
330:525 – Optimum Signal Processing
Computer Experiment 7 — Due April 7, 2011

1. Please read the attached PDF paper on applying PCA to the 1984 Olympic track
records. The attached files olymp1.dat and olymp2.dat contain the women’s
and men’s track data in a form that can be read by the function loadfile.m.

Read the data files into the 55×7 and 55×8 data matricesY1 andY2 and remove
their column means using the function zmean.

(a) For the women’s data matrix Y1, plot the scatterplot of the 100-meter and
200-meter columns. Notice that they lie mostly along a one-dimensional
subspace. Perform a PCA on these two columns and determine the percent-
age variances carried by the two principal components. On the scatterplot,
place the two straight lines representing the two principal components, as
was done in Fig.16.1 of the SVD notes.

(b) Repeat part (a) for the following track pairs: (100m, 800m), (100m, 3000m),
(100m, Marathon), (3000m, Marathon). Comment on the observed clustering
of the data points along one-dimensional directions. Does it make intuitive
sense?

(c) Next, consider the full data matrix Y1. Working with the SVD of Y1, perform
a PCA on it and determine the percentage variances of the principal compo-
nents. Determine the PCA coefficients of the first two principal components
and compare them with those given in the attached paper. Based on the first
component determine the countries that correspond to the top 15 scores.
(Hint: use the MATLAB function sort.)

(d) Repeat part (c) using the men’s data matrix Y2.

(e) Next, combine the women’s and men’s data matrices into a single matrix by
concatenating their columns, that is, Y = [Y1, Y2]. Carry out a PCA on Y
and determine the percentage variances. Determine the PCA coefficients of
the first principal component. Then, determine the top 15 countries.

2. Southern Oscillation Index. It has been observed that in the southern Pacific
there occurs regularly an upwelling of large masses of lower-level colder water
which has important implications for marine life and coastal weather. This
effect, which is variable on a monthly and yearly basis, has been termed El
Niño. It has been held responsible for many strange global weather effects in
the past decades.

One measure of the variability of this effect is the so-called southern oscillation
index (SOI) which is the atmospheric pressure difference at sea level between
two standard locations in the Pacific, namely, Tahiti and Darwin, Australia. This
data exhibits a strong 40–50 month cycle and a weaker 10–12 month cycle.

The SOI data, spanning the years 1920–1992, are in the included file soi2.dat.
The monthly data must be concatenated, resulting into a long one-dimensional
time series y(n) and the mean must be removed. (The concatenation can be
done by the following MATLAB commands: assuming that Y is the data matrix
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whose rows are the monthly data for each year, then redefine Y=Y’; and set y
= Y(:);)

(a) It is desired to fit an AR model to this data, plot the AR spectrum, and identify
the spectral peaks. Starting with model orderM = 15, calculate the ordinary
Burg estimate of the prediction-error filter , say ab.

(b) Form the order-M autocorrelation and forward/backward data matrices Y,
perform an SVD, and plot the principal component variances as percentages
of the total variance. You will observe that beyond the 5th principal compo-
nent, the variances flatten out, indicating that the dimension of the signal
subspace can be taken to be of the order of r = 5–9.

Start with the choice r = 8 and perform K = 1 and K = 3 rank-r enhance-
ment operations on the data matrix, as expressed symbolically in MATLAB
language:

Y = datamat(y,M,type) % type = 0 or 2
Ye = Y; % initialize SVD iterations
for i=1:K,

Ye = sigsub(Ye,r) % rank-r signal subspace
Ye = toepl(Ye,type) % type = 0 or 2

end
ye = datasig(Ye,type) % extract enhanced signal from Ye

(c) Using the enhanced data matrix Ye, calculate the least-squares prediction
error filter, aLS, by solving Yea = 0.

(d) From the extracted enhanced signal ye(n), calculate the corresponding order-
r Burg estimate of the prediction-error filter, say ae. (You could also do an
order-M Burg estimate from ye(n), but the order-r choice is more appropri-
ate since r is the assumed dimension of the signal subspace.)

(e) Calculate and plot in dB the AR spectra of the three prediction filters, ab,
aLS, ae. Normalize each spectrum to unity maximum.

Identify the frequency of the highest peak in each spectrum and determine
the corresponding period of the cycle in months. Identify also the frequency
and period of the secondary peak that would represent the 10–12 month
cycle.

(f) Repeat the steps (a)–(e) for the following values of the parameters: For M =
4, r = 3, K = 1,3. And then, for M = 15, r = 5,6,7,9, and K = 1,3.
Moreover, do both the autocorrelation and forward-backward versions of
the data matrices.
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3. Sunspot Numbers. The Wolf sunspot numbers are of great historical importance
in the development of spectral analysis methods (periodogram and parametric).
Sunspot activity is cyclical and variation in the sunspot numbers has been cor-
related with weather and other terrestrial phenomena of economic significance.
There is a strong 10-11 year cycle.

The observed yearly number of sunspots over the period 1700–2004 can be
obtained from the course’s web page. The mean of this data must be removed.

(a) It is desired to fit an AR model to this data, plot the AR spectrum, and identify
the dominant peak corresponding to the 10–11 year cycle.

(b) Perform the steps (a)–(e) as described in the previous experiment for the
following values of the parameters: M = 10, r = 2,3,4, K = 1,3. Try also
the simpler case M = 3, r = 2, K = 1,3.
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4. Extracting Sinusoids in Noise. The file sine1.dat on the course’s web page
contains 25 samples of a signal consisting of two sinusoids of frequencies f1 =
0.20, f2 = 0.25 cycles/sample in additive zero-mean gaussian white noise. The
SNRof both sinusoids was 0 dB. This signal was generated by

y(n)= cos(2πf1n)+ cos(2πf2n)+0.7071v(n), n = 0,1, . . . ,24

where the noise v(n) was generated by MATLAB’s randn function (with an
initial state of 111, in case you want to regenerate the data.)

In this experiment, because there are four complex sinusoids, the dimension of
the signal subspace will be taken to be r = 4. (In the noiseless case, the rank
of the data matrices would be 4.)

Using the autocorrelation and the forward/backward methods, perform steps
(a)–(e) of Question-1, for the following values of the parameters: M = 10,15,20,
r = 4, K = 1,3.

Discuss your observations as to the appearance of false peaks, whether the
value of M makes a big difference or not, and whether the autocorrelation or
forward/backward method is better in any way.
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