
332:525 – Optimum Signal Processing
Computer Experiment 3 – Due February 17, 2011

The Box-Jenkins airline data set has served as a benchmark in testing seasonal ARIMA models. In
particular, it has led to the popular “airline model”, which, for monthly data with yearly periodicity,
is defined by the following innovations signal model:

(1− Z−1)(1− Z−12)yn = (1− bZ−1)(1− BZ−12)εn (1)

where Z−1 denotes the delay operator and b,B are constants. In this experiment, we briefly consider
this model, but then replace it with the following ARIMA model, mainly because we have developed
enough material in the course so far to handle it:

(1− Z−12)yn = 1

A(Z)
εn , A(z)= 1+ a1z−1 + a2z−2 + · · · + apz−p (2)

The airline data set can be loaded with the MATLAB commands:

Y = loadfile(’airline.dat’);
Y = Y’; Y = Y(:); % concatenate rows
y = log(Y); % log data

The data represent monthly airline passengers for the period Jan. 1949 to Dec. 1960. There are
N = 144 data points. In this experiment, we will work with a subset of the first n0 = 108 points,
that is, yn, 0 ≤ n ≤ n0 − 1, and attempt to predict the future 36 months of data (108+ 36 = 144.)

a. Plot Yn and the log-data yn = lnYn versus n and note the yearly periodicity. Note how the
log-transformation tends to equalize the apparent increasing amplitude of the original data.

b. Compute and plot the normalized sample ACF, ρk = R(k)/R(0), of the zero-mean log-data
for lags 0 ≤ k ≤ 40 and note the peaks at multiples of 12 months.

c. Let xn = (1 − Z−1)(1 − Z−12)yn in the model of Eq. (1). The signal xn follows an MA model
with spectral density:

Sxx(z)= σ2
ε(1− bz−1)(1− bz)(1− Bz−12)(1− Bz12)

Multiply the factors out and perform an inverse z-transform to determine the autocorrelation
lags Rxx(k). Show in particular, that

Rxx(1)
Rxx(0)

= − b
1+ b2

,
Rxx(12)
Rxx(0)

= − B
1+ B2

(3)

Filter the subblock yn,0 ≤ n ≤ n0 − 1 through the filter (1− z−1)(1− z−12) to determine xn.
You may discard the first 13 transient outputs of xn. Use the rest of xn to calculate its sample
ACF and apply Eq. (3) to solve for the model parameters b,B. This simple method gives values
that are fairly close to the Box/Jenkins values determined by maximum likelihood methods,
namely, b = 0.4 and B = 0.6 (see Reference in the airline.dat file).

d. Consider, next, the model of Eq. (2) with a second-order AR model i.e., A(z) filter order of
p = 2. Define xn = (1−Z−12)yn = yn − yn−12 and denote its autocorrelation function by Rk.
Since xn follows an AR(2) model, its model parameters a1, a2, σ2

ε can be computed from:

[
a1

a2

]
= −

[
R0 R1

R1 R0

]−1 [
R1

R2

]
, σ2

ε = R0 + a1R1 + a2R2 (4)
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Using the data subset yn,0 ≤ n ≤ n0 − 1, calculate the signal xn and discard the first 12
transient samples. Using the rest of xn, compute its sample ACF, R̂k for 0 ≤ k ≤ M with
M = 40, and use the first 3 computed lags R̂0, R̂1, R̂2 in Eqs. (4) to estimate a1, a2, σ2

ε (in
computing the ACF, the signal xn need not be replaced by its zero-mean version).

Because of the assumed autoregressive model, we will see in Ch.5 that it is possible to calculate
all the autocorrelation lags Rk for k ≥ p+ 1 from the first p+ 1 lags. This can accomplished
by the MATLAB “autocorrelation sequence extension” function:

M=40; Rext = acext(R(1:p+1), zeros(1,M-p));

On the same graph, plot the sample and extended ACFs, R̂(k) and Rext(k) versus 0 ≤ k ≤M
normalized by their lag-0 values.

e. Let x̂n denote the estimate/prediction of xn based on the data subset {xm,m ≤ n0−1}. Clearly,
x̂n = xn, if n ≤ n0 − 1. Writing Eq. (2) recursively, we obtain for the predicted values into the
future beyond n0:

xn = −
(
a1xn−1 + a2xn−2

)+ εn
x̂n = −

(
a1x̂n−1 + a2x̂n−2

)
, for n ≥ n0

(5)

where we set ε̂n = 0 because all the observations are in the strict past of εn when n ≥ n0.

Calculate the predicted values 36 steps into the future, x̂n for n0 ≤ n ≤ N − 1, using the fact
that x̂n = xn, if n ≤ n0 − 1. Once you have the predicted xn’s, you can calculate the predicted
yn’s by the recursive equation:

ŷn = ŷn−12 + x̂n (6)

where you must use ŷn = yn, if n ≤ n0 − 1. Compute ŷn for n0 ≤ n ≤ N − 1, and plot it on
the same graph with the original data yn, 0 ≤ n ≤ N − 1. Indicate the start of the prediction
horizon with a vertical line at n = n0 (see example graph at end.)

f. Repeat parts (d,e) using an AR(4) model (i.e., p = 4), with signal model equations:

xn = yn − yn−12 , xn = −
(
a1xn−1 + a2xn−2 + a3xn−3 + a4xn−4

)+ εn
and normal equations:

⎡
⎢⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣
R0 R1 R2 R3

R1 R0 R1 R2

R2 R1 R0 R1

R3 R2 R1 R0

⎤
⎥⎥⎥⎦
−1 ⎡
⎢⎢⎢⎣
R1

R2

R3

R4

⎤
⎥⎥⎥⎦ , σ2

ε = R0 + a1R1 + a2R2 + a3R3 + a4R4

with predictions:
x̂n = −

(
a1x̂n−1 + a2x̂n−2 + a3x̂n−3 + a4x̂n−4

)
ŷn = ŷn−12 + x̂n

taking into account the properties that x̂n = xn and ŷn = yn, if n ≤ n0 − 1.
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