
332:525 – Optimum Signal Processing
Computer Experiment 2 – Due February 10, 2011

1. Consider the following AR(1), first-order, autoregressive signal model with a time-varying pa-
rameter:

yn = a(n)yn−1 + εn (1)

where εn is zero-mean, unit-variance, white noise. The filter parameter a(n) can be tracked by
the following adaptation equations (which are equivalent to the exact recursive least-squares
order-1 adaptive predictor):

R0(n) = λR0(n− 1)+αy2
n−1

R1(n) = λR1(n− 1)+αynyn−1

â(n) = R1(n)
R0(n)

where α = 1 − λ. The two filtering equations amount to sending the quantities y2
n−1 and

ynyn−1 through an exponential smoother. To avoid possible zero denominators, initialize R0

to some small positive constant, R0(−1)= δ, such as δ = 10−3.

(a) Show that â(n) satisfies the recursion:

â(n)= â(n− 1)+ α
R0(n)

yn−1en/n−1, where en/n−1 = yn − â(n− 1)yn−1

where en/n−1 is referred to as the a priori estimation (prediction) error.

(b) Using Eq. (1), generate a data sequence yn, n = 0,1, . . . ,N − 1 using the following time
varying coefficient, sinusoidally switching from a positive value to a negative one (the
synthesis filter switches from lowpass to highpass):

a(n)=

⎧⎪⎪⎨
⎪⎪⎩

0.75, 0 ≤ n ≤ Na − 1

0.75 cos
(
π
n−Na
Nb −Na

)
, Na ≤ n ≤ Nb

−0.75, Nb + 1 ≤ n ≤ N − 1

Use the following numerical values:

Na = 500, Nb = 1500, N = 2000

Determine the estimated â(n) and plot it versus n together with the theoretical a(n)
using the parameter value λ = 0.980. Repeat using the value λ = 0.997. Comment on
the tracking capability of the algorithm versus the accuracy of the estimate.

(c) Study the sensitivity of the algorithm to the choice of the initialization parameter δ.
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2. Next, consider an AR(2), second-order, model with time-varying coefficients:

yn = −a1(n)yn−1 − a2(n)yn−2 + εn (2)

If the coefficients were stationary, then the theoretical Wiener solution for the prediction co-
efficients a1 and a2 would be:

[
a1

a2

]
= −

[
R0 R1

R1 R0

]−1 [
R1

R2

]
= − 1

R2
0 −R2

1

[
R0R1 −R1R2

R0R2 −R2
1

]
(3)

For a time-varying model, the coefficients can be tracked by replacing the theoretical autocor-
relation lags with their recursive, exponentially smoothed, versions:

R0(n) = λR0(n− 1)+αy2
n

R1(n) = λR1(n− 1)+αynyn−1

R2(n) = λR2(n− 1)+αynyn−2

(a) Using Eq. (2), generate a non-stationary data sequence yn by driving the second-order
model with a unit-variance, zero-mean, white noise signal εn and using the following
theoretical time-varying coefficients:

a1(n)=

⎧⎪⎪⎨
⎪⎪⎩
−1.3, 0 ≤ n ≤ Na − 1

1.3
n−Nb
Nb −Na , Na ≤ n ≤ Nb

0, Nb + 1 ≤ n ≤ N − 1

a2(n)=

⎧⎪⎪⎨
⎪⎪⎩

0.4, 0 ≤ n ≤ Na − 1

0.65− 0.25 cos
(
π
n−Na
Nb −Na

)
, Na ≤ n ≤ Nb

0.9, Nb + 1 ≤ n ≤ N − 1

Thus, the signal model for yn switches continuously between the synthesis filters:

B(z)= 1

1− 1.3z−1 + 0.4z−2
⇒ B(z)= 1

1+ 0.9z−2

(b) Compute the adaptive coefficients â1(n) and â2(n) using the two forgetting factors
λ = 0.980 and λ = 0.997. Plot the adaptive coefficients versus n, together with the
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theoretical time-varying coefficients and discuss the tracking capability of the adaptive
processor.

3. Next, we will apply the adaptive method of part-2 to some real data. The file sunspots.dat
contains the yearly mean number of sunspots for the years 1700–2008. To unclutter the
resulting graphs, we will use only the data for the last 200 years, over 1809–2008. These can
be read into MATLAB as follows:

Y = loadfile(’sunspots.dat’);
i = find(Y(:,1)==1809);
y = Y(i:end,2); % number of sunspots
N = length(y); % here, N=200
m = mean(y); y = y-m; % zero-mean data

where the last line determines the mean of the data block and subtracts it from the data. The
mean m will be restored at the end.

Yule was the first to introduce the concept of an autoregressive signal model and applied it to
the sunspot time series assuming a second-order model. The so-called Yule-Walker method is
a block processing method in which the entire (zero-mean) data block is used to estimate the
autocorrelation lags R0, R1, R2 using sample autocorrelations:

R̂0 = 1

N

N−1∑
n=0

y2
n , R̂1 = 1

N

N−2∑
n=0

yn+1yn , R̂2 = 1

N

N−3∑
n=0

yn+2yn

Then, the model parameters a1, a2 are estimated using Eq. (3):

[
â1

â2

]
= −

[
R̂0 R̂1

R̂1 R̂0

]−1 [
R̂1

R̂2

]
(Yule-Walker method)
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(a) First, compute the values of â1, â2 based on the given length-200 data block.

(b) Then, apply the adaptive algorithm of the part-2 with λ = 0.99 to determine the adaptive
versions a1(n), a2(n) and plot them versus n, and add on these graphs the straight lines
corresponding to the Yule-Walker estimates â1, â2.
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(c) At each time instant n, the value of yn can be predicted by either of the two formulas:

ŷn/n−1 = −a1(n)yn−1 − a2(n)yn−2

ŷn/n−1 = −â1yn−1 − â2yn−2

On the same graph, plot yn and ŷn/n−1 for the above two alternatives. The case of the
adaptive predictor is shown below.
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(d) Repeat the above questions using λ = 0.95 and discuss the effect of reducing λ.

(e) Apply a length-200 Hamming window wn to the (zero-mean) data yn and calculate the
corresponding periodogram spectrum,

Sper(ω)= 1

N

∣∣∣∣∣∣
N−1∑
n=0

wnyne−jωn
∣∣∣∣∣∣

2

as a function of the yearly period p = 2π/ω, over the range 2 ≤ p ≤ 20 years. For
the same p’s or ω’s calculate also the AR(2) spectrum using the Yule-Walker coefficients
â1, â2:

SAR(ω)= σ2
ε

|1+ â1e−jω + â2e−2jω|2
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where σ2
ε can be calculated by

σ2
ε = R̂0 + â1R̂1 + â2R̂2

Normalize the spectra Sper(ω), SAR(ω) to unity maxima and plot them versus period p
on the same graph. Note that both predict the presence of an approximate 11-year cycle,
which is also evident from the time data.

We will revisit this example later on by applying SVD methods to get sharper peaks for
the autoregressive model.
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4. Regression Lemma. The optimum estimate and estimation error of a random vector x based
on a vector of observations y1 is given by

x̂1 = Rxy1R
−1
y1y1

y1 = E[xyT1 ]E[y1yT1 ]−1y1 , e1 = x− x1

Re1e1 = E[e1eT1 ]= Rxx −Rxy1R
−1
y1y1

Ry1x

Suppose the observation set is enlarged by adjoining to it a new set of observations y2, so that

the enlarged observation vector is y =
[

y1

y2

]
. The corresponding estimate of x is given by

x̂ = RxyR−1
yyy = [Rxy1 , Rxy2

][Ry1y1 Ry1y2

Ry2y1 Ry2y2

]−1 [
y1

y2

]

Show that x̂ can be obtained by the following alternative expression:

x̂ = x̂1 +Rxε2R
−1
ε2ε2
εεε2 (regression lemma) (4)

where εεε2 is the innovations residual obtained by removing from y2 that part which is pre-
dictable from y1, that is,

εεε2 = y2 − ŷ2/1 = y2 −Ry2y1R
−1
y1y1

y1

Hint: Let H = Ry2y1R−1
y1y1

, and prove and make use of the properties:

[
y1

y2

]
=
[
I 0
H I

][
y1

εεε2

]
,

[
Ry1y1 Ry1y2

Ry2y1 Ry2y2

]
=
[
I 0
H I

][
Ry1y1 0

0 Rε2ε2

][
I 0
H I

]T
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Show that the improvement in using more observations is quantified by the following result,
which shows that the mean-square error is reduced:

e = x− x̂ ⇒ Ree = Re1e1 −Rxε2R
−1
ε2ε2
Rε2x (5)

where we defined,
Rxε2 = RTε2x = E[xεεεT2 ] , Rε2ε2 = E[εεε2εεεT2 ]

The above discussion assumed that the random vectors had zero mean. How are Eqs. (4) and
(5) to be modified if x,y1,y2 happen to have means m,m1,m2, respectively?

The regression lemma is a key result in the derivation of the Kalman filter.

This part may be handed separately as a handwritten hardcopy.
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