
332:521 – Digital Signals and Filters
Computer Experiment 2 – Due October 5, 2010

Please do the computer experiments described in Problems 4.8–4.12:

4.8 Filtering by convolution.
4.9 Block-by-block processing using the overlap-add method.
4.10 Sample-by-sample processing using a linear delay-line buffer.
4.11 Sample-by-sample processing using a circular delay-line buffer.
4.12 Sample-by-sample implementation of a delay using a circular buffer.

Although you may use MATLAB for all the experiments, the sample-by-sample
processing experiments are more appropriately done in C because the C code
parallels the hardware implementation of these operations on a modern DSP
chip. If you choose to do Problem 4.9 in MATLAB, then write a function with
usage:

y = blkfilt(h,x,L);

where h is the filter vector, x is an arbitrarily long input vector, L is the block
length for partitioning x into blocks, and y is the overall convolution output
vector.

As a starting point for your C programs, the required dynamic allocation of
the filter coefficients may be done by the following program segment:

#include <stdlib.h>
#include <stdio.h>

void main(int argc, char **argv)
{

FILE *fph; filter file
double *h, *w;
int M, max = 64, dmax = 64; allocation for h and increment

if (argc != 2) {
fprintf(stderr, "usage: firfilt hfile < x.dat > y.dat \n");
exit(0);
}

if ((fph = fopen(argv[1], "r")) == NULL) {
fprintf(stderr, "can’t open filter file: %s\n", argv[1]);
exit(0);
}

h = (double *) calloc(max + 1, sizeof(double)); preliminary allocation

for (M=0;; M++) { read h
if (M == max) { reallocate h, if necessary

max += dmax;
h = (double *) realloc((char *) h, (max + 1) * sizeof(double));
}

if (fscanf(fph, "%lf", h + M) == EOF) break;
}

M--; M is filter order

h = (double *) realloc((char *) h, (M + 1) * sizeof(double)); final allocation
w = (double *) calloc(M + 1, sizeof(double)); internal states

