The Fundamental Physical Constants

Armed with new results, CODATA has recently updated its set of recommended values for the basic constants and conversion factors of physics and chemistry.

Peter J. Mohr and Barry N. Taylor

The Committee on Data for Science and Technology was established in 1966 as an interdisciplinary committee of the International Council of Scientific Unions (now the International Council of Science). Three years later, CODATA created the task group on fundamental constants to periodically provide the scientific and technological communities with a self-consistent set of internationally recommended values for the basic constants and conversion factors of physics and chemistry. Under the auspices of the task group, we have completed a new least-squares adjustment of those values-termed the 2002 adjustmentthat takes into account all relevant data available through 31 December 2002. ${ }^{1}$ The accompanying tables give the 2002 CODATA recommended values resulting from that adjustment, except for some specialized x-ray-related quantities and various natural and atomic units.

The complete 2002 CODATA set of more than 300 recommended values, together with a detailed description of the data and their analysis, is given in reference 1 . All of the values, as well as the correlation coefficients between any two constants, are available online in a searchable database provided by NIST's fundamental constants data center. The internet address is http://physics.nist.gov/constants.

The 2002 CODATA set replaces its immediate predecessor, which resulted from the 1998 adjustment, ${ }^{2}$ also carried out under the auspices of the task group. Only four years have elapsed between the 31 December 1998 and 31 December 2002 closing dates of the two adjustments (12 years separated the 1998 adjustment and its predecessor), but a number of advances in experiment and theory have led to improvements in our knowledge of the values of the constants.

The new information includes measurements of the Newtonian constant of gravitation G; improved experimental values of the relative atomic masses of helium-4, oxygen-16, and cesium-133 (carbon-12 has a relative atomic mass of exactly 12 , by definition); a more accurate value of the $1 S_{1 / 2}-2 S_{1 / 2}$ transition frequency in hydrogen; a new result for the bound-state root-mean-square (rms)

[^0]charge radius of the proton R_{p}; and highly accurate measurements related to the bound-state g-factor of the electron in the hydrogenic ions ${ }^{12} \mathrm{C}^{5+}$ and ${ }^{16} \mathrm{O}^{7+}$. Additional experimental refinements include a new, quite accurate measurement of the muon magnetic moment anomaly a_{μ}; an accurate value, obtained from the atomic recoil frequency shift of photons absorbed and emitted by Cs atoms, for the quotient $h / m\left({ }^{133} \mathrm{Cs}\right)$, where h is the Planck constant and $m\left({ }^{133} \mathrm{Cs}\right)$ is the mass of the ${ }^{133} \mathrm{Cs}$ atom; a result for the molar volume of silicon $V_{\mathrm{m}}(\mathrm{Si})$; and new experimental findings concerning previous measurements of the $\{220\}$ lattice spacing of particular Si crystals.

Theorists have developed improved expressions for the hydrogen and deuterium energy levels, the electron and muon magnetic moment anomalies a_{e} and a_{μ}, the ground-state hyperfine splitting of muonium (that is, the $\mu^{+} \mathrm{e}^{-}$"atom"), and the electron bound-state g-factor in hydrogenic ions.

Consequences of new results

The new information available to the task group led to significant changes in both the values and the uncertainties of many of the fundamental constants. A few highlights follow. - The new results for G agreed sufficiently well among themselves to convince the task group that an earlier, highly discrepant but credible result need no longer be considered in determining the recommended value. That decision led to a new recommended value of G with a relative standard uncertainty (that is, relative estimated standard deviation) $u_{\mathrm{r}}=1.5 \times 10^{-4}$. The new u_{r} is a factor of 10 smaller than that of the 1998 recommended value.

- Accurate measurements of the frequency ratios $f_{\mathrm{s}}\left({ }^{12} \mathrm{C}^{5+}\right) / f_{\mathrm{c}}\left({ }^{(12} \mathrm{C}^{5+}\right)$ and $\left.f_{\mathrm{s}}\left({ }^{(16} \mathrm{O}^{7+}\right) / f_{\mathrm{c}}{ }^{(16} \mathrm{O}^{7+}\right)$, together with the theoretical expression for the bound-state g-factor of the electron in each ion, have yielded values for the relative atomic mass of the electron $A_{\mathrm{r}}(\mathrm{e})$ and the electron-to-proton mass ratio $m_{\mathrm{e}} / m_{\mathrm{p}}$ with relative uncertainties of about 5×10^{-10}. (In the expressions for the frequency ratios, f_{s} is the precession, or "spin-flip," frequency of the electron in the ground state of the indicated hydrogenic ion in an applied magnetic flux density, and f_{c} is the cyclotron frequency of the ion in the same flux density.) Compared to the 1998 uncertainties, the new uncertainties represent a reduction by more than a factor of four.
- The new result for $V_{\mathrm{m}}(\mathrm{Si})$ is credible, but inconsistent with four credible measurements of other quantities. Thus, one or more of the five results has a problem. We
present some details below about the discrepancy and how we dealt with it.
- The 1998 adjustment included input from three combined x-ray and optical-interferometer determinations of the $\{220\}$ lattice spacing of particular Si crystals. Subsequently, it was discovered that two of those three experiments appeared to have problems, so the data from those experiments were not included in the 2002 adjustment. Removing these data eliminates the scatter in the fine-structure-constant (α) values implied by the accurate x-ray measurement of h / m_{n}, where m_{n} is the neutron mass. Moreover, the value of α inferred from h / m_{n} now agrees well with values of α from other sources.
- An error was discovered in the eighth-order coefficient $A_{1}^{(8)}$ in the theoretical expression for the electron magnetic moment anomaly a_{e} (th). That discovery has led to a fractional increase of 5.7×10^{-9} in the value for α implied by the experimental result for a_{e}, about 1.5 times the relative uncertainty of the $1998 a_{\mathrm{e}}$ value of α. Other experiments also yield values for α. In particular, the new result for $h / m\left({ }^{133} \mathrm{Cs}\right)$ has yielded a reduction of the uncertainty of the recommended value of α from $u_{\mathrm{r}}=3.7 \times 10^{-9}$ in 1998 to $u_{\mathrm{r}}=3.3 \times 10^{-9}$.
${ }^{\mathrm{r}}$ The significant advances in the theory of hydrogen and deuterium energy levels and the improved value of R_{p} have eliminated a systematic deviation between theory and experiment observed in the 1998 adjustment. As a result, the CODATA set now includes recommended values for R_{p} and the bound-state rms charge radius of the deuteron R_{d}.

Data analysis

The 2002 adjustment is similar to the 1998 adjustment in many key respects. First, we treat all of the input data on an essentially equal footing, regardless of their uncertainties. Doing so allows us to properly consider all components of uncertainty and all significant correlations among the data. It also eliminates any arbitrary division of the data into different categories-such divisions generally occurred in adjustments before that of 1998.

Second, we used the standard least-squares algorithm to analyze the data rather than an extended algorithm that tries to take into account the "uncertainty of the uncertainty" assigned to an input datum. An extended algorithm was applied as part of the 1986 adjustment, ${ }^{3}$ but the complexity of the measurements and calculations in the field of fundamental constants makes it difficult enough to evaluate uncertainties in a meaningful way, let alone the uncertainties of those uncertainties.

Third, we reprised an innovation from the 1998 adjustment to properly take into account the uncertainty of various theoretical expressions-for example, the energy levels of H and D required to obtain the Rydberg constant R_{∞} from measurements of transition frequencies. We used an additive correction δ_{i} for each such expression, included those corrections among the variables of the least-squares adjustment, and took their estimated values as input data. The best a priori estimate of each δ_{i} was zero but with a standard uncertainty equal to the standard uncertainty of the theoretical expression.

Fourth, we analyzed the data using the method of least squares for correlated input data. Although the need to consider correlations among the input data in the evaluation of the fundamental constants was first emphasized well over half a century ago, the 1998 adjustment was the first time it was actually done.

As in the 1998 adjustment, the analysis of the input data proceeded in several stages. First, we compared the various measured values of each quantity. Next, by comparing values of a common inferred constant, principally
α or h, we examined whether measured values of different quantities were consistent. Finally, we used the leastsquares method as described above to carry out a multivariate analysis of the data. The focus of all those investigations was the compatibility of the data and the extent to which a particular datum would contribute to the 2002 recommended values of the constants.

The final least-squares adjustment used 105 of the 112 input data that were initially considered and 61 variables or adjusted constants whose values were determined by the least-squares algorithm. The input data included, for example, 27 H and D transition frequencies and frequency differences. Among the adjusted constants were R_{∞}, α, h, and $A_{\mathrm{r}}(\mathrm{e})$. Most of the recommended values in the 2002 CODATA set were calculated from the adjusted constants. For example, the elementary charge follows from the expression $e=\left(2 \alpha h / \mu_{0} c\right)^{1 / 2}$, where $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$ is the magnetic constant and the speed of light c is defined to be 299792 $458 \mathrm{~m} / \mathrm{s}$. The uncertainties of derived quantities are obtained from the uncertainties and covariances of the adjusted constants on which they depend.

A discrepant measurement

The primary difficulty with the input data uncovered in the course of the 2002 adjustment was a significant incompatibility of the value of $V_{\mathrm{m}}(\mathrm{Si})$ with four measurements involving the Josephson constant $K_{\mathrm{J}}=2 e / h$ and the von Klitzing constant $R_{\mathrm{K}}=h / e^{2}$: two moving-coil watt-balance results for the product $K_{\mathrm{J}}^{2} R_{\mathrm{K}}$, a mercury-electrometer result for K_{J}, and a capacitor volt-balance result for K_{J}. The inconsistencies led us to consider whether relaxing either one or both of the assumptions that $K_{\mathrm{J}}=2 e / h$ and $R_{\mathrm{K}}=h / e^{2}$ would reduce or possibly even eliminate the inconsistencies. Although both theory and experiment support the exactness of the assumed relations, we would have deemed our analysis incomplete had we not investigated possible modifications.

To that end, we assumed $K_{\mathrm{J}}=(2 e / h)\left(1+\varepsilon_{\mathrm{J}}\right)$ and $R_{\mathrm{K}}=\left(h / e^{2}\right)\left(1+\varepsilon_{\mathrm{K}}\right)$, where ε_{J} and ε_{K} are unknown correction factors taken as additional adjusted constants. We set the initial input values of the correction factors to be zero, but gave them a sufficiently large uncertainty that their output values resulting from a least-squares adjustment were determined by other input data, not by those initial values. If we found that the adjusted values of the correction factors were statistically compatible with zero, then we could conclude that the experimental evidence suggested the relations $K_{\mathrm{J}}=2 e / h$ and $R_{\mathrm{K}}=h / e^{2}$ were valid. On the other hand, an adjusted value of either of the correction factors that differed from zero in a statistically significant way would engender doubt about the exactness of the associated relation. We found no statistically significant deviations from zero for either ε_{J} or ε_{K}.

The task group ultimately decided that, in the final least-squares adjustment, the a priori assigned uncertainties of the five incompatible input data would be weighted by a multiplicative factor 2.325 . That weighting reduced the discrepancy between the value of $V_{\mathrm{m}}(\mathrm{Si})$ and the four other measurements to 1.5 standard deviations. As a consequence of the new $V_{\mathrm{m}}(\mathrm{Si})$ datum and the increased uncertainties, the 2002 recommended value of h is larger than the 1998 recommended value by a fractional amount of about 8×10^{-8}, and its uncertainty is increased by about a factor of two, from $u_{\mathrm{r}}=7.8 \times 10^{-8}$ to $u_{\mathrm{r}}=1.7 \times 10^{-7}$. The 2002 CODATA set includes comparable changes in the recommended values and uncertainties of other constants, such as e, that depend strongly on h. Usually, new information leads to a reduction in uncertainties, but in this case new information has led to an increase.

Redundancy is solidity

Because there is little redundancy among some of the key input data, the 2002 CODATA set does not rest on as solid a foundation as one might wish. The constants α and h and the molar gas constant R play a critical role in determining many other constants, yet the recommended value of each is largely determined by a severely limited number of input data. Moreover, some of those data have rather different uncertainties u and hence rather different weights $1 / u^{2}$.

The key input data used to determine α are the electron magnetic moment anomaly a_{e} and the quotient $h / m\left({ }^{133} \mathrm{Cs}\right.$). (The relative uncertainty of the quotient exceeds that of the anomaly by more than a factor of two.) Furthermore, only a single competitive experimental value of a_{e} exists, along with a single calculated value of the eighth-order coefficient $A_{1}^{(8)}$ in the theoretical expression for a_{e} based on quantum electrodynamics.

The two watt-balance values of $K_{\mathrm{J}}^{2} R_{\mathrm{K}}$ are the key input data that determine h. The uncertainties in the two measurements differ by a factor of 2.3 and, as we have already discussed, the two measurements are incompatible with a measurement for the molar volume of Si .

For the molar gas constant, the key input data are based on two speed-of-sound measurements in argon: One of them used a spherical acoustic resonator; the other, an acoustic interferometer. The uncertainties of the two measurements differ by a factor of 4.7.

If our knowledge of the values of α, h, and R is to advance, we need additional input data that can provide for those constants uncertainties that are no larger than the current uncertainties. Ideally, the uncertainties would be considerably smaller than those of the current values.

New experimental and theoretical data that influence our knowledge of the values of the constants appear nearly continuously. And, thanks to the World Wide Web, it's easy to distribute new recommended values of the fundamental constants. Indeed, the 2002 CODATA set first appeared on the Web on 9 December 2003. The Web has also engendered new modes of work and thought-users expect that the information they find is up-to-date. For these reasons, the CODATA task group on fundamental constants decided at the time of the 1998 adjustment to take advantage of the high degree of computerization that had been incorporated in the 1998 compilation and to provide a new CODATA set of recommended values every 4 years: The 12-13 years separating the first CODATA set ${ }^{4}$ of 1973, the second set ${ }^{3}$ of 1986, and the 1998 set2 was no longer acceptable. The 2002 set is the first from the new schedule.

Based on the experience gained in preparing that set, we expect to maintain the new schedule in the future. The reader may therefore anticipate an updated fundamental constants article in the Physics Today Buyer's Guide in four years.

This paper is a contribution of NIST and is not subject to copyright in the US. NIST is an agency of the Technology Administration, US Department of Commerce.

References

1. P. J. Mohr, B. N. Taylor, Rev. Mod. Phys. 76 (in press).
2. P. J. Mohr, B. N. Taylor, Rev. Mod. Phys. 72, 351 (2000); J. Phys. Chem. Ref. Data 28, 1713 (1999).
3. E. R. Cohen, B. N. Taylor, Rev. Mod. Phys. 59, 1121 (1987).
4. E. R. Cohen, B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

CODATA Recommended Values of the Fundamental Physical Constants - 2002

Quantity	Symbol	Value	Unit	Relative standard uncertainty u_{r}
UNIVERSAL				
speed of light in vacuum	c, c_{0}	299792458	m s ${ }^{-1}$	(exact)
magnetic constant	μ_{0}	$4 \pi \times 10^{-7}$	NA^{-2}	
		$=12.566370614 \ldots \times 10^{-7}$	NA^{-2}	(exact)
electric constant $1 / \mu_{0} c^{2}$	ϵ_{0}	$8.854187817 \ldots \times 10^{-12}$	Fm^{-1}	(exact)
characteristic impedance of vacuum $\sqrt{\mu_{0} / \epsilon_{0}}=\mu_{0} c$	Z_{0}	376.730313461.	Ω	(exact)
Newtonian constant of gravitation	G	$6.6742(10) \times 10^{-11}$	$\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	1.5×10^{-4}
	G/ћc	$6.7087(10) \times 10^{-39}$	$\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{-2}$	1.5×10^{-4}
Planck constant in eV s	b	$6.6260693(11) \times 10^{-34}$	J s	1.7×10^{-7}
		$4.13566743(35) \times 10^{-15}$	eV s	8.5×10^{-8}
$\begin{aligned} & h / 2 \pi \\ & \text { in eV s } \end{aligned}$	\hbar	$1.05457168(18) \times 10^{-34}$	J s	1.7×10^{-7}
		$6.58211915(56) \times 10^{-16}$	eV s	8.5×10^{-8}
$\hbar c$ in MeV fm		197.326 968(17)	MeV fm	8.5×10^{-8}
Planck mass (\hbar c/G) $)^{1 / 2}$		$2.17645(16) \times 10^{-8}$	kg	7.5×10^{-5}
Planck temperature ($\left.\hbar c^{5} / G\right)^{1 / 2} / k$	T_{P}	$1.41679(11) \times 10^{32}$	K	7.5×10^{-5}
Planck length $\hbar / m_{\mathrm{p}} c=\left(\hbar G / c^{3}\right)^{1 / 2}$ Planck time $l_{P} / c=\left(\hbar G / c^{5}\right)^{1 / 2}$	$l_{\text {P }}$	$1.61624(12) \times 10^{-35}$	m	7.5×10^{-5}
	$t_{\mathrm{p}} \quad 5.39121(40) \times 10^{-44}$		s	7.5×10^{-5}
	ELECTR	MAGNETIC		
elementary charge	e	$1.60217653(14) \times 10^{-19}$	C	8.5×10^{-8}
	e / b	$2.41798940(21) \times 10^{14}$	A J ${ }^{-1}$	8.5×10^{-8}
		$2.06783372(18) \times 10^{-15}$	Wb	8.5×10^{-8}
	G_{0}	$7.748091733(26) \times 10^{-5}$	S	3.3×10^{-9}
conductance quantum $2 e^{2} / b$ inverse of conductance quantum	$G_{0}{ }^{-1}$	$12906.403725(43)$	Ω	3.3×10^{-9}
Josephson constant ${ }^{2} 2 e / b$ von Klitzing constant ${ }^{b} b / e^{2}=\mu_{0} c / 2 \alpha$	$K_{\text {J }}$	$483597.879(41) \times 10^{9}$	$\mathrm{Hz} \mathrm{V}^{-1}$	8.5×10^{-8}
	$R_{\text {K }}$	$25812.807449(86)$	Ω	3.3×10^{-9}
$\begin{aligned} & \text { Bohr magneton } e \hbar / 2 m_{\mathrm{e}} \\ & \text { in } \mathrm{eV} \mathrm{~T}^{-1} \end{aligned}$	$\mu_{\text {B }}$	$927.400949(80) \times 10^{-26}$	$\mathrm{J} \mathrm{T}^{-1}$	8.6×10^{-8}
		$5.788381804(39) \times 10^{-5}$	eV T-1	6.7×10^{-9}
	$\mu_{\text {B }} / h$	$13.9962458(12) \times 10^{9}$	$\mathrm{Hz} \mathrm{T}{ }^{-1}$	8.6×10^{-8}
	$\mu_{\mathrm{B}} / b c$	46.686 4507(40)	$\mathrm{m}^{-1} \mathrm{~T}^{-1}$	8.6×10^{-8}
	$\mu_{\text {B }} / k$	$0.6717131(12)$	K T-1	1.8×10^{-6}
$\begin{aligned} & \text { nuclear magneton } e \hbar / 2 m_{\mathrm{p}} \\ & \text { in } \mathrm{eV} \mathrm{~T}^{-1} \end{aligned}$	μ_{N}	$5.05078343(43) \times 10^{-27}$	$\mathrm{J} \mathrm{~T}^{-1}$	8.6×10^{-8}
		$3.152451259(21) \times 10^{-8}$	$\mathrm{eV} \mathrm{~T}^{-1}$	6.7×10^{-9}
	$\mu_{\mathrm{N}} / \mathrm{h}$	$7.62259371(65)$	MHz T-1	8.6×10^{-8}
	$\mu_{\mathrm{N}} / b c$	$2.54262358(22) \times 10^{-2}$	$\mathrm{m}^{-1} \mathrm{~T}^{-1}$	8.6×10^{-8}
	$\mu_{\mathrm{N}} / \mathrm{k}$	$3.6582637(64) \times 10^{-4}$	K T ${ }^{-1}$	1.8×10^{-6}
	ATOMIC AND NUCLEAR			
fine-structure constant $e^{2 / 4} / 4 \epsilon_{0} \hbar c$ inverse fine-structure constant	α	$7.297352568(24) \times 10^{-3}$		3.3×10^{-9}
	α^{-1}	$137.03599911(46)$		3.3×10^{-9}
Rydberg constant $\alpha^{2} m_{e} c / 2 h$	R_{∞}	10973731.568 525(73)	m^{-1}	6.6×10^{-12}
	$R_{\infty} c$	3.289841960 360(22) $\times 10^{15}$	Hz	6.6×10^{-12}
	$R_{\infty} b c$	$2.17987209(37) \times 10^{-18}$	J	1.7×10^{-7}
$R_{\infty} h c$ in eV		$13.6056923(12)$	eV	8.5×10^{-8}
Bohr radius $\alpha / 4 \pi R_{\infty}=4 \pi \epsilon_{0} \hbar^{2} / m_{e} e^{2}$ Hartree energy $e^{2} / 4 \pi \epsilon_{0} a_{0}=2 R_{\infty} b c=\alpha^{2} m_{e} c^{2}$ in eV	$\begin{aligned} & a_{0} \\ & E_{\mathrm{h}} \end{aligned}$	$0.5291772108(18) \times 10^{-10}$		3.3×10^{-9}
		$4.35974417(75) \times 10^{-18}$	J	1.7×10^{-7}
		$27.2113845(23)$	eV	8.5×10^{-8}
quantum of circulation	$\begin{aligned} & h / 2 m_{\mathrm{e}} \\ & h / m_{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 3.636947550(24) \times 10^{-4} \\ & 7.273895101(48) \times 10^{-4} \end{aligned}$	$\begin{aligned} & \mathrm{m}^{2} \mathrm{~s}^{-1} \\ & \mathrm{~m}^{2} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 6.7 \times 10^{-9} \\ & 6.7 \times 10^{-9} \end{aligned}$
Electroweak				
Fermi coupling constant ${ }^{c}$ weak mixing angle ${ }^{\mathrm{d}} \theta_{\mathrm{W}}$ (on-shell scheme) $\sin ^{2} \theta_{\mathrm{W}}=s_{\mathrm{W}}^{2}=1-\left(m_{\mathrm{W}} / m_{\mathrm{Z}}\right)^{2}$	$G_{\mathrm{F}} /(\hbar c)^{3}$	$1.16639(1) \times 10^{-5}$	GeV^{-2}	8.6×10^{-6}
	$\sin ^{2} \theta_{\mathrm{w}}$	$0.22215(76)$		3.4×10^{-3}
	Electron, e^{-}			
```electron mass in \(\mathrm{u}, m_{\mathrm{e}}=A_{\mathrm{r}}(\mathrm{e}) \mathrm{u}\) (electron rel. atomic mass times u ) energy equivalent in MeV```	$m_{\text {e }}$	$9.1093826(16) \times 10^{-31}$ 5.485799	kg	$1.7 \times 10^{-7}$ $4.4 \times 10^{-10}$
		$5.4857990945(24) \times 10^{-4}$	u	$4.4 \times 10^{-10}$
	$m_{e} c^{2}$	$8.1871047(14) \times 10^{-14}$	J	$1.7 \times 10^{-7}$
		$0.510998918(44)$	MeV	$8.6 \times 10^{-8}$
electron-muon mass ratioelectron-tau mass ratio	$m_{e} / m_{\mu}$	$4.83633167(13) \times 10^{-3}$		$2.6 \times 10^{-8}$
	$m_{e} / m_{\tau}$	$2.87564(47) \times 10^{-4}$		$1.6 \times 10^{-4}$
electron-proton mass ratio	$m_{\mathrm{e}} / m_{\mathrm{p}}$	$5.4461702173(25) \times 10^{-4}$		$4.6 \times 10^{-10}$
electron-neutron mass ratio	$m_{\mathrm{e}} / m_{\mathrm{n}}$	$5.4386734481(38) \times 10^{-4}$		$7.0 \times 10^{-10}$
electron-deuteron mass ratio	$m_{\mathrm{e}} / m_{\text {d }}$	$2.7244371095(13) \times 10^{-4}$		$4.8 \times 10^{-10}$
electron to alpha particle mass ratio	$m_{e} / m_{\alpha}$	$1.37093355575(61) \times 10^{-4}$		$4.4 \times 10^{-10}$
electron charge to mass quotient	$\begin{aligned} & -e / m_{e} \\ & M(e), M_{e} \end{aligned}$	$-1.75882012(15) \times 10^{11}$	$\mathrm{Ckg}^{-1}$	$8.6 \times 10^{-8}$
electron molar mass $N_{\mathrm{A}} m_{\mathrm{e}}$		$5.4857990945(24) \times 10^{-7}$	$\mathrm{kg} \mathrm{~mol}^{-1}$	$4.4 \times 10^{-10}$

CODATA Recommended Values of the Fundamental Physical Constants - 2002


CODATA Recommended Values of the Fundamental Physical Constants - 2002


6 http://www.physicstoday.org/guide/fundconst.pdf

CODATA Recommended Values of the Fundamental Physical Constants - 2002

Quantity	Symbol	Value	Unit	Relative standard uncertainty $u_{r}$
to nuclear magneton ratio	$\mu_{\mathrm{h}}^{\prime} / \mu_{\mathrm{N}}$	-2.127 $497723(25)$		$1.2 \times 10^{-8}$
shielded helion to proton magnetic moment ratio (gas, sphere, $25^{\circ} \mathrm{C}$ )	$\mu_{\mathrm{h}}^{\prime} / \mu_{\mathrm{p}}$	-0.761 766 562(12)		$1.5 \times 10^{-8}$
shielded helion to shielded proton magnetic moment ratio (gas $/ \mathrm{H}_{2} \mathrm{O}$, spheres, $25^{\circ} \mathrm{C}$ )	$\mu_{\mathrm{h}}^{\prime} / \mu_{\mathrm{p}}^{\prime}$	-0.761786 1313(33)		$4.3 \times 10^{-9}$
(gas, sphere, $25^{\circ} \mathrm{C}$ )	$\gamma_{\mathrm{h}}^{\prime}$	$2.03789470(18) \times 10^{8}$	$\mathrm{s}^{-1} \mathrm{~T}^{-1}$	$8.7 \times 10^{-8}$
	$\gamma^{\prime} / 2 \pi$	$32.4341015(28)$	$\mathrm{MHz} \mathrm{T}{ }^{-1}$	$8.7 \times 10^{-8}$
Alpha particle, $\alpha$				
alpha particle mass	$m_{\alpha}$	6.644 6565(11) $\times 10^{-27}$	kg	$1.7 \times 10^{-7}$
in $\mathrm{u}, m_{\alpha}=A_{\mathrm{r}}(\alpha) \mathrm{u}($ alpha particle rel. atomic mass times u$)$		4.001506179149 (56)	u	$1.4 \times 10^{-11}$
energy equivalent	$m_{\alpha} c^{2}$	$5.9719194(10) \times 10^{-10}$	J	$1.7 \times 10^{-7}$
in MeV		3727.379 17(32)	MeV	$8.6 \times 10^{-8}$
alpha particle to electron mass ratio	$m_{\alpha} / m_{\text {e }}$	7294.2995363 (32)		$4.4 \times 10^{-10}$
alpha particle to proton mass ratio	$m_{\alpha} / m_{\mathrm{p}}$	$3.97259968907(52)$		$1.3 \times 10^{-10}$
alpha particle molar mass $N_{\mathrm{A}} m_{\alpha}$	$M(\alpha), M_{\alpha}$	$4.001506179149(56) \times 10^{-3}$	$\mathrm{kg} \mathrm{mol}^{-1}$	$1.4 \times 10^{-11}$
PHYSICOCHEMICAL				
Avogadro constant atomic mass constant	$N_{\text {A }}, L$	$6.0221415(10) \times 10^{23}$	$\mathrm{mol}^{-1}$	$1.7 \times 10^{-7}$
$m_{\mathrm{u}}=\frac{1}{12} m\left({ }^{12} \mathrm{C}\right)=1 \mathrm{u}=10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} / N_{\mathrm{A}}$	$m_{\mathrm{u}}$	$1.66053886(28) \times 10^{-27}$	kg	$1.7 \times 10^{-7}$
energy equivalent	$m_{\mathrm{u}} \mathrm{c}^{2}$	$1.49241790(26) \times 10^{-10}$	J	$1.7 \times 10^{-7}$
in MeV		$931.494043(80)$	MeV	$8.6 \times 10^{-8}$
Faraday constant ${ }^{\text {g }} N_{\mathrm{A}} e$	F	96485.3383 (83)	$\mathrm{C} \mathrm{mol}^{-1}$	$8.6 \times 10^{-8}$
molar Planck constant	$N_{\text {A }} b$	$3.990312716(27) \times 10^{-10}$	$\mathrm{Js} \mathrm{mol}^{-1}$	$6.7 \times 10^{-9}$
	$N_{\text {A }} b c$	0.119626565 72(80)	$\mathrm{J} \mathrm{m} \mathrm{mol}^{-1}$	$6.7 \times 10^{-9}$
molar gas constant	$R$	8.314 472(15)	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	$1.7 \times 10^{-6}$
$\begin{aligned} & \text { Boltzmann constant } R / N_{\mathrm{A}} \\ & \text { in } \mathrm{eV} \mathrm{~K}^{-1} \end{aligned}$	$k$	$1.3806505(24) \times 10^{-23}$	$\mathrm{J} \mathrm{K}^{-1}$	$1.8 \times 10^{-6}$
		$8.617343(15) \times 10^{-5}$	eV K ${ }^{-1}$	$1.8 \times 10^{-6}$
	$k / b$	$2.0836644(36) \times 10^{10}$	$\mathrm{Hz} \mathrm{K}{ }^{-1}$	$1.7 \times 10^{-6}$
	$k / b c$	69.503 56(12)	$\mathrm{m}^{-1} \mathrm{~K}^{-1}$	$1.7 \times 10^{-6}$
molar volume of ideal gas $R T / p$				
$T=273.15 \mathrm{~K}, p=101.325 \mathrm{kPa}$	$V_{\text {m }}$	$22.413996(39) \times 10^{-3}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	$1.7 \times 10^{-6}$
Loschmidt constant $N_{\mathrm{A}} / V_{\mathrm{m}}$	$n_{0}$	$2.6867773(47) \times 10^{25}$	$\mathrm{m}^{-3}$	$1.8 \times 10^{-6}$
$T=273.15 \mathrm{~K}, p=100 \mathrm{kPa}$	$V_{\mathrm{m}}$	$22.710981(40) \times 10^{-3}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	$1.7 \times 10^{-6}$
Sackur-Tetrode constant (absolute entropy constant) ${ }^{\text {b }}$$\frac{5}{2}+\ln \left[\left(2 \pi m_{\mathrm{u}} k T_{1} / b^{2}\right)^{3 / 2} k T_{1} / p_{0}\right]$				
$T_{1}=1 \mathrm{~K}, p_{0}=100 \mathrm{kPa}$	$S_{0} / R$	-1.151 7047(44)		$3.8 \times 10^{-6}$
$T_{1}=1 \mathrm{~K}, p_{0}=101.325 \mathrm{kPa}$		-1.164 8677(44)		$3.8 \times 10^{-6}$
Stefan-Boltzmann constant ( $\left.\pi^{2} / 60\right) k^{4} / \hbar^{3} c^{2}$	$\sigma$	$5.670400(40) \times 10^{-8}$	W m ${ }^{-2} \mathrm{~K}^{-4}$	$7.0 \times 10^{-6}$
first radiation constant $2 \pi b c^{2}$	$c_{1}$	$3.74177138(64) \times 10^{-16}$	W m ${ }^{2}$	$1.7 \times 10^{-7}$
first radiation constant for spectral radiance $2 h^{2}$	$c_{11}$	$1.19104282(20) \times 10^{-16}$	W m $\mathrm{m}^{2} \mathrm{rr}^{-1}$	$1.7 \times 10^{-7}$
second radiation constant $h c / k$	$c_{2}$	$1.4387752(25) \times 10^{-2}$	m K	$1.7 \times 10^{-6}$
Wien displacement law constant $b=\lambda_{\max } T=c_{2} / 4.965114231 \ldots$	$b$	$2.8977685(51) \times 10^{-3}$	m K	$1.7 \times 10^{-6}$

[^1]Internationally Adopted Values of Various Quantities


## CODATA Recommended Values of Energy Equivalents - 2002

Relevant unit				
	J	kg	$\mathrm{m}^{-1}$	Hz
1 J	$\begin{aligned} & (1 \mathrm{~J})= \\ & 1 \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~J}) / c^{2}= \\ & 1.112650056 \ldots \times 10^{-17} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~J}) / h c= \\ & 5.03411720(86) \times 10^{24} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~J}) / h= \\ & 1.50919037(26) \times 10^{33} \mathrm{~Hz} \end{aligned}$
1 kg	$\begin{aligned} & (1 \mathrm{~kg}) c^{2}= \\ & 8.987551787 \ldots \times 10^{16} \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~kg})= \\ & 1 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~kg}) c / h= \\ & 4.52443891(77) \times 10^{41} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~kg}) c^{2} / h= \\ & 1.35639266(23) \times 10^{50} \mathrm{~Hz} \end{aligned}$
$1 \mathrm{~m}^{-1}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right) b c= \\ & 1.98644561(34) \times 10^{-25} \mathrm{~J} \end{aligned}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right) b / c= \\ & 2.21021881(38) \times 10^{-12} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right)= \\ & 1 \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right) c= \\ & 299792458 \mathrm{~Hz} \end{aligned}$
1 Hz	$\begin{aligned} & (1 \mathrm{~Hz}) h= \\ & 6.6260693(11) \times 10^{-34} \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~Hz}) b / c^{2}= \\ & 7.3724964(13) \times 10^{-51} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~Hz}) / c= \\ & 3.335640951 \ldots \times 10^{-9} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~Hz})= \\ & 1 \mathrm{~Hz} \end{aligned}$
1 K	$\begin{aligned} & (1 \mathrm{~K}) k= \\ & 1.3806505(24) \times 10^{-23} \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~K}) k / c^{2}= \\ & 1.5361808(27) \times 10^{-10} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~K}) k / h c= \\ & 69.50356(12) \mathrm{m}^{-1} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~K}) k / h= \\ & 2.0836644(36) \times 10^{10} \mathrm{~Hz} \end{aligned}$
1 eV	$\begin{aligned} & (1 \mathrm{eV})= \\ & 1.60217653(14) \times 10^{-19} \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 \mathrm{eV}) / c^{2}= \\ & 1.78266181(15) \times 10^{-36} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & (1 \mathrm{eV}) / h c= \\ & 8.06554445(69) \times 10^{5} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & (1 \mathrm{eV}) / h= \\ & 2.41798940(21) \times 10^{14} \mathrm{~Hz} \end{aligned}$
1 u	$\begin{aligned} & (1 \mathrm{u}) \mathrm{c}^{2}= \\ & 1.49241790(26) \times 10^{-10} \mathrm{~J} \end{aligned}$	$\begin{aligned} & (1 \mathrm{u})= \\ & 1.66053886(28) \times 10^{-27} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & (1 \mathrm{u}) c / b= \\ & 7.513006608(50) \times 10^{14} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & (1 \mathrm{u}) c^{2} / h= \\ & 2.252342718(15) \times 10^{23} \mathrm{~Hz} \end{aligned}$
$1 E_{\mathrm{h}}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right)= \\ & 4.35974417(75) \times 10^{-18} \mathrm{~J} \end{aligned}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right) / c^{2}= \\ & 4.85086960(83) \times 10^{-35} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right) / h c= \\ & 2.194746313705(15) \times 10^{7} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right) / h= \\ & 6.579683920721(44) \times 10^{15} \mathrm{~Hz} \end{aligned}$

## CODATA Recommended Values of Energy Equivalents - 2002

Relevant unit				
	K	eV	u	$E_{\text {h }}$
1 J	$\begin{aligned} & (1 \mathrm{~J}) / k= \\ & 7.242963(13) \times 10^{22} \mathrm{~K} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~J})= \\ & 6.24150947(53) \times 10^{18} \mathrm{eV} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~J}) / c^{2}= \\ & 6.7005361(11) \times 10^{9} \mathrm{u} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~J})= \\ & 2.29371257(39) \times 10^{17} E_{\mathrm{h}} \end{aligned}$
1 kg	$\begin{aligned} & (1 \mathrm{~kg}) c^{2} / \mathrm{k}= \\ & 6.509650(11) \times 10^{39} \mathrm{~K} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~kg}) \mathrm{c}^{2}= \\ & 5.60958896(48) \times 10^{35} \mathrm{eV} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~kg})= \\ & 6.0221415(10) \times 10^{26} \mathrm{u} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~kg}) c^{2}= \\ & 2.06148605(35) \times 10^{34} E_{\mathrm{h}} \end{aligned}$
$1 \mathrm{~m}^{-1}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right) h c / k= \\ & 1.4387752(25) \times 10^{-2} \mathrm{~K} \end{aligned}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right) b c= \\ & 1.23984191(11) \times 10^{-6} \mathrm{eV} \end{aligned}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right) b / c= \\ & 1.3310250506(89) \times 10^{-15} \mathrm{u} \end{aligned}$	$\begin{aligned} & \left(1 \mathrm{~m}^{-1}\right) b c= \\ & 4.556335252760(30) \times 10^{-8} E_{\mathrm{h}} \end{aligned}$
1 Hz	$\begin{aligned} & (1 \mathrm{~Hz}) \mathrm{h} / \mathrm{k}= \\ & 4.7992374(84) \times 10^{-11} \mathrm{~K} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~Hz}) h= \\ & 4.13566743(35) \times 10^{-15} \mathrm{eV} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~Hz}) h / c^{2}= \\ & 4.439821667(30) \times 10^{-24} \mathrm{u} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~Hz}) h= \\ & 1.519829846006(10) \times 10^{-16} E_{\mathrm{h}} \end{aligned}$
1 K	$\begin{aligned} & (1 \mathrm{~K})= \\ & 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~K}) k= \\ & 8.617343(15) \times 10^{-5} \mathrm{eV} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~K}) k / c^{2}= \\ & 9.251098(16) \times 10^{-14} \mathrm{u} \end{aligned}$	$\begin{aligned} & (1 \mathrm{~K}) k= \\ & 3.1668153(55) \times 10^{-6} E_{\mathrm{h}} \end{aligned}$
1 eV	$\begin{aligned} & (1 \mathrm{eV}) / k= \\ & 1.1604505(20) \times 10^{4} \mathrm{~K} \end{aligned}$	$\begin{aligned} & (1 \mathrm{eV})= \\ & 1 \mathrm{eV} \end{aligned}$	$\begin{aligned} & (1 \mathrm{eV}) / c^{2}= \\ & 1.073544171(92) \times 10^{-9} \mathrm{u} \end{aligned}$	$\begin{aligned} & (1 \mathrm{eV})= \\ & 3.67493245(31) \times 10^{-2} E_{\mathrm{h}} \end{aligned}$
1 u	$\begin{aligned} & (1 \mathrm{u}) c^{2} / k= \\ & 1.0809527(19) \times 10^{13} \mathrm{~K} \end{aligned}$	$\begin{aligned} & (1 \mathrm{u}) \mathrm{c}^{2}= \\ & 931.494043(80) \times 10^{6} \mathrm{eV} \end{aligned}$	$\begin{aligned} & (1 \mathrm{u})= \\ & 1 \mathrm{u} \end{aligned}$	$\begin{aligned} & (1 \mathrm{u}) c^{2}= \\ & 3.423177686(23) \times 10^{7} E_{\mathrm{h}} \end{aligned}$
$1 E_{\mathrm{h}}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right) / k= \\ & 3.1577465(55) \times 10^{5} \mathrm{~K} \end{aligned}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right)= \\ & 27.2113845(23) \mathrm{eV} \end{aligned}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right) / c^{2}= \\ & 2.921262323(19) \times 10^{-8} \mathrm{u} \end{aligned}$	$\begin{aligned} & \left(1 E_{\mathrm{h}}\right)= \\ & 1 E_{\mathrm{h}} \end{aligned}$

8 http://www.physicstoday.org/guide/fundconst.pdf


[^0]:    Peter J. Mohr (mohr@nist.gov) and Barry N. Taylor (barry.taylor@nist.gov) are in the fundamental constants data center of the atomic physics division of the NIST Physics Laboratory in Gaithersburg, Maryland. Mohr, head of the FCDC, is the current chair of the CODATA task group on fundamental constants. Taylor is a NIST scientist emeritus and a member of the task group.

[^1]:    ${ }^{\text {a }}$ See the "Internationally Adopted Values" table for the conventional value for realizing representations of the volt using the Josephson effect.
    ${ }^{\text {b }}$ See the "Internationally Adopted Values" table for the conventional value for realizing representations of the ohm using the quantum Hall effect.
    ${ }^{\mathrm{c}}$ Value recommended by the Particle Data Group [Hagiwara et al., Phys. Rev. D 66, 010001 (2002)].
     value for $\sin ^{2} \theta_{\mathrm{W}}$ they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is $\sin ^{2} \hat{\theta}_{\mathrm{W}}\left(M_{\mathrm{Z}}\right)=0.23124(24)$.
    ${ }^{\mathrm{e}}$ The helion, symbol h , is the nucleus of the ${ }^{3} \mathrm{He}$ atom.
    ${ }^{\mathrm{f}}$ This and all other values involving $m_{\tau}$ are based on the value of $m_{\tau} c^{2}$ in MeV recommended by the Particle Data Group [Hagiwara et al., Phys. Rev. D 66, 010001 (2002)], but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of $-0.26 \mathrm{MeV},+0.29 \mathrm{MeV}$.
    ${ }^{\mathrm{g}}$ The numerical value of $F$ to be used in coulometric chemical measurements is $96485.336(16)\left[1.7 \times 10^{-7}\right]$ when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants $K_{\mathrm{J}-90}$ and $R_{\mathrm{K}-90}$ given in the "Internationally Adopted Values" table.
    

