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332:521 – Digital Signals and Filters
Exam 1 – October 11, 2000

1. Determine all possible inverse z-transforms and corresponding regions of
convergence of the following z-transform:

X(z)= 5

(1− 0.5z−1)(1+ 2z−1)

2. The Fibonacci sequence and a variant of it are:

h = [1,1,2,3,5,8,13,21, . . . ]

h = [2,1,3,4,7,11,18,29, . . . ]

where, starting with the third entry, each entry is obtained by adding the
previous two.

(a) If we think of these sequences as the impulse response sequences
h(n), n = 0,1,2 . . . of a causal filter, determine the difference equa-
tion satisfied by h(n) in the two cases.

(b) Determine the corresponding transfer functions H(z) and express
them as ratios of quadratic polynomials in z−1.

3. Consider the following signal x(n) defined for −∞ < n <∞:

x(n)= 4+ 3 cos
(

3πn
8

)
+ 2 sin

(
3πn

4

)
+ (−1)n

(a) Using pole/zero placement, design an IIR filter of order-four numer-
ator and denominator that completely removes the second and third
terms of the signal x(n). Determine the transfer function H(z) of
this filter as a cascade of second-order sections with real coefficients.
The 40-dB time constant of this filter must be 100 samples.

(b) Explain why the steady-state output from this filter will have the
form:

y(n)= A+ B(−1)n

Determine the numerical values of A and B.
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4. Consider the two filters:

H1(z)= 0.1
1+ z−8

1− 0.8z−8
, H2(z)= 0.9

1− z−8

1− 0.8z−8

Such filters (with z−8 replaced by a higher power) are used to separate
luminance and chrominance components in color video signals.

(a) Determine the poles and zeros of the two filters and place them on
the z-plane.

(b) Make a rough sketch of the magnitude response of each filter versus
0 < ω < 2π.

(c) Show the so-called complementarity properties:

H1(z)+H2(z)= 1

|H1(ω)|2 + |H2(ω)|2 = 1

(d) These filters can be used to cancel periodic interference signals. What
are the frequencies of the periodic interference signals (in units of
fs) that get canceled by these filters?
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332:521 – Digital Signals and Filters
Exam 2 – November 30, 2000

1. The signal x = [4,8,16,4,8,16,4,8] is sent to the input of the filter:

H(z)= 1+ 24 z−4

1+ 2−4 z−4

(a) Show that the filter H(z) is an allpass filter. What is its gain?

(b) Draw the canonical and transposed realization forms and write the
corresponding sample processing algorithms. Use a circular buffer
for the canonical case. Compare the computational cost of the two
realizations.

(c) For the canonical realization implemented with a circular buffer, cal-
culate the corresponding eight output samples. Make a table that
shows the input, the circular buffer entries, and the output samples
at each time instant.

2. (a) Calculate by hand the radix-2, decimation-in-time, FFT of the signal:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

−2+
√

2

2
3

−2+
√

2

2
2

−2−
√

2

2
1

−2−
√

2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) Express this signal as a sum of sinusoidal or cosinusoidal signals.
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3. (a) Design a 9-tap linear phase FIR filter that approximates the low-pass
differentiator:

D(ω)=
{
jω, if |ω| ≤ 0.5π
0, if 0.5π < |ω| ≤ π

(b) Show that the noise-reduction ratio of the ideal infinitely-long low-
pass differentiator is eight times smaller than that of the usual full-
band differentiator.

(c) Show that up to a scale factor and up to initial transients, the de-
signed 9-tap filter correctly differentiates the signals x(n)= n and
x(n)= n2, that is, it produces y(n)= A and y(n)= 2An, where A is
the aforementioned scale factor. What is the value of A?

4. (a) Using the bilinear transformation and a lowpass Butterworth analog
prototype filter, design a digital highpass filter operating at a rate of
8 kHz with the following specs:

Its passband begins at 3 kHz and the maximum allowed passband
attenuation is 1 dB. Its stopband ends at 1 kHz and the minimum
stopband attenuation is 40 dB.

Express the designed transfer function as the cascade of first or sec-
ond order factors.

(b) Sketch the magnitude response of the designed filter over the range
0 ≤ f ≤ 16 kHz.

Hints

∫
xex dx = (x− 1)ex

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2

ai1 = − 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2 , ai2 = 1+ 2Ω0 cosθi +Ω2

0

1− 2Ω0 cosθi +Ω0
2
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332:521 – Digital Signals and Filters
Final Exam – December 18, 2000

1. Let X = Ax be theN-point DFT of a length-N signal x expressed in matrix
form, where A is the N×N DFT matrix, and x,X are column vectors.

(a) Show the following matrix relationship for any N:

AA∗ = NI , where I = N×N identity matrix

(b) Using the above result, prove the DFT version of Parseval’s identity:

N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
k=0

|X(k)|2

You may assume that x(n) is complex-valued. [Hint: Write this equa-
tion in terms of the vectors x and X.]

2. Using the bilinear transformation and a lowpass analog Butterworth pro-
totype filter, design a digital third-order highpass IIR filter operating at a
rate of 8 kHz that has a maximum attenuation of 1 dB over the passband
range of [2,4] kHz.

Determine its transfer function H(z) and its 3-dB frequency in kHz.

3. It is desired to design a 4× oversampling digital FIR interpolation filter for
a CD player. Assume the following specifications: audio sampling rate of
44.1 kHz, passband range [0,20] kHz, stopband range [24.1,88.2] kHz,
and stopband attenuation of 80 dB.

Using the Kaiser window design method, determine the filter length and
the total computational rate in MAC/sec for the following cases:

(a) Single-stage design implemented in its polyphase form.

(b) Two-stage (2×2) design implemented in its polyphase form. What
are the design specifications of the two stages?

Draw a sketch of the magnitude responses of the designed filters versus
frequency in the range 0 ≤ f ≤ 176.4 kHz, and of the two individual
filter responses in the two-stage design case. What are the computational
savings of design (b) versus design (a)? Can a 20 MIPS DSP chip handle the
computational rates?
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4. A digital audio tape recorder uses a third-order analog antialiasing Butter-
worth prefilter, which precedes an L-times oversampled ΔΣ-ADC, which
is followed by a digital decimation filter and an L-fold downsampler that
reduces the sampling rate down to 48 kHz.

(a) The passband attenuation of the prefilter is required to be less than
0.1 dB. Assuming an ideal decimator filter, determine the passband
frequency and the 3-dB frequency of the prefilter in kHz.

(b) What is the minimum value of the oversampling ratio L that will allow
the above prefilter to achieve a stopband attenuation of 70 dB? What
is the stopband frequency of the prefilter in kHz?

(c) If the oversampling ratio is L = 16, what would be the stopband
attenuation of the prefilter in dB?

Hints

WN = e−2πj/N , Aij =Wij
N

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2 , θi = π

2N
(N − 1+ 2i)

ai1 = − 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2 , ai2 = 1+ 2Ω0 cosθi +Ω2

0

1− 2Ω0 cosθi +Ω0
2

D = A− 7.95

14.36

A(f)= 10 log10

⎡⎣1+
(
f
f0

)2N
⎤⎦
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332:521 – Digital Signals and Filters
Exam 1 – October 10, 2002

1. (a) Working with Laplace transforms, show that the frequency response
of the staircase D/A reconstructor is given by:

HD/A(f)= Te−jπf/fs sin(πf/fs)
πf/fs

, T = 1

fs

(b) After having been properly prefiltered by an antialiasing filter, an
analog signal is sampled at a rate of 6 kHz. The digital signal is then
filtered by a digital filter designed to act as an ideal lowpass filter
with cutoff frequency of 1 kHz. The filtered digital signal is then fed
into a staircase D/A reconstructor and then into a lowpass anti-image
postfilter.

The overall reconstructor is required to suppress the spectral images
caused by sampling by more than A = 40 dB. Determine the least
stringent specifications for the analog postfilter that will satisfy this
requirement.

(c) Using the “6N dB/octave” rule, determine the order N of the postfil-
ter that will meet the required specifications.

2. Using partial fractions, determine the stable inverse z-transform of the
following z-transform:

X(z)= 0.75

(1− 0.5z−1)(1− 0.5z)

3. Consider the filter:

H(z)= z
−1 + z−2 − 2z−3

1+ 0.125z−3

(a) Draw the direct, canonical, and transposed realization forms. Write
down the sample processing algorithm of the transposed form.

(b) Determine the poles and zeros of the transfer function and place
them on the z-plane. Draw a rough sketch of the magnitude response
|H(ω)| of this filter.

(c) Factor this transfer function into second-order sections with real co-
efficients (2nd order means 1st or 2nd order). Then, realize this
filter in its cascade form, where each cascade factor is realized in its
canonical form. Write down the corresponding sample processing
algorithm using linear buffers. [Hint: 1− x3 = (1− x)(1+ x+ x2)]
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4. The finite signal x = [8,6,4,2,4,6,8] is sent to the input of the filter of
the previous problem.

(a) Write down the sample proceesing algorithm of its canonical form
using circular buffers.

(b) Iterating the above algorithm, compute the corresponding 7 output
samples.

Make a table that shows the input, buffer contents [w0,w1,w2,w3],
internal states [s0, s1, s2, s3], and output, such that the nth row of
the table will represent the values at the nth time instant.
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332:521 – Digital Signals and Filters
Exam 2 – November 14, 2002

1. The following signal is sampled at a rate of 40 kHz:

x(t)= cos(9πt)+0.0001 cos(10πt)+ cos(11πt) , t is in msec

In computing the DTFT of this signal using a Kaiser window, how many
samples should be collected? It is required that the middle component,
if present, should stand 20 dB above the window sidelobes of the other
components.

2. Consider the following signal and filter:

x =

⎡⎢⎢⎢⎣
1
2
2
1

⎤⎥⎥⎥⎦ , h =

⎡⎢⎢⎢⎣
1
1
1
0

⎤⎥⎥⎥⎦
(a) Form the complex signal z = x + jh and calculate its 4-point FFT,

Z = FFT(z), using the decimation-in-time radix-2 FFT algorithm.

(b) Extract the 4-point FFTs X = FFT(x) and H = FFT(h) from the single
FFT Z that was computed in part (a).

(c) Calculate the mod-4 circular convolution of x and h by using the
formula: ỹ = IFFT

[
FFT(x)·FFT(h)

]
.

(d) Recompute the above circular convolution by using the time-domain
formula: ỹ =�h∗ x.

(e) Determine two other signals x1 and x2 of length 6 that have the same
4-point DFT as the signal x.

3. Consider the following signal in which the second term is a desired signal
and the remaining terms represent interference:

x(n)= cos
(πn

8

)+ cos
(πn

2

)+ sin
(3πn

4

)+ cos(πn)

(a) Using the bilinear transformation method, design a peaking resonator
filter H(z) that will let the desired signal pass through unchanged
(up to a possible phase-shift) and will attenuate the interfering com-
ponents by at least 10 dB. The filter must be designed on the basis
of its 10-dB width, which can be obtained from the figure below.
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(b) Show that the equivalent analog filter, whose bilinear transformation
generates the required digital filter H(z), is given by:

H(s)=
2
3s

s2 + 2
3s+ 1

(c) Working with the above analog filter, show that the steady-state out-
put of the digital filter will be:

y(n)= 0.137 cos
(πn

8
+1.434

)+cos
(πn

2

)+0.316 sin
(3πn

4
−1.249

)
Verify that the required filtering specifications are met.
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Hints

c = 6(R+ 12)
155

Ak = DFT(an), Bk = DFT(bn), Zk = DFT(an + jbn) ⇒

Ak = 1

2
(Zk + Z∗N−k) , Bk = 1

2j
(Zk − Z∗N−k)

H(z)=
(

β
1+ β

)
1− z−2

1− 2

(
cosω0

1+ β

)
z−1 +

(
1− β
1+ β

)
z−2

β = GB√
1−G2

B

tan
(
Δω

2

)

0.019+ 0.136 j = 0.137e1.434 j , 0.1− 0.3 j = 0.316e−1.249 j
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332:521 – Digital Signals and Filters
Final Exam - December 19, 2002

1. A digital audio tape recorder uses an order-N analog antialiasing Butter-
worth prefilter, which precedes a 16-times oversampled delta-sigma ADC,
which is followed by a digital decimation filter and a 16-fold downsampler
that reduces the sampling rate down to the standard rate of 48 kHz.

The passband attenuation of the prefilter is required to be less than 0.1
dB and its stopband attenuation more than 70 dB.

(a) The passband frequency of the prefilter is 24 kHz. What should its
stopband frequency be in kHz that would result in the smallest filter
orderN while still suppressing the aliased components by more than
70 dB?

(b) Assuming a near-perfect decimation filter, determine the order N of
the analog prefilter and its 3-dB normalization frequency in kHz.

(c) What is the actual stopband attenuation achieved by this prefilter?

2. A first-order noise-shaping ADC operating at the overasampled rate of
f ′s = Lfs reshapes the quantization noise power within the fs–Nyquist
interval according to the high-pass filter:

|HNS(f)|2 =
∣∣1− e−2πjf/Lfs

∣∣2 = 4 sin2(πf
Lfs

)
(a) Explain how the noise-shaping ADC achieves a savings in bits as com-

pared to a non-oversampled system of equivalent quality.

(b) Then, show that the savings in bits, ΔB = B − B′, is given by the
following exact formula:

ΔB = −0.5 log2

[
2

π

(
π
L
− sin

π
L

)]
(do not make any approximations in computing the integral of |HNS(f)|2.)

(c) Finally, show that in the limit of large L, this reduces to:

ΔB = 1.5 log2 L− 0.5 log2

(
π2

3

)
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3. Consider the peaking analog filter

H(s)= αs
s2 +αs+Ω2

0

It was shown in class that the 3-dB width of this filter is ΔΩ = α.

(a) Show that the bandedge frequencies at the 10-dB attenuation level
must satisfy the quartic equation:

Ω4 − (2Ω2
0 + 9α2)Ω2 +Ω4

0 = 0

Show that the 10-dB width is given by ΔΩ = 3α.

(b) A peaking digital filter H(z) operating at an 8 kHz sampling rate
was designed using the bilinear transformation method. It turned
out that the equivalent bilinearly transformed analog filter was:

H(s)= 0.5 s
s2 + 0.5 s+ 1

Determine the transfer functionH(z), realize it in its canonical form,
and write its sample processing algorithm using circular buffers.

(c) Determine the center frequency f0 and 10-dB widthΔf of the peaking
digital filter in kHz.

4. (a) Calculate by hand the radix-2, decimation-in-time, FFT of the signal:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
−4+√2

6
−4+√2

4
−4−√2

2
−4−√2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) Using the inverse DFT formula, express this signal as a sum of real-

valued sinusoids.
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332:521 – Digital Signals and Filters
Exam 1 - October 9, 2003

1. For a complex-valued stable signal xn, prove Parseval’s identity:

1

2π

∫ π
−π

∣∣X(ω)∣∣2 dω =
∞∑

n=−∞
|xn|2

where X(ω) is the DTFT:

X(ω)=
∞∑

n=−∞
xn e−jωn

Where was the assumption of stability used?

2. In this problem, assume that the quantities a,b are real-valued such that
|a| < 1 and |b| < 1.

(a) Determine all possible inverse z-transforms of the following z-transform:

X(z)= 1− ab
(1− az−1)(1− bz)

Identify the stable case and the causal case.

(b) Using the results of part (a), show the following integral:

1

2π

∫ π
−π

dω
(1− 2a cosω+ a2)(1− 2b cosω+ b2)

= 1+ ab
(1− ab)(1− a2)(1− b2)

3. A filter has transfer function:

H(z)= N(z)
D(z)

= 2+ z−2 + 4z−4

1− 0.5z−2

(a) Draw the canonical realization form of H(z) and write the corre-
sponding sample processing algorithm using a circular delay-line
buffer and a circular pointer. (You may invoke the functions tap
and cdelay, or you may use the sloppier notation si = ∗(p+ i), etc.)

(b) The following signal x = [1,2,3,4,5,6] is sent to the input of the
above filter. Iterate the sample processing algorithm of part (a) and
compute the output signal y(n) for 0 ≤ n ≤ 5. In the process, fill
the table of values of the circular buffer w and the states s0, s2, s4:

13

x w0 w1 w2 w3 w4 s0 s2 s4 y
1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...

6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 30

(To help you check your answer, the last output sample is y = 30.)

(c) Draw the transposed realization of H(z) and state its sample pro-
cessing algorithm.

(d) Without any further calculations, write down the first six output sam-
ples of the filter:

1

D(z)
= 1

1− 0.5z−2

driven by the same input as in part (b). Explain your reasoning.

Hints

|A− Be−jω|2 = A2 − 2AB cosω+ B2 , for real A,B,ω

1+ x+ x2 + x3 + · · · = 1

1− x , x+ x2 + x3 + · · · = x
1− x , for |x| < 1

1

1− az−1
←→

{
anu(n), if |z| > |a|
−anu(−n− 1), if |z| < |a|

14



332:521 – Digital Signals and Filters
Exam 2 - November 13, 2003

1. You have available the two separate filter blocks z−1 and H(z) as shown:

(a) Show how to use the blockH(z) and only one block z−1 to implement
the block diagram of the filter:

G(z)= z−1

1− z−1H(z)

(b) Suppose that the function [y,w]= h(x,w) implements the input-
output sample processing algorithm of the block H(z), where w is
an appropriate set of internal states for H(z). Using this function,
write down the sample processing algorithm for the block diagram
of the filter G(z).

2. An 8-point signal x(n), n = 0,1, . . . ,7, has the following 8-point FFT:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24
0
−8j

0
8
0
8j
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Express the signal x(n) as a sum of real-valued sinusoidal signals.

(b) Carry out by hand the inverse 8-point FFT of X. Verify that the re-
sulting time signal samples agree with those you found in part (a).

3. You wish to compute a 1024-point FFT, but your hardware can only ac-
commodate 256-point FFTs.

(a) Explain how you might use this hardware to compute the required
1024-point FFT in pieces. Discuss how you must partition the time
data, what FFTs must be computed, and how they must be re-combined.
Assume you have adequate hard-disk space available.

(b) Determine the total number of complex multiplications required by
your method and compare it to the cost of performing a single 1024-
point FFT.
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4. A signal x(n) has the following z-transform:

X(z)= 1− z−8

1− z−1

(a) Working directly with X(z) and without going to the time domain,
calculate the 8-point DFT of the signal x(n).

(b) Calculate by hand the inverse 8-point FFT of the DFT of part (a) and
obtain the time-domain samples x(n), n = 0,1, . . . ,7. Verify that
they are the same time samples as those obtained by the inverse z-
transform of X(z).

(c) Make a rough sketch of the magnitude |X(ω)| of the DTFT of x(n)
for 0 ≤ ω ≤ 2π, and superimpose on the sketch the 8-point DFT
values from part (a).

(d) Consider the signal x1(n) whose z-transform is:

X1(z)= (1+ z−1)(1+ z−2)(1+ z−4)(3− 2z−1)

Without calculating the 8-point DFT of x1(n), explain why the 8-point
DFTs of the signals x(n) and x1(n) are the same. (You may work in
the z-domain or give a time-domain explanation.)

16



332:521 – Digital Signals and Filters
Final Exam - December 16, 2003

1. For two complex-valued stable signals xn, yn, prove the generalized Par-
seval’s identity:

1

2π

∫ π
−π
Y∗(ω)X(ω)dω =

∞∑
n=−∞

y∗nxn

where X(ω),Y(ω) are the DTFTs:

X(ω)=
∞∑

n=−∞
xn e−jωn , Y(ω)=

∞∑
n=−∞

yn e−jωn

Where was the assumption of stability used?

2. Consider two length-8, real-valued, signals an, bn and form the complex
valued signal zn = an + jbn for n = 0,1, . . . ,7. Suppose the 8-point DFT
of zn is given as follows:

Zk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
8
0
0
8j
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Extract from Zk the 8-point DFTs, Ak,Bk, of the signals an, bn.

(b) Applying the inverse DFT formula on Ak and Bk and without per-
forming any DFT/FFT calculations, determine the real-valued signals
an, bn, expressed as sums of real-valued sinusoids.

3. It is desired to design a third-order digital lowpass Butterworth filter using
the bilinear transformation method. The sampling rate is 8 kHz and the
filter’s 3-dB frequency is 2 kHz.

(a) Determine the transfer function H(z).

(b) Draw a rough sketch of the magnitude response of the filter over the
frequency range 0 ≤ f ≤ 16 kHz.
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4. A 3-times interpolation filter calculates two missing samples between any
two low-rate samples. For example, the two missing samples X,Y shown
below may be calculated as linear combinations of four low-rate surround-
ing samples:

X = c1A+ c2B+ c3C+ c4D

Y = d1A+ d2B+ d3C+ d4D

(a) Determine the coefficients ci, di if a sinc-interpolation filter is used
that has length 13. (Do not just give the answer - you must work out
all the design details.)

(b) Determine the coefficients ci, di if a linear interpolator is used.

Hints

Zk = Ak + jBk , Z∗N−k = Ak − jBk

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2 , θi = π

2N
(N − 1+ 2i)

ai1 = 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2 , ai2 = 1+ 2Ω0 cosθi +Ω2

0

1− 2Ω0 cosθi +Ω0
2

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1

18



332:521 – Digital Signals and Filters
Exam 1 - October 14, 2004

1. The analog antialiasing prefilter used in a particular DSP application has a
flat passband over the frequency interval of interest, 0 ≤ f ≤ fmax. Beyond
fmax, the prefilter attenuates at a rate ofα dB per octave. The input analog
signal to the prefilter has the following spectrum beyond fmax (given in dB
and normalized to unity at fmax):

Ain(f)= −10 log10

[
1.1

1+ 0.1(f/fmax)4

]
, f ≥ fmax

It is required to pick the value of the attenuation constantα of the prefilter
in order that the aliased frequency components due to sampling that are
aliased within the fmax interval of interest be suppressed by at least 50 dB.

(a) Determine α if the sampling rate is taken to be fs = 3fmax .

(b) Determine α if the sampling rate is taken to be fs = 5fmax .

(c) Determine the sampling rate fs if α = 24 dB/octave.

2. Consider the causal and stable filter with impulse responseh(n)= anu(n),
where |a| < 1. The input-on behavior of this filter may be studied by ap-
plying to it a one-sided sinusoid that starts at n = 0 and continues till
n = ∞. The input-off behavior may be studied by applying a sinusoid
that has been on since n = −∞ and turns off at n = 0.

(a) Using z-transforms and partial fraction expansions, show that the
output signals are given as follows in the two cases:

x(n)= ejω0nu(n) H−→ y(n)= H(ω0)ejω0nu(n)+Banu(n)

x(n)= ejω0nu(−n− 1) H−→ y(n)= H(ω0)ejω0nu(−n− 1)−Banu(n)

What is the coefficient B?

(b) What are the ROCs of the output signals y(n) in the two cases?

(c) Using the results of part (a), determine the output signal y(n) when
the input is the double-sided sinusoid x(n)= ejω0n, −∞ < n <∞.
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3. Consider the signal:

x(n)= u(n)+(−1)nu(n)+2 sin
(πn

2

)
u(n)

(a) Determine its z-transform and the corresponding ROC.

(b) It is desired to design a notch filter that filters out the third term of
the above signal x(n). Design such a notch filter (that is, determine
its transfer functionH(z)) assuming that the 3-dB width of the notch
is Δω = 0.02 rads/sample and that the filter is normalized to unity-
gain at DC.

(c) Determine the steady-state form of the output signal ysteady(n) and
discuss whether or not the filter notches out the last term of x(n)
and faithfully reproduces the first two terms.

4. Consider the period-4 causal periodic signal:

x(n)= {1,2,3,4︸ ︷︷ ︸
one period

,1,2,3,4, . . . }

where the dots . . . represent the repetition of the basic period [1,2,3,4].

(a) Determine the z-transform of x(n) and its ROC.

(b) Show that x(n) can be written as a linear combination of four causal
complex sinusoids. What are the frequencies of these sinusoids in
rads/sample? (It is not necessary to evaluate numerically the ampli-
tudes of the sinusoids.)

(c) Consider the filter H(z)= 1+ 2z−4

1+ 0.5z−4
.

Show that this is an allpass filter, that is, show that |H(ω)| = G, for
all ω. What is the value of the constant gain G?

(d) The signal x(n) is sent to the input ofH(z). Using the results of part
(b), show that in the steady-state limit, the output signal y(n)will also
be a periodic sequence. What is that sequence? Approximately, how
long would it take for the periodic output to start appearing?
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330:521 – Digital Signals and Filters
Exam 2 — November 18, 2004

1. Consider the filter H(z)= 1+ 2z−2 − z−4

1− 0.5z−4
.

(a) Draw its canonical realization form and write the corresponding sam-
ple processing algorithm using a circular delay-line buffer.

(b) Draw its transposed realization form and state its sample processing
algorithm with the help of appropriate internal states.

(c) For the canonical realization, iterate the circular-buffer sample pro-
cessing algorithm of part (a) and calculate the output samples y(n),
n = 0,1, . . .5, for the following input x = [8,6,4,2,8,6]. Make a
table, as shown below, that displays, at each time instant, the values
of the circular buffer entries w0,w1,w2,w3,w4, the states s0, s2, s4,
and the input and output samples x, y.

x w0 w1 w2 w3 w4 s0 s2 s4 y
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...

6 ∗ ∗ ∗ ∗ ∗ 9 ∗ ∗ ∗
(To help you check your answer, the last value of s0 is 9.)

2. Consider the causal periodic sequence of period four:

x(n)= [4,3,2,1︸ ︷︷ ︸
one period

,4,3,2,1,4,3,2,1, . . . ]

(a) Show that this sequence may be expressed as a sum of four sinusoidal
signals:

x(n)= A0ejω0n +A1ejω1n +A2ejω2n +A3ejω3n , n ≥ 0

Determine the frequencies ωi. Determine the coefficients Ai by cal-
culating an appropriate 4-point DFT.

(b) Suppose that the sequence x(n) is sent to the input of the filterH(z)
of the previous problem. Show that, in the steady-state, the output
signal will also be periodic and will have the form:

ysteady(n)= B0ejω0n + B1ejω1n + B2ejω2n + B3ejω3n , n ≥ 0

Determine the numerical values of Bi. Explain your reasoning.

(c) By performing an inverse 4-point DFT, determine the numerical val-
ues of the periodic sequence ysteady(n).
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3. Consider the 8-point signal:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3− 2

√
2

0
−3+ 2

√
2

−4
3+ 2

√
2

0
−3− 2

√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Calculate its 8-point FFT by hand.

(b) Express the time samples x(n) as a linear combination of real-valued
sinusoidal (or cosinusoidal) signals.

4. Consider the following analog signal consisting of three sinusoids:

x(t)= cos(2πf1t)+10−3 cos(2πf2t)+ cos(2πf3t)

where f1 = 1.5 kHz and f3 = 3.2 kHz. The middle term represents a weak
sinusoid of unknown frequency f2 whose presence we wish to detect by
sampling x(t) and computing its DTFT spectrum. The sampling rate is
10 kHz. We know from prior information that the frequency f2 must lie
somewhere in the interval 2 ≤ f2 ≤ 3 kHz.

It is desired to assess and compare the use of the rectangular, Hamming,
and Kaiser windows for this spectral analysis problem. For each of these
three windows, determine the following:

(a) Can this particular window be used? Why or why not?

(b) If the answer to part (a) is yes, then how many time samples should
be collected in order for the DTFT to exhibit the three sinusoidal
spectral peaks of this signal?
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330:521 – Digital Signals and Filters
Final Exam — December 16, 2004

1. Consider the 8-point signal:

x = [1,0,−1,−√2,−1,0,1,
√

2]

(a) Calculate its 8-point FFT by hand.

(b) Based on the results of (a), express x(n) as a sum of real-valued
sinusoidal and/or cosinusoidal signals. Verify that your expression
correctly generates the given time samples.

2. Using a third-order lowpass analog Butterworth prototype and the band-
pass version of the bilinear transformation, design a bandpass digital filter
that has the following specifications:

– sampling rate of 8 kHz
– center frequency of 2 kHz
– left 3-dB frequency of 1 kHz

(a) From these specifications, determine the values of the Butterworth
parameter Ω0 and bilinear transformation parameter c.

(b) Determine the transfer function H(z) of the designed digital filter.

(c) The magnitude response of such a filter is shown above. Show that
this response is given by:

|H(f)|2 = 1

1+ cot6(πf/4)
, f in units of kHz

3. A fast-rate signal y′(n′) is downsampled by a factor of L resulting into
the slow-rate signal ydown(n)= y′(nL). Let yup(n′) be the upsampled
version of ydown(n) consisting of the low-rate samples and L−1 zeros
inserted between them, as shown in the figure below.

The process of going from the signal y′(n′) to yup(n′)may be thought of
as the multiplication of y′(n′) by a periodic train of unit pulses spaced at
multiples of L with respect to the fast time scale, that is,

yup(n′)= s(n′)y′(n′) , where s(n′)=
∞∑

n=−∞
δ(n′ − nL)
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(a) Because s(n′) is periodic in n′ with period L, it can be expanded in
a discrete Fourier series representation of the form:

s(n′)= 1

L

L−1∑
k=0

S(k)e2πjkn′/L

where S(k) is the L-point DFT of one period of s(n′). Determine the
DFT S(k), for k = 0,1, . . . , L− 1.

(b) Using the result of part (a), show the basic spectrum replication prop-
erty that was proven in class by different means:

Ydown(f)= Yup(f)= 1

L

L−1∑
k=0

Y′(f − kfs)

where fs and f ′s = Lfs are the slow and fast sampling rates and the
DTFT’s are defined as usual by:

Ydown(f)=
∑
n
ydown(n)e−2πjfn/fs , Yup(f)=

∑
n′
yup(n′)e−2πjfn′/f ′s

Y′(f)=
∑
n′
y′(n′)e−2πjfn′/f ′s

4. A discrete-time model of a second-order noise-shaping delta-sigma quan-
tizer is shown in the figure below.

(a) Write the I/O equation in the form:

Y′(ζ)= Hx(ζ)X′(ζ)+HNS(ζ)E′(ζ)

and determine the signal and noise transfer functions Hx(ζ) and
HNS(ζ) in terms of the loop filters H1(ζ) and H2(ζ).

(b) Then, determineH1(ζ) andH2(ζ) in order that the signal and noise
transfer functions have the forms:

Hx(ζ)= 1, HNS(ζ)= (1− ζ−1)2

+ +

− −
H2(ζ)H1(ζ)

ζ -1

x′(n′) y′(n′)

e′(n′), E′(ζ)

X′(ζ) Y′(ζ)
quantizer

24



332:521 – Digital Signals and Filters
Exam 1 - October 13, 2005

1. Consider the following noisy “speech” signal, where t is in milliseconds:

x(t)= sin(2πt)+ sin(4πt)︸ ︷︷ ︸
speech part

+ sin(14πt)+ sin(20πt)︸ ︷︷ ︸
noise part

This signal is prefiltered by an analog antialiasing prefilterH(f) and then
sampled at the speech rate of 8 kHz, as shown below.

The resulting samples are immediately reconstructed by an ideal recon-
structor. Consider the cases of the following three antialiasing prefilters:

(A) There is no prefilter, that is, H(f)≡ 1.

(B) H(f) is an ideal prefilter with cutoff of 4 kHz.

(C) H(f) is an Nth order Butterworth filter with magnitude response:

|H(f)| = 1√
1+ (f/4)2N

, (f is in kHz)

(a) For filters (A) and (B), determine the outputs y(t) and ya(t) of the
prefilter and reconstructor, and compare ya(t) with the speech part
of x(t) (you may ignore the filter’s phase response.)

(b) For filter (C), determine the filter order N such that the components
of the signal x(t) that are aliased into the Nyquist interval be sup-
pressed by more than 34 dB. For this value of N, determine the out-
puts y(t) and ya(t).

2. Let X(z) be the z-transform of a double-sided signal x(n). Assume that
its ROC is an annular region R1 < |z| < R2. Consider the following four
transformations of X(z):

(A) Y(z)= X(1/z)
(B) Y(z)= X(z/a) , a is a given constant

(C) Y(z)= −zdX(z)
dz

(D) Y(z)= X(z4)
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(a) For each case, determine the relationship between the inverse z-
transform signal y(n) and the original signal x(n). Discuss also
how the ROC is transformed.

(b) Using the differentiation property (C), show the z-transform pair:

(n+ 1)anu(n) �
1

(1− az−1)2
, |z| > |a|

3. Consider the filter defined by the block diagram shown below.

(a) Introduce appropriate internal states and write the sample by sample
processing algorithm for computing each output sample y from each
input sample x.

(b) Working in the z-domain, show that the transfer function from the
input x to the output y of this block diagram is given by:

H(z)= 1− 0.5z−1

1+ 0.25z−2

(c) Using partial fraction expansions, show that the corresponding causal
impulse response is given by:

h(n)= (0.5)n
[

cos
(
πn
2

)
− sin

(
πn
2

)]
u(n)
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332:521 – Digital Signals and Filters
Exam 2 - November 17, 2005

1. A filter is defined by the following block diagram:

(a) Introduce appropriate internal states and then write the sample pro-
cessing algorithm for computing each output sample y from each
input sample x.

(b) Assuming that c0 is real such that |c0| < 1 and s0 = (1−c2
0)1/2, show

that the transfer function G(z) of the sub-diagrams demarcated by
the dashed lines is given by

G(z)= z
−1(c0 − z−1)
1− c0z−1

(c) Draw a realization of G(z) that uses only one multiplier c0.

(d) Replacing the dashed boxes byG(z), determine the transfer function
H(z) from x to y, expressed in terms of the coefficients {a1, a2,
b0, b1, b2} and G(z).

2. Consider the filter: H(z)= 1+ z−1

1+ z−1 − 0.5z−3
.

Draw its canonical realization and write the corresponding sample pro-
cessing algorithm using a circular-delay-line buffer. Then, for the input
signal x = [8,6,4,2,1], iterate the sample processing algorithm, and
compute the output signal y(n) for 0 ≤ n ≤ 4. In the process, fill in the
table of values of the circular buffer w and the states s0, s1, s2, s3:

x w0 w1 w2 w3 s0 s1 s2 s3 y
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...
1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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3. Calculate the 8-point FFT of the following 8-point time signal:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2+√2
−1

2+√2
1

2−√2
−1

2−√2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the calculated DFT, express the signal samples x(n) as a sum of
real-valued sinusoidal signals. Show all steps.
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332:521 – Digital Signals and Filters
Final Exam - December 20, 2005

1. It is desired to design an FIR interpolation filter for the playback system
of a digital audio system with an oversampling ratio of L = 5. The audio
band extends to 20 kHz and the input to the interpolator is arriving at the
low rate of fs = 40 kHz.

The output of the interpolation filter is reconstructed by a staircase DAC
and then fed into a third-order Butterworth analog anti-image postfilter.

(a) Using a Kaiser design, determine the length N of such an interpo-
lation filter if it is to have a stopband attenuation of 70 dB and a
transition width of 4 kHz (about the 20 kHz passband frequency.)

(b) The combination of the staircase DAC and postfilter is required to
suppress the spectral images at the output of the interpolator by
more than 70 dB. How much of that 70 dB attenuation is going to be
provided by the DAC and how much by the postfilter?

(c) Determine the 3-dB frequency in kHz of the Butterworth anti-image
postfilter. Then, determine the maximum attenuation in dB that the
DAC and postfilter introduce within the 20-kHz audio band.

(d) The FIR interpolation filter whose length N was determined above
is required to equalize this maximum attenuation within the audio
band arising from the DAC and postfilter. Write down the explicit
design equation from which one may to calculate the interpolation
filter’s impulse response (it must include the Kaiser window factor).

[Hint: α = 0.1102(A− 8.7).]

2. A discrete-time model of an oversampled noise-shaping quantizer is shown
below, where ζ−1 represents the unit delay with respect to the fast time
scale.

(a) Assuming that the quantizer function isQ(w)= sign(w), write down
the sample processing algorithm for computing each quantized fast
sample y′ from each unquantized fast sample x′.

(b) Replace this quantizer with an equivalent noise source, that is, set
Q(wn′)= wn′ + en′ . Show that the input/output relationship of this
block diagram can be written in the form:

Y′(ζ)= Hx(ζ)X′(ζ)+HNS(ζ)E′(ζ)

and determine the explicit form of Hx(ζ) and HNS(ζ).

3. The following digital filter operating at a rate of 8 kHz was the result of
applying the (lowpass) bilinear transformation on an equivalent lowpass
analog Butterworth filter:

H(z)=
1

6
(1+ z−1)3

1+ 1

3
z−2

(a) Determine the orderN and 3-dB frequencyΩ0 of the equivalent ana-
log Butterworth filter.

(b) Determine the equivalent analog transfer function Ha(s) that gave
rise to the above H(z).

(c) Determine the 3-dB frequency of the digital filter in kHz.

(d) Suppose you want to design a Butterworth bandpass filter centered
at 2 kHz and having the same passband and stopband attenuation
specifications as the aboveH(z). What simple change inH(z)would
generate such a bandpass filter?



332:521 – Digital Signals and Filters
Exam 1 – October 12, 2006

1. The maximum frequency of interest in a speech signal is 4 kHz. Beyond
4 kHz, the signal attenuates at a rate of 20 dB/octave.

(a) Determine the required sampling rate fs in kHz if no antialiasing filter
is used and if the frequency components aliased back into the 4-kHz
interval of interest must be suppressed by more than 20 dB.

(b) Suppose now that an order-4 Butterworth filter is used as an antialias-
ing prefilter, having a magnitude response squared:

|H(f)|2 = 1

1+ a
(
f
4

)8

First, determine the constant a such that the attenuation caused by
the filter within the 4-kHz interval remain less than 0.2 dB.
Second, using the value of fs from part (a), determine the total sup-
pression in dB of the aliased components into the 4-kHz interval.

(c) For the above signal and filter, set up a single equation that would de-
termine fs given that the total attenuation of the components aliased
into the 4-kHz interval is required to be greater than A dB.
Then, by trial-and-error determine fs in kHz when A = 45 dB. How
much of the 45 dB is due to the signal and how much to the filter?

2. Consider the two signals:

x1(n)= anu(n) , x2(n)= a−nu(−n)
where a is a real parameter satisfying |a| < 1.

(a) Determine the z-transformsX1(z) andX2(z) and the corresponding
ROC’s.

(b) Working in the time domain, calculate the convolution of x1(n) and
x2(n), that is,

y(n)=
∑
m
x1(m)x2(n−m)

where you must first determine the range of the output index n, and
the proper range of summation overm. [Hint: y(n) is a double-sided
function of n, so do the cases n ≥ 0 and n < 0 separately.]

(c) Using the time-domain result of part (b), determine the z-transform
of y(n) and its ROC by adding up the series

∑
n y(n)z−n. Verify that

Y(z)= X1(z)X2(z).
(d) Discuss the stability properties of x1(n), x2(n), y(n).

3. Consider the following filter and causal input signal:

H(z)= −0.5+ z−1

1− 0.5z−1

x(n)= 1+ cos
(
πn
2

)
+ cos(πn) , n ≥ 0

(a) Show that the corresponding steady-state output will have the form:

ysteady(n)= 1− 0.8 cos
(
πn
2

)
+ 0.6 sin

(
πn
2

)
− cos(πn) , n ≥ 0

(b) Defining the angles θ1 = arctan(0.6/0.8)−π and θ2 = π, show that
the above output can be written as:

ysteady(n)= 1+ cos
(
πn
2
+ θ1

)
+ cos(πn+ θ2)

What do these angles θ1, θ2 have to do with H(z)?

(c) Determine the causal impulse response of H(z).

(d) Show that this filter is an allpass filter, that is, |H(ω)| = 1, for
all values of ω (that is why the three input sinusoids pass through
unchanged except for a phase shift.)



332:521 – Digital Signals and Filters
Exam 2 – November 16, 2006

1. Consider the filter: H(z)= 1− 2z−1 + z−2

1+ z−1 − 0.5z−2
.

Draw its canonical realization and write the corresponding sample pro-
cessing algorithm using a circular-delay-line buffer. Then, for the input
signal x = [1,2,4,6,8], iterate the sample processing algorithm, and
compute the output signal y(n) for 0 ≤ n ≤ 4. In the process, fill in the
table of values of the circular buffer w and the states s0, s1, s2, s3:

x w0 w1 w2 w3 s0 s1 s2 s3 y
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...
1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2. Consider the causal periodic sequence of period 4:

x(n)= [5,2,5,4︸ ︷︷ ︸,5,2,5,4︸ ︷︷ ︸,5,2,5,4︸ ︷︷ ︸, . . . ]
where the dots represent the repetition of the period [5,2,5,4]. The sig-
nal x(n) is next filtered through the filter

H(z)= 3− 1.5z−1

1− 0.5z−2

Using FFT methods, determine the steady-state output from this filter and
show that it is also periodic with period 4. Write down this periodic output
explicitly.

How quickly does the filter output become periodic after sending x(n) in?

3. Let X(k),Y(k) be the N-point DFTs of the two length-N complex-valued
signals x(n), y(n). Prove the following generalized form of Parseval’s
identity:

N−1∑
n=0

y∗(n)x(n)= 1

N

N−1∑
k=0

Y∗(k)X(k)

4. Calculate the 8-point FFT of the following time signal:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
5+√2

4
3+√2

6
5−√2

8
3−√2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
5. An 8-point real-valued signal has the following 8-point DFT:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

40
0

−4j
−8j

8
∗
∗
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) What are the values of the starred entries?

(b) Express the time-domain signal x(n) as a linear combination of real-
valued sinusoidal and/or cosinusoidal signals.



330:521 – Digital Signals and Filters
Final Exam — December 19, 2006

1. Using a third-order lowpass analog Butterworth prototype and the band-
stop version of the bilinear transformation, design a bandstop digital filter
that has the following specifications:

– sampling rate of 8 kHz
– center frequency of 2 kHz
– left 3-dB frequency of 1 kHz

(a) From these specifications, determine the values of the Butterworth
parameter Ω0 and bilinear transformation parameter c0.

(b) Determine the transfer function H(z) of the designed digital filter.

(c) The magnitude response of such a filter is shown above. Show that
this response is given analytically by:

|H(f)|2 = 1

1+ tan6(πf/4)
, f in units of kHz

2. Calculate the 8-point FFT of the following time signal:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3+√2

2
−3−√2

0
3−√2

2
−3+√2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3. A periodic signal x(n) with period eight has the following 8-point DFT:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
8
−12j

0
8
0

12j
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Express x(n) as a sum of real-valued sinusoidal signals.
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(b) The periodic signal x(n) is sent to the filter designed in Problem 1.
Determine the steady output signal ysteady(n) and express it as a sum
of real-valued sinusoidal signals. [Hint: (1+ j)3= −2+ 2j.]

(c) Explain the results of part (b) based on the frequency response shown
in Problem 1.

4. A 5-times interpolation filter calculates four missing samples between any
two low-rate samples, as shown below. For example, three possible ways
of calculating the four missing samples [w, x, y, z] as linear combinations
of four low-rate surrounding samples [a, b, c, d] are as follows:

⎡⎢⎢⎢⎣
w
x
y
z

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−0.10 0.23 0.94 −0.16
−0.19 0.50 0.76 −0.22
−0.22 0.76 0.50 −0.19
−0.16 0.94 0.23 −0.10

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
d
c
b
a

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
w
x
y
z

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
−0.01 0.16 0.91 −0.06
−0.03 0.41 0.69 −0.06
−0.06 0.69 0.41 −0.03
−0.06 0.91 0.16 −0.01

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
d
c
b
a

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
w
x
y
z

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0.2 0.8
0.4 0.6
0.6 0.4
0.8 0.2

⎤⎥⎥⎥⎦
[
c
b

]

(a) In each case, please explain where these expressions come from and
how the matrix coefficients were obtained.

(b) For each case, determine the length N of the interpolation filter, its
passband and stopband attenuations in dB, and its transition width
in units of the low rate fs.
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332:521 – Digital Signals and Filters
Exam 1 – October 11, 2007

1. In a particular DSP application the maximum frequency of interest is fmax.
Beyond fmax, the input signal to be sampled attenuates at a rate of α
dB/octave.

To suppress aliased frequency components within the desired fmax range,
an analog antialiasing prefilter was designed and found to have the fol-
lowing Butterworth magnitude-square response:

|H(f)|2 = 1

1+ 0.1
(
f
fmax

)8

It is known that within the fmax range of interest the aliased components
due to sampling are suppressed by 50 dB. Moreover, it is known that 30%
of that arises from the filter and 70% from the input signal.

(a) Determine the sampling rate fs in units of fmax.

(b) Determine the attenuation rate α in dB/octave of the input signal.

2. Consider the two signals:

h(n)= anu(n) , x(n)= −bnu(−n− 1)

(a) Working in the time domain, determine the convolution:

y(n)=
∑
m
x(m)h(n−m)

and express it in closed form for n ≥ 0 and n ≤ −1 by using the
geometric series to perform the above summation. Under what con-
ditions on a,b are your results valid?

(b) Determine the z-transform of y(n) and its ROC. Under what condi-
tions on a,b does the z-transform exist? Under what conditions is
y(n) stable?

3. Consider the filter:

H(z)= 2− z−2 + z−3

1+ z−1 − 0.5z−3

(a) Draw the transposed realization of this filter. Let v1, v2, v3 denote
the contents of the three delays that appear in this realization. With
the help of these variables, state the sample processing algorithm for
computing each output sample y from each input sample x.
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(b) For the following input signal x = [5,4,3,2,1], iterate the above
sample processing algorithm to compute the corresponding output
samples, and in the process fill in the entries of the following table:

x v1 v2 v3 y
5 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
2 ∗ 0 ∗ ∗
1 ∗ ∗ ∗ ∗
∗ 4.5 ∗

To help you check your answer, a couple of table entries are given.

(c) Draw the canonical realization of this filter and state its sample pro-
cessing algorithm using circular buffers.

(d) Iterate the sample processing algorithm on the above input signal
and in the process fill-in the entries of the following table, where wi
are the circular buffer entries, and si, the states.

x w0 w1 w2 w3 s0 s1 s2 s3 y
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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332:521 – Digital Signals and Filters
Exam 2 – November 15, 2007

1. The following digital filter operating at a rate of 20 kHz was the result of
applying the highpass bilinear transformation on an equivalent lowpass
analog Butterworth filter:

H(z)=
1

6
(1− z−1)3

1+ 1

3
z−2

(a) Determine the order N and 3-dB frequency Ω0 of the equivalent LP
analog Butterworth filter.

(b) Determine the equivalent LP analog transfer functionHa(s) that gave
rise to the above H(z).

(c) Determine the 3-dB frequency of the digital filter in kHz. Make a
rough sketch of |H(f)|2 for 0 ≤ f ≤ 10 kHz.

2. Compute the FFT of the 8-point time signal:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−1−√2

2
−1
0

−1+√2
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3. The following signal is sampled at a rate of 8 kHz and 8 consecutive time

samples are collected:

x(t)= cos(6πt)+ cos(8πt)+ sin(10πt) , with t in msec

Without performing any DFT/FFT calculations, determine the 8-point FFT
of the 8 collected time samples.

4. Consider the LP analog shelving filter:

|Ha(Ω)|2 = 4+ 2Ω2

1+ 2Ω2

(a) What is the DC gain G of this filter in absolute units and in dB?
What is the 3-dB frequencyΩ0 of this filter (defined by the condition
|Ha(Ω)|2 = G2/2)? Make a sketch of |Ha(Ω)|2 versus Ω indicating
the 3-dB point.
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(b) What is the transfer function Ha(s) of this filter? (Both zeros and
poles must be in the left-hand plane.)

(c) Using the BP bilinear transformation, the analog filter Ha(s) is to
be transformed into a digital equalizer filter operating at a rate of
fs = 8 kHz and having a center frequency at f0 = 2 kHz. Show that
the resulting filter is

H(z)= b 1+ az−2

1− az−2
, b = √2 , a = 1−√2

1+√2

(d) What is the gain of this filter in dB at DC? At the peak? At Nyquist?

(e) What is the 3-dB width in kHz of this filter measured from the peak?
What are the corresponding left and right 3-dB bandedge frequencies
in kHz? Sketch the magnitude response |H(f)|2 versus 0 ≤ f ≤ 4
kHz.

(f) The above filter was a boosting filter. A cutting filter that cuts fre-
quencies in the opposite way as the boosting filter is defined by in-
verting the gains:

|Ha(Ω)|2 = 4−1 + 2−1Ω2

1+ 2−1Ω2

Show that the same design procedure leads to the exact inverse of
both the analog shelving filter and the digital equalizer, for example,

H(z)= b−1 1− az−2

1+ az−2

Hints

Gi = Ω2
0

1− 2Ω0 cosθi +Ω0
2 , θi = π

2N
(N − 1+ 2i)

ai1 = − 2(Ω2
0 − 1)

1− 2Ω0 cosθi +Ω0
2 , ai2 = 1+ 2Ω0 cosθi +Ω2

0

1− 2Ω0 cosθi +Ω0
2

G0 = Ω0

Ω0 + 1
, a01 = −Ω0 − 1

Ω0 + 1

cosω0 − cosω±
sinω±

= ±Ω0

Ω0 = tan
(
ω+ −ω−

2

)
, cosω± =

cosω0 ∓Ω0

√
Ω2

0 + sin2ω0

1+Ω2
0
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332:521 – Digital Signals and Filters
Final Exam – December 19, 2007

1. Consider the 8-point signal:

x(n)= cos(πn)+ cos
(
πn
2

)
+ sin

(
πn
2

)
, n = 0,1, . . . ,7

Determine its 8-point DFT in two ways:

(a) By calculating it numerically doing an 8-point FFT by hand.

(b) By matching the appropriate terms in the inverse DFT formula.

2. It is desired to design a 10-times oversampling interpolator filter for the
playback system of a CD player. The low rate sampling frequency is 44.1
kHz and the transition width of the filter is 4.41 kHz. The minimum stop-
band attenuation is required to be 60 dB.

(a) Using a Kaiser design, determine the lengthN of the filter. Calculate
the number of low-rate CD samples that are used to compute each
interpolated sample. [Hint: D = (A− 7.95)/14.36.]

(b) Assuming the filter is implemented in its polyphase form, calculate
the computational rate R of the filter in MACs/sec. Can a modern
DSP chip handle this filter? If the DSP chip has a MAC instruction
time of 20 nsec, then what would be the maximum filter length N of
the interpolation filter that it can handle?

(c) Assume next that the filter is to be implemented as a 2×5 multistage
design. Calculate the required lengthsN0 and N1 of the 2-times and
5-times interpolating stages. Calculate the total computational rate
Rmulti in MACs/sec and compare it with the rate R of the single-stage
design of the previous question (assume that each stage is imple-
mented in its polyphase form.)

(d) Repeat part (c) for a 5×2 multistage design. Which of the three de-
signs is the most efficient?

(e) For parts (c,d), make a sketch of the magnitude responses of the
filters in the two stages over the frequency range 0 ≤ f ≤ 10fs.
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3. A discrete-time model of an oversampled noise-shaping quantizer is shown
below, where ζ−1 represents the unit delay with respect to the fast time
scale, and the dashed boxes represent discrete-time integrators:

(a) Assuming that the quantizer function isQ(w)= sign(w), write down
the sample processing algorithm for computing each quantized fast
sample y′ from each unquantized fast sample x′.

(b) Replace this quantizer with an equivalent noise source, that is, set
Q(wn′)= wn′ + en′ . Show that the input/output relationship of this
block diagram can be written in the form:

Y′(ζ)= Hx(ζ)X′(ζ)+HNS(ζ)E′(ζ)

and determine the explicit form of Hx(ζ) and HNS(ζ).
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332:521 – Digital Signals and Filters
Exam 1 – October 8, 2009

1. In recent audio applications, it is common to use the sampling rate fs =
2×48 = 96 kHz. It is desired to use anNth order Butterworth analog pre-
filter whose attenuation in dB is given as follows, where f0 is a parameter:

A(f)= 10 log10

⎡⎣1+
(
f
f0

)2N
⎤⎦

(a) The highest audio frequency of interest is fmax = 20 kHz. What
should be the passband and stopband frequencies fpass, fstop in kHz
for this prefilter?

(b) The audio signal to be sampled has a spectrum that attenuates at a
rate of 15 dB/octave beyond the 20 kHz maximum frequency. It is
desired to suppress the aliased components within the audio band
by at least 50 dB.

What should be the attenuation Astop in dB that must be provided by
the prefilter at its stopband frequency fstop?

(c) Let Apass be the attenuation of the prefilter within the audio band.
Show that the quantities fs, fmax,Astop,Apass must be related by:

fs = fmax

⎡⎢⎣1+
(

10Astop/10 − 1

10Apass/10 − 1

) 1
2N

⎤⎥⎦
How would you interpret the limit N →∞?

(d) Assuming that Apass = 0.2 dB, determine the filter parameters N, f0
to meet the above aliasing requirements.

For the derived values ofN, f0, determine the actual values forAstop,
Apass achieved by the filter at fpass, fstop.

2. Consider the following z-transform whose ROC is |z| > |a| with |a| < 1,

X(z)= az−1

(1− az−1)2
=
[

az−1

1− az−1

]
·
[

1

1− az−1

]

Determine the inverse z-transforms of the two factors in the brackets.
Then, convolve them in the time domain to determine the inverse z-transform
of X(z).
As a separate question, consider the signal x(n)= anu(n)+bnu(−n). For
what relative values of the complex numbers a,b does the z-transform of
x(n) exist?
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3. Consider the multi-notch filter discussed in class:

H(z)= G 1− z−D
1− az−D , G = 1+ a

2
, 0 < a < 1

(a) Using the geometric series expansion determine the impulse response
h(n) of this filter and sketch it over 0 ≤ n ≤ 4D.

(b) Show that the magnitude response squared of this filter is given by,

|H(ω)|2 = G2 2− 2 cos(ωD)
1− 2a cos(ωD)+a2

It is depicted below for a = 0.5 and D = 8.

(c) Show that the 3-dB width, defined in terms of the 3-dB frequency by
Δω = 2ωc and depicted below, is given by

tan
(
DΔω

4

)
= 1− a

1+ a
Hint: First solve for ωc and then use the trig identity:

tan2
(
x
2

)
= 1− cosx

1+ cosx
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332:521 – Digital Signals and Filters
Exam 2 – November 15, 2009

1. Consider the 8-point signal:

x(n) = 2 cos(πn)+ cos
(

3πn
2

)
+ sin

(
3πn

2

)
, n = 0,1, . . . ,7

= [3, −3, 1, −1, 3, −3, 1, −1]

Determine its 8-point DFT in two ways:

(a) By calculating it numerically doing an 8-point FFT by hand.

(b) By matching the appropriate terms in the inverse DFT formula.

2. Consider the filter H(z)= 1− z−2

1− 0.5z−4
.

(a) Draw its canonical realization form and write the corresponding sam-
ple processing algorithm using a circular delay-line buffer.

(b) Draw its transposed realization form and state its sample processing
algorithm with the help of appropriate internal states.

(c) For the canonical realization, iterate the circular-buffer sample pro-
cessing algorithm of part (a) and calculate the output samples y(n),
n = 0,1, . . . ,5, for the following input x = [3, −3, 1, −1, 3, −3].
Make a table, as shown below, that displays, at each time instant,
the values of the circular buffer entriesw0,w1,w2,w3,w4, the states
s0, s2, s4, and the input and output samples x, y.

x w0 w1 w2 w3 w4 s0 s2 s4 y
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...

−3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −3.5

(To help you check your answer, the last value of y is −3.5.)

3. The input signal of Problem 3 corresponds to the first 6 samples of the 8-
point signal given in Problem 1. Suppose that 8-point signal x = [3, −3, 1,
−1, 3, −3, 1, −1] is sent periodically into the above filter, that is, its input
is now the signal [x,x,x, . . . , ]. After the transients die out, the output
will be periodic with period 8.

Using FFT methods, determine one period of this periodic output. For
this calculation, you will need the values of the frequency response of the
above filter at the 8 DFT frequencies.
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To save you time, these are given below:

H(ωk)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2(1+ j)/3

4
2(1− j)/3

0
2(1+ j)/3

4
2(1− j)/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Roughly, how many periods does it take for the output to settle into the
steady-state periodic output?

4. (a) Given a DTFT pair x(n)←→ X(ω), what is the DTFT of the complex
conjugate signal x∗(n) in terms of X(ω)?

(b) Given a N-point DFT pair x(n)←→ X(k), what is the N-point DFT
of the complex conjugate signal x∗(n) in terms of X(k)? Is this
property consistent with that of part (a)?

(c) The following 8-point DFT pair can be easily verified:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
−1

1
3
1
−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
3
3
−1

3
3
3
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
←→ X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8+ 16j
0
16
0
8j
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Without computing any further DFT/IDFTs, extract from X the 8-
point DFTs of the real and imaginary parts of x and explain the
method that you used.

[Note: this can be done by using the results of part (b), but other
approaches are possible, also the answer is not as simple as taking
the real and imaginary parts of X.]
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332:521 – Digital Signals and Filters
Final Exam –December 16, 2009

1. (a) Given the 8-point DFT

X = [0, 0, 4, −8j, 0, 8j, 4, 0],

express the corresponding time signal x(n), n = 0,1, . . . ,7, as a sum
of real-valued sinusoidal and/or cosinusoidal signals.

(b) Let x(n) for n = 0,1, . . . ,N−1 be a length-N time signal and let
X(ωk) for k = 0,1, . . . ,N−1, be its N-point DFT. Show that the z-
transform of x(n) can be written in the form:

X(z)= 1− z−N
N

N−1∑
k=0

X(ωk)
1− ejωkz−1

(c) Let ωk, k = 0,1, . . . ,N − 1, be the N DFT frequencies, that is, ωk =
2πk/N. Prove the following identities:

1

N

N−1∑
n=0

ejωkn = δ(k) and
1

N

N−1∑
k=0

ejωkn = δ(n)

Hint:
N−1∑
n=0

xn = 1− xN
1− x .

2. Consider the filter:

H(z)= 0.5+ z−2

1+ 0.5z−2

(a) Show that this is an allpass filter. What is its gain?

(b) Draw the transposed realization form and write the corresponding
sample processing algorithm.

(c) Suppose that the following period-4 causal periodic signal is sent to
the input of this filter, where the dots represent the repetition of the
length-4 period [1,2,3,4]:

x = [1,2,3,4︸ ︷︷ ︸
one period

,1,2,3,4, . . . ]

Explain why after the initial filter transients die out, the filter output
is also going to be a period-4 periodic sequence. What is that se-
quence? Since that output sequence is different from the input one,
how can one reconcile this with the fact that the filter is allpass?

47

3. In designing digital resonator filters with prescribed peak widths, we use
the bilinear transformation method and start from an equivalent analog
prototype resonator filter of the form:

H(s)= αs
s2 +αs+Ω2

0

(a) For this analog filter, show that the 3-dB width of the peak at Ω0

(measured relative to the peak maximum) is given by ΔΩ = α.

(b) Show that the 10-dB width of the peak is ΔΩ = 3α. What is the
attenuation level in dB that corresponds to a width of ΔΩ = 2α ?

(c) A digital resonator filter H(z) operating at an 8 kHz sampling rate
was designed using the above bilinear transformation method. It
turned out that the equivalent analog filter was of the form:

H(s)= 0.5s
s2 + 0.5s+ 1

Determine the digital transfer function H(z). Determine the center
frequency f0 and 3-dB peak width Δf of the digital filter in kHz.

4. (a) A model of a first-order noise shaping quantizer is depicted below,
where ζ−1 is the unit-delay in the fast time scale and n′ denotes a
fast sampling instant. Show the following input/output equation in
the ζ-domain:

Y′(ζ)= ζ−1X′(ζ)+(1− ζ−1)E′(ζ)

(b) How would you modify this block diagram if you want to imple-
ment a second-order noise shaping quantizer, that is, one whose
input/output equation has the form:

Y′(ζ)= ζ−1X′(ζ)+(1− ζ−1)2E′(ζ)

Verify that your block diagram satisfies this equation.
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(c) For a second-order noise shaping quantizer, show from first princi-
ples that the savings in bits ΔB is related to the oversampling ratio
L by the following approximate equation:

22ΔB = 5L5

π4

Discuss the nature of this approximation.
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