
332:521 – Digital Signals and Filters
Computer Experiment 3 – Due October 21, 2010

In this experiment, you will study: (a) some examples of signal enhancement
and noise reduction filters, (b) the interplay between steady-state and transient
response and the trade-off between time constant and sharpness of filter spec-
ifications, and (c) the effect of coefficient quantization on the performance and
stability of filters.

Problem 3.1: Coefficient Quantization Effects

Please do Problems 7.20 and 7.21 of the text.

Problem 3.2: FIR Bandpass Filter

A signal x(n) is the sum of a desired signal s(n) and interference v(n):

x(n)= s(n)+v(n)

where
s(n)= sin(ω2n) , v(n)= sin(ω1n)+ sin(ω3n)

with
ω1 = 0.05π, ω2 = 0.2π, ω3 = 0.35π

In order to remove v(n), the signal x(n) is filtered through a bandpass
FIR filter that is designed to pass the frequency ω2 and reject the interfering
frequenciesω1,ω3. An example of such a filter of orderM = 100 was designed
with the methods of Chapter 11 (using a Hamming-window design) and has
impulse response:

h(n)= w(n)
[

sin
(
ωb(n−M/2)

)− sin
(
ωa(n−M/2)

)
π(n−M/2)

]
, 0 ≤ n ≤M

where ωa = 0.15π, ωb = 0.25π, and w(n) is the Hamming window:

w(n)= 0.54− 0.46 cos
(

2πn
M

)
, 0 ≤ n ≤M

To avoid a computational issue at n =M/2, you may use MATLAB’s built-in
function sinc, which is defined as follows:

sinc(x)= sin(πx)
πx

a. On the same graph plot x(n) and s(n) versus n

b. Filter x(n) through the filter h(n) using a circular-buffer implementation
of the filter, and plot the filtered output y(n), together with s(n).

Apart from an overall delay introduced by the filter, y(n) should resemble
s(n) after the M initial transients
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c. To see what happened to the interference, filter the signal v(n) separately
through the filter and plot the output, on the same graph with v(n) itself.

d. Using the built-in MATLAB function freqz, or the textbook function dtft,
calculate and plot the magnitude response of the filter over the frequency
interval 0 ≤ω ≤ 0.4π:

∣∣H(ω)∣∣ =
∣∣∣∣∣∣
M∑
n=0

h(n)e−jωn
∣∣∣∣∣∣

Indicate on that graph the frequencies ω1,ω2,ω3.

e. Redesign the filter with M = 200 and repeat parts [a-d]. Discuss the effect
of choosing a longer filter length.

0 50 100 150 200
−3

−2

−1

0

1

2

3
x(n) and s(n)

n
0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

Magnitude Response |H(ω)|

ω in units of π

0 50 100 150 200
−3

−2

−1

0

1

2

3
s(n) and filtered x(n)

n
0 50 100 150 200

−3

−2

−1

0

1

2

3
v(n) and filtered v(n)

n

2



Problem 3.3: Resonator Bandpass Filter

Consider N = 300 samples of a noisy sinusoidal signal of frequency f0 = 500
Hz sampled at a rate of fs = 10 kHz:

x(n)= cos(ω0n)+v(n) , 0 ≤ n ≤ N − 1

where ω0 = 2πf0/fs is the digital frequency and v(n) is white noise with zero
mean and unit variance.

The following 2-pole resonator filter, tuned to the frequencyω0, will extract
the sinusoid (except for a time delay), while at the same time reducing the noise:

H(z)= G
(1−Rejω0z−1)(1−Re−jω0z−1)

= G
1− 2R cosω0 z−1 +R2z−2

where 0 < R < 1. The gain G is fixed so as to ensure |H(ω0)| = 1. This gives
the following expression for G:

G = (1−R)(1− 2R cos(2ω0)+R2)1/2

The white noise component v(n) has power that is spread equally over the
entire Nyquist interval. After filtering, the overall noise power will be reduced
because only the amount of power that resides within the resonator’s peak will
survive the filtering process. If we denote by yv(n) the filtered version of v(n),
then the amount of noise reduction is quantified by the noise-reduction-ratio,
defined to be the ratio of the output to the input noise variances:

R = σ2
yv

σ2
v
=
∑
n
h2(n)=

∮
u.c.
H(z)H(z−1)

dz
2πjz

a. Show that the causal/stable impulse response of this filter is given by:

h(n)= G
sin(ω0)

Rn sin(ω0n+ω0), n = 0,1,2, . . .

b. Show that the noise-reduction-ratio is given by:

R = G2(1+R2)
(1−R2)(1− 2R cosω0 +R2)(1+ 2R cosω0 +R2)

c. For each of the three values R = 0.95, R = 0.97, R = 0.99, plot h(n)/G
versus n. Also, plot the magnitude response squared |H(f)|2 over the fre-
quency range 0 ≤ f ≤ 5 kHz. (Recall that the peak width is controlled by R
through Δω− 2(1−R).)

d. Generate N = 300 zero-mean, unit-variance, gaussian, white-noise samples
v(n), then, compute the input signal samples x(n)= cos(ω0n)+v(n), and
plot them versus n using vertical scales [−4,4]. (Make sure you initialize
your random-number generator with a seed in order to get reproducible
results.)

Next, filter x(n) through the above filter for each value of R. Plot the result-
ing output signal y(n) on the same graph as the noise-free desired signal
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s(n)= cos(ω0n), again using vertical scales [−4,4]. Comment on the du-
ration of transients versus the narrowness of the resonator peak versus the
amount of noise reduction.

e. Filter the noise signal v(n) separately through the filter (for each R), and
compute the corresponding filtered output noise yv(n). On two separate
graphs, plot v(n) and yv(n) versus n. Explain why the filtered noise looks
more like a sinusoid than noise.

Using the actual samples v(n), yv(n), for n = 0,1, . . . ,N−1, calculate their
sample variances σ̂2

v, σ̂2
yv , and the corresponding estimated noise-reduction

ratio R̂ = σ̂2
yv/σ̂

2
v, and compare it with the theoretical value R computed

from part (b).
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Problem 3.4: Notch and Peak Filters

We saw in Chap. 6 that the sinusoidal response of a second-order filter with
poles at p1, p2 has the following exact form, for n ≥ 0:

x(n)= cos(ω0n) ⇒ y(n)= |H(ω0)| cos(ω0n+ θ0)+B1pn1 + B2pn2

where the phase shift θ0 is value of the phase response of the filter at ω0, and
B1, B2 depend on the particulars of the transfer function. In this part, you will
study how well the steady-state term represents the output of a short-duration
signal and the effect of the transient terms on the time constant of the filter.

Consider the following signal of duration of 12 seconds defined as three con-
catenated four-second unity-amplitude sinusoidal signals of frequencies f1 = 2,
f2 = 4, and f2 = 6 Hz:

x(t)=

⎧⎪⎪⎨
⎪⎪⎩

cos(2πf1t), 0 ≤ t < 4 sec

cos(2πf2t), 4 ≤ t < 8 sec

cos(2πf3t), 8 ≤ t < 12 sec

This signal is sampled at a rate of fs = 200 samples/sec. The following two
filters, operating at the rate fs, are notch filters that have been designed to have
a notch at f2 = 6 Hz, therefore, they will knock out the middle portion of x(t):

H1(z) = 0.969531− 1.923772z−1 + 0.969531z−2

1− 1.923772z−1 + 0.939063z−2

H2(z) = 0.996088− 1.976468z−1 + 0.996088z−2

1− 1.936468z−1 + 0.992177z−2

The first filter has a 3-dB width of Δf = 2 Hz, and the second, a width of
Δf = 0.25 Hz. The magnitude responses |H(f)| are shown below. We will learn
in Chap. 11 how to design such filters. They have been designed by the MATLAB
function parmeq invoked with the parameters:

[a,b] = parmeq(1, 0, 1/sqrt(2), 2*pi*f2/fs, 2*pi*Df/fs);

where a,b are the denominator and numerator filter coefficient row vectors. In
this experiment, we study the interplay between notch width and transient time
constant. The first filter has a wide width and a short time constant, whereas
the second filter has a narrow width and a long time constant.

a. Calculate the 40-dB time constants of both of these filters in seconds.

b. Let x(tn) denote the sampled input x(t). Plot x(tn) versus tn over the period
of 6 seconds. Filter this input through H1(z) and plot the output y(tn)
versus tn.

Notice how quickly the middle portion of x(tn) is notched out. Notice also
that the f1 and f3 portions no longer have unity-amplitudes. Verify that the
(steady-state) amplitudes are given respectively by the magnitude response
numbers |H1(f1)| and |H1(f3)|.
Do you observe a phase shift? Is the observed transient response consistent
with the calculation of the time constant of part (a)?
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c. Repeat part (b) using the second filter H2(z).

d. On two separate graphs, plot the magnitude responses |H1(f)| and |H2(f)|
versus f in the range 0 ≤ f ≤ 10 Hz. The expected graphs are shown below.
The values at f1 and f3 have been indicated on these graphs.

e. For each filter, calculate the corresponding left and right 3-dB frequencies,
say, fL and fR, and indicate them on your graphs of part (f) by connecting
them with a horizontal segment at the 3-dB level. Verify that the difference
fR − fL is equal to the given 3-dB widths of 2 Hz and 0.25 Hz, respectively.

(This is a hard question. You can determine these frequencies analytically if
you read Sect. 11.3 of the text, otherwise, you can determine them by trial
and error.)

f. Next, consider the following two peaking filters, which are complementary
to the above notch filters. They have a peak at f2 and the same 3-dB widths
of 2 and 0.25 Hz, respectively:

H1(z) = 0.030469(1− z−2)
1− 1.923772z−1 + 0.939063z−2

H2(z) = 0.003912(1− z−2)
1− 1.976468z−1 + 0.992177z−2

They can also be designed with the parmeq function:

[a,b] = parmeq(0, 1, 1/sqrt(2), 2*pi*f2/fs, 2*pi*Df/fs);

Repeat questions (a-e) for these filters. The peaking filter is supposed to
extract the middle portion of the input and remove the f1 and f3 portions.
Discuss how well each filter accomplishes this goal and correlate what you
see in the time-dependence of the output signals with the magnitude re-
sponses of the peaking filters.
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