
332:521 – Digital Signal Analytics – Spring 2021

offered remotely in synchronous mode via Zoom – Mondays, 12:00–3:00 PM

Course Description

This course is a basic introduction to digital signal processing. It covers sampling and recon-
struction; antialiasing prefilters and anti-image postfilters; discrete-time signals and systems;
convolution, block-based and sample-based real-time processing; circular delay-line buffers;
digital audio effects; z-transforms; filter realizations; quantization effects; DTFT, DFT, FFT,
circular convolution; fast convolution; spectrum estimation, frequency resolution and win-
dowing, periodogram averaging and smoothing; STFT applications, phase vocoder, time and
pitch-scale modification; DCT, MDCT and time-domain aliasing cancellation, Princen-Bradley
windows, data compression; FIR and IIR filter design methods; normalized lattice filters; intro-
duction to adaptive filters and neural networks; multirate systems, interpolation, decimation,
oversampling, polyphase filters, sample-rate conversion, noise-shaping delta-sigma quantiz-
ers; sparse modeling, sparse regularization methods, such as lasso/basis-pursuit-denoising.

Topics Lectures

sampling, reconstruction, prefilters, postfilters 2
LTI systems review, convolution, stability, causality 2
z-transforms, transfer functions, frequency response, transients 2
filter realizations, circular buffers, audio effects 2
DTFT, frequency resolution, windowing, spectrum estimation 2
DFT, IDFT, FFT, circular convolution, fast convolution 2
STFT, phase vocoder, time & pitch scale modification 2
DCT, MDCT, data compression, time-domain aliasing cancellation 2
FIR & IIR filter design methods, normalized lattice filters 3
adaptive filtering and prediction, noise canceling, neural networks 3
multirate systems, interpolation, sample-rate conversion 2
decimation, noise-shaping delta-sigma quantizers 1
sparse modeling, sparse regularization methods 3

Texts

S. J. Orfanidis, Introduction to Signal Processing, Prentice Hall, 1996,
available freely from: https://www.ece.rutgers.edu/~orfanidi/intro2sp/ (2010).

S. J. Orfanidis, Applied Optimum Signal Processing, online text, 2018,
available freely from: https://www.ece.rutgers.edu/~orfanidi/aosp/.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3/e, Prentice Hall, 2009.
A low-cost paperback edition is available, ISBN-13: 978-9332535039.

We will be referring to these books as I2SP, AOSP, and O&S, respectively. Additionally, several
class notes and papers will be assigned for reading.

Prerequisites

Familiarity with the concepts of LTI systems, convolution, block diagrams, Fourier, Laplace,
and z-transforms, stochastic signals, autocorrelation functions, at the level of 16:332:501–
Systems Analysis, or an undergraduate linear systems/DSP course. The course emphasizes
computational aspects, and familiarity with a high-level programming language, such as MAT-
LAB, is necessary. MATLAB is freely available to Rutgers students. The CVX convex optimiza-
tion MATLAB package, available from http://cvxr.com/cvx/, will also be used.



Course Requirements

The final grade is based on:

1. Final exam
2. Two midterm exams
3. Computer projects

Computer Projects

The computer projects are an essential part of the course and may not be skipped or delayed.
Project reports and other related materials, such as audio files, should be uploaded to Sakai As-
signments by the due date. Please prepare your reports in PDF format using LaTeX (preferably)
or Word, and observe the following guidelines:

a. Include a discussion section on the purposes and results of the project.

b. Any numerical and/or theoretical calculations and graphs must be presented in the dis-
cussion section.

c. Source code must be attached as an Appendix at the end of the report. (Please never
attach numerical data listings – unless specifically asked.)

d. Please work alone. Collaboration with other students is not allowed.

Project Assigned Due

1. Sampling, prefilter/postfilter design, quantization & dithering 2/01 2/08
2. Time-constants, bandwidth, filter-lag, zero-lag filters, noise reduction 2/08 2/15
3. Dynamic range control, compressors, limiters, expanders, duckers 2/15 2/22
4. Spectrum estimation, periodogram averaging and smoothing 2/22 3/01
5. Fast convolution, overlap-add & overlap-save methods 3/01 3/08
6. STFT, phase vocoder, time-scale and pitch-scale modification 3/08 3/22
7. Data compression, DCT, MDCT, time-domain aliasing cancellation 3/22 3/29
8. Filter design methods, normalized lattice, quantization effects 3/29 4/05
9. Adaptive filtering and prediction, LMS and RLS algorithms 4/05 4/19

10. Interpolation, decimation, oversampling, delta-sigma ADCs 4/19 4/26
11. Trend extraction, regularized and sparse methods 4/26 5/10
12. Sparse modeling, lasso/basis-pursuit-denoising 4/26 5/10

Academic Integrity

By taking this course you agree to work alone on your exams and projects, and you accept and
adhere to the Rutgers academic integrity policy described in:

http://academicintegrity.rutgers.edu/academic-integrity-at-rutgers/

Please read also the IEEE code of ethics that should guide your professional life:

https://www.ieee.org/about/corporate/governance/p7-8.html

Instructor

Sophocles J. Orfanidis
Room ELE-230
Tel: 848-445-5017
e-mail: orfanidi@rci.rutgers.edu
Office hours by email.



Fig.1 – Conventional DSP system.



Fig.2 – Equivalent descriptions of continuous-time and discrete-time LTI systems.

Fig.3 – Spectrum estimation by periodogram averaging and smoothing.



Fig.4 – Overlap-add block convolution.

Fig.5 – Overlap-save block convolution.



Fig.6 – Canonical realization.

Fig.7 – Transposed realization.

Fig.8 – Lattice realization.



Fig.9 – Optimum Wiener filter and its adaptive implementation.

Fig.10 –Adaptive noise canceling system.



Fig.11 – STFT signal processing system.

Fig.12 – MDCT/TDAC signal compression system.



Fig.13 – Oversampled DSP system with noise-shaping quantizers.

Fig.14 – Sample rate converter, f ′s =
L
M
fs.

Fig.15 – Conceptual and computational tools.
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Fig.16 – Recovered signal based on the L2, L1, and L0 criteria.

(L0): J = ‖b−Ax‖2
2 + λ‖x‖0 = min

(L1): J = ‖b−Ax‖2
2 + λ‖x‖1 = min

(L2): J = ‖b−Ax‖2
2 + λ‖x‖2

2 = min
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Fig.17a – Sparse deconvolution based on the L2, L1, and L0 criteria.
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Fig.17b – Sparse deconvolution based on the L2, L1, and L0 criteria.
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Fig.19a – Trend Extraction – Sparse Whittaker-Henderson Methods.
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Fig.19b – Trend Extraction – Sparse Whittaker-Henderson Methods.


