part of the 1986 adjustment,³ but the complexity of the measurements and calculations in the field of fundamental constants makes it difficult enough to evaluate uncertainties in a meaningful way, let alone the uncertainties of those uncertainties.

Third, we reprised an innovation from the 1998 adjustment to properly take into account the uncertainty of various theoretical expressions—for example, the energy levels of H and D required to obtain the Rydberg constant R_{∞} from measurements of transition frequencies. We used an additive correction δ_i for each such expression, included those corrections among the variables of the least-squares adjustment, and took their estimated values as input data. The best a priori estimate of each δ_i was zero but with a standard uncertainty equal to the standard uncertainty of the theoretical expression.

Fourth, we analyzed the data using the method of least squares for correlated input data. Although the need to consider correlations among the input data in the evaluation of the fundamental constants was first emphasized well over half a century ago, the 1998 adjustment was the first time it was actually done.

As in the 1998 adjustment, the analysis of the input data proceeded in several stages. First, we compared the various measured values of each quantity. Next, by comparing values of a common inferred constant, principally α or *h*, we examined whether measured values of different quantities were consistent. Finally, we used the least-squares method as described above to carry out a multi-variate analysis of the data. The focus of all those investigations was the compatibility of the data and the extent to which a particular datum would contribute to the 2002 recommended values of the constants.

The final least-squares adjustment used 105 of the 112 input data that were initially considered and 61 variables or adjusted constants whose values were determined by the least-squares algorithm. The input data included, for example, 27 H and D transition frequencies and frequency differences. Among the adjusted constants were R_{∞} , α , h, and $A_r(e)$. Most of the recommended values in the 2002 CODATA set were calculated from the adjusted constants. For example, the elementary charge follows from the expression $e = (2\alpha h/\mu_0 c)^{1/2}$, where $\mu_0 = 4\pi \times 10^{-7}$ N/A² is the magnetic constant and the speed of light c is defined to be 299 792 458 m/s. The uncertainties of derived quantities are obtained from the uncertainties and covariances of the adjusted constants on which they depend.

A discrepant measurement

The primary difficulty with the input data uncovered in the course of the 2002 adjustment was a significant incompatibility of the value of $V_{\rm m}({\rm Si})$ with four measurements involving the Josephson constant $K_{\rm J} = 2e/h$ and the von Klitzing constant $R_{\rm K} = h/e^2$: two moving-coil watt-balance results for the product $K_{\rm J}^2 R_{\rm K}$, a mercury-electrometer result for $K_{\rm J}$, and a capacitor volt-balance result for $K_{\rm J}$. The inconsistencies led us to consider whether relaxing either one or both of the assumptions that $K_{\rm J} = 2e/h$ and $R_{\rm K} = h/e^2$ would reduce or possibly even eliminate the inconsistencies. Although both theory and experiment support the exactness of the assumed relations, we would have deemed our analysis incomplete had we not investigated possible modifications.

To that end, we assumed $K_{\rm J} = (2e/h)(1 + \varepsilon_{\rm J})$ and $R_{\rm K} = (h/e^2)(1 + \varepsilon_{\rm K})$, where $\varepsilon_{\rm J}$ and $\varepsilon_{\rm K}$ are unknown correction factors taken as additional adjusted constants. We set the initial input values of the correction factors to be zero, but gave them a sufficiently large uncertainty that their output values resulting from a least-squares adjustment were determined by other input data, not by those initial values. If we found that the adjusted values of the correction factors were statistically compatible with zero, then we could conclude that the experimental evidence suggested the relations $K_{\rm J} = 2e/h$ and $R_{\rm K} = h/e^2$ were valid. On the other hand, an adjusted value of either of the correction factors that differed from zero in a statistically significant way would engender doubt about the exactness of the associated relation. We found no statistically significant deviations from zero for either $\varepsilon_{\rm J}$ or $\varepsilon_{\rm K}$.

The task group ultimately decided that, in the final least-squares adjustment, the a priori assigned uncertainties of the five incompatible input data would be weighted by a multiplicative factor 2.325. That weighting reduced the discrepancy between the value of $V_{m}(Si)$ and the four other measurements to 1.5 standard deviations. As a consequence of the new $V_{\rm m}({
m Si})$ datum and the increased uncertainties, the 2002 recommended value of h is larger than the 1998 recommended value by a fractional amount of about 8×10^{-8} , and its uncertainty is increased by about a factor of two, from $u_r = 7.8 \times 10^{-8}$ to $u_r = 1.7 \times 10^{-7}$. The 2002 CODATA set includes comparable changes in the recommended values and uncertainties of other constants, such as *e*, that depend strongly on h. Usually, new information leads to a reduction in uncertainties, but in this case new information has led to an increase.

Redundancy is solidity

Because there is little redundancy among some of the key input data, the 2002 CODATA set does not rest on as solid a foundation as one might wish. The constants α and h and the molar gas constant R play a critical role in determining many other constants, yet the recommended value of each is largely determined by a severely limited number of input data. Moreover, some of those data have rather different uncertainties u and hence rather different weights $1/u^2$.

The key input data used to determine α are the electron magnetic moment anomaly a_e and the quotient $h/m(^{133}\text{Cs})$. (The relative uncertainty of the quotient exceeds that of the anomaly by more than a factor of two.) Furthermore, only a single competitive experimental value of a_e exists, along with a single calculated value of the eighth-order coefficient $A_1^{(8)}$ in the theoretical expression for a_e based on quantum electrodynamics.

The two watt-balance values of $K_J^2 R_{\rm K}$ are the key input data that determine *h*. The uncertainties in the two measurements differ by a factor of 2.3 and, as we have already discussed, the two measurements are incompatible with a measurement for the molar volume of Si.

For the molar gas constant, the key input data are based on two speed-of-sound measurements in argon: One of them used a spherical acoustic resonator; the other, an acoustic interferometer. The uncertainties of the two measurements differ by a factor of 4.7.

If our knowledge of the values of α , h, and R is to advance, we need additional input data that can provide for those constants uncertainties that are no larger than the current uncertainties. Ideally, the uncertainties would be considerably smaller than those of the current values.

New experimental and theoretical data that influence our knowledge of the values of the constants appear nearly continuously. And, thanks to the World Wide Web, it's easy to distribute new recommended values of the fundamental constants. Indeed, the 2002 CODATA set first appeared on the Web on 9 December 2003. The Web has also engendered new modes of work and thought-users expect that the information they find is up-to-date. For these reasons, the CO-DATA task group on fundamental constants decided at the time of the 1998 adjustment to take advantage of the high degree of computerization that had been incorporated in the 1998 compilation and to provide a new CODATA set of recommended values every 4 years: The 12-13 years separating the first CODATA set⁴ of 1973, the second set³ of 1986, and the 1998 set² was no longer acceptable. The 2002 set is the first from the new schedule.

Based on the experience gained in preparing that set, we expect to maintain the new schedule in the future. The reader may therefore anticipate an updated fundamental constants article in the PHYSICS TODAY *Buyer's Guide* in four years.

This paper is a contribution of NIST and is not subject to copyright in the US. NIST is an agency of the Technology Administration, US Department of Commerce.

References

- 1. P. J. Mohr, B. N. Taylor, Rev. Mod. Phys. 76 (in press).
- P. J. Mohr, B. N. Taylor, Rev. Mod. Phys. 72, 351 (2000); J. Phys. Chem. Ref. Data 28, 1713 (1999).
- 3. E. R. Cohen, B. N. Taylor, Rev. Mod. Phys. 59, 1121 (1987).
- E. R. Cohen, B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

CODATA Recommended Values of	the Fund	damental Physical C	onstants – 2	2002
Quantity	Symbol	Value	Unit	Relative standard
	UNIV	TERSAL		uncertainty <i>u</i> _r
speed of light in vacuum	c, c_0	299 792 458	m s-1	(exact)
magnetic constant	μ_{0}	$4\pi \times 10^{-7}$	N A-2	· · · ·
0	, 0	= 12.566 370 614×10 ⁻⁷	N A-2	(exact)
electric constant $1/\mu_0 c^2$	ϵ_0	8.854 187 817×10 ⁻¹²	F m ⁻¹	(exact)
characteristic impedance of vacuum $\sqrt{\mu_0/\epsilon_0} = \mu_0 c$	Z_{0}	376.730 313 461	Ω	(exact)
Newtonian constant of gravitation	Ğ	6.6742(10)×10 ⁻¹¹	$m^{3} kg^{-1} s^{-2}$	1.5×10-4
-	G/ħc	6.7087(10)×10 ⁻³⁹	$(GeV/c^2)^{-2}$	1.5×10-4
Planck constant	b	6.626 0693(11)×10 ⁻³⁴	Js	1.7×10 ⁻⁷
in eV s		4.135 667 43(35)×10 ⁻¹⁵	eV s	8.5×10 ⁻⁸
$b/2\pi$	ħ	1.054 571 68(18)×10 ⁻³⁴	Js	1.7×10 ⁻⁷
in eV s		6.582 119 15(56)×10 ⁻¹⁶	eV s	8.5×10 ⁻⁸
<i>ħc</i> in MeV fm		197.326 968(17)	MeV fm	8.5×10 ⁻⁸
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m p}$	2.176 45(16)×10-8	kg	7.5×10 ⁻⁵
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{\rm P}$	$1.41679(11) \times 10^{32}$	ĸ	7.5×10^{-5}
Planck length $\hbar/m_{\rm p}c = (\hbar G/c^3)^{1/2}$	l _p	1.616 24(12)×10 ⁻³⁵	m	7.5×10 ⁻⁵
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	t _P	5.391 21(40)×10 ⁻⁴⁴	S	7.5×10 ⁻⁵
	ELECTRO	OMAGNETIĆ		
elementary charge	е	$1.602\ 176\ 53(14) \times 10^{-19}$	C	8.5×10 ⁻⁸
	e/h	2.417 989 40(21)×10 ¹⁴	A J ⁻¹	8.5×10 ⁻⁸
magnetic flux quantum $h/2e$	Φ_{0}	$2.067\ 833\ 72(18) \times 10^{-15}$	Wb	8.5×10 ⁻⁸
conductance quantum $2e^2/h$	G_{0}	7.748 091 733(26)×10 ⁻⁵	S	3.3×10 ⁻⁹
inverse of conductance quantum	G_0^{-1}	12 906.403 725(43)	Ω	3.3×10 ⁻⁹
Josephson constant ^a $2e/h$	$K_{\rm J}$	483 597.879(41)×10 ⁹	Hz V ⁻¹	8.5×10 ⁻⁸
von Klitzing constant ^b $h/e^2 = \mu_0 c/2\alpha$	R _K	25 812.807 449(86)	Ω	3.3×10 ⁻⁹
Bohr magneton $e\hbar/2m_e$	$\mu_{ ext{B}}$	927.400 949(80)×10 ⁻²⁶	J T-1	8.6×10 ⁻⁸
in eV T ⁻¹		5.788 381 804(39)×10 ⁻⁵	eV T ⁻¹	6.7×10 ⁻⁹
	$\mu_{\rm B}/h$	13.996 2458(12)×10 ⁹	Hz T ⁻¹	8.6×10 ⁻⁸
	$\mu_{\rm B}/hc$	46.686 4507(40)	$m^{-1}T^{-1}$	8.6×10 ⁻⁸
	$\mu_{ m \scriptscriptstyle B}/k$	0.671 7131(12)	K T ⁻¹	1.8×10 ⁻⁶
nuclear magneton $e\hbar/2m_{\rm p}$	$\mu_{ m N}$	5.050 783 43(43)×10 ⁻²⁷	J T-1	8.6×10 ⁻⁸
in eV T ⁻¹		3.152 451 259(21)×10 ⁻⁸	eV T-1	6.7×10 ⁻⁹
	$\mu_{ m N}/b$	7.622 593 71(65)	MHz T ⁻¹	8.6×10 ⁻⁸
	$\mu_{_{ m N}}/bc$	2.542 623 58(22)×10 ⁻²	$m^{-1} T^{-1}$	8.6×10 ⁻⁸
	$\mu_{ m N}/k$	3.658 2637(64)×10 ⁻⁴	K T ⁻¹	1.8×10 ⁻⁶
	ATOMIC A	AND NUCLEAR General		
fine-structure constant $e^2/4\pi\epsilon$ hc	^o	$7.297.352.568(24) \times 10^{-3}$		3 3 × 10-9
inverse fine structure constant	α^{-1}	137 035 999 11(46)		3.3×10^{-9}
Purchase constant $a^2m a/2h$	D	10,033,771,1(40) 10,073,731,569,525(73)	m ⁻¹	5.5×10^{-12}
Rydderg constant $\alpha m_e c/2b$	R_{∞}	10 973731.308 323(73) 3 289 841 960 360(22) $\times 10^{15}$	Ш Н7	6.6×10^{-12}
	$R_{\infty}c$	$3.287841760360(22) \times 10^{-18}$	I IZ I	1.7×10^{-7}
D hair all	$\Lambda_{\infty} m$	$2.17987209(37) \times 10^{-11}$	J	1.7 × 10 -8
Λ_{∞}/c in ev Pohr radius $\alpha/4\pi P = 4\pi c \hbar^2/m a^2$	-	15.605 6925(12) 0 529 177 2108(18) × 10-10	ev	3.3×10^{-9}
Don't radius $\alpha / 4\pi R_{\infty} = 4\pi\epsilon_0 n / m_e e$		$0.527 177 2108(18) \times 10^{-18}$	T T	5.5×10^{-7}
$\frac{1}{10} \frac{1}{10} \frac$	$L_{\rm h}$	$4.55774417(75) \times 10^{-5}$	J	1.7×10 ⁻⁸
in ev	1./2	2/.2113845(23)	e v	8.5×10°
quantum of circulation	$b/2m_e$	$3.036~947~330(24) \times 10^{-4}$	III ⁻ S -	6.7×10^{-9}
	<i>bl m</i> e Ele	$7.273895101(48) \times 10^{-1}$	111- 5 -	6.7 × 10 ·
Fermi coupling constant ^c	$G/(\hbar c)^3$	$1.166.39(1) \times 10^{-5}$	GeV^{-2}	8 6×10 ⁻⁶
weak mixing angle ^d θ (on shell scheme)	$G_{\rm F}$ (<i>iic</i>)	1.100 57(1)×10	Gev	8.0×10
$\sin^2 \theta_{\rm m} = s_{\rm m}^2 = 1 - (m_{\rm m}/m_{\rm m})^2$	$\sin^2 \theta_{m}$	0 222 15(76)		3.4×10^{-3}
$\sin \theta_{W} - \frac{1}{3W} - 1 (m_{W} / m_{Z})$	Ele	ectron, e ⁻		5.1/10
electron mass	m_{e}	9.109 3826(16)×10 ⁻³¹	kg	1.7×10 ⁻⁷
in u, $m_e = A_r(e)$ u (electron rel. atomic mass times u)	c	5.485 799 0945(24)×10 ⁻⁴	u	4.4×10 ⁻¹⁰
energy equivalent	$m_{a}c^{2}$	8.187 1047(14)×10 ⁻¹⁴	T	1.7×10 ⁻⁷
in MeV	c	0.510 998 918(44)	MeV	8.6×10 ⁻⁸
electron-muon mass ratio	m_{o}/m_{o}	4.836 331 67(13)×10 ⁻³		2.6×10 ⁻⁸
electron-tau mass ratio	m/m	2.875 64(47)×10 ⁻⁴		1.6×10 ⁻⁴
electron-proton mass ratio	m/m	5.446 170 2173(25) $\times 10^{-4}$		4.6×10 ⁻¹⁰
electron-neutron mass ratio	m/m	$5.438\ 673\ 4481(38) \times 10^{-4}$		7.0×10 ⁻¹⁰
electron-deuteron mass ratio	m/m	$2.724 437 1095(13) \times 10^{-4}$		4.8×10^{-10}
electron to alpha particle mass ratio	m/m	1.370 933 555 75(61) × 10-4		4.4×10^{-10}
electron charge to mass quotient	-e/m	$-1.758 820 12(15) \times 10^{11}$	C kg ⁻¹	8.6×10^{-8}
electron molar mass $N_{\rm A}m_{\rm e}$	M(e), M	5.485 799 0945(24)×10 ⁻⁷	kg mol ⁻¹	4.4×10 ⁻¹⁰

CODATA Recommended Values of t	the Fund	damental Physical (Constants -	- 2002
Quantity	Symbol	Value	Unit	Relative standard uncertainty <i>u</i> _r
Compton wavelength h/m_c	λ_{c}	2.426 310 238(16)×10 ⁻¹²	m	6.7×10 ⁻⁹
$\lambda_{c}/2\pi = \alpha a_{0} = \alpha^{2}/4\pi R_{m}$	X	386.159 2678(26)×10 ⁻¹⁵	m	6.7×10 ⁻⁹
classical electron radius $\alpha^2 a_0$	r	2.817 940 325(28)×10 ⁻¹⁵	m	1.0×10 ⁻⁸
Thomson cross section $(8\pi/3)r_e^2$	σ_{e}	0.665 245 873(13)×10 ⁻²⁸	m ²	2.0×10 ⁻⁸
electron magnetic moment	μ_{e}	-928.476 412(80)×10 ⁻²⁶	J T-1	8.6×10 ⁻⁸
to Bohr magneton ratio	μ_e/μ_B	-1.001 159 652 1859(38)	U U	3.8×10 ⁻¹²
to nuclear magneton ratio	$\mu_{\rm e}/\mu_{\rm N}$	-1838.281 971 07(85)		4.6×10 ⁻¹⁰
electron magnetic moment anomaly $ \mu_{\rm e} /\mu_{\rm B}$ –1	a _e	1.159 652 1859(38)×10 ⁻³		3.2×10 ⁻⁹
electron g-factor $-2(1+a_e)$	g _e	-2.002 319 304 3718(75)		3.8×10 ⁻¹²
electron-muon magnetic moment ratio	$\mu_{_{ m e}}/\mu_{_{\mu}}$	206.766 9894(54)		2.6×10 ⁻⁸
electron-proton magnetic moment ratio	μ_{e}/μ_{p}	-658.210 6862(66)		1.0×10 ⁻⁸
electron to shielded proton magnetic moment ratio	/'	(59 227 595((71)		1 1 × 10-8
(H ₂ O, sphere, 25 °C)	μ_{e}/μ_{p}	-638.227 5756(71)		1.1×10^{-7}
electron-neutron magnetic moment ratio	$\mu_{\rm e}/\mu_{\rm n}$	2143,023,403(23)		2.4×10^{-8}
electron-deuteron magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.923 493(23)		1.1×10
(as appendix 25 °C)	//	864.058.255(10)		1.2×10^{-8}
(gas, sphere, 25, C)	$\mu_{\rm e}/\mu_{\rm h}$	$1760,859,74(15) \times 10^{11}$	o ⁻¹ T ⁻¹	1.2×10
electron gyromagnetic ratio $2 \mu_{\rm e} /n$	γ_e	$1.760\ 859\ 74(15) \times 10^{-1}$	S = 1 MH ₂ T ⁻¹	8.6×10^{-8}
	Y _e /2// Muon.	28 024.7552(24)		0.0×10
muon mass	<i>m</i> ,,	1.883 531 40(33)×10 ⁻²⁸	kg	1.7×10 ⁻⁷
in u, $m_{\mu} = A_r(\mu)$ u (muon rel. atomic mass times u)	~	0.113 428 9264(30)	u	2.6×10 ⁻⁸
energy equivalent	$m_{\mu}c^2$	1.692 833 60(29)×10 ⁻¹¹	I	1.7×10 ⁻⁷
in MeV	μ	105.658 3692(94)	MeV	8.9×10 ⁻⁸
muon-electron mass ratio	m_{μ}/m_{e}	206.768 2838(54)		2.6×10 ⁻⁸
muon-tau mass ratio	m_{μ}/m_{τ}	5.945 92(97)×10 ⁻²		1.6×10-4
muon-proton mass ratio	m_{μ}/m_{p}	0.112 609 5269(29)		2.6×10 ⁻⁸
muon-neutron mass ratio	m_{μ}/m_{p}	0.112 454 5175(29)		2.6×10 ⁻⁸
muon molar mass $N_A m_\mu$	$M(\mu), M_{\mu}$	0.113 428 9264(30)×10 ⁻³	kg mol ⁻¹	2.6×10 ⁻⁸
muon Compton wavelength $h/m_{\mu}c$	$\lambda_{C,\mu}$	11.734 441 05(30)×10 ⁻¹⁵	m	2.5×10 ⁻⁸
$\lambda_{C,\mu}/2\pi$	$\chi_{C,\mu}$	1.867 594 298(47)×10 ⁻¹⁵	m	2.5×10 ⁻⁸
muon magnetic moment	μ_{μ}	-4.490 447 99(40)×10 ⁻²⁶	$J T^{-1}$	8.9×10 ⁻⁸
to Bohr magneton ratio	$\mu_{\mu}/\mu_{\rm B}$	-4.841 970 45(13)×10 ⁻³		2.6×10 ⁻⁸
to nuclear magneton ratio	$\mu_{\mu}/\mu_{\rm N}$	-8.890 596 98(23)		2.6×10 ⁻⁸
muon magnetic moment anomaly $ \mu_{\mu} /(e\hbar/2m_{\mu})$ –1	a _u	1.165 919 81(62)×10 ⁻³		5.3×10 ⁻⁷
muon g-factor $-2(1+a_{\mu})$	g _u	-2.002 331 8396(12)		6.2×10 ⁻¹⁰
muon-proton magnetic moment ratio	$\mu_{\mu}/\mu_{ m p}$	-3.183 345 118(89)		2.8×10 ⁻⁸
· · · · · · · · · · · · · · · · · · ·	Tau,	τ^{-}	,	4 4 4 9 4
tau mass ^r	$m_{ au}$	3.16/ //(52)×10 -	kg	1.6×10 ·
in u, $m_{\tau} = A_{\rm r}(\tau)$ u (tau rel. atomic mass times u)	2	1.90768(31)	u	1.6×10 ⁻⁴
energy equivalent	$m_{\tau}c^{-}$	$2.84/05(46) \times 10^{-10}$	J	1.6×10 ⁻⁴
in Mev	/	1//6.99(29)	Mev	1.6×10
tau-electron mass ratio	m_{τ}/m_{e}	34/7.48(57)		1.6×10
tau-muon mass ratio	m_{τ}/m_{μ}	16.8183(27) 1.893.90(31)		1.6×10
tau-proton mass ratio	$m_{\tau}/m_{\rm p}$	1.893 90(31)		1.6×10
tau-neutron mass ratio	$M(\tau) M$	1.87127(31) $1.907(8(31) \times 10^{-3})$	lra mol-1	1.6×10^{-4}
tau morar mass $N_{\rm A}m_{\tau}$	$M(\tau), M_{\tau}$	$1.707 68(31) \times 10^{-15}$	kg moi	1.6×10
tau Compton wavelength $n/m_{\tau}c$	$\Lambda_{C,\tau}$	$0.09772(11) \times 10^{-15}$	III m	1.6×10^{-4}
Λ _{C,7} / 2 ⁻ 1	$\Lambda_{C,\tau}$	0.111 046(18)×10	111	1.0×10
proton mass	m	1.672 621 71(29)×10 ⁻²⁷	kg	1.7×10 ⁻⁷
in u, $m_{\perp} = A_{\perp}(p)$ u (proton rel. atomic mass times u)	. b	1.007 276 466 88(13)	u	1.3×10 ⁻¹⁰
energy equivalent	$m_{\rm p}c^2$	1.503 277 43(26)×10 ⁻¹⁰	I	1.7×10 ⁻⁷
in MeV	P	938.272 029(80)	MeV	8.6×10-8
proton-electron mass ratio	m_p/m_q	1836.152 672 61(85)		4.6×10 ⁻¹⁰
proton-muon mass ratio	m_p/m_{μ}	8.880 243 33(23)		2.6×10 ⁻⁸
proton-tau mass ratio	m_{p}/m_{z}	0.528 012(86)		1.6×10 ⁻⁴
proton-neutron mass ratio	m_p/m_n	0.998 623 478 72(58)		5.8×10 ⁻¹⁰
proton charge to mass quotient	e/m	9.578 833 76(82)×10 ⁷	C kg ⁻¹	8.6×10 ⁻⁸
proton molar mass $N_{A}m_{p}$	$M(\mathbf{p}), M_{\mathbf{p}}$	1.007 276 466 88(13)×10 ⁻³	kg mol ⁻¹	1.3×10 ⁻¹⁰
proton Compton wavelength $h/m_{\rm p}c$	$\lambda_{C,p}$	1.321 409 8555(88)×10 ⁻¹⁵	m	6.7×10 ⁻⁹
$\lambda_{Cp}/2\pi$	$\chi_{C,p}$	0.210 308 9104(14)×10 ⁻¹⁵	m	6.7×10 ⁻⁹

CODATA Recommended Values of	the Fund	lamental Physical C	onstants – 2002	2
Quantity	Symbol	Value	Unit	Relative standard uncertainty u _r
proton rms charge radius	R	0.8750(68)×10 ⁻¹⁵	m	7.8×10 ⁻³
proton magnetic moment	$\mu_{\rm p}^{\rm P}$	1.410 606 71(12)×10 ⁻²⁶	J T ⁻¹	8.7×10 ⁻⁸
to Bohr magneton ratio	$\mu_{\rm p}/\mu_{\rm B}$	1.521 032 206(15)×10 ⁻³		1.0×10 ⁻⁸
to nuclear magneton ratio	$\mu_{ m p}^{\prime}/\mu_{ m N}$	2.792 847 351(28)		1.0×10 ⁻⁸
proton g-factor $2\mu_{\rm p}/\mu_{\rm N}$	g _p	5.585 694 701(56)		1.0×10 ⁻⁸
proton-neutron magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	-1.459 898 05(34)		2.4×10 ⁻⁷
shielded proton magnetic moment		4 440 570 47(42) 440-36	T 177-1	0.7. /10-8
$(H_2O, sphere, 25 °C)$	μ'_{p}	$1.410\ 5/0\ 4/(12) \times 10^{-20}$	J T ⁻¹	8./×10 ⁻⁶
to Bonr magneton ratio	$\mu_{\rm p}^{\prime}/\mu_{\rm B}$	$1.520993132(16) \times 10^{-1}$		1.1×10^{-8}
proton magnetic shielding correction $1 - u'/u$	$\mu_{ m p}/\mu_{ m N}$	2.792 773 804(30)		1.1×10
(H.O. sphere, 25 °C)	σ'	$25.689(15) \times 10^{-6}$		5.7×10 ⁻⁴
proton gyromagnetic ratio $2\mu_{/\hbar}$	ν_	$2.675\ 222\ 05(23) \times 10^8$	s ⁻¹ T ⁻¹	8.6×10 ⁻⁸
1	$\gamma_{\rm p}/2\pi$	42.577 4813(37)	MHz T ⁻¹	8.6×10 ⁻⁸
shielded proton gyromagnetic ratio $2\mu_{ m p}^{\prime}/\hbar$	۰P			
(H ₂ O, sphere, 25 °C)	$\gamma_{ m p}'$	2.675 153 33(23)×10 ⁸	s ⁻¹ T ⁻¹	8.6×10 ⁻⁸
	$\gamma_{ m P}^{'}/2\pi$	42.576 3875(37)	MHz T ⁻¹	8.6×10 ⁻⁸
	Ne	utron, n	1	4.7.40-7
neutron mass	m _n	$1.6/4 92/28(29) \times 10^{-27}$	kg	1./×10 ⁻⁷
in u, $m_n = A_r(n)$ u (neutron rei. atomic mass times u	$)$ $m c^2$	$1.008\ 664\ 915\ 60(55)$ $1\ 505\ 349\ 57(26) \times 10^{-10}$	u T	5.5×10^{-10} 1 7 \times 10^{-7}
in MeV	m _n c	939 565 360(81)	J MeV	1.7×10^{-8}
neutron-electron mass ratio	m /m	1838 683 6598(13)	IVIC V	7.0×10 ⁻¹⁰
neutron-muon mass ratio	m_n/m_e	8,892,484,02(23)		2.6×10 ⁻⁸
neutron-tau mass ratio	m_n/m_μ	0.528 740(86)		1.6×10-4
neutron-proton mass ratio	$m_{\rm n}^{\rm m}/m_{\rm n}^{\rm T}$	1.001 378 418 70(58)		5.8×10 ⁻¹⁰
neutron molar mass $N_{\rm A}m_{\rm n}$	$M(n), M_n$	1.008 664 915 60(55)×10 ⁻³	kg mol ⁻¹	5.5×10 ⁻¹⁰
neutron Compton wavelength $h/m_{n}c$	$\lambda_{\mathrm{C,n}}$	1.319 590 9067(88)×10 ⁻¹⁵	m	6.7×10-9
$\lambda_{ m C,n}/2\pi$	$\chi_{C,n}$	0.210 019 4157(14)×10 ⁻¹⁵	m	6.7×10-9
neutron magnetic moment	μ_{n}	-0.966 236 45(24)×10 ⁻²⁶	J T ⁻¹	2.5×10-7
to Bohr magneton ratio	$\mu_{\rm n}/\mu_{\rm B}$	$-1.041\ 875\ 63(25) \times 10^{-3}$		2.4×10-7
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.913 042 73(45)		2.4×10-7
neutron g-factor $2\mu_n/\mu_N$	gn /	$-3.826\ 0.85\ 46(90)$		2.4×10-7
neutron proton magnetic moment ratio	μ_n/μ_e	0.684.979.34(16)		2.4×10^{-7}
neutron to shielded proton magnetic moment ratio	$\mu_{\rm n}/\mu_{\rm p}$	-0.004 979 34(10)		2.4×10
(H ₂ O, sphere, 25 °C)	u /u'	-0.684 996 94(16)		2.4×10-7
neutron gyromagnetic ratio $2 \mu_n /\hbar$	γ_n	1.832 471 83(46)×10 ⁸	s ⁻¹ T ⁻¹	2.5×10-7
67 6 17 II	$\gamma_{\rm n}/2\pi$	29.164 6950(73)	MHz T ⁻¹	2.5×10-7
	Deu	iteron, d		
deuteron mass	$m_{\rm d}$	3.343 583 35(57)×10 ⁻²⁷	kg	1.7×10 ⁻⁷
in u, $m_d = A_r(d)$ u (deuteron rel. atomic mass times u)	2.013 553 212 70(35)	u	1.7×10 ⁻¹⁰
energy equivalent	$m_{\rm d}c^2$	3.005 062 85(51)×10 ⁻¹⁰	J	1.7×10-7
in Mev		18/5.61282(16)	Mev	$8.6 \times 10^{\circ}$
deuteron proton mass ratio	$m_{\rm d}/m_{\rm e}$	1,999,007,500,82(41)		4.8×10^{-10}
deuteron molar mass N m	M(d) M	$2.013.553.212.70(35) \times 10^{-3}$	kg mol ⁻¹	1.7×10^{-10}
deuteron rms charge radius	$R_{\rm h}$	$2.1394(28) \times 10^{-15}$	m	1.3×10^{-3}
deuteron magnetic moment	μ ₁	$0.433\ 073\ 482(38) \times 10^{-26}$	I T ⁻¹	8.7×10 ⁻⁸
to Bohr magneton ratio	$\mu_{\rm d}/\mu_{\rm B}$	0.466 975 4567(50)×10 ⁻³	5	1.1×10 ⁻⁸
to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.857 438 2329(92)		1.1×10 ⁻⁸
deuteron-electron magnetic moment ratio	$\mu_{ m d}/\mu_{ m e}$	-4.664 345 548(50)×10 ⁻⁴		1.1×10 ⁻⁸
deuteron-proton magnetic moment ratio	$\mu_{ m d}/\mu_{ m p}$	0.307 012 2084(45)		1.5×10-8
deuteron-neutron magnetic moment ratio	$\mu_{\rm d}/\mu_{ m n}$	-0.448 206 52(11)		2.4×10-7
halion mass ^e	H	elion, h 5 006 412 14(9 ()> 40- 27	ha	1.7×10 ⁻⁷
in $m = A(h) u(helion rel atomic mass times u)$	m _h	3 014 932 2434(58)	мg	1.7×10^{-9}
energy equivalent	$m_{\rm c}c^2$	$4 499 538 84(77) \times 10^{-10}$	I	1.7×10^{-7}
in MeV	<i>m</i> hc	2808.391 42(24)	MeV	8.6×10 ⁻⁸
helion-electron mass ratio	$m_{\rm h}/m_{\rm c}$	5495.885 269(11)		2.0×10 ⁻⁹
helion-proton mass ratio	$m_{\rm h}/m_{\rm p}$	2.993 152 6671(58)		1.9×10 ⁻⁹
helion molar mass $N_{\rm A}m_{\rm h}$	$M(h), M_h$	3.014 932 2434(58)×10 ⁻³	kg mol ⁻¹	1.9×10 ⁻⁹
shielded helion magnetic moment (gas, sphere, 25 °C)	$\mu'_{\rm h}$	-1.074 553 024(93)×10 ⁻²⁶	J T ⁻¹	8.7×10 ⁻⁸
to Bohr magneton ratio	$\mu'_{ m h}/\mu_{ m B}$	-1.158 671 474(14)×10 ⁻³		1.2×10 ⁻⁸

CODATA Recommended Values of the Fundamental Physical Constants – 2002				
Quantity	Symbol	Value	Unit	Relative standard uncertainty u _r
to nuclear magneton ratio shielded helion to proton magnetic moment ratio	$\mu_{ m h}'/\mu_{ m N}$	-2.127 497 723(25)		1.2×10 ⁻⁸
(gas, sphere, 25 °C) shielded helion to shielded proton magnetic moment	$\mu_{ m h}'/\mu_{ m p}$	-0.761 766 562(12)		1.5×10 ⁻⁸
ratio (gas/H ₂ O, spheres, 25 °C) shielded helion gyromagnetic ratio $2 \mu'_{\rm h} /\hbar$	$\mu_{ m h}'/\mu_{ m p}'$	-0.761 786 1313(33)		4.3×10 ⁻⁹
(gas, sphere, 25 °C)	$\gamma'_{\rm h}$	$2.037\ 894\ 70(18) \times 10^8$	s ⁻¹ T ⁻¹ MHz T ⁻¹	8.7×10 ⁻⁸
	Alpha	α	MILIZ I	8.7 × 10
alpha particle mass	ma	6.644 6565(11)×10 ⁻²⁷	kg	1.7×10 ⁻⁷
in u, $m_{\alpha} = A_r(\alpha)$ u (alpha particle rel. atomic mass times)	u)	4.001 506 179 149(56)	u	1.4×10 ⁻¹¹
energy equivalent	$m_{\alpha}c^{2}$	5.971 9194(10)×10 ⁻¹⁰	Ţ	1.7×10 ⁻⁷
in MeV	u	3727.379 17(32)	MeV	8.6×10 ⁻⁸
alpha particle to electron mass ratio	m_{α}/m_{e}	7294.299 5363(32)		4.4×10 ⁻¹⁰
alpha particle to proton mass ratio	m_{α}/m_{p}	3.972 599 689 07(52)		1.3×10 ⁻¹⁰
alpha particle molar mass $N_{\rm A}m_{\alpha}$	$M(\alpha), M_{\alpha}$	4.001 506 179 149(56)×10 ⁻³	kg mol ⁻¹	1.4×10 ⁻¹¹
	PHYSIC	OCHEMICAL		
Avogadro constant atomic mass constant	$N_{\rm A}, L$	6.022 1415(10)×10 ²³	mol ⁻¹	1.7×10 ⁻⁷
$m = \frac{1}{12} m ({}^{12}\text{C}) = 1 \text{ u} = 10^{-3} \text{ kg mol}^{-1}/N.$	m	1.660 538 86(28)×10 ⁻²⁷	ko	1.7×10-7
energy equivalent	$m c^2$	$1.492 417 90(26) \times 10^{-10}$	I	1.7×10 ⁻⁷
in MeV	···u ·	931,494,043(80)	J MeV	8.6×10 ⁻⁸
Faraday constant ^g $N_{\star}e$	F	96 485.3383(83)	C mol ⁻¹	8.6×10 ⁻⁸
molar Planck constant	$N_{s}b$	3.990 312 716(27)×10 ⁻¹⁰	I s mol ⁻¹	6.7×10 ⁻⁹
	N.bc	0.119 626 565 72(80)	J m mol ⁻¹	6.7×10 ⁻⁹
molar gas constant	R	8.314 472(15)	$I mol^{-1} K^{-1}$	1.7×10 ⁻⁶
Boltzmann constant R/N_{Λ}	k	1.380 6505(24)×10 ⁻²³	J K ⁻¹	1.8×10 ⁻⁶
in eV K ⁻¹		8.617 343(15)×10 ⁻⁵	eV K ⁻¹	1.8×10 ⁻⁶
	k/h	2.083 6644(36)×10 ¹⁰	Hz K ⁻¹	1.7×10 ⁻⁶
	k/hc	69.503 56(12)	m ⁻¹ K ⁻¹	1.7×10 ⁻⁶
molar volume of ideal gas RT/p				
<i>T</i> =273.15 K, <i>p</i> =101.325 kPa	$V_{\rm m}$	22.413 996(39)×10 ⁻³	m ³ mol ⁻¹	1.7×10 ⁻⁶
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	2.686 7773(47)×10 ²⁵	m-3	1.8×10 ⁻⁶
<i>T</i> =273.15 K, <i>p</i> =100 kPa	$V_{\rm m}$	22.710 981(40)×10 ⁻³	m ³ mol ⁻¹	1.7×10 ⁻⁶
Sackur–Tetrode constant (absolute entropy constant) ^h $\frac{5}{2} + \ln[(2\pi m_v k T_1/b^2)^{3/2} k T_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_{o}/R	-1.151 7047(44)		3.8×10-6
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$	ů.	-1.164 8677(44)		3.8×10-6
Stefan–Boltzmann constant $(\pi^2/60)k^4/\hbar^3c^2$	σ	5.670 400(40)×10 ⁻⁸	W m ⁻² K ⁻⁴	7.0×10 ⁻⁶
first radiation constant $2\pi hc^2$	<i>C</i> ₁	3.741 771 38(64)×10 ⁻¹⁶	$W m^2$	1.7×10 ⁻⁷
first radiation constant for spectral radiance $2bc^2$	C _{1I}	1.191 042 82(20)×10 ⁻¹⁶	$W m^2 sr^{-1}$	1.7×10 ⁻⁷
second radiation constant hc/k	C2	1.438 7752(25)×10 ⁻²	m K	1.7×10 ⁻⁶
Wien displacement law constant	2			
$b = \lambda_{\max} T = c_2 / 4.965 \ 114 \ 231 \dots$	Ь	2.897 7685(51)×10 ⁻³	m K	1.7×10 ⁻⁶

^aSee the "Internationally Adopted Values" table for the conventional value for realizing representations of the volt using the Josephson effect.

^bSee the "Internationally Adopted Values" table for the conventional value for realizing representations of the ohm using the quantum Hall effect.

^CValue recommended by the Particle Data Group [Hagiwara et al., *Phys. Rev. D* 66, 010001 (2002)].

^dBased on the ratio of the masses of the W and Z bosons m_W/m_Z recommended by the Particle Data Group [Hagiwara et al., *Phys. Rev. D* 66, 010001 (2002)]. The value for $\sin^2\theta_W$ they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is $\sin^2\theta_W(M_Z) = 0.231$ 24(24).

^eThe helion, symbol h, is the nucleus of the ³He atom.

^fThis and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group [Hagiwara et al., *Phys. Rev. D* 66, 010001 (2002)], but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of -0.26 MeV, +0.29 MeV.

^gThe numerical value of *F* to be used in coulometric chemical measurements is 96 485.336(16) $[1.7 \times 10^{-7}]$ when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants K_{J-90} and R_{K-90} given in the "Internationally Adopted Values" table.

^hThe entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$.

Internationally Adopted Values of Various Quantities

· •				
Quantity	Symbol	Value	Unit	Relative standard uncertainty u_r
relative atomic mass of ^a ¹² C molar mass constant molar mass of ¹² C conventional value of Josephson constant ^b	$ \begin{array}{l} A_r(^{12}C) \\ M_u \\ M(^{12}C) \\ K_{Loc} \end{array} $	12 1×10 ⁻³ 12×10 ⁻³ 483 597.9	kg mol ⁻¹ kg mol ⁻¹ GHz V ⁻¹	(exact) (exact) (exact) (exact)
conventional value of von Klitzing constant ^e standard atmosphere standard acceleration of gravity ^d	<i>R</i> _{K-90} <i>g</i> _n	25 812.807 101 325 9.806 65	Ω Pa m s ⁻²	(exact) (exact) (exact)

^aThe relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m({}^{12}C)/12 = M_u/N_A = 1$ u is the atomic mass constant,

 M_u is the molar mass constant, N_A is the Avogadro constant, and u is the unified atomic mass unit. Thus the mass of particle X is $m(X) = A_r(X) u$ and the molar mass of X is $M(X) = A_r(X)M_u$.

^bThis is the value adopted internationally for realizing representations of the volt using the Josephson effect.

^cThis is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

^dThe value given was adopted by the 3rd General Conference on Weights and Measures (CGPM), 1903, and is the conventional value used to calculate the now obsolete unit kilogram force.

CODATA Recommended Values of Energy Equivalents – 2002

Relevant unit					
	J	kg	m ⁻¹	Hz	
1 J	(1 J)=	$(1 \text{ J})/c^2 =$	(1 J)/ <i>hc</i> =	(1 J)/ <i>b</i> =	
	1 J	1.112 650 056 ×10 ⁻¹⁷ kg	5.034 117 20(86)×10 ²⁴ m ⁻¹	1.509 190 37(26)×10 ³³ Hz	
1 kg	(1 kg) <i>c</i> ² =	(1 kg)=	(1 kg)c∕ h=	$(1 \text{ kg})c^2 / h =$	
	8.987 551 787 ×10 ¹⁶ J	1 kg	4.524 438 91(77)×10 ⁴¹ m ⁻¹	1.356 392 66(23)×10 ⁵⁰ Hz	
1 m ⁻¹	(1 m ⁻¹) <i>hc</i> = 1.986 445 61(34)×10 ⁻²⁵ J	$(1 \text{ m}^{-1})h/c =$ 2.210 218 81(38)×10 ⁻⁴² kg	$(1 m^{-1}) = 1 m^{-1}$	(1 m ⁻¹) <i>c</i> = 299 792 458 Hz	
1 Hz	(1 Hz)h =	(1 Hz) <i>h</i> / <i>c</i> ² =	(1 Hz)/ <i>c</i> =	(1 Hz)=	
	6.626 0693(11)×10 ⁻³⁴ J	7.372 4964(13)×10 ⁻⁵¹ kg	3.335 640 951 ×10 ⁻⁹ m ⁻¹	1 Hz	
1 K	(1 K)k =	$(1 \text{ K})k/c^2 =$	(1 K)k/bc =	(1 K)k/h=	
	1.380 6505(24)×10 ⁻²³ J	1.536 1808(27)×10 ⁻⁴⁰ kg	69.503 56(12) m ⁻¹	2.083 6644(36)×10 ¹⁰ Hz	
1 eV	(1 eV)=	(1 eV)/ <i>c</i> ² =	(1 eV)/hc =	(1 eV)/ <i>h</i> =	
	1.602 176 53(14)×10 ^{−19} J	1.782 661 81(15)×10 ⁻³⁶ kg	8.065 544 45(69)×10 ⁵ m ⁻¹	2.417 989 40(21)×10 ¹⁴ Hz	
1 u	(1 u) <i>c</i> ² =	(1 u) =	(1 u)c/b=	$(1 u)c^{2}/h =$	
	1.492 417 90(26)×10 ⁻¹⁰ J	1.660 538 86(28)×10 ⁻²⁷ kg	7.513 006 608(50)×10 ¹⁴ m ⁻¹	2.252 342 718(15)×10 ²³ Hz	
1 <i>E</i> _h	$(1 E_{\rm h}) =$	$(1 E_{\rm h})/c^2 =$	$(1 E_{\rm h})/hc =$	$(1 E_h)/b =$	
	4.359 744 17(75)×10 ⁻¹⁸ J	4.850 869 60(83)×10 ⁻³⁵ kg	2.194 746 313 705(15)×10 ⁷ m ⁻¹	6.579 683 920 721(44)×10 ¹⁵ Hz	

CODATA Recommended Values of Energy Equivalents – 2002

Relevant unit					
	K	eV	u	$E_{ m h}$	
1 J	(1 J)/k =	(1 J)=	$(1 \text{ J})/c^2 =$	(1 J) =	
	7.242 963(13)×10 ²² K	6.241 509 47(53)×10 ¹⁸ eV	6.700 5361(11)×10 ⁹ u	2.293 712 57(39)×10 ¹⁷ $E_{\rm h}$	
1 kg	$(1 \text{ kg})c^2/k =$	(1 kg)c ² =	(1 kg)=	(1 kg) c^2 =	
	6.509 650(11)×10 ³⁹ K	5.609 588 96(48)×10 ³⁵ eV	6.022 1415(10)×10 ²⁶ u	2.061 486 05(35)×10 ³⁴ E _h	
1 m ⁻¹	$(1 \text{ m}^{-1})hc/k =$	$(1 \text{ m}^{-1})hc =$	$(1 \text{ m}^{-1})h/c=$	$(1 \text{ m}^{-1})bc =$	
	1.438 7752(25)×10 ⁻² K	1.239 841 91(11)×10 ⁻⁶ eV	1.331 025 0506(89)×10 ⁻¹⁵ u	4.556 335 252 760(30)×10 ⁻⁸ E _h	
1 Hz	(1 Hz)h/k=	(1 Hz) <i>h</i> =	(1 Hz) <i>h/c</i> ²=	(1 Hz) h =	
	4.799 2374(84)×10 ⁻¹¹ K	4.135 667 43(35)×10 ⁻¹⁵ eV	4.439 821 667(30)×10 ^{−24} u	1.519 829 846 006(10)×10 ⁻¹⁶ $E_{\rm h}$	
1 K	(1 K) =	(1 K)k =	(1 K)k∕c²=	(1 K)k =	
	1 K	8.617 343(15)×10 ⁻⁵ eV	9.251 098(16)×10 ⁻¹⁴ u	3.166 8153(55)×10 ⁻⁶ $E_{\rm h}$	
1 eV	(1 eV)/k =	(1 eV)=	(1 eV)/ <i>c</i> ² =	(1 eV) =	
	1.160 4505(20)×10 ⁴ K	1 eV	1.073 544 171(92)×10⁻⁰ u	3.674 932 45(31)×10 ⁻² $E_{\rm h}$	
1 u	$(1 u)c^2/k =$	(1 u)c ² =	(1 u) =	$(1 \text{ u})c^2 =$	
	1.080 9527(19)×10 ¹³ K	931.494 043(80)×10 ⁶ eV	1 u	3.423 177 686(23)×10 ⁷ $E_{\rm h}$	
1 <i>E</i> _h	$(1 E_{\rm h})/k =$ 3.157 7465(55)×10 ⁵ K	$(1 E_{\rm h}) =$ 27.211 3845(23) eV	$(1 E_{\rm h})/c^2 =$ 2.921 262 323(19)×10 ⁻⁸ u	$(1 E_{\rm h}) = 1 E_{\rm h}$	